
AFRL-HE-W»-TR-1999-0023

UNITED STATES AIR FORCE
RESEARCH LABORATORY

The Distributed Operator Model
Architecture

Stephen E. Deutsch
Nichael Cramer
George Keith

Bobbi Freeman

BBN Technologies
10 Moutton Street

Cambridge MA 02138

February 1999

Final Report for the Period November 1997 to February 1999

^90MJ16

Approved for public release; distribution is unlimfted.

OTIC QUALITY INSPECTED 4

Human Effectiveness Directorate
Deployment and Sustainment Division
Sustainment Logistics Branch
2698 G Street
Wright-Patterson AFB OH 45433-7604

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication or otherwise, as in any manner, licensing the holder or any other person or
corporation, or conveying any rights or permission to manufacture, use or sell any patented invention
that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Federal Government agencies and their contractors registered with Defense Technical Information
Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft Belvoir VA 22060-6218

DISCLAIMER

This Technical Report is published as received and has not been edited by the Air Force Research
Laboratory, Human Effectiveness Directorate.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-1999-0023

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

JAY KIDNEY, Lt Col, USAF, Chief
Deployment and Sustainment Division
Air Force Research Laboratory

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing inductions .searching existing data sources
aatherina and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any_other aspect of this
11lee on l?1nfermation,9incfuding suggestions for reducing this burden, to Washington Headquarters Services, Directoratei for Inform^on Opera '°ns and Repots 1215 Jefferson
Davis Highway, Suite 1204, Arlington; VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, Dl ^UbUJ.

3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1999
4. TITLE AND SUBTITLE

The Distributed Operator Model Architecture

6. AUTHOR(S)
Stephen E. Deutsch, Nichael Cramer, George Keith and Bobbi Freeman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BBN Technologies
10 Moulton Street
Cambridge MA 02138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory, Human Effectiveness Directorate
Deployment and Sustainment Division
Air Force Materiel Command
Sustainment Logistics Branch
Wright-Patterson AFB OH 45433-7604 ;
11. SUPPLEMENTARY NOTES

Final - November 1997 - February 1999
5. FUNDING NUMBERS

C - F41624-97-D-5002
PE - 62202F
PR- 1710
TA- DO
WU -04

8. PERFORMING ORGANIZATION
REPORT NUMBER

BBN No. 8254

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-HE-WP-TR-1999-0023

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Distributed-OMAR (D-OMAR) is a new implementaion of the Operator Model Architecture (OMAR) designed to operate in
a distributed computing environment. In the new network-based configuration, Core-OMAR operates as a server that
provides the OMAR simulator. The developer's interface operates as a client that may connect to any of the instances of
Core-OMAR operating on the network. As in OMAR, D-OMAR is designed as a simulation environment in which to create
human performance models. It also provides the capability to develop the complex multi-tasking agents that are needed in
agent-based systems. The representation languages - the Simple Frame Language (SFL), the SCORE procedural language,
and the rule language - are provided to facilitate model development. The developer's interface - including the Simulation
Control panel, the Concept Editor, the Procedure Browser, and the Agent and Event Timeline analysis tools - has been re-
implemented in Java. The architecture for D-OMAR was designed to enable operation in several different middle-ware
environments. Currently supported middle-ware layers include Java RMI, CORBA, and the Defense Modeling and
Simulation Organization's High Level Architecture. A series of Combat Air Patrol scenarios, used as test cases to support

D-OMAR development, are available as demonstration scenarios.

14. SUBJECT TERMS

intelligent agents
interfaces
OMAR

agent-based architectures
agents

human computer
operator model architectures

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

42
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18 „ „ „,
Designed using Perform Pro, WHS/DIOR, Oct 94

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

The work on the Distributed Operator Model Architecture was conducted under Delivery
Order 13 of the Logistics Technology Research Support (LTRS) program administered
under U. S. Air Force Contract Number F41624-9T-D-5002.

The authors wish to thank the Technical Monitor, Dr. Michael J. Young of Air Force
Research Laboratory's Sustainment Logistics Branch, for the many important
contributions that he has made to this research effort.

in

Table of Contents
1. INTRODUCTION AND OVERVIEW 1

2. DISTRIBUTED-OMAR 2

2.1 TRANSITIONINGOMARTOD-OMAR 3
2.2 THE D-OMAR MIDDLE-WARE LAYER 6
2.3 LINKING CORE-OMAR INTO THE DISTRIBUTED OPERATING ENVIRONMENT 7

2.3.1 The OMAR Connector and Its Connectors • 8
2.3.2 The Lisp to Java Connection 9

2.4 THE EXTERNAL CONNECTOR '. 1°
2.4.1 The Core-OMAR External Connector 11
2.4.2 The External Connector for the High Level Architecture 11
2.4.3 The External Connector for CORBA 13

2.5 THE DEVELOPER'S GUI CONNECTOR AND THE DEVELOPER'S INTERFACE 13
2.5.1 D-OMAR Developer's Interface Client-Server Operation 14
2.5.2 The Concept Editor 14

2.5.3 The Procedure Browser 16

2.5.4 The Simulator Control Panel • 19
2.5.5 The Timeline and Analysis Data • 19

2.6 THE APPLICATION GUI CONNECTOR 22

3. D-OMAR AGENTS AND AGENT-BASED SYSTEMS 22

3.1 AGENCY IN HUMAN MODELS AND IN AGENT-BASED SYSTEMS 22
3.1.1 Agency in Human Performance Models 23
3.1.2 Agency in Agent-based Systems 23

3.2 AGENTS IN D-OMAR 24
3.2.1 Agent-Agent Communication 24
3.2.2 Proactive and Reactive Behaviors 25
3.2.3 Multi-task Performance 26
3.2.4 Invoking a Goal or a Procedure on an Agent 27

3.3 D-OMAR AGENT-BASED SYSTEMS 28
3.3.1 Homogeneous and Heterogeneous Agents 28
3.3.2 Agent Access to Application Data 29
3.3.3 Agent Mobility 30

4. THE COMBAT AIR PATROL DEMONSTRATION 30

4.1 CAP SCENARIO AGENTS 30
4.2 CAP SCENARIO MODES OF OPERATION 32

5. ACRONYMS • 34

6. REFERENCES 35

IV

Figures
FIGURE 1. D-OMAR CLIENT-SERVER CONFIGURATION ■ 4

FIGURE 2. D-OMAR DEVELOPER'S CONFIGURATION 5

FIGURE 3. IMPLEMENTATION OPTIONS FOR DISTRIBUTED OBJECT SERVICES 6

FIGURE 4. D-OMAR CONNECTIVITY FOR CORE-OMAR 9

FIGURE 5 A D-OMAR OPERATING AS AN HLA FEDERATE 12

FIGURE 6 D-OMAR TOOLBAR... 14

FIGURE 7 CONCEPT EDITOR NETWORK 15

FIGURE 8 CONCEPT EDITOR TABLE 16

FIGURE 9 PROCEDURE BROWSER SUB-PROCEDURES VIEW , 17

FIGURE 10 PROCEDURE BROWSER SIGNALS GENERATED OVERVIEW 18

FIGURE 11 SIMULATOR CONTROL PANEL i9

FIGURE 12 AGENT TIMELINE DISPLAY 21

FIGURE 13 EVENT TIMELINE DISPLAY 21

FIGURE 14 D-OMAR AND HETEROGENEOUS AGENTS 29

FIGURE 15. CAP SCENARIO RADAR SYSTEM WORKPLACE 33

THIS PAGE INTENTIONALLY LEFT BLANK

VI

1. Introduction and Overview
Distributed-OMAR (D-OMAR) is a new implementation of the Operator Model
Architecture (OMAR) developed by BBN Technologies under the Air Force Research
Laboratory's Logistics Technology Research Support (LTRS) program in Delivery Order
13. The principal goal of OMAR was to provide a sophisticated simulation environment
in which to design and implement human performance models. This has also been an
important focus for D-OMAR. A second goal for D-OMAR was derived from the
recognition that the suite of OMAR software tools used in the development of human
performance models could readily be used in the development of software agents to be
employed in agent-based systems.

To make D-OMAR a viable player in a distributed computing environment a new look at
the OMAR architecture was required. It was also apparent that the nature of the
computing environments in which D-OMAR might be called upon to play in could be
quite different than in the past. D-OMAR human performance models might be players in
a Defense Modeling and Simulation Organization (DMSO) High Level Architecture
(HLA) simulation exercise. As an agent-based system, D-OMAR might be a player in a
large-scale CORBA-based application with many other players. Moreover, one might still
want to use D-OMAR in a desktop environment without the overhead of either HLA or
CORBA. The D-OMAR architecture has been designed to compartmentalize the interface
to the middle-ware layer so that each of these target applications areas can be
accommodated.

The design of the new architecture also required taking a new look at the major software
components that make up OMAR and how they should be reconfigured to operate in a
distributed computing environment. One subset of the OMAR components became the
basis for a simulator that acts as a server in D-OMAR. Another component cluster, the
elements that support OMAR user interface development, was re-implemented as a D-
OMAR client. The client takes two forms: the first to operate as a D-OMAR developer's
workplace, and the second to serve as the basis for building the user interfaces for
application systems.

The OMAR simulator and the representational languages—the frame language, the
procedural language, and a rule language—were viewed as being essential building
blocks for the new implementation of D-OMAR. Taken together, they formed the set of
OMAR components that we now call Core-OMAR. D-OMAR can include any number of
Core-OMAR servers with one or more operating at any given network node.

The simulator control panel, the graphical editors and browsers for the frame and
procedural languages, and the data collection and analysis tools form the essential
elements that have been carried forward to form the new developer's workplace. It
operates as a client in D-OMAR.

Platform independence was another goal for D-OMAR. OMAR, written in Common
Lisp, had previously operated on Unix workstations. The desire to operate on Windows
machines brought forward the issue of the implementation language for D-OMAR. Core-
OMAR, comprising the simulator and the representation language was expected to, and in

fact did, readily compile in Common Lisp on both Unix and Windows computers. The
language for the D-OMAR developer's interface and that to be used for the development
of application interfaces had to be addressed. The middle-ware options also impacted the
language decision. Java was selected as the language that D-OMAR uses for socket-based
network connections, the interface to the middle-ware network connections, and the
language for the D-OMAR developer's interface. The middle-ware connection and
application interface development can be supported in Java or C++.

Lastly, it was important to provide a demonstration of D-OMAR in operation. A Combat
Air Patrol (CAP) scenario was developed and has served as the testing environment for
much of the development of D-OMAR itself. The scenario includes aircraft models, radar
models, and human performance models for the principal players in the scenario: the
pilot, co-pilot, and a radar officer on the AWACS, and the pilots for the interceptor and
bogey aircraft. The scenario runs with each of the D-OMAR middle-ware layers: Java
RMI, HLA, and CORBA. It is also possible to have a human player stand in for the
human performance model for the radar officer using the radar workplace to control the
intercept of the bogey.

Chapter 2 presents the design of the architecture for D-OMAR and outlines the
implementation of that design. Chapter 3 provides background on those elements of D-
OMAR that will be important in using D-OMAR for the development of human
performance models and for the development of agents to operate in agent-based systems.
Chapter 4 describes the CAP scenario that provides a demonstration of D-OMAR
operating in several of its many potential operating environments.

2. Distributed-OMAR
The design and development of Distributed-OMAR was the central undertaking of this
research effort. The Operator Model Architecture (OMAR) provided the starting point for
this task. OMAR had proved to be a very successful simulation environment in which to
develop human performance models, workplace models at which the operator models
performed their tasks, and models of the entities needed to complete the simulation
environment. Using OMAR, workplace models were created that could be operated either
by human performance models or by human players (Cramer, 1995). This capability
provided the basis for the evaluation of human performance models by comparing their
performance with that of human subjects in experiment scenarios. In a similar manner,
OMAR provided the simulation base in which to examine alternative approaches to
developing automation aides (e.g., MacMillan, Deutsch, & Young, 1997) as components
in complex systems.

Several factors motivated the decision to design and build a distributed version of
OMAR. The most important was the understanding that OMAR embodied software
capabilities that had the potential to make important contributions in two very broad and
important application areas. Human performance models exhibiting skilled behaviors are
essential in building real-time training environments like those currently under
development by the Air Force and the other services. They are needed to drive simulation
entity behaviors both at the individual platform engagement level and at command and
control levels. They may be used to supplement friendly forces and to provide realistic

adversarial forces. They may be used semi-autonomously, that is, under the management
of human controllers, or their development may be extended to the point where they may
be reliably used as autonomous agents.

Air Force system development based on agent-based systems was viewed as a second
application area in which a distributed version of OMAR could be employed. The
concepts for agency implemented in human performance model development are readily
adaptable for use as the basis for the design of computer-based agents. The multiple task,
communication, and collaboration skills employed in human performance models are
closely related to those necessary in the development of computer-based agents. These
skills may be employed to guide the computer side of interactions with human users and
the agents may also be tasked as subordinates by human operators to provide critical
supporting services.

OMAR was originally conceived of as an "open system." That is, the option of
connecting it into a broader computing environment was an important requirement met by
the original architecture. The OMAR simulator has been linked to aircraft models
provided by the NASA Ames Research Center (Deutsch, Cramer, & Clements, 1996) and
to the University of Pennsylvania's anthropomorphic model, Jack (Deutsch, MacMillan,
Cramer, & Chopra, 1997). In the first case, OMAR human performance models for
commercial aircraft flight crews operated as the crew for the NASA aircraft simulator,
while in the latter case, Jack provided an anthropomorphic form for an OMAR aircraft
maintenance crew person. To address the challenges presented by the Air Force
application areas highlighted above, the open system capabilities of OMAR had to be
updated and formalized to operate appropriately in the distributed computing
environments that will characterize these applications. OMAR-based systems would have
to inter-operate with non-OMAR systems and large-scale applications would require an
OMAR capable of operating at multiple sites supported by appropriate communication
services.

Lastly, OMAR was conceived of as a suite of software tools capable of supporting the
development of human performance models using a broad range of computational tools
rather than providing a computational architecture representative of a particular cognitive
architecture. While some models have demanded relatively modest computational
resources, others have employed as many as a thousand agents in the detailed modeling of
human reading skills (Young, 1998). Plans for future work are envisioned to include
models that demand an order of magnitude increase in the number of agents employed.

2.1 Transitioning OMAR to D-OMAR

Given the goal of recreating OMAR to operate in a distributed system environment, it
was important to identify the basic components that made up OMAR and how they
should be brought forward to operate in the new environment. To operate in a distributed
environment, OMAR had to be reconfigured into client and server components. The
server side is centered on the simulator. The principal elements include the simulator
itself and the three languages that are the representational basis for model building: the
frame language, the procedure language, and the rule language. The simulator and the
three representation languages are the essential computational-, as opposed to user

interface-elements, necessary to implement and execute an OMAR application. The
server configuration is now known as Core-OMAR.

The client sides of the client-server configuration have two basic forms. The first
provides the model developer with a user interface at which the development of
application code can take place. The second form that the client side will take will be the
application interfaces developed to serve the application system users. Figure 1 depicts
the client-server configuration for D-OMAR. The lower portion of the figure depicts two
Core-OMAR server sites each of which are running an OMAR simulator. The upper
portion of the figure depicts three D-OMAR client sites, one serving as a developer's site,
and two serving as application sites.

A»at£catias Sit* ' 0 *4«Aeatf«r $ä* -i SmvalmtrS»* 1 „ ' »lAI

#-:■-l.Ai

I «8:
$:■■:*.■"'■ m ■ ■■ V. ;|^ .^ •?>-■. '&■: •■ ■■■.|.;- ■ >

.SEv

j:^^^;,: ^a~«*t«a._:_. -P^-;VljJ- ..^^f!t_ Pt:-. .,,,,, .,,,
|W> :'i-^.':-1 "»"oMARAff.".'- .!^'f'-'^,j D-OMAR Aj-t ^J^^^^":^..^-

fe^";V-.--.'7£^J."-|j DOMAKA-r»! -^JB»- ! '-'vjl DOMARArrat '■''%£&&''JiJSte'-'&f' i-%£

%.*&...&.&,*: -üfe A;-.:: ■•--•..•"-T-:-::: ,?k, is^ "^vy;r;, -.Mir—'&*. A.-J

Figure 1. D-OMAR Client-Server Configuration

The D-OMAR developer's workplace consists of two principal elements: a server running
Core-OMAR and a developer's user interface as depicted in Figure 2. The languages, their
compilers, and the OMAR simulator are installed at the server as Core-OMAR running
either locally or remotely. The developer's user interface provides the software
development tools for application and model development. The development tools
include the graphical editor for the Simple Frame Language (SFL), the graphical browser
for the procedure language (SCORE), a window from which to manage the execution of
the simulator, and access to the timeline displays that provide detailed data on model
execution.

In the transition from OMAR to D-OMAR, it was important to revisit the choice of
implementation language for each major software element to be carried forward. The
availability of middle-ware options was the critical factor that framed many of the
choices. The issue to be addressed was language selection for the existing OMAR
software elements to be brought forward to be part of D-OMAR. The broader issue of the
selection of the middle-ware substrate and its role in D-OMAR is covered in Section 2.2.
The legacy OMAR system was implemented using a Common Lisp that included the
Common Lisp Object System (CLOS) as defined in Steele (1990). The particular
implementation selected was Allegro Common Lisp from Franz, Inc. The user interface
code was developed using the Common Lisp Interface Manager (CLM) also provided by
Franz. OMAR was developed and supported on Sun and Silicon Graphics Unix
workstations.

The new implementation of D-OMAR, to be based on a client-server configuration,
provided the opportunity to revisit language selection on a component-by-component
basis. The outlook for continued support for CLM did not look good. In particular, the
porting of CLM to the Windows environment had been promised for a long time but was
progressing very slowly. The much needed platform independence for user interface code
made necessary a move to another implementation language. Java as a provider of
platform independence was seen as the most attractive alternative. As will be seen below
(in Section 2.2), Java RMI was selected as the basic middle-ware support layer, lending
support to the selection of Java as the language for interface development. There were
and continue to be some concerns about the performance of Java code, but the feeling is
that these concerns will be addressed by the larger community of Java implementers and
users. Moving the large body of OMAR code for the simulator control panel, the
graphical language editors and browsers, and the analysis displays to Java was assessed to
be the best long-term approach to code maintenance. The new D-OMAR client-side
software, like the middle-ware software layer, is now in Java.

-„»;:s '-W?'"-?.•!•'/" ":' ■'*%■■' -life; ",;J

'iy-:~: ' '~ -:V' l' "V-: Dntlepw'sSil* I^HBH

I-S^"*£fc J-J ft--
I

Network access to D-OMAR developer's
components:

• D-OMAR program development tools:
- Simple Frame Language graphical

editor
- SCORE procedure browser

• D-OMAR simulator operation
• D-OMAR analysis and debugging tools:

- event timeline
- agent-task timeline

Figure 2. D-OMAR Developer's Configuration

The server-side software, as we have seen, consists of just the simulator, and the
representation languages and their compilers. The frame language, SFL, and the
procedure language, SCORE, rely heavily on Lisp and there is little likelihood of
maintaining their representational strengths and ease of use in either Java or C++, the
most reasonable candidates for re-implementation. SCORE language forms, as extensions
of Lisp, are readily passed through the Lisp compiler to generate the continuation and
closures that are the basis for execution in the simulator. There seemed to be little chance
of preserving the significant representational strengths of the OMAR programming
languages were the attempt made to re-implement them in another language. With Franz
now providing Allegro Common Lisp for Windows NT, Windows 95, and Linux
environments in addition to the already available Unix environments, the soundest course
of action was to continue to use Lisp for server-side D-OMAR development.

2.2 The D-OMAR Middle-ware Layer

Implementing Distributed-OMAR in a distributed object system framework was the
principal goal of this endeavor. That said, there were a number of implementation options
and each was expected to have implications that the architecture for Distributed-OMAR
would have to accommodate. This was further complicated by the fact that the offerings
in distributed object frameworks are rapidly evolving with a number of major software
vendors playing key roles and many smaller players making innovative contributions. The
major commercial players are Sun with Java and the Remote Method Invocation (RMI);
the Object Management Group (OMG), a consortium defining the specifications for
CORBA with vendors offering CORBA-based software; and Microsoft with DCOM. In
addition, in the military simulation and modeling world guided by the Defense Modeling
and Simulation Office (DMSO), compliance with the High Level Architecture (HLA) is
required. Of these candidates, the DCOM option was the only option that was not
implemented. Should it become necessary, D-OMAR can readily be configured to operate
with DCOM as the middle-ware layer. Figure 3 highlights the three middle-ware
requirements to be met in developing Distributed-OMAR.

.«HP'S, 7 :».?«>.■■

mi
gy Cdre-OMARSte
E« D-OMäRAgmt

B-OMARAgent

Java BMI

5J;

»jyy.

il-OMARSii,- -$■■.
I \ ^ZU.2W:^.:i».'.: -'j.y
j.>1 Cor*-OMAR Site r^
tjt- D-OMAR Ajrar ijp

ue ¥- EF D-OMAR Ajrnr **•

OMG CORBA

D-OMARSke §§
m

COT e-OMAR Site "y
: D-OMAR Age» *W

SS" : - ' J
'■& D- OMAR Aecat-

j££7 *

i Level ArcMtectore
Santäme&frasfrnetcre .

Figure 3. Implementation Options for Distributed Object Services

That said, the most straightforward approach to creating Distributed-OMAR was to
supplement the existing OMAR framework with Java-based extensions. The Lisp-based
Core-OMAR sites were provided with a bridge between Lisp and Java using a socket-
based communication layer. Network connectivity among D-OMAR sites to support
message passing, event processing, and object naming services was developed in Java.
This communication layer was developed using Java RMI. This is the form that the first
D-OMAR implementation took. It also formed the baseline from which the subsequent
CORBA and HLA implementations were developed.

The objective of using Distributed-OMAR as part of on-going military applications
played an important role in the network-connectivity implementation decision. CORBA
has been the middle-ware substrate of choice for a number of military systems that
include legacy system components, legacy databases, and legacy simulators as system
components. A major CORBA feature is its capability to accommodate system
components developed in different computer languages operating on platforms running
different operating systems. Some of these systems are already using Lisp-based
components. In several application areas, CORBA is already in use, or is likely to be the

required vehicle for network connectivity. It was deemed essential that D-OMAR operate
in a CORBA environment.

In the simulation and modeling area, the High Level Architecture (HLA) is required and
is expected to supply many essential connectivity services. The High Level Architecture
is the DMSO defined standard architecture to support the integration and coordinated
execution of military simulators and models. Like HLA, OMAR roots lead back to
SIMNET. Predecessor systems (Deutsch, 1993) to OMAR played an important role in the
early development of SIMNET Semi-automated Forces. D-OMAR now has the potential
to play a significant role in a variety of the HLA simulation environments, both for agent-
based supporting roles and for modeling human players or military units.

To enable D-OMAR to operate in the broadest possible range of application areas, the
challenge was to provide a D-OMAR architecture that would allow an implementation
that could be readily adapted to make use of any one of these middle-ware support layers.
Distributed object system support was addressed at an architectural level so that the use
of a particular middle-ware layer could be resolved as a low impact implementation level
issue.

2.3 Linking Core-OMAR into the Distributed Operating Environment

As its name implies, Core-OMAR comprises the principal internal functional elements of
OMAR, the simulator, and the representational languages from which models and
applications are built. The first step in building D-OMAR was to separate this body of
code and establish it as the basis for a D-OMAR server.

Written in Common Lisp, Core-OMAR can now run under most popular operating
systems on most hardware platforms. Franz provides Allegro Common Lisp that operates
on most Unix systems, Linux, Windows NT, and Windows 95. All Lisp development
work in D-OMAR has been done using Allegro Common Lisp. Allegro Common Lisp
includes two extensions that D-OMAR relies on. The first is the ability to run multiple
processes. In OMAR and in Core-OMAR one process is used for simulator execution and
another process is used in communicating asynchronously with the user interface. This
use of processes is internal to Core-OMAR and not a feature of the D-OMAR
architecture.

The second extension that Allegro Common Lisp provides is a socket capability available
directly from Lisp. The socket capability is the first step in linking Core-OMAR to
operate in a distributed operating system environment. Our goal was to enable OMAR
agents operating at remote sites to use signals as the basis for communication just as they
do for communication among agents operating in a local simulator.

Signals have always formed an important communication function among an agent's
procedures within OMAR. The SCORE form, signal-event, is used to generate or publish
a signal. The signals themselves are just lists with the first element of the list interpreted
as the signal type. Procedures may subscribe to a signal using the forms with-signal or
asynch-wait. There may be multiple procedures that have subscriptions to a signal type or
possibly, none at all. The handling of signals forms a publish-subscribe protocol. It differs
from the typical publish-subscribe strategy in that a subscription expires on the

acceptance of a signal and must be renewed if subsequent signals of that type are to be
handled. This model of inter-procedure communication has been extended to form the
basis for communication between instances of Core-OMAR agents operating at remote
sites. The signal-based communication protocol was used as the base from which to
construct the Application Program Interface (API) for Core-OMAR.

The approach developed was designed to establish three important features of the D-
OMAR system for communication among D-OMAR component elements and with
external systems:

1. There was to be a single, well-established protocol for the implementation of all
connections to Core-OMAR. On the Lisp side, establishing a new connection-type
simply involves defining a new server-connection object that knows how to deal
internally with the set of connection-specific types of messages. On the external side,
a signal/message-passing connection object exists in Java (or C++) that serves as the
basis for the portion of the module implemented in the external language.

2. When viewed from an external Java or C++ system component, Core-OMAR appears
as just another Java or C++ system component.

3. The D-OMAR components may run on a single hardware platform or the individual
components, having socket-based connections, may be installed at remote network
sites. Taking advantage of socket-based connectivity, each of the D-OMAR modules
can run on different local or remote hardware platforms as required to meet system-
specific architectural goals.

2.3.1 The OMAR Connector and Its Connectors

The OMAR Connector (Figure 4) plays a central role in the D-OMAR architecture. It is
the implementation of the API for Core-OMAR and, as such, governs communication
with Core-OMAR. The connector serves as a gateway to the user interfaces to Core-
OMAR and to remote servers that may be either other instances of Core-OMAR or non-
OMAR system components. Each of the three connectors that communicate with the
Core-OMAR through the OMAR Connector uses a common body of code to manage
communication with the OMAR Connector. Each is specialized to manage the D-OMAR
signals particular to its application.

The D-OMAR user interfaces address two distinct requirements. The first is to provide an
interface for the developer of D-OMAR-based systems. The second is to provide user
interfaces for applications developed using D-OMAR. The D-OMAR Developer and
Application GUT connectors shown in Figure 4 provide network connectivity for these
user interfaces. Java RMI is used to support these communication links.

The third connector shown in Figure 4, the Java External Connector, provides
connectivity to remote instantiations of Core-OMAR or non-OMAR systems operating in
the distributed computing environment. Communication among remote Core-OMAR
servers is based primarily on the exchange of OMAR signals. When connecting D-
OMAR to non-OMAR systems it will be important to present an appropriate "face" to the
external world. This is the function of the Java External Connector. While Core-OMAR

is Lisp-based, it presents itself to remote clients as Java-based. A C++ form of the
connector is also available. It is the External Connector that has been specialized to
accommodate each of the selected middle-ware layers that D-OMAR currently supports.
Three middle-ware specific specializations have been developed: one using Java RMI,
one that uses CORBA, and one that operates in an HLA RTI simulation environment.

Before the full implementation of the three connectors shown in Figure 4 were in place,
there were actually two distinct users of the OMAR Connector during the D-OMAR
development process. As soon as Core-OMAR was operational, a simple "command line"
interface was developed and used in validating Core-OMAR operation. The command
line interface provided a basic set of keyboard commands to control the operation of the
OMAR simulator. A trace of scenario execution provided the only view into simulator
operation. Once the operation of Core-OMAR was assured, a second instantiation of the
OMAR Connector was used to link Core-OMAR to the original CLIM-based OMAR user
interface tools. This provided a framework in which to develop OMAR code in the period
before the Java-based D-OMAR developer's interface was available. The successful
operation of Core-OMAR and its API was established quite early in the development
process.

! ̂ The .
':■ Core-OMAR. •:;' OMAR; ■■'.■

k :'■:..-■■'-

Connector

MMBM

-.-•OWAs

%&

•>*a.v"-i

:-»-.V^.-wapTk,

■.*,ylw»S-iCii-,.li

•■>■'- ■

Figure 4. D-OMAR Conoectivity for Core-OMAR

The first two uses of the OMAR Connector addressed interim D-OMAR development
goals: validating the operation of Core-OMAR and providing an interim workplace for
OMAR model development. The third and most important use of the OMAR Connector
was to link a Core-OMAR server to D-OMAR clients and remote servers in a distributed
computing environment.

2.3.2 The Lisp to Java Connection

The link between Core-OMAR and the OMAR Connector is the point at which the
Lisp/non-Lisp language gap is addressed. Bridging the gap between Lisp and Java is a

two step process: using a socket to connect the process running Lisp with the process
running Java and establishing a protocol for the transfer of data. A socket is a standard
mechanism for inter-process communication available on virtually all platforms. Allegro
Common Lisp has extensions that support sockets and there are Java classes that support
sockets. Hence, there was a ready vehicle for linking the Core-OMAR server to the Java
components of D-OMAR. Similar services are available in C++. The OMAR Connector
can also run with C++ peers. The socket-based object-stream passes messages between
Lisp and Java or C++ peers.

Given sockets as the means of connectivity between Lisp and Java, serialization is used
to format an object into a byte stream suitable for the communication stream. The
serialization is such that the byte stream representation can be reassembled as an object in
the target language at the other end of the connection. The messages being passed are
OMAR signals. At this point in time, all communication between the Lisp and the Java
components in D-OMAR is wholly in terms of signals.

The basic structures underlying the serialization stream consists of an "object stream"
which is responsible for the low-level socket-based inter-process communication, and a
"parser" object, embedded in the object stream, which contains the detailed knowledge
specific to the set of object types understood by the serialization stream. The object
stream is responsible for handling the details of reading bytes from and writing bytes to
an underlying physical stream and for the subsequent "conversion" of those bytes into
objects in the host language.

Details of the specific serialization protocol used by an object stream are the
responsibility of its internal parser object. The parser object knows how to "serialize" an
out-going object into an appropriate sequence of bytes and how to read a corresponding
series of bytes from which it can construct an in-coming object.

The Lisp end of the protocol consists of a socket-based server that also functions as a
distribution center or "post-office" that handles the transmission and reception of events
moving between Core-Omar and external system components. In particular the Lisp
portion of the connection:

• handles the establishing of connections with the external client Java-connectors;

• receives in-coming events and distributes them to the appropriate section of the Core-
OMAR API; and

• distributes out-going signals generated by the Core-OMAR to the appropriate external
client-connection.

The Java or C++ end of the connection is implemented as a socket-based client that
functions as a basic source and sink for messages in the target language.

2.4 The External Connector

The External Connector (the Java External Connector in Figure 4) is perhaps the most
important single element in the D-OMAR architecture. On one side, it supports the
network connection to Core-OMAR. On the other side, it may connect to another instance

10

of Core-OMAR or to a non-D-OMAR server. It is the element that enables multiple
instances of Core-OMAR to operate as part of a larger distributed system. It may be a
homogeneous system made up of just Core-OMAR servers or a heterogeneous system in
which Core-OMAR servers interoperate with non-D-OMAR servers. The intermediate
step in the connection between the local Core-OMAR server and the remote server is a
middle-ware layer. It is the External Connector that has been designed so that it may be
easily specialized to accommodate a broad range of middle-ware products.

The External Connector has a main body of code shared by the instantiations for each
middle-ware implementation. This is the code that manages communication with Core-
OMAR via the OMAR Connector. The External Connector is then specialized to operate
first with the middle-ware layer and then with the particular remote server type. The
middle-ware specific code encapsulates the Core-OMAR server's knowledge and
requirements of the particular middle-ware type employed. It functions as a mediator or
translator for information transmitted between Core-OMAR (in the form of external
signals or messages) and the protocol dictated by the middle-ware layer (e.g., through
method calls or event-like callbacks). The remote server could be another Core-OMAR
node supported by an OMAR Connector or a heterogeneous non-D-OMAR server. For a
heterogeneous node, the External Connector must include code to accommodate the
particular requirements of the interface to that node.

2.4.1 The Core-OMAR External Connector

The first External Connector developed linked a homogeneous network of Core-OMAR
servers using Java RMI as the middle-ware layer. Communication among Core-OMAR
nodes is accomplished using SCORE language external signals. Procedures at the local
node or at remote nodes subscribe to arriving signals using the with-signal or asynch-wait
SCORE forms. The OMAR Connector receives out-going signals from Core-OMAR and
passes them on to remote Core-OMAR nodes via the External Connector and the mirror
image OMAR Connector on the receiving end. The signals then enter the remote
simulator event streams for distribution to procedures that have subscribed to their signal
type. This External Connector in combination with the Developer's GUI Connector is the
essential building block dyad for D-OMAR. Together they integrated the new Core-
OMAR server into a distributed computing environment for the first time. Core-OMAR
and the Developer's GUI formed the new implementation of the OMAR model
developer's programming environment.

2.4.2 The External Connector for the High Level Architecture

The Defense Modeling and Simulation Office (DMSO) has played a central role in
distributed simulation for the Department of Defense. The High Level Architecture
(HLA) is the latest in a series of distributed simulation architectures that started with
SIMNET and evolved into Distributed Interactive Simulation (DIS). One of the important
goals for D-OMAR is that it provide human performance models as computer generated
forces that can operate in HLA simulation environments. The current implementation of
HLA is Version 1.3 of the Real-time Infrastructure (RTI). Our goal was thus to provide a
interface so that Core-OMAR would operate as an HLA player via the RTL

11

Viewed from the perspective of D-OMAR, the HLA RTI is a middle-ware layer linking
Core-OMAR servers and non-D-OMAR remote servers in a distributed computing
environment. However, the RTI is also somewhat more than the typical middle-ware
layer. It provides a distributed simulation framework and has an established set of
services and protocols governing participant interactions with the RTL Figure 5 lists the
functional categories of the HLA services. When operating in an HLA environment, a
cluster of Core-OMAR nodes are configured as an HLA Federate defined by a standard
HLA Federation Object Model (FOM) and Simulation Object Model (SOM). With these
definitions in place, HLA services are provided for:

• Control of the life cycle of the Federates,

• Naming of entities within the Federates,

• Governing event subscription and publishing among the Federates,

• The passing of events (e.g. attribute-change events) among the Federates, and

• Run-time synchronization.

The External Connector for integrating a D-OMAR Federate into an HLA simulation
must fulfill the HLA dictated obligations in utilizing the RTI services. Hence, this
connector is somewhat more complicated than the connector that supports a
homogeneous D-OMAR system that links Core-OMAR servers. For example, using RTI
services, a D-OMAR Federate is expected to utilize specifications for system-wide
naming conventions, handle notification of changes in values for attributes of external
entities, and publish changes to attribute values for internal entities.

High Level Architecture

•^/Runtime Infrastructure;., j
--'-federation Management '"

Declaration Management
V-; Object Management "..'

OWnership Management .■
'■'-■ lime Managements

[Data Distribution Management:!

High Level Arcäiteetare Runtime Infrastructure Version 13

Figure 5 A D-OMAR Operating as an HLA Federate

12

The handling of attribute values forms the RTI publish/subscribe protocol and is built on
the publish/subscribe strategy for D-OMAR signals. This is representative of the role of
the External Connector for RTI operation. HLA not only provides the middle-ware layer
linking the nodes of the network, it also specifies how interaction on the network are
defined and executed. The External Connector incorporates the set of services necessary
so that a Core-OMAR node may operate in an HLA simulation. D-OMAR running
homogeneous Core-OMAR servers is a very different distributed simulation environment
than is an RTI implementation of HLA. Even so, in making D-OMAR capable of
executing in an HLA environment the only D-OMAR software module that had to be
customized was the particular External Connector for RTI operation.

The current RTI implementation for HLA is in C++. In the early work with HLA, a C++
version of the OMAR Connector was used to integrate Core-OMAR servers for HLA
operation. More recently, the RTI has been provided with a Java "cap." That is, RTI
services are now available in Java as well as C++. The latest D-OMAR implementation
for HLA is using the Java "cap" supported by the standard Java version of the OMAR
Connector.

2.4.3 The External Connector for CORBA

The CORBA specification outlines perhaps the most complete set of middle-ware
services available. The D-OMAR External Connector makes a rather modest set of
demands on a subset of the specification that can be easily met by the offerings of any of
a number of the commercial vendors. BBNT has ready and free access to the Visigenic
Object Relation Broker (ORB) making that the obvious choice for use as the test-bed for
CORBA development. The Java version of VisiBroker, the Java implementation of the
Visigenic ORB, was used.

To demonstrate the use of CORBA as the middle-ware layer for D-OMAR it was
necessary to implement D-OMAR signal passing among Core-OMAR servers. This was
accomplished using the CORBA remote procedure call facility. On the Core-OMAR side,
the CORBA version of the External Connector communicated with the OMAR
Connector, on the other side it was specialized to communicate with the VisiBroker ORB.

2.5 The Developer's GUI Connector and the Developer's Interface

The D-OMAR Toolbar (Figure 6) is the entry point to the D-OMAR Developer's
Interface (see Figure 2), the suite of software tools used in developing human
performance models or agent-based systems. The Toolbar provides access to the D-
OMAR components designed to assist the developer in managing large bodies of code,
operating the simulator, and providing insight into agent operation. The D-OMAR
Developer's Interface components accessible from the Toolbar include the Concept
Editor, the Procedure Browse, the Simulation Control panel for controlling execution of
the simulator, and the timeline displays of both current simulation run (Timelines in
Figure 6) and data restored from previous runs (Analysis in Figure 6).

13

WtD-QMm TooDbar (v3.0}

Figure 6 D-OMAR Toolbar

2.5.1 D-OMAR Developer's Interface Client-Server Operation

Each of the D-OMAR Developer's Interface components existed in OMAR. The interface
code, previously written in Lisp and CLJJVI, has now been implemented in Java. The
Developer's Interface modules operate a as client of a Core-OMAR server. The D-OMAR
Developer's GUI Connector (Figure 4), also written in Java, provides the link between
client and server. The Developer's GUI display components communicate with the Core-
OMAR system via the Developer's GUI Connector and the OMAR Connector using
standard D-OMAR signals. The OMAR Connector serves as the interface between Core-
OMAR and the Developer's GUI Connector. It handles the transmission of data
(including the translation of Lisp formatted data to and from Java formatted data)
between Core-OMAR and the Developer's GUI Connector.

Like each of the connectors, the Developer's GUI Connector is specialized, in this case, to
communicate with each of the Developer's Interface display components using the
standard Java Listener (i.e., subscriber) and Source (i.e., publisher) mechanisms. Each
display module registers itself as a Java Listener for the specific events classes that it is
interested in receiving. The GUI Connector then routes data to and from the appropriate
display modules.

The Core-OMAR server component registers itself with the GUI component as a Java
Listener for the GUI component's server events through which the GUI Component
communicates with the Core-OMAR system. To the external Java-based GUI clients, the
event-server—the "face" that Core-OMAR presents to the external GUI components—is
just a Java component. The inter-component communication is modeled on the standard
Java Listener paradigm for Event generation and subscription.

2.5.2 The Concept Editor

The Concept Editor is a graphical editor designed to support the development and
maintenance of the SFL concept hierarchy defining the objects of a model. A Concept
Editor Network window (Figure 7) provides a view of a user-selected portion of the
concept hierarchy. A Concept Editor Table window (Figure 8) provides a table of the
slots and additional specifications for a particular concept. Data required by the Concept
Editor, the SFL representation of concepts and roles for a given simulation, resides in
Core-OMAR. The Concept Editor user interface code accesses the SFL data as required
via the Developer's GUI Connector and the OMAR Connector. The presentation of the
data in the Concept Editor Network and Table windows is generated in Java.

14

P5v Concept EdÜfcw - Metwoifc

Swtafc ?• **• •*3t-• • *Mgp*"'-J*S•-«wrJä^i.«g^ü^..:-.-.^.•-*!*:.■■■•. toi«rj

&&

:9l

WOOrM

F ■CO:!
H^A-"

■re ^^^m-m^^^^^^^m^m^
ssr.

figure 7 Concept Editor Network

The Network window, with concepts presented as the nodes of the graph, supports the
maintenance of the concept hierarchy by providing operations for adding concepts to or
deleting concepts from the network. The inheritance among concepts, the links to the
parent and child concepts of a selected concept, may also be modified as required. A
history pane is provided to make it easy to move back and forth between recently
presented focus nodes. There are several options available in viewing the graph for the
concept hierarchy. The shape of the nodes, and hence the layout of the graph, may be
varied by choosing whether or not to insert a carriage in the concept name at the points at
which they are hyphenated. In Figure 7, the concept names include carriage returns at the
points at which they are hyphenated. An overview mode is also available for viewing the
structure of large concept hierarchies.

The Concept Editor Table primarily supports the management of the slots for a concept.
Slots may be added to or deleted from a concept, and the number and value restrictions,
and default value for the slot may be set or revised. Separate views are provided to
present all the slots for the concept or just the locally defined slots. The editor will flag
inconsistent number or value restrictions. The "All Slots" view shows the restriction as
resolved by the SFL completion algorithm and the "Local Slots" view shows the value as
entered by the user. A locally entered number or value restriction that is flagged in red
indicates that the local entry is either redundant or violates the restrictions inherited from
parent concepts. The Concept Editor Table also allows the user to specify whether or not

15

an underlying class is to be defined for the concept and whether or not the concept
symbol is to be exported.

1RS Concept Edät» - TsWe
'"" "'"" ■■■■■■■■■■■■■■■■■■■■■■VrTrTxl

Fie Core«* Sot in VMndows

{(AH Slots Vie*- Jl 3P:PERSON "'=&&!?» Mate Class iiJiiC Export, ft -.Tail

III IS Wei t>e Silted By Kir. Hun l'acr Nan Val Rstrr. JJeSaslt

§BP:CCHVERS3iTIffiI HBP:EERSOB I man QU^s^BH ESS^Hr i
-jf-.yTp x ■,■. jpgSgjilt&Jsfci

— SS?
'• BP:PERSOM j^^^^^Äi^Jj {CO:»T BP:ESRS) (COiSR BP:ESRS) |

a'" ■ jj ^*^-TTff^SJSg3 .£BP: PERSON flM£ii§£f (CO:» BP.-EXES) (C0.2W BP:E!DES \

BPlMBJDS
- -

ijfjl
2£LA«

;cBP:PERSau 1 1 (CO: A B?:HaHDS) (CO:* BP:H»fl>S) |-.

- S« 1 ' " — '• "H— ,-',_^al
Figure 8 Concept Editor Table

The D-OMAR User/Programmer Manual Version 3.0 is available on World Wide Web.
It provides detailed information on SFL and the use of the Concept Editor. It also
provides detailed information on the SCORE language and the Procedure Browser, the
Simulation Control Panel, and the Timeline and Analysis views into simulation runtime
data as outlined in the following sections.

2.5.3 The Procedure Browser

SCORE is the procedural language in D-OMAR. Code is developed using an EMACS
editor, a text editor that Franz has linked closely to their Lisp runtime environment. The
Procedure Browser provides several graphical views of the code designed to support
model development and debugging. The views are designed, in part, to provide insight
into the large-scale structure of the code.

One pair of views presents the calling sequence relations among procedures. The first of
the pair shows the sub-procedure calls (Figure 9). The second shows the inverse of the
first, the "who calls" view. As in the Concept Editor the shape of the nodes, and hence the
appearance of the graph, is determined by whether or not the procedure names have a
carriage return inserted at the point at which they are hyphenated. Figure 9 is an example
in which carriage returns are not used. It is fast and easy to move back and forth between
the two views to find the one suitable for a particular graph. The utility of one view or the
other varies depending on the structure of the particular graph and the region of interest
within the graph.

The second pair of Procedure Browser views supports the use of signals, the
publish/subscribe capability of the SCORE language. The SCORE forms for publishing
signals are signal-event and signal-event-external, those for subscribing to events are
asynch-wait, with-signal and with-multiple-signals. One view presents a graph that traces
the signals generated by a selected procedure and the signals generated by the procedures
subsequently contacted. The second view presents a trace of the signals subscribed to by
the procedure.

'http://...

16

The complexity of the code for a model can lead to large graphs. An overview form of the
graph is provided for each viewing option to assist the user in managing the complexity.
Figure 10 provides an example of an overview graph of the signals generated by a
procedure. As in each of the other views, additional information on the nodes of the
overview graph may be obtained through mouse gestures.

9ft Procedure Browser

FJe 9roceOtMd Mrw VAnaow? ;

^^^^aatH^s^ts^K^t^^^B^

nir-e«i>-Baoc2>8S£

■ lü^&SuS

jssasSS

üjifiKtfroBjümsi

-^2225333

KSAGE-TSREAT-SSOCESOTS

yiiiiiMir ■ ■

v

RKS?CHr>-TO-SrrCSH-70-BASi

i ,J4,UJ.lfc*~H«Jt«Wfal

lAan^&rM?

igBy??g^^8w^^il
fl FLY-CÄP-PROCEDURS

1
■©£

WäsiOlB-HÄDlOCOMMlMiCÄnij
wa®i£-swi3*a4TS ■ -■■'!

HAND&VOJC&CO»WMC*5ji|
HSSO-OP-PHO!«

«1 ■ j

Figure 9 Procedure Browser Sob-procedures View

Underlying the original version of Procedure Browser is the CLIM-based PIASTRE
(Piastre Is A STRucture Editor) system, designed to be used for the graphical, structural
representation, and editing of code. While the underlying features of PIASTRE support
structure editing, it is used in the OMAR system as a browsing, rather than editing tool.
Because the Procedure Browser and PIASTRE represented a significant amount of code
that would not translate directly or easily into Java the decision was made to use as much
as possible of the underlying, original Lisp code in direct support of the planned Java-
based user interface.

Towards this goal a "draw stream" protocol was designed and implemented. The protocol
works as follows:

1. The stream that would normally be handed to the CLM-based drawing-code in the
Procedure Browser is replaced with a Draw-Stream object.

17

2. It is the responsibility of the Draw-Stream object to "serialize" the sequence of draw-
commands called on the Draw-Stream (e.g., draw-line, draw-rectangle, set-color)
into a sequence of bytes.

3. This sequence of bytes is then transmitted to the display gadget, where it is decoded
and displayed locally in Java.

Wf Procedure Biows«

Figure 10 Procedure Browser Signals Generated Overview

On the input side, the gestures to the Java display (e.g., mouse-clicks) are passed back to
the Lisp-side and the Procedure Browser code can, for example, determine which
underlying Lisp object appears at that screen location. It then provides an appropriate
response, for example, generating the request for the description of a screen object. In D-
OMAR, Draw-Stream has been implemented in a batch-like approach in which the
sequence of bytes is first captured in an array, and the array is transmitted as an event to
the Java display gadget. Hence, in the Procedure Browser all of the "drawing," as well as
layout, and data-manipulation are handled in Lisp, while the "display-rendering" is
handled in Java.

There were several advantages to the Draw-Stream architecture:

1. Converting existing code proceeded very quickly. Once the Lisp-side Draw-Stream
was in place and the code for the Java-side display gadget was finished, all that was
involved was replacing the standard stream object (to which the display-code draws)
with the Draw-Stream object.

2. The majority of the existing Lisp code was reused.

18

3. There need only be one Lisp-side Draw-Stream class and one Java-side display gadget
class. (That is, the Draw-Stream protocol is intended to behave as true stream and, as
such, to be general; it is not hardwired to a specific application.)

4. Once the Draw-Stream protocol was in place, the graphics/display system (CLM)
could be removed from the Lisp application. This was particularly important because
CLM was the only potential bottleneck in the path to platform independence for D-
OMAR.

2.5.4 The Simulator Control Panel

The Simulator Control Panel provides control over the operation of the D-OMAR
simulator. Once scenarios have been loaded, usually the last step in bringing up Core-
OMAR at a server node, the Control Panel may be used to select a scenario to run. It may
then used to initiate, run, pause, and resume scenario execution. A trace pane provides
information on the runtime events of the simulation. The user has control of the agents for
which the information is presented, as well as the types of events presented in the trace.
The event data from a simulation run may also be saved to disk for later use. Application
developers are responsible for providing event types yielding information relevant to the
operation of a scenario. Very detailed events recording of the execution of SCORE code
is available. During application development, event tracing, used in conjunction with the
Task and Event Timeline displays can be an important tool to support model debugging
and program verification.

PS* Simutaäon Control
Fie Scenario Peers. Windows

mm

pD=Stm-tl: 14S.Ö5 DiANEI1 attended: WUNDER Snap Vector Searing; 63 Range: 1 St
0D=Sim-11:151.85 DSANE11 replies: Roger Snap VestorBearing: 63 Range: 1S1
BD=Ssm-l J: 15S.S5 WATCHMAN attended mt^f Roger Snap Vector 3eartns: 63 Range: 161
P0=Sim-11:1S1.95D1ANE11 TRÄNSfTS0N-TO-L=G 82,6 3ÜÖ.0 20000.0
pD=Sim-l):172.55 WATCHMAN says: THUNDER Target Hostile Bearing: 61 Range: 160
P=Sim-1J: 173.95 DIANE11 HEADING 62.6 300.0 20000.0 ;
pD=Sim-1]: 177M D5ANE11 attended: THUNDER Target Hostile Bearing: 51 Range: 1 SO: :
pD=Sin>l]: 180.45 D1ANE11 replies: Roger Target Hostile Bearing: 61 Range: 160
pD=Sirr»-l J: 185.55 WATCHMAN attended rest* Roger Target Hostile Searing: 81 Range: 180
BD=Sim-1]: 185.55 D1ANE11 TRANSSTlON-TO-tS© 61.5 450.0 20000.0

Figure 11 Simulator Control Panel

2.5.5 The Timeline and Analysis Data

The D-OMAR Toolbar includes separate entry points for accessing Timeline and
Analysis data. They each provide access to the same presentation types for the data, the
Timeline entry point working from runtime data and the Analysis entry point working

19

from data restored from an earlier simulation run. The distinction is made to draw
attention to the fact that the full functionality of the simulator is available to continue
operation with respect to Timeline or runtime data, but that the simulator can not be
invoked for the case of Analysis data restored from an earlier run. The process of saving
data from a simulation run does not save sufficient information to allow the run to be
continued at a later time.

The Timeline and Analysis displays allow the model developer or analyst to precisely
access the detailed data on the execution of their models during a simulation run. The
displays have proven to be an essential resource for gaining insight into the operation of
and assessing the validity of the models developed to date.

Two timeline displays are provided: a Task Timeline and an Event Timeline. The agents
included in the display and the time span covered for each of the displays may be
controlled by the user. Mouse gestures may be used to adjust the window forward or
backward in time. The Task Timeline (Figure 12) provides detailed information on the
goals and procedures that an agent is executing. Each horizontal bar of the Gantt-style
chart provides information on one of the agent's goals or procedures. Information includes
the name, start time, and priority for the goal or procedure. For a completed goal or
procedure, the stop time and success or failure of the procedure is noted. The calling goal
or procedure and its priority are also identified.

The Event Timeline (Figure 13) display presents event data by agent. A number of event
types are built into the SCORE language and can always be made available for display. A
subset of these event types provides the data necessary to support the information
requirements of the Task Timeline. The SCORE language also includes a defevent form
that may be used add new event types important to the scenario being developed. The
record-event form is used to generate the runtime data that is recorded to support this
display. The analyst can select the agents to be included in the display, the time frame for
the display, and the event types to be included. Signal events are an important class of
events that track SCORE signal propagation. The Event Timeline for signal events
enables the developer to track this aspect of agent behavior.

Verbal communication is an important activity in virtually all of the scenarios developed
in OMAR and D-OMAR, hence communication events play an important role in the
analysis of many simulation runs. The Event Timeline shown in Figure 13 presents the
communication events for two of the players in the CAP Scenario discussed in Section 4.
It traces the radio communication between the radar office and the pilot of the interceptor
aircraft during the conduct of the intercept. The display graphically summarizes the
interaction between two of the key players in the scenario. Filters for the agents to
display, the time frame, and event types to display are used to interactively isolate the
data of interest.

20

Figure 12 Task Timeline Display

p£;j;^.:
L~^

Figure 13 Event Timeline Display

21

2.6 The Application GUI Connector

D-OMAR may be used as a distributed simulation environment populated by human
performance models or as the basis for developing an agent-based system. In either case,
the application will require one or more application interface sites. In the D-OMAR
distributed computing environment, a Core-OMAR node will act as a server supporting
the application interface. The client code supporting the interface may be developed in
whatever language is appropriate for the application. The Application GUI Connector is
designed to serve as the network connection between Core-OMAR and the display code
for the application interface. In the CAP scenario, the radar display (see Figure 15) is an
example of the use of the Application GUI Connector.

The architecture for the Application GUI Connector is structurally equivalent to that of
the Developer's GUI Connector. The core of the Connector transmits events between
Core-OMAR and the modules that drive the application interface. The Connector is then
specialized to meet the requirements of the events particular to the application interface.
The physical display may operate locally at the same node as the Core-OMAR server or it
may operate remotely at any node of the network.

3. D-OMAR Agents and Agent-based Systems
The original target application for OMAR was the development of human performance
model. D-OMAR provides a new framework in which to pursue the same goals. The
OMAR representation languages were designed to facilitate the modeling of the multi-
tasking behaviors of team members interacting with complex equipment in pursuing
collaborative enterprises. The representation languages that support the modeling of
human-like agency can also be used to develop models of agency necessary for the agents
that will be required in agent-based systems.

Recent research on agent-based systems has focused on the communication and
cooperation among agents operating in distributed computing environments and on
communications between system users and the agents that support them in the execution
of their tasks. The new capabilities being demonstrated in agent-based systems reside in
their potential to support widely dispersed users in their collaborative efforts to
effectively manage evolving situations. This represents a new application that the
development of D-OMAR has been designed to support.

3.1 Agency in Human Models and in Agent-based Systems

Agents in OMAR were originally envisioned as the basis for developing human
performance models. While D-OMAR was designed to address the same human
performance modeling goals as OMAR, it has the additional goal of providing a
framework suitable for the development of agent-based application systems. The
representation languages, principally the procedure language SCORE, designed to support
the modeling of human performance is seen as having the attributes necessary to develop
agent behaviors suitable for the agents that play an active role in providing services to
human operators of complex systems.

22

3.1.1 Agency in Human Performance Models

In human performance models that have been developed in OMAR and D-OMAR
(Deutsch, 1998; Deutsch & Adams, 1995), each of the human players that is modeled
typically has several tasks in process and interruptions are a common occurrence. Like
human players, the models are capable of proactive goal-directed behaviors, while at the
same time, they must be capable of responding properly to the sequence of events
evolving in complex situations. In supporting these behaviors, the models must exhibit
teamwork skills and communication skills. They draw on the capabilities of other players,
using them as resources, and they must be capable of responding to requests made by the
other players in the environment. They must appropriately shift attention from one task to
another in pursuing multiple goals while sensitive to an often complex chain of events.

The models are built from a foundation of individual perceptual, cognitive, and motor
skills that are the resources that may be drawn upon to accomplish the subtasks of a task
in process. There is a necessary layer of "basic person" skills and there must be a range of
domain specific skills for the environment in which the models are expected to operate.
There is an on-going interaction among thoughtful cognitive and automatic perceptual,
cognitive, and motor performance elements in the execution of each subtask. The
transition from one task to another can be the result of a thoughtful decision process or
the outcome of an automatic behavior. Moreover, there are bounds on what can be done
and on what can be done concurrently.

3.1.2 Agency in Agent-based Systems

Intelligent agents, software agents, or just agents: however they are designated, they
immediately provoke challenging questions. What are agents? How are they different
from programs? Asked in a more modern version: How are they different from objects?
Or, how are they different from objects in a distributed object computing environment?
Franklin and Graesser (1996) provide a good survey of the attempts by the developers of
a number of agent-based systems to address these questions. One of the more complete
definitions that they cite is that of Wooldridge and Jennings (1995). Jennings and
Wooldridge (1996) provided a slightly amended version of their "key hallmarks of
agenthood:
• Autonomy: agents should be able to perform the majority of their problem solving

tasks without the direct intervention of humans or other agents, and they should have
a degree of control over their own actions and their own internal state.

• Social ability: agents should be able to interact, when they deem appropriate, with
other software agents and humans in order to complete their own problem solving and
to help others with their activities where appropriate.

• Responsiveness: agents should perceive their environment (which may be the physical
world, a user, a collection of agents, the Internet, etc.) and respond in a timely fashion
to changes which occur in it.

• Proactiveness: agents should not simply act in response to their environment, they
should be able to exhibit opportunistic, goal-directed behaviors and take the initiative
where appropriate."

23

Jennings and Wooldridge (1996) then attempt to differentiate software agents from
object-oriented systems, artificial intelligence, and distributed computing by citing the
high-level tasks that are delegated to agents and the degree of autonomy that the agents
are granted in carrying out their tasks. They also point to the dynamically changing
environments in which agents operate. We prefer a viewpoint that downplays the
distinction that Jennings and Wooldridge attempt to make. The development of agents
owes much to earlier work in object-oriented programming and artificial intelligence, and
agents will operate very naturally in distributed object system environments with their
dynamically changing environments.

3.2 Agents in D-OMAR

D-OMAR provides a broad range of software tools for developing agents, either as
human performance models or the agents for agent-based systems. Section 2.5 provided
an overview of the D-OMAR Developer's Interface that includes the Concept Editor, the
Procedure Browser, the Simulation Control panel, and the Timeline and Analysis displays
of simulation data. This section provides an overview of the features of the procedural
language, the Simulation Core (SCORE) language, available for developing agent
behaviors.

3.2.1 Agent-Agent Communication

The principal form of communication among agents in D-OMAR, those that reside at the
local site and those that reside at remote sites, is signal passing. In D-OMAR, an agent
may, via one or more of its running procedures, subscribe to a signal. That is, the agent
makes a request to be notified of the occurrence of a particular event announced as a
broadcast signal. The signal is a list with the first element defining the signal type. The
subsequent elements of the list include data elements that provide information to describe
the event. The SCORE form, signal-event, is used to broadcast a signal locally. Signal-
event-external is used to broadcast a signal to remote Core-OMAR servers as well as the
local server.

The SCORE language provides three forms for subscribing to signals. In each case, the
compiler generates a closure for the function to be executed when the agent has elected to
process the signal. At any given time, there may be one or more agents, each with one or
more procedures that subscribe to the occurrence of any given signal. It may also be the
case that a signal occurs that is not attended by any agent.

The asynch-wait form is the simplest form used to subscribe to a signal. It specifies the
signal type and the argument values expected. Upon subscribing to a signal, that thread of
the agent's processing is suspended until the occurrence of a signal with an exact match
on the signal type and argument values. The with-signal form provides more flexibility in
selecting a signal to process. In using this form, an agent gains access to each signal of the
specified type and may then examine any or all of the signal's arguments for specific
values before deciding to process the signal. If through the use of the test clause, the agent
elects not to process the signal, the with-signal form remains in effect awaiting the next
occurrence of the specified signal type.

24

The third subscribe form, with-multiple-signals, as its name suggests, provides the
capability for processing several signals that may not be strictly ordered in time. As with
the form with-signal, a test clause may be specified for each signal specified in the form.
Time-out conditions may be associated with each signal and the occurrence of a signal
may be tagged as optional within the form. Hence, two or more signals may be required
to occur in a given time frame if further processing is to take place in a given procedure.
The optional signal may provide additional information that could, but is not required to
support subsequent processing. Having processed a signal, a procedure must execute
another subscribe form if it is to be responsive to the next occurrence ofthat signal type.

There are distinct differences between subscribing to a signal and making a subroutine
call or message passing in an object-oriented environment. A subroutine call or a message
sent to an object invokes a single respondent; a signal may be processed by any number of
procedures active on one or more agents, or perhaps, none at all. A called subroutine
always returns control to its caller; an agent's procedure that processes a signal is
operating in a thread independent of the source of the signal. Agents process a signal in
their own code thread and do not return control or values to the initiator of the signal.
Unless a particular effort is made to make it known, the initiator of a signal will not know
which procedures acted in response to the signal.

3.2.2 Proactive and Reactive Behaviors

D-OMAR agents are capable of proactive behaviors, that is, they pursue objectives, and
they maintain an agenda of things to do in order to accomplish their objectives. The
objectives are expressed as goals and the actions to accomplish those goals are organized
in a plan. The plan to accomplish a goal may partition the goal into sub-goals. Actions to
accomplish the goal or its sub-goals are expressed as procedures. Goals and procedures
are typically defined to operate in an environment in which failures are anticipated and
alternate paths to successful execution are prepared. In building a good plan, the paths
that might lead to failure are studied and triggers are identified to anticipate situations
leading to the failure of a portion of a plan. Multiple plans may need to be available to
achieve a goal—each may be available to operate from a different set of initial conditions.
Lastly, in a complex environment a plan in process to accomplish a goal may succeed or
fail independently of the actions underway to achieve the goal

Within D-OMAR, the SCORE language is used to define the goals, plans, and procedures
of D-OMAR agents. Goals and procedures are expressed using the defgoal and defproc
forms. The plan for a goal is expressed through the sub-goals and procedures that the goal
invokes through subroutine calls. The called subroutine may be another goal or a
procedure. The defgoal form includes an argument provided for specifying the initial
conditions required by the plan for the goal. It also provides arguments to specify the
success or failure conditions that might prematurely terminate actions to address a goal.
The success-conditions defining the successful outcome of a goal may be used as the
basis of selecting a goal to achieve that objective.

Reactive behaviors addressing a single event, an isolated signal, are quite straightforward.
The development of agents to address situations that are more complex is made possible
by two important D-OMAR capabilities. First, SCORE language forms enable a

25

framework to be established in which events are processed in the context of an agent's
active goals. Agent behaviors are seldom designed to be purely reactive. Even in simple
cases, the occurrence of a particular signal relevant to an agent will need to be addressed
by that agent in the context of some goal to be achieved. The event might mark the
successful achievement of a sub-goal or it might mark a condition that indicates the
failure of one tactic to achieve the goal and the need to choose another approach. Agent
behaviors are often required to be a combination of proactive and reactive components.
The processing of a signal marking an event plays an important role in the plans
developed for the goals of D-OMAR agents.

The second source of complexity that may be addressed by SCORE language forms is the
management of agent response to particular event sequences. Agents must deal with
sequences of events that may or may not be well ordered. The response of a D-OMAR
agent to evolving situations is developed through the processing of the chains of events
made available to the agent as signals. An agent's sensitivity to a given signal is set up by
an agent's procedure subscribing to that signal. The response to that signal may then be to
set up the same procedure or another procedure in anticipation of the recurrence of the
same signal, another particular signal, or a new combination of the two. A signal
processed in one situation may be ignored or treated differently in another situation. An
agent might well have two evaluation processes going on concurrently, each with the
capability to shut down the other and determine the response, a winner-take-all strategy.

3.2.3 Multi-task Performance

D-OMAR agents are proactive as is expressed in their plans and procedures to achieve
their goals. Some of an agent's goals may be independent of one another while others
may be sub-goals within a plan with explicit dependencies among them. The agents can
have several active high level goals, that is, they are capable of multi-tasking. One
dimension of the dependencies is the order in which sub-goals or procedures within a
plan execute. They may be required to execute sequentially with one procedure strictly
following another or they may be allowed to execute in parallel. In D-OMAR, as a
modeling environment, the OMAR simulator provides the emulation of parallel
procedure execution. In a real world applications, execution of the D-OMAR simulator in
real-time enables D-OMAR agents to pursue sub-goals in parallel. Termination
conditions for sub-goals being pursued in parallel are important. In the winner-take-all
case, the procedure that completes first has met the local objective and the concurrent
procedures pursuing the same objective should be shut down. In other cases, all
procedures operating in parallel may be required to complete before subsequent
procedures in the thread can be initiated.

Several key SCORE forms provide the capability to define multi-tasking behaviors for D-
OMAR agents. Parallel execution of an agent's goals and procedures are specified using
the forms join, race, and satisfy. Procedure invocations enclosed in a join form must each
execute to completion before subsequent forms are evaluated. The winner-take-all case is
supported by the race form—the first procedure to complete causes all of it siblings to be
terminated and initiates execution of subsequent forms. The satisfy form is a slight

26

variation on the race form. Procedures executing in parallel within this form continue to
execute until the first of them completes successfully.

Conflicts among the goals and procedures for an agent are an essential aspect of multi-
tasking behaviors. The execution of one procedure may preclude the execution of another
related procedure. Priorities for goals and procedures, the basis for resolving these
conflicts, are computed dynamically. The form of the priority calculation and its input
parameters are specified by the developers of the agent's goals and procedures.
Importantly, D-OMAR provides support for the basic fact that not all procedures conflict
with all other procedures. Goals and procedure are class members and one aspect of class
membership covers procedure conflicts. The SCORE forms for defining goals and
procedures, defgoal and defproc specify the SFL concept membership for the goal or
procedure, and this in turn specifies the class membership. Procedures within a class may
conflict with one another, or procedures in one class may conflict with procedures in one
or more related classes. Procedures with potential conflicts include the conflicts-with-
mixin in their definition. The conflicts-with? method, a method on the conflict-with-mixin,
is the basis for resolving the priority-based suspension and resumption of conflicting
goals and procedures. When a new procedure vying to execute has class membership such
that it conflicts with an executing procedure, the priorities for both procedures are
computed. If the new procedure has sufficient priority, it will begin execution and the
executing procedure will be suspended. If it lacks sufficient priority, it will be suspended
until the executing procedure completes or until the balance in priorities shifts in its
favor. The SCORE form on-suspend can be used to define the "clean up" steps that may
be required by a procedure that is about to be suspended.

3.2.4 Invoking a Goal or a Procedure on an Agent

The invocation of a goal or a procedure takes the form of a subroutine call with the name
of the goal or procedure as the first element of the call and the arguments for the called
procedure specified as keyword-value pairs. The arguments to a goal or procedure,
defined in the defgoal or defproc form, are slots of the concept that is the basis for the
goal or procedure definition. Agents typically invoke sub-goals or sub-procedures with
themselves as the agent, but the agent for the procedure is a legitimate argument, hence
the invocation can be on any local agent. The calling procedure can either await the
completion of the sub-procedure or spawn the sub-procedure in a separate thread of
execution. In the former case, the object returned on completion is the procedure object
for the called sub-procedure. A reader macro (i.e., !r) is available to obtain the "result" of
the procedure rather than the procedure itself. When a procedure spawns a sub-procedure
launching that procedure in a separate thread, it immediately continues execution of the
next form in sequence. By default, the called procedure is launched with the priority of
the calling procedure. The priority argument may be used to set the priority of the called
procedure to a value other than the default value.

On completion, goals and procedure may either succeed or fail. The default procedure
outcome is to succeed. A procedure may declare itself to have failed, or it may force the
termination of another goal or procedure and attribute success or failure to it. The
SCORE succeed and fail forms, when used without an argument, cause the executing

27

procedure to terminate in success Or failure respectively. When used with an argument,
the argument specifies the procedure that is to be terminated. A procedure forced to
terminate, whether successfully or unsuccessfully, may need the opportunity to "clean up"
before it actually completes execution. The on-succeed and on-fail forms are available to
specify code to be executed when a procedure succeeds or fails. The behavior of the
procedure that invoked the procedure that failed is important. The default behavior of a
failed sub-procedure is to cause the failure of the calling procedure. This pattern will
continue up through the sequence of calling procedures unless trapped. The SCORE
form, fail-handler, may be used by the calling procedure to trap and handle the failure of
a sub-procedure. The fail handler will prevent the default behavior, the upward
propagation of the failure through the calling sequence.

3.3 D-OMAR Agent-based Systems

Agent-based systems are expected to be called upon to operate in large pre-existing and
new distributed computing environments. Moreover, it is reasonable to expect that there
may be more than one agent-based system, each of which acts as the provider of new
capabilities within the existing framework. D-OMAR agents might well be called upon to
interact with the agents of another agent-based system. This section briefly outlines the
role that D-OMAR can play as an agent-based system operating in such an environment.

3.3.1 Homogeneous and Heterogeneous Agents

The architecture for D-OMAR addresses agent heterogeneity on three levels: syntactic,
control, and semantic heterogeneity as identified by Bird (1993). From its earliest days,
OMAR knowledge representation (Freeman, 1997; Deutsch, Adams, Abrett, Cramer, &
Feehrer, 1993) was based on a frame language, the Simple Frame Language (SFL), and a
procedural language, the Simulation Core language (SCORE). More recently, a rule-
based language has been included in OMAR. At the syntactic and control levels, D-
OMAR will continue to be an open system allowing the inclusion of new knowledge
representation schemes, reasoning mechanisms, and communication languages.

At the semantic level, there are reasons for both homogeneity and heterogeneity. The case
for homogeneity is strongest when addressing communication among D-OMAR agents.
D-OMAR agents should have a common semantics as a basis for their communication.
This is not enforced by the architecture, but is encouraged as good programming practice.
The argument for heterogeneity is based on the pragmatics of the growth in agent-based
systems. It is highly unlikely that D-OMAR will be the only source of agent-based
software in any given large system. Such systems are likely to be populated by agents
from several sources (see Figure 14) and while CORBA may address syntactic
heterogeneity, semantic heterogeneity will have to be addressed by D-OMAR agents and
non-OMAR agents that they communicate with. The functionality provided by additional
agents in a system should be viewed as a resource, while semantic heterogeneity is an
obstacle to be overcome in taking advantage ofthat functionality.

28

Core-OMARSitc

D-OMAR Agenr-

D-OMAR Agent-

in*»/ and Remote
Agent

Communicatian

Corc-OMARSite

D-OMAR Agent

 D-OMAR AgcntJ

D-OMAR
Agent

Access to
Application

Data

Heterogeneous Site

Heterogeneous Agent

— Heterogeneous Agent

Heterogeneous
Agent

Access to
Application

Data

Figure 14 D-OMAR and Heterogeneous Agents

3.3.2 Agent Access to Application Data

Access to application data can be expected to take several forms. When D-OMAR is a
new addition to the existing system, the architectural requirements for D-OMAR will be
dictated to some extent by the architecture of the particular application system. Viewed in
the most forward looking perspective, D-OMAR will be operating in a distributed object
computing environment. A CORBA environment is a very likely possibility. At the other
end of the spectrum, data required by a D-OMAR agent might reside in a legacy database,
most likely as part of a large legacy system.

Over the last several years, there have been a number of systems built around pre-existing
legacy system components. It has typically been the case that the components have
included legacy databases and large application software subsystems with individual
components implemented in different computer languages. These systems are often
referred to as federated systems. The middle-ware to provide interoperability is usually
CORBA. Hence, CORBA would provide the middle-ware layer that D-OMAR would use
to operate in one of these federated environments. At the architectural level there are not
likely to be federated systems demands that can not be met by the D-OMAR architecture.
Indeed, at the implementation level, some of the software building blocks of the current
systems may well be available for reuse.

As the legacy systems are replaced by new systems based on distributed object
architectures, these architectures can be expected to closely resemble the D-OMAR
architecture. Such systems may rely heavily on distributed system message passing and
D-OMAR agents will access objects and services in these systems via message passing.
The distributed systems may also include event services that are very similar to the
signal-based communication that D-OMAR agents use for their own inter-agent
communication. D-OMAR supports signal-based communication and can support
message passing for operation in a distributed object system environment.

29

3.3.3 Agent Mobility

Several issues complicate agent mobility. Some of the easier problems are being
addressed. There are solutions to the problem of sending messages to agents that have
moved on to another site, and self-initiated moving is available for simple agents. One
argument for utility in agent mobility is based on sending an agent to a large data source,
thereby eliminating extensive remote queries. Nevertheless, it is easy to see that there
may be cases in which an agent is engaged in a complex on-going effort at a local site and
at the same time needs to extensively probe a large database at a remote location. This is
an instance in which the remote data access might best be delegated to another agent,
while current local activities continue to be pursued. Agent mobility may turn out to be
useful only in single-task agents. An agent seeking a resource or perhaps the best "price"
for a resource that is available at more than one site is an example.

A complex multi-tasking agent is more likely to rely on communicating with a remote
agent to request extensive services at a remote site. The multi-tasking agent may have on-
going activities at the local site making it impractical to travel to a remote site to obtain
information from a database. The data retrieval can be delegated to a remote agent while
the local agent carries on its concurrent tasks.

A second complicating issue is the question of how the mobile agent's current state is to
be reestablished at the new site. Agent mobility today is accomplished either by using
simple scripting languages (Gray, 1996) or by agents that reestablish operations based on
minimal pre-move data. It is not yet clear just how one might reestablish the full
computational state of a complex agent at a new site. D-OMAR does not currently
support agent mobility, but many of the simpler aspects of mobility can be readily
developed using services currently in place.

4. The Combat Air Patrol Demonstration
By their very nature, distributed systems are far more complex than systems that operate
on a single machine. The systems themselves are more difficult to design and implement,
and the applications built for distributed environments are more difficult to develop. A
Combat Air Patrol (CAP) scenario was selected as a test case to use to help validate the
operation of D-OMAR and provide a demonstration of D-OMAR in operation. The
scenario operates in the standard D-OMAR configuration using the Java External
Connector to link Core-OMAR nodes via Java RMI, it works using CORBA as the
middle-ware layer, and it works in an HLA environment using RTI Version 1.3.

4.1 CAP Scenario Agents

The principal non-human elements of the CAP scenario are modeled as OMAR agents.
They included the scenario aircraft—an AWACS, and friendly and bogey fighter aircraft.
The AWACS had a much-simplified flight deck and a single radar station. The model
was derived from earlier models of commercial aircraft used in air traffic control
scenarios. The interceptor aircraft each also have a simplified flight deck that includes a
radar subsystem. Like the aircraft, the radar subsystems are each modeled as agents. The

30

AW ACS radar scanned 360 degrees and has a longer range than the forward-looking
radar on the interceptor aircraft.

The CAP scenario required human performance models for a number of aircraft crew
roles. The AW ACS aircraft has a pilot, copilot, and radar officer. The friendly interceptor
and bogey aircraft each have a pilot. These models were developed as derivatives of the
human performance models used in an earlier simulation of a commercial air traffic
control environment. The AWACS pilot and copilot models are based on captain and first
officer models for commercial aircraft. Like all of the models, they each have a set of
generic "basic person" skills and a set of specialized skills appropriate to the tasks that
they are required to execute. Domain knowledge and hand-eye coordination are essential
to workplace operations. Teamwork and verbal communication skills are necessary for
coordinating and conducting the successful completion of multi-person tasks.

The pilot and co-pilot manage their aviation and communication tasks much like their
commercial flight deck counterparts. They handle in-person flight deck conversations and
attend to radio messages. Like their commercial counterparts, they have the capability to
fly the aircraft using the Mode Control Panel (MCP) or the Flight Management System
(FMS). While these systems may not reflect the actual systems found on AWACS
aircraft, these functions were not critical to the scenario and hence were simply carried
over from the commercial aircraft models.

The AWACS radar officer and the interceptor pilot models have roles that are more
complex. The radar officer's principal responsibility is to monitor the airspace for
unidentified aircraft. When an aircraft is detected, the radar officer has to determine its
friend-or-foe status, and when appropriate, select a friendly aircraft to conduct the
intercept and manage that aircraft's operation via radio communication.

The scenario begins with the interceptor aircraft flying a racetrack pattern. Unlike the
commercial aircraft, the interceptor and the bogey have neither an MCP nor an FMS. The
pilot models had to be significantly enhanced to enable them to "fly" the aircraft. Radar
system use and observation also made new demands on pilot capabilities. The operations
of initiating and conducting an intercept make extensive demands on the multi-tasking
capabilities of the pilot models. The intercept is initiated by a radio-based interchange
between the radar officer and the pilot. The pilot must vector the aircraft to the threat
direction, make use of the radar to acquire the bogey, and maintain radio communication
to track the status of the threat.

A task timeline display for a small portion of the tasks being executed by the pilot of the
interceptor aircraft is shown in Figure 12. The timeline captures the high-level procedures
that are being executed by the pilot in managing the transition from holding in the
racetrack to initiating the intercept of the bogey aircraft. The pilot has first been vectored
in the direction of the approaching bogey and then directed to pursue the intercept. The
several procedures operating in parallel such as maneuvering the aircraft to the new
vector, monitoring the primary flight displays, and tracking the bogey on the radar appear
in off-screen portions of the timeline.

31

4.2 CAP Scenario Modes of Operation

The CAP scenario is representative of the many scenarios that have been developed using
the OMAR simulation environment. These scenarios typically include a number of
human players involved in the operation of complex equipment and are in communication
with one another to carry out their tasks and address their responsibilities. When all of the
players are human performance models, the system can be run in fast-time to take
advantage of the speed of execution of the simulator, even when running complex
models.

As it was in OMAR, in D-OMAR it is also possible to insert human players into a
scenario replacing one or more human performance models. This is usually accomplished
through some minor changes in the construction of the defscenario form used in setting
up a simulation run. A simplified agent is used to shadow the human player. Its function
is primarily to collect real-time data on the human player's interaction with the system. In
operating the user interface, the human player operates workplace controls in the same
manner that a model does.

The easy substitution of human players and models is made possible by the design and
implementation of the user interface. The user interfaces are built so that they may be
operated normally as a person might operate any user interface, but they may also be
operated by the human performance models. The human performance models are able to
"see" the screen and interact with input modalities of the user interface as a human player
would. When there are human players, simulator operation is done in real-time. In the
CAP scenario, it is the radar officer on the AWACS that plays the critical role in the
simulation and the one for which a human player may be substituted.

The first version of the CAP scenario to run operated at a single Core-OMAR node. The
AWACS and the friendly and bogey aircraft operated in D-OMAR just as they might
have in OMAR. The basic scenario was then split into two separate scenarios, the first
including the AWACS and the friendly interceptor, and the second including just the
bogey aircraft. This provided a version of the CAP scenario that operated at two Core-
OMAR nodes: the AWACS and the friendly interceptor operating at one node and the
bogey operating at the second Core-OMAR node. In each of these scenarios, an aircraft
signal provided the radar systems with information that they needed to track the aircraft.
The aircraft agents published their position on a regular basis and the radar agents
subscribed to these signals. The SCORE form, signal-event-external, is used to publish
the aircraft location information. Locally, signal-event-external operates just as signal-
event does. The combination of the OMAR Connector and the External Connector (see
Figure 4) takes care of the remote propagation of the signals.

One version of the CAP scenario operates in fast-time using human performance models
at all operator positions. A second version of the scenario operates in real-time and
enables a human player to act in the role of the AWACS radar officer. The version of the
scenario that operates on at two Core-OMAR nodes also operates in real-time with the
role of the radar officer played by a human player.

Figure 15 provides a view of the radar screen as seen by a human player. The main pane
shows the AWACS (WATCHER) flying a surveillance pattern, an aircraft identified as a

32

bogey intruding form the east, and a friendly just embarking on its intercept vector. The
radar officer uses the selection items at the right to initiate the generation of a message.
The template for the message appears above the radar screen. The receiver for the
message and the object of the message are chosen from the radar screen via mouse
gestures. The "Send" button is used to transmit the completed message. Outbound and
inbound messages are recorded in the panel below the radar screen.

KI1 Simulation Radar Frame

File

§m

| Operator :<T«©SBEe>Tarset:BQgSfe<l:?OGOE> Send) _ Cancel

UntaoWRÄirerat
Threat© :
Snap Vector.;.
Target Hostile
Break Of Engagement
RetemTiO'Base^V ";•>■';

Figure 15- CAP Scenario Radar System Workplace

Figure 11 provides a view of the Simulator Control Panel during the execution of the
CAP scenario. It is used by the operators of the simulation to manage the execution of the
scenario and is not intended to be part of the application environment itself. The trace
pane provides the operators of the exercise with an overview of the status of the scenario.
It is the developers of the scenario software that control trace content and must insure that
appropriate information is available to those managing scenario runs. The Control Panel
provides filters that may be used to select which agents are traced and which event types
are presented.

33

5. Acronyms
ACL Allegro Common Lisp
CUM Common Lisp Interface Manager
CLOS Common Lisp Object System
CORBA Common Object Request Broker Architecture
DARPA Defense Advanced Research Project Agency
DIS Distributed Interactive Simulation
DMSO Defense Modeling and Simulation Office
FMS Flight Management System
FOM Federation Object Model

GUI Graphical User Interface
HLA High Level Architecture
nop Internet Inter-ORB Protocol
MCP Mode Control Panel
OMAR Operator Model Architecture
OMG Object Management Group
ORB Object Request Broker
PIASTRE Piastre Is A STRucture Editor
RMI Remote Method Invocation
RTI Real-time Infrastructure
SCORE Simulation Core Language
SFL Simple Frame Language
SOM Simulation Object Model

34

6. References
Bird, S. D. (1993). Towards a taxonomy of multi-agent systems. International journal of

Man-Machine Studies 36, 689-704.

Cramer, N. L. (1995). MIRAGE: A CLM-based editor for building gadget-oriented
graphical user interfaces. Proceedings of the Association of Lisp Users Meeting and
Workshop, Cambridge, MA.

Deutsch, S. E. (1998). Interdisciplinary foundations for multiple-task human performance
modeling in OMAR. Proceedings of the Twentieth Annual Meeting of the Cognitive
Science Society, Madison, WI.

Deutsch, S. E. (1993). Notes taken on the quest for modeling skilled human behavior.
Proceedings on the Third Conference on Computer Generated Forces and Behavioral
Representation, Orlando, FL.

Deutsch, S. E., & Adams, M. J. (1995). The operator model architecture and its
psychological framework. Proceedings of the 6th IF AC Symposium on Man-Machine
Systems. Cambridge, MA.

Deutsch, S. E., Adams, M. J., Abrett, G. A, Cramer, N. L., & Feehrer, C. E. (1993).
Research, Development, Training and Evaluation Support (RDTE) Operator Model
Architecture (OMAR) Software Functional Specification (AL/HR-TP-1993-0027).
Armstrong Laboratory, Wright-Patterson AFB, OH.

Deutsch, S. E., Cramer, N. L., & Clements, B. (1996). Vehicle/aircrew procedure and
control modeling: Volume 1: Aircrew procedure modeling. BBN Technical Report
No. 8121, BBN Corporation, Cambridge, MA.

Deutsch, S. Ei, MacMillan, J., Cramer, N. L., & Chopra, S. (1997). Operator model
architecture demonstration final report (AL/HR-TR-1996-0161). Armstrong
Laboratory, Wright-Patterson AFB, OH.

Freeman, B. (1997). OMAR User/Programmer Manual, Version 2.0. BBN Report No.
8181. Cambridge, MA: BBN Corporation.

Franklin, S. & Graesser, A. (1996). Is it an agent, or just a program? A taxonomy of
autonomous agents. Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages. Springer-Verlag.

Gray, R. (1996). Agent Tel: A transportable agent system. Proceedings of the Fourth
Annual Tcl/Tk Workshop, Monterey, CA.

Jennings, N. & Wooldridge, M. (1996). Software agents. IEE Review, January 1996, 17-
20.

MacMillan, J., Deutsch, S. E., & Young, M. J. (1997). A comparison of alternatives for
automated decision support in a multi-task environment. Proceedings the 41st Annual
Meeting of the Human Factors and Ergonomics Society.

Steele, G. L. (1990). Common Lisp: The language, Second edition. Digital Press.

35

Wooldridge, M. & Jennings, N. (1995). Agent theories, architectures, and languages: A
survey. In M. Wooldridge & N. Jennings (Eds.), Intelligent agents (pp. 1-22). Berlin:
Springer-Verlag.

Young, M. J. (1998). Computational modeling of memory: The role of long-term
potentiation and Hebbian synaptic modification in implicit and schema memory.
Ph.D. Thesis, Miami University, Oxford, OH.

36

