
Automatic Rapid Updating of ÄTR Target Knowledge
Bases

Barton S. Wells
Frederick L. Beckner

Final Report on Contract DAAH01-99-C-R077
Cyberdynamics, Incorporated

June 17,1999

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

U.S. Army Aviation and Missile Command
Redstone Arsenal, Alabama

19990621 149
DTIC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 07040/88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering end maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LeaveHank) 2. REPORT DATE

17 Jim 99

3. REPORT TYPE AND DATES COVERED

Final 17 Dec 98 - 17 Jim 99
4. TITLE AND SUBTITLE

Automatic Rapid Updating of ATR Target Knowledge Bases

6. AUTHOR(S)

Barton S. Wells
Frederick L. Beckner

5. FUNDING NUMBERS

C DAAH01-99-C-R077

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cyberdynamics Incorporated
1860 Embarcadero Road, Ste. 155
Palo Alto, CA 94303-3362

8. PERFORMING ORGANIZATION
REPORT NUMBER

CYB-9901

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Aviation & Missile Command
AMSAM-AC-RD-A
Redstone Arsenal, AL 35898-5200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

The feasibility of creating a software system to perform automatic rapid updating of ATR target knowledge databases is
investigated. Methods of comparing infrared images with CAD model renderings, including object detection, feature
extraction, object alignment, match quality evaluation, and CAD model updating are researched and analyzed. A GUI-based
software application created to demonstrate object detection, feature extraction, and automatic image alignment is described.
An improved method of edge detection based on directional masks and second derivatives of pixel intensities is given. A

conceptual software system for rapid updating of ATR knowledge databases is described. A technique for the comparison of
images based on line features is discussed. Based on this research it is found that the development of an automatic rapid
updating system is feasible.

14. SUBJECT TERMS

edge detection, image matching, match quality metric, CAD model rendering, image
alignment, object detection, masks, feature extraction, line features

15. NUMBER OF PAGES

27
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.16
Designed using Perform Pro, WHSfDIOR, Oct 94

Table of Contents

Overview 3

Phase I Work 4

Review of Existing Object Detection 8

Data Collection and Display 8

Use and Adaptation of Existing Object Detection Algorithms 9

Masks 10

Target Detection 11

CAD Model Equivalence 13

Image/Model Comparison 14

Match Quality Evaluation 17

Conclusion 22

References 23

Appendix A - IFS File Format 24

Appendix B - Seqb File Format 26

Automatic Rapid Updating of ATR Target Knowledge Bases

Overview

This report contains the results of a study of the
feasibility of implementing an automatic rapid target
updating system (ARTUS) for use with Army missile guidance
systems based on 2D infrared target images- These systems
operate by matching the infrared image from a missile
guidance sensor with predicted infrared images derived from
a database of CAD models of a number of different possible
targets. Such a system can be adversely affected by
variability in the target geometry due to the presence of
externally carried objects such as fuel tanks, supply
crates, etc, not contained in the CAD model. The adverse
effects of such objects could be minimized if there were a
way to rapidly modify the CAD model to reflect the presence
of such objects based on images obtained from
reconnaissance sensors, in effect tailoring the CAD model
to match specific targets.

The feasibility of creating such a software system was
studied by identifying the different required steps, and by
studying the feasibility of each step. The required steps
are:

a) to automatically locate a target in an
infrared image,

b) compare it to a selection of CAD models,
c) determine which CAD model most closely

matches the target in the image,
d) determine the differences between the target

in the image and the selected CAD model, and
e) modify the CAD model appropriately to match

the target in the image as best possible.
A software application, titled Ctr (for Cyber Target
Recognition) was created to test these ideas.

The studies of the feasibility of this goal involved:
reviewing existing in-house object detection algorithms,
collecting CAD model and infrared imaging data, creating
software to read these data, creating algorithms to view
these data, creating image processing algorithms to detect
objects, aligning these objects from within each type of
image, investigating techniques for image match quality

measurement and rapid updating of the CAD models to reflect
differences between the models and infrared images.

An ARTUS system was deemed to be feasible using techniques
investigated during our Phase I work. It was found that
object detection could be performed satisfactorily on the
infrared image data and on renderings of the CAD models.
Line features were able to be found in both images, and
could be visibly correlated. A technique adapted from
other work at Cyberdynamics was conceptually designed to
align and measure the match quality of infrared images with
CAD model renderings, as well as a method to find the
differences and rapidly update the CAD models to reflect
these differences.

Phase I Work

The following is a list of the work accomplished during
Phase I. In this phase we:

1. Reviewed in-house object detection research. Minor
research had been done in the past within
Cyberdynamics on object detection within color
photographs. Some of the general principles had
carry-over to this project, though a lot of the
specifics researched with respect to color photographs
needed to be adapted to work with infrared images.

2. Collected both CAD model data (in Integrated Flight
Simulation (IFS) and Alias Wavefront file formats) and
image data (in an Army binary format and in SEQB
format). The data were received from the U.S. Army
Aviation and Missile Command in Redstone Arsenal,
Alabama. The Army desired that we concentrate our
efforts on using the IFS CAD models, and we received
seven CAD models in this format. Only one, however,
contained temperature information and was therefore
the most useful for many of our efforts. The SEQB
image data we received was one file that contained
eight infrared images that were not in sequence.

3. Adapted existing CyberCAD software to be able to read
all of these formats in a limited fashion. This
provided a testing ground to be sure we could read the
data and to understand the quality of the data we had
received.

Figure 1: Main window from Ctr, showing a CAD model overlaid on top of an infrared image.

Created a new software application, Ctr, that could
read all these file formats fully. The software could
also automatically detect what type of file was being
opened, and open the proper type (CAD or image) and in
the proper format. Figure 1 shows the main screen of
Ctr with a line image predicted from a CAD model
overlaid on top of an infrared image.

Created a way to view the image files in either gray
shades or in color, where the different hues represent
different temperatures. Created ways to zoom in or
out. Created user-friendly ways to step through the
sequence of images contained within SEQB files.

Created edge detection algorithms to use on images.
We were instructed to concentrate on the images in the
SEQB format, as that was the format that the Army
would be using for most of their work. We worked on
image processing techniques, such as contrasting,
normalizing, eroding, and dilating to improve the edge
detection. We researched and used some more advanced
edge detection techniques, especially those invented

by Prewitt and Sobel. We also created an extension to
normal edge detection techniques that not only looked
at the rate of change of the color of a pixel, but
also looked at the rate of rate of change to combat
curved surfaces, that may be changing in shade
quickly, but constantly.

7. Created line detection techniques that attempted to
find lines in the patterns of dots created from edge
detection runs. These lines need not be straight, but
could not vary too randomly. This procedure proved
very successful.

8. Implemented an interactive way for the software user
to select the intended target, by clicking on it with
a mouse. All of the target's pixels were then
automatically selected.

9. Created a method of rendering the CAD models using
both normal illumination technique, and by using the
temperature data imbedded within the CAD model. The
temperature rendering used a Gouraud interpolation
method to find the temperature value at any point
within a facet, based on the temperatures at each
vertex of the facet. The rendering was done by
creating a z-buffer rendering engine, using only
software techniques (some hardware 3D graphics
functions do not preserve dimensions properly, leading
to photo-inaccurate renderings). We created a way to
display these renderings, allowing the user to zoom in
or out on the rendering. Implemented a way for the
user to click the mouse on the CAD model and obtain
information about the model in a text window, such as
location and temperature at the point clicked upon.
We created a way for the user to select any view
location, view direction, magnification, or view twist
to view the CAD model from.

10. Created a method of rendering the CAD models in the
overlay plane so that the model could be seen in
comparison with the image target that it was supposed
to represent. A hidden line algorithm was
implemented, but this just cluttered the screen and
the image could not be seen underneath the CAD model.
Next, an algorithm that only showed the lines
separating physical features of the CAD model was
implemented. This proved effective in allowing the

user to see both the CAD model and the image
simultaneously. However, since the image was an
infrared image, we then created an algorithm that
rendered the CAD model by showing lines that separated
areas of significantly different temperature. This
allowed direct comparison of the image and the CAD
model. For further investigation, and algorithm that
rendered the model with isothermal lines was created
and implemented.

11. Investigated a method of automatic alignment of the
CAD model with the image's target. The algorithm took
the model and adjusted the viewer's direction of view,
viewer's position relative to the CAD model, the
magnification, and the view's twist angle, and
perturbed them to bring the model and the image into
alignment with each other. This technique required
that the software user only approximated the position
and view direction of the CAD model observer, and the
alignment algorithm would do the rest. This was
successful part of the time, but was often fooled by
differences in the image's target and the CAD model,
such as a different gun position or different fuel
barrels loaded onto the target.

12. Researched the effects of running the image through
high-pass and low-pass filters in order to
automatically find the intended target within an
image. Low-pass filters proved effective in
discovering where most of the energy in an image was
coming from, which in the cases of our data, was the
intended target. From there, lines were only selected
if they were within a small neighborhood of the
focused energy found from the low-pass filter. This
technique was successful, but further improvements
would help focus on the correct lines in the future.

13. Researched ways of using high-pass filters to improve
the edge detection. Though seemingly promising at
first, a satisfactory implementation was not found.
Further research may yield positive results from this
idea.

14. Observed the effects of creating a collection of lines
from the image and compared them to the lines created
from the overlay rendering algorithms. The lines
match closely with the temperature-rendering

7

algorithm. Researched methods of using the lines to
automatically align the image with the CAD model,
possibly combining with earlier methods of automatic
alignment.

15. Investigated techniques for image match quality
investigation. Created a conceptual algorithm that
looks at each image as a set of line features, looks
for matching line features in another image, and finds
the optimal alignment vector based on the best
alignment of each of the line features alignment with
its counterpart in the other image.

Review of Existing Object Detection

Existing software that Cyberdynamics, Inc. has created for
its own purposes lent some experience to the effort of
object detection. The software was used to run an edge
detection algorithm, and then to use operator interaction
to manually edit the edge detection to make sure the entire
object was enclosed within lines, and then manually select
which enclosed regions belonged to the desired object.
This existing software had been developed for use with
high-resolution color photography, and many of the specific
algorithms were found to be unsatisfactory and incompatible
for accurately finding edges within infrared images.

Data Collection and Display

Data was obtained from the U.S. Army Aviation and Missile
Command. We obtained both CAD model data in IFS format and
infrared images in Seqb Image Format. The CAD model data
was then rendered using different methods explained later
in this document, namely Gouraud temperature shading,
headlight illumination, hidden lines, visible lines,
temperature lines, and isothermal lines. The infrared
images were displayed by reading the pixel intensity levels
from the files and displaying them in a window on a
computer display. The formats for the two different types
of files are found in the appendices.

Use and Adaptation of Existing Object Detection Algorithms

Algorithms from the existing object detection software were
used on the data we received from the U.S. Army Aviation
and Missile Command. It was quickly determined that the
edge detection algorithms used previously, on high-
resolution color photos, were not sufficient to detect
edges in the infrared images used in this project. In
comparison, the infrared images were of very low
resolution, and of limited contrast between the target and
its surroundings. The existing algorithm used a single 3x3
mask that was convoluted over the entire image. Switching
to a directional mask, such as those created by Prewitt and
Sobel4, improved edge detection significantly, but still
left many wholes in the edges. A new mask was added to the
algorithm that instead of examining the rate of change of
pixel intensity values in all directions (like these other
masks do), this new mask examined the rate of rate of
change of pixel intensity values. This second derivative
was found by following horizontal, vertical, and diagonal
lines through the image and finding the change in pixel
intensity from pixel to pixel along each line, and then
determining how much this changed from the previous pixel's
change. For example, the second derivative along a
horizontal line in the image would be determined as:

d2I I dx2 = (I(x + 2,y) - I(x + l,y)) - (I(x + \,y) - I(x,y))

where I is the intensity value at each pixel, and x and y
are Cartesian coordinates within the image. " "All of the
changes in pixel intensities from one pixel to another are
determined for the entire image, building a histogram, and
those values above a certain percentage of the histogram
are considered an edge. The percentage was determined by
experimentation. The optimal percentage for these infrared
images included in our data set was found to be 30%. This
addition proved enough to find edges extremely well.
Figure 2 shows the edges found with this method from an
infrared image and from a routine non-directional mask
without using a second derivative edge detector.

Figure 2: Edges found from an infrared image of a tank using a standard non-directional mask (left),
andaPrewitt base edge detector with a supplementary second derivative edge detector (at right).

Masks

The most common form of edge detection looks for the rate
of change of pixel intensities, moving along straight lines
in eight directions (north, northeast, east, southeast,
south,' southwest, west, and northwest, where north is
considered in the positive y direction on the image, and
east is considered in the positive x direction) . How do
you calculate the derivative of an image in all directions?
Convolution of the image with masks is the most common
method. The idea is to take a 3 x 3 array of numbers and
multiply it point by point with a 3 x 3 section of the
image. Sum the products and place the result in the center
point of the 3x3 section. This is done in the following
manner for a point x,y in the image:

Sum = Yfj^ XIo Pixel(* -i-l,y-j-l)x arroy{i, j)

After progressing over the entire image, points with values
greater than a certain threshold are shown in white (an
edge), and points less than that threshold are shown in
black (not an edge). The threshold is determined by taking
a histogram of all the intensities of the image and setting
the threshold to a percentage of the different values in
the histogram. The percentage was determined by
experimentation, and was determined to be optimal at 30%
for these infrared images.

10

Choosing the proper 3x3 mask is a task that is subject to
the qualities of the image being processed. A common mask
to use is one developed by Phillips. The mask is:

-1 0 -1
0 4 0

-1 0 -1

A far more effective 'approach for the infrared images used
in this project was to use a directional mask, one that
rotated the 3x3 array for each direction. The mask that
worked best with the infrared data, the Prewitt mask, used
the following 3x3 arrays:

1 1 1
1 -2 1

-1 -1 -1

1 1 -1
1 -2 -1
1 1 -1

-1 -1 -1
1 -2 1
1 1 1

-1 1 1
-1 -2 1
-1 1 1

1 1 1
1 -2 -1
1 -1 -1

1 -1 -1
1 -2 -1
1 1 1

-1 -1 1
-1 -2 1

1 1 1

1 1 1
-1 -2 1
-1 -1 1

These eight 3x3 arrays are just the same array rotated
around the center. The first rotation represents checking
the derivative in the north direction, the second in the
northwest direction, the third in the west direction, and
so on.

Target Detection

To determine which edges belong with the intended target
(and not other noise on the image), we first manually
clicked the mouse inside of all sections belonging to•the
target, and those regions would be colored blue on the
computer screen. This method determined the object in what

11

is called volume identification. Volume identification
determines all of the pixels belonging to an object.

This type of object detection lacked several abilities
needed for the final goal of this project, including
automatic detection, an obvious method to compare with CAD
models, and a link to moving in on a target from far away.
Therefore, a new method of object detection was pursued.
This method was to first locate the target. This could be
done early on in a series of images as the observer starts
out far away from the target and moves closer. This can be
done by finding where all of the energy in the infrared
image is located. Passing the image through a low-pass
filter allowed the location of most of the energy in the
image. Figure 3 shows the result of an infrared image
passed through a low-pass filter. Notice that the energy
is concentrated at the location of the target. This also

Figure 3: An infrared image after being passed
through a low-pass filter.

happens to simulate the blurring effect of moving far away
from an object (but does not simulate the reduction in
scaling of the object). The original image was then passed
through an edge detector. The result was then scanned to
locate lines, both straight and curved, from within the
edges found. Only the lines that were within the
neighborhood of the target(s), selected by the low-pass
filter, were kept. This proved successful in outlining the
target and its areas of temperature change. Figure 4 shows
the lines that were detected from an infrared image.

12

Figure 4: Lines found among the detected edges
from an infrared image of a tank.

Use of both the volume detection and the line detection, in
conjunction with each other, may offer the best results for
alignment with CAD models and ultimately, target
recognition.

CAD Model Equivalence

A method to compare the CAD model with the infrared image
is needed to determine whether the CAD model is one that
represents the target in the image. Our original method of
volume identification simply required finding the borders
of the CAD model, which was not a difficult task. Any
software based model rendering engine should be able to
find these borders easily (some hardware implementations of
3-dimensional algorithms may distort models slightly, not
preserving photo-accuracy). Previous rendering engines
developed at Cyberdynamics were adapted to fit this task..

When the plan of attack changed to compare lines of the
image with lines of the CAD model, a new rendering method
was needed. The new rendering method developed to supply
lines to compare with the image was analogous to the line
detection used on the image. Lines were drawn to divide
areas of interest on the CAD model. First, an algorithm
that drew lines between physical components on the CAD
model was developed, as shown in figure 5a. The image,
being in infrared, needed compare with temperature lines,
so an algorithm was written to draw lines between areas
where temperature changes significantly on the CAD model.

13

To do this, the model is projected into the 2D space of the
computer screen. Since the CAD models have temperature
given at each vertex of each facet of the model, each point
visible to the viewer can have its temperature determined
by doing a Gouraud interpolation between the vertices of
the facet that the point in question belongs to. To
illustrate this, in the software application Ctr, the user
can click the mouse on any point on the CAD model and be
told, among other information, the temperature at that
point on the model. Figure 5b shows an example of a
temperature line rendering.

Image/Model Comparison

Comparison of the image and CAD model would be very
difficult without a visual way to assist in comparison,
especially early in the process of comparison. To provide
a visual comparison algorithms were developed to render the
CAD model in an overlay bit plane, as described briefly in
the previous section. To avoid blocking the view of the
image, only important features of the CAD model should be
outlined in the overlay bit plane. Important features
could be thought of as physical features, which are
outlined in one rendering method, or areas of similar
temperature, which are outlined in another rendering

Figures 5: Figure 5a, on the left is a rendering of a tank showing the lines between physical
features. Figure 5b, on the right, is a rendering showing the lines at areas of large temperature
gradients.

method. To aid in further investigation of the comparison,
a rendering method drawing isotherms was also developed and
included in the Ctr software.

14

The first step in comparing the target within an image and
a CAD model is to bring the CAD model into alignment with
the target in the image. The first object detection
procedure of volume identification led to an attempt at
volume alignment of the model and the image target. Volume
alignment is the process of trying to match as many of the
pixels found within the image's target to the same pixels
in the CAD model. This involved mostly looking at the
local extremes (corners, etc.) of both the target and the
model and seeing how closely the two aligned. There are
seven variables that need to be determined to align an
image target with a CAD model. The image is set, so the
variables must be determined in the CAD model environment.
These seven variables are: The x, y, and z components of
the observer's position, the angles, usually azimuth and
elevation, of the observer's view direction, the head-twist
angle of the observer, and the magnification of the model
(which is not the same thing as the distance from the
model). The first step was to roughly approximate the
variables relative to the CAD model. Approximating the
observer's position was a simple task, knowing the CAD
model's basic geometry (which is displayed in a text window
in Ctr). Deciding on the observer's distance from the
model and the magnification of the model is determined by
looking at the perspective of the near parts of the CAD
model and the far parts of the CAD model, and comparing
these to the image target. From there, the direction of
view must be determined. The center in the image should be
approximately the center of the image, assuming the image
had not been cropped unevenly. The head twist angle is
simply approximated by looking at how much of an angle the
target in the image is at compared with the CAD model that
is rendered.

To fine-tune this alignment, further refinement was
automated. To improve the observer's view direction, the
CAD model was rendered in memory, the center pixel of the
image was compared with the center pixel of the CAD model
rendering, and then slightly adjusted. This was done
repetitively until the two centers were aligned. Next, the
observer's position was adjusted until the perspective of
the CAD model rendering corresponded to the perspective of
the target in the image. This was determined by
investigating the ratio of the distance between the
farthest points to the distance between the nearest points
on the model, and comparing them with the corresponding

15

points on the target in the image. The observer position
was perturbed and the model re-rendered until the
perspective came into alignment with the target. The
magnification was then adjusted to match the exact
distances of the same points used for observer position
setting, rather than just the ratios. The head twist angle
was then determined by the angles that these same points
created when comparing the lines from the CAD model with
those from the target.

Many difficulties arose when this method of alignment was
implemented. First, the different configurations of the
target, such as a tank having its gun at different angles
or having different fuel barrels attached to the back of
the tank, caused difficulties for the algorithm to select
the proper corresponding points to compare between the
target and the model. This can probably be improved with
statistical sampling in the future. Another problem is
determining when to decided that the alignment is as close
as it is going to get.

Using both the lines found from the line detection on the
image and the rendering methods of lines separating
temperature areas on the CAD model can solve these
problems. As many lines as possible will be aligned in
much the same way as they were in the volume methods.
Finding the maximum number of lines that align between the
target and the model will give a measurement as to the best
alignment possible, and a metric to measure the -resemblance
of the CAD model with the target. At the time of this
report, this method was visually inspected using the Ctr
software, but only the beginnings of an automated algorithm
had been created.

It is likely that a combination of the two methods would
yield the best results. Combining the two offers more
metrics to align the models and more metrics to determine
the similarity of the CAD model and the targets.

16

Match Quality Evaluation

A final important area of work during. Phase I was an
investigation of techniques for image match quality
evaluation. This investigation led to a conceptual
alignment algorithm which is analogous to the matrix
alignment method we use in 1-D radar signature matching.
We believe that this algorithm, based on lines and line
intersections, provides a direct way to calculate the
optimal (in a least-squares distance sense) alignment
parameters of two complex 2-D images (the infrared and the
rendered CAD model). In this technique, the lines found in
the images are first segmented into line features, which
may be intersections, corners, near-circles, etc. These
line features are then compared pairwise and the least-
squares best-fit match parameters of magnification, x and y
translation, and rotation are determined. This will result
in a large set of parameter vectors representing the optimal
matching of pieces of one image with pieces of another.
These data are then analyzed in a 4-dimensional histogram
to determine the most likely match parameters for the whole
images. In other words, this is a divide-and-conquer
scheme which determines the match parameters which are
maximally self-consistent for all pieces of the image.

A conceptual basis for such a system was developed in our
Phase I work. Figure 6 is a block diagram showing the main
features of the proposed system. The main steps in the
operation of this system are:

1. Input of image data from the infrared sensor,
2. Processing of the infrared image data to produce

a database of found lines,
3. Input of CAD model data from the model database,
4. The production of a database of predicted lines

from the CAD model,
5. Line feature selection in both the found line

and predicted line databases,
6. Line feature matching,
7. Determining best overall image alignment,

computing overall match quality metric, and
evaluating line feature match quality in
optimally aligned images. Compute estimate of

17

error in viewing aspect. Return to step 4 and
iterate until the viewing aspect error is within
acceptable bounds, and

8. Correcting the CAD model in areas of poor line
feature match. Return to step 3 and iterate
until image match quality is within acceptable
bounds.

The image data from the infrared sensor will be obtained in
the SEQB image format. These data will be interfaced to
the operational data sources in a manner defined by
specifications provided by the Army.

Determining the found lines in the infrared image data will
begin with edge detection. The edges will be detected by
convolution of the image with directional masks such as
those developed by Prewitt and Sobel. The detected edges
are then filtered using a smart fill algorithm to eliminate
small gaps, and then processed to collapse the lines to the
smallest possible width, and to remove isolated points and
lines that are below a specified size.

The CAD model data will be input to this application in the
Integrated Flight Simulation (IFS) format. An initial
estimate of the target viewing azimuth and elevation
viewing aspect will be used to produce the initial
predicted image from the CAD model. This image will be the
best possible prediction of the infrared surveillance
image. Two types of predicted images will be available,
one being an infrared image prediction based on an assumed
surface emissivity and temperature profile as contained in
the CAD model, and another, being the visible line
prediction derived solely from the geometry in the CAD
model. Both models can be tried and compared to the
infrared image in subsequent processing. If the image
based on temperature is used then the lines are found in
this image in the same manner as that used in the
reconnaissance image.

18

-P.fi o
8 0 -H

g cd P cd

OtTl i-li-H

9* +2
■StSVS
<D Q.&P

-H 01 ^ 01

A
Oi

© c
ij-H

■DJS
52-p o
C (dp

■\3fifi.

I
s 0

<P-H

atj
©p ©
C Arn

-H <D <D
H1 fcto

I
-H
f-3

J3
■H

J-4
D

■■■Ö
C

-H

<D
Q,<DV cd 01 -o

-H C W-i-l W
>BHhipi;

1
fc
cd <»
^ tficd

*4H £S P
C S (0
M M Q

I

-H
P
01
01

.«I

-H

a) cd
QT5P
8£%

(d
01
01
<P
u
c
01
td

Öl

cd
01
01

01
cd

P

03
&
W

g
r-H -H
■■CO'Ol P
C CP ■«

•H -H O S

-H 0) OJ+J
$4-H W 01

p
01
>1
02

xn

01
0

t
u
B
O

g
cd
SJ

cd
-H
T3

.i*
Ü
O

r-i
Xi

cd
D
P

ü

g

UP

<D

-H

19

The two found-line data sets are then input to the line
feature selection block. In this block the lines in the
two data sets are broken down into line features of
different types, such as closed contours, straight lines,
line intersections, line intersection pairs, corners, etc.
The line features are simply subsets of the found image
lines. They are thus collections of x-y pairs of pixel
coordinates. Some of the same pixels in the found-line set
may occur in different line features, thus the line feature
selection process is not a mere breaking apart of the found
lines.

The different types of line features can contain different
information regarding image alignment- and are to be
compared individually in the line feature matching block
with line features of the same type derived from the other
image.

The line features are then input into the line feature
matching block. In this block, line features of a similar
type are compared between the two images. This comparison
consists of determining the alignment parameters
(magnification, twist angle, x translation, and y
translation) which give the least mean squared distance
between the line features. Thus, for each possible line
feature comparison, the line feature matching block will
produce estimates of up to 4 different alignment parameters
as well as a value of the normalized least squares distance
between the features (the feature match quality metric).

At this point we now have knowledge of how well the
individual line features match one another, and the image
alignment parameter values required to achieve these
matches. These data are then input to the image alignment
block which analyzes individual match results and
determines a single set of image alignment parameter values
which aligns the greatest number of the line features in
one image with corresponding line features in the other
image.

An important property of this process is that it separates
the line features into two groups; those who match features
in the other image, and those who do not. This allows one
to determine the optimal image matching parameters between
two images which may represent the same object with high
accuracy over part of the image, but with significant
differences in other parts of the image. The non-matching

20

parts will contribute nothing to the estimates of the
alignment parameters.

After the optimal image matching parameters are determined,
they are then used to recompute the match quality metric
for all the individual line features, this time keeping
separate the x and y directional components of this metric.
By an analysis of the x and y directional components of the
match quality metric of the line features as a function of
the location and type of line feature, one can form an
estimate the error in the viewing aspect used to produce
the image from the CAD model. If the viewing aspect were
accurate, there will be no systematic x and y directional
components of the line feature match quality metric. This
estimate of viewing aspect error is used to correct the
viewing aspect used to produce the image from the CAD
model, and another iteration the image matching analysis is
made. Such iterations continue until the viewing aspect
error falls within tolerable bounds, or it is apparent that
no satisfactory match can be found.

The separation of the line features into matching and non-
matching groups allows the computation of an overall image
match quality metric value for only matching features,
which indicates the quality of the match which might be
attained if all parts of the CAD model were accurate, and
it allows computing an overall image match quality metric
including the mismatched features. This quantity will
indicate the matching performance to be expected from the
CAD model in the operational system.

The final block in this system consists of analyzing the
non-matching line features to determine the location and
type of CAD model corrections they indicate, if any. Each
CAD model will have an associated list of optional
geometric models which might be added to the model. These
might include geometrical objects such as cylinders, boxes,
etc. The line features of these objects can be compared to
the non-matching line features using the techniques
described above. If a good match is found for a particular
object at a particular viewing angle, this object is then
added to the CAD model at the location and orientation
defined by the alignment parameters of the match, and the
revised CAD model reevaluated. This iteration continues
until acceptable overall match quality is produced or it
becomes apparent that no further improvement in the CAD
model is possible. In that case the locations in the CAD

21

model where significant errors exist can be output for use
by the missile matching algorithm to deweight such image
locations to prevent degradations in missile performance
due to these known CAD model errors.

The remaining unmatched line features will also contain any
markings painted on the object which are visible in the
infrared image and not present in the CAD model. An
analysis of the unmatched line features will be made to
identify such markings so that they can be added to the CAD
model as a surface texture.

Some of the remaining unmatched line features may include
lines caused by shadowing of solar illumination, or by
obscuration by other objects. Such . features will be
ignored by the system.

Conclusion

We have studied various methods of object detection, CAD
model rendering, image alignment, and match quality
measurement. The goal of automatically detecting and
identifying targets within an infrared image, and updating
the CAD models to reflect the differences between the model
and the image, is a feasible one. We have determined a
method that we believe to be both efficient and robust that
will attain these goals. The procedure involves using some
of the methods we have devised to detect objects and render
CAD models. We have determined techniques that can be used
to align a rendered image with an infrared image based on
work we have pursued to align synthetic and real one-
dimensional radar signatures. The method involves dividing
the images into line features and determining the best fit
between the two images based on least-square differences
between each pair of features. The least-square difference
of matching features will determine the match quality of
the two images. The presence or absence of line features
in one image or the other will determine the differences
between the infrared image and the CAD models, and will
determine whether parts need to be added or subtracted from
the CAD models. After editing the models, the steps taken
to render, determine features, align, determine match
quality, and determine differences between the rendered
model and the infrared image will be repeated as necessary.

22

References

1. Advanced Animation and Rendering Techniques, Alan Watt,
Addison-Wesley, 1994.

2. Computer Graphics: Principles and Practice, James D.
Foley, Addison-Wesley, 1993.

3. Digital Image Processing, Kenneth R. Castleman, Prentice-
Hall, 1979.

4. "Image Processing Part 6: Advanced Edge Detection,"
Dwayne Phillips, The C Users Journal, Vol. 10, No. 1,
January 1992, pp 47-63.

5. Vision in Man and Machine, Martin D. Levine, McGraw-Hill,
1985.

23

Appendix A

IFS File Format

The IFS File Format is an ASCII format for CAD models. The
format divides the model into parts, where the entire model
is referred to as an object, and the parts are referred to
as sub-objects.

Each line of the file starts with a descriptor of what is
on that line. Possibilities for descriptors are: OBJECT,
VOLUME, DATE, SUBOBJ, POINT, and FACET. OBJECT is on the
first line of the file, and is followed by the model's name
and then by the model's reference temperature (Tref) in
degrees Celsius. DATE is an optional descriptor and may
follow on a line after OBJECT. Following date is an ASCII
description of the date. VOLUME is another optional
descriptor, and if present, is followed by the x, y, and z
coordinates of the geometric center of the model.

The SUBOBJ descriptor defines the start of a part of the
model. On the SUBOBJ descriptor line, following the word
SUBOBJ, are seven fields separated by white space. The
first three are the x, y, and z components of the vector
that each point in this part needs to be translated by.
The next three are the amount in degrees that every point
in this part needs to be rotated about the x, y, and z
axes. The transformations are done in the order: rotate
about x, then y, then z, then translate. The seventh field
is the differential temperature of the part relative to the
model, Tsubobj.

The POINT descriptor is followed by five fields. The first
field is the vertex index within this part, starting from
1. The next three fields are the x, y, and z position of
this point. The fifth field is the vertex temperature
relative to the rest of the part, Tv. To get the absolute
temperature at each vertex, add Tref plus Tsubobj plus Tv.

The FACET descriptor is followed by three integers. The
integers are the indices of the three vertices that define
the corners of the facet's triangle. To compute the
absolute temperature at any point within the facet, one
must bi-linearly interpolate between the vertices of the
facet, using the temperature at each vertex as references.

24

Any lines starting with an exclamation point ("!") are
considered comments. Lines starting with and exclamation
point and then an asterisk are considered comments that are
descriptive about the data used to derive the thermal
signature.

25

Appendix B

Seqb File Format

The Seqb file format is an image file format that can
contain multiple images, all of which are in grayscale
format. Each image has associated with it a header, which
among other things contains the width and height of the
image, and a block of data with two-byte pixel values for
each pixel in the image.

The header is a 512-byte block, and is defined in the
following C-language header:

typedef struct{
u_short whole;
u_short fraction;

} IntFrac;

typedef struct
u_short
u_short
u_short
u_short
u_short
u_short
u_short
u_short
u_short
u_short
u_short
u_short
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac

{

/•■

images_remaining;
width;
height;
bytes_per_pixel;
bits_per_pixel;
year;
day;
hour;
minute;
second;
milisecond;
frame_rate;
integration__time;
electronic_gain;
electronic_offset;
digital_gain;
digital_offset;
horizontal_ifov;
vertical_ifov;
cuton_wavelength;
cutoff_wavelength;
max_transmittance;
targ_slantrange;
targ_aspect;
targ_elev;
atmos temp;

/* Julian */

millisecond */

/* msec */

26

IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
IntFrac
u_char
u_char
u_char
u_char
u_char
IntFrac
IntFrac
u_char
u_char

} Header;

dewpoint_temp;
atmos_visibility;
atmos_relative_humidity;
atmos_transmittance;
atmos_pressure;
reflected_ambient_temp;
NUC_high_temp;
NUC_1 ow_t emp ;
camera_info[16];
reserved[128];
target_type[16];
engine_type[16];
engine_state[16];
calibration_offset;
calibration_slope;
reserved2[72];
comment[128];

/* the following structure is the data contained within
each image frame in the Seqb Image file. */
typedef struct{

Header header;
u_short image[256][256];

} SeqblmgFrame;

27

