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Abstract. We derive a theory of data fusion based on an additive approach to Bayesian evidence 

combination and accrual. Although the additive method can be stated in terms of simple formulae 

of probability, it is surprisingly rich. It is robust against errors in data, and analysis and numerical 

simulations indicate that estimated probabilities of hypotheses converge to the expected value of a 

multiplicative Bayesian update as evidence that is mostly (but not necessarily entirely) correct is 

accrued. We summarize the method and principal results in the first part of the paper. The method 

relies on a representation theorem for expected values of uncertain probabilities that is an exten- 

sion of a theorem of deFinetti's (deFinettii, 1937). The extension states that the expected value of 

a function of uncertain probabilities can be represented as a weighted sum of exchangeable ran- 

dom variables. We use the extended theorem to show that the additive method approximates the 

expected value of the ordinary Bayesian posterior, and they are equal in the limit. In the second 

part of the paper, we sketch proofs of our theorems, derive the additive rule and contrast the addi- 

tive approach with others, especially multiplicative Bayesian updating on one hand and various 

consensus-based rules on the other. We show that the additive approach is much less sensitive to 

anomalous data than is Bayesian updating. The additive method, while similar in spirit to consen- 

sus approaches, is not ad hoc. 



1.0 Summary. 

Many automated systems combine, or accrue, evidence from diverse sources to develop support 

for hypotheses about a state of nature. In image analysis, for instance, evidence may come from 

imaging sensors, human intelligence, spatial databases and signal analysis to name a few sources; 

hypotheses can correspond to the presence or absence of objects of interest at particular locations, 

and perhaps their disposition. Object recognition systems typically combine the output of multiple 

feature detectors to support hypotheses about the existence and identification of a target in a single 

image. Geological survey systems, oil exploration systems for example, sometimes pool the opin- 

ions of different experts to estimate the probability that a geological feature will be found in a 

given region. 

In general, accrual methods should be robust against occasional errors in evidence since evidence 

sources can be unreliable. In particular, they must be robust against errors that cannot be predicted 

from properties of an ensemble, but are instead peculiar to a given realization. Consensus 

approaches address this issue directly by forming a consensus among evidence sources. The 

notion is that while one, or even a few, sources of evidence may be in error, the majority will not 

be; thus, the effect of outliers can be minimized. We describe a method for accruing evidence to 

hypotheses that is based on establishing a probabilistic consensus among evidence sources. Our 

consensus approach is based on a Bayesian theory of additive accrual that is robust against both 

missing data and bad evidence. 

Probabilistic evidence accrual involves inducing the probability of a hypothesis as evidence is 

accumulated about a particular realization of a random process. Inference is relative to the state of 

information or knowledge of the assesor (de Finetti, 1937), and should adapt to available data via 

an inductive process that is not restricted to properties of an ensemble, but is also sensitive to the 

unique characteristics of a realization. To support stable decision making, it is critical to make the 

most robust Bayesian decision possible about a particular realization. Inductive probabilities can 
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be viewed as random variables whose estimates change with respect to the dynamic state of infor- 

mation about a realization. 

Our additive rule for accruing evidence to a hypothesis satisfies these criteria. The rule states that 

when new evidence, E^, is accrued to a hypothesis, H, that is already supported by existing evi- 

dence, EQ, the updated probability is, 

P{H\E0yjEN) =F^L^[P(E0\H)+P(E^H)(l-P(E0\H))] (1.1) 

The right side of (1.1) indicates P(HIEQUEN) is a scaled version of the likelihood of the old evi- 

dence, P(E0IH), supplemented by the likelihood of the new evidence, P(ENIH), times whatever 

evidence remains to be accrued, I-PCEQIH). In (1.1), P(H) is a prior probability whose value is not 

based on any of the Ej. Usually EQ is itself the union of previous experiments, EQ = EiU...uEN_i. 

The internal structure of the Ej may be arbitrarily complex. However, a convenient way to view 

the output of E, is as 0-1 random variables where E; = 1 corresponds to the statement that "The 

evidence obtained from the i   source confirms H." We note that the rule, while additive, can lead 

to decreasing probability for H if P(ENIH) is small with respect to P(EQUEN). 

To obtain (1.1) we apply Bayes' Rule and only require that the experiments be conditionally inde- 

pendent, i.e. that P(EjEjlH) = P(EjlH)P(EjlH) if i *j. However, to fully understand (1.1) it is useful 

to note that the experiments are exchangeable (deFinetti, 1937) since exchangeability is implied 

by independence. A collection of events is exchangeable when their joint distribution depends 

only on the number of events and not on either their order or the specific events. In the case of an 

infinite sequence of exchangeable 0-1 random variables, Ej, E2,... de Finetti's Representation 

Theorem states that there exists a unique probability distribution function <1> on [0,1] such that 

Pn
r= \yj\prV-p)n-rd®{p) (1.2) 
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where P"r is the probability of obtaining r 1 's out of a collection of experiments E;, i=l,.„,n. 

Therefore, an exchangeable sequence of random variables can be viewed as a mixture of 

independent random variables each with constant probability p. 

To motivate the additive rule, we first extend de Finetti's Theorem to expected values of 

functions, f(p), of uncertain probabilities, p: We show in Section 2.4 that for p 6 [0,1], continuous 

f(p) and distribution function O(p), 

■r\ \n ID" 

r = 0 

where P"r is the probability in (1.2). A special case of the extension is when f(p) = p, then we 

have, 

E W = j/(p) rf> (P) = Jim_ £/<;;> {^}P"r (1-3) 

£w = »?.Iiiy 
r\n\Dn (1.4) 

We also show that P(EQUENIH) approaches the expected value of the joint distribution of the 

uncertain evidence sources Ei,.... E„. Here uncertainty means that the Ej's are random variables, 

hence so is P(EjlH). More specifically, we let £" = {^ ... E„)l at least one E, = 1}; it is a set of 

random variables whose elements are possible values of evidence combined conjunctively. Let En 

be any element of £". Then 

lim [£[P(/^£")]-/»(//|£1u...u£#I)] =0 (1.5) 

We calculate the expected value in 2 stages. First, we average over all realizations in £". The 

probability of a given realization is P(E{ = 1, % = 0, ...IH) = P^IHXl - P^IH)).... Second, by 

considering all possible combinations and increasing n, we get a large sample of the uncertain 



joint probabilities. The method implicitly partitions the joint probabilities into histogram bins. We 

quickly obtain a good approximation of the distribution function of the uncertain probabilities, <D, 

through this implicit histogramming. 

Before contrasting the additive rule with other methods of evidence combination, we discuss an 

important distinction between types of evidence. Evidence for a hypothesis can be strong or 

weak. Strong evidence is always present in data sets that satisfy a hypothesis, while weak evi- 

dence may be absent. Evidence used in object recognition systems illustrates this distinction. Sup- 

pose the problem is to identify automobiles in some class of images: While it is true that almost 

all autos have wheels, it is not certain that wheels can be seen in every image of every auto. 

Wheels may be hidden or unobservable depending on the angle of view. In many practical prob- 

lems, weak evidence is the dominant form of evidence. In the first place, the ability to observe 

nearly all evidence is contingent on the realized data set, as the wheel example indicates. Our 

additive rule reflects that view since the total evidence for a hypothesis is the normalized sum of 

evidence obtained from many sources. The report of a single source, or even a few sources, is not 

enough to completely alter P(HI Uj Ej) when it contradicts the majority of sources. 

We demonstrate that the additive approach to accrual (1.1) is much more stable with regard to 

step-wise variations in evidence than is a multiplicative approach like standard Bayesian updating 

(cf. Duda and Hart, 1973). Stability in evidence accrual systems is not just a matter of long-term 

behavior. In many systems, decisions must be based on interim probabilities. If probabilities 

swing widely from one update to another, such systems may behave erratically. Robust tech- 

niques like the additive rule are inherently stable and appropriate for small data sets. The additive 

rule is also inherently parallel and opportunistic. It is parallel because exchangeable evidence 

sources can be processed in any order, and it is opportunistic because evidence can be processed if 

and when it becomes available. 



Contrast the robustness of (1.1) with multiplicative Bayesian updating, 

pmE0EN) = ^^LmE0) (1.6) 

where EQ is now the intersection of the results of previous experiments and we have used condi- 

tional independence to simplify Bayes' rule (cf. Duda and Hart, 1973). Obviously P(HIEQEN) will 

be small if P(ENIH)/P(ENIE0) is small. For instance, PCHIEj... En) = 0 if any P(EjlH) = 0. To con- 

tinue the example given earlier, if Ej is an experiment designed to detect wheels in an image but 

no wheels are visible, then (1.6) sends P(HIEj... En) to zero even if the image contains an auto. 

Note that this can happen when all other experiments, e.g. ones that look for doors, tail lights, 

bumpers, etc., return P(EjlH) = 1. This seems unreasonable given the contingent nature of data. 

Furthermore, an experiment can return low P(EjlH) even if the data on which it is based satisfies 

H; all that is required is a bad experiment, for instance one that does not identify wheels well 

under some conditions. 

Two related methods for overcoming the brittleness of multiplicative updating arc often proposed. 

One approach amounts to computing the values of all possible realizations of the joint probability 

PCHIE^j... En=en) where ej = 1 or 0 and using some subset of those probabilities to evaluate the 

certainty in H. Unfortunately, such an approach can be computationally expensive since it's 

inherent complexity is on the order of 2n. The additive rule (1.1), on the other hand has complex- 

ity O(n), and furthermore computes the expected value of PCHIE^j... En=en) as we have noted. 

The second approach supposes that observational contingencies, for instance the probablity of 

occlusion in image analysis, can themselves be modeled. Note that a model of occlusion would 

require 1) completely parametrizing the process of occlusion including the size and shape of the 

occluding object, its position relative to the target, the size and shape of the target, the imaging 

geometry and so on, and 2) determining the values of the parameters for a given realization. In the 
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unlikely event that a complete parameterization of occlusion could be obtained, many models 

would have to be stored and computed. In most cases, determining the values of the parameters 

of an observational model requires solving a problem of equivalent complexity to the original 

problem. 

Numerical results provide striking evidence for the robustness of the additive update rule versus 

the multiplicative update rule. Figures 1.1 and 1.2 are plots of the results of choosing at random 

component probabilities and then inserting them into formula (1.1) for additive updating and for- 

mula (1.6) for multiplicative updating. The component probabilities are the probabilities P(EQ) 

and P(EN) of getting evidence EQ or EN, the joint probability P(EoEN) of getting EQ and EN, the 

joint probabilities P(EQH) and P(ENH) of getting EQ and the hypothesis or EN and the hypothesis, 

and finally the joint probability P(EoENH) of getting evidence EQ, EN and the hypothesis. 

The component probabilities for two or more evidence gathering experiments and a hypothesis 

were chosen recursively at random except that they were required to satisfy measure theoretic 

constraints. The constraints are the following: 

P^0EN) <Minimum(P (E0),P (EN)) (1 7) 

P (£,//)</>(£,.),/ =0,N (18) 

P (E0ENH) < Minimum (P (E0H), P (ENH)) (1 9) 

The form of the multiplicative and additive rules are equivalent to our previous forms but allow 

these random probabilities to be input. The form of the multiplicative update rule that we used is 

(1.10) 

while the form of the additive update rule is 

"' nto)+H(EN)-P(E0E„) (in) 



Simulations show the results of iterating the additive rule and multiplicative rules for 3, 17, and 

129 experiments; that is, we initialize each simulation with a randomly chosen EQ and then accrue 

the results of 2,16 or 128 new experiments whose values are also chosen at random. Values were 

selected from a uniform distribution on [0,1] with restrictions given by (1.7)-(1.9). Figure 1.1 is a 

plot of the results from 100,000 runs of the additive rule and Figure 1.2 is a plot using the same 

number of runs for the multiplicative rule. The central limit theorem-type convergence with 

increasing number of experiments, which is expected from our theorem (1.5), is clearly evident in 

Figure 1.1 while no difference is discernible in Figure 1.2. Also, the same tendency toward low 

values of the iterated update is found for the multiplicative rule while the additive updates con- 

verge toward what one would expect for random choices of hypothesis and evidence probabilities. 
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Additive - 128 exp (mew - .49) 

Additive -16 exp (mun - .50) 

Additive - 2 exp (mean = .51) 

Figure 1.1 Iterated Random Updates - Additive Rule 
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■ Multiplicative - 128 e*p (mean - . 17) 

Multiplicative - 16 exp (mean ».17) 

Multiplicative - 2 e*p (mean - .15) 

Figure 1.2 Iterated Random Updates - Multiplicative Rule 

The conservatism of the additive rule is also evident when we compare likelihood ratios based on 

the two rules (Figure 1.3). There we contrast the relative effect of new evidence on likelihood 

ratios, 

AM = P{E^H)P{E0\H) (U2) 

P(E^H)P(E0\H) 

derived from the Multiplicative Rule and, 

AA =  ^JE0\H)+P{E^H){\-P{E0\H))} (U3) 

[P(E0\H)+P(E^H)d-P(E0\H))] 

derived from the Additive Rule. To simplify the discussion, we have dropped the ratio P(H)/P(H) 

that multiplies both AM and AA. 

To obtain Figure 1.3, we suppose that both rules start with the same prior likelihood, 

■avmmmmim 
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0 = 

P(E0\H) (1.14) 

P(E0\H)   • 

We also fix P(EQIH) = 0.25 since the Additive Rule requires those values explicitly, we take 

P(ENIH) = 0.25 and we let AQ = 1 -0, i.e. the prior likelihood is indifferent between H and H. Other 

values of PCEQIH), P(ENIH) and AQ yield qualitatively similar results, a fact that we discuss at 

length in Section 4. Clearly AA is restricted to a narrower range than AM. Furthermore, AM drops 

to values less than 1 very quickly. Large (small) values of P(ENIH) lead to AM that is much larger 

(smaller) than AQ, while AA stays closer to AQ throughout the range of P(ENIH). This is consis- 

tent with our earlier observation that the Additive Rule gives much less weight to outliers than 

does the Multiplicative Rule. 
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2.27 

0.59 

1.68 

A 

4.0 

0.0 

4.0 

M 

Ao = 1.0      P(EQ|H) = 0.25    P(EN|H) = 0.25 

Figure 1.3 -- Additive vs. Multiplicative Rule: Low P(EQ|H) 

Although the additive rule is appropriate in many practical problems, the additive and multiplica- 

tive rules can be combined to yield 
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P(H\Es(E1uE2)) = 
(E^H) 

/>(£,) S>   J 
P (H\ £, u E2) (1.15) 

The combined rule looks like Bayes' rule with P(HIEiuE2) as a prior. The effect of strong evi- 

dence, Es, is to scale PCHIE^E^ by the Bayesian likelihood of Es, P(ESIH)/P(ES). We give an 

algorithm for (1.15) below. 

Additive approaches to updating are not new. Our current work is related to Jeffrey's rule (Jeffrey, 

1965; Diaconis and Zabell, 1982) and can in fact be used to derive his rule when the Ej form a 

partition of the entire sample space. Our rule is closely related to the updating methods discussed 

by Winter, Ryan and Hunt (1986), but they neglected the normalization, which is critical if 

P(H!UjEj) is to decrease as well as increase as evidence is accrued. The activation of a "neuron" in 

an artificial neural systems is usually based on a weighted consensus of other neurons, and equa- 

tion (1.1) can be rewritten to look like the activity of such a neuron. When written in that form, 

(1.1) suggests an adaptive method for learning the properties of the transformations P(EjlH). Con- 

sensus rules (Berenstein, Kanal and Lavine, 1986; deGroot, 1974) use weighted sums of probabil- 

ities to represent support for hypotheses. 

The remainder of the paper is essentially a set of appendices to this summary. It is organized as 

follows: In Section 2 we discuss assumptions and define a few terms, specifically i) conditional 

independence, ii) exchangeability, iii) weak and strong evidence. We also restate theorems (1.3) 

and (1.5) more formally and sketch their proofs. Proofs are given in full in (Stein and Winter, in 

prep.). In Section 3 we derive (1.1) in 4 different ways because each derivation illustrates a differ- 

ent aspect of the rule. The first derivation depends on straightforward applications of Bayes' Rule 

and conditional independence. We use the second derivation to show that (1.1) decreases when 

new evidence does not strongly support H. The third derivation is the basis for the proof of our 

second theorem (1.5). The fourth derivation relates (1.1) to the expected value of an indicator 

11 



function. 
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In Section 4 we compare the properties of the additive rule and multiplicative rule through numer- 

ical results similar to those of Figures 1.1-1.3. The distribution of simulated updates of the addi- 

tive rule tightens as the number of experiments increases while the distribution of multiplicative 

updates does not change. We also discuss the effect of new data on likelihoods, A , and A  . The 

additional results further confirm Figure 1.3: AM is less stable than AA in the sense that small dif- 

ferences in new data can result in much larger changes in AM than AA. Additionally, we note that 

AA is affected by the magnitude of P(EQIH) and thus preserves some information about the abso- 

lute goodness of the hypothesis while AM loses such information. 

In Section 5 we relate the additive rule to other additive approaches, specifically consensus rules, 

Jeffrey's rule and neural networks. We indicate the additive rule is identical to Jeffrey's rule when 

the evidence sources, {Ej}, constitute a partition of the sample space. Section 6 outlines a few 

issues for future research. 

2 Background. 

A word about notation: Where it is not ambiguous we use X to indicate that X = 1 and X to indi- 

cate X = 0. 

We are interested in problem domains in which a collection of diverse algorithms, or experiments, 

can report evidence about a hypothesis. In many cases only a subset of experiments may report, 

and furthermore experiments may report in any order. We assume that experiments are basically 

good in the sense that they do discriminate between H and H in the absence of contingent errors. 

Specifically, this means P(EIH)« P(EIH) and P(EIH) « P(EIH). Although we assume experi- 

ments are good discriminators, any individual experiment in a realized sequence of experiments 

may be unreliable. That is, the output of an experiment may not conform to the true state of nature 

12 



because of a variety of error sources. On the other hand, we assume that most experiments agree 

when they are applied to a given event. 

2.1 Conditional Independence 

Our updating rule is based on the rather weak assumption that experiments are conditionally inde- 

pendent of each other. This amounts to claiming that P(EjEjlH) = P(EilH)P(EjlH), or equivalently, 

that P(EjlHEj) = P(EjlH). In most cases these are reasonable claims about the parameterization of 

the distribution, P. The second, for instance, says that knowing H suffices to define P, and that 

additional evidence, Ej, is not useful in parametrizing P. 

To get some intuition about conditional independence, consider the case of flipping a coin and 

trying to predict whether the 1th flip will be a head Suppose H is the statement "The coin is fair," 

and Ej is a set of flips performed previously. PCEjIHEj) amounts to asking, "What is the probabil- 

ity of getting a head (or tail) on the i* flip given that the coin is fair and we have already obtained 

the sequence of heads and tails contained in Ej?" Clearly the evidence, Ej, adds nothing to the def- 

inition of this probability. To determine Ej.all we need know is that the coin is fair, i.e. P(EilHEj) 

= PCEjIH) = 1/2. 

■ 

A 

2.2 Exchangeability 

A sequence of random variables is exchangeable if the joint probability P satisfies 

P(El = el,E2 = e2,...,En = ea) = P(En(l) = evEn{2) = e2, ...,£n(n) = en) (2.1) 

where n is a permutation on n indices. This type of probability measure is called symmetric and 

has been studied by deFinetti (1937,1964), and was fully treated by Hewitt and Savage (1955). 

Another way to describe a sequence of exchangeable random variables is to say that the order 

does not matter to the limiting joint probability distribution. 

An important characteristic of many types of evidence sources is that the order of receipt of evi- 

13 



'       • dence should not affect the conditional probability of the hypothesis given this evidence. This is 

important because the order of receipt of evidence may not be the same as the time ordering of the 

evidence and for certain types of evidence the time ordering is not significant. For example, sup- 

pose we are trying to identify an automobile and we receive evidence that it has a convertible top 

and then we receive evidence that it has wire wheels. It should not make a difference in what 

order we combine the evidence to the conditional probability that we have a specific kind of auto- 

mobile given the evidence. Our updating scheme leads us to consider exchangeable random vari- 

ables. 

As shown by de Finetti (1937,1964) and Hewitt and Savage (1955), a symmetric measure may be 

represented more simply as a mixture of independent power distributions. The mixture is created 

by integrating the power distributions over a random probability distribution (see Dubins and 

Freedman (1967)) on the power distributions. That is, 

PiEieAt)   =\Y[P{A.)d\i{P) (2.2) 

for all i=l,...,n. Note that JI(P) is a random probability measure over the set of probability mea- 

sures on the sample space Q of the random variables. This result, usually called de Finetti's Rep- 

resentation Theorem or just the Representation Theorem, takes a simpler form in the case of 0-1 

or Bernoulli random variables. That is, there exists a unique probability measure on the Borel sets 

of [0,1] suchthat 

!»(£,=«,)._,      k =    J  pi (1 -p) *-V (dp) (2.3) 
[0,1] 

where ej is either 0 or 1 and j = Sej. 

A variant of the Representation Theorem holds even if the sequence is finite. Suppose that k is 

much smaller than n and Ei,...,Ek is the beginning of a long exchangeable sequence 

E1,...,Ek,Ek+1,...,En. In that case, (2.3) is approximately true with an error that is essentially on the 

14 



order of k/n as shown by Diaconis and Freedman (1980). 

2.3 Updating With Weak Evidence 

An important distinction of the additive update procedure from the typical update using the multi- 

plicative rule is that we consider union or disjunction of evidence and the typical scheme looks 

only at the intersection or conjunction. Notice that the union of evidence includes the intersection 

as well as other regions of the sample space that have not been covered by previous evidence. Evi- 

dence comes in one of two forms, and the form is a guide as to whether the update should be done 

using union or intersection of the new evidence with the old. These two forms we call weak and 

strong evidence. 

Strong evidence is a probabilistic statement about a condition that must or must not be satisfied by 

every realization of a random process. For example, when trying to recognize an automobile in 

imagery, it is useful to remember that they are practically never found in water. Strong evidence, 

such as the fact that an object is by itself in the middle of a deep lake, should allow us to conclude 

that it is not an auto. Because strong evidence refers to conditions all of which must be consid- 

ered, the conjunction of the strong evidence is appropriate and this leads to the normal method for 

multiplicative Bayesian updating. 

Weak evidence is a probabilistic statement about a condition that may or may not be satisfied In 

the auto example, the size of an object may imply that it is a car. But several types of trucks that 

could be in the scene may be the same size as a car. Also, the possibility of occlusion of a critical 

component such as wheels requires that we not draw conclusions from the absence of a compo- 

nent. Because weak evidence refers to conditions only some of which may be considered, the dis- 

junction of the evidence is appropriate and this leads to the method of additive updating we 

discuss in this paper. 

15 



Although the two types of updating may be combined (see Section 3.2) we believe that most evi- 

dence is weak evidence. The uncertainty associated with information gathering algorithms and 

processes always allows for the possibility that critical components are missed. Also, as was 

learned from the knowledge representation activity that went on in AI research for many years, it 

is very difficult to completely and uniquely identify objects and situations by a reductionist listing 

of the attributes or components that must make up the object or situation. Thus, a lot of evidence 

is weak because the object or situation that it is applied to is not uniquely or completely specified 

by components about which information can be gathered. 

Furthermore, evidence can be weak simply because experiments fail. We say a supporting experi- 

ment fails if P(EilH=T) is small. Supporting experiments can fail for at least 2 reasons. First, a 

data set may be a member of H yet it may not contain data to support the experiment. This is the 

problem of missing data. A very common example is the effect of occlusion in image analysis; an 

experiment designed to recognize human faces may fail on an individual face if the subject wears 

a stocking cap pulled low on his head, thus obscuring ears and eyebrows. No matter how good an 

experiment may be, it must fail if the data on which it is based is missing. Second, it must be 

admitted that experiments can fail just because they are bad, i.e. an experiment may not correctly 

classify a data set even when the data to support the experiment is available. We call this the prob- 

] lern of systematic error in a supporting experiment. 

2.4 Theorems 

As noted, we just state our theorems here and sketch their proofs. We give complete proofs in 

(Stein and Winter, in prep.) 

Theorem 1: Extended Representation Theorem. For pe [0,1], any continuous function f(p) and a 

distribution function <E>(p), 

n / 

r = 0 

16 
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where Pr
n is the probability of obtaining r successes in n trials selected from a population of 

exchangeable random variables. 

The theorem states that the expected value of any function of an induced probability can be repre- 

sented in terms of exchangeable variables. It follows from a few simple facts. First, obviously 

E[f\ = jf(p)d<&(p) (2.5) 

Next we can rewrite f(p) in terms of its Bernstein Series, 

HP) = i/<£)(;J/(1~*),,"r- 
so 

r = 0 

1 

EW=j}™\lf(r-){?yv-xr-ry*w- 

(2.6) 

(2.7) 
0 v = 0 

We apply uniform convergence to exchange the limit and integral in (2.7) and then use deFinetti's 

Theorem to get 

r=0 0 r=0 

(2.8) 

Corollary. If f(p) = p, 

r  n £w=^]=ix^/; = üi^/: (2.9) 
r = 0 r=\ 

Theorem 2: Expected Multiplicative Update. Let -En= ((Ej... En)l at least one Ej = 1}; it is a set of 

random variables whose elements are possible values of evidence combined multiplicatively. Let 

En be any element of £n. Then 

lim [E[P(H]En)]-P(H\Elv...vEn)]  =0 (2.10) 

We denote E, = 1 by Ej and Ej = 0 by Ej. The critical term in the additive rule is P(E!U...uENIH), 
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which may be re-written 

PlElv...vEJiH) =  £   2 P(Eir.EiEitti...Ei]iH) (2.11) 
r=ineS. 

where Sn is the set of all permutations that contain r 1 's. 

Since at least one Ej = 1 in every term on the right of (2.11), we have 

£   X P(Eir.EiEiM...Ei\H) =  £ (£:})£/>!   n   Pf-      n       d-Py)  (2.12) 

Here we use exchangeability and substitute p; for P(Ej = ej = 1IH) and 1-pj for P(Ej = e, = OIH). 

We continue with 
n   f \   n n n 

z(?:iji>i n p. n  <>-">> 
r=l /=1     «=1,«*/   i=\,j*l,j*i 

= i;fc)i>< n PI n <>-";>• <2-i3> 
r=l /=1     i=l,«V/   j=\,j*l,j*i 

n ft 

The terms ^,  fj  p,-     fj     (I-/»;) give us various estimates of the probability of obtaining r 

successes in n trials. After we histogram them into m bins we compute the frequency of each bin 

§\. Then we write 

n       ( \  n n n n       (  \   m 

Z;£J5> n Pi n  (I-PP-S^JSäO-PX)"-^   <2-i4> 

where p^ is the value in the Xth bin. By letting m -> °° and assuming that the empirical density, <$>\, 

dgoes to the actual density dO, we have (2.9), and so are done. 

3 Additive Update Rule 

First we state the updating rule, and then derive it in 4 different ways. The second subsection 

describes how the update rule can decrease belief with new evidence. The third subsection dis- 

cusses a rule that combines the additive and multiplicative update rules for use in applications 

with both strong and weak evidence. 
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3.1 Statement of the Rule and Derivations 

We state the rule in a form that satisfies all 4 derivations. In particular we require that experiments 

be conditionally independent and that they be exchangeable. These fairly weak assumptions will 

be met by most probabilistic accrual systems. However, individual derivations may actually allow 

even weaker assumptions. For instance, our first and second derivations do not require exchange- 

ability. We note such points in the remarks following each derivation. 

Additive Rule for Weak Evidence. If EQ and EN are sets of experiments that are independent when 

conditioned on a hypothesis, H, and if the prior probability P(H) * 0, then the updated probability 

of H given that EQ has been supplemented by E^ is 

P(H\E0uEN) = p{^E) IP(g0[H)+P(E^H)(l-P(E0\H))] (3.1) 

The rule states that the updated probability, P(HIE0uEN), depends on the sum of P(EQIH) with 

P(EN!H)(l-P(EolH)) = P(ENEQIH). Although this sum is always positive, P(HIEQUEN) can 

decrease through the influence of the scaling factor, P(H)/P(EOUEN), a point we return to below. 

An alternative form of the additive rule 

P(H\E0uEN) = P{
P

E
{HJEN) I?(*o|H) + P^NE0\H)] (3.2) 

makes it clear that the value of new evidence depends in large part on how redundant it is with 

existing evidence. The more E^ overlaps EQ, the smaller is Ej/s contribution to (3.2). Although 

we do not require even the assumption of conditional independence to obtain this form, its com- 

putational utility is limited. It will almost never be the case in an application that all possible com- 

binations of EN with EQ can be anticipated, much less modeled. However, (3.2) leads to a 

statement about experimental design that is probably obvious, but we repeat anyway because we 

think it useful: unless redundancy is required to assure reliability, it is most cost-effective to keep 

experiments as uncorrelated as possible. 
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Derivation 1. We can also obtain (3.1) by simply applying Bayes' Rule and the definition of the 

probability of the union of 2 sets, 

P(E0vE^H)P(H) 
P(H\E0KJEN) = 

P(E0KJEN) 

P{H) 
= P (E0JEN) [P (E°\H)+P (£H "> ~P Vo^ "> 1 (3-3) 

We obtain (3.1) by applying conditional independence, P(EoEN!H) = P(EolH)P(ENIH), and sim- 

plifying. 

Derivation 2. We can also derive the rule from a difference quotient. This derivation emphasizes 

the dynamic nature of some accrual systems, and is useful in showing that the additive rule can 

decrease. First, we define some notation, 

,n-l En=    U£,-     =En-iuEn, 

which leads to a natural expression of the change in probability of evidence, 

AP(E) = P(En) - P(En-!) = P^E"-1) 

Defining AP(HIE) to conform with (2), 

AP(H\E)       P(H\En)-P(H\En~l) 
AP(E) P(En)-P(En~1) 

P(H) 
;n-l 

P(EnE    )H)     p (£»-»|//) 

PiE^^EJl PiEj1-1) P(En-') 

(3.4) 

(3.5) 

(3.6) 

Moving terms around and letting EQ = E    , En = EN, _cn-l 

P(H\E0uEN) =P(H\E0) + 
P{H) 

P(E0vEN) 

P(ENE0\H)     P(E0\H) 

_ P(ENE0) P(E0) 
AP(£)        (3.7) 
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\ 

s 

=      rW       [P (E0\ H)+P (ENE0\ H) ] (3.8) 
P(E0vEN) Ui 

Clearly, P(HIE) can decrease when new evidence is added since AP(HIE) < 0 when 

P(Eh\") 
P(E0\H) -P{E0KJEN)   ^ 

P{E0) 
(3.9) 

\-P{E0\H) 

and P(EN!H) can be arbitrarily small. The numerical results in Section 4 further illustrate this 

point. 

Derivation 3. Our main result is an update formula that successively constructs a probability mea- 

sure over the hypothesis space. One can view this measure as the limiting probability measure for 

a sequence of exchangeable random variables or their corresponding events that represent the 

accruing evidence. We consider that the result of each evidence event EiH yields a conditionally 

independent sample P(EjH) from the closed interval [0,1] and that this sample represents the joint 

probability of having the evidence and the hypothesis. P(E;H) = P(H) -P^H) represents the joint 

probability of not having the evidence and the hypothesis. 

Prom Equation (2.1) we must have for each choice of k events out of a total of n events 

P(EiH)P(EiH)...P(EiH) = P(En0i)H)P(En{ii)H)...P(EMii)H) 0.10) 

where 7C is a permutation of the integers 1,2,... ,n and we have used the conditional independence 

of the individual experiment events. For this to be true we must have for every k of n evidence 

events 
P{E,H)...P{E.H) = A  X P(En{l)H)...P(Enik)H)P(En{k+l)H)...P(En{n)H) 

neS 

(3.11) 
where it should be noted that the 7C(ik) are permutations on n letters (e.g. (7t(3),7C(5),7C(k)) 

=(7,k+2,n)) and S'n denotes only those permutations where 7t(l)<7C(2)<...<7C(k). Now we con- 

sider only those joint events where we have at least one evidence event and the hypothesis to be 
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consistent with the fact that we did perform experimentation. The expected value of the probabil- 

ity for all these joint events is 

£ [lj (P {E.tH) P (E i2H )...P(E . H)) 

and it is easy to show that 

P(H{CjEk)) =   j^[lj(P(EiH)P(EiH)...P(EiH)) 

(3.12) 

(3.13) 

It is also easy to show that upon rewriting the right hand side of (3.13) we can obtain our update 

formula. For the sake of brevity we will demonstrate this for only two evidence sources, but the 

proof for any number of evidence sources is easily derived from an exact but lengthy computation 

or by mathematical induction. For convenience let P(H(E!uE2))=Ph and P(EiH)=p;. Combining 

(3.1.3) and (3.13) for the case of two evidence sources we get 

/ 

Ph = 
.1. 

Ul, 
(Pi{l-P2)+P2V-pl)) (PiP2) (3.14) 

and after multiplying through and collecting terms we get 

Ph = Pi+Pi^-Py) (3.15) 

or using the value of pj,, Pi, and P2 

P(H(EluE2)) =P{E1H)+P(E2H)(l-P(ElH)) (3.16) 

which is the same as our update formula if the probabilities are rewritten in terms of conditionals. 

Derivation 4. As a final alternative derivation we obtain our update formula as an expected value 

of a certain ratio of random variables. Previously we found that we could write our update for- 

mula in the form 

?2 



 *^i P{H) = P(H] \jEk) = 
k=1 P(UEk) 

k= 1 

*i  = P(H) 
ZP(E* (l)-£it(k) En(k+l)---EK(n) ) 

(3.17) 

where the intersection events form a partition of the sample space excluding the all evidence com- 

plement sets (i.e. 5^!)...^^^!)...^)) and where x and k are as defined in Derivation 3. 

Now if we let 3n be the C-algebra generated by the partition and the hypothesis event H we can 

rewrite this as 

£/> (£K{1) ...En(k) En(k+ D ...EK{H)\H ) 
JI, k 

Y,p (En(l) ...EK{k) En(k+ D ...£„(„) ) 
n,k 

-P(H) = E 
n,k   (f^E)// 

2> 
y   n,k  f^E 

(3.18) 

where PtEH and rSE are shorthand for the intersection sets of the partition and I^EH and I^E are 

their indicator functions. Thus we have rewritten the result of our update formula as an expecta- 

tion, which by elementary martingale theory implies that the result of our additive update process 

is a martingale. This allows a lot of powerful theoretical results to be applied to the investigation 

of the properties of our method. In Section 5.2 we further rewrite our update rule to relate it to a 

modem branch of martingale theory about multiplicative random processes. 

3.2 Combined Rule 

Although most problem domains are based on weak evidence, some contain strong evidence. 

Thus we note a simple method for combining strong evidence, Es, with weak and vice versa. 

Algorithm for Combining Weak and Strong Evidence. If Es is independent of Ex and E2, and E! 

and E2 are conditionally independent events, then the probability of H given that Es must be 

observed and that we can observe either Ej or E2 (or both) is 

P(H\Es(E1uE2)) = 
P(ES\H) 

P(ES) s>  J 
P(H\EluE2) 
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P(EJH) '.JlSB—lPiEAW+PiEJmil-PiEAH))] 
P (C   i  i F-\   l 'I ^ ' 

(3.19) 
P(ES)   JlP(E1uE2) 

i.e., the new rule is the product of the Bayesian likelihood ratio of Es with the Additive Rule. 

When additional strong evidence is obtained, it is fused into P(H|.) by applying ordinary multipli- 

cative Bayesian updating. New weak evidence is accrued to P(HIEl u *i> by applying our Weak 

Rule. The basic algorithm is depicted in Figure 3.1. Strong and weak evidence streams are main- 

tained separately and are updated by respectively the multiplicative or additive rules. When new 

evidence is obtained, it is first accrued to the appropriate stream, and then the streams are com- 

bined according to (3.19). 

Strong 

Pm = Multiplicative 
Update 

Weak 

PA = Additive 
Update 

Combine: PM^A 

Figure 3.1 - Algorithm for Combining Strong and Weak Evidence 

J 

4 Comparison With Multiplicative Bayesian Updating 

In this section we compare the additive rule to several alternative methods of evidence accrual. 
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We begin by contrasting the additive rule with multiplicative Bayesian updating. The additive rule 

is Bayesian, but of course it is additive, not multiplicative. Hence it is not as sensitive to anoma- 

lous evidence as is ordinary multiplicative Bayesian updating, a fact that we discuss through ana- 

lytical and numerical results. Furthermore, numerical results indicate that the additive rule 

converges to the actual value of P(H) as evidence is accrued. 

The Multiplicative Rule is based on the notion that all evidence is strong, and therefore, that every 

experiment can find the data it requires in a given data set. Multiplicative evidence accumulation 

consists of progressively restricting attention to just those individuals that are strongly supported 

by all experiments. It is implicitly assumed that individuals that satisfy the hypothesis will have 

strong support from all experiments. We have already argued that this is unrealistic. Even data 

sets drawn from objects of interest may not contain data required to support some experiments. 

Furthermore, the Multiplicative Rule assumes that every experiment, Ej, is good in the sense that 

if the data required by Ej is in the data set, then P(EjlH)» 0 and PCEjIH)« 1. 

4.1 Analysis. 

The additive update rule has been previously written with the union of evidence expanded using 

the inclusion exclusion principle, that is 

P(\JEk) = ^PiE;) -^PiEty +...+ (-l)n+1P(E0Ev..En) (4.1) 
* = o '<; 

Alternatively, we could have expanded the probability of the union of evidence as a partition 

P(UEk) =  ^P(E0Ev..Ek) 

Using (4.2) we can rewrite the additive update rule as 

(4.2) 

P(H\ KJEk) 
k = 0 

P(H) 

P(^JEk) 
* = o 

YtP(E0El...EljiH) 
jfc=0 

(4.3) 
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For comparison we recall the multiplicative rule in a similar form 

(4.4) 

Lk = 0 
P(H\ C\Ek) =  

k=1       P(nEk) 
k=\ 

These two equations clearly display some primary differences between the two updating schemes. 

First, the limiting behavior of the additive rule is governed by a sum, which is relatively stable 

with respect to variations in individual terms, versus the multiplicative rule which is governed by 

a product that is highly variable due to variations in individual terms. In fact, a worst case for the 

multiplicative rule is where one of the P^IH) terms is equal to zero forcing all subsequent 

updates to be equal to zero. As we have pointed out earlier, this conditional probability could be 

zero or near zero for a variety of reasons and is in fact the reason a more robust update formula is 

needed. Another obvious difference is in the normalizing terms. The additive rule has a normaliz- 

ing term which is monotonically increasing and approaching at most the value 1. The multiplica- 

tive rule has a normalizing term which is monotonically decreasing and approaching the value 0. 

Thus variations in the selection and ordering of the evidence experiments E; may create large flue- 

tuations in the value of the update. 

4.2 Probability Update Simulations. 

Section 4.1 compared several mathematical properties for the multiplicative and additive rules. In 

this section we want to present some numerical results that provide striking evidence for the 

robustness of the additive update rule versus the multiplicative update rule. 

Figure 4.1 is a plot of the results of choosing at random the component probabilities and then 

plugging these into the two formulas for multiplicative and additive updating. 
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m 
N 
o 

Randor Upda + 

o 
M 
O 

Additive (mean = .50) 

i . o 

Figure 4.1 Simulation of random updates using the multiplicative and additive rules 

The component probabilities for two evidence gathering experiments and a hypothesis are chosen 

at random with appropriate conditions on some of the probabilities. Specifically these component 

probabilities are the probabilities ?(E0 and P(E2) of getting evidence Ei or E2, the joint probabil- 

ity PCE^ of getting E! and E* the joint probabilities P^H) and P(E2H) of getting E{ and the 

hypothesis or E2 and the hypothesis, and finally the joint probability PCE^H) of getting evi- 

dence Ei, E2 and the hypothesis. The conditions are the following: 

P (E{E2) < Minimum (P (Ex), P (E2)) 

F(£1//)</,(£1) 

P(E2H) <P(E2) 

(4.5) 

(4.6) 

(4.7) 
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■2 

P (£,E2//) ä Minimum (P (£[«). ? (E2
H)) 

Within the constraints imposed by these conditions the probabilities are chosen a, random. The 

form of the multiplicative and additive na.es are equivalent to onr previons forms but allow these 

random probabilities to be inpnt. The multiplicative update rule Uta. we used is 

P(E,E2H) (49) 

rmEfo) = ~P{ElE2f 

and the additive update rule that we used 

/>(£,«) +P(E1H)-P(ElE1H) (4.10) 
P(//|£,u£2) ■■ p(£i) +/»(£2)-/>(£,£2) 

Fignre 4.1 clearly shows the stability of the additive update process versus «he multiplicative 

update process. One can view the simulation as taking a prior probability distribution over the 

prior probability P(HIEl) which is uniform over [0,1] and transforming it into the posterior distri- 

bution over the posterior probabilities PfHIE^ which is shown in Figure 4.1 for both of the 

„uluplicative or additive update nrles. The mean of the posterior probabilities is .22 for the mul- 

tiplicative case and .50 for the additive case. This shows that the multiplicative update rule on 

average computes a posterior probability that is about one-half tine vatoeof.be posterior probabil- 

hy for tine additive update rule. Also, the distribution of the posterior probabilities and the distri- 

bution of prior probabilities are closer for the additive rule than for the mu.tiphcative nale. Thus 

the additive update process is much mom conservative than the multiplicative process. 

Another simulation shows the result of iterating our update rule for 2,16, and 128 experiments. 

Figure 4.2 is a plot of the results from 100,000 runs for our additive update rule and Figure 4.3 is 

a plot using the same number of runs for the multiplicative rule. The central limit theorem-type 

convergence with increasing number of experiments, which is expected by «he martingale prop- 

erty, is clearly evident in Figure 4.2 while no difference is discernible in Figure 4.3. Also, «he 

same tendency toward low values of the iterated update is found for the multiplicative rule while 
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the additive updates converge toward what one would expect for random choices of hypothesis 

and evidence probabilities. 

I 

0 

Ss 
30 

L. 
li.2 

o 

I *«ratad Random Updatai 

Additive - 128 exp (mean " .49) 

Additive - 16 exp (mean - .50) 

Additive - 2 exp (mean -.31) 

Figure 4.2 Iterated Random Updates - Additive Rule 
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,rated    Random Updat«« 

n 

Multiplicative - 128 exp (mean - .17) 

Multiplicative - 16 exp (mean - .17) 

Multiplicative - 2 exp (mean - -IS) 

T 
Pro bab'l 1 1 ty  Update 

Figure 4.3 
Iterated Random Updates - Multiplicative Rule 

4.13 Likelihood Simulations. We compare 

A  " P!E^H)P1E^H) 

derived from the Multiplicative Rule and, 

[P(E0\H)+P(E^HUl-P(E0\^ 

TFiE^Hy^pl^^^ 
derived from the Additive Rule. To simplify the discussion, we 

M 

the relative effect of new evidence on likelihood ratios, 

(4.11) 

A* = 

(4.12) 

have dropped the ratio P(H)/P(H) 

that multiplies both L* andL' 

ToMca«e,heeffec«ofneW evidence ««^»dL«^«^».^«^ 

in the figures, we suppose that both rules start with the same pnor hkeh- 
ures 4.4-4.9). To obtam the hg 

hood, 

PiE^H)_ 

°~ P{E0\H) 

(4.13) 

A„ = 

30 
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and we also fix FCEoH) si"«=lhc AdditWe Ru'e rC"uircS *°* "'"" """^ Whe" ** = ^ 
i.e. when «he prior likelihood is indifferent between H and H, and when P(E0IH) = 0.25, we have 

Figures 4.4 and 4.5. Other valnes of P(E<)IH) yield qualitatively similar results. Clearly LA is 

restricted to a narrower range 
than LM. Furthermore, LM drops to values less than 1 very quickly. 

This is somewhat easier to see if we also fix P(EN.H) and plot L* and L^ against P(EN.H) (Fig- 

ures 4.6-4.9). The statistics associated with the figures give maximum and minimum values of 

L's, the slope of the L curves, and the 0 distance of the L curves from L0. The figures indicate 

thai large (small) values of P(ENIH) can lead to LM that is much larger (smaller) than LQ. while 

LA stays closer to Lo throughout the range of P(ENIH). This is consistent with our earlier observa- 

tion that the Additive Rule gives much less weight to outliers than does the Multiplicative Rule. 

Comparing Figures 4.6 and 4.7 indicates that the effect of new positive evidence, P(ENIH), on LA 

is reduced if relatively strong evidence (W = 0-25 vs. PO**) = 0.50) has already been 

accrued. The magnitude of previous evidence has no effect on L* since it does not depend on 

P(E0IH) direcüy, and thus cannot distinguish cases where prior evidence is negligible from those 

in which quite a lot of evidence has been accumulated. Figures 4.6 and 4.8 show that high values 

of new negative evidence (P(ENIH) = 0.25 vs. P(EN.H) = 0.50) reduce both A* and A* How- 

• the effect on AM is more pronounced: the slope of the AM curve is reduced by half while the 

Jope of the A* is basically unchanged. Maximum and minimum values of A* and A*< show sim- 

ilar effects. Figure 4.9 shows the effect of the prior likelihood, A0- The higher AQ, the greater is 

■A   ,.„„AM On the other hand AA is restricted to a narrower range that is the effect of new evidence on A  . Un tne otner nanu, i\ 

closer to AQ. 

ever 

s 
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Figure 4 4- Updated Additive Likelihood 
Ao-1-0 

P(Eo|H) = 0.25 

AMax = 385 

AMin = 0-25 

Fioure 4 5- Updated Multiplicative Likelihood 

P(Eo|H)=0.25 

AMax = ' 
AMin = 0.0 
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0 
0 
£ 

AA AM 

Muh     / 

Max 2.27 4.0 

Min 0.59 0.0 

^^Add 

SloDa 1.68 4.0 

[} distance to LQ    0.64 1.25 

Figure 4.6 

1 1 Ao-1.0      P(EolH) = 0.25    P(EN|H) = 0.25 

- Additive vs. Multiplicative Rule: Low P(EQ|H) 

AA AM 

Max 1.59 4.0 

Min 0.81 0.0 

Slope 0.79 4.0 

C distance to LQ 0.30 1.25 

Ao-1.0      P(EolH) = 0.50    P(EN|H) = 0.25 

o.« <>•» 
P(En   Glvan   H) 

Figure 4.7 -- Additive vs. Multiplicative Rule: High P(EQ|H) 
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Max 

Min 

Slope 

A' 

1.59 

0.41 

1.71 

t} distance to LQ    0.34 

A* 

2.0 

0.0 

2.0 

0.50 

Ao-1.0      P(EolH) = 0.25    P(EN|H) = 0.50 

(En   Glv.n   H) 

Figure 4.8 
- Additive vs. Multiplicative Rule: High P(EN[H) 

o.oi o-2' o.*i °-s1 

p(En   Given   H) 
O.B1 O.OS 

• AO 

0.5               2.0 

AA     max 
mm 

1.59 
0.42 

0.75 
2.89 

AM    max 
min 

0.0 2°   .. 
0.0 
8.0 

Ao = 0.5 and Ao = 2.0 
P(Eo|H) = 0.25 

P(EN|H) = 0.25 

Figure 4.9 -- Additive vs. Multiplicative Rule: Multiple A0 
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5 Comparison with Other Additive Rules 

We also compare the additive rule to consensus rules and Jeffrey's rule. The additive rule is a kind 

of consensus rule since it builds up P(HI Uj Ej) as a weighted average of evidence sources, but it is 

derived from simple probability arguments and is not ad hoc. Jeffrey's rule follows from the addi- 

tive rule when the Ej are a complete partition of the event space. Activation of artificial "neurons" 

is usually achieved by consensus, and we can write the additive rule so that it looks like a method 

for activating a neuron. When we do that, we obtain an expression for the weights of an artificial 

neural system that might be useful in defining learning dynamics. 

5.1 Consensus Rules 

A branch of applied probability is concerned with combining the opinions of several experts or 

the subjective probability assessments of several experts. Consensus rules are one general method 

for combining these opinions or probabilities. These have been explored by a variety of research- 

ers. A modern survey of the necessary properties of general consensus rules and some additional 

mathematical properties of linear consensus rules is given in Berenstein, Kanal and Lavine 

(1986). Another good reference is found in DeGroot (1974). An early reference termed the group 

of opinions an opinion pool. We now describe two types of opinion pools, linear and independent, 

and mention their relationship to our additive update rule. 

The linear opinion pool combines the group of subjective probability distributions in the form 

n n 

P(H\ KjEk) =  2>,.P (//]£,-) (5.D 

where the weights w, are positive and sum to 1. Due to the ad hoc nature of this formula, there is 

the problem of determining the weights in a probabilistically consistent manner. Even more 

important is the fact that the formula does not allow the reinforcement of negative evidence as the 

evidence experiments increase because the sum on the right-hand side of the formula is monoton- 

ically increasing. 
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The independent opinion pool can be written 

P(H]{jEk) =af[P(H\Ek) i52) 

* = 0 jfc = 0 

where a is a normalizing constant and the evidence experiments are considered independent. 

Unless the design and scheduling of experiments is done very carefully the independence assump- 

tion may be far from valid. Also, although evidence can negatively reinforce, reinforcement may 

be unjustifiably extreme (see Berger, 1985). 

Both of the above formulas are ad hoc and require care when choosing appropriate and consistent 

weights. The linear pool formula does not allow for negative reinforcement and the independent 

pool formula can be unstable with increasing evidence. Our additive update rule is rigorously and 

tly derived from basic probabilistic axioms and models. Also, as shown in Section 3.1, 

additive update rule allows for negative reinforcement because the weights are not required to 

sum to 1 for the result to be consistent as a probability. The negative reinforcement is also shown 

in the numerical results presented in Section 4. Finally, as discussed previously, our additive 

update rule changes conservatively with respect to accumulating evidence and thus reinforcement J 

is stable, especially for missing or bad evidence outliers. 

5.2 Jeffrey's Rule 

Jeffrey (1965) presented a rule that is an alternative to the usual multiplicative update rule based 

on Bayes rule for revising a probability P to a new probability P* based on new probabilities 

P*(Ei) on a partition {E^i- Jeffrey's rule is written 

P*(//) = £/>(//!£,.)/'*(£,■) 
i= l 

and is judged applicable if P*(HIEi) = PO^) for all H and i. This condition is satisfied for 

sequences E; of exchangeable random variables and in fact Jeffrey's rule is derivable from the 
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basic formula for total probability and exchangeability. An imponan, property of Jeffrey's nne ,s 
toUis.hena.nralruleforrevisingprobabUi^ifgivenapnorP.apani.ionlEü.andanewnrea- 

sure P. on (Ei) « wan* to find fine "closest" measure to P that agrees whh P« on the partiuon 

defining closeness between measures on a countab.e sample space. See Diaconis and Zabe« 

(1982) for a complete discussion. 

Now recalling our additive update rule written in partition form 

P(H) 
r   n 

P(H\UEk) 
k = 0 P(VEk) 

* = 0 

^P(E0EV..E,\H) 
Jk = o 

(5.4) 

this can be rewritten as 

/*(//(UE*)) =  ip*(mEQEv..Ek)P*(EQEv..Ek) 
Jfc = 0 Jt = 0 

(5.5) 

where we have .placed P by P* to be consistent with the notation in Jeffreys ruie. Now because 

we are working with exchangeable random variables and the evidence sets induced by them, we 

can replace the conditional P with P» to get 

/*(//(UE*)) = ipw^^/iv^^ 
In this fol our additive Jpda* rule is directly analogous to Jeffrey's rule and can in fact be used 

,„ derive Jeffrey's rule in the case mat the (E.1 constitute a partition of the entire sample space. 

This implies that our additive update rule can also be derived as «he »closest" measure to P that 

agrees with P* on the partition. 

Section 5.3 Comparison to NN 

Weighted consensus building is a common approach to activating the "neurons" that populate arti- 

ficial neura! systems. Our additive rule can be written in a form «hat is similar to the formula used 
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to represent activity in artificial neurons, 

1 i=i 

(5.7) 

where the process of making a decision regarding the value of the hypothesis is similar to the non- 

linear thresholding found in artificial neural networks. 

Here P(Hlu,E;) is equivalent to the activity in a "goal" neuron that receives input from n "input" 

neurons, each of which has its own activity, P(E,). The P(Ej) are prior probalities calculated by 

earlier portions of the net. The input vector (P(Ej),..., P(E„)) is filtered through weights (wj,..., 

wn) that are learned in artificial neural systems. From our additive rule we have 

i-l 

PiHlEjHPiE^H) 

W;   = 
jfc=i (5.8) 

P(VEi) 
l 

so the additive rule corresponds to a net in which evidence sources compete to activate the goal 

neuron. When the evidence sources are disjoint, we have Wj = P(HIEj). Equation (5.8) also relates 

the additive rule to the kind of linear opinion pooling discussed by Berger (1985). The main tech- 

nical difference is that linear pooling requires ZjWj = 1; more important is the fact that the Wj in 

linear pooling are ad hoc. 

Section 6 Future Directions 

In this section we describe several aspects of the additive update process that need more research 

but show promising directions for relating it to several other areas of current research in probabil- 

ity, measure theory and dynamical systems. 

Section 6.1 Simulation 

The Representation Theorem for sequences of exchangeable random variables that was discussed 
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in Section 2.3 allows us to simulate the long-term behavior of such sequences and thus understand 

the long-term properties of evidence sequences and the additive update process. Recalling the the- 

orem 

/>(£,.€ v> 7-i = jnp(A')4i(p) (6>i) 
n < 

where Ej is the sequence of exchangeable random variables, Q is the space of all probabiliity 

measures, and H(P) is a measure on the space of probability measures. The theorem states that the 

probability of a set defined by the conditions Xj€ Aj is given by a mixture of power probabilities 

weighted by a measure on the space of probability measures. One can also view J1(P) as a prior on 

the space of proability measures that gets updated to a posterior probabiliity P based on power 

probabilities on the sets defined by the conditions ^ G A;. Thus, one can' simulate and study the 

statistical properties of the probabilities P on sets of exchangeable random variables by sampling 

from Q using H(P). Dubins (1967) discusses methods for sampling random distribution functions 

using a natural measure on the space of probability measures. In the future we will use this 

approach to study the long-term and aggregate properties of sequences of exchangeable random 

variables that represent evidence updates. 

Section 6.2 Kahane Martingale 

Our additive update formula can be viewed as producing a random variable which is an expecta- 

tion of sums of random variables (i.e. indicator functions) over a O-algebra generated by a parti- 

tion formed from the evidence and hypothesis support sets. In Section 3.1 we derived that 

P{H\ UEk) =E 
k=l 

X' 
(6.2) 

These sums of indicator functions can also be rewritten as 

X' 

V   n,k  pj£ 

Jt=l 

V   t_ 
n^vy 
*=i 

(6.3) 
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This allows us to write our additive update formula in a multiplicative form 

IK^+V 
*=i 

v * = i 

(6.4) 

The expected value of the n-th term in the product is 1, because before we perform the experiment 

we consider the evidence sets to be entirely contained within the hypothesis set H. Thus we may 

consider the iterated product of indicator function ratios as a special type of martingale discussed 

by Kahane (1987). These martingales are the basic model for a variety of multiplicative random 

process applications such as random coverings, certain branching processes, and the cascade pro- 

cesses of Mandelbrot used for modeling turbulence. Kahane studies the limit distribution of the 

random products and describes their support sets as well as the analytic properties of the random 

products viewed as an operator on prior measures P(H). We will apply these results to our case 

and build on them to develop for our case a better understanding of the hypothesis testing theory. 

! 

-i 

Section 6.3 Logistic Map 

If one assumes that E[P(E0IH)]= E[P(EnlH)]=2P0 then our additive update rule becomes 

P(H\E0uEn) = P(
P

E
(

o^En)[2P0 + 2P0(l-2P0)} 

or 

(6.5) 

Pn = 4anP0(l-P0) (6.6) 

where (Xn=P(H)/P(E0UEn) and Pn=P(HE0UEn). Now we can see that our update rule is related 

to the well known quadratic iterator map. Depending on the choice of C^ this mapping may 

exhibit chaotic behavior. We propose to investigate the behavior of this mapping for O^ in the 

approriate range for our application. We also will investigate the effect of the mapping if actual 

random variables are input versus the expected value of the random variables. 
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