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ABSTRACT 

This thesis analyzes causal scheduling and scheduling-dropping policies in a discrete 

time model. Packets from different priority classes arrive with arbitrary deadlines. The 

packets must be scheduled before their deadlines. We present three sets of results. The 

first set is divided into two parts. We first characterize all causal scheduling policies which 

maximize the throughput whatever the sequence of packets arriving to be scheduled. 

We then extend the analysis to causal scheduling-dropping policies, that is, scheduling 

policies which can drop packets before their expiration without scheduling them. We 

characterize all such scheduling policies that maximize the throughput and those that do 

so while minimizing the buffer occupancy. The second set of results considers a two-class 

model. We characterize all causal scheduling and scheduling-dropping policies that max- 

imize the high-priority class throughput subject to maximizing the overall throughput. 

For the scheduling-dropping policies, we characterize those policies that minimize the 

buffer occupancy. We finally analyze the more general multiclass case, characterize all 

causal scheduling policies that optimize two novel optimality criteria, and present two 

simple scheduling-dropping policies that optimize those criteria. 
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CHAPTER 1 

INTRODUCTION 

Multimedia applications are increasingly popular for communication media which 

were originally designed to transmit homogeneous traffic such as voice traffic. The het- 

erogeneous nature of multimedia traffic makes it necessary to develop new transmission 

strategies, strategies that take into account new traffic properties such as real-time con- 

straints and different priority levels. This thesis focuses on scheduling multiclass traffic 

with priorities and hard deadlines. It builds on the work already presented in [1]. The 

model analyzed has been used extensively in the literature. It provides a very simple— 

yet realistic—representation of a system in which a single server is used to multiplex 

traffic from several input streams into a single output stream (as is the case in a node 

of an ATM switch), and it provides the opportunity to tackle some of the basic and 

fundamental questions related to discrete real-time scheduling with priorities. 

The model is time-slotted and consists of a server, which schedules packets from 

diverse input streams, and a buffer in which packets are stored prior to scheduling. Each 

source transmits packets with deadlines, which are assumed to be arbitrary, by which the 

packets must be scheduled. A packet that is not scheduled before its deadline expires 

and is simply dropped. Packets are of equal length and have equal service time, which 

is the the unit of time. It is further assumed that only one such packet can be served at 

a time and that in each time slot the new arrivals appear shortly before the scheduling 

decision. Packets are buffered prior to their scheduling or expiration. 

Our model is clearly related to the discrete-time uniprocessor scheduling of tasks 

with priorities and deadlines, which has been extensively studied in the computer science 

literature (see [2]). This thesis, however, does not make any assumptions on the nature 



of the incoming traffic. It can be arbitrary, whereas most papers in the computer science 

literature assume either a complete a priori knowledge of the incoming traffic or a set 

of conditions on its shape and distribution. This thesis ignores such hypotheses and 

focuses on the design of efficient causal (on-line or real-time) scheduling policies—policies 

where the decision is based solely on the past and the present. This thesis also considers 

scheduling policies that can drop packets before their expiration without scheduling them. 

They are referred to as scheduling-dropping policies. In fact, all scheduling policies could 

be seen as scheduling-dropping policies, but the distinction is made here because early 

dropping of packets raises particular analytical issues. 

The contributions of our work are manifold. They can be divided into three sets of 

results. In the first set, priorities are ignored. We characterize all causal scheduling and 

scheduling-dropping policies (note that for a causal scheduling-dropping policy, both the 

scheduling and dropping decisions are made on-line) that maximize, over all scheduling 

policies, the number of packets served in any interval of time starting in time slot 1, and 

do so whatever the incoming traffic. Those policies are called throughput optimal (TO) 

scheduling or scheduling-dropping policies. Among such scheduling-dropping policies, we 

characterize those that minimize the buffer occupancy: the minimization is done time slot 

by time slot (sample-pathwise). Several studies of have analyzed conditions, necessary 

or sufficient, that, when satisfied by the incoming traffic, ensure that all packets can be 

scheduled by a particular scheduling policy without any loss [3], [4]. It is obvious that, 

in our model, any traffic that can be scheduled without loss by a given scheduling policy 

can also be scheduled without loss by any TO scheduling policy. Therefore, those policies 

maximize the server utilization and have the largest schedulability region for the traffic. 

That property justifies the emphasis placed on those policies in the remainder of this 

thesis. Also, scheduling-dropping policies are interesting for several because they re'duce 

the buffer occupancy and allow the implementation of an early negative acknowledgment 

procedure for the packets dropped. Such a procedure has been shown to improve the 

overall throughput in an end-to-end transmission of video data [5]. Neither the study of 

end-to-end transmission nor the effect of early negative acknowledgments on the overall 



traffic are in the scope of our work, but the results of [5] and [6] shows the importance 

of scheduling-dropping policies. 

We would like to stress that to our knowledge there has never been either a com- 

plete and accurate analysis of a TO optimal scheduling dropping policy or an attempt 

to analytically study the effect of early dropping on the throughput achieved by those 

policies. Furthermore, very few simple TO scheduling policies have been described in 

the literature. The S-OPT algorithm described in [7] and [8] is a TO optimal schedul- 

ing policy, and the earliest deadline first (EDF) scheduling policy has been shown to be 

throughput optimal [9]. Most studies or practical implementations related to real-time 

scheduling with deadlines generally use the EDF scheduling policy, because it is both 

throughput optimal and very simple. However, that policy is not efficient in a setting 

where both throughput optimality and prioritizing are important: it does not consider 

priorities—which can be essential—in its scheduling decisions. It is therefore important 

to design alternative TO scheduling policies that take priorities into account to select the 

packets to be scheduled. 

The importance of the characterization of all causal TO scheduling and scheduling- 

dropping policies is clearly reflected in the second set of results presented in this paper. 

Those results are obtained for a two-class model: packets arriving either belong to class 1 

(high priority) or to class 2 (low priority). The classes are disjoint. The goal of our work 

in this setting was to determine how much prioritizing can be achieved without losing 

throughput optimality. It is clearly not possible to causally optimize both prioritizing 

and throughput optimality. The following simple example illustrates that point. Let us 

assume that in a time slot there are two packets in the buffer; one packet has laxity 1 

and low priority, and the other laxity 2 and high priority, where the laxity of a packet 

is the amount of time left before its expiration. Then, to be throughput optimal, a 

causal scheduling policy must schedule the lower priority packet, otherwise the packet 

would expire and the policy would serve at most one packet if there were no subsequent 

arrivals. On the other hand, to optimize prioritizing, the policy must schedule the higher 

priority packet, otherwise it would lose at least one high-priority packet if such a packet 



were to arrive with laxity one in the next time slot. Of course, the subsequent arrivals 

are unknown to any causal scheduling policy. Therefore, the future of or additional 

information on the characteristics of the traffic are necessary to optimize both criteria 

simultaneously; they are not available in our model. 

The tradeoff between throughput optimality and prioritizing is illustrated on a larger 

scale by Figure 1.1. It shows the throughput region for a two-class model. The simulation 

covers 100 000 time slots. Packets of class 1 and class 2 arrive according to Poisson pro- 

cesses with intensity 0.5. The laxity of each packet upon arrival is uniformly distributed 

over 1, 2, 3, and the number of packets of each class scheduled by five different policies is 

pictured. Point SP1 = (48163, 30310) in the figure corresponds to the throughput pair 

achieved by a causal "static priority" scheduling policy that maximizes the throughput 

of class 1 packets and, subject to that maximization, maximizes the throughput of class 

2 packets. Point SP2 is similar, with the priorities swapped. Point EDF=(41131, 40824) 

is the throughput pair achieved by the EDF scheduling policy, which is throughput opti- 

mal. Point MOSTOl = (45429, 36526) is the throughput pair achieved by a scheduling 

policy that maximizes the throughput of class 1 packets, subject to being a causal TO 

scheduling policy: it is referred to as a MOSTO scheduling policy. Point MOST02 is 

equivalent to point MOSTOl, when the priorities are swapped. Note that the line seg- 

ments linking two points in the figure are on the boundary of the achievable throughput 

region. 

We characterize all MOSTO scheduling and scheduling-dropping policies, and among 

them, the scheduling-dropping policies which minimize the buffer occupancy. The exis- 

tence of a causal MOSTO scheduling policy has never been shown before, and it is not 

as obvious as that of ä causal TO scheduling policy. We refer the reader to the formal 

proof in [1], where the difficulties in showing that existence are clearly stated. Also; it is 

noteworthy that our results show that the minimum buffer occupancy required, slot by 

slot, for a causal MOSTO and TO scheduling policies are identical. 

The final set of results presents natural extensions of previous results to a general 

multiclass case: we consider a model with more than two classes. When there are more 
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Figure 1.1 Throughput region for the two class model. 

than two classes, several optimally criteria can be considered. We focus on two novel and 

important criteria: nested throughput optimality (NTO) and static priority throughput 

optimality (SPTO). The statement of those criteria is presented in Chapter 2. Like the 

MOSTO criterion, they are hierarchical criteria, that is, criteria that optimize a quantity 

subject to another optimality condition. Causal NTO and SPTO scheduling-dropping 

policies are described. They minimize the buffer occupancy over all causal TO scheduling- 

dropping policies, and their complexity, in a time slot, is O(M) per new arrival, where 

M is the number of packets already in the buffer. That complexity is similar to the 

complexity obtained for the simplest implementation of the EDF scheduling policy. 

Chapter 2 presents the contributions described earlier and gives the notations used 

later in the proofs; Chapter 6 synthesizes and concludes our discussion; and the chapters 

in between present the complete proofs of all formal results given in this thesis. 



CHAPTER 2 

STATEMENT OF RESULTS 

2.1    Terminology 

As already stated, packets with deadlines and priority classes may arrive in any time 

slot, prior to the scheduling decision. It takes one unit of time to serve a packet. The 

deadline d(p) of a packet is the last time slot in which it can be scheduled. The class C(p) 

of a packet p is a positive integer. In the monoclass case, all packets are class 1 packets. 

It is also assumed that the lower the class number, the higher the priority. An arrival 

sequence A is a sequence A = (An : n > 1) such that An is the set of packets arriving 

in slot n (it could be an empty set). The sets in the sequence are mutually disjoint, and 

it is assumed that d(p) > n for any packet p € An. A schedule for an arrival sequence 

is a sequence (pn : n > 1) such that for each positive n, either pn = A (which indicates 

that no packet is scheduled in time slot n), or pn € Ai U ... U An and n < d(pn). We 

also assume that packets, after being scheduled, leave the system never to return. Thus, 

no packet appears more than once in a schedule. A scheduling policy ir gives a schedule 

(7r(v4; n) : n > 1) for each arrival sequence A. The scheduling policy is causal if n(A; n) 

depends only on A\,..., An. We also define the following sets in order to describe the 

evolution of the system: given an arrival sequence A and a schedule (pn : n > 1), 

• An; n > 0, is the set of packets remaining in the system at the end of slot n. The set 

does not include packets that have already been scheduled, or that have expired. 

We assume that RQ = 0. 

• Sn;n > 1, is the set of all packets that are in the system in time slot n, prior to 

dropping and scheduling. 

6 



• En; n > 1, is the set of packets that expire at the end of slot n without being 

dropped or scheduled. 

• Qn\ n > 1, is the subset of packets, among packets in Sn, retained by a scheduling- 

dropping policy in time slot n, prior to scheduling. It includes the packet scheduled 

in time slot n, if any, and is equal to Sn for a nondropping scheduling policy. 

Let us consider pn to be the packet scheduled in slot n, possibly A. The following 

evolution equations then hold: for n > 1, 

Sn     =     Rn-lUAn (2-1) 

Qn   C   Sn (2-2) 

En   =   fr€Qn-pn:d(p) = n} (2.3) 

Rn     =     Qn-En-Pn (2A) 

All the sets denned above, except those in the arrival sequence, depend on the schedul- 

ing policy 7T used to schedule the packets; that dependence will be stressed, when neces- 

sary, by rewriting Qn as Qn{*), for example. As already stated in Chapter 1, the laxity 

of a packet is the amount of time left before its expiration: in time slot k, the laxity of 

a packet p is l(p) = d(p) -k + 1. All packets in the system have positive laxities. Since, 

in any time slot, the laxities in a set of packets are the true measure of the scheduling 

possibilities for that set, we will sometimes consider a set of packets with laxities without 

explicit mention of the current time slot; it is implicitly the present. 

2.2    Throughput Optimal Scheduling Policies 

A scheduling policy TT is said to be throughput optimal (TO) if for any arrival sequence 

A, for any n > 1, IT schedules at least as many packets in slots 1,... ,n as any other 

scheduling policy. 
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Figure 2.1 Illustration or the computation of $S(S). 

Let S be a set of packets with laxities. The set $*(£) (the subscript denotes the single 

class case) is then defined as follows: we first write S as the ordered set {pi,... ,pr} so 

that l(pi) < l(p2) < ... < l(pr), and 

6(i) = l(Pi) ~i   for 1 < i < r 

Omin = min{S(i): 1 < i < r} 

t* = min{i: 8{i) = 8min} 

r = l(Pi*) 

US) = {pi,...,Pi*} 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The definition above is applied to three examples in Figure 2.1. It is clear that the set 

$S(S) defined earlier has cardinality i*, that it is the set of all packets in S with laxity 

smaller than or equal to /*, and that it does not depend on how packets with the same 

laxity are ordered: it is thus a well-defined subset of S. 

Theorem 2.1 A causal scheduling policy TT is TO if and only if for any arrival se- 

quence A and any positive k such that Sk ^ 0, 7r(.4; k) £ $5(5jt(7r)). 

We call $s(Sk) the no regret scheduling set of Sk, because, whatever the future arrivals, 

a packet p € Sk can be scheduled in time slot A; without loss of future throughput if and 

only if p e $s(Sk)- Specifying such a decision set is equivalent to characterizing all causal 

TO scheduling policies. 



2.3    Properties of a Set of Packets 

The properties of a set of packets described in this section are fundamental to un- 

derstanding the formalism developed in the remainder of this thesis. They reflect the 

matroidal properties of a set of packets with laxities (see [1], [10] and [11] for more de- 

tails). Let S be a set of packets with laxities and let r be a finite subset of the positive 

integers. Then, r is an index of a set of time slots, relative to the "current" time slot fc, 

and t € r corresponds to time slot t + k-1. We say that S can cover r if there exists 

an assignment of a subset of packets (possibly all) in S to elements in r such that (a) 

all elements in r are assigned a packet in S, (b) the packets assigned to those elements 

are distinct, and (c) the laxity of the packet assigned to a particular element t in r is 

greater than or equal to t (i.e., if there exists a schedule of packets in S which schedules 

a packet in each time slot included in r). A set of packets S is said to be schedulable if 

it can cover a set r such that j^l = \r\ (i.e., they have equal cardinality ). Given a set of 

packets S, rank(S) is defined as the largest cardinality of a schedulable subset of S. A 

subset of S is a maximum cardinality schedulable subset of S if it is schedulable and has 

cardinality rank(5'). Let A and B be two sets of packets with laxities. We write A >z B, 

and say that A can cover B if A can cover any set r that B can cover. We write A = B 

if A >z B and B > A, and say that A is equivalent to B. 

Lemma 2.1 Among all the sets that a given set of packets S can cover, there exists 

the "largest and latest" one, which we denote by C(S), such that for any set r that S can 

cover, \T\ < \C{S)\, and the ith largest element in r is smaller than or equal to the ith 

largest element in C(S), for 1 < i < \T\. C(S) is, in a sense, the latest optimal schedule 

of S: it shows how much delay can be introduced in the scheduling of successive packets 

in S while serving the maximum number of those packets. 

Proof. Let V = {qi,... ,9rank(*)} be a subset of Packets in S with the rank(5') 

largest laxities. Clearly, for any j such that 1 < j < rank(S), the j elements with largest 

laxities in V can cover any set that can be covered by a subset of j packets in S. Let us 

define the following set r = {tu... ,<rank(5)}> wliere for &ny i with ! < * ^ rank(S), U 



is the largest integer so that there exists a set of rank(S') — i + 1 packets in V that can 

coyer {*,-, tx; + 1,..., U + rank(S) - i}. Then r = £(S). 

D 

Lemma 2.2 Le£ S be a set of packets with laxities and let Q be a subset of S. Then 

Q = S if and only if rank(S) = rank(Q). In particular, Q minimizes \Q\ subject to 

[Q C S and Q = S] if and only if Q is a maximum cardinality schedulable subset of S. 

Proof. The "only if" part of the first assertion in the lemma is simple. Let us now 

turn to the "if part: we assume that S >zQ, and rank(5') = rank(<3) = r, and those two 

sets are not equivalent. Let us write C(S) = {si,... ,sr}, and C(Q) = {tu... ,tr} (the 

sets are written with their elements in increasing order). From our assumption, we know 

that JC(.S') strictly dominates C(Q) in the sense that there exists j such that 1 < j < r 

and tj < Sj. Let j* be the largest such j, and i* be the smallest integer i in [1, r] such that 

tj* < S{. Let us also consider a schedule V = {pi,.. .pr} (respectively V = {qi,..., qr} ) 

of elements in S (respectively in Q) which covers C(S) (respectively C(Q)); then the set 

of packets {<ft,..., qj*} and {p,-.,... ,pr} are disjoint, and their union is a schedulable set 

that can be scheduled in the time slots indexed by {ti,..., ij., 5,-.,..., sr}. Their union 

is also a set with cardinality strictly larger than rank(5"), which is a contradiction since 

QCS. 

The second assertion of the theorem is implied by the first. 

D 

The proof above implies the matroidal property of schedulable sets: it basically shows 

either that two sets of packets with the same rank are equivalent or that their union is a 

set of packets with a rank strictly larger than their individual ranks. We refer the reader 

to [1] and [10] for more details on the subject. Two simple algorithms for the construction 

of maximum schedulable subsets and latest optimal schedules are also described in [1]. 

10 



2.4    Throughput Optimal Scheduling-Dropping Policies 

2.4.1    Characterization of the policies 

The results in this section are related to policies that drop some packets before their 

expiration without serving them. Such a policy n is causal if and only if for any arrival 

sequence A = (Au ..., An,...) for any positive n, ir(A;n) and Qn(n) depend only on 

Ai,...,An. As was the case for nondropping scheduling policies, a scheduling-dropping 

policy is TO if, for any positive n, it maximizes the number of packets scheduled in time 

slots 1,..., n, over all scheduling policies. We next characterize all causal TO scheduling- 

dropping policies. 

Theorem 2.2 A causal scheduling-dropping policy IT is TO if and only if for any 

arrival sequence A and all positive k, Qk =■ Sk, and n(A;k) G $s(Qk) if Sk ^ 0. 

Furthermore, ifn and n' are both causal TO scheduling policies, Qk(n) = Qk(n') for all 

k. 

Theorem 2.2 allows us to identify those causal TO scheduling-dropping policies that 

minimize, slot per slot, the number of packets carried over from one slot to the next. 

Indeed, from the second assertion of the theorem, rank(Qfc(7r)) does not depend on the 

causal TO scheduling policy 7r considered: it is only a function of A and k, and thus can be 

rewritten as r*(A; k) for all such policies. Therefore, for all those policies \Qk\ > r*(A, k), 

and by selecting Qk to be a maximum cardinality schedulable subset of Sk, one minimizes 

the buffer occupancy in slot k. That last result is formally stated in the following corollary 

to Theorem 2.2: 

Corollary 2.1 For any arrival sequence A and any k > 1, a causal TO scheduling- 

dropping policy 7T minimizes \Qk\ over all such policies if and only ifQk is schedulable. 

Figure 2.2 shows the average queue size (time average of Qk over 10 000 time slots) 

for various mean arrival rates, assuming that laxities on arrival are uniformly distributed 

on {1,..., 9}. The upper curve is generated by the EDF policy (without dropping) and 

11 



the lower curve is generated by the Dropping EDF policy, which is described in the next 

section. One can see that for large values of the mean arrival rates, the upper curve 

grows roughly linearly with slope 5, while the lower curve asymptotically approaches 10. 

It means that if the node is congested, the buffer occupancy of the standard EDF will 

grow linearly while that of the Dropping EDF essentially stays the same. We note that 

a genie scheduling-dropping policy which has prior knowledge of the future arrivals can 

be TO while reducing the buffer occupancy below the level achieved by the best causal 

TO scheduling-dropping policies. 

1.5 2 
Anivaltate 

Figure 2.2 Average buffer occupancy. 

2.4.2    The Dropping EDF scheduling policy 

This section describes a dropping version of the EDF policy. We will assume that 

there exists a total order on the packets such that if two packets have the same laxity, 

it is still possible to sort them according to a fixed order. In this section, we will write 

that p < q and say that packet p (respectively q) is smaller (respectively larger) than 
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packet q (respectively p), if l(p) > l(q) or [l(p) = /(<?), and p precedes q in the total 

order]. Note that this assumption does not affect the definition of the EDF scheduling 

policy. A causal scheduling or scheduling-dropping policy is completely defined if for any 

arrival sequence A and any positive time slot n, its dropping and scheduling decisions 

are specified as functions of the set of packets carried over from the previous time slot 

(Rn-i; empty in the first time slot) and the new arrivals (An). 

For the Dropping EDF scheduling policy, it is assumed that the packets carried over 

from the previous slots are in the buffer, sorted in increasing order, according to the 

order specified earlier. The Dropping EDF scheduling policy consists of two procedures: 

the EDF-DROP dropping procedure (which specifies the packets that are retained) and 

the scheduling procedure (which simply schedules the packet at the head of the buffer 

and then moves the remaining packets by one position toward the head of the buffer). 

The dropping procedure is completely described in Figures 2.3. The buffer is specified 

as an array of packets; the packet in position t is referred to as BUFFER[i]. Also, it 

is assumed that BUFFER[1] is the packet at the head of the buffer, if any; the tail 

is towards the higher indices. Briefly, the dropping procedure attempts to insert new 

packets in the buffer sequentially, one packet at a time. When a new packet can be 

added to the set of buffered packets without violating the buffer's schedulability, the 

packet is inserted in the buffer so that the increasing order is preserved. Otherwise, the 

procedure drops the largest (in the sense defined earlier) packet already buffered and the 

new one, which—if excluded—would make the remaining set of packets schedulable. The 

remaining packets are inserted in the buffer so that the increasing order is preserved. 

The scheduling procedure is then the usual EDF scheduling policy, applied to the set of 

packets remaining in the buffer after the insertion of all new arrivals. 

The Dropping EDF policy has a complexity equivalent to that of the standard EDF. 

However, in the case of a highly congested node, the Dropping EDF policy, is more 

efficient since it drops packets that would occupy buffer space and add to the ordering 

complexity. In the description above, we mention the fact that the Dropping EDF policy 

drops the largest packet that can be dropped without affecting future optimality. The 
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EDF-DROP Dropping Procedure 

Input:    An = {71, - ■ ■ , <?m }   (arbitrary  order)   :     th©  sot of tho now arrivals. 

EBF-Drop(A„ > 

bogin 

i= 1; 

«hilt(t < \An\) 

Zns«rt(Qi); 

• = t+l; 

Insert subprocedure 

Ins«rt(pacJeet) 

bogin 

Temp = packet: k = 1; 

■hil.(l) 

if (J(Temp) < *) 

drop Temp; and «xit; 

•Is. If lBUFFER[k] = empty) 

BUFFERfposition] = Temp; and »lit; 

•l«o if (BCTf F£.R[k] > Temp) 

p = BI7FF£A(Jc]; B17.FFEH[*] = Temp: Temp = p; and * = fc + 1; 

also 

fc = fc + l: 

Figure 2.3 The dropping procedure for the Dropping EDF policy. 
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choice of the largest packet does not bear any particular meaning in the algorithm. It 

yields a simpler description of the algorithm. Also, the Dropping EDF policy is equivalent 

to algorithm Gl presented in [1]. 

Claim 2.1 Dropping EDF is a TO scheduling-dropping policy. 

Proof. The dropping procedure is a greedy algorithm which, in each time slot n > 1, 

starts with a schedulable subset Rn-i of Sn and adds packets from An as long as the 

resulting set is schedulable. Otherwise, the algorithm drops a packet so that the rank is 

preserved. Thus, the algorithm retains in each time slot n > 1 a maximum cardinality 

schedulable subset Qn of Sn (see [1] and [10] for a proof). Also, the scheduling procedure 

schedules a smallest laxity packet in that subset, which, of course, is a packet in $ä(S„). 

Then, Theorem 2.2 and Lemma 2.2 imply the result. 

□ 

2.5    MOSTO Scheduling Policies 

We now consider the two-class model. Packets arriving belong to one of two classes: 

class 1 or class 2. Class 1 packets are of higher priority. A causal scheduling policy 

7T is said to be maximum class one subject to throughput optimality (MOSTO) if it is 

TO and if for any arrival sequence A (note that A is now a sequence of arrivals of 

packets from both classes) and any positive n, the scheduling policy TT schedules a least 

as many class 1 packets in time slots 1,..., n as would any other causal TO policy. We 

put the emphasis on the following points: first, the optimization here is made over all 

causal TO scheduling policies since we already showed in Chapter 1 that the optimization 

cannot be generalized to all scheduling policies; also, it is not clear that a causal MOSTO 

scheduling policy exists. We need to show that the following cannot happen: there exists 

some positive n and m with n ^ m and a TO policy n such that, TT maximizes the number 

of packets of class 1 served in time slots 1,..., m over all causal TO scheduling policy, 

but does not maximize it in time slots 1,..., n, and any TO policy that serves as many 
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class one packets as TT in time slots 1,... , n does not maximize the number of class one 

packets served in the interval of time 1,... , n. That issue is of great importance since 

it constitutes the main hurdle in the characterization of MOSTO scheduling policies. 

The failure to consider similar questions has led several authors to give inaccurate proofs 

when analyzing scheduling policies in models similar to the one considered here. It is 

necessary to show that the decision made by a policy is optimal at the time of decision, 

and that it does not affect optimality in the future. An inductive approach is implicitly 

required. 

Given a set of packets 5, we use the following convention: S is the set of class 1 

packets in S, and S_ is the set of class 2 packets in S. Also when representing a set of 

packets with laxities, the laxities are underlined or overlined according to the same rule. 

Let $m(5) be the subset of S defined as follows: 

$s(S)n$5(S)   if$s(5)^0 

*m(S) = < *.(S) = *.(£)    if $S(S) = 0 and S ^ 0, (2.10) 

0 if S = 0. 

The set $m(S) is the two-class equivalent of $S(S), which was defined earlier, and can 

be seen as a MOSTO no regret scheduling set. The following theorem settles the issue 

of the characterization of all causal MOSTO scheduling policies: 

Theorem 2.3 A causal scheduling policy ir is MOSTO if and only if for any arrival 

sequence A and positive k such that Sk ^ 0, n(A',k) € ^m(Sk(^))- 

2.6    MOSTO Scheduling-Dropping Policies 

2.6.1    Characterization of the policies 

Given a set of packets S, define )C(S) by )C(S) = C(C), where C is the set of packets 

in S_ with the rank(S) — rank(S) largest laxities. Given two sets of packets S and T, 

write S x T if [S = T, S = T and K(S) = JC(T)]: we say that S and T are strongly 

16 



equivalent. The following theorem shows that two strongly equivalent sets are essentially 

"identical" when the MOSTO property is considered. 

Theorem 2.4 A causal scheduling-dropping policy IT is MOSTO if and only if for 

any arrival sequence A and any positive k, Qk x Sk, and if Qk ^ 0 then 7r(A;k) € 

$m(Qk)- Furthermore, if IT and TT' are both causal MOSTO scheduling-dropping policies, 

then Qk(n) x Qk{^') for all positive k. 

Theorem 2.4 is the most important and significant contribution of our work. It extends 

the result from Theorem 2.2 to the two-class case: it clearly shows that the significant 

tradeoff between prioritizing and throughput optimality, which is achieved by a causal 

MOSTO scheduling policy does not require an overhead in the number of packets carried 

over from one slot to the next. The next corollary is the formal statement of the point 

made above. 

Corollary 2.2 For any arrival sequence A and any positive k, a causal MOSTO 

scheduling-dropping policy n minimizes \Qk\ over all such policies if and only if Qk is 

schedulable. 

The proof of the results above are presented in [1]. 

2.6.2    A causal MOSTO scheduling-dropping policy 

In this section, we present the causal scheduling-dropping policy Dm™-max, and give 

an intuitive explanation of the virtual laxity, which is presented below. Like the Dropping 

EDF scheduling-dropping policy, the Dmir>-max scheduling-dropping, which is described 

in Figure 2.4, is divided into two procedures: a dropping procedure M-DROP, and a 

scheduling procedure, described in Figures 2.4 and 2.5. The data, structure also consists 

of a buffer specified as an array of packets, but a new quantity, a virtual laxity vector 

(which is a length two vector) is assigned to each packet in the buffer. Thus, in this 

algorithm, each packet has a laxity and a class, which are policy independent, and a 

virtual laxity vector, which is assigned by the Dmin-max scheduling-dropping policy. The 
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pmtn— max 

Input:    An = {9i,.-.t4m}  (arbitrary ordtr)   :    th» ut of th« n«» arriralj. 

b»gin 

M-DROP(X»)  :    { 

for («=li«<|A»|;i++) 

H-Ins«rt(ft); 

•nd for 

} 
SchedulingO:    { 

if (.BUFFER not «mpty) 

traniait BUFFER[1]: 

■or« th* «Mining pack«»,  11 any, bjr on« pojition toward» BUFFER[1]: 

d«cr«as« th« coordin*t»s  of th« Tirtnal laxity of «ach «Mining packat by OR«; 

Figure 2.4 The algorithm D mm—max 
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M-Insert (pacfcet) 

begin 

(Lpackei.Kpackct) = (l{packet),l(packet)); 

Temp = packet: 

Temp-position = »in(I(pacfcet), \BUFFBR\) ; 

FREE-ROLL:  { 

shil«(Z,T<.mp < iB[/PFEÄ[Tempji»ii(ioi"]' 

Tcmp4>osition = Temp4>osition — 1; 

•nd shil«  } 
whil«(Temp.po»ition > 1) 

i* (I'Temp > ^BfFFER[remp-po»«««on]' 

INSERTIONS:    { 
pack.ts starting fro» petition Temp-position + 1 ar« »owd by m position towards tho tail 

of BUFFER: Temp is ins.rt.d *t position Tempjtosition; «xit;  } 

•lso  if  CXTCUIP — ^BUFFBRlTemp-potitiony 

EQUALITY: { if Temp ud BtrFFfiRtTemp-posttton] haw« diff.wnt class.s. thon 

ins.rt th« high«r priority em »t position Temp-posttion of BUFFER: th« othor «no 

DtcoMS tho now Temp; docrouo LTcrnp by on«; 
•lso if noith«r is of tho lo««st class and if th«y ha« difforont dui »irtual laxiti.s. 

thon insort th. pack.t with tho largar class Yirtnal laxity at position Temp^osition of 

BUFFER; th. oth.r on« b»co»s th« n«w Temp; th«n d«cr«as« LTcmp and Tempjjosition 

by on«; 
•Is* choos« a paeltot arbitrarily b«two«n tho pack«ts and ins«rt it at position 
Temp-position in BUFFER, th« othor ono IMCOMS th« n.o Temp, and d«cr«as«  LTcmp 

and -f^remp br «n«;  } 

•nd whil« 

if <tr«mp > o> 

INSERTIONS:{ call IISEEII0I.1:} 

DROPPING: { ■•»• th« pack.ts in BUFFER by on« position towards tho 

tail, starting fro« th. h.ad of BUFFER, until a pack.t g is r.ach.d with L,  =  1(g): drop g; terete 
by on« th. L coordinat.s of th« wirttal laxity wet.rs of Temp and th. pack.ts that; ha« lM.tt emai, 

and. a»ng thos. pack.ts.  incroaso by .n. th. K «ordinatos of tho »irtual laxity «ctorf of tte Fi«*.fr 

which ar. in th. HM class as g; ins.rt Temp at position 1 of BUFFER; .xit;> 

Figure 2.5 The M-Insert subprocedure. 
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dropping procedure is applied in each time slot to the packets carried over from the 

previous time slots. Those packets are placed in the positions of the buffer according to 

a lexicographical order on the triplet (Lp,C(p),Kp), where Lp and Kp are, respectively, 

the first and second coordinates of the virtual laxity vector of a packet p in the buffer. 

We call the first coordinate of the virtual laxity vector of a packet the group virtual laxity 

and the second coordinate the class virtual laxity. The variable C{p) is the class of the 

packet. 

The dropping procedure attempts to insert the new arrivals into the buffer, one new 

packet at a time. It either adds a new packet to the buffer without dropping any packet or 

drops either the new packet or a packet already buffered. At the same time, this procedure 

maintains the lexicographical order on the packets retained in the buffer. When all new 

packets, if any, have been processed and the buffer is not empty, the scheduling procedure 

is invoked. This procedure schedules the packet at the head of the buffer (note that the 

head of the buffer is still BUFFER[1]), moves the remaining packets by one position 

towards the head of the buffer, and decreases each coordinate of their virtual laxity 

vectors by one. 

Before describing the intuition underlying the use of a virtual laxity, we will briefly dis- 

cuss the complexity of the scheduling policies described so far. The Dmin~max scheduling- 

dropping policy has a complexity which is on average three times greater than that of the 

Dropping EDF scheduling-dropping policy. In each time slot and for each new arrival, 

assuming that there are already M packets in the buffer, the dropping procedure requires 

at most 3M operations, while the Dropping EDF procedure requires at most M opera- 

tions. Also, if laxities on arrivals are assumed to be less than or equal to some positive B, 

as in [7], the two scheduling procedures have complexity O(NB), where N is the number 

of new arrivals. Those complexities are much lower than the complexity 0(NB2) per 

arrival presented in [7]; also, the complexity of the Dmin~max scheduling policy does not 

change when it is extended to the general multiclass case. Such an extension is presented 

later in this chapter. 

Claim 2.2 Dmin-max is a causal MOSTO scheduling policy. 
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The proof of Claim 2.2 is deferred to Chapter 4. The construction of the dropping 

policy is based on the following remark: when two packets in a set of packets have 

the same laxity, the schedulability properties of that set are not affected if one of those 

packets has its laxity decreased by one. Decreasing the laxity by one yields a set of packets 

equivalent to the original one. Case A in Figure 2.6 illustrates that point. The process 

can then be applied repeatedly until all packets in the resulting set have distinct laxities. 

Case B in Figure 2.6 shows the result of applying the technique repeatedly to a particular 

set: the original and the final sets are still equivalent since they have the same latest 

optimal schedule. Since the laxities of packets do not depend on the scheduling policy, it 

is natural to assign them virtual laxities, which reflect the process of successive decreases 

of their laxities. However, in a multiclass model, if two packets of different classes have 

the same laxity, reducing one packet's laxity may affect the MOSTO property. 

In case C, the class 1 packet has to be scheduled first in choice 1, while the class 

2 packet has to be scheduled first in choice 2. It seems natural to reduce the virtual 

laxity of the higher priority packet in order to make it a more urgent packet. However, 

as shown in case D, the solution above cannot be applied systematically, since a high- 

priority packet might "virtually" expire in the process, even if all packets of that class 

can be scheduled. Those issues are settled in the M-Insert procedure: the high-priority 

packets have their virtual laxities decreased when there are equalities, but a special case 

is considered when such a packet reaches "virtual" expiration. Furthermore, the use of a 

single virtual laxity enables us to control the order in which packets can be served without 

losing the throughput optimally property. However, the MOSTO criterion requires two 

nested levels of optimally. The second coordinate of the virtual laxity vector enables 

us to apply the same laxity-reduction technique to packets in the same class, thus, it 

ensures the "optimally" of the scheduling of class one packets. 
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Original set Equivalent set 

S = {3,4,5,5} 

£(5) = {2,3,4,5} 

S' = {3,4,4,5} 

C(S') = {2,3,4,5} 

Case A: A set and its equivalent after one step. 

Original set Equivalent set 

S = {3,4,5,5} 

£(5) = {2,3,4,5} 

S' = {2,3,4,5} 

£(S') = {2,3,4,5} 

Case B: A set and its final equivalent. 

Original set Equivalent set (choice 1) Equivalent set (choice 2) 

S = {3,4,5,5} 

£(5) = {2,3,4,5} 

5" = {2,3,4,5} 

£(£") = {2,3,4,5} 

5" = {2,3,4,5} 

£(£") = {2,3,4,5} 

Case C: Two differents equivalents of a set S. 

Original set Equivalent set 

S = {2,2,2} 

£(5) = {1,2} 

S' = {0,1,2} 

£(5") = {1,2} 

Case D: An example of "virtual" expiration. 

Figure 2.6 Intuitive illustration of virtual laxities. 
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2.7    Extension to the General Multiclass Case 

In this section, we examine a model in which there are N classes of packets, class 

1,..., N, where N > 2. We assume that the smaller the class, the higher the priority. We 

use the following convention: given a set of packets S, for any m such that 1 < m < N, 

5(m) is the set of packets of class m in S. If N > 3, several optimality criteria can be 

defined. We propose two criteria, which, when applied to a two-class model, are simply 

the MOSTO optimality criterion studied earlier. For each criterion, we characterize all 

causal scheduling policies that satisfy the criterion, and we present a scheduling-dropping 

policy that satisfies the criterion. However, we do not characterize all scheduling-dropping 

policies which satisfy those criteria. 

2.7.1    Static priority TO scheduling policies 

A causal scheduling policy ir is order 1 static priority throughput optimal (1-SPTO) if 

it is TO, and for any arrival sequence A (of N classes of packets, with N > 2) and any k, 

it schedules as many packets of class 1 as any causal TO scheduling policy in time slots 

{1,..., k}—that is, if 7T is MOSTO when class 2 up to class N are grouped in a super 

low priority class. 

For any n so that 2<n<iV-l,a causal scheduling policy it is order n SPTO 

(n-SPTO) if it is (n - 1)-SPT0, and for any positive k, schedules at least as many packets 

of class n as any causal (n - 1)-SPT0 scheduling policy in time slots {1,..., k}. 

A causal (N - 1)-SPT0 scheduling policy is referred to as a causal SPTO scheduling 

policy. The SPTO criterion is similar to a static priority criterion, where the throughput 

of the classes are successively maximized starting from the highest priority class; the 

only difference here is that the successive optimization is done subject to throughput 

optimality. 

Given a set of packets 5, let us define the set $SPTO{S) as follows: 

c*   =   mm{i :1 <i <N, and $.{S)r\Q.(S®)?Q},   if 5^0  (2.11) 
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$SPTo(S)     =     < 
$S(S^) n $S(S)   if 5^0 

(2.12) 
0 otherwise 

Note that the set defined above is equivalent to $m(S), when N = 2.   The following 

theorem characterizes all causal SPTO scheduling policies: 

Theorem 2.5 A causal scheduling policy n is an SPTO scheduling policy if and only 

if for any arrival sequence A and any k such that Sk ^ 0, TT(A; k) G $sPTo(Sk)- 

The set $sPTo(Sk) is called the SPTO no regret scheduling subset of Sk- As was done 

for the TO and MOSTO optimality criteria, the definition of an SPTO scheduling policy 

can be extended to encompass scheduling-dropping policies. The characterization of all 

causal SPTO scheduling-dropping policies is not presented in this thesis. It could be 

the subject of an extension of this work. Nevertheless, we present a particular SPTO 

scheduling-dropping policy. 

Claim 2.3 Dmtn-™ax
f when applied—as described earlier in this section—to the gen- 

eral multiclass case is an SPTO scheduling policy. 

2.7.2    Nested throughput optimal scheduling policies 

The model is similar to the one considered above. There are N classes, where N > 2. 

The convention used to denote subsets of a particular class is also kept. We make the 

following definitions: 

A causal scheduling policy 7r is order 1 nested throughput optimal (1-NTO) if it is TO, 

and for any arrival sequence and any k, it schedules at least as many packets of class in 

{1,..., N — 1} as would any other TO scheduling policy in time slots {1,..., k}. 

For any n such that 2 <n < N — l,a causal scheduling policy z is order n NTO (n- 

NTO) if it is (n — 1)-NT0, and for any arrival sequence A and any positive k, it schedules 

at least as many packets of class in {1,..., N — n} packets as would any (n — 1)-NT0 

scheduling policy in time slots {1,..., k}. 

A causal (N — l)-NTO scheduling policy is referred to as a causal NTO scheduling 

policy. 
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All the definitions above can of course be extended to encompass scheduling-dropping 

policies. 

Given a set of packets S, let us define the set $NTO{S) as follows: 

Ui(S)   =   (jS&   iovl<i<N (2.13) 
3=1 

c*   =   min{i :l<i<N, and (f=i $.(Uj(S)) ? 0 }   if S ? 0     (2.14) 

n^*.^^)) if S^(D (215) 

0 otherwise 
$NTO(S)   =   < 

Note that for JV = 2, $NTO(S) = Qm(S). The next theorem characterizes all causal NTO 

scheduling policies: 

Theorem 2.6 A causal scheduling policy n is an NTO scheduling policy if and only 

if for any arrival sequence A and positive k such that Sk(n) ^ 0,-TT(.A; k) € $NTo(Sk{n))- 

The set $NTO{S) is called the NTO no regret scheduling subset of S. We do not char- 

acterize all causal NTO scheduling-dropping policies, but we present a particular NTO 

scheduling-dropping policy, Dnested. The Dnested scheduling-dropping policy is similar 

to the Dmin~max scheduling-dropping policy, except that the data structure carried over 

from one slot to the next is larger; packets are now assigned a vector of length N, which 

contains N virtual laxities. The intuition underlying the use of virtual laxities is the 

same as in the Dmin-max scheduling-dropping policy: when two packets have the same 

laxity,.we attempt to decrease the laxity of the highest priority by one. However, for the 

nested throughput optimally criterion, it is necessary to keep track of which classes of 

packets caused the decrease and by how much they decreased the laxity. This is achieved 

through the vector of virtual laxities. The scheduling policy is divided into two proce- 

dures: the NTO-DROP dropping procedure (which is described in Figures 2.7 and 2.8), 

and the scheduling procedure (which is performed after NTO-DROP). The scheduling 

procedure schedules the packet at the head of the buffer, moves the remaining packets 

by one position towards the head of the buffer, and decrease by one each coordinate of 
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r\ne$ted 

Input:    An — {qi, . . • , tjm}   (arbitrary  order)   :     th«  s*t of th« neu arrivals. 

bsgin' 

NTO-DROP(>ln)   :     { 

for (i = l;t< \An\;i++) 

■TO-Ins«rtiqj ); 

«nd for 

} 
SchedulingO:    { 

if (BUFFER not «»pty> 

transmit BUFFER[1]: 

■on th« »Mining packets, if «ny, by on« position towards BUFFER[i\; 

d«cr«as« th« finit« coordinates of th« lirtual laxity nctor of th« «Mining packats by on«; 

Figure 2.7 The algorithm Dnested 

their virtual laxity vectors. Also, in the description of the procedures, we write V for 

the Lth coordinate of the virtual laxity of packet p. 

Claim 2.4  The scheduling policy Dnested is a causal NTO scheduling-dropping policy. 
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NTO-Insert subprocedure 

«T0-Ins«rt (.packet) 

begin 

Temp-position = ain(!(packet), \BUFFER\); 

Temp = packet; 
S«t eh« first  N — C(pocfcet) + 1 coordinate  of th« rirtual laxity »actor of packet to I(pocfcet), «id th« «Mining ones, 

if Any, to  oo; 

FREE-ROLL: { 

Temp^position = Temp-posttt'on — 1; 

•nd »nil«  } 
»hil«(Temp_post'tton > 1) 

** (1Temp > ^BUPFERiremp-fOiilw»] 

INSERTION J:    { 
packets starting fro» position Temp.position +lin »orod by on« position toaards th« tail 

•f BUFFER: Temp it inserted a position Tentp.j>osttton; exit; } 

•It«  if  (ij.enp = I-BUFFERlTcmp-potition]* 

EQUALITY: { Compare th« th« packets Temp and BVFFER[Temp.position] using th« 

lexicographical ord«r on th« coordinates of th«ir respeeti»e Tirtnal laxity Tectors ; th« 

nailer on« is ins«rt«d at Temp.position of BUFFER: th« oth«r on« is th« nea 

Temp (in cas« of «quality, an arbitrary choie« can b« made); Ut n   =   mos{)   :   1   < 3   < 

N, and th« first j coordinates of th« Tirtnal laxity T«etors  of both pack«ts ax« identical}; 

than d«cr«as« th« first n coordinates «f th« Tirtnal laxity »«ctor of Temp by on«; 

Temp-pos«t«on = Temp-post'tton — 1;  } 

•nd ahile 

U 11-Tem.r > °> 

INSERTIONS:    call IlSERIIOI-l; 

•Is« 

DROPPING:  { ion th« packets in BUFFER by on« position toiards th« tail. 

starting fro« th« h«ad of BUFFER, «ntil a packet g is r«ach.d aith L\ = l(ff); drop g; increase by ero 
th« N - C{g) + 1 first coordinates ef the Tirtnal laxity »actors ef Temp and th« packets the! nave tcr.r. 

■ered: ins«rt Temp at position 1 of BUFFER: exit:} 

•nd 

Figure 2.8 The NTO-Insert subprocedure 
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CHAPTER 3 

ODDS AND ENDS 

The proofs of Theorems 2.1, 2.2, 2.3, and 2.4 are presented in [1]. The results in this 

chapter are corollaries of those theorems and their proofs. Their presentation has been 

deferred to this chapter because they were not essential for understanding the previous 

material; they are mere implications of the analysis already given and are fundamental 

for the remaining proofs. 

Lemma 3.1 If Ac S and An $,(5) ^ 0, then $,(A) C $M(S). 

See [1] for a proof. 

Lemma 3.2 If A C S, and $s(5) C A then $,(S) = $.(A). 

For any B C S, it is clear from the definition of $s given in Section 2.4 that the 

following holds. 

$.(S)   =   $s(S-{peB:l(p)>l*}) (3.1) 

Where I* is the largest laxity in $S(S). This is true since the minimization will again 

be achieved at laxity I*. The packets with laxity strictly greater than /* that are not 

excluded in the right hand side of Equation (3.1) either have their rank decreased or 

preserved when the packets are ordered in increasing order of laxity. The packets with 

laxity smaller than or equal to /* keep their rank. The result follows. 

Let us assume that there exists a sequence of time slots T = (tn : n > 1) (possibly 

finite) such that for any n > 1, the server goes on vacation in time slot tn: it means 

that no scheduling can be completed in time slot tn. T can be arbitrary and may be a 
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priori unknown to causal scheduling policies. We now extend the definition of MOSTO 

scheduling policies to a model with vacations. We say that a scheduling policy is MOSTO 

in a model with vacations if it satisfies the conditions of Theorem 2.1, and, subject to 

that, maximizes the number of class 1 packets served in any interval of time starting in 

the first time slot (note that the TO optimally ignores the vacations). The following 

lemma is then implied by the proofs of Theorems 2.1 and theorem 2.3: 

Lemma 3.3 In a model with vacations, a causal scheduling policy n is MOSTO if 

(sufficient condition) for any arrival sequence A, any sequence T of vacation times, and 

any positive k such that Sk ^ 0, n(A; k) € $m(Sk)- 

The proofs of Theorems 2.1 and 2.3 are based on the covering properties of the sets 

of packets in the systems; the equivalence properties axe cleary preserved even if vaca- 

tion times occur. Therefore, the induction arguments developed in the proofs of the "if 

part of both theorems are still valid: those induction hypotheses rely only on covering 

properties of the set of packets in the system. The "only if part of the theorems are no 

longer valid since their proofs rely on the construction of particular sequences of future 

arrivals. It can easily be seen that if all the future time slots are vacation time slots, a 

scheduling policy which has made no-regret scheduling decisions until the current time 

slot only needs to serve a packet of the highest priority among the packets it has in its 

system to be TO (or MOSTO). The implications of Lemma 3.3 are significant for the 

characterization of causal SPTO and NTO scheduling policies. 

29 



CHAPTER 4 

PROOFS OF CHARACTERIZATION THEOREMS 

FOR N CLASSES 

In this section we prove Theorems 2.5 and 2.6. 

4.1    Proof of Theorem 2.5 

Proof. The proof is by induction. The induction hypothesis is the following one: 

V{N) : the theorem is true for iV classes 

The proposition T(2) is true from Theorem 2.3.  Let us assume that V(N) is true for 

some N >2. Let us now consider a model with N + 1 classes. 

We begin with the "if part of the theorem. Let n be a scheduling policy which 

satisfies the characterization of the theorem. We need to show that n is an JV-SPTO 

scheduling policy. Recall that a causal SPTO scheduling policy -K (for the N + 1 class 

case; it is referred to as an N-SPTO scheduling policy to stress the fact that it schedules 

N + 1 classes of packets), if such a policy exists, is by definition a causal (N — l)-SPTO 

scheduling policy for the following N class model: class N and class N + 1 packets are 

grouped in a super-low-priority class, which is referred to as class iV*, while the other 

classes are preserved. Thus, 7r is a causal (N — 1)-SPT0 scheduling policy for the N class 

model. We simply need to show that it maximizes the throughput for class-TV packets. 

For any arrival sequence A of packets (from the N+1 classes), the induction hypothesis, 

which states the validity of the theorem for an iV-class model, specifies the time slots 

in which an A^-SPTO scheduling policy, if such a policy exists, can schedule packets 
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from the super-low-priority class: this is true since all (N - l)-SPTO scheduling policies 

schedule packets of the same class in each time slot. Let us consider the time slots in 

which these policies schedule packets from the N - 1 highest priority classes as virtual 

vacation time slots for a model which consists of class N and N + 1. For any time slot vk 

in which the (N - 1)-SPT0 scheduling policies schedule a packet of class N*, the packet 

scheduled is in $s(S
{

k
N) U S{

k
N+1)); this is true from V(N) and Lemma 3.2. It also follows 

that Lemma 3.3 can be applied since the packets scheduled are in $,{SVk). We then know 

that a causal (N - 1)-SPT0 scheduling policy for the N class model that schedules a 

packet in $m{Sk
N) U Si\N+1)) (which as shown above is included in $,(&)) in any time 

slot k that is not a virtual vacation time slot is an iV-SPTO scheduling policy. Thus, ir 

is a causal iV-SPTO scheduling policy since, by definition, for any time slot k in which 

7T schedules a packet of class N or N + l,v schedules a packet in $m(SlN) U Sk
N+1 ). It 

should be noted that $m is used here by implicitly considering that class N and class 

N + 1 form a two class su&model. Thus, we have a sufficient condition for a causal 

scheduling policy n to be iV-SPTO. 

It remains to show that an (N - 1)-SPT0 policy TT has to satisfy the necessary 

condition (the "only if part) of the theorem to be a causal N-SPTO scheduling policy. 

Let us assume that a (N - 1)-SPT0 scheduling policy TT makes decision identical to that 

of an iV-SPTO scheduling policy in time slots prior to time slot k for some k. For the 

sake of argument by contradiction, let us assume that in time slot k policy TT does not 

schedule a packet in $sPTo(Sk)- From the induction hypothesis, if it happens in a time 

slot where $SPTo(Sk) contains a packet of one of the first N - 1 high-priority classes, 

then TT is not a causal iV-SPTO scheduling policy since it is not a causal (N - 1)-SPT0 

scheduling policy for the N class model with class N and N + 1 grouped in a super-low- 

priority class. Thus, let us assume that k is such that $sPTo(Sk) C (Sk U Sk )'. We 

know that in that case $sPTo(Sk) = $m(SlN) U S[N+l)). Thus, two cases are possible: 

Case 1. Policy TT schedules a packet of class N + 1 while $m{SlN) U S{
k
N+1)) contains 

a packet of class N: then clearly 7r is not JV-SPTO since it is beaten (in the current time 

slot) by a policy satisfying the sufficient condition of the theorem. 
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Case 2. The set §m{S{
k
N)US{

k
N+1)) contains a class-N packet, and TT schedules a class- 

TV packet in $s(Sf° U S[N+1)) (as it must by V(N)) which is not in $m(<Sf° U S{
k
N+1)). 

It means that n schedules a packet which is not in $S(S(N)). Then, we use a subsequent 

arrival sequence similar to the one used in the proof of the "only if" part of Theorem 2.1. 

The arrival sequence is constructed as follows: in the next / — 1 time slots, where / is 

the highest laxity of a packet in $S(S[N'), a class-1 packet arrives with laxity 1. Those 

packets are clearly in $sPTo(Sm(5)), for k + 1 < m < k + I, for any scheduling policy S. 

Let TT' be a scheduling policy that has decisions identical to TT in the time slots preceding 

k, that schedules a packet in $sPTo(Sk(n)) in time slot k, that schedules the new arrivals 

in the next / - 1 time slots, and that schedules a packet in $sPTo(Sn{n')) in any time 

slot n with n > / - 1 . The policy TT' is clearly an JV-SPTO scheduling policy. We need 

to show that TT' serves more packets of class smaller than or equal to N than TT. We 

know that all class-N packets in $s(Sk(7r)) with deadline larger than k + l — 1 (i.e, the 

class-iV packets in $s(Sk(ir)) that are not in $,(5*00^)) and the packets that are in 

Sk(n) — $s(5'fc(7r)), which includes all packets of class smaller than N, if any, can be 

scheduled after time slot k + l — 1. We now prove the following claim: 

Claim 4.1 Let us assume that there are N+l classes in the system: class 0,1,..., N 

(respectively class 1,...,N+1). Let A be an arrival sequence such that A^ (respectively 

UN(AI)) is schedulable and An = 0 for n > 1, then for any causal N-NTO (respectively 

N-SPTO) scheduling policy TT, TT schedules all packets of A^ (respectively UN(AI)). 

We present the proof for an N-NTO scheduling policy. The proof for an JV-SPTO 

scheduling policy is similar. 

We say that a set S of packets with laxities is critical if S is schedulable but is not 

schedulable starting in the next time slot. We base the proof of Claim 4.1 on two facts. 

Fact 1. For any set S, if S^ is critical, then $NTo(S) C S(0). If a packet of class 0 

is not scheduled in the current time slot, one such packet will be lost by the policy. The 

fact also follows from the following remark which is simple to verify. If a set of packets 

with laxities R is critical, then there exist / such that there are / packets in R with laxity 

32 



smaller than or equal to /. Clearly, if a set of packets with laxities R is critical, then for 

any other set of packets with laxities U, <f>s(RUS) n R ^ 0 (see the characterization of 

$s in Section 2.4). 

Fact 2. For any schedulable set of packets with laxities R, R is critical in the time 

slot corresponding to the smallest value in £(R). This has to be true from the definition 

of C(R) given in Section 2.3. 

Thus, the iV-NTO scheduling policy IT of Claim 4.1 schedules a packet of class 0 before 

the time slot corresponding to the smallest value in £(AS
0)
). Since, TT schedules a packet 

in $,(Aj0)), the packets remaining after TT schedules the first packet of class 0, if any, 

form a schedulable set in the time slot following that scheduling. Then, the reasoning 

can be extended inductively to show the validity of the claim. 

Thus, from Claim 4.1, all packets in UN(Sk) with laxity greater than or equal to k + l 

are scheduled by TT'. In time slots after time slot k, policy TT schedules at least one class-iV 

packet less than TT' because, in time slot k, TT scheduled a class-AT packet which could 

have been scheduled later. 
D 

4.2    Proof of Theorem 2.6 

Proof. The proof of Theorem 2.6 is similar to the one given for Theorem 2.5. We also 

use an inductive approach. We begin with the "if part of the theorem. The induction 

hypothesis is: 

V(N) : the theorem is true for N classes 

The proposition V(2) is true since the NTO criterion is the MOSTO criterion and $NTO 

is $ro for a two-class model. Let us assume that the hypothesis is true for some N greater 

than or equal to 2. We show that it is still true for N+l.TheN + 1 classes are classes 

0,1,..., N. The technique is similar to the one adopted earlier: the N + 1 class model 

is reduced to an N class model by regrouping class 0 and class 1 in a super-high-priority 

class 1*.  Then, we use the fact that, by definition, a causal AT-NTO scheduling policy 
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for the N + 1 class model (which will always be referred to as a 7V-NT0 scheduling 

policy in this section), if such a policy exists, is an (N - 1)-NT0 scheduling policy for 

the model consisting of class 1*, 2,..., N.  All causal (TV - 1)-NT0 scheduling policies 

schedule packets of the same class in each time slot.   Let us consider the time slots 

in which these policies serve packets from the N — 1 lowest priority classes as virtual 

vacation time slots for a model which consists of class 0 and class 1.   Thus, a causal 

scheduling policy TT is a causal 7V-NT0 scheduling policy if it satisfies the conditions of 

Theorem 2.6 for N — 1 classes, and in the time slots which are not virtual vacation time 

slots it serves as many packets of class 0 as would any other causal scheduling policy 

which satisfies the conditions of the theorem (i.e., any other (TV - 1)-NT0 scheduling 

policy for the AT-class model).  Let 7r be an (N - 1)-NT0 policy.  We know from the 

hypothesis that in a time slots k in which n schedules a packet from class 0 or class 1 

(i.e., class 1*), TT schedules a packet in $NTo(Sk) = M^U&i^lX fl-I2 $*(£/,(£*))) since 

*MSfc) = Si0) U Si1 \ and c* = 1*. From Lemma 3.3, we know that TT is MOSTO for the 

two class model consisting of class 0 and class 1 with vacation times if it schedules packets 

in QmiSj.1' U S*  ).  But, by definition, in the time slots in which 7r schedules a packet 

of class 1*, $NTo(Sk) ( for N + 1 classes)  = $NTO (for N classes) n $m(SJ?) U S^) is 

included in ^m(SJ^'uS^'). Thus, a policy IT which satisfies the condition of the hypothesis 

for N + 1 classes is a causal 7V-NT0 scheduling policy. 

It remains to show that it is necessary for an /V-NTO scheduling policy IT to satisfy 

those conditions. Let us assume that TT is a (N - 1)-NT0 scheduling policy that has 

made decisions identical to that of an ./V-NTO scheduling policy prior to some time slot 

k. For the sake of argument by contradiction, let us assume that TT does not satisfy the 

conditions of Theorem 2.6. By the induction hypothesis, n has to satisfy the condition 

of V(N) for the modified N class model. Thus, there are only two possible cases:  " 

Case 1. In a time slot k in which there is a class 0 packet in $NTo(Sk), TT schedules 

a class 1 packet in that set. Then TT is not NTO since it is beaten by a policy which 

satisfies the sufficient condition above. 
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Case 2. In a time slot in which there is a class 0 packet in ^NTo(Sk)-, n serves a class 

0 packet which is in $NTo(Sk) for the N class model, but is not in $s(Sl° . Then, we 

construct a subsequent arrival sequence like the one in the proof of the "only if" part of 

Theorem 2.5 above, and a causal scheduling policy IT' similar to the one described in that 

proof, with the difference that the arrivals are now of class 0, and that IT' now schedules 

packets in $NTo(Sn(n')) in anY time s^ot n after time s^ot k + I - 1, where / is now the 

highest laxity of a packet in $,(5f}. The policy IT' is a causal 7V-NTO scheduling policy. 

We now show that IT' beats n by showing that IT' serves more packets of class 0 than 

IT in time slots after time slot k - 1. We know that the packets of class 0 that are not 

in $s(5'i0) (i.e, the packets of class 0 with laxity larger than /), if any, can be scheduled 

in time slots after time slot k + I — 1. We simply need to prove that IT' schedules those 

packets. From Claim 4.1, we know that policy IT' described earlier schedules all packets 

of priority higher than or equal to N that have laxity greater than or equal to k + I. 

Policy 7T loses one such packet. c 

A few remarks need to be made about the proofs given in the sections of this chapter: 

Lemma 3.3 is used in the proof even though the vacation times seen by the reduced model 

can depend on the scheduling decisions made by policies on that reduced model. This 

is possible since we assume that the general policy (i.e., the policy scheduling the N + 1 

classes of packets) is (AT-l)-SPTO or (iV-l)-NTO. In that case, the vacation times seen 

by the reduced model do not depend on the scheduling choice, since all (N - l)-SPTO or 

(TV — l)-NTO scheduling policies serve packets of the same class in each time slot. Thus, 

the theorem can be applied. However, it would not be true in a general framework if the 

vacation times depend on the scheduling decisions. 
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CHAPTER 5 

VERIFICATION OF THE ALGORITHMS 

We prove Claims 2.2, 2.3, and 2.4. 

5.1    Proof of Claim 2.2 

In this section, we consider the two-class model. We adopt the following convention 

in order to simplify the notation: the packet at position k of BUFFER is referred to 

as Bk; that is, Bk is equal to BUFFER[k\. Also, in the M-Insert procedure, the vari- 

able C.position is associated with a packet Cjpacket, which is the packet the procedure 

attempts to insert in BUFFER. We say that a packet p is located at position k of 

BUFFER, if p = Bk or if p = Cjpacket and Cjposition = k. Clearly, only Cjpacket can 

be located at position 0 of BUFFER. Of course, a packet p is said to be located after 

(respectively before) another packet q if the position where p is located is larger (respec- 

tively smaller) than the position where q is located. We further consider that the data 

structure of the algorithm consists of the triplet (C'.position, C'.packet, BUFFER), and 

we call packets in the data structures the packets which are in BUFFER and Cjpacket, 

if any. We assume that C jpacket is equal to A before or after a call to the M-Insert 

procedure. Then, the following properties hold before and after any call to the M-Insert 

and Scheduling subprocedures : 

Property 1: For any packet q in BUFFER, Lq>l. 

Property 2:   For any packet p in the data structure of the algorithm so that if 

C-packet ^ A, p is either Cjpacket or a packet at a position greater than Opposition; 
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if on the other hand C-packet = A, then p is any packet in BUFFER, the following 

holds: V_(p) = (Lp,Kp), where 

/ 

Lr 1(P)- 

\ 

(5.1) 

/ 

Kv   =   l(p)- 

I 

(5.2) 

the number of packets q 

located after p in BUFFER such that 

1     C(p) < C(q) and Lq < l(p) 

the number of packets q 

located after p in BUFFER such that 

^   C(p) = C(q) and Kq < l(p) 

Property 3: For any packets q and p in the data structure such that q is located 

after p, Lp < Lg, and if p and q also have the same class, then Kp < Kq. 

In the Property 2, we considered the case when Temp ^ A in order to simplify the 

proof for the M-Insert procedure. We now prove that the properties hold. To do so, 

we use an inductive approach. We assumed that the properties hold before a call to 

M-Insert or Scheduling, we want to show that they hold after that call. In the case of 

M-Insert, we use a second level of induction (i.e, we consider the validity of the properties 

during the execution of that procedure). We show that the properties hold as long as 

C-packet ^ A in M-Insert, which simply yields the validity of the higher level induction. 

Thus, for M-Insert, we are mainly concerned with the lower level induction. 

We prove Property 1. Clearly, if that property holds before the insertion of a new 

packet is attempted, it holds at any time during that attempt. Therefore, the M-Drop 

procedure does not affect the validity of the property, if one assumes that it was true 

before a call to that procedure was made. Also, from Property 3, which is proved below, 

it is clear that the scheduling procedure does not affect Property 1. 

We now show that Properties 2 and 3 hold. It is clear that the scheduling procedure 

does not affect those properties, since they are based on the packets located after a 

packet in BUFFER, and the scheduling procedure removes the packet at the head 

of the BUFFER. Also, the decrease in the coordinates of the virtual laxity vectors 

of packets in the BUFFER mirrors the increase in time after the scheduling, and thus 
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preserves the properties. We simply need to focus on the effects of the M-Drop procedure 

on the validity of the properties.   We show that for any fixed time slot n, any packet 

qi from the set of packets arriving in time slot n, and any value taken by the triplet 

(C-position, C-packet, BUFFER) during the insertion of $ in BUFFER, the properties 

hold. Since we already showed that the scheduling procedure and the increase in time do 

not affect the properties, we only need to prove the result just mentioned for a fixed time 

slot, and a trivial inductive argument shall settle the question.   Thus, without loss of 

generality, we fix the "present" time slot, and work with packets with laxities. We note 

that the set of instructions labeled FREE-ROLL in the description of the procedure in 

Figure 2.5 do not affect the properties: they are just used to make sure that the packet 

qi starts to contend at the right position of BUFFER. Thus, we will only consider the 

part of the procedure below those instructions, and will assume that any call to those 

instructions has already been completed. We also note that if the packet to be inserted qi 

is such that there is no packet p in BUFFER with Lp = /($), then the set of instructions 

labeled INSERTION-! is invoked, and the packet $• is just inserted in BUFFER with 

both coordinates of its virtual laxity vector equal to its laxity. The virtual laxity vectors 

of the other packets in BUFFER, if any, are not modified in the process.   Also, the 

variable Cjpacket remains equal to g, until the insertion of the packet in BUFFER. 

Thus, before insertion (this must be stressed: once it is inserted in BUFFER, it is no 

longer a contender), we say that Cjpacket is an isolated contender. The following results 

are simple implications of the Properties 1, 2 and 3: 

Implication 1: For any packet q in the data structure [Cjpacket included) such 

that q is not an isolated contender, q is located after C^position if Cjpacket ^ A and 

q T^ Cjpacket, there is a packet r(q) in BUFFER such that: q = r(q) or q is located 

before r(q), Lr(q) = l(q), the L coordinates of the virtual laxity vectors of the packets 

located after q and before r(q) are consecutive, and those packets and r(q) have priority 

lower than or equal to that of q. 

We prove the implication: the implication is true for any packet that is inserted in 

BUFFER just after having been an isolated contender, and clearly stays true for the 
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other packets in BUFFER, if any, after the insertion of that isolated contender. Thus, 

we consider the validity of the implication for nonisolated contenders. Property 3 tells 

us that r(q) is uniquely defined if it exists. Let q' be the last packet (last starting from 

the head of BUFFER in the location sense) such that Lq> < l(q). From Property 3, we 

have 

Lq>   >   Lq + \{ packets located between q and q', q excluded }| 

packets p located between q and q', q excluded, 

with C(p) > C(q) 
> Lq + 

> Kq) 

where the last inequality is implied by Property 2. Thus, we see that 

Lq>   =   l(q) 

(5.3) 

(5.4) 

(5-5) 

(5.6) 

packets located between 

q and q1, q' included 

packets p located between 

q and q', q1 included f       (5-7) 

with C(p) > C{q) 

Thus q' = r(q), and the coordinates of the virtual laxities are consecutive for packets 

located between q and r(q); they are actually consecutive on the set of packets consisting 

of q, r(q), and the packets located between q and r(q); equation ( 5.7) shows the result 

pertaining to the priorities. 

Implication 2: For any packet q in the data structure (C.packet included) such 

that q is not an isolated contender, q is located after Cposition if Cjpacket ^ A and 

q ^ Cjpacket, there is a packet f{q) in BUFFER such that: q = f{q) or q is located 

before f(q), K?(q) = l(q), f(q) is of the same class as q, and the class virtual laxities of 

the class one packets of class C(q) located after q and before f(q) are consecutive. 

We do not prove this implication since it is basically similar the Implication 1. There- 

fore, the steps of the proofs are the same except for the restriction of the analysis to 

packets of the same class. 
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We now return to the proof of the validity of the properties. We use an inductive 

approach. We assume that the properties are true at some stage in the M-Drop procedure, 

where a stage is characterized by a value of the triplet (C-position, C'.packet, BUFFER), 

and we then proceed to show that they are still true at any later stage of the procedure. 

We actually only need to show that the properties hold at the next stage w reached after 

a call to one of the sets of instructions labeled in the M-Insert procedure in Figure 2.5. 

There are five such sets of instructions. We therefore consider five cases. In the first case 

we assume that the next stage is reached after a call to the set of instructions labeled 

FREEJR.OLL. Then, we have already settled the question earlier, and the propertiers 

still hold. 

In the second case, we assume that the next stage comes after a call to the set of 

instructions labeled INSERTIONS (i.e., C.packet is inserted in BUFFER just after its 

current location Cjposition). Then two subcases are possible: if there is no packet p in 

BUFFER with Lp = l(Cjacket). That is, if Cjpacket is an isolated contender, then 

from what was done earlier, we know that the properties are clearly preserved; otherwise, 

we simply need to show that all packets in BUFFER at positions before C.position, 

Be.position included, have laxities strictly inferior to Lc.packet- We know that Be .position 

is not the last packet in BUFFER, otherwise we would be in the first subcase. And the 

call to the set of instructions INSERTIONS, is only possible if 

LBc_p0,itim+1   >   LBc_position +1 (5.8) 

Then, from Implication 1, we know that for any p packet in BUFFER which precedes 

or is equal to Be position, r(p) precedes Be position, because of the discontinuity in the 

L coordinate of the virtual laxity vectors after Cjposition; and the result follows, since 

Lc.packet > LBc_poiatim- 

In the third case, the next stage is reached after a call to the set of instructions labeled 

EQUALITY, then properties hold, since the decreases of the coordinates of the virtual 

laxity vectors done in those instructions are consistent with the properties. In the fourth 

case, we assume that the next stage comes just after a call to the set of instructions 
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labeled INSERTIONS: all properties trivially hold since packets are simply inserted in 

BUFFER according to their location order in the data structure; the location order is 

a total order in this case. 

In the last case, the next stage is reached just after a call to the DROP instructions. 

Then, Property 3 is clearly preserved, and Property 2 is not affected for the packets 

that are located after g, the packet dropped. We need to show that Property 2 holds 

for C-packet and the packets located before g (those packets are inserted in BUFFER 

during the dropping). Let p be one of those packets. If r(p) was located after G before the 

dropping occurred, then Property 2 is preserved, since the decreases in the coordinates 

of the virtual laxity vectors are done consistently with Property 2. Now, if r(p) precedes 

or is equal to g, then the packet located just before r(p) becomes the new r(p) after the 

dropping. This is true since the group virtual laxities are consecutive between p and 

r(p), thus increasing them by one, automatically promotes the packet just before r(p) as 

the new r(p); and we know that p and r(p) are different before the dropping, since p is 

located before g. Thus, the packet located just before r(p) is well-defined. We have then 

showed that all properties hold at the next stage of the M-Drop procedure if they hold 

at the current stage, and since we showed that they are not affected by the scheduling 

procedure and the increase in time, they hold from the current stage on. They clearly 

hold at the very beginning of the scheduling process, and all results follow. 

We thus completed the proof that £>*«-•»«'8 data structure has Poperties 1, 2 and 

3. We now investigate the implications of those properties for the MOSTO optimally 

of the scheduling-dropping policy. We divide our investigation into two parts: we first 

show that the scheduling decisions are consistent with the MOSTO no-regret scheduling 

criterion specified in Theorem 2.3, and then proceed to show that the dropping procedure 

is such that a set strongly equivalent to Sk{D
min-max) is retained in each time slot k\ We 

now consider the first part, and therefore consider that the M-drop procedure has been 

completed. From, what was done in the previous part, we know that the last packet of 

BUFFER has the largest laxity among packets in BUFFER, and hag its group virtual 

laxity equal to its laxity. Let m* be the smallest position among the positions m such 
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that: Bm has a group virtual laxity equal to its laxity, and all packets preceding Bm 

in the buffer have laxities less than or equal to that of Bm, then we make the following 

claim: 

Claim 5.1 {BUFFER[1},...,BUFFER[m*}} = $S(BUFFER). 

Proof. We first note that, from the definition of m*, for any packet p preceding 

Bm. in BUFFER, r(p) precedes or is equal to Bm*. Also the L group virtual laxities of 

the packets at the positions 1,..., m* of BUFFER are consecutive, since otherwise, by 

Property 2, there would be a packet preceding Bm* which would satisfy the definition of 

Bm*, which is a contradiction. 

For any packet k such that 1 < k < \BUFFER\, 

1. If k > m*, then LBk > L>Bm., thus 

l(Bk)   >   l(Bj)   foranyj<m* (5.9) 

Let 5 be the position of r(Bk) so that r(Bk) = Bs. Property 3 implies that 

LBs-s + l   >   LBl (5.10) 

Thus, 

l(Bk)-s + l   >   LBl (5.11) 

Thus, since only packets in the first s positions can have laxity smaller than or equal to 

LB. = hk- 

l(Bk)-\{p<= BUFFER: l(p)<l(Bk)}\   >   LBl-l (5.12) 

2. Now let us assume that k < m*, and keep the same definition for s as that of the 

previous case. Then, we already noted that s <m*. Also, the consecutivity of the group 

virtual laxities for packets in positions 1,..., m* gives 

LB,-s + l   =   LBl (5.13) 
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Thus, 

l{Bk)-s + l   =   LBl (5-14) 

We then show that if s ^ m* then 

3   >   \{p e BUFFER : l(p) < l(Bk)}\ + 1 (5.15) 

Note that either l(B,) > l{Bk), or there exists m < s such that l{Bm) > 1{BS): this is 

true since otherwise s would be m*, which is not the case. Thus, from Equation (5.14) 

l(Bk)-\{p'e BUFFER :l(p)<l(Bk)}\   >   LBl (5.16) 

But, we know that 

LBm, -m* = l(Bm.)-\{pe BUFFER: l(p)<l(Bk)}\   =   LBl-l.   (5.17) 

Thus, l(Bm*) = I*, where /* is denned as in Equation (2.8), and the result follows. 

D 

The following claim is a corollary to Claim 5.1: 

Claim 5.2  The first class 1 packet in the buffer, if any, is in $S(BUFFER). 

Proof. The result can be proved by using an argument similar to the one developed for 

the proof of Claim 5.1 restricted to packets of class 1. 
D 

Claim 5.3 If there is a class 1 packet in {Bu..., Bm.}, then Bx is a class 1 packet. 

Proof. The second part of Implication 1 basically says that if the first packet of the 

buffer is a class 2 then Bm. is a class 2 packet, and so are all packets preceding it in the 

buffer. We simply need to remark that r(Bi) is a class 2 packet, and so is any packet p 

preceding it in the buffer, if any, and any packet preceding r(p), and thus by induction 

43 



all packets up to Bm*. 

D 

We conclude from Claims 5.1, 5.2, and 5.3 that in each time slot k, Dmin-max schedules 

a packet in §m(Qk(Dmin-max)). 

It now remains to show that the dropping procedure preserves a set strongly equivalent 

to Sk(D
m%n~max). Once again, we consider two cases: in the first case, we assume that 

a class 1 packet g is dropped. Then clearly, just before the dropping instructions, all 

packets located before g in the data structure, C.packet included, are class 1 packets, 

otherwise a packet of class two would have been dropped before reaching g: this can 

be seen using an argument like the one developed in the proof of claim 5.3. Also, we 

' know that Kg — Lg = 1(g). Let p be a packet located before g in the data structure just 

before the dropping instruction, and let f(p) be the class 1 packet in BUFFER such that 

Kr(j>) = l(p)- We know such a packet exists from Implications 1 and 2. If f(p) precedes 

or is equal to g, then l(p) < 1(g). On the other hand, if f(p) is after g, the class virtual 

laxities of class 1 packets are consecutive between p and r(p), 

l(p)   =   Kg+ (the number of class 1 packets between g and f(p)) + 1    (5.18) 

< Kg + (the number of packets between g and f(p)) + 1 (5.19) 

< Lg + (the number of packets between g and r(p)) + 1 (5.20) 

< Lg + (the number of packets between g and r(p)) + 1 (5.21) 

< l(p) (5.22) 

We used the fact that f(p) necessarily precedes or is equal to r(p) to make a substitution 

between those packets in the inequalities above. Thus, all packets between p and f(p) are 

class 1 packets. Also, we know that there cannot be a discontinuity of the group virtual 

laxity of packets located between p and f(p) (both included), since we showed that, at 

the positions of discontinuity in that coordinate of the virtual laxity vector, the packet 

on the side closer to the head of BUFFER has laxity larger than or equal to the laxity 
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of the packets that precede it, if any, and has both coordinates of its virtual laxity vector 

equal to its laxity. Clearly, such a packet cannot be between p and f(p). Therefore, we 

use the consecutivity of both coordinates of the virtual laxity vectors between g and r(p), 

and we have Lf(p) = Äf(P)- Then we see, from Property 2, that all packets between f(p), 

and r(f(p)) are class 1 packets, and £r(r(P)) = #r(f(P))'- We can inductively repeat the 

argument until we reach a class 1 packet v such that Lv = Kv — l{v), and all packets 

located before v have laxity less than or equal to that of v and are class 1 packets. Then, 

this shows that the class 1 packets already buffered plus C.packet form an unschedulable 

set, since the cardinality of the set of packets with laxity smaller than or equal to l(v) is 

l(v) + l, that is, /* = -1. Thus, one packet of the set mentioned above has to be dropped. 

The packet g dropped is such that the remaining set of class 1 packets is equivalent to 

the one that would have been obtained by dropping a class 1 packet with smallest laxity: 

this is true since the packets from the set above which are retained still covers the first 

l(v) positions of BUFFER, thus the next l(v) time slots, the current one included. And 

the proof is completed for the first case. 

We now consider the second case: a class 2 packet g is dropped. Then, we know that 

the set of packets in the data structure is not schedulable. By the definition of g, we know 

that just before the dropping, g is the first packet with laxity equal to its group virtual 

laxity, and, by Property 2, we know that there exists a class 2 packet g1 with Lg> = l(g') 

which is either equal to g or located after g such that all packets located between the 

first class 2 packet of the data structure (first in the location order) and g' (both border 

packets included) are class 2 packets and have laxity smaller than or equal to Lg>. We 

assume that there are I of those packets. Then, dropping g is equivalent to dropping the 

smallest laxity class 2 packet among those packets, since the /-1 packets remaining from 

the set described above, if any, can cover the relative time slots l(g') -1 + 2,... ,%')• 

And Properties 1 and 3 tell us that the set of packets retained in the buffer after the 

dropping is schedulable. Thus, we showed that in both dropping cases above, the packet 

dropped is such that a strongly equivalent set is retained. Lemma 7.1 in [1] shows that a 
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strongly equivalent set can be constructed sequentially, considering one packet at a time. 

And Claim 2.2 follows. 

5.2    Proof of Claim 2.3 

The technique for the proof is similar to the one used to prove Theorem 2.5 from 

Theorem 2.3. We use an inductive approach. The induction hypothesis is: 

f   The Dmin~max policy is SPTO 

I   for an N class model 

Then, a technique similar to the one already used in the proof of Theorem 2.5 is applied. 

We assume now that we have an N + 1 class model. First we consider that the two 

lowest priority classes are grouped in „a super-low-priority class, and apply the J)min-max 

algorithm as defined for a N class case. Since it is assumed in the M-Insert subprocedure 

that two lowest priority packets with equal first coordinated of their virtual laxity vector 

are ordered arbitrarily, it does not affect the SPTO property of the Dmin~max policy 

for the N class model, if the lowest priority class is split into two subclasses and the 

scheduling policy is extended to N + 1 classes. Thus, the J)min~m^ scheduling policy as 

defined for a N + 1 class model is SPTO when restricted to an N class model obtained 

from the previous one by grouping the two lowest priority packets in a super low priority 

class. And of course, we use the fact that MOSTO scheduling policies are still MOSTO 

even when vacation time slots exist in the system. We use a reasoning similar to the one 

presented in the proof of Theorem 2.5. Properties 1, 2, and 3 presented in that proof are 

still valid. Implications 1 and 2 also hold. The following claim is simply an extension 

of Claim 5.1 to the general multiclass case. The proof is similar. It is not given in this 

thesis. 

Claim 5.4 B2 € $SPTO(BUFFER). 

The following fact can also be shown using an argument similar to the one used to 

prove its validity in the two class case. 
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Fact: For any t e {1, ■ • •, N + 1}, if Dmin~max drops a packet class-z packet p, then 

no (N - l)-SPTO (for the N class model) continuation of Dmin~max can schedule all 

packets in BUFFER U p with priority higher than or equal to that of p; and dropping 

p is equivalent to dropping a smallest laxity packet among those packets. 

Now, if for the sake of an argument by induction, we assume that for some k, the 

scheduling and dropping decisions of Dmin-max prior to k do not preclude Dmin~max from 

being N-SPTO, one can see that the induction hypothesis V(N), Claim 5.4 and the fact 

above imply that the dropping and scheduling, if any, done by Dm,n~max in time slot k 

would not preclude Dmin-max from being iV-SPTO. Of course, for k = 0, the induction 

hypothesis is true. The result follows. 

5.3    Proof of Claim 2.4 

We do not provide a detailed proof of the claim here. It can be done using a rea- 

soning similar to the one presented in the Section 5.2. The only modification consists in 

grouping the two highest priority classes in a super-low-priority class, in order to reduce 

the N + 1 class case to a particular instance of an AT class case, and then apply the 

recursive definition of an NTO scheduling policy and the implications of Properties 1 

and 2 presented above: they imply that qx G $NTo(Sk(D
nested)) for each time slot k in 

which the buffer is not empty. The no regret nature of the dropping is then guaranteed 

by an argument similar to the one given above for Dmtn~max. 

47 



CHAPTER 6 

SYNTHESIS 

The results presented in this thesis show that it is possible to optimize prioritizing in 

a setting where throughput optimality is required. We showed that it is possible to do so 

causally while significantly reducing the buffer occupancy. Furthermore, we provided sev- 

eral algorithms that perform different levels of prioritizing while being essentially no more 

costly, in term of their complexity, than a simple implementation of the EDF scheduling 

policy. We stress that the optimal dropping performed by those algorithms makes them 

more efficient than the nondropping EDF scheduling policy. Also, the characterization 

of all the scheduling policies that satisfy the criteria presented in this thesis makes it 

possible to develop more efficient algorithms. 

The result in Lemma 3.3 is particularly interesting since it implies one particular appli- 

cation of our characterizations. If the model was extended to include a particular class of 

extremely high-priority packets (control packets for example) that must be served as soon 

as they are available, Lemma 3.3 indicates that it is still possible to achieve the optimality 

criteria on the remaining classes of packets subject to the scheduling of urgent packets. 

Also, the hierarchical nature of the criteria we considered here makes it possible to apply 

the criteria only to a particular subtraffic. We summarize our results: we characterized 

all causal scheduling and scheduling-dropping policies that maximize the throughput in 

a sample-pathwise manner. Among those policies, we characterized the ones that min- 

imize the buffer occupancy in a sample-pathwise manner. We then proceeded to study 

how much prioritizing could be achieved subject to throughput optimality. We defined 

two novel and important criteria: nested and static priority throughput optimality. The 

first criterion consists of recursively optimizing the throughput of a smaller set of higher 
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priority subject to the optimalization of the throughput of the next largest set of higher- 

priority packets. The second criterion consists of recursively optimizing the throughput 

of a class of packets subject to the optimization of the throughput of the next higher 

priority class. We presented simple algorithms that perform those optimizations while 

minimizing the buffer occupancy over all causal throughput optimal scheduling policies. 
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CAPACITY AND RELIABILITY FUNCTION PER UNIT COST FOR WSSUS FADING 
CHANNELS 

Vijay G. Subramanian and Bruce Hajek 

ABSTRACT 

This paper summaries our recent work on the ap- 
plication of the concepts of capacity per unit cost 
and reliability function per unit cost to models of 
fading channels. The. cost is taken to be the energy, 
or a certain fourth moment functional that is sen- 
sitive to the burstiness of the signals, and is related 
to the ambiguity function of the input signal. The 
channel is assumed to be a Wide-Sense Stationary 
and Uncorrelated Scattering (WSSUS) channel. 

1.    INTRODUCTION 

A prominent feature of wireless media is time- 
varying multipath fading. The fading chan- 
nel is very different from the additive Gaussian 
noise (AGN) channel. If the channel changes 
rapidly, then we are forced to adopt non-coherent 

techniques1 for reliable communication. Another 
important fact is that for pure fading channels, the 
output signal has mean zero for any input signal. 
Thus, the input signal only affects the second or- 
der statistics and higher order statistics of the out- 
put. In contrast, the input signal directly affects 
the mean of the output signal for AGN channels. 
Owing to these differences, principles of signal de- 
sign used for additive Gaussian noise channels do 

not directly apply to fading channels2. Thus, it is 
necessary to take a fresh look at the problem in- 
stead of directly applying the principles used for 
AGN channels.These ideas constitute the motiva- 

*The authors are with the Coordinated Science Laboratory and 
the ECE Department, University of Illinois, Urbana, IL 61801. 
Email:{ vgsubram,b-ha.jek}<Buiuc.edu. This work was supported 
by a Motorola Fellowship, by the US Army Research Office under 
Grant DAAH05-95-1-0246, and by the National Science. Founda- 
tion under contract NSF NCR 9:5-14253. 

'Refer to Kennedy[12], Marwtta and Hochwald[14] and 
Telatar and Tse[17] for examples of non-coherent receiver struc- 
tures that achieve capacity. 

2Refer to Bigleri, et al.[4] for a discussion on this. 

tion behind this paper. The objective of this paper 
is to contribute to the better understanding of the 
capacity of multipath fading channels. 

2.    WIRELESS CHANNEL MODELS 

Wireless channels can be thought of as time- 
varying linear channels. The channel model can 
be represented by 

y(t) =  f h(t, r)u{t - T)(IT + n{t), (1) 

where u(t) is the input, h(t, r) is the time-varying 

channel transfer function, n(t) is white Gaussian 

noise, and ?/(/;) is the output of the channel. It 

is assumed that h(t, r) for fixed r is a wide-sense 

stationary (WSS) process, i.e., E[h(t, r)] = fi(r), 

and E[h(s, r)h*(t, r)] = RH{s -t.r). It is also as- 

sumed that h(t, T) is a Gaussian random process. 

We also have h(t, r) uncorrelated for different val- 

ues of T. This is called uncorrelated scattering(US). 
Most stochastic models of wireless channels com- 
bine these two features (sec Fleury, et al.[7]) and 
consider what are called WSSUS fading channels. 
We denote the multipath delay-spread by Tmax, the 
doppler-spread by F^, and the coherence time by 

^coherence- We refer to Clarke [G], Bello [2], and 
Proakis [16, Chapter 14] for a detailed treatment 
of WSSUS fading channels. 

3.    CAPACITY OF FADING CHANNELS 

Even though wireless channels have been used for 
a long time, they are not as well understood as 
the additive Gaussian noise channel. We refer the 
reader to Bigleri, et al. [3] for a detailed survey of 
capacity related results on fading channels. 



Abou-Faycal, et al.[l] compute the capacity 
of the average energy constrained discrete-time 

memoryless Rayleigh fading (DTMRF) channel. 

Marzetta and Hochwald[14] generalize this chan- 
nel to include multiple transmit antennas, multi- 
ple receive antennas, and channel memory. They 
model the channel fading coefficient as constant 
over intervals of T symbols in duration, and in- 
dependently chosen for different intervals. They 
compute the capacity numerically and show that, 
for large values of T, the capacity is close to the ca- 
pacity with the receiver knowing the channel per- 
fectly. 

Broadband channels are a special case of chan- 
nels with a large number of degrees of freedom. 

GallagerflO] in his seminal work discusses energy 

limited channels, i.e., channels where the energy 
per degree of freedom is very small. Restricting 
the input to binary signals he computes the relia- 

bility function [9]. Considering the case of infinitely 
many degrees of freedom he shows that the reliabil- 
ity function can be computed exactly for all rates 
if there is a finite capacity per unit energy. He also 
characterizes the conditions under which capacity 
per unit energy is infinite. Gallager also considers 
channels with non-binary inputs but with a single 
zero-energy signal and proves that using binary sig- 
naling is optimal in the limiting case of infinitely 
many degrees of freedom. Telatar [18] specializes 

Gallager's results to the Rayleigh fading channel. 
He shows that with very high bandwidths and at 
high SNRs, the Rayleigh fading channel has the 
same capacity per unit energy as an AWGN chan- 

nel with the same SNR and bandwidth. Verdu[19] 
concentrates on capacity per unit energy cost in- 
stead of the reliability function per unit energy and 
generalizes Gallager's idea of capacity per unit en- 
ergy to include more general cost functions. He 
derives a simple characterization for the capacity 
per unit cost for memoryless channels. He shows 
that the capacity per unit cost, Ccost, is determined 
by a simple functional maximization. Under Gal- 
lager's assumption that there is a single input with 
zero cost, Verdu shows that 

•'cost sup 
i:cost(a;)^0 

D(PY\X=X\\PY\X=O) 

cost(.x) ' (2) 

where D(-\\-) is the Kullbaek-Liebler distance be- 
tween measures and the coding scheme to be fol- 
lowed is to use on-oif keying with the on input 
being the maximizer of the above functional, say 
Xmax, and the off input being the zero cost input. 
To approach Ccost, the on input is to be used with 
vanishingly small probability. As an example he 
shows that the capacity per unit energy cost of the 
discrete-time Gaussian fading channel is the same 
as the AWGN channel. 

Kennedy [12] considers the capacity per unit 

time of diffuse WSSUS fading channels. He 
constrains the input signals to be of the form 

u(t)e-i2vAit, 1 < * < M, i.e., the signals form an 

M-ary FSK signaling set with the signal «(/:) as a 

design parameter. Gallager and Medard[8] analyze 

a system with diffuse WSSUS fading. They parti- 
tion the broadband channel into frequency bins and 
constrain the input in each bin at each time to be 

as follows: E[\X\2] < e, and E[\X\4] < ae2. This 
models DS-CDMA type signals where the power 
is allocated uniformly over time and bandwidth. 
They show that the mutual information per unit 
time between the input and the output is now 
upper-bounded by a constant times e. The inter- 
pretation of this bound is as follows: as the spread 
factor increases without bound, c which is inversely 
proportional to the spread factor, decreases to zero, 
and therefore, the mutual information per unit time 
between the input and the output decreases to zero. 
Telatar and Tse[17] consider specular multipath 
channels with time-varying delays of the various 
multipath components, in the case of no intersym- 
bol interference. 

Note that there can also be the case where there 
is no knowledge of the statistics of the channel. 
Lapidoth, et al. [13] give an extensive treatment of 
such channels. 

4.     CAPACITY CALCULATIONS 

We consider using the WSSUS fading channel in 
blocks of time T' units long where T' > T + 
^coherence + TmBlX with T being the duration of the 

input signal. We also assume that u{t) = 0 if 
t > T. Assuming that we code across blocks of 

time T' units long, these assumptions imply that we 



use the channel in a memoryless manner. We can 
write the output of the channel as given in Equa- 

tion (1) where h(t,r) is a complex-valued, zero- 

mean Gaussian process with E[h(t,T)h*(s,v)] — 

RH{^ - -s') T)6(T — (,'), and ??.(/;) is white, complex- 
valued Gaussian noise with one-sided power spec- 

tral density a1. We also constrain the input wave- 
forms to have finite energy. 

Equation (1) can be written in the following 
manner 

y(t) = Sout(t)+n(t),    0<t<T', (3) 

where, given u, soui(t) is a complex-valued, zero 
mean Gaussian random process independent of 

n{t) with covariance function given by T,(s,t) = 

E[sout(s)slut{t)]. Let {Ajj^o be the eigenvalues of 
the covariance operator, E. Then by Mercer's the- 

orem [15, p. 379] and Proposition VI.D.4 [15, p. 

421] we have that 

£>(«)     =     D(Py\U=u\\PY\U=0) 

where 

=   X>(A,;), 
i=0 

0(A) =-2-log (1 + -*). 
a a- 

(4) 

(5) 

4.1.    Capacity per unit energy cost 

In this section we derive the capacity per unit en- 
ergy cost of WSSUS fading channel. Since there 
is only one input function, namely, u(t) = 0, hav- 

ing zero energy, we can apply Verdii's [19] results 
directly. Thus, the capacity per unit energy cost 

denoted by CE, is given by 

CE 

D(u) 
SUp—r-r, 
uzjtO E(U) 

where u denotes the input waveform and E(u) — 

/ \u(s)\2ds is the energy of the waveform u. We 

have that 

w = ^-Eiog(i + £). 
»=0 

Therefore, 

D(u) On      E*oloK(l + ^)G/f 

E(u) ££o &       CT2 

< GH 

a1' 

and fixing an arbitrary but nonzero signal ■;/ we 

have that lim,7._ D{uy/a)    _    G if       Tlirrrfnrr 
^^   /i(:;,v'a)             (T- 

have established that 

c - - — (6) 

and the capacity can be approached by using any 
nonzero input as the on input for the on-off keying 
scheme with the energy tending to infinity and the 
average energy constraint tending zero. We should 
note that CE is exactly the same as the capacity 
per unit energy of an AWGN channel with the same 
gain and noise characteristics. This is exactly as 

expected from the results of Jacobs [11], Kennedy 

[12], and Telatar and Tse [17]. 

4.2.     Capacity per unit fourth-moment cost 

Define Jc(u) = £i=o ^f • We can use Jc(u) as a 
cost function and we can apply Verdu's [19] result 
to obtain the capacity per unit cost. We can show 
the following simple expression for Jc{u), 

Jc{v) = JI \xiy, r)|2*Mi/, T)drdu,       (7) 

where x(Tiv) *s tne symmetric ambiguity function 

[5] of the signal u{t) which is defined as follows 

x[y,T)= f" u(t + r/2)u*(t-T/2)er^vtdt, (8) 
J —oc 

and where V-7/ (T, V) is given by 

ll>H(v,T) = JJSI{(f,t)SH(f + V,t + T)dtdf. 

Note that Jc(u) is a fourth-order cost function. 

Note also that Jc{u) captures both time and fre- 
quency aspects of the signal. In fact, it can be 

shown that Jc{u) < G\ J \u(t)\4dt. We can also 

show that Jc{u) < G2
Hf\U{f)\4df where U(f) is 



the Fourier transform of u(t). We can, thereafter, 
show the following 

D(v) 
sup  

\U 

_1_ 
(9) 

We can state the following theorem by applying 
Verdü's [19] results. 

Theorem 4..1 The capacity per unit fourth- 
moment cost, C.j, of the WSSUS fading channel 
is given by 

Cj = i (10) 

As a consequence we have for any input random 
process U, 

WY) < JLE[JC{V)]> (11) 

where Y is the output random process and the ex- 
pectation is carried out with respect to the measure 
ofU. 

A very important point, that we must empha- 
size here is that Kennedy [12] defines the number of 
effective diversity paths, D to be the reciprocal of 

Jc(u)- In [12] u is the M-ary FSK waveform while 
here it is the on signal for on-off keying. Thus, D 

increasing without bound implies that Jc(u) de- 
creases to zero and the result of the error exponent 
going to zero in [12] is mirrored by the mutual in- 
formation between the input and the output going 
to zero. 

Before going to the next topic we state an im- 
portant property of ambiguity functions. The vol- 
ume invariance property [5] states that 

/ / |x(",T)|adT*/=x(0,0)a=(/ |u(t)|2<ft)2=E(tt)a.        (12) 

Note also that \X('AT)\ < \'(0,0) = E{u). 

4.3.     Other related results 

Using the bound given in Theorem 4..1 in the full 
version of this paper we derive a bound on the ca- 
pacity of Direct-Sequence Code Division Multiple 

Access (DS-CDMA) like signals and show that un- 

der certain conditions the capacity tends to zero as 

the spreading increases for diffuse WSSUS chan- 
nels. Considering specular WSSUS channels we 
show that the capacity of DS-CDMA like signals 
for high spreading gains is inversely proportional 
to the number of paths when the paths have al- 
most equal energy. We also derive capacity per 
fourth moment cost results in the multiuser case. 
Assuming joint coding of the users we show that 
the sum capacity is upper bounded by a function 
of the cross-ambiguity functions of the different in- 
puts. Specializing to the case of independent users 
we show that the sum capacity behaves similar to 
the single user capacity. We qualitatively show that 
multiuser interference yields a sum capacity much 
lower than the sum of the single user capacities. 

5.    RELIABILITY FUNCTION 
CALCULATIONS 

From Gallager[10] we can write the following ex- 

pression for the reliability function per unit cost, 

Er(R) = max(     sup      <-"+^*"$mi+p)V)-pk 

(13) 
where cost{u) is the cost associated with input it, 

EH°[-] is an expectation taken with respect to the 

measure generated by the 0 input, and A is the 
likelihood ratio of the input u with respect to the 
0 input. 

5.1.     Reliability   per   unit   fourth   moment 
cost 

We now specialize the results of the previous sec- 
tion using the fourth moment cost function we used 
before, i.e., cost(u) = Jc(u). We can show that 

Er(R) is given as follows 

EAR) = A/?(2a4H), In 

where 

ß(r) 
(1 

- r 0 < r < 4 
V^T    J < r < 1 

(14) 

(15) 

It is interesting to note that we get an expression 
for the reliability function which does not depend 

on the channel except through a2. We also have an- 
other instance where the exact reliability function 
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Figure 1. Normalized reliability per unit 
fourth moment cost as a function of normal- 
ized information rate. 

can be computed. It; is also interesting to note, as 
indicated in Figure 1, that the shape of the relia- 
bility function is exactly that of the infinite band- 
width Additive White Gaussian Noise channel [9, 

p. 381]. 

5.2.     Reliability per unit energy 

We now specialize the results of the previous sec- 
tion using the energy of the input, i.e., E(u), as 
the cost function. For this case we derive a channel 
independent upper bound. We show that 

MR) < ^r(^), (16) 

where 

j(r) = max sup 
0<P<^a>0 

iog(i+o)+(i+p)iog(i- jfzrf^) _ pr. 

(17) 

The bound shows that Kennedy's optimized system 

reliability function [12, p. 125] is indeed an upper 
bound for the infinite bandwidth WSSUS fading 
channel reliability function. Numerically evaluat- 
ing the upper bound we compare it with the reli- 
ability per unit energy for the AWGN channel in 
Figure 2. As expected from our discussion above, 

Figure 2 is similar to Figure 5.5 in Kennedy [12, 

p. 125]. We can now reiterate all the conclusions 

about fading channels in Kennedy's book [12, pp. 

125-135]. 
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