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exponential, uniform and generalized Pareto. In some cases we 
obtain the explicit probability of the feasible method of moment 
estimator and other cases we estimate it through simulations. Since 
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1. INTRODUCTION 

Method of moments (MM) plays an important role in the estimation of parameters in 

parametric inference. MM estimator has a long history starting with the work of Fisher (1922). One 

of the major advantages of using MM estimator is its simplicity in using in practice (Rao (1973)). 

In many situations it is observed that MM estimators can be obtained by solving simple equations 

whereas other estimators like maximum likelihood (ML) estimators may be obtained through 

minimizing or maximizing certain function. Sometimes it may happen that ML estimator may not 

exist, whereas MM estimator exists. In certain situations, the MM estimator may be used as the initial 

guess value to obtain the ML estimator in some numerical search procedure. So, it is quite important 

to study the properties of the MM estimators at least for small sample. In most of the situations MM 

estimators are consistent and behave reasonably well for large sample sizes, although they may not 

be as "efficient" as ML estimators (see Fisher 1922). Another major disadvantage of the MM 

estimators, at least for small sample sizes, is that they may not be feasible. Here, feasibility means that 

even though there may be some restrictions on the parameter space but the estimators may not satisfy 

those restrictions. We define formally the feasible estimator as follows: 

Definition. Let Xl5 Xj,.... X„ be a random sample from the density function f(x; 0) and 6 e 0, where 

0 is a subset of Rk. Let be an estimator of 0. If Ön e 0, then we say that6n is a feasible estimator 

of 0. If 0 is not a feasible estimator of 0, then it is called an infeasible estimator of 0. 

Observe that if 0n converges either in probability or in almost surely and the limit is also an 

infeasible estimator, then it is inconsistent as well as asymptotically biased. Therefore, it is useful to 

study the probability of obtaining a infeasible MM estimators in any given situation, at least for small 

sample sizes. We are not familiar with any literature on this topic except the very recent paper of 
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Dupuis (1996), although all the text books on statistics mention about the MM estimators. In her 

paper, Dupuis (1996) considers a very special case of a generalized Pareto distribution and presents 

some simple programs to predict the probability of obtaining such infeasible estimators for large 

sample sizes. 

The main aim of this paper is to consider first some simple examples and compute the 

probability of infeasible MM estimators explicitly and then we consider some of the cases when it 

cannot be computed explicitly. We recommend to use Monte Carlo simulations to compute the 

probability of obtaining the infeasible MM estimators in those situations. It is known (Hosking and 

Wallis; 1987) that for the generalized Pareto distribution the MM estimators behave better than the 

ML estimators for sample sizes up to 500 for certain ranges of parameters. So it is reasonable to use 

MM estimators for small samples sizes in the case of generalized Pareto distribution. Dupuis (1996) 

considers the generalized Pareto distribution but she considers only the larger sample (sample size 

ranges from 500 to 10000) and obtain the probability of infeasible MM estimators. We also consider 

the generalized Pareto distribution but mainly for small sample sizes and make some comments about 

Dupuis (1996)'s approach. 

The rest of the paper is organized as follows: In Section 2, we consider one parameter and 

two parameter exponential distributions. In Section 3, we consider uniform distribution, generalized 

Pareto distribution is considered in Section 4. Some numerical experiments are performed in Section 

5. Finally, we draw conclusions in Section 6. 



2. EXPONENTIAL DISTRIBUTION 

First we consider one parameter exponential distribution. Let X,, X^ ..., X„ be a random 

sample of size n from the following distribution 

fM = fe"(x"a)    ifx>a 
'x'     [0 otherwise 

Observe that in this situation the MM estimator of a , say &n , is X - 1. Now there are two kinds 

of feasibility questions about an . First of all if we have information (prior) that a ^ 0 (for example 

X represents the lifetime) then 

X;> an ^ 0   -   X ^ 1  and    X; > X - 1     for all i = l,2,...,n   or X(1) * X - 1, 

where X^ denotes the ith order statistic. Otherwise, &n is not feasible. Therefore, 

P [ an is feasible ] = P [ X * 1 , X s X(1)+ 1 ] 

= P[n <   £   X, <; nX(1)+n] 

= P[ n(l - X(1)) < £ (X(i) - X(1)) < n ] 
i = l 

1       n 

=  n f    f   g(y)dy e-n(x-a) dx + nj J g(y)dy e^"00 dx,    if a < 1 
a  n(l-x) 1    ° 

= n||g(y)dye-n(x-a)dx,      if a ;> 1 

(2.1) 

(2.2) 

a   0 

where g (y) = 
1— yn"2e"y    y>0 (2.3) IXn-l) 

0 otherwise 

Using the fact that   f g(y)dy =1 - £  e" T >(21) 
J ,=o l! 

n"2 a "* *x can be wntten as 

ffi) 



„fr    / e-n(l- x)   n'Q-xy   _  e-n ü! ) e-n(x-cO dx  +  en(a-l) (1   _   £    e -n  ^ ) 

J   to i! i! i=0 

n-2 

" h ü      ^     i! 

Also, (2.2) can be simplified as 
n n-2 i 

fg(y)dy = i -E e"n77- 
J i=0 1! 

In the case we have no information on a, 
n 

P [ ccn is feasible ] = P [ X < X(1) + 1 ] = P [ E (x(i) " X(i)) < n 1 

= ?g(y)dy= 1 -E e-^. 

Next we consider the two parameter exponential distribution. Let Xl5 X2,..., X„ be a random sample 

of size n from the following density function 

f(x) = 
1 e-

(x-a)/e     x > a, 6 > 0 
0 

0 otherwise . 

It can be easily seen that the MM estimators of a and 6 are 

a   = X - S   and   Ön = S, 

where nS 2/(n-l) is the sample variance. Again, we may or may not have prior information on a 

being positive. In case a £ 0, 

P [ an is feasible ] = P [ S < X < X(1) + S ] . (2-4) 

If we have no restriction on a, then 

■ P [ an is feasible ]  = P [ X < X(1) + S ] . (2-5) 



Observe that it is not very easy to compute (2.4) and (2.5) explicitly although (2.4) depends 

only on a/0 and (2.5) is independent of a and 0. We perform some Monte Carlo simulations to 

estimate (2.4) and (2.5) in Section 5. 

3. UNIFORM DISTRIBUTION 

Suppose Xl5 X2, ..., X„ is a random sample of size n from U(O,0). Then observe that the MM 

estimator of 0 is 0n = 2X. Therefore, 

P [ 0n is feasible ] = P [ X; < 2X for all i = l,2,...,n ] 

= P[nX(n),2£  X(i)] = l -P[E   X(i),^X(n)] 
i=l i=l 

6      2 l   -   J 

=1—±—r f t (-D'h1) (z-ix)""2 ^ 0nr(n-l)J„    J
n       i = o v      / 

n-2, JL2x 

o-iX- *, o 
£ f   T    ("lyf""1)       f   (z-ix)n

+
-2 dzdx 

(n-l)J   ^oMl.J      I 

e i 2 
J 

= j.    "    /• £ (-iy f":1) (^ - ir1 x-1 dx 
0n T(n) {   i = o V   1  J      2 

-1 - E (-iy l (^ 
ft    *   '  IXi+D IXn-i)     2 

where (z - ix)+ denotes max{0, (z - ix)}.  Observe that (3.1) does not depend on 0 and it is a 

decreasing function of n. Simple numerical computations on MAPLE show that (3.1) decreases to 

lA as n tends to °°. 

Now suppose that X„ X2,..., X„ is a random sample of size n from U(0-a, 0+a), where a is 

© 



known and 6 is unknown. The corresponding density function is 

f M = [   (2a)"1      if  0-a^x<0+a, (3.2) 
w     [      0 otherwise. 

Without loss of generality let us assume that a = 'A  The MM estimator of 6 is 6n = X. It is 

interesting to note that ML estimator is not unique in this case, for example any value between (X<n) 

-!/2) to (X(1)+ VS) maximizes the likelihood function although MM estimator is unique. 

P [ 6n is feasible ] = P [ X-I * X(1) < X(n) < X + i ] 

- P [ (n-DX(n) - X(1) - ±s  E X(i) * (n-l)X(1) - X(n) + \ ] (3.3) 
Z ' = 2 n-l 

Observe that the conditional distribution of £ X(i) given X^, X,n) is the same as the distribution 
i = 2 

of the sum of random sample of size (n-2) from U(X(1), X^. Therefore, (3.3) can be evaluated 

explicitly but the actual expression become very messy. However, it is clear that it does not depend 

on 6. We have performed simulations to estimate (3.3) in section 5. 

4. GENERALIZED PARETO DISTRIBUTION 

In this section we consider some feasibility problem concerning Generalized Pareto (GP) 

distribution. The GP distribution was introduced by Pickands (1975) and it has applications in a 

number of fields including reliability studies and the analysis of environmental extreme events. It is 

parameter distribution and it contains uniform, exponential and Pareto distribution as special a two 

cases. 

Let the random variable X follows a GP distribution, then X has the density function 

Ä 



f(x) = 
id- lEL)*        ifk#o 
a        a (4.1) 

Iexp(-x/a)        ifk = 0, 
a 

the range of x is 0 < x < » for k < 0 and 0 < x < a/k for k> 0. The parameters of the distribution 

are a, the scale parameter, and k, the shape parameter. The special cases k = 0 and k = 1 yield, the 

exponential distribution and uniform distribution on [0, a], respectively.  For k < 0 the ordinary 

Pareto distribution is obtained. 

It is important to observe that for k < 0, the r* moment of X exists if k > -1/r (see Hosking 

and Wallis; 1987) and it can be easily seen that if 0 > k > -1/2, then 

E(X) = a/(l+k) and Var(X) = a2 / ((1+k)2 (l+2k)) (4-2) 

On the other hand if k z 0 then all the moments of X exist, which can be easily seen as follows for 

k>0 

E(Xm)=I   f xm(l -—)k       dx 
a J a 

i I-i 
= -55— fym(l-y)k      dy 

k 

«m    nrm + i     1 -> m! gm (4-3) 
^"T aKm      ' k;     (km+l)(k(m-l)+l)...(k+l) 

and for exponential distribution (k = 0) all the moments exist. However, Hosking and Wallis (1987, 

p. 340) commented that for k * V*, X has infinite variance, which is not correct. 

Therefore for -V4 < k < 0, the MM estimators of a and k exist and they are as follows: 

(Hosking and Wallis; 1987) 
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&n = |(| + 1)     „J   £, . 1 <|1 - 1) (4.4) 

where X and nS2/(n-l) are sample mean and variance respectively. 

For k > 0, the MM estimators exist and they are the same as in defined (4.4). It is important 

to note that for the GP distribution the ML estimators do not exist for k > 1 (Grimshaw (1993)). This 

is because for k > 1 the likelihood function converges to « as o/k tends to X^ from the upper side. 

However, the MM estimators do exist in this case. 

Now we would like to consider the feasibility of the MM estimators in two different 

situations, namely for k > 0 and for -V2 < k < 0. This is because for k = 0, the MM estimator of a is 

always feasible. 

Case I: k > 0. 

P [ kn and &n are feasible ] 

= P [ kn > 0   and   X. < &n / kn   for all i = l,2,...,n ] 

= P [ kn > 0   and   X(n) < &n / kn ] 

-    X2 

X (— + 1) 
Y2 <52 

= p [ A_ > 1   and   -^  * X(n) ] 
S2 "x 

s 

= P [ X(") " ^ < (C.V.)2 < 1 ], (45> 
X(n)   + X 

where C.V. denotes the coefficient of variation. 

CaseII: -,/2^k<0. 

In this case aa is always feasible. 

P [ kn is feasible ] =   P[ - | < kn < 0 ] 

/», 



=   P [ X2 < S2 ] =    P [ (C.V.)2 > 1 ] • (4-6) 

In both the cases (4.5) and (4.6) it is not easy to evaluate the probabilities explicitly. We propose to 

use Monte Carlo simulation to estimate (4.5) and (4.6). However, observe that (4.6) converges to 

1 as n tends to °° due to the strong law of large numbers. 

Dupuis (1996) considers the case when 0 < k <; lA but unfortunately she does not consider the 

feasibility of kn. Instead, she considers the feasibility of &n and kn given that kn> 0, which may not 

be correct. Observe that it is important to know the range of k because the likelihood function, the 

range of the data vector and also the feasibility questions are quite different in different ranges. For 

example when k = 0, there is no question of feasibility of MM estimators. In fact in our simulation 

it is observed that P[ kn is infeasible] may not be negligible for small positive k. Another point 

regarding the work of Dupuis (1996) we would like to mention that she made the following statement 

If Xj, X2,..., X„ is a random sample of size n from GP distribution, then 

P [ All X. < &n/kn   for all i = l,2,...,n ] (4-7) 

= ( P [ X < &A ] )n (4-8) 

Here a  and k are same as defined in (4.4), and X is GP with parameters a and k. We feel that 
n n 

(4.7) does not imply (4.8) due to the fact that the events in (4.7) are not independent. Unfortunately 

her most of the analysis and approximations are based on (4.8). 

5. NUMERICAL EXPERIMENTS 

In this section, we present some Monte Carlo simulation results to estimate (2.4), (2.5), (3.3), 

(4.5) and (4.6) where the explicit expressions are not possible. All these simulations are performed 

on Sun Workstation using the random deviate generator RAN2 of Press et al (1986). In all the cases 



we use RAN2 as the uniform random deviate generator and using the proper transformation we 

obtain the different distributions. All the results reported here are based on 10,000 replications. We 

use the sample sizes 10, 15, 50, 100, 500, and 1,000 in all the cases. 

In the case of two parameters exponential distribution, to estimate the probability of feasible MM 

estimator, when there is a prior information on a (i.e. (2.4)) and when there is no prior information 

on a (i.e. (2.5)), we consider a = .25, .50, 1.0, 2.0 and 6 = 1.0 (without loss of generality). The 

results are reported in Table 1. It is observed that when we have restrictions on a, namely a > 0, then 

for fixed a as n increases the probability of feasible MM estimator of a increases and it seems it is 

increasing to V2 as in the case of one parameter exponential family. For fixed 0, the probability of 

feasible estimator of a increases as a increases to 1 and after that (for a > 1) it remains constant. We 

compute the result for a = 3 and a =4 also and it is exactly same as a = 2 and we do not report the 

results separately. As sample size increases the probability becomes independent of a. When we do 

not have restrictions on a, then the feasible probability is independent of a and 6 and it is the same 

probability as we obtain in the previous case for a > 1 (last row of Table 1). 

In case of uniform distribution to estimate the probability of feasible MM estimator (i.e. (3.3)) 

we consider 0 = XA without loss of generality because (3.3) is independent of 0. The results are 

reported in Table 2. From the table it is clear that as sample size increases the probability of feasible 

MM estimator is gradually decreasing and it seems the probability is converging to zero. This may 

be due to the fact that the convergence of X^ (X<n)) to 0 - V2 (0 + V2) is much faster than the 

convergence of X to 0. 

In case of GP distribution to estimate the probability of feasible MM estimators for -V2 < k 

tfi) 



< 0 (i.e. (4.6)) we consider k = -.4, -.3, -.2, -. 1 and for k > 0 (i.e. (4.5)) we take k = . 1, .2, .3, .4, .5, 

.75,1.0,1.25,1.50, and a = 1 (without loss of generality) in both the cases. The results for -V2 < k 

< 0 and for k > 0 are reported in Table 3 and Table 4 respectively. 

In Table 3, when -V2 < k < 0, it is observed that as sample size increases the probability is 

increasing to one. It is also observed that as k approaches zero, the probability decreases and it is 

quite prominent at least for small sample sizes. The results are quite different for k > 0 in Table 4. 

Distinct features are observed for 0 < k < Vi and for k ;> Vi For 0 < k < Vz it is observed that as n 

increases the probability is increasing and it seems it is increasing to one. On the other hand if k * 

Vt the probability is quite erratic and no such conclusions can be made. 

6. CONCLUSIONS 

In this paper we consider the problem of feasibility of MM estimators when there are some 

restrictions on the parametric space and/or the range of the data depending on parameters. We feel 

it is an important problem although it did not get enough attention in the literature. Since the MM 

estimators are always consistent (by strong law of large numbers), it is expected that they will be 

feasible also. But we observe some of the counter intuitive results in some situations. Simulation 

results indicate that the feasibility might even converge to zero also. Since the MM estimators do not 

take into consideration the restrictions on the parametric space and/or the range depending on the 

parameters, this work clearly suggests that practitioner must check out the feasibility of the MM 

estimators in such situations before using them. 
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Table 1 

Two parameters exponential (Restrictions on a) 

0=1 

a\n 10 15 50 100 500 1000 

.25 .3450 .3456 .4003 .4358 .4739 .4758 

.50 .3914 .4022 .4262 .4455 .4739 .4758 

1.0 .4049 .4118 .4275 .4457 .4739 .4758 

2.0 .4060 .4122 .4275 .4457 .4739 .4758 

Table 2 

Uniform [6 - %, 0 + Vi] 

n 

Prob 

10 15 50 100 500 1000 

.6998 .6093 .3701 .2665 .1203 .0876 

Table 3 

Generalized Pareto: o = 1, k < 0 

k\n 10 15 50 100 500 1000 

-.4 .5621 .6894 .9506 .9954 1.00 1.00 

-.3 .5024 .6015 .8901 .9756 1.00 1.00 

-.2 .4143 .5120 .7920 .9130 .9996 1.00 

-.1 .3328 .4043 .6079 .7264 .9667 .9967 

IQ 



Table 4 

Generalized Pareto k > 0, a = 1 

k\n 10 15 50 100 500 1000 

.10 .7169 .7351 .8317 .8986 .9932 .9998 

.20 .7469 .7901 .8974 .9461 .9808 .9865 

.30 .7524 .7903 .8744 .8909 .9182 .9333 

.40 .7375 .7722 .8088 .8143 .8261 .8275 

.50 .7179 .7336 .7354 .7314 .7221 .7275 

.75 .6390 .6443 .6145 .5924 .5669 .5539 

1.0 .5777 .5600 .5378 .5275 .5134 .5118 

1.25 .5187 .5255 .4997 .5016 .4964 .4974 

1.50 .5038 .4865 .4886 .4786 .4923 .4961 
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