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1. INTRODUCTION

Method of moments (MM) plays an impbrtant role in the estimation of parameters in
parametric inference. MM estimator has a long history starting with the work of Fisher (1922). One
of the major advantages of using MM estimator is its simplicity in using in practice (Rao (1973)).
In many situations it is observed that MM estimators can be obtained by solving simple equations
whereas other estimators like maximum likelihood (ML) estimators may be obtained through
minimizing or maximizing certain function. Sometimes it may happen that ML estimator may not
exist, whereas MM estimator exists. In certain situations, the MM estimator may be used as the initial
guess value to obtain the ML estimator in some numerical search procedure. So, it is quite important
to study the properties of the MM estimators at least for small sample. In most of the situations MM
estimators are consistent and behave reasonably well for large sample sizes, although they may not
be as “efficient” as ML estimators (see Fisher 1922). Another major disadvantage of the MM
estimators, at least for small sample sizes, is that they may not be feasible. Here, feasibility means that
even though there may be some restrictions on the parameter space but the estimators may not satisfy
those restrictions. We define formally the feasible estimator as follows:
Definition. Let X,, X,, ..., X, be a random sample from the density function f{x; 0) and O € ©, where
@ is a subset of RX. Let be an estimator of 0. If én € 0, then we say that én is a feasible estimator
of 0. If én is not a feasible estimator of 0, then it is called an infeasible estimator of 0.

Observe that if én converges either in probability or in almost surely and the limit is also an
infeasible estimator, then it is inconsistent as well as asymptotically biased. Therefore, it is useful to
study the probability of obtaining a infeasible MM estimators in any given situation, at least for small

sample sizes. We are not familiar with any literature on this topic except the very recent paper of




Dupuis (1996), although all the text books on statistics mention about the MM estimators. In her
paper, Dupuis (1996) considers a very special case of a generalized Pareto distribﬁtion and presents
some simple programs to predict the probability of obtaining such infeasible estimators for large
sample sizes.

The main aim of this paper is to consider first some simple examples and compute the
probability of infeasible MM estimators explicitly and then we consider some of the cases when it
cannot be computed explicitly. We recommend to use Monte Carlo simulations to compute the
probability of obtaining the infeasible MM estimators in those situations. It is known (Hosking and
Wallis; 1987) that for the generalized Pareto distribution the MM estimators behave better than the
ML estimators for sample sizes up to 500 for certain ranges of parameters. So it is reasonable to use
MM estimators for small samples sizes in the case of generalized Pareto distribution. Dupuis (1996)
considers the generalized Pareto distribution but she considers only the larger sample (sample size
ranges from 500 to 10000) and obtain the probability of infeasible MM estimators. We also consider
the generalized Pareto distribution but mainly for small sample sizes and make some comments about
Dupuis (1996)’s approach.

The rest of the paper is organized as follows: In Section 2, we consider one parameter and
two parameter exponential distributions. In Section 3, we consider uniform distribution, generalized
Pareto distribution is considered in Section 4. Some numerical experiments are performed in Section

5. Finally, we draw conclusions in Section 6.




2. EXPONENTIAL DISTRIBUTION
First we consider one parameter exponential distribution. Let X, X, ..., X be a random

sample of size n from the following distribution

e ®® ifx>a

fx) = 0 otherwise

Observe that in this situation the MM estimator of ¢ , say &_, is X - 1. Now there are two kinds

of feasibility questions about &_ . First of all if we have information (prior) that & > O (for example

X represents the lifetime) then

X>8 20 = X21ad X,>X-1 forali=1,2,..n or X, > X -1,
where X,;, denotes the ith order statistic. Otherwise, &_is not feasible. Therefore,

P[&isfeasible]=P[X21,XsX,+1]
n

=P{ns< Y, X, snX,+n]

i=1

P[ n(l - X)) < Z; (X4 - Xg) <0l

1 n LI
= nf f g(y)dy e " dx + nf f g(y)dy e ™™ ® dx, ifa <1 2.D
a n(l-x) 1 0
= nf f g(y)dy e " ®dx, ife>1 2.2)
a O
1 yn-2 e VY y >0
where g (y) = |I(n-1) (2.3)

0 otherwise .

a n-2 i
Using the fact that fg(y)dy =1- E e *® i}T , (2.1) can be written as
i=0 1!
0

1

vl




n-

Y et i)

n- 2
1=0 i!

1 2 ni (1_ X)i ni
nf Y ) e 9 dx + e D (1 -
i=0 1! 1!
o

n-1 i n-2 i
= e-n(l-a) M - e ® n_l
i-0 i! i-0 il
Also, (2.2) can be simplified as
n n-2 i
a N
[ e®)dy = -y e
i=0 H

0

In the case we have no information on ¢,

P& isfeasible ] = P[X <Xy, +11=P[Y Xy -Xg)<nl]
i=2

n n-2 i
= [g0dy=1-% e™ o
0 i=0 1!

Next we consider the two parameter exponential distribution. Let X;, X,, ..., X_ be a random sample
of size n from the following density function
Le-o-0®  yx>¢q 6>0

f(x)=16
0 otherwise .

It can be easily seen that the MM estimators of a and O are

& =X-S and 6 =S8,
where nS2/(n-1) is the sample variance. Again, we may Or may not have prior information on &
being positive. Incase & 2 0,

P[&, isfeasible]= P[S<X<Xy +S]. (2.4)
If we have no restriction on ¢, then

. P [ & isfeasible ] = P[X <Xy, +S]. 2.5)




Observe that it is not very easy to compute (2.4) and (2.5) explicitly although (2.4) depends

only on /8 and (2.5) is independent of & and 8. We perform some Monte Carlo simulations to

estimate (2.4) and (2.5) in Section 5.

3. UNIFORM DISTRIBUTION
Suppose X,, Xy, ..., X, is a random sample of size n from U(0,0). Then observe that the MM
estimator of 0 is 8, = 2X. Therefore,
P [ is feasible ] =P [ X, < 2X for all i = 1,2,..,n]

n n-1
= - n-2
_p[nx(n)szi; Xy 1=1 ~P[§ Xp s = X ]

0 e (22 .
n i {n- s \n-2
=1 - —— («-1)'( . ) (z-ix), * dzdx
G“I‘(n—l){ { iz=:0 1

n-2

0 [_n_;g] . =z

_ _ n _Ni nj i \RT2

=1 —__B"I‘(n 1){ >, (-1) ( : ) £ (z-ix)} * dzdx
o (5571

= - : i(n 1 11___2_ _ 3wl ¢ n-l

1 B“I‘(n){ng: (1)( i)(z i x®dx
[_2_] n-2  ..-1
=t- Z -1y I‘(1+1)I‘(n 1)( A 3.1

where (z - ix), denotes max{0, (z - ix)}. Observe that (3.1) does not depend on 6 and it is a

decreasing function of n. Simple numerical computations on MAPLE show that (3.1) decreases to

14 as n tends to .

Now suppose that X, X,, ..., X, is a random sample of size n from U(6-a, 6+a), where a is

©




known and 0 is unknown. The corresponding density function is

(2a)! if 6 -a<x<0 +a (3.2)

Fx) = 0 otherwise.

Without loss of generality let us assume that a = %2. The MM estimator of 0 is én =X. Itis
interesting to note that ML estimator is not unique in this case, for example any value between (X,

-Y4) to (Xt ¥2) maximizes the likelihood function although MM estimator is unique.

A e 1wl 1
P [ 6 is feasible ] =P [ X 5 < Xy € Xy < X+2 ]
n
=P [ (-DX, - Xy - Z X ¢ @-DXgy = Xy * 7] (33)
i= -1

Observe that the conditional distribution of E X, given X, X is the same as the distribution
i=2

of the sum of random sample of size (n-2) from U(X, Xw)- Therefore, (3.3) can be evaluated

NI:!

explicitly but the actual expression become very messy. However, it is clear that it does not depend

on 8. We have performed simulations to estimate (3.3) in section 5.

4. GENERALIZED PARETO DISTRIBUTION
In this section we consider some feasibility problem concerning Generalized Pareto (GP)
distribution. The GP distribution was introduced by Pickands (1975) and it has applications in a
number of fields including reliability studies and the analysis of environmental extreme events. It is
a two parameter distribution and it contains uniform, exponential and Pareto distribution as special

cases.

Let the random variable X follows a GP distribution, then X has the density function




1.
Ta-Bc " kw0 |
o 4.1)
—exp(-x/a) ifk =0,

f(x) =

Ql— R

L

the range of xis 0 < x <~ fork<0Oand 0 < x < o/k for k > 0. The parameters of the distribution
are o, the scale parameter, and k, the shape parameter. The special cases k =0 and k = 1 yield, the
exponential distribution and uniform distribution on [0, ], respectively. For k < 0 the ordinary
Pareto distribution is obtained.
It is important to observe that for k <0, the ™ moment of X exists if k > -1/r (see Hosking
and Wallis; 1987) and it can be easily seen that if 0 > k > -1/2, then
E(X) = o/(1+k) and Var(X)= o2/ ((1+k)* (1+2Kk)) 4.2)

On the other hand if k > 0 then all the moments of X exist, which can be easily seen as follows for

k>0
ak i -1
Ex™ = L [xma - By T i
o 0 o
o + !
= [y" (I-y* dy
km 1 A
I B(m+1, l) = m! o® (4.3)
m L k. (km+1)(k(m-1)+1)...(k+1)

and for exponential distribution (k = 0) all the moments exist. However, Hosking and Wallis (1987,
p. 340) commented that for k > ¥, X has infinite variance, which is not correct.
Therefore for -2 < k < 0, the MM estimators of & and k exist and they are as follows:

(Hosking and Wallis; 1987)




~

. x?
o = +1) and k = (E-z- - 1) (4.4)

A
S ><|

1

( -

S 2
where X and nS%(n-1) are sample mean and variance respectively.

For k > 0, the MM estimators exist and they are the same as in defined (4.4). It is important
to note that for the GP distribution the ML estimators do not exist for k > 1 (Grimshaw (1993)). This
is because for k > 1 the likelihood function converges to = as o/k tends to X, from the upper side.
However, the MM estimators do exist in this case.

Now we would like to consider the feasibility of the MM estimators in two different

situations, namely for k > 0 and for -2 <k <0. This is because for k = 0, the MM estimator of & is

always feasible.
Casel: k>0.
P ﬁn and &_ are feasible ]

=P[k >0 and X, <&, /k, forali=12,..0]

I
e
Lo
Y
o
5

[= X
>

I
s~}
| amen |
\%
[
B
Y%
e
£

< (CV)2<1], 4.5)

where C.V. denotes the coefficient of variation.

CaseII: -2<k<0.
In this case &_ is always feasible.

<k, <0]

P [k is feasible ] = P[ - %




= P[X?<S2]= P[(CV)>1]. (4.6)
In both the cases (4.5) and (4.6) it is not easy to evaluate the probabilities explicitly. We propose to
use Monte Carlo simulation to estimate (4.5) and (4.6). However, observe that (4.6) converges to
1 as n tends to « due to the strong law of large numbers.

Dupuis (1996) considers the case when 0 <k < 2 but unfortunately she does not consider the
feasibility of f(n. Instead, she considers the feasibility of &_ and f(n given that f<n> 0, which may not

be correct. Observe that it is important to know the range of k because the likelihood function, the

 range of the data vector and also the feasibility questions are quite different in different ranges. For

example when k = 0, there is no question of feasibility of MM estimators. In fact in our simulation
it is observed that P[ f(n is infeasible] may not be negligible for small positive k. Another point
regarding the work of Dupuis (1996) we would like to mention that she made the following statement
IfX,, X,, ..., X, is a random sample of size n from GP distribution, then
P[Al X <é/k, forali=12,.,n] 4.7
=(P[X<da/k 1) (4.8)
Here & and fcn are same as defined in (4.4), and X is GP with parameters ¢ and k. We feel that
(4.7) does not imply (4.8) due to the fact that the events in (4.7) are not independent. Unfortunately

her most of the analysis and approximations are based on (4.8).

5. NUMERICAL EXPERIMENTS
In this section, we present some Monte Carlo simulation results to estimate (2.9), (2.5), (3.3),
(4.5) and (4.6) where the explicit expressions are not possible. All these simulations are performed

on Sun Workstation using the random deviate generator RAN2 of Press et al (1986). In all the cases




we use RAN? as the uniform random deviate generator and using the proper transformation we
obtain the different distributions. All the results reported here are based on 10,000 replications. We
use the sample sizes 10, 15, 50, 100, 500, and 1,000 in all the cases.

In the case of two parameters exponential distribution, to estimate the probability of feasible MM
estimator, when there is a prior information on ¢ (i.e. (2.4)) and when there is no prior information
on ¢ (i.e. (2.5)), we consider & = .25, .50, 1.0, 2.0 and 6 = 1.0 (without loss of generality). The
results are reported in Table 1. It is observed that when we have restrictions on a, namely a > 0, then
for fixed o as n increases the probability of feasible MM estimator of e increases and it seems it is
increasing to ¥ as in the case of one parameter exponential family. For fixed 6, the probability of
feasible estimator of ¢ increases as & increases to 1 and after that (for ¢ > 1) it remains constant. We
compute the result for & = 3 and & =4 also and it is exactly same as & = 2 and we do not report the
results separately. As sample size increases the probability becomes independent of . When we do
not have restrictions on ¢, then the feasible probability is independent of & and 0 and it is the same
probability as we obtain in the previous case for & > 1 (last row of Table 1).

In case of uniform distribution to estimate the probability of feasible MM estimator (i.e. (3.3))
we consider 8 = ¥ without loss of generality because (3.3) is independent of 8. The results are
reported in Table 2. From the table it is clear that as sample size increases the probability of feasible
MM estimator is gradually decreasing and it seems the probability is converging to zero. This may
be due to the fact that the convergence of X, (Xq) to 8 - %2 (8 + ¥%) is much faster than the

convergence of X to 6.

In case of GP distribution to estimate the probability of feasible MM estimators for -/ <k

an




<0 (i.e. (4.6)) we consider k=-4,-3,-2, -.1 and for k > 0 (i.e. (4.5)) we takek=.1, .2, .3, 4, .5,
75, 1.0, 1.25, 1.50, and & = 1 (without loss of generality) in both the cases. The results for -2 <k
< 0 and for k > 0 are reported in Table 3 and Table 4 respectively.

In Table 3, when -4 <k <0, it is observed that as sample size increases the probability is
increasing to one. It is also observed that as k approaches zero, the probability decreases and it is
quite prominent at least for small sample sizes. The results are quite different for k > 0 in Table 4.
Distinct features are observed for 0 <k < ' and for k > %2. For 0 <k <':it is observed that as n
increases the probability is increasing and it seems it is increasing to one. On the other hand ifk 2

Y5 the probability is quite erratic and no such conclusions can be made.

6. CONCLUSIONS

In this paper we consider the problem of feasibility of MM estimators when there are some
restrictions on the parametric space and/or the range of the data depending on parameters. We feel
it is an important problem although it did not get enough attention in the literature. Since the MM
estimators are always consistent (by strong law of large numbers), it is expected that they will be
feasible also. But we observe some of the counter intuitive results in some situations. Simulation
results indicate that the feasibility might even converge to zero also. Since the MM estimators do not
take into consideration the restrictions on the parametric space and/or the range depending on the
parameters, this work clearly suggests that practitioner must check out the feasibility of the MM

estimators in such situations before using them.
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Table 1

Two parameters exponential (Restrictions on ¢)

76 =1
a\n 10 15 50 100 500 1000
25 .3450 .3456 .4003 4358 4739 4758
.50 3914 4022 4262 4455 4739 4758
1.0 .4049 4118 4275 .4457 .4739 4758
2.0 .4060 4122 4275 4457 4739 4758
Table 2
Uniform [0 - ¥, 0 + ¥4]
n 10 15 50 100 500 1000
Prob .6998 .6093 .3701 2665 .1203 .0876
Table 3
Generalized Pareto: =1, k<0
k\n 10 15 50 100 500 1000
-4 5621 6894 .9506 .9954 1.00 . 1.00
-3 .5024 6015 .8901 9756 1.00 1.00
-2 4143 .5120 7920 9130 .9996 1.00
-1 3328 4043 .6079 7264 9667 .9967




Table 4

Generalized Pareto k>0, ¢ =1

k\n 10 15 50 100 500 1000
.10 7169 7351 .8317 .8986 9932 .9998
.20 .7469 .7901 .8974 .9461 .9808 .9865
30 7524 .7903 .8744 .8909 9182 9333
.40 1375 1722 .8088 .8143 .8261 .8275
.50 1179 7336 7354 7314 1221 1275
15 .6390 .6443 6145 5924 .5669 .5539
1.0 5777 .5600 5378 5275 5134 5118

1.25 5187 52535 4997 .5016 4964 4974

1.50 .5038 4865 4886 4786 4923 4961




