
enter for
oundations of
Intelligent
ystems

Technical Report
98-10

Explicit Provability: The Intended
Semantics for Intuitionistic and

Modal Logic

S. N. ARTEMOV

September 1998

CORNELL
UNIVERSITY

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188.) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

1 March 1999
3. REPORT TYPE AND DATES COVERED

jec HNicfli.

4. TITLE AND SUBTITLE

EXPLICIT PROBABILITY: THE INTENDED SEMANTICS FOR
INTUITIONISTIC AND MODAL LOGIC

5. FUNDING NUMBERS

DAAH04-96-1-0341

6. AUTHOR(S)

S.N. ARTEMOV

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

ft*x> 3^n3.!3r~m/Wvu^

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) The intended meaning of intuitionistic logic is given by the Brouwer-Heyting-Kolmogorov
(BHK) semantics which informally defines intuitionistic truth as provability and specifies
the intuitionistic connectives via operations on proofs. The natural problem of formalizing
the BHK semantics and establishing the completeness of propositional intuitionistic logic
Int with respect to this semantics remained open until recently. This question turned
out to be a part of the more general problem of the intended semantics for Gödel's modal
logic of provability Si with the atoms "F is provable" which was open since 1933. In this
paper we present complete solutions to both of these problems.

We find the logic of explicit provability (CP) with the atoms "f is a proof of F" and
establish that every theorem of Si admits a reading in £P as the statement about explicit
provability. This provides the adequate provability semantics for Si along the lines of a
suggestion made by Gödel in 1938. The explicit provability reading of Gödel's embedding
of Int into Si gives the desired formalization of the BHK semantics: Int is shown to
be complete with respect to this semantics. In addition, £P has revealed the relationship
between proofs and types, and subsumes the A-calculus, modal A-calculus and combinatory
logic.

14. SUBJECT TERMS
proof theory, provability logic, modal logic, lambda calculus, S4,
intuitionistic logic, BHK semantics

15. NUMBER OF PAGES

45
16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

DTIC QUALITY IN3PECTED 4

Technical Report
98-10

Explicit Provability: The Intended
Semantics for Intuitionistic and

Modal Logic

S. N. ARTEMOV

September 1998

Explicit provability: the intended semantics
for intuitionistic and modal logic *

Sergei N. Artemov *

September, 1998

Abstract

The intended meaning of intuitionistic logic is given by the Brouwer-Heyting-Kolmogorov
(BHK) semantics which informally defines intuitionistic truth as provability and specifies
the intuitionistic connectives via operations on proofs. The natural problem of formalizing
the BHK semantics and establishing the completeness of propositional intuitionistic logic
Xnt with respect to this semantics remained open until recently. This question turned
out to be a part of the more general problem of the intended semantics for Gödel's modal
logic of provability Si with the atoms "F is provable" which was open since 1933. In this
paper we present complete solutions to both of these problems.

We find the logic of explicit provability {CP) with the atoms "t is a proof of F" and
establish that every theorem of Si admits a reading in CP as the statement about explicit
provability. This provides the adequate provability semantics for Si along the lines of a
suggestion made by Gödel in 1938. The explicit provability reading of Gödel's embedding
of Xnt into Si gives the desired formalization of the BHK semantics: Xnt is shown to
be complete with respect to this semantics. In addition, CP has revealed the relationship
between proofs and types, and subsumes the A-calculus, modal A-calculus and combinatory
logic.

1 Intended provability semantics for intuitionistic logic

According to Brouwer, intuitionistic truth means provability: "a statement is true if we have a
proof of it, and false if we can show that the assumption that there is a proof for the statement
leads to a contradiction" ([72], p.4). This semantics is implicit in some of Brouwer's papers,

•Technical Report CFIS 98-10, Cornell University
department of Mathematics, Cornell University, email:artemovCmath.cornell.edu and Moscow Univer-

sity, Russia. The research described in this paper was supported in part by ARO under the MURI program
"Integrated Approach to Intelligent Systems", grant DAAH04-96-1-0341, by DARPA under program LPE,
project 34145, and by the Russian Foundation for Basic Research, grant 96-01-01395.

e.g. [16]. In 1930 A. Heyting suggested the axiom system Int for intuitionistic logic ([28])1.
In 1931-34 Heyting and Kolmogorov made Brouwer's definition of intuitionistic truth explicit,
though informal, by introducing what is now known as Brouwer-Heyting-Kolmogorov (BHK)
semantics. BHK semantics is widely recognized as the intended semantics for intuitionistic
logic ([18],[19],[20],[24],[37],[47],[50],[72],[73],[74],[75],[76]). BHK semantics gives an informal
explanation of the truth of intuitionistic connectives. A statement is true if it has a proof, and
a proof of a logically compound statement is given in terms of the proofs of its components.
The description uses the unexplained primitive notions of construction and proof.

• A proof of a proposition A AB consists of a proof of A and a proof of B,

• a proof of A VZ? is given by presenting either a proof of A or a proof of B,

• a proof of A—*B is a construction which, given a proof of A returns a proof of B,

• absurdity _L is a proposition which has no proof and a proof of ->A is a construction
which, given a proof of A, would return a proof of _L.

This semantics was partially introduced by Heyting [29] (clauses for conjunction and disjunc-
tion), and by Kolmogorov [34] (clauses for implication and negation). The above formulation
of BHK semantics appeared in [30]. For further comments one may consult [18],[20],[24],
[69],[72],[73],[74].

The natural problem of formalizing BHK semantics and establishing the completeness of
Int with respect to this semantics remained open until recently despite a long history of
studies in this area (see section 3 of this paper).

To be sure, there are many models of different natures known for Int. A semantics
for Int is adequate if Int is (sound and) complete with respect to this semantics.
A number of adequate semantics for intuitionistic logic have been found: alge-
braic (Birkhof, [11]), topological (McKinsey-Tarski, [48]), Kripke semantics ([41]),
and some others. Algebraic models for Int are given by pseudo-boolean algebras,
which generalizes the boolean algebra semantics of classical logic. Topological
semantics for Int is similar to set-theoretical semantics for classical logic. In a
given topological space propositional variables are evaluated by arbitrary subsets,
conjunction and disjunction operate in the usual set-theoretical manner, while in-
tuitionistic implication and negation operate as classical implication and negation
followed by the interior operation. Kripke model for Int is a collection of the usual
0 — 1 evaluations of atomic propositions (possible worlds) connected by a reflexive
and transitive binary accessibility relation and satisfying knowledge preservation

xThe name Int will signify propositional intuitionistic logic.

principle: if a statement holds in some world, then it also holds in all the worlds
accessible from the given one. Again, in every world the truth of conjunction or
disjunction is determined according to the usual classical truth tables. Implication
or negation is true in a world iff it is true classically in every world accessible from
the given one. Comprehensive surveys of these and other semantics for intuition-
istic logic can be found in [18],[61],[72].

BHK semantics gave rise to intensive studies of constructive semantics for intuitionistic the-
ories, first of all readability. The basic notions of realizability were defined along the lines
of BHK clauses with different constructive objects instead of proofs: computable functions
and their codes (e.g. in [32],[33]), computable operations of higher types (e.g. in [38]), partial
recursive operations (e.g. in [21],[22]), etc. For the references one may consult recent surveys
on realizability and constructive semantics [8],[71].

Note that the standard realizability semantics for Xnt is not adequate. First of all,
following Kleene ([32]) one should distinguish between intuitionistic and classical
understanding of realizability semantics for intuitionistic theories. Intuitionistic
realizability enjoys some nice completeness properties but does not provide an
independent semantics for Xnt. For example, as follows from [58], a formula F
is provable in intuitionistic predicate logic iff all arithmetical instances of F are
provably realizable in a certain extension HA+ of intuitionistic arithmetic. Such
a result relates Xnt with a formal theory based on the same Xnt and thus is not
intended to give an independent semantics for the latter. On the other hand, clas-
sical realizabilities (Kleene realizability [32], function realizability [33], modified
realizability [38], Medvedev's calculus of finite problems [50] and its variants), give
conditions necessary but not sufficient for Xn£(cf.[18],[71],[74],[75]).

It turned out that the natural deduction proofs for Xnt can be transliterated by the Curry-
Howard isomorphism into the language of typed A-terms (see, for example, [24],[20],[72]). The
inductive definition of the Curry-Howard isomorphism goes along the lines of BHK clauses,
where A-terms play the role of BHK proofs. Though very important for establishing connec-
tions between derivations/formulas of Xnt and terms/types in A-calculus, a Curry-Howard
presentation does not give an independent semantical characterization for Xnt. Indeed, un-
der this presentation the realization of a sentence is modulo to isomorphism a derivation of
this sentence in the same Xnt. Loosely speaking, from the BHK semantics perspective, the
Curry-Howard isomorphism provides a trivial solution: a formula F is true, by definition, if
F is derivable in Xnt.

2 Classical vs. intuitionistic BHK semantics

Despite strong similarities between Heyting's and Kolmogorov's descriptions of the provability
semantics for Int, their approaches had fundamentally different objectives.

Heyting explained propositional intuitionistic logic Int in terms of the intuitionistic under-
standing of constructions and proofs. His semantics gives a partial analysis of the intuitionistic
meaning of a statement and does not intend to provide a foundation for Int independent of
the intuitionistic assumptions.

Kolmogorov in [34] intended to interpret Int on the basis of the usual mathematical notion
of problem solution (e.g., proof), and thus to provide a definition of intuitionistic logic within
classical mathematics. Kolmogorov suggested reading Int as the calculus of solvable schemes
of problems. The basic notions of Kolmogorov's interpretation are problems and problem
solutions. Each proposition denotes a problem. Solutions of the compound problems are
described in terms of the solutions of their components along the lines of the BHK clauses
above (reading "proof as "solution"). A problem scheme A(p) is solved, if there exists a
general method of solving the problem A for any particular choice of the problems p and
their solutions. Kolmogorov noticed that all axioms of the Heyting calculus for propositional
intuitionistic logic Int stood for the solved problem schemes, the rules preserved the property
of a scheme being solved, and thus all schemes derived in Int were solved. Kolmogorov also
assumed implicitly that all such schemes could be derived from the Heyting axioms for Int
and therefore Int was the calculus of the solved problem schemes. In his comments [35] of
1985 Kolmogorov elaborates:

"The paper [34] was written in a hope that the logic of solutions of problems
would eventually become a permanent part of a logic course. It was supposed to
create a unified logical technique dealing with two types of objects: statements
and problems."2

This difference between the Heyting and Kolmogorov semantics for Int was acknowledged by
Heyting himself in [30]. A. Troelstra in [70] characterized Kolmogorov's interpretation of Int
as "meaningful independently of intuitionistic bias."

Since the authors of the name UBHK semantics" were apparently aware of the differences
between the Heyting and Kolmogorov approaches, we do not suggest changing this well es-
tablished name. However, for the purposes of formalization of BHK semantics it is important
to distinguish between classical and intuitionistic interpretations of BHK clauses. We suggest
the name classical BHK semantics for the former and intuitionistic BHK semantics for the
latter. Thus, Kolmogorov's reading of Int as the logic of problem solutions may be considered
classical BHK semantics.

2"IVaiislated from Russian by SA.

A mathematical explication of intuitionistic BHK semantics would depend on a choice of
intuitionistic theory to take BHK proofs from. Eventually, it would lead to an interpretation
oiXnt in a system based on Xnt and presumably more complicated than Int. Such a semantics
could not provide an independent foundation for intuitionistic logic. We will not address the
issue of intuitionistic BHK semantics in this paper.

We demonstrate that classical BHK semantics, in turn, admits an exact mathematical
formalization, which indeed provides an adequate semantics for Int on the basis of the usual
classical notion of proof.

3 Semantics of Xnt via modal provability logic

Probably the first paper on formal provability semantics for intuitionistic logic was written
in 1928 by Orlov ([57]). He introduced a unary logical connective (we call this connective □,
for the sake of notational uniformity) with the informal reading of OF as "F is provable".
Orlov suggested prefixing all subformulas of a given propositional intuitionistic formula by □,
and understanding the logical connectives in the usual classical way. Orlov's modal axioms
for provability coincide with the ones for the modal logic <S4, which was later recognized as
the modal logic for provability ([25]). Orlov used a certain proper fragment of classical logic
in the background, thus making his system weaker than «S4. Nevertheless, he succeeded in
deducing a number of properties of the provability operator and reproducing some basic laws
of intuitionistic logic, e.g. -i-i-ia f* ->a.

Apparently independent of [57], Gödel in 1933 introduced the modal logic of provability
and explicitly defined Xnt in this logic. Gödel's provability logic has the same modal axioms
and rules as the one from [57], i.e.

• GF-+F,

• D(F-+G)-»(aF->oG),

• DF-+DDF,

• Fr- DF (necessitationrule),

admits all axioms and rules of classical logic, and therefore coincides with the classical modal
logic «S4. Gödel considered the translation t(F) of an intuitionistic formula F into the classical
modal language similar to the one from [57]: "box each subformula of F". Gödel established
that

Int \- F =*■ Ä h t(F),

thus providing an exact reading of the Int formulas as statements about provability in classical
mathematics. He conjectured that the inverse >£= also holds. This conjecture was eventually
established in [49].

However, the ultimate goal of defining Int via the notion of a proof in classical math-
ematics had not been achieved because 54 was left without an exact intended semantics of
the provability operator D. Gödel himself was the first who addressed the issue of provability
semantics for 54 ([25], cf.[70]). He pointed out that the straightforward reading of OF as "F
is provable in a certain formal system" contradicted his incompleteness theorem.

Let us consider first order arithmetic VA. Let i. be the boolean constant false;
then the 54-axiom DJ. —)■ _L corresponds to the statement Consis VA, expressing
consistency of VA. By necessitation, 54 derives G(a±-»JL). The latter formula
expresses the assertion that Consis VA is provable in VA, which is false according
to the second Gödel incompleteness theorem.

In [26] (cf.[59]) Gödel again acknowledged the problem of the provability semantics for 54.
This issue was also addressed by Lemmon [44], Myhill [55],[56], Kripke [40], Montague [54],
Mints [52], Kuznetsov & Muravitsky [43], Goldblatt [27], Boolos [12],[14] Shapiro [62],[63],
Buss [17], Artemov [1], and many others. However, the problem of finding an adequate
provability semantics for 54 has remained open.

A principal difficulty here is caused by the existential quantifier over proofs in the prov-
ability formula Provable(y), which is 3xProof(x,y), where Proof (x,y) is the standard arith-
metical formula saying "x is the code of a proof of a formula with the code y". The formula
Provable(y) may be characterized as the implicit provability operator, since in a model of
arithmetic Provable(F) does not always guarantee the existence of a proof of F. Indeed, in
a given model of VA an element that instantiates the existential quantifier in 3xProof(x, F)
may be nonstandard. In this case 3xProof(x,F) (i.e. Provable(F)) is true in the model, but
there is no "real" 7M-derivation behind such an x. This explains why the reflection principle
Provable(F)-*F is not derivable in VA: the formula Provable(F) does not necessarily deliver
a "real" proof of F.

This consideration suggests the idea of introducing a kind of explicit provability logic
by switching from the formulas 3xProof(x,F) to the formulas Proof(t,F) and replacing the
existential quantifier on proofs in the former by Skolem style operations on proofs in the
latter. The usual Skolem technique, however, does not work here, since there are no uniform
commutation laws for the quantifiers and the provability operator.

Some of these operations appeared in the proof of Gödel's second incompleteness
theorem. Within that proof (cf.[12],[14]),[51],[65]) in order to establish what are

now known as Hilbert-Bernays-Löb derivability conditions one constructs com-
putable functions m(x,y) and c(x) such that

VA V Proof (s, F-*G) A Proof (t, F) -» Proof (m(s, t),G),

VA h Proof (t, F) -»■ Proof (c(t), Proof (t, F)).

Then those facts are relaxed to their simplified versions

VA h Provable(F -¥ G) A Provable(F) -+ Prot>aMe(G),

7M h Provable{F) -*■ Provable (Provable (F)),

sufficient to establish the incompleteness theorem.

In one of his lectures [26] in 1938 (first published in 1995, see also [59]) Gödel sketched an
explicit version of Si 3 with the basic proposition ut is a proof of F" and operations similar to
m(x,y) and c(x). Although this sketch does not contain exact definitions, it shows the way
to explain the reflexivity principle for provability logic, which was the major difficulty in Si.

Gödel's proposal generalized the problem of formalization of classical BHK semantics for
Int to the problem of building an explicit provability logic: presumably, the former was
derivable from the latter. The questions about an appropriate language and a complete set
of axioms for explicit provability logic, as well as the question about its ability to realize Int
and Si had remained open.

Kreisel in [37],[39] (apparently without knowledge of [26]) developed a formal theory of
constructions with a basic predicate like Gödel's "t is a proof of F", but with only partial
success (cf.[59],[72],[76]).

In this paper we present a recent solution of the following problems, discussed above.

1. To give the intended semantics and to find a complete axiom system for the explicit
provability logic sketched by Gödel in 1938 ([26]).

We consider the logical language in Gödel's format "t is a proof of F" and give its exact
provability semantics. We demonstrate that one more operation should be added to Gödel's
sketch of the explicit provability logic in order to enable it to emulate the entirety of Si. We
call the resulting system the Logic of Proofs (£P)4. Here we establish the soundness and
completeness of CP with respect to the intended provability semantics (Theorem 7.1).

Gödel's sketch was rather clear about the propositional principles of explicit provability logic. It also
mentioned possible principles involving the first order quantifiers, but was not specific on this matter. We
consider the propositional part of Gödel's sketch only.

*CP was found by the author independently of Gödel's paper [26]. The first presentations of CP took place
at the author's talks at the conferences in Münster and Amsterdam in 1994. Preliminary versions of CP along
with the completeness theorem and realization of Si in CP appeared in Technical Reports [4], [6], cf. also a
survey [31]. Note that despite its title the paper [3] does not introduce CP.

2. To find an adequate provability semantics for the Gödel provability logic «Si ([25]).

We establish that CP realizes all of 54 by assigning proof terms to the modalities in every
»Si-derivation (Theorem 8.2). This gives an adequate provability model for «Si along the lines
of Gödel's suggestion in [26].

3. To formalize the classical BHK semantics for Xnt and to establish the completeness of
intuitionistic logic with respect to this semantics.

We consider two realizations of Xnt in CP. The first one is defined by Gödel's translation
of intuitionistic formulas into modal language "box all subformulas", with the subsequent
realization in CP. The second one is the McKinsey-Tarski translation ("box all atoms and
implications") followed by the realization in CP. Each of those two semantics is established
to be adequate for intuitionistic propositional logic. This confirms Kolmogorov's assumption
of 1932 that intuitionistic logic Xnt coincides with the calculus of solutions to problems in
classical mathematics. CP may be considered as the "unified logical technique dealing with
two types of objects: statements and problems" meant by Kolmogorov in 1932 ([34],[35]).
This also achieves the original objective of Gödel (1933) to define Xnt via the classical notion
of proof.

CV provides a provability semantics for certain areas of logic and applications where main
objects have had informal provability interpretations. For example, CP may be considered
as a generalization of combinatory logic in that it is able to iterate the type assignment ':'.
In particular, CP can express the propositions of the form t: (s: F), which are outside the
scope of the usual combinatory logic. CP naturally contains the defined abstraction operator
*x which is an extension of the defined A-abstraction operator X*x in combinatory logic
(cf.[73]). This generalizes the Curry-Howard presentation of intuitionistic proofs as typed
A-terms. Moreover, through realizations in CP both modality and A-terms receive a uniform
provability semantics and thus may be treated as the objects of the same nature, namely proof
terms.

4 Logic of Proofs

4.1 Definition. The language of Logic of Proofs (CP) contains

the usual language of classical propositional logic
proof variables XQ, ..., xn,..., proof constants ao,..., an,...
function symbols: monadic !, binary • and +
operator symbol of the type Herrn : formula".

We will use a,b,c,... for proof constants, u,v, w,x,y,z,... for proof variables, i, j,k,I,m,n
for natural numbers. Terms are defined by the grammar

p::=Xi | at- | \p\pi-p2 \pi+P2

We call these terms proof polynomials and denote them by p,r,s,t.... By analogy we refer to
constants as coefficients. Constants correspond to proofs of a finite fixed set of propositional
Schemas. We will also omit • whenever it is safe. We also assume that (a-b-c), (a-b-c-d),
etc. should be read as ((a • 6) • c), (((a • b) • c) • d), etc.

Using * to stand for any term and S for any propositional letter, the formulas are defined
by the grammar

<x ::= S \ o\-*o~i | <TIA<T2 | 01VO2 j -ur | t:o~

We will use A, B, C, F, G, H, X, Y, Z for the formulas in this language, and T, A,... for the
finite sets (also finite multisets, or finite lists) of formulas unless otherwise explicitly stated.
We will also use x,y,z,... and p,r,s,... for vectors of proof variables and proof polynomials
respectively. If s = («j,..., sn) and T = (Fi,..., Fn), then s: T denotes (Sl: Fi,..., sn : Fn),
V T = -Fi V... V Fn, /\ T = Fi A ... A Fn. We assume the following precedences from highest
to lowest: [,-,+,:,->, A, V,—►. We will use the symbol = in different situations, both formal
and informal. Symbol = denotes syntactical identity, rEn is the Gödel number of E.

The intended semantics for p :F is "p is a proof of F", which will be formalized in the
next section. Note that proof systems which provide a formal semantics for p: F are multi-
conclusion ones, i.e. p may be a proof of several different F's (see Comment 4.8).

4.2 Definition. The system £P0. Axioms:

AO. Finite set of axiom schemes of classical propositional logic in the language of CP
Al. t:F^F "verification"
A2. t:(F -)■ G) ->■ (s:F -¥ (t-s) :G) "application"
AS.t-.F -}•!«: (t: F) "proof checker"
A4. s:F-> (s+t):F, t:F -+ (s+t):F "choice"

Rule of inference:

F-+G F

Rl- G "modus ponens".

The system £P is £P0 plus the rule

R2. c:A
if A is an axiom AO - A4, and c a proof constant "axiom necessitation".

A Constant Specification (CS) is a finite set of formulas Ci : A\,..., cn : An such that c,- is
a constant, and A,- an axiom AO - A4. Each derivation in CP naturally generates the CS
consisting of all formulas introduced in this derivation by the axiom necessitation rule.

4.3 Comment. Proof constants in CP stand for proofs of "simple facts", namely prepo-
sitional axioms and axioms Al - A4. In a way the proof constants resemble atomic con-
stant terms (combinators) of typed combinatory logic (cf.[73j). A constant c\ specified as
ci: (A -»■ (B -+ A)) can be identified with the combinator kA'B of the type A -> (B -*■ A).
A constant c2 such that c2 : [(A -> (B -> C)) -* ((A -> B) -*• (A -»■ C))] corresponds to the
combinator s^-5-0, of the type (A-+(B-*C)) -»■ ((A-+B)-*(A-*C)). The proof variables
may be regarded as term variables of combinatory logic, the operation "•" as the application
of terms. In general an £P-formula t: F can be read as a combinatory term t of the type
F. Typed combinatory logic CL_» thus corresponds to a fragment of CP consisting only of
formulas of the sort t: F where t contains no operations other than "•" and F is a formula
built from the propositional letters by "—f only.

There is no restriction on the choice of a constant c in R2 within a given derivation. In
particular, R2 allows to introduce a formula c: A(c), or to specify a constant several times
as a proof of different axioms from AO - A4. One might restrict CP to injective constant
specifications, i.e. only allowing each constant to serve as a proof of a single axiom A within a
given derivation (although allowing constructions c: A(c), as before). Such a restriction would
not change the ability of CP to emulate classical modal logic, or the functional and arithmetical
completeness theorems for CP (below), though it will provoke an excessive renaming of the
constants.

Both CPo and CP enjoy the deduction theorem

T,A\-B =$> Tb-A^-B,

and the substitution lemma: IfT(x,P) h B(x,P) for a propositional variable P and a proof
variable x, then for any proof polynomial t and any formula F

T(x/t,P/F)\-B(x/t,P/F).

For a given constant specification CS under CPIjCS) we mean CP0 plus CS. Obviously,

F is derivable in CP with a constant specification CS «=>• CPfCS) h F & CP0 \- A CS ->■ F.

4.4 Proposition. (Lifting lemma) Given a derivation V of the type

s-.T^hjrpF,

10

one can construct a proof polynomial t(x,y) such that

s-.T^iAhjßptdfl-.F.

Proof. By induction on the derivation s: T, A h F. If F = s,- :Gi es: T, then put t :=!s;
and use A3. If F = Dj € A, then put t := yj. If F is an axiom AO - A4, then pick a fresh
proof constant c and put t := c; by R2, \- c:F. Let F be introduced by modus ponens from
G -t F and G. Then, by the induction hypothesis, there are proof polynomials u(s, y) and
v(s,y) such that u : (G -> F) and u: G are both derivable in CP from s : T, y : A. By 42,
s:T,y:A t- (w) :F, and we put t := «v. If F is introduced by R2, then F = c: A for some
axiom A. Use the same R2 followed by A3: c: A ->!c: c: A, to get s: T, y: A h!c: F, and put
t :=Ic.

Note that if A r-£p F, then one can construct t(y) which is a product of proof constants
and variables from y such that y : A \~£p t(y): F. It is easy to see from the proof that the
lifting polynomial t(x,y) is nothing but a blueprint of V. Thus CP accommodates its own
proofs as terms.

4.5 Corollary. (Necessitation rule)

\-F ^ \-p:F for some proof polynomial p

This is a special case of lifting. It follows from the proof of lifting Lemma 4.4 that p here is
a blueprint of a derivation of F in CP that is implicitly present in the assertion "h F". Note,
that p is a ground proof polynomial (i.e. p has no proof variables), which does not contain

As we can see in section 8 CP suffices to emulate all «Sl-derivations.

4.6 Example. 541- (DA A OB) -► O(AAB)

In CP the corresponding derivation is

1. A-»(JB->-AAB), by AO,
2. C:(A-»(5-)-AAJB)), from 1, by R2,
3. ar:A->(c-x):(JB-4AAJB),from2, by A2,
4. x: A-> {y:B-> (c -x-y): (AAJ5)), from 3, by A2 and propositional logic,
5. x:A/\y:B -> (c • x • y): (AAB)), from 4, by propositional logic.

4.7 Example. 54 h (DAVDB) -»• D(AVB).

11

In CP the corresponding derivation is

1. A -* AVB, B -+ Av£, by AO,
2.a:(A-+AVS), b:(B -f A VS), by R2,
3. x:A-> (a-x):(AVB), y:B ->■ (fr-y^AVß), from 2, by A2,
4. (a-x):(AVB) -> (a-s+ft-y):(AVB), (6-y):(AVB) -> (a-x+6-y):(AVB), by A^,
5. (x:A Vy:J3) ->• (a-x+6-y):(AV.B), from 4, by propositional logic.

4.8 Comment. The operations "•" and "!" are present for single-conclusion as well as on
multi-conclusion proof systems. On the other hand, "+" is an operation for multi-conclusion
proof systems only. Indeed, by A4 we have s: F A t: G -¥ (s+t): F A (s+t): G, thus s + t
proves different formulas. The differences between single-conclusion and multi-conclusion
proof systems are mostly cosmetic. Usual proof systems (Hilbert or Gentzen style) may
be considered as single-conclusion if one assumes that a proof derives only the end formula
(sequent) of a proof tree. On the other hand, the same systems may be regarded as multi-
conclusion by assuming that a proof derives all formulas assigned to the nodes of the proof
tree. The logic of strictly single-conclusion proof systems was studied in [2], [3] and in [42],
where it meets a complete axiomatization (system TCP). TCP is not compatible with any
modal logic (cf. Comment 8.5) and thus is not directly relevant to the problem of finding
an intended semantics for the modal logic of provability. Therefore, provability as a modal
operator corresponds to multi-conclusion proof systems.

No single operator "i:" in CP is a normal modality since none of them satisfies the property
t: (P—¥ Q) -+(t:P -+t:Q). This makes CP essentially different from numerous polymodal
logics, e.g. the dynamic logic of programs ([36]), where the modality is upgraded by some
additional features. In turn, in the Logic of Proofs the modality is decomposed into a family
of proof polynomials (see section 8).

5 Standard provability interpretation of CP

The Logic of Proofs is meant to play for the notion of proof a role similar to that played by
the boolean propositional logic for the notion of statement. It is shown in sections 5 and 7 of
this paper that CP enjoys the soundness/completeness property:

CP \- F <& F is true under any interpretation .

Any system of proofs with a proof checker operation capable of internalizing its own proofs as
terms (cf.[66]) may be within the scope of CP. In particular, any proof system for first order
Peano Arithmetic PA (cf.[12], [14], [51], [68]) provides a model for CP with Gödel numbers
of proofs being an instrument for internalizing proofs as terms. The soundness (=*>) does

12

not necessarily refer to arithmetical models. However, VA is convenient for establishing the
completeness (<$=) of £P: given CP\f F one can always find a proof system for VA along with
an evaluation of variables in F which makes F false (Theorem 7.1).

In sections 5 and 7 of this paper by Ai and Si we mean the corresponding classes of
arithmetical predicates. We will use <p, ij) to denote arithmetical formulas, /, g, h to denote
arithmetical terms, and i,j,k,l,n to denote natural numbers unless stated otherwise. We
will use the letters u, v, w, x,y, z to denote individual variables in arithmetic and hope that
a reader is able to distinguish them from the proof variables. If n is a natural number, then
n will denote a numeral corresponding to n, i.e. a standard arithmetical term 0'"" where '
is a successor functional symbol and the number of "s equals n. We will use the simplified
notation n for a numeral n when it is safe.

5.1 Definition. We assume that VA contains terms for all primitive recursive functions
(cf. [68]), called primitive recursive terms. Formulas of the form f(x) = 0 where f(x) is a
primitive recursive term are standard primitive recursive formulas. A standard Si formula is
a formula 3xip(x, y) where tp(x, y) is a standard primitive recursive formula. An arithmetical
formula <p is provably Si if it is provably equivalent in VA to a standard Si formula; cp is
provably Ai iff both <p and -up are provably Si.

5.2 Definition. A proof predicate is a provably Ai-formula Prf(x,y) such that for every
arithmetical sentence <p

VAhip •«• for some neu Prf(n,r<p^) holds5.

A proof predicate Prf(x,y) is normal if the following conditions are fulfilled:

1) (finiteness of proofs) For every proof k the set T{k) = {/ | Prf(k,l)} is finite. The
function from k to the canonical number of T(k) is computable.

2) (conjoinability of proofs) For any natural numbers k and I there is a natural number n
such that

T(k)\JT(l)CT(n).

The conjoinability indicates that normal proof predicates are multi-conclusion ones.

5.3 Comment. Every normal proof predicate can be transformed into a single-conclusion
one by changing from

"p proves Fi,..., Fn" to "(p, i) proves Fj, i = 1,..., n".

sWe have omitted bars over numerals for natural numbers n, rip'} in the formula Prf and will do it consistently
throughout this paper.

13

In turn, every single-conclusion proof predicate may be regarded as normal multi-conclusion
by reading

"p proves Fi A ... AFn" as "p proves each of Ft, i = 1,..., n".

5.4 Proposition. For every normal proof predicate Prf there are computable functions
m(xi y), a{x, y), c{x) such that for all arithmetical formulas <p, tp and all natural numbers k, n
the following formulas are valid:

Prf(k,r<p->^) A Prf{n,r^)^Prf{m(k,n),ril)-)

Prf(k, r^)->Prf(a(k, n), ^), Prf(n, ->n) ->Pr/(a(fc, n), <V)

Prf(k, r^)->Prf(c(k),rprf(k, VV)-

Proof. The following function can be taken as m:

Given k, n set m(k, n) = fiz."Prf(z, r\j)n) for all if> such that there are r<p-+ip~l 6
T(k) and r<pn G T(n)» .

Likewise, for a one could take

Given k, n set a(k, n) = /j,z. T(Jfe) U T(n) C T(z)".

Finally, c may be given by

Given k set c(k) = fiz.uPrf{z,rPrf(k,r<pn)n) for all r<pn e T(k)". Such a z
always exists. Indeed, Prf(k,r<pn) is a true Ai sentence for every r(p~* e T(k),
therefore they all are provable in VA. Use conjoinability to find a uniform proof
of all of them.

Note that the natural arithmetical proof predicate PROOF(x,y)

"x is the code of a derivation containing a formula with the code y".

is an example of a normal proof predicate.

5.5 Definition. An arithmetical interpretation * of the £P-language has the following
parameters:

• a normal proof predicate Prf with the functions m(x,y), a(x,y), c(x) as in Proposition
5.4,

14

• an evaluation of prepositional letters by sentences of arithmetic, and

• an evaluation of proof variables and proof constants by natural numbers.

Let * commute with boolean connectives,

(t-s)* = m(t*,s*), {t + s)* = a(t*,s*), (\t)* = c(t*),

(t:F)* = Pr/(F,rF*"1).

Under an interpretation * a proof polynomial t becomes the natural number t*, an £P-formula
F becomes the arithmetical sentence F*. A formula (t:F)* is always provably Ai. Note that
VA (as well as any theory containing a certain finite set of arithmetical axioms, e.g. Robinson's
arithmetic) is able to derive any true Ai sentence, and thus to derive a negation of any false
Ai sentence (cf.[51]). For a set X of £P-formulas under X* we mean the set of all F*'s
such that F € X. Given a constant specification CS, an arithmetical interpretation * is a
CS-interpretation if all formulas from CS* are true (equivalently, are provable in VA). An
£P-formula F is valid (with respect to the arithmetical semantics) if the arithmetical formula
F* is true under all interpretations *. F is CS-valid if F* is true under all GS-interpretations

5.6 Proposition. (Arithmetical soundness of CPQ)

1. IfCP0\~F then F is valid.
2. If CPQ \- F then VA r- F* for any interpretation *.

Proof. A straightforward induction on the derivation in CPQ. Let us check 2. for the axiom
t:F-+F. Under an interpretation * (t:F-+F)* = Prf(t*,rF*^) -> F*. Consider two
possibilities. Either Prf(t*,rF*~l) is true, in which case t* is indeed a proof of F*, thus
VAr-F* and VA r-(t:F-> F)*. Otherwise Prf(t*, rF*"1) is false, in which case being a false
Ai formula it is refutable in VA, i.e. VA h ->Prf(t*, rF*"1) and again VA h {t:F -*■ F)*.

5.7 Corollary. (Arithmetical soundness of CP)

1. IfCP(CS)\-F then F is CS-valid.
2. IfCPl^S) \- F then VA h F* for any CS-interpretation *.

5.8 Comment. The standard provability semantics for CP above may be characterized as
a call-by-value semantics, since the evaluation F* of a given £P-formula F depends upon the

15

value of participating functions. A call-by-name provability semantics for CP was introduced
in [4] and then used in [42], [64]. In the latter semantics F* depends upon the particular
programs for the functions participating in *.

In order to define the call-by-name provability semantics for CP we assume that VA has
the standard set of tools to introduce t-terms. We use a new functional symbol iz.ip(z) for
each arithmetical formula ip(z) and assume that i-terms could be eliminated by using the
small scope convention (cf.[20]). The term iz.<p(z) is called computable if <p(z) is provably
Si. A computable term represents some computable function, every computable function is
represented by a computable term (cf.[51]).

The term iz.<p(z) is provably total if VA r- 3iZ(p(z), i.e. VA proves that there exists a
unique z such that <p(z). In particular, every arithmetical term in a narrow sense, i.e. a
term built from 0 by ', +, x may be regarded as a provably total computable term. A closed
computable term is a computable provably total term t,z.cp(z) such that ip(z) contains no free
variables other than z.

The set of computable terms is closed under substitution. The result of substituting a
closed computable term into a Ai formula is again a Ai formula. Closed computable terms
stand for all computable "names" for natural numbers. There is an algorithm which for any
closed computable term / calculates its value, i.e. the numeral n such that VA h / = n.

An analog of Proposition 5.4 can be established that for every normal proof predicate
Prf there are computable terms m(x,y), a(x,y), c(x) such that if f,g are closed computable
terms, then m(f,g), a(f,g), c(rP) are again closed computable terms and for all arithmetical
formulas (p, ij> the following formulas are valid:

Prfif,r<f-+^) A Prf{g,r^)^Prf(m(f,g),r^)

Prf(f,r<pn)->Prf(a(f,g),r<p->), Prf(g^^)^Prf(a(f,g)^VP)

Prf {f, W-^PrficCT), rPr/(/> r^-ij-,).

Note that c(rf~>) depends on the code of / rather than on the value of /. In particular, it
may be the case that the values of / and g are equal, but cC"/-1) ^ c(rpn).

An interpretation * is defined by the choice of a normal proof predicate Prf with the terms
m(x,y), a(x,y), c(x), an evaluation of propositional letters by sentences of arithmetic, and
an evaluation of proof variables and proof constants by closed computable terms. As before
* commutes with boolean connectives, (t-s)* = m(t*,s*), (t + s)* = a(t*,s*), (It)* = c(rfn),
(t:F)* = Prf(t*,rF*~'). Note that unlike the standard call-by-value interpretation above in
this case we substitute not the numeral of the value of / for the variable x in Prf(x, y) but a
term / itself. Under any interpretation * a proof polynomial t becomes a closed computable
term t*, an £P-formula F becomes an arithmetical sentence F*. A formula (t:F)* is always
provably Ax-

As it was established in [4] CP is sound and complete with respect to this call-by-name
provability interpretation. In fact the soundness in this case can be shown by an easy modifi-

16

cation of the soundness proof for the standard call-by-name interpretation above. In Comment
7.15 we will discuss how to establish the completeness of £P in the call-by-name case.

6 A sequent formulation of Logic of Proofs

By sequent we mean a pair r =>• A, where T and A are finite multisets of £P-formulas. For
T, F we understand V U {F}.

Axioms of CPSo are sequents of the form T,F=^ F,A and r, 1 => A. Along with the usual
Gentzen sequent rules of classical propositional logic, including the cut and construction rules
(e.g. like G2c from [73]), the system £PQ0 contains the rules

t:A,T=>A r=>A,lt:t:A

r=J> A,t:A t x r=> A,t:A ,
 (=>+) ■ (=►+)

r=> A,(t + s):A r=^ A,(s + t):A

T=> A,s:(A^B) r=^ A,t:A '

T =$■ A,(s-t):B
(=H

As will follow from the proof of 7.1 the rule (=$> •) for CPQQ (but not for CPQ) can in fact
be limited by the condition that A -► B must occur in T, A, without losing any provable
sequents.

The system CPQ is CPQ0 plus the rule

 (=>c),
T =>c:A,A

where A is an axiom AO - A4 from section 4, and c is a proof constant.

CPQ~ and CPQQ are the corresponding systems without the rule Cut.

6.1 Proposition. CPQo h T =$> A iff CP0\~ /\T ^\/A, CPQ\-T^A iff CP \-/\T-^
VA.

The proof proceeds by a straightforward induction both ways.

17

6.2 Corollary. £P£S) HF iff CPQ0hCS^ F.

6.3 Definition. The sequent T =*► A is saturated if
1. A -> B G r implies B G T or A G A,
2.A-4BGA implies A G T and B G A6,
3. t:A G T implies A 6 I\
4. !f:*:A G A implies £:A G A,
5. (s + t):A G A implies s:A G A and t:A G A
6. (s • t) : B G A implies /or eac/i X -+ B occurring as a subformula in T, A e#Äer

s:(I->B)6Aort:l€A.

6.4 Lemma. (Saturation lemma) Suppose CPG0 \f T => A. Then there exists a saturated
sequent V =>• A' such that

i. rev, AC A',
2. T' =*> A' is not derivable in CPGQ ■

Proof. A saturated sequent is obtained by the following Saturation Algorithm SA. Given
r =$> A, for each undischarged formula 5 from T U A non-deterministically try to perform
one of the following steps. At the moment 0 all formulas from T U A are available After a
step is performed discharge 5 (make it unavailable). If none of the clauses 1 - 7 is applicable
terminate with success.

1. if S = (A ->• B) G T, then put A into AorS into T,
2. if S = (A -4 B) G A, then put A into T and B into A,
3. if 5 = t:A G T, then put A into T,
4. if S=\t:t:Ae A, then put t:A into A,
5. if 5= (s + t):A G A, then put both s:A and t:A into A,
6. if 5 = (s • t): B G A, then for each Xi,..., Xn such that Xi —»• ß is a subformula in

T, A put either s: {Xi -+ B) or t:Xi into A,
7. if T n A ^ 0 or ± G T, then backtrack. If backtracked to the root node terminate with

failure. When backtracking to a given node make available again all the formulas discharged
after leaving this node the previous time.

The Saturation Algorithm SA terminates. Indeed, A4 is finitely branching and each non-
backtracking step breaks either a subformula of T =>■ A or a formula of the type t: F, where
both t and F occur in T =>• A. There are only finitely many of those formulas, which guarantees
termination. Moreover, SA terminates with success. Indeed, otherwise SA terminates at the
root node T =*• A of the computation tree with all the possibilities exhausted and no way to
backtrack. Then the computation tree T of «SA contains the sequent T =^ A at the root, and

6The clauses concerning other boolean connectives are optional.

18

CPGo axioms at the leaf nodes. By a standard induction on the depth of a node in T one can
prove that every sequent in T is derivable in CPGQ , which contradicts the assumption that
£PGQ 1/ T =» A. The nodes corresponding to the steps 1-5 and 7 are trivial. Let us consider
a node which corresponds to 6. Such a node is labelled by a sequent II =$> 0, st: B, and its
children are 2n sequents of the form II =>• 0, st: B, Y{,..., Y£, where a — [a\ ..., <rn) is an
n-tuple of O's and l's, and

[s:(Xi^B), if<r, = 0
* 1 t:Xi, if<r,- = l.

Here X\,. ..,Xn is the list of all formulas such that Xi —>• B is a subformula of T =» A. By
the induction hypothesis all the child sequents are derivable in CPGö'• In particular, among
them there are 2n_1 pairs of sequents of the form II =► 0', s: (Xi -»• B) and II => Q',t:Xi.
To every such pair apply the rule (=> •) to obtain II =» 0' (we assume that st: B 6 0')-
The resulting 2n_1 sequents are of the form II =£• 0, st: B, Y£,..., Y£. After we repeat this
procedure n — 1 more times we end up with the sequent II =^ 0, st:B, which is thus derivable
in CPQQ.

<

Note that in a saturated sequent r =£> A which is not £7*/J"-derivable the set T is closed under
the rules f.X/X and X-*Y,X/Y.

6.5 Lemma. For each saturated sequent T =>■ A not derivable in CPQQ there is a set of
CP-jormulas T (a completion ofT=$>A) such that

1. T is a provably decidable set, for each term t the set I(t) = {X | t:X € T} is finite and
a function from a code7 oft to a code8 of I(t) is provably computable,

2. F G T implies F € f, A n f = 0,
3. ift-.Xef, thenX e f,
4. ifs:(I-^r)ef andUXjET, then (s -t):Y € f,
5. ift:X e ?, then \t\t:X € f,
6. tft:X£T and s is a proof polynomial, then (t + s) :X € T and (s + t):X € T.

Proof. We describe a completion algorithm COM that produces a series of finite sets of
£P-formulas r0)Tlf T2,.... Let T0 = {F \ F 6 T}.

For each natural number i > 1 let COM do the following:

if i = 3fc, then COM sets

ri+1=Ti[j{(s-t):Y \s:(X^Y),t:X eTi},

7For example, the Gödel number of t.
'For example, the canonical number of the finite set of Gödel numbers of formulas from I(t).

19

if i = M + 1, then COM sets

Ti+1 = Ti\J{\t:t:X \t:X € T,},
t

if i = 3fc + 2, then COM sets

r,+i = r,(J{(s+ *)=*, (* + *):* I t:X e r,-,|«| < ;.}9

Let

t

By definition, Tt- C I\-+i.
It is easy to see that at step i > 0 COM produces either a formula from T or formulas of

theform t:X with the length of t greater than i/3. This observation secures the decidability
of T. Indeed, given a formula F of length n wait until step i = 3ra of COM; F € Tn iff F e ?.
Similar argument establishes the decidability of /(£) from which one can construct the desired
provable computable arithmetical term for I(t).

In order to establish 2 and 3 we prove by induction on i that for all i = 0,1,2,...

A. r,- n A = 0,
B.t:X€Ti => X eTi,
C.X^Y,XeTi => YeTi.

The base case i = 0 holds because of the saturation properties of To = T.
For the induction step assume the induction hypothesis that the properties A,B, and C

hold for i and consider I\+i.

A. Suppose there is F G r,-+i n A but F g T,-. There are three possibilities. If i - 1 = 3fc
then F is (s • t): Y such that s: (X -)■ Y), t: X e I\ for some X. From the description of COM
it follows that (X-+Y) £ T. By the saturation properties of T =» A, since (s • t) :Y e A and
X -t Y occurs in T either s: (X -*■ Y) 6 A or t: X € A. In either case T,- n A ^ 0 which is
impossible by the induction hypothesis.

If i - 1 = 3A; +1 then F is \t:t:X such that t:X e T,-. By the saturation properties of A,
t:X € A. Again rt- n A ^ 0 which is impossible by the induction hypothesis.

If i - 1 = 3k + 2 then F is (t + s): X such that either t: X € I\- or s :X G I\-. By the
saturation properties, from (t + s) :X G A conclude that both t:X € A and s:X € A. Once
again, rt- n A ^ 0 which is impossible by the induction hypothesis.

Thus r,+i n A = 0.

|s| is the length of s, i.e. the total number of variables, constants, and functional symbols in s.

20

B. Suppose p:B £ I\+1 and p:B €" I\. We conclude that in this case B G I\-+i. Indeed,
again there are three possibilities.

If If i-1 = Sk then p: Bis (s -t) :Y such that s:(X-*Y),t:X G I\ for some X. By the
induction hypothesis for I\-, (X->Y),X G Tt- and thus Y G I\. By the inclusion I\- C I\+i,
Y € r,+1.

If i - 1 = 3k + 1 then p: J3 is \t:t\X such that i:A" G I\. Then t:X G I\-+1.
If t - 1 = 3fc + 2 then p:B is (t + s) :B such that either i:B G T,- or s:B G T,-. By the

induction hypothesis, in either case B G T,-, therefore 2? G r,+1.

C. Suppose X->Y,X G r,-+i. From the description of ÖOM it follows that (X-+Y) G T.
By the saturation properties of T =» A, either Y G T or X G A. In the former case we are
done. If X G A then rj+i n A ^ 0, which is impossible by item A of the induction step.

Items 4., 5., and 6. of Lemma 6.5 are guaranteed by the definition of COM. Indeed, if some
if condition is fulfilled, then it occurs at step i and COM necessarily puts the then formula
into r,+3 at the latest.

7 Consolidated completeness theorem

In this section we establish completeness and cut elimination theorems for the Logic of Proofs.

7.1 Theorem. The following are equivalent
i. cpQö t-r^A,
2. CPGo h T =» A,
3. £P0i-Ar->VA,
4. for every interpretation * VA h (/\r —>• V A)*,
5. for every interpretation * the formula (/\T -*\f A)* is true.

Proof. The steps from 1 to 2 and from 4 to 5 are trivial. The step from 2 to 3 follows from
6.1, and the step from 3 to 4 follows from 5.6. The only remaining step is thus from 5 to 1.
We assume "not 1" and establish "not 5". Suppose CPQQ \f T =» A. Our aim now will be
to construct an interpretation * such that (/\T ->• \f A)* is false (in the standard model of
arithmetic).

From the saturation procedure get a saturated sequent V =» A' (6.4), and then make a
completion to get a set of formulas T' (6.5).

We define the desired interpretation * on propositional letters Si, proof variables Xj and
proof constants aj first. We assume that Gödel numbering of the joint language of CP and
VA is injective, i.e.

rE{" = rE2^ f+ Et = E2

21

for any expressions Fx, E2, and that 0 is not a Gödel number of any expression. For a
prepositional letter 5, proof variable x and proof constant a let

s*=l rs^ = rs^ if sen
1 r5"' = 0, if 5 ^ f', x* = raP, a* = ""a"1.

The remaining parts of * are constructed by an arithmetical fixed point equation below.
For any arithmetical formula Prf(x,y) define an auxiliary translation + of £P-terms to

numerals and jCP-formulas to TM-formulas such that S* = S* for any prepositional letter S,
ft = rp for any £p_term t, (t:F)* = Pr/(tt,rFt_l), and t commutes with the prepositional
connectives.

It is clear that if Prf(x, y) contains quantifiers, then t is injective, i.e. F* = G* yields
F = G. Indeed, from F* = G* it follows that the principal connectives in F and G coincide.
We consider one case: {F1-+F2)

i = (s:G)^ is impossible. Since (s:G)f = Prf(k,n) for the
corresponding numerals k and n, this formula contains quantifiers. Therefore the formula
(-Fi-»F2)

T = FJ -> F2
+ also contains quantifiers and thus contains a subformula of the

form Prf(ki,n1). However, (s:G)+ = F^ -> F2
f is impossible since the numbers of logical

connectives and quantifiers in both parts of = are different. Now the injectivity of * can
be shown by an easy induction on the construction of an £P-formula. Moreover, one can
construct primitive recursive functions / and g such that

/(rF\ rPrP) = rßt-\ g(rB^t
rPrf) = rB^.

Let (PROOF, <g>, ©, ■§) be the standard multi-conclusion proof predicate from section 5,
with ® standing for application, © for choice and ft for proof checker operations on proofs
associated with PROOF. In particular, for any arithmetical formulas <p, ip and any natural
numbers k, n the following formulas are true:

PROOF(k, •>->■ V»"1) A PROOF(n,r^) -> Prf(k ® n,r^)

PROOF{k,rip^)^PROOF(k © n,rvT), PROOF (n,ry1) -► PROOF'{k © n, rvT)

PROOF(k, ■>"*) -»• PROOF (W, rPROOF{k, r<pn)"").

For technical convenience and without loss of generality we assume that PROOF (rtn, k) is
false for any £P-term t and any ieu.

By fix.<p(x, y) we mean a function that calculates x such that

<p(x, y) A Vz < a:-.y>(z, y).

It is clear that fj,x.(p(x, y) is computable if <p(x, y) A Vz < x-i<p(;z, y) is provably Ei. There are
two convenient sufficient conditions under each of which fix.cp(x, y) is computable:

<p(x, y) is provably Ai,

22

<p(x,y) is provably Li and functional with respect to x, i.e. <p(ki, n) A<p(k2, n) —>• ki = k2

is true for all ki, k2, n.

By an arithmetical fixed point argument we construct a formula Prf(x,y) such that VA
proves the following fixed point equation (FPE):

Prf(x,y) f+ PROOF(x,y) V
("x = rt~l for some CP-term t and
y = rßt-i for some CP-formula B such that B e I(t)")

Here the arithmetical formula "..." describes a primitive recursive procedure: given x and
y recover t and B such that x = rt~* and y = rßt~l, then verify B G I(t). From FPE it
is immediate that Prf is a provably Ai-formula, since PROOF(x,y) is provably Ai. It also
follows from FPE that VA h V yields Pr/(fc, ""V»"1) for some A; € w.

We define the arithmetical formulas M(x, y, z), A(x, y, z), C(x, z) as follows

M(x, y, z) <->■ ("x = rs~l and y = rt~[for some CP-terms s and t" A z = rs -tn) V

fa; = rs~l /or some CP-term s and y ^ rtn for any CP-term t" A
3u|> = nw.(/\{PROOF(w, rB^) | 5 € 7(a)}) "Az = v®y])V

far ^ ra~? for any CP-term s and y = rt~l for some CP-term t" A
3u["t/ = fiw.(/\{PROOF{w, rB^) | B € 7(0»" A z = x ® u]) V

f "x ^ rs-1 and y 7^ rtn for any CP-terms s and t" A z = x ® y^

A(x, y, z) «-* (*x = ra~l and y = ri~l /or some CP-terms s and t" A z = ra + tn) V

("a; = ra"1 for some CP-term a and y ^ ri~1 /or any CP-term t" A
3u[> = /xtü.(A{7Ji?OOF(tü,rßt"') | £ € 7(a)})" A z = u© y]) V

f "x ^ ra"1 /or any CP-term s and y = ri~l /or some CP-term t" A
3u[Bt/ = iiw.{f\{PROOF(w, rB^) I 5 € 7(t)})" A * = x © t>]) V

(ax ^ rs"1 and y ^ rt~l /or any CP-terms s and t" A z — x © y)

C(x, z) <-*• ("x = T for some CP-term t" A z = rltn) V
("x ^ T for any CP-term t" A
3v['S)=nw.{/\{PROOF{w,rPROOF(t, r<p^)-+Prf{t,r^"1)"1) |<p€T(t)}) * A
z = utg-ffx])

23

Here "..." denotes a natural arithmetical formula representing in VA the condition '...', "u =
pw.if>n is a natural formula representing in VA the function fiw.ip. Note that in the definitions
above all these functions are computable since all the corresponding ^'s are provably Aj.
Therefore M(x,y,z), A(x,y,z) and C(x,z) are provably Ex. Moreover, these formulas are
functional with respect to z. By the necessary conditions above the functions m(x, y), a(x, y)
and c(x) are computable.

We continue defining the interpretation *. Let Pr/for * be the one from FPE,

m(x, y) := fiz.M(x, y, z), a(x, y) := fxz.A(x,y, z), c(x) := fj,z.C(x, z).

7.2 Lemma.
a) t* = tf for any CP-term t,
b) B* = Bf for any jCP-fortnula B.

Proof. a) Induction on the construction of an £P-term. Base cases are covered by the
definition of the interpretation *. For the induction step note that according to the definitions,
the following equalities are provable in VA:

{s • t)* = m{s*, t*) = m(r^, T) = rs • f = (s • t)\

(s +1)* = a(s*, t*) = a(rs^, T) = rs + T = (s + t)\

{\ty = c(t*) = c(T) = nr = (!*)+.
b) By an induction on B we prove that B* and B+ coincide. The atomic case when B is a
propositional letter holds by the definitions. If B is t:F, then (t:F)* = Prf(t*,rF*~l). By
a), t* = ft. By the induction hypothesis, F* = F+ which yields rF*~> = rFt"1. Therefore
Pr/(t*,rF*n) = Pr/(tt,rFt"1) = (t:F)*. The inductive steps are trivial.
<

7.3 Corollary. The mapping * is injective on terms and formulas of CP. In particular, for
all expressions Ei and Ei

JP * J? * —v. T? T?
EJ\ — £/2 =?• tti\ = Ü/2-

7.4 Corollary. X* is provably Ax for any CP-formula X .

Indeed, if X is atomic, then X is provably Ai by the definition of *. If X is t:Y, then (t:Y)*
is Prf{t*,rY*^). By Lemma 7.2,

VA \- Prf(t\rY*^) ++ Pr/CT^y*-1).

24

The latter formula is provably Ai, therefore (t: Y)* is provably Aj. Since the class of provably
Ai formulas is closed under boolean connectives X* is provably Ai for each X.

7.5 Lemma. If X £ f', then VA h X*, if X € A', then VA h -df*.

Proof. By induction on the length of X. Base case, i.e. X is atomic or X = t: Y. Let
X be atomic. By the definition of *, X* is true iff X 6 f'. Let X = t: Y and t: Y £ f'.
Then VA h "Y e /(*)"• By PP£, 714 h Pr/C^VY^). By Lemma 7.2, VA h Pr/(i*,rY*n).
Therefore 7Mh(i:Y)*.

If t:Y € A', then t:Y £ T' and "Y € /(<)" is false. The formula PROOF{t* ,rY^) is also
false since t* is rf (by Lemma 7.2) and PROOFCf1, k) is false for any k by assumption. By
FPE, (UY)* is false. Since (t:Y)* is provably Ax (Lemma 7.4) VA r- -*(t:Y)*.

The induction steps corresponding to boolean connectives are standard and based on the
saturation properties of T' =» A'. For example, let X = Y ->■ Z € f'. Then Y -> Z 6 T', and
by Definition 6.3, Y e T' or Z € A'. By the induction hypothesis, Y* is true or Z* is false,
and thus (Y ->■ Z)* is true, etc.

7.6 Lemma. 7M I- <p &■ Prf(n, r(pn) for some n Gw.

Proof. It remains to establish (<=). Let Prf(n, ryTl) for some n€u. By FPE ,

Pr/(n, r^) =► PROOF{n, r¥>"1) or ryP = <~B^ for some £ such that t:B <E f\

In the latter case by the saturation property of T', B € V. By Lemma 7.5, VA \- B*. By the
injectivity of the Gödel numbering, cp = £?+. By Lemma 7.2, <p = B*. Therefore VA h y>.
•4

7.7 Lemma. For all arithmetical formulas <p, tp and natural numbers k, n the following is
true

a) Prf(k,r<p-¥^) A Prf(n,"V) ->Pr/(m(fc,n),rj>-)

b) Prf(k,^)-*Prf(a(k, n),r^), Prf(n, "V)_>Prf(a(k, n),r^)

c) Pr/(Jfc,r^)^Prf(c(k),rPrf(k,rf^D.

Proof, a) Assume Prf(k,r<p->V~l) and Prf(n,r(p~*). There are four possibilities.
i) Neither of k, n is equal to a Gödel number of an £P-term. By FPE, both PROOF(n, r<p~>)

and PROOF(k,r<p^^) hold, so PROOF(k®n,<~^) does also.

25

ii) Both k and n are equal to Gödel numbers of some £P-terms, say k = rs~} and n = rtn.
By FPE, (f is F* and ip is G*JOT some £P-formulas F, G such that F^G G /(«) and F G J(t).
By the closure property of f' (Lemma 6.5(4)), G e I(s-1). By FP£, Prf(<~s ■ tn, rG*n). By
Lemma 7.2 and by definitions, VA proves that

rs • tn = (s • *)* = m(s*, **) = m(rs~\ T) = m(fc, n).

Thus m(fc, n) = rs • t-1 and Prf(m(k, n), rijP) is true.
iii) k is not equal to the Gödel number of an £P-term, n = ri~1 for some £P-term t. By

FP£, PROOF(k,r<f-»-V"1) and y> = F* for some £P-formula F such that F € I{t). Compute
the number

I = liw.{f\{PROOF{w,rB^) | B G /(*)})

by the following method. Take I(t) = {ßi,...,ß;}. By definition, B{ G T', i = 1,...,/.
By Lemma 7.5, 7M h £,* for all » = 1,..., /. By Lemma 7.2, 7M h B;+ for all t = 1,..., /.
By the conjoinability property of PROOF there exists w such that PROOF(w,rB^) for
all i — 1,...,/. Let j be the least such w. In particular, PROOF (j,rF^n). By the defi-
nition of (g>, PROOF(k®j,rip'1). By the definition of M, VA h m(A;,n) = fc (8) j, therefore
PROOF(m(k,n),r^) holds.

Case iv): "s is a Gödel number of an £P-term but t is not a Gödel number of any £P-term"
is similar to (iii).

Case (6) can be checked in the same way as (a).

c) Given Prf(k,rtp1) there are two possibilities.
i) k = rt~l for some £P-term t. By FPE, <p = F+ for some F such that F G I(t). By the

closure property 6.5(5) off', \t:t:F G f'. By Lemma 7.5, {\t:t:F)* holds. By definitions,

(lt:t:F)* = Prf(c(t*),rPrf(t*,rF*^).

By Lemma 7.2, t* = T and F* = F*. Therefore t* = k, F* = ip and

Prf{c(k)SPrf(kW).

ii) fc ^ rt"1 for any £P-term t. By FPF, PROOF(k, r(pn) holds. By definition of the proof
checking operation ft for PROOF,

PROOFS, rPROOF(k, r<pT).

By the definition of C, in this case VA h c(fc) = / <g> ft/: where

I = liw./\{PROOF(w,rPROOF(k,r^)^Prf(k,r^p) \ PROOF(k,r^)}.

26

By the definition of /,

Therefore

By FPE,

therefore

PROOF (I, rPROOF{k, r<pn) ->■ Prf(k, rvT)-

PR00F{1 ® #,rPr/(fc,'W).

Pr/(/®#,rPr/(fc,V,)~%

Prf(c(k),<-Prf(kWi).

7.8 Lemma. The normality conditions for Prf are fulfilled.

Proof. By FPE, Prf is provably Ai. It follows from FPE and 7.6 that for any arithmetical
sentence <p

VA \~ ip if and only if Prf(n, r<p~*) holds for some natural n.

Finiteness of proofs. For each n the set

T(k) = {l\Prf(k,l)}

is finite. Indeed, if k is a number of an £P-term, we can use the finiteness of I(t); otherwise we
use the normality of PROOF. An algorithm for the function from k to the canonical number
of T(k) for Prf can be constructed from those for PROOF, and from the decision algorithm
for I(t), Lemma 6.5(1).

Conjoinability of proofs for Prf is realized by the function a(x,y) since by Lemma 7.7,

T(fc)UT(n)cr(o(fe,n)).

Let us finish the proof of the final "not 1 implies not 5" part of 7.1. Given a sequent r =$■ A
not provable in CPGQ we have constructed an interpretation * such that T* are all true, and
A* are all false in the standard model of arithmetic (7.5). Therefore, {/\Y —> \f A)* is false.

7.9 Corollary. CPQ is decidable.

27

Given an £P-formula F run the saturation algorithm A4 on a sequent =>• F. If SA fails, then
CP0 r- F. Otherwise, CP0 V F-

7.10 Corollary. (Completeness of CP with respect to the provability semantics.)

CP£S) \- F <$ VAV- F* for any CS-interpretation *.
•£> F* is true for any CS-interpretation *.

7.11 Corollary. (Cut elimination in CPo.) Every sequent derivable in CPQ0 can be derived
without the cut rule.

Proof. By Theorem 7.1 CPQö H T =» A iff CPQ0 h T =>• A.

7.12 Corollary. (Cut elimination in CP.) Every sequent derivable in CPQ can be derived
without the cut rule.

Proof. Cut elimination for CP can be established by a direct system of reductions, and it
has been done in [6], [7]. We may also get the cut elimination theorem for CP as a side
product of the arithmetical completeness theorem for CP. Indeed, a straightforward analogue
of Theorem 7.1 where CPo and CPQ0 are replaced by CP and CPQ respectively holds. As in
7.1 it suffices to establish that if CPQ \f T =$> A then for any constant specification CS there
exists a GS-interpretation * such that the arithmetical sentence (/\T -» V A)* is false. Let
us sketch changes that should be made in the definitions and proofs from Sections 6 and 7
to make them work for CP. Fix a constant specification CS. Definition 6.3 of the saturated
sequent should be updated by

7. CS n A = 0
The item 7 of the saturation algorithm should be updated by an additional backtracking
condition: if CS (1A = 0 then backtrack. Then Lemma 6.4 holds with the new definition of a
saturated sequent and CPQ~ instead of CPQ0~. Item 3 of Lemma 6.5 should be read as

3. CSeT and ift:X ef\CS, then X € f
The new completion algorithm should begin with setting r0 = {F \ F e TLiCS}. The rest of
6.5 and the entire 7.1 remain intact under the new definitions.

7.13 Comment. Decidability of CP follows from the results of [53]. This fact can also be
easily obtained from the cut elimination property of CP (Corollary 7.12).

28

7.14 Corollary. (Non-emptiness of provability semantics for CP). For any constant speci-
fication CS there exists a CS- interpretation *.

Proof. An easy inspection of the rules in CPQo shows that the sequent CS =>• is not derivable
in JCPGQ, and thus CPGQ \/CS =» . Indeed, if CPG0~ \- c: A =$> , then c: A is introduced by the
rule (: =$■) from a previously derived sequent A =>• . This is impossible since A is an axiom
of CP0 and thus CPQo r- =>• A: should CPQo I- A =$> , we would have CPQo h =>• , which is
impossible, e.g. because CPy0~ \f =$■ .

From CPQo \fCS => it follows that CPy0 1/ =*• ~>ß>. By 7.1, there exists an interpretation
* such that {-<CS)* is false, i.e. CS* is true.
<

7.15 Comment. The straightforward analogue of Theorem 7.1 holds for the call-by-name
semantics (cf. Comment 5.8) as well. Some minor modifications are needed to adapt the proof
of 7.1 to this new case. First, we redefine fix.tp(x,y) as an arithmetical i-term

iz.[<p(x, y) A Vz < x^<p(z, y)].

Then we write down a Fixed Point Equation that is similar to FPE from 7.1 with some
adjustments corresponding to the understanding of * as the call-by-name interpretation, and
the new reading of fix.(p(x,y) as an arithmetical i-term (cf.[4], [42],[64]).

7.16 Comment. In [64] a complete axiomatization of the joint logic of proofs with its
call-by-name semantics and the formal provability was found. Thus CP as it was presented
in [4] was combined with the logic of formal provability QC (cf.[12],[14]).

8 Realization of modal and intuitionistic logics

It is easy to see that the forgetful projection of CP is correct with respect to Si. Let F° be
the result of substituting OX for all occurrences of t:X in F, and T° = {F° \ F 6 T} for any
set T of /^-formulas.

8.1 Lemma. IfCPhF, then «S4 h F°.

Proof. This is a straightforward induction on a derivation in CP.
<

The goal of the current section is to establish the converse, namely that CP suffices to
realize any «S4 theorem. By an CP-realization of a modal formula F we mean an assignment

29

of proof polynomials to all occurrences of the modality in F. Let Fr be the image of F under
a realization r. Positive and negative occurrences of modality in a formula and a sequent are
defined in the usual way. Namely

1. an indicated occurrence of ü in OF is positive;
2. any occurrence of □ from F in G->F, GAF, FAG, GVF, FVG, OF and r =>• A,F

has the same polarity as the corresponding occurrence of ü in F;
3. any occurrence of D from F in ->F, F->G and F, T =$■ A has a polarity opposite to

that of the corresponding occurrence of D in F.

In a provability context OF is intuitively understood as "there exists a proof x of F\ After
a skolemization, all negative occurrences of D produce arguments of Skolem functions, while
positive ones give functions of those arguments. For example, OA -»• OB should be read
informally as

3x a x is a proof of A" -4 3y " y is a proof of B",

with the Skolem form

" x is a proof of A" -¥ " f(x) is a proof of B".

The following definition captures this feature: a realization r is normal if all negative occur-
rences of ö are realized by proof variables.

8.2 Theorem. If Sir- F, then CP\~ Fr for some normal realization r.

Proof. Consider a cut-free sequent formulation of 54, with sequents T =$> A, where T and A
are finite multisets of modal formulas. Axioms are sequents of the form S =£• S, where 5 is a
prepositional letter, and the sequent _L => . Along with the usual structural rules (weakening,
contraction, cut) and rules introducing boolean connectives there are two proper modal rules
(cf.[73]):

4.r=* A . N Dr=* A .
(o=0 (=*n)

DA,r=»A and Dr => OA

(a{A1,...,An} = {DA1,...,DAn}).
If Si h F, then there exists a cut-free derivation T of a sequent =£> F. It suffices now to

construct a normal realization r such that CP h f\ Tr —► V Ar for any sequent r => A in T.
We will also speak about a sequent T =3- A being derivable in CP meaning CP h /\T -)• \/ A,
or, equivalently, T \-£p V A, or CPQ V- T =$> A. Note that in a cut-free derivation T the rules
respect polarities, all occurrences of D introduced by (=*• D) are positive, and all negative
occurrences are introduced by (□ =>•) or by weakening. Occurrences of D are related if they
occur in related formulas of premises and conclusions of rules; we extend this relationship by

30

transitivity. All occurrences of □ in T are naturally split into disjoint families of related ones.
We call a family essential if it contains at least one case of the (=> □) rule.

Now the desired r will be constructed by steps 1-3 described below. We reserve a large
enough set of proof variables as provisional variables.

Step 1. For every negative family and nonessential positive family we replace all occur-
rences of D by "x:" for a fresh proof variable x.

Step 2. Pick an essential family /, enumerate all the occurrences of rules (=> O) which
introduce boxes of this family. Let n/ be the total number of such rules for the family /.
Replace all boxes of the family / by the term

(ui + ... + «n/),

where i7,-'s are fresh provisional variables. The resulting tree To is labelled by CP formulas,
since all occurrences of the kind UX in T are replaced by t:X for the corresponding t.

Step 3. Replace the provisional variables by proof polynomials as follows. Proceed from
the leaves of the tree to its root. By induction on the depth of a node in 7o we establish
that after the process passes a node, a sequent assigned to this node becomes derivable in
CP. The axioms S =$■ S and _L =4- are derivable in CP. For every rule other than (=$>□) we
do not change the realization of formulas, and just establish that the concluding sequent is
provable in CP given that the premises are. Moreover, every move down in the tree 70 other
than (=>■ D) is a rule of the system CPQ, therefore, the induction steps corresponding to these
moves follow easily from the equivalence of CP and CPQ.

Let an occurrence of the rule (=>■ D) have number i in the numbering of all rules (=>• □)
from a given family /. This rule already has a form

yi-Y1,...,yk:Yk => Y

yi-Yi,...,yk:Yk => {ux + ... + unf):Y ,

where y\,..., yk are proof variables, «i,..., unj are proof polynomials, and «,- is a provisional
variable. By the induction hypothesis, the premise sequent j/i:Yi,..., yk:Yk =£• V is derivable
in CP, which yields a derivation of

yi-Yi,...,yk:Yk =* Y.

By lifting lemma (Proposition 4.4), construct a proof polynomial t(yi, ...,yn) such that

yi--Y!,...,yk:Yk =>• t{yu...,yn):Y

is derivable in CP. Since

CP h t: Y -> («i + ... + «,-_! + * + ui+1 + ... + un/):Y

31

we have

£P\ryx:Ylf..., yk:Yk =>(Ul + ... + u,-_i +1 + ui+1 + ... + unf):Y.

Now substitute t(yi, ...,yn) for «,• everywhere in %.

By the way, this may lead to the constant specifications of the sort c: A(c) where
A(c) contains c. It looks like such self-referential constant specifications are es-
sential for realization of modal logic in the Logic of Proofs.

Note that t(yi,...,y„) has no provisional variables, and that there is one less provisional
variable (namely «,) in the entire tree To. All sequents derivable in CP remain derivable
in CP, the conclusion of the given rule (=$ G) became derivable, and the induction step is
complete.

Eventually, we substitute terms of non-provisional variables for all provisional variables in
7o and establish that the corresponding root sequent of 7o is derivable in CP. Note that the
realization of n's built by this procedure is normal.
<

8.3 Corollary. (Arithmetical completeness of Si.) Si\- F iff there is a realization r and
a constant specification CS such that Fr is CS-valid.

8.4 Comment. It follows from 8.1 and 8.2 that Si is nothing but a lazy version of CP that
does not distinguish between the proof polynomials. Each theorem of Si admits a decoding
via CP as a statement about specific proofs. The language of CP is more rich than that of
Si. In particular, Si theorems admit essentially different realizations in CP. For example,
consider two theorems of CP having the same modal projection:

x:FVy:F-> (x + y):F and x:FVx:F-> x:F.

The former of these formulas is a meaningful specification of the operation "+". In a contrast,
the latter one is a trivial tautology.

So CP is the right logic of provability, and Si should be considered as a lazy higher level
language on top of CP. A general recipe for using Si as a provability logic might be the
following: derive in Si or reason about «SI using a conventional modal logic technique as
before, then translate the results into CP to recover their true provability meaning.

8.5 Comment. As it was noticed by A. Kopylov, the example from 8.4 can be generalized:
54 also admits a degenerated realization in the "+"-free fragment of CP, under which all

32

arguments of proof polynomials are denoted by the same proof variable and only one universal
constant is used as a coefficient.

For example, the 54-theorem (DAVDB) -)■ D(AVß) (cf. Example 4.7) can be realized
in CP as (a;: A V x : B) -> (c-x): (Ay B) with the constant specification c : (A -> A V B),
c: (B —► A V 2J). As one can see, this realization cripples the provability content of modal
logic. Namely, it presupposes that the constant c stands for the proof of two different axioms,
which is inconsistent with an injective assignment of proof constants to propositional axioms
in rule R2 of CP. The assumption that A and B have the same proof contradicts the intended
provability reading of the original modal formula (UAVUB) -> D(AVJB) as if there is a
proof of A, or there is a proof of B, then there is a proof of AVB. Indeed, the Skolem style
conversion of this formula from the language with quantifiers into the quantifier-free language
with Skolem functions is if x is a proof of A and y is a proof of B, then t(x, y) is a proof of
AVB. One can show that such t(x, y) cannot be taken to be "+"-free provided x and y are
distinct proof variables. Indeed, let S\ and 52 be propositional letters. Suppose

CP V- x:Si V y:S2 -> t:(Si V S2)

for some "+"-free term t. Then CP h x : Si -)• t: (Si V S2) and CP I- y : S2 ->■ t: (Si V S2).
Consider the shortest cut-free derivation V of x:S\ => t:(S\ V S2) in CPQ. A straightforward
analysis of V rules out the use of axioms other than x :Si =>• x :S\ and rules other than (=> •)
and (=>• c) in the form x:Si =S> c: A. Therefore t is a product of some proof constants and the
variable x. Similarly, from £P H y:S2 -> t: (Si V S2) we conclude that t is a product of some
proof constants and the variable y. Therefore, t is a product of some proof constants, and V
does not contain axioms of the sort x:S\ =*> x: Si. That means that in the leaf nodes of V
there are only the rules (=$► c) in the form x : Si =$► c: A. Erase x : Si from the antecedents
of all sequents in V. The remaining tree will be a derivation of => t: (Si V S2) in CPQ. This
would yield CP h t: (Si V S2) and CP \- Si V S2, which not true.

The "+"-free fragment of CP is not complete with respect to the class of all single-
conclusion proof predicates. It can be made complete by adding the functionality principle
from [2]. The completeness of the resulting system TCP with respect to single-conclusion proof
systems was established by V. Krupski in ([42]). TCP does not have a modal counterpart.
For example, TCP derives a principle -<(x: A A x: (A -*■ A)), which has the forgetful projection
->(OA A D(A—*A)). The latter is false in any normal modal logic.

8.6 Definition. Let gk(F) denote a translation of an intuitionistic formula F into the plain
modal language that puts the prefix O in front of all subformulas in F (Gödel-Kolmogorov
translation). Under mt(F) we understand the translation that prefixes only atoms and im-
plications in F (McKinsey-Tarski translation). A propositional formula F is GK-realizable
(MT-realizable) if there exists a normal realization r such that gk(F)r (mt(F)r) is derivable
in£P.

33

8.7 Theorem. (Realization of intuitionistic logic) For any Int-formula F

l.lnthF «*• F is GK-realizable,
2.Intr-F o F is MT-realizable

Proof. It is well-known that

lnt\-F iff «SI h gk(F)

(see, for example, [18]), and
Xnt\-F iff Si h mt(F)

([25],[49]). A straightforward combination of these results with the realization of Si into CP
(Theorem 8.2) brings us the desired result.
<

8.8 Corollary. (Arithmetical completeness of Int.) Int V- F iff there is a realization r
and constant specification CS such that gk(F)r is CS-valid (mt(F)r is CS-valid).

Note that G-fiT-readability may be regarded as a formalization of the Kolmogorov calculus
of problems from [34] by reading "problem solutions" as "proofs". This readability gives a
plausible formalization of Kolmogorov's calculus of problems [34]. Propositional atoms are
interpreted as atomic problems, namely statements of the sort t: S meaning ut is a proof of
S". Intuitionistic connectives are given precise meaning according to [34] (cf. the description
of BHK semantics in section 1).

We conclude this section with examples of GK- and MT-realizability.

8.9 Example. Let S, T be propositional letters. Consider the formula

F = (-.5VT)->(5-+r),

obviously provable in Int. The corresponding translations of this formula to the modal
language are (in both cases the outermost O's are suppressed for briefty):

mt(F) = (D-iD5VDT) -¥ n(D5-^DT),

gk(F) = a(D-,D5 V DT) -+ G(DS-»aT).

We will present one of the possible meaningful normal realizations in CP for each of mt(F)
and gk(F).

The following is a derivation in CP with a simultanious construction of a normal realization
of mt(F).

34

1. ->x:S —>• (x:S-ty:T), by classical logic;
2. a:[-ix:5 —I (x:S-+y:T)], by necessitation rule 4.5. Note that here a is a product of

some axiom constants with obvious specifications;
3. z:(-ix:S)-+(a-z):(x:S->y:T), from 2, by AS;
4. y:T —► (a::S-*t/:T), axiom of propositional logic AO;
5. 6:[y:T-)- (x:S'-+y:T)], from 4, by axiom necessitation R2;
6. ly.y.T-+ (b-\y):(x:S-+y:T), from 5, by A2;
7. y:T ->ly:y:T, axiom A3;
8. j/:T -> (b-\y) :(x:5-4y:T), from 6,7, by classical logic;
9. (z:(^x:S)Vy:r)-+(a-2+6-!y):(x:S->-y:T), from 3,8, by A4.

This realization of mt(F) says: if either z is a proof of -ix : 5, or y is a proof of T, then
a-z + b-ly is a proof of the implication x:S-*y:T, where a and b are proofs of the tautologies
-ix:5 -» (x:S->y:T) and y:T -t (x:S-+y:T) respectively.

In the case of gk(F) the realization is constructed along the following derivation in CP.

1. ->x:S ~¥ (x:S-ty:T), by classical logic;
2. z:(->x:S) —>• -ix:S, axiom Ai;
3. z:(-.x:S)->- (x:S-»y:T), from 1,2;
4. y:T -¥ (x:S-ty:T), axiom of propositional logic AO;
5. (z:(-ix:S)Vy:T) ->• (x:S-»y:T), from 3,4, by classical logic;
6. c:H, when H is from 5, by necessitation rule 4.5. Here c is a ground proof polynomial,

easily recoverable from the derivation of 5.
7. «:(z:(-.x:5)Vy:T)-»- (c-u):(x:S->-y:T), from 6, by A2.

This realization says: if u is a proof of the disjunction z:->x:SVy:T, then c-u is a proof of
x:S->y:T, where c is a proof of (z:-ix:SVy:T) —>• (x:S-»y:T).

9 Realization of A-calculi

In the section we show that CP provides a standard provability semantics for the operator
of A-abstraction. Through a realization in CP both modality and A-terms receive a uniform
provability semantics.

The defined abstraction operator A*x on proof polynomials below is a natural extension
of the defined A-abstraction operator A*x in combinatory logic (cf.[73]).

9.1 Definition. As usual (cf.[73]), the intuitionistic version 1CPQ of CPQ may be defined as
the fragment of CPQ consisting of sequents of the form T =>■ A, there A contains at most one
formula.

35

The cut elimination theorem for ICPQ was established in [6], [7].

9.2 Definition. Under ground (=»!) rule we mean the rule (=»!) where the principal proof
polynomial t contains no variables. An 2£R7-derivation V is pure if it uses no rules other than
(=>••), (=*"c), and ground (=^-!). It is clear that every pure derivation is normal since it has
no cuts.

Assume that a calculus of A-terms is presented as the sequent calculus of the format
xi: A\,..., xn : Bn =$■ t(x):B with the reading term t(x) has a type B provided x,- has type
Bi for all i = 0,1,...,n (cf. system G2i* from [73]). Under such formulation a A-term is
presented as a sequent, and formation rules of A-terms become inference rules in the given
sequent calculus.

A straightforward observation shows that some of the A-terms constructors can be natu-
rally represented as derivation in ICPQ. For example, the pairing function introduction rule

T=>t:A T^s:B

T=> p(t,s):(AAB)

has a natural counterpart 2CR7-derivation

T=*c:{A-+(B->(AAB)) T^t:A

r=J> {c-t):(B^{AAB)) r => s.B

r=^ (c-t-s)-.(AAB) "

In fact the entire A-calculus can be embedded into ICPQ ([6], [7]). The key element of this
embedding is emulating A-abstraction in the combinatory logic style (cf.[73j). We define the
admissible rule A* on sequents in ICPQ, which will represent in TCPQ traditional A-abstraction.

9.3 Theorem. (Definable abstraction) Let V be a pure ICPQ-derivation of a sequent

p:T,x:A=> t(x):B

such that x does not occur in p:T, A, B. Then one may construct a proof polynomial X*x.t(x)
and a pure ICPQ-derivation V of the sequent

p:T => *x.t{x):(A-*B).

Proof. The base case is the depth of V equals one. There are two possibilities.

36

1. V is an axiom sequent p:T, x:A =>■ t{x):B and t(x) contains an occurrence of x. Then
t(x) :B = x:A. Let V be the pure derivation of the sequent => (a • 6 • c): (A —)■ A) where
a, 6, c are proof constants specified by the conditions (cf.[73], section 1.3.6.)

a:([A-K(A-»A)-+A)H[(A-+(A->A))-4(A->A)])
6:[A-»((A->A)->A)]
c:[A-KA-»A)j.

Let A*x.x = (a • b • c). In fact this case coincides with the presentation of X*xA.x as
s^A+A^^Ar+A^A jn combinatory logic (cf.[73j).

2. Z> is an axiom sequent p: T, x: A =>• t(x): J5 and £ does not contain an occurrence of x.
Then t:B € p:T and p:T =£• t:ß is again an axiom sequent. Let V be

p:T^b:(B^(A^B)) p:T=S>t:B , x
— - - (=> •) .

p:T=> (b-t):(A-+B)

Let X*x.t = b-t. This is the well known equality *xA.tB — hB,AtB of combinatory logic.

The induction step corresponding to the ground (=£-!) rule is treated similarly to case 2.
Consider the case (=>•)• Let a derivation V end with

p:T,x:A=> s:(Y^B) p:T,x:A =► t:Y

p:T,x:A=$> (s-t):B

By the induction hypothesis, we have already built pure derivations of p:T =£• X*x.s: (A—>
(Y—tB)) and p:T => *x.t:(A-+Y). From them we construct pure derivations

p:T =► c:{(A-¥(y-*B))-*((A->Y)-*{A-*B))) p:T =» A*x.s:(A-)-(y->•£))

p:T=* (c-A*a>.s):((A->y)->(A->£))

and
p:T=> (c■ *x.s):{(A->Y)->(A^B)) p:T => *x.t:(A^Y)

p:T => (c-*x.s-*x.t):(A->B)

Let *x.(s • t) = (c • A*x.s • A*i.t). In combinatory logic notation

*xA.sY-+BtY = sA'Y>B*x.s*x.t

37

9.4 Comment. In 7JCPQ, A-abstraction is decoded by a proof polynomials depending on a
context (e.g. an 2£R7-derivation). In this respect the realization from 9.3 of A-abstraction by
proof polynomials is similar the realization of <S4-modality which is decomposed in 8.2 into a
set of proof polynomials depending on a context (an <S4-derivation).

9.5 Comment. In fact A* cannot be easily extended from pure to more general derivations
without sacrificing some desired properties. We need to keep the format p:T, x: A =$■ t(x):B
throughout the entire derivation V in order to preserve the inductive character of the defini-
tion. The restriction "x does not occur in p: T, A, B" is needed to guarantee the correctness
of/3-conversion (below) for A*-abstraction, though it rules out (=>■!). Note that the rule (=^!)
does not admit abstraction anyway. Indeed, in 1£PQ we may derive

x:A =>■ x:A

x:A =>• \x:x:A

but for no proof polynomial p does 1£PQ derive

=$> p:(A^x:A),

since A—*x:A is not provable in £P.

The dual operation to A-abstraction i.e. ß-conversion

(XxA.tB)sA -^ß tB[xA/sA]

is naturally presented as the following transformation of pure derivations in 1£PQ:

p:T,x:A=> t(x):B

p:T=> *xt{x):(A^B) p:T => s:A

transforms into

p:T=> (X*xt(x)-s):B

p:T=>s:A p:T,s:A^-t(s):B

p:T =>■ t(s):B

The rule of ^-conversion

(XxA.tB)sA —>v t if x is not free in t

is treated in the same way. Finally, a-conversion corresponds to an obviously valid rule of
renaming bounded variables in Z££*7-derivations with abstraction.

38

All other standard A-term constructors for Int can also be realized as admissible rules in
ICPQ (cf.[6],[7]). This is a straightforward corollary of the fact that Int is a fragment of ICPQ
and of the lifting lemma adapted for ICPQ. Indeed, if ICPQ hT^fl, then by induction on
the given proof one can construct a proof polynomial p(y) such that ICPQ \- y :T =>■ p(y):B.

Since both modal logic «Si and all standard A-term constructors can be emulated by proof
polynomials, the Logic of Proofs can also emulate modal A-calculi. As it was shown in [6], [7]
ICPQ naturally realizes the modal A-calculus for 254 ([10], [45], [60], cf. also [15]) and thus
supplies modal A-terms with standard provability semantics. This result may be considered as
a more general abstract version of the well-known Curry-Howard isomorphism which relates
terms/types with proofs/formulas.

10 Discussion

Roughly speaking, CP is an advanced system of combinatory logic that accommodates not
only the "application" operation, but also "proof checker" and "choice". These operations
subsume the simply typed A-calculus together with the modal logic 54, and thus the entire
modal A-calculus. In particular, CP creates an environment where modality and A terms are
objects of the same nature, namely proof polynomials. Another way to look at it: modal logic
is a forgetful projection of a combinatory logic enriched by the operations "proof checker"
and "choice".

There was a major difficulty standing in the way of presenting modality via a system
of terms: such a presentation should be self-referential and accommodate types containing
terms of any type, including its own, for example, x : F(x). The choice of the combinatory
logic format for CP versus the obvious A-term one in both Gödel's explicit provability logic
sketch from [26] and CP in fact allows a concise presentation of this self-referentiality. The
corresponding straightforward A-term system requires infinite supply of new term constructors
and is hardly observable.

The realization of 54 in CP provides a fresh look at modal logic and its applications in
general. Proof polynomials reveal the dynamic character of modality. It raises the general
question of finding explicit counterparts to all major modal logics.

Such areas as modal A-calculi, polymorphic second order A-calculi, A-calculi with types de-
pending on terms, non-deterministic A-calculi, etc., could benefit from viewing their semantics
as proof polynomials delivered by CP.

Gabbay's Labelled Deductive Systems ([23]) may serve as a natural framework for CP.
Intuitionistic Type Theory by Martin-Löf [46], [47] also makes use of the format t:F with its
informal provability reading. CP may also be regarded as a basic epistemic logic with explicit
justifications; a problem of finding such systems was raised by van Benthem in [9].

39

The studies of the logic QC of implicit provability Provable(x) ([67],[65],[12], [13],[14],[31])
has given vast experience in arithmetical self-referential semantics for modal logics. The
completeness theorem for £P (Theorem 7.1) could not probably have been obtained without
the knowledge accumulated in this area.

11 Acknowledgements

This work has benefited from many interactions over the past several years with H. Barendregt,
L. Beklemishev, J. van Benthem, G. Boolos, S. Buss, R. Constable, D. van Dalen, J. Diller,
3M. Dunn, E. Engeler, S. Feferman, D. Gabbay, J.-Y. Girard, W. Hodges, G. Jäger, D. de
Jongh, D. Kozen, V. Krupski, S. MacLane, G. Mints, F. Montagna, A. Nerode, E. Nogina,
R. Parikh, C. Parsons, W. Pholers, V. Pratt, A. Preller, J. Remmel, D. Roorda, A. Scedrov,
R. Shore, T. Sidon, T. Strassen, A. Troelstra, V.A. Uspensky, A. Visser.

Special thanks are due to Robert Constable and Anil Nerode for supporting this research
during my work at Cornell University since 1995.

I am indebted to Sam Buss, Volodya Krupski, Bob Milnikel, Lena Nogina, Tanya Sidon,
and Fred Smith for a reading different versions of this paper which led to valuable improve-
ments.

References

[1] S. Artemov. "Kolmogorov logic of problems and a provability interpretation of intuition-
istic logic", Theoretical Aspects of Reasoning about Knowledge - HI Proceedings, Morgan
Kaufman Pbl., pp. 257-272, 1990

[2] S. Artemov and T. Strassen, "Functionality in the Basic Logic of Proofs", Tech.Rep. IAM
92-004, Department for Computer Science, University of Bern, Switzerland, 1993.

[3] S. Artemov, "Logic of Proofs", Annals of Pure and Applied Logic, v. 67 (1994), pp. 29-59.

[4] S. Artemov, "Operational Modal Logic," Tech. Rep. MSI 95-29, Cornell University, De-
cember 1995.

[5] S. Artemov, "Proof realizations of typed A-calculi," Tech. Rep. MSI 97-2, Cornell Univer-
sity, May 1997.

[6] S. Artemov, "Logic of Proofs: a Unified Semantics for Modality and A-terms," Tech. Rep.
CFIS 98-06, Cornell University, March 1998.

40

[7] S. Artemov, "Unified Semantics for Modality and A-terms via Proof Polynomials," to
appear in Logic, Language and Computation'91', CSLI Publications, Stanford University,
1998.

[8] J. Avigad and S. Feferman, "Gödel's Functional ("Dialectica") Interpretation". In:
S. Buss, ed., Handbook of Proof Theory, Elsevier, pp. 337-406, 1998.

[9] J. van Benthem. "Reflections on epistemic logic", Logique & Analyse, 133-134, pp. 5-14,
1991

[10] G. Bierman and V. de Paiva, "Intuitionistic necessity revisited", Proceedings of the
Logic at Work Conference, Amsterdam (December 1992), Second revision, June 1996
(http://theory.doc.ic.ac.uk/tfm/papers.html).

[11] G. Birkhof, "On the structure of abstract algebras", Proceedings of the Cambridge Philo-
sophical Society, v.31, pp.433-454, 1935

[12] G. Boolos, The Unprovability of Consistency: An Essay in Modal Logic, Cambridge
University Press, 1979

[13] G. Boolos, "The logic of provability", American Mathematical Monthly, 91, pp.470-480,
1984.

[14] G. Boolos, The Logic of Provability, Cambridge University Press, 1993

[15] V. A. J. Borghuis, Coming to Terms with Modal Logic: On the interpretation of modalities
in typed X-calculus, Ph.D. Thesis, Technische Universiteit Eindhoven, 1994

[16] L.E.J. Brouwer, "Intuitionistische splitsing van mathematische grondbegrippen" (Dutch),
Nederl. Acad. Wetenssch. Verslagen 32, 877-880, 1923. German translation Jahresber.
Dtsch. Math.-Ver. 33, 251-256.

[17] S. Buss, "The Modal Logic of Pure Provability", Notre Dame Journal of Formal Logic,
v. 31, No. 2, 1990

[18] A. Chagrov and M. Zakharyaschev, Modal Logic, Oxford Science Publications, 1997.

[19] R. Constable, "Types in Logic, Mathematics and Programming". In: S. Buss, ed., Hand-
book of Proof Theory, Elsevier, pp. 683-786, 1998.

[20] D. van Dalen, Logic and Structure, Springer-Verlag, 1994.

[21] S. Feferman, "A language and axioms for explicit mathematics". In: J.N. Crossley, ed.,
Algebra and Logic, Springer Verlag, pp. 87-139, 1975.

41

[22] S. Feferman, "Constructive theories of functions and classes". In: M. Boffa, D. van Dalen,
and K. McAloon, eds., Logic Colloquium '78, North Holland, pp. 159-224, 1979.

[23] D. M. Gabbay, Labelled Deductive Systems, Oxford University Press, 1994.

[24] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge University Press, 1989.

[25] K. Gödel, "Eine Interpretation des intuitionistischen Aussagenkalkuls", Ergebnisse Math.
Colloq., Bd. 4 (1933), S. 39-40.

[26] K. Gödel, "Vortrag bei ZilseP (1938), in S. Feferman, ed. Kurt Gödel Collected Works.
Volume III, Oxford University Press, 1995

[27] R. Goldblatt, "Arithmetical necessity, provability and intuitionistic logic", Theoria, 44,
pp. 38-46, 1978.

[28] A. Heyting, "Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der
Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse, pp. 42-
56,1930

[29] A. Heyting, "Die intuitionistische Grundlegung der Matematik", Erkenntnis v.2, pp.106-
115, 1931.

[30] A.Heyting, Matematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer,
Berlin, 1934.

[31] D. de Jongh and G. Japaridze, "Logic of Provability", in S. Buss, ed., Handbook of Proof
Theory, Elsevier, 1998

[32] S. Kleene. "On the interpretation of intuitionistic number theory", Journal of Symbolic
Logic, v. 10, pp. 109-124, 1945

[33] S. Kleene. "Classical extensions of intuitionistic mathematics", In Y. Bar-Hillel, ed.
Logic, Methodology and Philosophy of Science 2, North Holland, pp. 31-44, 1965

[34] A. Kolmogoroff, "Zur Deutung der intuitionistischen Logik", Math. Ztschr., Bd. 35
(1932), S.58-65.

[35] A. Kolmogorov, "About my papers on intuitionistic logic", In: A.N. Kolmogorov, Selected
works, p. 393, 1985 (Russian), p. 451-452 (English).

[36] D. Kozen and J. Tiuryn, "Logic of Programs", in Handbook of Theoretical Computer
Science. Volume B, Formal Models and Semantics, The MIT Press/Elsevier, pp. 789-840,
1990

42

[37] G. Kreisel, "Foundations of intuitionistic logic", in E.Nagel, P.Suppes and A.Tarski,
eds., Logic, Methodology and Philosophy of Science. Proceedings of the 1960 International
Congress, Stanford University Press, Stanford, pp. 198-210, 1962.

[38] G. Kreisel, "On weak completeness of intuitionistic predicate logic", Journal of Symbolic
Logic, v. 27, pp. 139-158, 1962.

[39] G. Kreisel, "Mathematical Logic", in T.L.Saaty, ed., Lectures in Modern Mathematics
///Wiley and Sons, New York, pp. 95-195, 1965.

[40] S. Kripke, "Semantical considerations on modal logic", Ada Philosophica Fennica, 16,
pp. 83-94,1963.

[41] S. Kripke, "Semantical analysis of intuitionistic logic. I", In: J.N. Crossley and
M.A.E. Dummett, eds., Formal systems and Recursive Functions. Proceedings of the 8th
Logic Colloquium pp. 92-130, North-Holland, 1965.

[42] V.N. Krupski, "Operational Logic of Proofs with Functionality Condition on Proof Pred-
icate", Lecture Notes in Computer Science, v. 1234, Logical Foundations of Computer
Science' 97, Yaroslavl', pp. 167-177, 1997

[43] A.V. Kuznetsov and A.Yu. Muravitsky, "The logic of provability", Abstracts of the 4-th
All-llnion Conference on Mathematical Logic, p. 73, (Russian), 1976.

[44] E. Lemmon, "New Foundations for Lewis's modal systems", Journal of Symbolic Logic,
22, pp. 176-186, 1957.

[45] S. Martini and A. Masini,"A computational interpretation of modal proofs", in Wansing,
ed., Proof Theory of Modal Logics, (Workshop proceedings), Kluwer, 1994.

[46] P. Martin-Löf. "Constructive mathematics and computer programming", in Logic,
Methodology and Philosophy of Science VI, North-Holland, pp. 153-175, 1982.

[47] P. Martin-Löf. Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, Naples,
1984.

[48] J.C.C. McKinsey and A. Tarski, "On closed elements of closure algebras", Annals of
Mathematics, v. 13, pp. 1-15, 1946.

[49] J.C.C. McKinsey and A. Tarski, "Some theorems about the sentential calculi of Lewis
and Heyting", Journal of Symbolic Logic, v. 13, pp. 1-15, 1948.

[50] Yu. Medvedev, "Finite problems", Soviet Mathematics Doklady, v. 3. pp. 227-230, 1962.

[51] E. Mendelson, Introduction to mathematical logic. Third edition., Wadsworth, 1987.

43

[52] G. Mints. "Lewis' systems and system T (1965-1973)". In Selected papers in proof theory,
Bibliopolis, Napoli, 1992.

[53] A. Mkrtychev, "Models for the Logic of Proofs ", Lecture Notes in Computer Science, v.
1234, Logical Foundations of Computer Science' 97, Yaroslavl', pp. 266-275, 1997

[54] R. Montague. "Syntactical treatments of modality with corollaries on reflection principles
and finite axiomatizability", Ada Philosophica Fennica, 16, pp. 153-168, 1963.

[55] J. Myhill, "Some Remarks on the Notion of Proof", Journal of Philosophy, 57, pp. 461-
471, 1960

[56] J. Myhill, "Intensional Set Theory", In: S. Shapiro, ed., Intensional Mathematics, North-
Holland, pp. 47-61, 1985.

[57] I.E. Orlov. "The calculus of compatibility of propositions", Mathematics of the USSR,
Sbornik, 35, pp.263-286, 1928 (in Russian).

[58] J. van Osten. "A semantical proof of De Jongh's theorem", Archive for Mathematical
Logic, pp. 105-114, 1991.

[59] C. Parsons and W. Sieg. "Introductory note to *1938a". In: S. Feferman, ed. Kurt Gödel
Collected Works. Volume III, Oxford University Press, pp. 62-85, 1995.

[60] F. Pfenning and H.C. Wong, "On a modal lambda-calculus for S4", Electronic Notes in
Computer Science 1, 1995.

[61] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Polish Scientific
Publishers, 1963.

[62] S. Shapiro. "Intensional Mathematics and Constructive Mathematics". In: S. Shapiro,
ed., Intensional Mathematics, North-Holland, pp. 1-10, 1985.

[63] S. Shapiro. "Epistemic and Intuitionistic Arithmetic". In: S. Shapiro, ed., "Intensional
mathematics", North-Holland, pp. 11-46, 1985.

[64] T. Sidon, "Provability Logic with Operations on Proofs", Lecture Notes in Computer
Science, v. 1234, Logical Foundations of Computer Science' 97, Yaroslavl', pp. 342-353,
1997

[65] C. Smorynski, Self-Reference and Modal Logic, Springer-Verlag, Berlin, 1985

[66] R. Smullyan, Diagonalization and Self-Reference, Oxford University Press, 1994

44

[67] R. Solovay, "Provability interpretations of modal logic", Israel Journal of Mathematics,
25, pp. 287-304, 1976.

[68] G. Takeuti, Proof Theory, North-Holland, 1975

[69] A.S. Troelstra, "The scientific work of A. Heyting", In: D. van Dalen, et al. Logic and
Foundations of Mathematics, Wolters-Noordhoff Publishing, 1968.

[70] A.S. Troelstra "Introductory note to [25]". In: S. Feferman, ed. Kurt Gödel Collected
Works. Volume I, Oxford University Press, pp. 296-299, 1986.

[71] A.S. Troelstra "Realizability". In S. Buss, ed., Handbook of Proof Theory, Elsevier, pp.
407-474,1998.

[72] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics. An Introduction, v. 1,
Amsterdam; North Holland, 1988.

[73] A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press,
1996.

[74] V.A. Uspensky, "Kolmogorov and mathematical logic", Journal of Symbolic Logic, 57,
No.2,1992.

[75] V.A. Uspensky and V.E. Plisko "Intuitionistic Logic", In S.M. Nikol'ski, ed. A.N. Kol-
mogorov, Collected works. Mathematics and Mechanics, pp. 394-404, 1985 (in Russian).

[76] S. Weinstein, "The intended interpretation of intuitionistic logic", Journal of Philosoph-
ical Logic, 12, pp. 261-270 1983.

45

