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for intuitionistic and modal logic * 

Sergei N. Artemov * 

September, 1998 

Abstract 

The intended meaning of intuitionistic logic is given by the Brouwer-Heyting-Kolmogorov 
(BHK) semantics which informally defines intuitionistic truth as provability and specifies 
the intuitionistic connectives via operations on proofs. The natural problem of formalizing 
the BHK semantics and establishing the completeness of propositional intuitionistic logic 
Xnt with respect to this semantics remained open until recently. This question turned 
out to be a part of the more general problem of the intended semantics for Gödel's modal 
logic of provability Si with the atoms "F is provable" which was open since 1933. In this 
paper we present complete solutions to both of these problems. 

We find the logic of explicit provability {CP) with the atoms "t is a proof of F" and 
establish that every theorem of Si admits a reading in CP as the statement about explicit 
provability. This provides the adequate provability semantics for Si along the lines of a 
suggestion made by Gödel in 1938. The explicit provability reading of Gödel's embedding 
of Xnt into Si gives the desired formalization of the BHK semantics: Xnt is shown to 
be complete with respect to this semantics. In addition, CP has revealed the relationship 
between proofs and types, and subsumes the A-calculus, modal A-calculus and combinatory 
logic. 

1    Intended provability semantics for intuitionistic logic 

According to Brouwer, intuitionistic truth means provability: "a statement is true if we have a 
proof of it, and false if we can show that the assumption that there is a proof for the statement 
leads to a contradiction" ([72], p.4). This semantics is implicit in some of Brouwer's papers, 
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e.g. [16]. In 1930 A. Heyting suggested the axiom system Int for intuitionistic logic ([28])1. 
In 1931-34 Heyting and Kolmogorov made Brouwer's definition of intuitionistic truth explicit, 
though informal, by introducing what is now known as Brouwer-Heyting-Kolmogorov (BHK) 
semantics. BHK semantics is widely recognized as the intended semantics for intuitionistic 
logic ([18],[19],[20],[24],[37],[47],[50],[72],[73],[74],[75],[76]). BHK semantics gives an informal 
explanation of the truth of intuitionistic connectives. A statement is true if it has a proof, and 
a proof of a logically compound statement is given in terms of the proofs of its components. 
The description uses the unexplained primitive notions of construction and proof. 

• A proof of a proposition A AB consists of a proof of A and a proof of B, 

• a proof of A VZ? is given by presenting either a proof of A or a proof of B, 

• a proof of A—*B is a construction which, given a proof of A returns a proof of B, 

• absurdity _L is a proposition which has no proof and a proof of ->A is a construction 
which, given a proof of A, would return a proof of _L. 

This semantics was partially introduced by Heyting [29] (clauses for conjunction and disjunc- 
tion), and by Kolmogorov [34] (clauses for implication and negation). The above formulation 
of BHK semantics appeared in [30]. For further comments one may consult [18],[20],[24], 
[69],[72],[73],[74]. 

The natural problem of formalizing BHK semantics and establishing the completeness of 
Int with respect to this semantics remained open until recently despite a long history of 
studies in this area (see section 3 of this paper). 

To be sure, there are many models of different natures known for Int. A semantics 
for Int is adequate if Int is (sound and) complete with respect to this semantics. 
A number of adequate semantics for intuitionistic logic have been found: alge- 
braic (Birkhof, [11]), topological (McKinsey-Tarski, [48]), Kripke semantics ([41]), 
and some others. Algebraic models for Int are given by pseudo-boolean algebras, 
which generalizes the boolean algebra semantics of classical logic. Topological 
semantics for Int is similar to set-theoretical semantics for classical logic. In a 
given topological space propositional variables are evaluated by arbitrary subsets, 
conjunction and disjunction operate in the usual set-theoretical manner, while in- 
tuitionistic implication and negation operate as classical implication and negation 
followed by the interior operation. Kripke model for Int is a collection of the usual 
0 — 1 evaluations of atomic propositions (possible worlds) connected by a reflexive 
and transitive binary accessibility relation and satisfying knowledge preservation 

xThe name Int will signify propositional intuitionistic logic. 



principle: if a statement holds in some world, then it also holds in all the worlds 
accessible from the given one. Again, in every world the truth of conjunction or 
disjunction is determined according to the usual classical truth tables. Implication 
or negation is true in a world iff it is true classically in every world accessible from 
the given one. Comprehensive surveys of these and other semantics for intuition- 
istic logic can be found in [18],[61],[72]. 

BHK semantics gave rise to intensive studies of constructive semantics for intuitionistic the- 
ories, first of all readability. The basic notions of realizability were defined along the lines 
of BHK clauses with different constructive objects instead of proofs: computable functions 
and their codes (e.g. in [32],[33]), computable operations of higher types (e.g. in [38]), partial 
recursive operations (e.g. in [21],[22]), etc. For the references one may consult recent surveys 
on realizability and constructive semantics [8],[71]. 

Note that the standard realizability semantics for Xnt is not adequate. First of all, 
following Kleene ([32]) one should distinguish between intuitionistic and classical 
understanding of realizability semantics for intuitionistic theories. Intuitionistic 
realizability enjoys some nice completeness properties but does not provide an 
independent semantics for Xnt. For example, as follows from [58], a formula F 
is provable in intuitionistic predicate logic iff all arithmetical instances of F are 
provably realizable in a certain extension HA+ of intuitionistic arithmetic. Such 
a result relates Xnt with a formal theory based on the same Xnt and thus is not 
intended to give an independent semantics for the latter. On the other hand, clas- 
sical realizabilities (Kleene realizability [32], function realizability [33], modified 
realizability [38], Medvedev's calculus of finite problems [50] and its variants), give 
conditions necessary but not sufficient for Xn£(cf.[18],[71],[74],[75]). 

It turned out that the natural deduction proofs for Xnt can be transliterated by the Curry- 
Howard isomorphism into the language of typed A-terms (see, for example, [24],[20],[72]). The 
inductive definition of the Curry-Howard isomorphism goes along the lines of BHK clauses, 
where A-terms play the role of BHK proofs. Though very important for establishing connec- 
tions between derivations/formulas of Xnt and terms/types in A-calculus, a Curry-Howard 
presentation does not give an independent semantical characterization for Xnt. Indeed, un- 
der this presentation the realization of a sentence is modulo to isomorphism a derivation of 
this sentence in the same Xnt. Loosely speaking, from the BHK semantics perspective, the 
Curry-Howard isomorphism provides a trivial solution: a formula F is true, by definition, if 
F is derivable in Xnt. 



2    Classical vs. intuitionistic BHK semantics 

Despite strong similarities between Heyting's and Kolmogorov's descriptions of the provability 
semantics for Int, their approaches had fundamentally different objectives. 

Heyting explained propositional intuitionistic logic Int in terms of the intuitionistic under- 
standing of constructions and proofs. His semantics gives a partial analysis of the intuitionistic 
meaning of a statement and does not intend to provide a foundation for Int independent of 
the intuitionistic assumptions. 

Kolmogorov in [34] intended to interpret Int on the basis of the usual mathematical notion 
of problem solution (e.g., proof), and thus to provide a definition of intuitionistic logic within 
classical mathematics. Kolmogorov suggested reading Int as the calculus of solvable schemes 
of problems. The basic notions of Kolmogorov's interpretation are problems and problem 
solutions. Each proposition denotes a problem. Solutions of the compound problems are 
described in terms of the solutions of their components along the lines of the BHK clauses 
above (reading "proof as "solution"). A problem scheme A(p) is solved, if there exists a 
general method of solving the problem A for any particular choice of the problems p and 
their solutions. Kolmogorov noticed that all axioms of the Heyting calculus for propositional 
intuitionistic logic Int stood for the solved problem schemes, the rules preserved the property 
of a scheme being solved, and thus all schemes derived in Int were solved. Kolmogorov also 
assumed implicitly that all such schemes could be derived from the Heyting axioms for Int 
and therefore Int was the calculus of the solved problem schemes. In his comments [35] of 
1985 Kolmogorov elaborates: 

"The paper [34] was written in a hope that the logic of solutions of problems 
would eventually become a permanent part of a logic course. It was supposed to 
create a unified logical technique dealing with two types of objects: statements 
and problems."2 

This difference between the Heyting and Kolmogorov semantics for Int was acknowledged by 
Heyting himself in [30]. A. Troelstra in [70] characterized Kolmogorov's interpretation of Int 
as "meaningful independently of intuitionistic bias." 

Since the authors of the name UBHK semantics" were apparently aware of the differences 
between the Heyting and Kolmogorov approaches, we do not suggest changing this well es- 
tablished name. However, for the purposes of formalization of BHK semantics it is important 
to distinguish between classical and intuitionistic interpretations of BHK clauses. We suggest 
the name classical BHK semantics for the former and intuitionistic BHK semantics for the 
latter. Thus, Kolmogorov's reading of Int as the logic of problem solutions may be considered 
classical BHK semantics. 

2"IVaiislated from Russian by SA. 



A mathematical explication of intuitionistic BHK semantics would depend on a choice of 
intuitionistic theory to take BHK proofs from. Eventually, it would lead to an interpretation 
oiXnt in a system based on Xnt and presumably more complicated than Int. Such a semantics 
could not provide an independent foundation for intuitionistic logic. We will not address the 
issue of intuitionistic BHK semantics in this paper. 

We demonstrate that classical BHK semantics, in turn, admits an exact mathematical 
formalization, which indeed provides an adequate semantics for Int on the basis of the usual 
classical notion of proof. 

3    Semantics of Xnt via modal provability logic 

Probably the first paper on formal provability semantics for intuitionistic logic was written 
in 1928 by Orlov ([57]). He introduced a unary logical connective (we call this connective □, 
for the sake of notational uniformity) with the informal reading of OF as "F is provable". 
Orlov suggested prefixing all subformulas of a given propositional intuitionistic formula by □, 
and understanding the logical connectives in the usual classical way. Orlov's modal axioms 
for provability coincide with the ones for the modal logic <S4, which was later recognized as 
the modal logic for provability ([25]). Orlov used a certain proper fragment of classical logic 
in the background, thus making his system weaker than «S4. Nevertheless, he succeeded in 
deducing a number of properties of the provability operator and reproducing some basic laws 
of intuitionistic logic, e.g. -i-i-ia f* ->a. 

Apparently independent of [57], Gödel in 1933 introduced the modal logic of provability 
and explicitly defined Xnt in this logic. Gödel's provability logic has the same modal axioms 
and rules as the one from [57], i.e. 

• GF-+F, 

• D(F-+G)-»(aF->oG), 

• DF-+DDF, 

• Fr- DF (necessitationrule), 

admits all axioms and rules of classical logic, and therefore coincides with the classical modal 
logic «S4. Gödel considered the translation t(F) of an intuitionistic formula F into the classical 
modal language similar to the one from [57]: "box each subformula of F". Gödel established 
that 

Int \- F       =*■       Ä h t(F), 



thus providing an exact reading of the Int formulas as statements about provability in classical 
mathematics. He conjectured that the inverse >£= also holds. This conjecture was eventually 
established in [49]. 

However, the ultimate goal of defining Int via the notion of a proof in classical math- 
ematics had not been achieved because 54 was left without an exact intended semantics of 
the provability operator D. Gödel himself was the first who addressed the issue of provability 
semantics for 54 ([25], cf.[70]). He pointed out that the straightforward reading of OF as "F 
is provable in a certain formal system" contradicted his incompleteness theorem. 

Let us consider first order arithmetic VA. Let i. be the boolean constant false; 
then the 54-axiom DJ. —)■ _L corresponds to the statement Consis VA, expressing 
consistency of VA. By necessitation, 54 derives G(a±-»JL). The latter formula 
expresses the assertion that Consis VA is provable in VA, which is false according 
to the second Gödel incompleteness theorem. 

In [26] (cf.[59]) Gödel again acknowledged the problem of the provability semantics for 54. 
This issue was also addressed by Lemmon [44], Myhill [55],[56], Kripke [40], Montague [54], 
Mints [52], Kuznetsov & Muravitsky [43], Goldblatt [27], Boolos [12],[14] Shapiro [62],[63], 
Buss [17], Artemov [1], and many others. However, the problem of finding an adequate 
provability semantics for 54 has remained open. 

A principal difficulty here is caused by the existential quantifier over proofs in the prov- 
ability formula Provable(y), which is 3xProof(x,y), where Proof (x,y) is the standard arith- 
metical formula saying "x is the code of a proof of a formula with the code y". The formula 
Provable(y) may be characterized as the implicit provability operator, since in a model of 
arithmetic Provable(F) does not always guarantee the existence of a proof of F. Indeed, in 
a given model of VA an element that instantiates the existential quantifier in 3xProof(x, F) 
may be nonstandard. In this case 3xProof(x,F) (i.e. Provable(F)) is true in the model, but 
there is no "real" 7M-derivation behind such an x. This explains why the reflection principle 
Provable(F)-*F is not derivable in VA: the formula Provable(F) does not necessarily deliver 
a "real" proof of F. 

This consideration suggests the idea of introducing a kind of explicit provability logic 
by switching from the formulas 3xProof(x,F) to the formulas Proof(t,F) and replacing the 
existential quantifier on proofs in the former by Skolem style operations on proofs in the 
latter. The usual Skolem technique, however, does not work here, since there are no uniform 
commutation laws for the quantifiers and the provability operator. 

Some of these operations appeared in the proof of Gödel's second incompleteness 
theorem. Within that proof (cf.[12],[14]),[51],[65]) in order to establish what are 



now known as Hilbert-Bernays-Löb derivability conditions one constructs com- 
putable functions m(x,y) and c(x) such that 

VA V Proof (s, F-*G) A Proof (t, F)  -» Proof (m(s, t),G), 

VA h Proof (t, F) -»■ Proof (c(t), Proof (t, F)). 

Then those facts are relaxed to their simplified versions 

VA h Provable(F -¥ G) A Provable(F)  -+  Prot>aMe(G), 

7M h Provable{F) -*■ Provable (Provable (F)), 

sufficient to establish the incompleteness theorem. 

In one of his lectures [26] in 1938 (first published in 1995, see also [59]) Gödel sketched an 
explicit version of Si 3 with the basic proposition ut is a proof of F" and operations similar to 
m(x,y) and c(x). Although this sketch does not contain exact definitions, it shows the way 
to explain the reflexivity principle for provability logic, which was the major difficulty in Si. 

Gödel's proposal generalized the problem of formalization of classical BHK semantics for 
Int to the problem of building an explicit provability logic: presumably, the former was 
derivable from the latter. The questions about an appropriate language and a complete set 
of axioms for explicit provability logic, as well as the question about its ability to realize Int 
and Si had remained open. 

Kreisel in [37],[39] (apparently without knowledge of [26]) developed a formal theory of 
constructions with a basic predicate like Gödel's "t is a proof of F", but with only partial 
success (cf.[59],[72],[76]). 

In this paper we present a recent solution of the following problems, discussed above. 

1. To give the intended semantics and to find a complete axiom system for the explicit 
provability logic sketched by Gödel in 1938 ([26]). 

We consider the logical language in Gödel's format "t is a proof of F" and give its exact 
provability semantics. We demonstrate that one more operation should be added to Gödel's 
sketch of the explicit provability logic in order to enable it to emulate the entirety of Si. We 
call the resulting system the Logic of Proofs (£P)4. Here we establish the soundness and 
completeness of CP with respect to the intended provability semantics (Theorem 7.1). 

Gödel's sketch was rather clear about the propositional principles of explicit provability logic. It also 
mentioned possible principles involving the first order quantifiers, but was not specific on this matter. We 
consider the propositional part of Gödel's sketch only. 

*CP was found by the author independently of Gödel's paper [26]. The first presentations of CP took place 
at the author's talks at the conferences in Münster and Amsterdam in 1994. Preliminary versions of CP along 
with the completeness theorem and realization of Si in CP appeared in Technical Reports [4], [6], cf. also a 
survey [31]. Note that despite its title the paper [3] does not introduce CP. 



2. To find an adequate provability semantics for the Gödel provability logic «Si ([25]). 

We establish that CP realizes all of 54 by assigning proof terms to the modalities in every 
»Si-derivation (Theorem 8.2). This gives an adequate provability model for «Si along the lines 
of Gödel's suggestion in [26]. 

3. To formalize the classical BHK semantics for Xnt and to establish the completeness of 
intuitionistic logic with respect to this semantics. 

We consider two realizations of Xnt in CP. The first one is defined by Gödel's translation 
of intuitionistic formulas into modal language "box all subformulas", with the subsequent 
realization in CP. The second one is the McKinsey-Tarski translation ("box all atoms and 
implications") followed by the realization in CP. Each of those two semantics is established 
to be adequate for intuitionistic propositional logic. This confirms Kolmogorov's assumption 
of 1932 that intuitionistic logic Xnt coincides with the calculus of solutions to problems in 
classical mathematics. CP may be considered as the "unified logical technique dealing with 
two types of objects: statements and problems" meant by Kolmogorov in 1932 ([34],[35]). 
This also achieves the original objective of Gödel (1933) to define Xnt via the classical notion 
of proof. 

CV provides a provability semantics for certain areas of logic and applications where main 
objects have had informal provability interpretations. For example, CP may be considered 
as a generalization of combinatory logic in that it is able to iterate the type assignment ':'. 
In particular, CP can express the propositions of the form t: (s: F), which are outside the 
scope of the usual combinatory logic. CP naturally contains the defined abstraction operator 
\*x which is an extension of the defined A-abstraction operator X*x in combinatory logic 
(cf.[73]). This generalizes the Curry-Howard presentation of intuitionistic proofs as typed 
A-terms. Moreover, through realizations in CP both modality and A-terms receive a uniform 
provability semantics and thus may be treated as the objects of the same nature, namely proof 
terms. 

4    Logic of Proofs 

4.1 Definition.     The language of Logic of Proofs (CP) contains 

the usual language of classical propositional logic 
proof variables XQ, ..., xn,..., proof constants ao,..., an,... 
function symbols: monadic !, binary • and + 
operator symbol of the type Herrn : formula". 



We will use a,b,c,... for proof constants, u,v, w,x,y,z,... for proof variables, i, j,k,I,m,n 
for natural numbers. Terms are defined by the grammar 

p::=Xi | at- | \p\pi-p2 \pi+P2 

We call these terms proof polynomials and denote them by p,r,s,t.... By analogy we refer to 
constants as coefficients. Constants correspond to proofs of a finite fixed set of propositional 
Schemas. We will also omit • whenever it is safe. We also assume that (a-b-c), (a-b-c-d), 
etc. should be read as ((a • 6) • c), (((a • b) • c) • d), etc. 

Using * to stand for any term and S for any propositional letter, the formulas are defined 
by the grammar 

<x ::= S \ o\-*o~i | <TIA<T2 | 01VO2 j -ur | t:o~ 

We will use A, B, C, F, G, H, X, Y, Z for the formulas in this language, and T, A,... for the 
finite sets (also finite multisets, or finite lists) of formulas unless otherwise explicitly stated. 
We will also use x,y,z,... and p,r,s,... for vectors of proof variables and proof polynomials 
respectively. If s = («j,..., sn) and T = (Fi,..., Fn), then s: T denotes (Sl: Fi,..., sn : Fn), 
V T = -Fi V... V Fn, /\ T = Fi A ... A Fn. We assume the following precedences from highest 
to lowest: [,-,+,:,->, A, V,—►. We will use the symbol = in different situations, both formal 
and informal. Symbol = denotes syntactical identity, rEn is the Gödel number of E. 

The intended semantics for p :F is "p is a proof of F", which will be formalized in the 
next section. Note that proof systems which provide a formal semantics for p: F are multi- 
conclusion ones, i.e. p may be a proof of several different F's (see Comment 4.8). 

4.2 Definition.    The system £P0. Axioms: 

AO. Finite set of axiom schemes of classical propositional logic in the language of CP 
Al. t:F^F "verification" 
A2. t:(F -)■ G) ->■ (s:F -¥ (t-s) :G) "application" 
AS.t-.F -}•!«: (t: F) "proof checker" 
A4. s:F-> (s+t):F,     t:F -+ (s+t):F "choice" 

Rule of inference: 

F-+G        F 

Rl- G "modus ponens". 

The system £P is £P0 plus the rule 

R2. c:A 
if A is an axiom AO - A4, and c a proof constant "axiom necessitation". 



A Constant Specification (CS) is a finite set of formulas Ci : A\,..., cn : An such that c,- is 
a constant, and A,- an axiom AO - A4. Each derivation in CP naturally generates the CS 
consisting of all formulas introduced in this derivation by the axiom necessitation rule. 

4.3 Comment. Proof constants in CP stand for proofs of "simple facts", namely prepo- 
sitional axioms and axioms Al - A4. In a way the proof constants resemble atomic con- 
stant terms (combinators) of typed combinatory logic (cf.[73j). A constant c\ specified as 
ci: (A -»■ (B -+ A)) can be identified with the combinator kA'B of the type A -> (B -*■ A). 
A constant c2 such that c2 : [(A -> (B -> C)) -* ((A -> B) -*• (A -»■ C))] corresponds to the 
combinator s^-5-0, of the type (A-+(B-*C)) -»■ ((A-+B)-*(A-*C)). The proof variables 
may be regarded as term variables of combinatory logic, the operation "•" as the application 
of terms. In general an £P-formula t: F can be read as a combinatory term t of the type 
F. Typed combinatory logic CL_» thus corresponds to a fragment of CP consisting only of 
formulas of the sort t: F where t contains no operations other than "•" and F is a formula 
built from the propositional letters by "—f only. 

There is no restriction on the choice of a constant c in R2 within a given derivation. In 
particular, R2 allows to introduce a formula c: A(c), or to specify a constant several times 
as a proof of different axioms from AO - A4. One might restrict CP to injective constant 
specifications, i.e. only allowing each constant to serve as a proof of a single axiom A within a 
given derivation (although allowing constructions c: A(c), as before). Such a restriction would 
not change the ability of CP to emulate classical modal logic, or the functional and arithmetical 
completeness theorems for CP (below), though it will provoke an excessive renaming of the 
constants. 

Both CPo and CP enjoy the deduction theorem 

T,A\-B      =$>      Tb-A^-B, 

and the substitution lemma: IfT(x,P) h B(x,P) for a propositional variable P and a proof 
variable x, then for any proof polynomial t and any formula F 

T(x/t,P/F)\-B(x/t,P/F). 

For a given constant specification CS under CPIjCS) we mean CP0 plus CS. Obviously, 

F is derivable in CP with a constant specification CS  «=>•   CPfCS) h F  &   CP0 \- A CS ->■ F. 

4.4 Proposition.   (Lifting lemma) Given a derivation V of the type 

s-.T^hjrpF, 
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one can construct a proof polynomial t(x,y) such that 

s-.T^iAhjßptdfl-.F. 

Proof. By induction on the derivation s: T, A h F. If F = s,- :Gi es: T, then put t :=!s; 
and use A3. If F = Dj € A, then put t := yj. If F is an axiom AO - A4, then pick a fresh 
proof constant c and put t := c; by R2, \- c:F. Let F be introduced by modus ponens from 
G -t F and G. Then, by the induction hypothesis, there are proof polynomials u(s, y) and 
v(s,y) such that u : (G -> F) and u: G are both derivable in CP from s : T, y : A. By 42, 
s:T,y:A t- (w) :F, and we put t := «v. If F is introduced by R2, then F = c: A for some 
axiom A. Use the same R2 followed by A3: c: A ->!c: c: A, to get s: T, y: A h!c: F, and put 
t :=Ic. 

Note that if A r-£p F, then one can construct t(y) which is a product of proof constants 
and variables from y such that y : A \~£p t(y): F. It is easy to see from the proof that the 
lifting polynomial t(x,y) is nothing but a blueprint of V. Thus CP accommodates its own 
proofs as terms. 

4.5 Corollary.     (Necessitation rule) 

\-F   ^  \-p:F for some proof polynomial p 

This is a special case of lifting. It follows from the proof of lifting Lemma 4.4 that p here is 
a blueprint of a derivation of F in CP that is implicitly present in the assertion "h F". Note, 
that p is a ground proof polynomial (i.e. p has no proof variables), which does not contain 

As we can see in section 8 CP suffices to emulate all «Sl-derivations. 

4.6 Example.     541- (DA A OB) -► O(AAB) 

In CP the corresponding derivation is 

1. A-»(JB->-AAB), by AO, 
2. C:(A-»(5-)-AAJB)), from 1, by R2, 
3. ar:A->(c-x):(JB-4AAJB),from2, by A2, 
4. x: A-> {y:B-> (c -x-y): (AAJ5)), from 3, by A2 and propositional logic, 
5. x:A/\y:B -> (c • x • y): (AAB)), from 4, by propositional logic. 

4.7 Example.     54 h (DAVDB) -»• D(AVB). 
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In CP the corresponding derivation is 

1. A -* AVB,     B -+ Av£, by AO, 
2.a:(A-+AVS),     b:(B -f A VS), by R2, 
3. x:A-> (a-x):(AVB),     y:B ->■ (fr-y^AVß), from 2, by A2, 
4. (a-x):(AVB) -> (a-s+ft-y):(AVB),      (6-y):(AVB) -> (a-x+6-y):(AVB), by A^, 
5. (x:A Vy:J3) ->• (a-x+6-y):(AV.B), from 4, by propositional logic. 

4.8 Comment. The operations "•" and "!" are present for single-conclusion as well as on 
multi-conclusion proof systems. On the other hand, "+" is an operation for multi-conclusion 
proof systems only. Indeed, by A4 we have s: F A t: G -¥ (s+t): F A (s+t): G, thus s + t 
proves different formulas. The differences between single-conclusion and multi-conclusion 
proof systems are mostly cosmetic. Usual proof systems (Hilbert or Gentzen style) may 
be considered as single-conclusion if one assumes that a proof derives only the end formula 
(sequent) of a proof tree. On the other hand, the same systems may be regarded as multi- 
conclusion by assuming that a proof derives all formulas assigned to the nodes of the proof 
tree. The logic of strictly single-conclusion proof systems was studied in [2], [3] and in [42], 
where it meets a complete axiomatization (system TCP). TCP is not compatible with any 
modal logic (cf. Comment 8.5) and thus is not directly relevant to the problem of finding 
an intended semantics for the modal logic of provability. Therefore, provability as a modal 
operator corresponds to multi-conclusion proof systems. 

No single operator "i:" in CP is a normal modality since none of them satisfies the property 
t: (P—¥ Q) -+(t:P -+t:Q). This makes CP essentially different from numerous polymodal 
logics, e.g. the dynamic logic of programs ([36]), where the modality is upgraded by some 
additional features. In turn, in the Logic of Proofs the modality is decomposed into a family 
of proof polynomials (see section 8). 

5    Standard provability interpretation of CP 

The Logic of Proofs is meant to play for the notion of proof a role similar to that played by 
the boolean propositional logic for the notion of statement. It is shown in sections 5 and 7 of 
this paper that CP enjoys the soundness/completeness property: 

CP \- F       <&     F is true under any interpretation . 

Any system of proofs with a proof checker operation capable of internalizing its own proofs as 
terms (cf.[66]) may be within the scope of CP. In particular, any proof system for first order 
Peano Arithmetic PA (cf.[12], [14], [51], [68]) provides a model for CP with Gödel numbers 
of proofs being an instrument for internalizing proofs as terms.   The soundness (=*>) does 
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not necessarily refer to arithmetical models. However, VA is convenient for establishing the 
completeness (<$=) of £P: given CP\f F one can always find a proof system for VA along with 
an evaluation of variables in F which makes F false (Theorem 7.1). 

In sections 5 and 7 of this paper by Ai and Si we mean the corresponding classes of 
arithmetical predicates. We will use <p, ij) to denote arithmetical formulas, /, g, h to denote 
arithmetical terms, and i,j,k,l,n to denote natural numbers unless stated otherwise. We 
will use the letters u, v, w, x,y, z to denote individual variables in arithmetic and hope that 
a reader is able to distinguish them from the proof variables. If n is a natural number, then 
n will denote a numeral corresponding to n, i.e. a standard arithmetical term 0'"" where ' 
is a successor functional symbol and the number of "s equals n. We will use the simplified 
notation n for a numeral n when it is safe. 

5.1 Definition. We assume that VA contains terms for all primitive recursive functions 
(cf. [68]), called primitive recursive terms. Formulas of the form f(x) = 0 where f(x) is a 
primitive recursive term are standard primitive recursive formulas. A standard Si formula is 
a formula 3xip(x, y) where tp(x, y) is a standard primitive recursive formula. An arithmetical 
formula <p is provably Si if it is provably equivalent in VA to a standard Si formula; cp is 
provably Ai iff both <p and -up are provably Si. 

5.2 Definition. A proof predicate is a provably Ai-formula Prf(x,y) such that for every 
arithmetical sentence <p 

VAhip   •«•   for some neu     Prf(n,r<p^) holds5. 

A proof predicate Prf(x,y) is normal if the following conditions are fulfilled: 

1) (finiteness of proofs) For every proof k the set T{k) = {/ | Prf(k,l)} is finite. The 
function from k to the canonical number of T(k) is computable. 

2) (conjoinability of proofs) For any natural numbers k and I there is a natural number n 
such that 

T(k)\JT(l)CT(n). 

The conjoinability indicates that normal proof predicates are multi-conclusion ones. 

5.3 Comment.     Every normal proof predicate can be transformed into a single-conclusion 
one by changing from 

"p proves Fi,..., Fn"        to "(p, i) proves Fj, i = 1,..., n". 

sWe have omitted bars over numerals for natural numbers n, rip'} in the formula Prf and will do it consistently 
throughout this paper. 
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In turn, every single-conclusion proof predicate may be regarded as normal multi-conclusion 
by reading 

"p proves Fi A ... AFn"        as "p proves each of Ft, i = 1,..., n". 

5.4 Proposition. For every normal proof predicate Prf there are computable functions 
m(xi y), a{x, y), c{x) such that for all arithmetical formulas <p, tp and all natural numbers k, n 
the following formulas are valid: 

Prf(k,r<p->^) A Prf{n,r^)^Prf{m(k,n),ril)-) 

Prf(k, r^)->Prf(a(k, n), ^),      Prf(n, ->n) ->Pr/(a(fc, n), <V) 

Prf(k, r^)->Prf(c(k),rprf(k, VV)- 

Proof.     The following function can be taken as m: 

Given k, n set m(k, n) = fiz."Prf(z, r\j)n) for all if> such that there are r<p-+ip~l 6 
T(k) and r<pn G T(n)» . 

Likewise, for a one could take 

Given k, n set a(k, n) = /j,z. T(Jfe) U T(n) C T(z)". 

Finally, c may be given by 

Given k set c(k) = fiz.uPrf{z,rPrf(k,r<pn)n) for all r<pn e T(k)". Such a z 
always exists. Indeed, Prf(k,r<pn) is a true Ai sentence for every r(p~* e T(k), 
therefore they all are provable in VA. Use conjoinability to find a uniform proof 
of all of them. 

Note that the natural arithmetical proof predicate PROOF(x,y) 

"x is the code of a derivation containing a formula with the code y". 

is an example of a normal proof predicate. 

5.5 Definition.      An arithmetical interpretation * of the £P-language has the following 
parameters: 

• a normal proof predicate Prf with the functions m(x,y), a(x,y), c(x) as in Proposition 
5.4, 
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• an evaluation of prepositional letters by sentences of arithmetic, and 

• an evaluation of proof variables and proof constants by natural numbers. 

Let * commute with boolean connectives, 

(t-s)* = m(t*,s*),    {t + s)* = a(t*,s*),    (\t)* = c(t*), 

(t:F)* = Pr/(F,rF*"1). 

Under an interpretation * a proof polynomial t becomes the natural number t*, an £P-formula 
F becomes the arithmetical sentence F*. A formula (t:F)* is always provably Ai. Note that 
VA (as well as any theory containing a certain finite set of arithmetical axioms, e.g. Robinson's 
arithmetic) is able to derive any true Ai sentence, and thus to derive a negation of any false 
Ai sentence (cf.[51]). For a set X of £P-formulas under X* we mean the set of all F*'s 
such that F € X. Given a constant specification CS, an arithmetical interpretation * is a 
CS-interpretation if all formulas from CS* are true (equivalently, are provable in VA). An 
£P-formula F is valid (with respect to the arithmetical semantics) if the arithmetical formula 
F* is true under all interpretations *. F is CS-valid if F* is true under all GS-interpretations 

5.6 Proposition.   (Arithmetical soundness of CPQ) 

1. IfCP0\~F then F is valid. 
2. If CPQ \- F then VA r- F* for any interpretation *. 

Proof. A straightforward induction on the derivation in CPQ. Let us check 2. for the axiom 
t:F-+F. Under an interpretation * (t:F-+F)* = Prf(t*,rF*^) -> F*. Consider two 
possibilities. Either Prf(t*,rF*~l) is true, in which case t* is indeed a proof of F*, thus 
VAr-F* and VA r-(t:F-> F)*. Otherwise Prf(t*, rF*"1) is false, in which case being a false 
Ai formula it is refutable in VA, i.e. VA h ->Prf(t*, rF*"1) and again VA h {t:F -*■ F)*. 

5.7 Corollary.   (Arithmetical soundness of CP) 

1. IfCP(CS)\-F then F is CS-valid. 
2. IfCPl^S) \- F then VA h F* for any CS-interpretation *. 

5.8 Comment.   The standard provability semantics for CP above may be characterized as 
a call-by-value semantics, since the evaluation F* of a given £P-formula F depends upon the 
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value of participating functions. A call-by-name provability semantics for CP was introduced 
in [4] and then used in [42], [64]. In the latter semantics F* depends upon the particular 
programs for the functions participating in *. 

In order to define the call-by-name provability semantics for CP we assume that VA has 
the standard set of tools to introduce t-terms. We use a new functional symbol iz.ip(z) for 
each arithmetical formula ip(z) and assume that i-terms could be eliminated by using the 
small scope convention (cf.[20]). The term iz.<p(z) is called computable if <p(z) is provably 
Si. A computable term represents some computable function, every computable function is 
represented by a computable term (cf.[51]). 

The term iz.<p(z) is provably total if VA r- 3iZ(p(z), i.e. VA proves that there exists a 
unique z such that <p(z). In particular, every arithmetical term in a narrow sense, i.e. a 
term built from 0 by ', +, x may be regarded as a provably total computable term. A closed 
computable term is a computable provably total term t,z.cp(z) such that ip(z) contains no free 
variables other than z. 

The set of computable terms is closed under substitution. The result of substituting a 
closed computable term into a Ai formula is again a Ai formula. Closed computable terms 
stand for all computable "names" for natural numbers. There is an algorithm which for any 
closed computable term / calculates its value, i.e. the numeral n such that VA h / = n. 

An analog of Proposition 5.4 can be established that for every normal proof predicate 
Prf there are computable terms m(x,y), a(x,y), c(x) such that if f,g are closed computable 
terms, then m(f,g), a(f,g), c(rP) are again closed computable terms and for all arithmetical 
formulas (p, ij> the following formulas are valid: 

Prfif,r<f-+^) A Prf{g,r^)^Prf(m(f,g),r^) 

Prf(f,r<pn)->Prf(a(f,g),r<p->),      Prf(g^^)^Prf(a(f,g)^VP) 

Prf {f, W-^PrficCT), rPr/(/> r^-ij-,). 

Note that c(rf~>) depends on the code of / rather than on the value of /. In particular, it 
may be the case that the values of / and g are equal, but cC"/-1) ^ c(rpn). 

An interpretation * is defined by the choice of a normal proof predicate Prf with the terms 
m(x,y), a(x,y), c(x), an evaluation of propositional letters by sentences of arithmetic, and 
an evaluation of proof variables and proof constants by closed computable terms. As before 
* commutes with boolean connectives, (t-s)* = m(t*,s*), (t + s)* = a(t*,s*), (It)* = c(rfn), 
(t:F)* = Prf(t*,rF*~'). Note that unlike the standard call-by-value interpretation above in 
this case we substitute not the numeral of the value of / for the variable x in Prf(x, y) but a 
term / itself. Under any interpretation * a proof polynomial t becomes a closed computable 
term t*, an £P-formula F becomes an arithmetical sentence F*. A formula (t:F)* is always 
provably Ax- 

As it was established in [4] CP is sound and complete with respect to this call-by-name 
provability interpretation. In fact the soundness in this case can be shown by an easy modifi- 
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cation of the soundness proof for the standard call-by-name interpretation above. In Comment 
7.15 we will discuss how to establish the completeness of £P in the call-by-name case. 

6    A sequent formulation of Logic of Proofs 

By sequent we mean a pair r =>• A, where T and A are finite multisets of £P-formulas. For 
T, F we understand V U {F}. 

Axioms of CPSo are sequents of the form T,F=^ F,A and r, 1 => A. Along with the usual 
Gentzen sequent rules of classical propositional logic, including the cut and construction rules 
(e.g. like G2c from [73]), the system £PQ0 contains the rules 

t:A,T=>A r=>A,lt:t:A 

r=J> A,t:A  t        x r=> A,t:A   , 
 (=>+)  ■ (=►+) 

r=> A,(t + s):A r=^ A,(s + t):A 

T=> A,s:(A^B) r=^ A,t:A ' 

T =$■ A,(s-t):B 
(=H 

As will follow from the proof of 7.1 the rule (=$> •) for CPQQ (but not for CPQ) can in fact 
be limited by the condition that A -► B must occur in T, A, without losing any provable 
sequents. 

The system CPQ is CPQ0 plus the rule 

      (=>c), 
T =>c:A,A 

where A is an axiom AO - A4 from section 4, and c is a proof constant. 

CPQ~ and CPQQ  are the corresponding systems without the rule Cut. 

6.1 Proposition. CPQo h T =$> A iff CP0\~ /\T ^\/A, CPQ\-T^A iff CP \-/\T-^ 
VA. 

The proof proceeds by a straightforward induction both ways. 
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6.2 Corollary.   £P£S) HF     iff    CPQ0hCS^ F. 

6.3 Definition.   The sequent T =*► A is saturated if 
1. A -> B G r implies B G T or A G A, 
2.A-4BGA implies A G T and B G A6, 
3. t:A G T implies A 6 I\ 
4. !f:*:A G A implies £:A G A, 
5. (s + t):A G A implies s:A G A and t:A G A 
6. (s • t) : B G A implies /or eac/i X -+ B occurring as a subformula in T, A e#Äer 

s:(I->B)6Aort:l€A. 

6.4 Lemma. (Saturation lemma) Suppose CPG0 \f T => A. Then there exists a saturated 
sequent V =>• A' such that 

i. rev, AC A', 
2. T' =*> A' is not derivable in CPGQ ■ 

Proof. A saturated sequent is obtained by the following Saturation Algorithm SA. Given 
r =$> A, for each undischarged formula 5 from T U A non-deterministically try to perform 
one of the following steps. At the moment 0 all formulas from T U A are available After a 
step is performed discharge 5 (make it unavailable). If none of the clauses 1 - 7 is applicable 
terminate with success. 

1. if S = (A ->• B) G T, then put A into AorS into T, 
2. if S = (A -4 B) G A, then put A into T and B into A, 
3. if 5 = t:A G T, then put A into T, 
4. if S=\t:t:Ae A, then put t:A into A, 
5. if 5= (s + t):A G A, then put both s:A and t:A into A, 
6. if 5 = (s • t): B G A, then for each Xi,..., Xn such that Xi —»• ß is a subformula in 

T, A put either s: {Xi -+ B) or t:Xi into A, 
7. if T n A ^ 0 or ± G T, then backtrack. If backtracked to the root node terminate with 

failure. When backtracking to a given node make available again all the formulas discharged 
after leaving this node the previous time. 

The Saturation Algorithm SA terminates. Indeed, A4 is finitely branching and each non- 
backtracking step breaks either a subformula of T =>■ A or a formula of the type t: F, where 
both t and F occur in T =>• A. There are only finitely many of those formulas, which guarantees 
termination. Moreover, SA terminates with success. Indeed, otherwise SA terminates at the 
root node T =*• A of the computation tree with all the possibilities exhausted and no way to 
backtrack. Then the computation tree T of «SA contains the sequent T =^ A at the root, and 

6The clauses concerning other boolean connectives are optional. 
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CPGo axioms at the leaf nodes. By a standard induction on the depth of a node in T one can 
prove that every sequent in T is derivable in CPGQ , which contradicts the assumption that 
£PGQ 1/ T =» A. The nodes corresponding to the steps 1-5 and 7 are trivial. Let us consider 
a node which corresponds to 6. Such a node is labelled by a sequent II =$> 0, st: B, and its 
children are 2n sequents of the form II =>• 0, st: B, Y{,..., Y£, where a — [a\ ..., <rn) is an 
n-tuple of O's and l's, and 

[ s:(Xi^B),   if<r, = 0 
*       1 t:Xi, if<r,- = l. 

Here X\,. ..,Xn is the list of all formulas such that Xi —>• B is a subformula of T =» A. By 
the induction hypothesis all the child sequents are derivable in CPGö'• In particular, among 
them there are 2n_1 pairs of sequents of the form II =► 0', s: (Xi -»• B) and II => Q',t:Xi. 
To every such pair apply the rule (=> •) to obtain II =» 0' (we assume that st: B 6 0')- 
The resulting 2n_1 sequents are of the form II =£• 0, st: B, Y£,..., Y£. After we repeat this 
procedure n — 1 more times we end up with the sequent II =^ 0, st:B, which is thus derivable 
in CPQQ. 

< 

Note that in a saturated sequent r =£> A which is not £7*/J"-derivable the set T is closed under 
the rules f.X/X and X-*Y,X/Y. 

6.5 Lemma. For each saturated sequent T =>■ A not derivable in CPQQ there is a set of 
CP-jormulas T (a completion ofT=$>A) such that 

1. T is a provably decidable set, for each term t the set I(t) = {X | t:X € T} is finite and 
a function from a code7 oft to a code8 of I(t) is provably computable, 

2. F G T implies F € f, A n f = 0, 
3. ift-.Xef, thenX e f, 
4. ifs:(I-^r)ef andUXjET, then (s -t):Y € f, 
5. ift:X e ?, then \t\t:X € f, 
6. tft:X£T and s is a proof polynomial, then (t + s) :X € T and (s + t):X € T. 

Proof. We describe a completion algorithm COM that produces a series of finite sets of 
£P-formulas r0)Tlf T2,.... Let T0 = {F \ F 6 T}. 

For each natural number i > 1 let COM do the following: 

if i = 3fc, then COM sets 

ri+1=Ti[j{(s-t):Y \s:(X^Y),t:X eTi}, 

7For example, the Gödel number of t. 
'For example, the canonical number of the finite set of Gödel numbers of formulas from I(t). 
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if i = M + 1, then COM sets 

Ti+1 = Ti\J{\t:t:X \t:X € T,}, 
t 

if i = 3fc + 2, then COM sets 

r,+i = r,(J{(s+ *)=*, (* + *):* I t:X e r,-,|«| < ;.}9 

Let 

t 

By definition, Tt- C I\-+i. 
It is easy to see that at step i > 0 COM produces either a formula from T or formulas of 

theform t:X with the length of t greater than i/3. This observation secures the decidability 
of T. Indeed, given a formula F of length n wait until step i = 3ra of COM; F € Tn iff F e ?. 
Similar argument establishes the decidability of /(£) from which one can construct the desired 
provable computable arithmetical term for I(t). 

In order to establish 2 and 3 we prove by induction on i that for all i = 0,1,2,... 

A. r,- n A = 0, 
B.t:X€Ti     =>    X eTi, 
C.X^Y,XeTi     =>     YeTi. 

The base case i = 0 holds because of the saturation properties of To = T. 
For the induction step assume the induction hypothesis that the properties A,B, and C 

hold for i and consider I\+i. 

A. Suppose there is F G r,-+i n A but F g T,-. There are three possibilities. If i - 1 = 3fc 
then F is (s • t): Y such that s: (X -)■ Y), t: X e I\ for some X. From the description of COM 
it follows that (X-+Y) £ T. By the saturation properties of T =» A, since (s • t) :Y e A and 
X -t Y occurs in T either s: (X -*■ Y) 6 A or t: X € A. In either case T,- n A ^ 0 which is 
impossible by the induction hypothesis. 

If i - 1 = 3A; +1 then F is \t:t:X such that t:X e T,-. By the saturation properties of A, 
t:X € A. Again rt- n A ^ 0 which is impossible by the induction hypothesis. 

If i - 1 = 3k + 2 then F is (t + s): X such that either t: X € I\- or s :X G I\-. By the 
saturation properties, from (t + s) :X G A conclude that both t:X € A and s:X € A. Once 
again, rt- n A ^ 0 which is impossible by the induction hypothesis. 

Thus r,+i n A = 0. 

|s| is the length of s, i.e. the total number of variables, constants, and functional symbols in s. 
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B. Suppose p:B £ I\+1 and p:B €" I\. We conclude that in this case B G I\-+i. Indeed, 
again there are three possibilities. 

If If i-1 = Sk then p: Bis (s -t) :Y such that s:(X-*Y),t:X G I\ for some X. By the 
induction hypothesis for I\-, (X->Y),X G Tt- and thus Y G I\. By the inclusion I\- C I\+i, 
Y € r,+1. 

If i - 1 = 3k + 1 then p: J3 is \t:t\X such that i:A" G I\. Then t:X G I\-+1. 
If t - 1 = 3fc + 2 then p:B is (t + s) :B such that either i:B G T,- or s:B G T,-. By the 

induction hypothesis, in either case B G T,-, therefore 2? G r,+1. 

C. Suppose X->Y,X G r,-+i. From the description of ÖOM it follows that (X-+Y) G T. 
By the saturation properties of T =» A, either Y G T or X G A. In the former case we are 
done. If X G A then rj+i n A ^ 0, which is impossible by item A of the induction step. 

Items 4., 5., and 6. of Lemma 6.5 are guaranteed by the definition of COM. Indeed, if some 
if condition is fulfilled, then it occurs at step i and COM necessarily puts the then formula 
into r,+3 at the latest. 

7    Consolidated completeness theorem 

In this section we establish completeness and cut elimination theorems for the Logic of Proofs. 

7.1 Theorem.   The following are equivalent 
i. cpQö t-r^A, 
2. CPGo h T =» A, 
3. £P0i-Ar->VA, 
4. for every interpretation * VA h (/\r —>• V A)*, 
5. for every interpretation * the formula (/\T -*\f A)* is true. 

Proof. The steps from 1 to 2 and from 4 to 5 are trivial. The step from 2 to 3 follows from 
6.1, and the step from 3 to 4 follows from 5.6. The only remaining step is thus from 5 to 1. 
We assume "not 1" and establish "not 5". Suppose CPQQ \f T =» A. Our aim now will be 
to construct an interpretation * such that (/\T ->• \f A)* is false (in the standard model of 
arithmetic). 

From the saturation procedure get a saturated sequent V =» A' (6.4), and then make a 
completion to get a set of formulas T' (6.5). 

We define the desired interpretation * on propositional letters Si, proof variables Xj and 
proof constants aj first. We assume that Gödel numbering of the joint language of CP and 
VA is injective, i.e. 

rE{" = rE2^      f+      Et = E2 
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for any expressions Fx, E2, and that 0 is not a Gödel number of any expression.   For a 
prepositional letter 5, proof variable x and proof constant a let 

s*=l rs^ = rs^ if sen 
1  r5"' = 0,       if 5 ^ f', x* = raP,       a* = ""a"1. 

The remaining parts of * are constructed by an arithmetical fixed point equation below. 
For any arithmetical formula Prf(x,y) define an auxiliary translation + of £P-terms to 

numerals and jCP-formulas to TM-formulas such that S* = S* for any prepositional letter S, 
ft = rp for any £p_term t, (t:F)* = Pr/(tt,rFt_l), and t commutes with the prepositional 
connectives. 

It is clear that if Prf(x, y) contains quantifiers, then t is injective, i.e. F* = G* yields 
F = G. Indeed, from F* = G* it follows that the principal connectives in F and G coincide. 
We consider one case: {F1-+F2)

i = (s:G)^ is impossible. Since (s:G)f = Prf(k,n) for the 
corresponding numerals k and n, this formula contains quantifiers. Therefore the formula 
(-Fi-»F2)

T = FJ -> F2
+ also contains quantifiers and thus contains a subformula of the 

form Prf(ki,n1). However, (s:G)+ = F^ -> F2
f is impossible since the numbers of logical 

connectives and quantifiers in both parts of = are different. Now the injectivity of * can 
be shown by an easy induction on the construction of an £P-formula. Moreover, one can 
construct primitive recursive functions / and g such that 

/(rF\ rPrP) = rßt-\    g(rB^t 
rPrf) = rB^. 

Let (PROOF, <g>, ©, ■§) be the standard multi-conclusion proof predicate from section 5, 
with ® standing for application, © for choice and ft for proof checker operations on proofs 
associated with PROOF. In particular, for any arithmetical formulas <p, ip and any natural 
numbers k, n the following formulas are true: 

PROOF(k, •>->■ V»"1) A PROOF(n,r^) -> Prf(k ® n,r^) 

PROOF{k,rip^)^PROOF(k © n,rvT),    PROOF (n,ry1) -► PROOF'{k © n, rvT) 

PROOF(k, ■>"*) -»• PROOF (W, rPROOF{k, r<pn)""). 

For technical convenience and without loss of generality we assume that PROOF (rtn, k) is 
false for any £P-term t and any ieu. 

By fix.<p(x, y) we mean a function that calculates x such that 

<p(x, y) A Vz < a:-.y>(z, y). 

It is clear that fj,x.(p(x, y) is computable if <p(x, y) A Vz < x-i<p(;z, y) is provably Ei. There are 
two convenient sufficient conditions under each of which fix.cp(x, y) is computable: 

<p(x, y) is provably Ai, 
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<p(x,y) is provably Li and functional with respect to x, i.e. <p(ki, n) A<p(k2, n) —>• ki = k2 

is true for all ki, k2, n. 

By an arithmetical fixed point argument we construct a formula Prf(x,y) such that VA 
proves the following fixed point equation (FPE): 

Prf(x,y)     f+     PROOF(x,y)    V 
("x = rt~l for some CP-term t and 
y = rßt-i for some CP-formula B such that B e I(t)") 

Here the arithmetical formula "..." describes a primitive recursive procedure: given x and 
y recover t and B such that x = rt~* and y = rßt~l, then verify B G I(t). From FPE it 
is immediate that Prf is a provably Ai-formula, since PROOF(x,y) is provably Ai. It also 
follows from FPE that VA h V yields Pr/(fc, ""V»"1) for some A; € w. 

We define the arithmetical formulas M(x, y, z), A(x, y, z), C(x, z) as follows 

M(x, y, z) <->■    ("x = rs~l and y = rt~[ for some CP-terms s and t" A z = rs -tn) V 

fa; = rs~l /or some CP-term s and y ^ rtn for any CP-term t" A 
3u|> = nw.(/\{PROOF(w, rB^) | 5 € 7(a)}) "Az = v®y])V 

far ^ ra~? for any CP-term s and y = rt~l for some CP-term t" A 
3u["t/ = fiw.(/\{PROOF{w, rB^) | B € 7(0»" A z = x ® u]) V 

f "x ^ rs-1 and y 7^ rtn for any CP-terms s and t" A z = x ® y^ 

A(x, y, z) «-*    (*x = ra~l and y = ri~l /or some CP-terms s and t" A z = ra + tn) V 

("a; = ra"1 for some CP-term a and y ^ ri~1 /or any CP-term t" A 
3u[> = /xtü.(A{7Ji?OOF(tü,rßt"') | £ € 7(a)})" A z = u© y]) V 

f "x ^ ra"1 /or any CP-term s and y = ri~l /or some CP-term t" A 
3u[Bt/ = iiw.{f\{PROOF(w, rB^) I 5 € 7(t)})" A * = x © t>]) V 

(ax ^ rs"1 and y ^ rt~l /or any CP-terms s and t" A z — x © y) 

C(x, z) <-*•    ("x = T for some CP-term t" A z = rltn) V 
("x ^ T for any CP-term t" A 
3v['S)=nw.{/\{PROOF{w,rPROOF(t, r<p^)-+Prf{t,r^"1)"1) |<p€T(t)}) * A 
z = utg-ffx]) 
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Here "..." denotes a natural arithmetical formula representing in VA the condition '...', "u = 
pw.if>n is a natural formula representing in VA the function fiw.ip. Note that in the definitions 
above all these functions are computable since all the corresponding ^'s are provably Aj. 
Therefore M(x,y,z), A(x,y,z) and C(x,z) are provably Ex. Moreover, these formulas are 
functional with respect to z. By the necessary conditions above the functions m(x, y), a(x, y) 
and c(x) are computable. 

We continue defining the interpretation *. Let Pr/for * be the one from FPE, 

m(x, y) := fiz.M(x, y, z),   a(x, y) := fxz.A(x,y, z),   c(x) := fj,z.C(x, z). 

7.2 Lemma. 
a) t* = tf for any CP-term t, 
b) B* = Bf for any jCP-fortnula B. 

Proof. a) Induction on the construction of an £P-term. Base cases are covered by the 
definition of the interpretation *. For the induction step note that according to the definitions, 
the following equalities are provable in VA: 

{s • t)* = m{s*, t*) = m(r^, T) = rs • f = (s • t)\ 

(s +1)* = a(s*, t*) = a(rs^, T) = rs + T = (s + t)\ 

{\ty = c(t*) = c(T) = nr = (!*)+. 
b) By an induction on B we prove that B* and B+ coincide. The atomic case when B is a 
propositional letter holds by the definitions. If B is t:F, then (t:F)* = Prf(t*,rF*~l). By 
a), t* = ft. By the induction hypothesis, F* = F+ which yields rF*~> = rFt"1. Therefore 
Pr/(t*,rF*n) = Pr/(tt,rFt"1) = (t:F)*. The inductive steps are trivial. 
< 

7.3 Corollary.   The mapping * is injective on terms and formulas of CP. In particular, for 
all expressions Ei and Ei 

JP *     J? *      —v.       T?        T? 
EJ\    — £/2       =?•     tti\ = Ü/2- 

7.4 Corollary.   X* is provably Ax for any CP-formula X . 

Indeed, if X is atomic, then X is provably Ai by the definition of *. If X is t:Y, then (t:Y)* 
is Prf{t*,rY*^). By Lemma 7.2, 

VA \- Prf(t\rY*^) ++ Pr/CT^y*-1). 
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The latter formula is provably Ai, therefore (t: Y)* is provably Aj. Since the class of provably 
Ai formulas is closed under boolean connectives X* is provably Ai for each X. 

7.5 Lemma.   If X £ f', then VA h X*, if X € A', then VA h -df*. 

Proof. By induction on the length of X. Base case, i.e. X is atomic or X = t: Y. Let 
X be atomic. By the definition of *, X* is true iff X 6 f'. Let X = t: Y and t: Y £ f'. 
Then VA h "Y e /(*)"• By PP£, 714 h Pr/C^VY^). By Lemma 7.2, VA h Pr/(i*,rY*n). 
Therefore 7Mh(i:Y)*. 

If t:Y € A', then t:Y £ T' and "Y € /(<)" is false. The formula PROOF{t* ,rY^) is also 
false since t* is rf (by Lemma 7.2) and PROOFCf1, k) is false for any k by assumption. By 
FPE, (UY)* is false. Since (t:Y)* is provably Ax (Lemma 7.4) VA r- -*(t:Y)*. 

The induction steps corresponding to boolean connectives are standard and based on the 
saturation properties of T' =» A'. For example, let X = Y ->■ Z € f'. Then Y -> Z 6 T', and 
by Definition 6.3, Y e T' or Z € A'. By the induction hypothesis, Y* is true or Z* is false, 
and thus (Y ->■ Z)* is true, etc. 

7.6 Lemma.   7M I- <p   &■    Prf(n, r(pn) for some n Gw. 

Proof.   It remains to establish (<=). Let Prf(n, ryTl) for some n€u. By FPE , 

Pr/(n, r^)   =►   PROOF{n, r¥>"1)  or ryP = <~B^ for some £ such that t:B <E f\ 

In the latter case by the saturation property of T', B € V. By Lemma 7.5, VA \- B*. By the 
injectivity of the Gödel numbering, cp = £?+. By Lemma 7.2, <p = B*. Therefore VA h y>. 
•4 

7.7 Lemma.     For all arithmetical formulas <p, tp and natural numbers k, n the following is 
true 

a) Prf(k,r<p-¥^) A Prf(n,"V) ->Pr/(m(fc,n),rj>-) 

b) Prf(k,^)-*Prf(a(k, n),r^),      Prf(n, "V)_>Prf(a(k, n),r^) 

c) Pr/(Jfc,r^)^Prf(c(k),rPrf(k,rf^D. 

Proof,     a) Assume Prf(k,r<p->V~l) and Prf(n,r(p~*). There are four possibilities. 
i) Neither of k, n is equal to a Gödel number of an £P-term. By FPE, both PROOF(n, r<p~>) 

and PROOF(k,r<p^^) hold, so PROOF(k®n,<~^) does also. 
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ii) Both k and n are equal to Gödel numbers of some £P-terms, say k = rs~} and n = rtn. 
By FPE, (f is F* and ip is G*JOT some £P-formulas F, G such that F^G G /(«) and F G J(t). 
By the closure property of f' (Lemma 6.5(4)), G e I(s-1). By FP£, Prf(<~s ■ tn, rG*n). By 
Lemma 7.2 and by definitions, VA proves that 

rs • tn = (s • *)* = m(s*, **) = m(rs~\ T) = m(fc, n). 

Thus m(fc, n) = rs • t-1 and Prf(m(k, n), rijP) is true. 
iii) k is not equal to the Gödel number of an £P-term, n = ri~1 for some £P-term t. By 

FP£, PROOF(k,r<f-»-V"1) and y> = F* for some £P-formula F such that F € I{t). Compute 
the number 

I = liw.{f\{PROOF{w,rB^) | B G /(*)}) 

by the following method. Take I(t) = {ßi,...,ß;}. By definition, B{ G T', i = 1,...,/. 
By Lemma 7.5, 7M h £,* for all » = 1,..., /. By Lemma 7.2, 7M h B;+ for all t = 1,..., /. 
By the conjoinability property of PROOF there exists w such that PROOF(w,rB^) for 
all i — 1,...,/. Let j be the least such w. In particular, PROOF (j,rF^n). By the defi- 
nition of (g>, PROOF(k®j,rip'1). By the definition of M, VA h m(A;,n) = fc (8) j, therefore 
PROOF(m(k,n),r^) holds. 

Case iv): "s is a Gödel number of an £P-term but t is not a Gödel number of any £P-term" 
is similar to (iii). 

Case (6) can be checked in the same way as (a). 

c) Given Prf(k,rtp1) there are two possibilities. 
i) k = rt~l for some £P-term t. By FPE, <p = F+ for some F such that F G I(t). By the 

closure property 6.5(5) off', \t:t:F G f'. By Lemma 7.5, {\t:t:F)* holds. By definitions, 

(lt:t:F)* = Prf(c(t*),rPrf(t*,rF*^). 

By Lemma 7.2, t* = T and F* = F*. Therefore t* = k, F* = ip and 

Prf{c(k)SPrf(kW). 

ii) fc ^ rt"1 for any £P-term t. By FPF, PROOF(k, r(pn) holds. By definition of the proof 
checking operation ft for PROOF, 

PROOFS, rPROOF(k, r<pT). 

By the definition of C, in this case VA h c(fc) = / <g> ft/: where 

I = liw./\{PROOF(w,rPROOF(k,r^)^Prf(k,r^p) \ PROOF(k,r^)}. 
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By the definition of /, 

Therefore 

By FPE, 

therefore 

PROOF (I, rPROOF{k, r<pn) ->■ Prf(k, rvT)- 

PR00F{1 ® #,rPr/(fc,'W). 

Pr/(/®#,rPr/(fc,V,)~% 

Prf(c(k),<-Prf(kWi). 

7.8 Lemma.   The normality conditions for Prf are fulfilled. 

Proof. By FPE, Prf is provably Ai. It follows from FPE and 7.6 that for any arithmetical 
sentence <p 

VA \~ ip if and only if Prf(n, r<p~*) holds for some natural n. 

Finiteness of proofs. For each n the set 

T(k) = {l\Prf(k,l)} 

is finite. Indeed, if k is a number of an £P-term, we can use the finiteness of I(t); otherwise we 
use the normality of PROOF. An algorithm for the function from k to the canonical number 
of T(k) for Prf can be constructed from those for PROOF, and from the decision algorithm 
for I(t), Lemma 6.5(1). 

Conjoinability of proofs for Prf is realized by the function a(x,y) since by Lemma 7.7, 

T(fc)UT(n)cr(o(fe,n)). 

Let us finish the proof of the final "not 1 implies not 5" part of 7.1. Given a sequent r =$■ A 
not provable in CPGQ we have constructed an interpretation * such that T* are all true, and 
A* are all false in the standard model of arithmetic (7.5). Therefore, {/\Y —> \f A)* is false. 

7.9 Corollary.   CPQ is decidable. 

27 



Given an £P-formula F run the saturation algorithm A4 on a sequent =>• F. If SA fails, then 
CP0 r- F. Otherwise, CP0 V F- 

7.10 Corollary.     (Completeness of CP with respect to the provability semantics.) 

CP£S) \- F    <$       VAV- F* for any CS-interpretation *. 
•£>       F* is true for any CS-interpretation *. 

7.11 Corollary.   (Cut elimination in CPo.)     Every sequent derivable in CPQ0 can be derived 
without the cut rule. 

Proof.   By Theorem 7.1 CPQö H T =» A iff CPQ0 h T =>• A. 

7.12 Corollary. (Cut elimination in CP.) Every sequent derivable in CPQ can be derived 
without the cut rule. 

Proof. Cut elimination for CP can be established by a direct system of reductions, and it 
has been done in [6], [7]. We may also get the cut elimination theorem for CP as a side 
product of the arithmetical completeness theorem for CP. Indeed, a straightforward analogue 
of Theorem 7.1 where CPo and CPQ0 are replaced by CP and CPQ respectively holds. As in 
7.1 it suffices to establish that if CPQ \f T =$> A then for any constant specification CS there 
exists a GS-interpretation * such that the arithmetical sentence (/\T -» V A)* is false. Let 
us sketch changes that should be made in the definitions and proofs from Sections 6 and 7 
to make them work for CP. Fix a constant specification CS. Definition 6.3 of the saturated 
sequent should be updated by 

7. CS n A = 0 
The item 7 of the saturation algorithm should be updated by an additional backtracking 
condition: if CS (1A = 0 then backtrack. Then Lemma 6.4 holds with the new definition of a 
saturated sequent and CPQ~ instead of CPQ0~. Item 3 of Lemma 6.5 should be read as 

3. CSeT and ift:X ef\CS, then X € f 
The new completion algorithm should begin with setting r0 = {F \ F e TLiCS}. The rest of 
6.5 and the entire 7.1 remain intact under the new definitions. 

7.13 Comment.    Decidability of CP follows from the results of [53]. This fact can also be 
easily obtained from the cut elimination property of CP (Corollary 7.12). 
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7.14 Corollary. (Non-emptiness of provability semantics for CP). For any constant speci- 
fication CS there exists a CS- interpretation *. 

Proof. An easy inspection of the rules in CPQo shows that the sequent CS =>• is not derivable 
in JCPGQ, and thus CPGQ \/CS =» . Indeed, if CPG0~ \- c: A =$> , then c: A is introduced by the 
rule (: =$■) from a previously derived sequent A =>• . This is impossible since A is an axiom 
of CP0 and thus CPQo r- =>• A: should CPQo I- A =$> , we would have CPQo h =>• , which is 
impossible, e.g. because CPy0~ \f =$■ . 

From CPQo \fCS => it follows that CPy0 1/ =*• ~>ß>. By 7.1, there exists an interpretation 
* such that {-<CS)* is false, i.e. CS* is true. 
< 

7.15 Comment. The straightforward analogue of Theorem 7.1 holds for the call-by-name 
semantics (cf. Comment 5.8) as well. Some minor modifications are needed to adapt the proof 
of 7.1 to this new case. First, we redefine fix.tp(x,y) as an arithmetical i-term 

iz.[<p(x, y) A Vz < x^<p(z, y)]. 

Then we write down a Fixed Point Equation that is similar to FPE from 7.1 with some 
adjustments corresponding to the understanding of * as the call-by-name interpretation, and 
the new reading of fix.(p(x,y) as an arithmetical i-term (cf.[4], [42],[64]). 

7.16 Comment. In [64] a complete axiomatization of the joint logic of proofs with its 
call-by-name semantics and the formal provability was found. Thus CP as it was presented 
in [4] was combined with the logic of formal provability QC (cf.[12],[14]). 

8    Realization of modal and intuitionistic logics 

It is easy to see that the forgetful projection of CP is correct with respect to Si. Let F° be 
the result of substituting OX for all occurrences of t:X in F, and T° = {F° \ F 6 T} for any 
set T of /^-formulas. 

8.1 Lemma.   IfCPhF, then «S4 h F°. 

Proof.    This is a straightforward induction on a derivation in CP. 
< 

The goal of the current section is to establish the converse, namely that CP suffices to 
realize any «S4 theorem. By an CP-realization of a modal formula F we mean an assignment 
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of proof polynomials to all occurrences of the modality in F. Let Fr be the image of F under 
a realization r. Positive and negative occurrences of modality in a formula and a sequent are 
defined in the usual way. Namely 

1. an indicated occurrence of ü in OF is positive; 
2. any occurrence of □ from F in G->F, GAF, FAG, GVF, FVG, OF and r =>• A,F 

has the same polarity as the corresponding occurrence of ü in F; 
3. any occurrence of D from F in ->F, F->G and F, T =$■ A has a polarity opposite to 

that of the corresponding occurrence of D in F. 

In a provability context OF is intuitively understood as "there exists a proof x of F\ After 
a skolemization, all negative occurrences of D produce arguments of Skolem functions, while 
positive ones give functions of those arguments. For example, OA -»• OB should be read 
informally as 

3x a x is a proof of A" -4 3y   " y is a proof of B", 

with the Skolem form 

" x is a proof of A" -¥ " f(x) is a proof of B". 

The following definition captures this feature: a realization r is normal if all negative occur- 
rences of ö are realized by proof variables. 

8.2 Theorem.   If Sir- F, then CP\~ Fr for some normal realization r. 

Proof. Consider a cut-free sequent formulation of 54, with sequents T =$> A, where T and A 
are finite multisets of modal formulas. Axioms are sequents of the form S =£• S, where 5 is a 
prepositional letter, and the sequent _L => . Along with the usual structural rules (weakening, 
contraction, cut) and rules introducing boolean connectives there are two proper modal rules 
(cf.[73]): 

4.r=* A .     N Dr=* A . 
(o=0  (=*n) 

DA,r=»A and Dr => OA 

(a{A1,...,An} = {DA1,...,DAn}). 
If Si h F, then there exists a cut-free derivation T of a sequent =£> F. It suffices now to 

construct a normal realization r such that CP h f\ Tr —► V Ar for any sequent r => A in T. 
We will also speak about a sequent T =3- A being derivable in CP meaning CP h /\T -)• \/ A, 
or, equivalently, T \-£p V A, or CPQ V- T =$> A. Note that in a cut-free derivation T the rules 
respect polarities, all occurrences of D introduced by (=*• D) are positive, and all negative 
occurrences are introduced by (□ =>•) or by weakening. Occurrences of D are related if they 
occur in related formulas of premises and conclusions of rules; we extend this relationship by 
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transitivity. All occurrences of □ in T are naturally split into disjoint families of related ones. 
We call a family essential if it contains at least one case of the (=> □) rule. 

Now the desired r will be constructed by steps 1-3 described below. We reserve a large 
enough set of proof variables as provisional variables. 

Step 1. For every negative family and nonessential positive family we replace all occur- 
rences of D by "x:" for a fresh proof variable x. 

Step 2. Pick an essential family /, enumerate all the occurrences of rules (=> O) which 
introduce boxes of this family. Let n/ be the total number of such rules for the family /. 
Replace all boxes of the family / by the term 

(ui + ... + «n/), 

where i7,-'s are fresh provisional variables. The resulting tree To is labelled by CP formulas, 
since all occurrences of the kind UX in T are replaced by t:X for the corresponding t. 

Step 3. Replace the provisional variables by proof polynomials as follows. Proceed from 
the leaves of the tree to its root. By induction on the depth of a node in 7o we establish 
that after the process passes a node, a sequent assigned to this node becomes derivable in 
CP. The axioms S =$■ S and _L =4- are derivable in CP. For every rule other than (=$>□) we 
do not change the realization of formulas, and just establish that the concluding sequent is 
provable in CP given that the premises are. Moreover, every move down in the tree 70 other 
than (=>■ D) is a rule of the system CPQ, therefore, the induction steps corresponding to these 
moves follow easily from the equivalence of CP and CPQ. 

Let an occurrence of the rule (=>■ D) have number i in the numbering of all rules (=>• □) 
from a given family /. This rule already has a form 

yi-Y1,...,yk:Yk => Y 

yi-Yi,...,yk:Yk => {ux + ... + unf):Y , 

where y\,..., yk are proof variables, «i,..., unj are proof polynomials, and «,- is a provisional 
variable. By the induction hypothesis, the premise sequent j/i:Yi,..., yk:Yk =£• V is derivable 
in CP, which yields a derivation of 

yi-Yi,...,yk:Yk =* Y. 

By lifting lemma (Proposition 4.4), construct a proof polynomial t(yi, ...,yn) such that 

yi--Y!,...,yk:Yk =>• t{yu...,yn):Y 

is derivable in CP. Since 

CP h t: Y -> («i + ... + «,-_! + * + ui+1 + ... + un/):Y 
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we have 

£P\ryx:Ylf..., yk:Yk =>(Ul + ... + u,-_i +1 + ui+1 + ... + unf):Y. 

Now substitute t(yi, ...,yn) for «,• everywhere in %. 

By the way, this may lead to the constant specifications of the sort c: A(c) where 
A(c) contains c. It looks like such self-referential constant specifications are es- 
sential for realization of modal logic in the Logic of Proofs. 

Note that t(yi,...,y„) has no provisional variables, and that there is one less provisional 
variable (namely «,) in the entire tree To. All sequents derivable in CP remain derivable 
in CP, the conclusion of the given rule (=$ G) became derivable, and the induction step is 
complete. 

Eventually, we substitute terms of non-provisional variables for all provisional variables in 
7o and establish that the corresponding root sequent of 7o is derivable in CP. Note that the 
realization of n's built by this procedure is normal. 
< 

8.3 Corollary.   (Arithmetical completeness of Si.)      Si\- F iff there is a realization r and 
a constant specification CS such that Fr is CS-valid. 

8.4 Comment. It follows from 8.1 and 8.2 that Si is nothing but a lazy version of CP that 
does not distinguish between the proof polynomials. Each theorem of Si admits a decoding 
via CP as a statement about specific proofs. The language of CP is more rich than that of 
Si. In particular, Si theorems admit essentially different realizations in CP. For example, 
consider two theorems of CP having the same modal projection: 

x:FVy:F-> (x + y):F and  x:FVx:F-> x:F. 

The former of these formulas is a meaningful specification of the operation "+". In a contrast, 
the latter one is a trivial tautology. 

So CP is the right logic of provability, and Si should be considered as a lazy higher level 
language on top of CP. A general recipe for using Si as a provability logic might be the 
following: derive in Si or reason about «SI using a conventional modal logic technique as 
before, then translate the results into CP to recover their true provability meaning. 

8.5 Comment. As it was noticed by A. Kopylov, the example from 8.4 can be generalized: 
54 also admits a degenerated realization in the "+"-free fragment of CP, under which all 
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arguments of proof polynomials are denoted by the same proof variable and only one universal 
constant is used as a coefficient. 

For example, the 54-theorem (DAVDB) -)■ D(AVß) (cf. Example 4.7) can be realized 
in CP as (a;: A V x : B) -> (c-x): (Ay B) with the constant specification c : (A -> A V B), 
c: (B —► A V 2J). As one can see, this realization cripples the provability content of modal 
logic. Namely, it presupposes that the constant c stands for the proof of two different axioms, 
which is inconsistent with an injective assignment of proof constants to propositional axioms 
in rule R2 of CP. The assumption that A and B have the same proof contradicts the intended 
provability reading of the original modal formula (UAVUB) -> D(AVJB) as if there is a 
proof of A, or there is a proof of B, then there is a proof of AVB. Indeed, the Skolem style 
conversion of this formula from the language with quantifiers into the quantifier-free language 
with Skolem functions is if x is a proof of A and y is a proof of B, then t(x, y) is a proof of 
AVB. One can show that such t(x, y) cannot be taken to be "+"-free provided x and y are 
distinct proof variables. Indeed, let S\ and 52 be propositional letters. Suppose 

CP V- x:Si V y:S2 -> t:(Si V S2) 

for some "+"-free term t. Then CP h x : Si -)• t: (Si V S2) and CP I- y : S2 ->■ t: (Si V S2). 
Consider the shortest cut-free derivation V of x:S\ => t:(S\ V S2) in CPQ. A straightforward 
analysis of V rules out the use of axioms other than x :Si =>• x :S\ and rules other than (=> •) 
and (=>• c) in the form x:Si =S> c: A. Therefore t is a product of some proof constants and the 
variable x. Similarly, from £P H y:S2 -> t: (Si V S2) we conclude that t is a product of some 
proof constants and the variable y. Therefore, t is a product of some proof constants, and V 
does not contain axioms of the sort x:S\ =*> x: Si. That means that in the leaf nodes of V 
there are only the rules (=$► c) in the form x : Si =$► c: A. Erase x : Si from the antecedents 
of all sequents in V. The remaining tree will be a derivation of => t: (Si V S2) in CPQ. This 
would yield CP h t: (Si V S2) and CP \- Si V S2, which not true. 

The "+"-free fragment of CP is not complete with respect to the class of all single- 
conclusion proof predicates. It can be made complete by adding the functionality principle 
from [2]. The completeness of the resulting system TCP with respect to single-conclusion proof 
systems was established by V. Krupski in ([42]). TCP does not have a modal counterpart. 
For example, TCP derives a principle -<(x: A A x: (A -*■ A)), which has the forgetful projection 
->(OA A D(A—*A)). The latter is false in any normal modal logic. 

8.6 Definition. Let gk(F) denote a translation of an intuitionistic formula F into the plain 
modal language that puts the prefix O in front of all subformulas in F (Gödel-Kolmogorov 
translation). Under mt(F) we understand the translation that prefixes only atoms and im- 
plications in F (McKinsey-Tarski translation). A propositional formula F is GK-realizable 
(MT-realizable) if there exists a normal realization r such that gk(F)r (mt(F)r) is derivable 
in£P. 
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8.7 Theorem.   (Realization of intuitionistic logic) For any Int-formula F 

l.lnthF   «*•   F is GK-realizable, 
2.Intr-F   o   F is MT-realizable 

Proof.    It is well-known that 

lnt\-F iff «SI h gk(F) 

(see, for example, [18]), and 
Xnt\-F  iff Si h mt(F) 

([25],[49]). A straightforward combination of these results with the realization of Si into CP 
(Theorem 8.2) brings us the desired result. 
< 

8.8 Corollary.   (Arithmetical completeness of Int.)      Int V- F iff there is a realization r 
and constant specification CS such that gk(F)r is CS-valid (mt(F)r is CS-valid). 

Note that G-fiT-readability may be regarded as a formalization of the Kolmogorov calculus 
of problems from [34] by reading "problem solutions" as "proofs". This readability gives a 
plausible formalization of Kolmogorov's calculus of problems [34]. Propositional atoms are 
interpreted as atomic problems, namely statements of the sort t: S meaning ut is a proof of 
S". Intuitionistic connectives are given precise meaning according to [34] (cf. the description 
of BHK semantics in section 1). 

We conclude this section with examples of GK- and MT-realizability. 

8.9 Example.     Let S, T be propositional letters. Consider the formula 

F = (-.5VT)->(5-+r), 

obviously provable in Int.   The corresponding translations of this formula to the modal 
language are (in both cases the outermost O's are suppressed for briefty): 

mt(F) = (D-iD5VDT) -¥ n(D5-^DT), 

gk(F) = a(D-,D5 V DT) -+ G(DS-»aT). 

We will present one of the possible meaningful normal realizations in CP for each of mt(F) 
and gk(F). 

The following is a derivation in CP with a simultanious construction of a normal realization 
of mt(F). 
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1. ->x:S —>• (x:S-ty:T), by classical logic; 
2. a:[-ix:5 —I (x:S-+y:T)], by necessitation rule 4.5. Note that here a is a product of 

some axiom constants with obvious specifications; 
3. z:(-ix:S)-+(a-z):(x:S->y:T), from 2, by AS; 
4. y:T —► (a::S-*t/:T), axiom of propositional logic AO; 
5. 6:[y:T-)- (x:S'-+y:T)], from 4, by axiom necessitation R2; 
6. ly.y.T-+ (b-\y):(x:S-+y:T), from 5, by A2; 
7. y:T ->ly:y:T, axiom A3; 
8. j/:T -> (b-\y) :(x:5-4y:T), from 6,7, by classical logic; 
9. (z:(^x:S)Vy:r)-+(a-2+6-!y):(x:S->-y:T), from 3,8, by A4. 

This realization of mt(F) says: if either z is a proof of -ix : 5, or y is a proof of T, then 
a-z + b-ly is a proof of the implication x:S-*y:T, where a and b are proofs of the tautologies 
-ix:5 -» (x:S->y:T) and y:T -t (x:S-+y:T) respectively. 

In the case of gk(F) the realization is constructed along the following derivation in CP. 

1. ->x:S ~¥ (x:S-ty:T), by classical logic; 
2. z:(->x:S) —>• -ix:S, axiom Ai; 
3. z:(-.x:S)->- (x:S-»y:T), from 1,2; 
4. y:T -¥ (x:S-ty:T), axiom of propositional logic AO; 
5. (z:(-ix:S)Vy:T) ->• (x:S-»y:T), from 3,4, by classical logic; 
6. c:H, when H is from 5, by necessitation rule 4.5. Here c is a ground proof polynomial, 

easily recoverable from the derivation of 5. 
7. «:(z:(-.x:5)Vy:T)-»- (c-u):(x:S->-y:T), from 6, by A2. 

This realization says: if u is a proof of the disjunction z:->x:SVy:T, then c-u is a proof of 
x:S->y:T, where c is a proof of (z:-ix:SVy:T) —>• (x:S-»y:T). 

9    Realization of A-calculi 

In the section we show that CP provides a standard provability semantics for the operator 
of A-abstraction. Through a realization in CP both modality and A-terms receive a uniform 
provability semantics. 

The defined abstraction operator A*x on proof polynomials below is a natural extension 
of the defined A-abstraction operator A*x in combinatory logic (cf.[73]). 

9.1 Definition. As usual (cf.[73]), the intuitionistic version 1CPQ of CPQ may be defined as 
the fragment of CPQ consisting of sequents of the form T =>■ A, there A contains at most one 
formula. 
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The cut elimination theorem for ICPQ was established in [6], [7]. 

9.2 Definition. Under ground (=»!) rule we mean the rule (=»!) where the principal proof 
polynomial t contains no variables. An 2£R7-derivation V is pure if it uses no rules other than 
(=>••), (=*"c), and ground (=^-!). It is clear that every pure derivation is normal since it has 
no cuts. 

Assume that a calculus of A-terms is presented as the sequent calculus of the format 
xi: A\,..., xn : Bn =$■ t(x):B with the reading term t(x) has a type B provided x,- has type 
Bi for all i = 0,1,...,n (cf. system G2i* from [73]). Under such formulation a A-term is 
presented as a sequent, and formation rules of A-terms become inference rules in the given 
sequent calculus. 

A straightforward observation shows that some of the A-terms constructors can be natu- 
rally represented as derivation in ICPQ. For example, the pairing function introduction rule 

T=>t:A       T^s:B 

T=> p(t,s):(AAB) 

has a natural counterpart 2CR7-derivation 

T=*c:{A-+(B->(AAB)) T^t:A 

r=J> {c-t):(B^{AAB)) r => s.B 

r=^ (c-t-s)-.(AAB) " 

In fact the entire A-calculus can be embedded into ICPQ ([6], [7]). The key element of this 
embedding is emulating A-abstraction in the combinatory logic style (cf.[73j). We define the 
admissible rule A* on sequents in ICPQ, which will represent in TCPQ traditional A-abstraction. 

9.3 Theorem.     (Definable abstraction) Let V be a pure ICPQ-derivation of a sequent 

p:T,x:A=> t(x):B 

such that x does not occur in p:T, A, B. Then one may construct a proof polynomial X*x.t(x) 
and a pure ICPQ-derivation V of the sequent 

p:T => \*x.t{x):(A-*B). 

Proof.     The base case is the depth of V equals one. There are two possibilities. 
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1. V is an axiom sequent p:T, x:A =>■ t{x):B and t(x) contains an occurrence of x. Then 
t(x) :B = x:A. Let V be the pure derivation of the sequent => (a • 6 • c): (A —)■ A) where 
a, 6, c are proof constants specified by the conditions (cf.[73], section 1.3.6.) 

a:([A-K(A-»A)-+A)H[(A-+(A->A))-4(A->A)]) 
6:[A-»((A->A)->A)] 
c:[A-KA-»A)j. 

Let A*x.x =  (a • b • c).    In fact this case coincides with the presentation of X*xA.x as 
s^A+A^^Ar+A^A jn combinatory logic (cf.[73j). 

2. Z> is an axiom sequent p: T, x: A =>• t(x): J5 and £ does not contain an occurrence of x. 
Then t:B € p:T and p:T =£• t:ß is again an axiom sequent. Let V be 

p:T^b:(B^(A^B)) p:T=S>t:B   ,      x 
— - - (=> •) . 

p:T=> (b-t):(A-+B) 

Let X*x.t = b-t. This is the well known equality \*xA.tB — hB,AtB of combinatory logic. 

The induction step corresponding to the ground (=£-!) rule is treated similarly to case 2. 
Consider the case (=>•)• Let a derivation V end with 

p:T,x:A=> s:(Y^B)       p:T,x:A =► t:Y 

p:T,x:A=$> (s-t):B 

By the induction hypothesis, we have already built pure derivations of p:T =£• X*x.s: (A—> 
(Y—tB)) and p:T => \*x.t:(A-+Y). From them we construct pure derivations 

p:T =► c:{(A-¥(y-*B))-*((A->Y)-*{A-*B))) p:T =» A*x.s:(A-)-(y->•£)) 

p:T=* (c-A*a>.s):((A->y)->(A->£)) 

and 
p:T=> (c■ \*x.s):{(A->Y)->(A^B))        p:T => \*x.t:(A^Y) 

p:T => (c-\*x.s-\*x.t):(A->B) 

Let \*x.(s • t) = (c • A*x.s • A*i.t). In combinatory logic notation 

\*xA.sY-+BtY = sA'Y>B\*x.s\*x.t 
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9.4 Comment. In 7JCPQ, A-abstraction is decoded by a proof polynomials depending on a 
context (e.g. an 2£R7-derivation). In this respect the realization from 9.3 of A-abstraction by 
proof polynomials is similar the realization of <S4-modality which is decomposed in 8.2 into a 
set of proof polynomials depending on a context (an <S4-derivation). 

9.5 Comment. In fact A* cannot be easily extended from pure to more general derivations 
without sacrificing some desired properties. We need to keep the format p:T, x: A =$■ t(x):B 
throughout the entire derivation V in order to preserve the inductive character of the defini- 
tion. The restriction "x does not occur in p: T, A, B" is needed to guarantee the correctness 
of/3-conversion (below) for A*-abstraction, though it rules out (=>■!). Note that the rule (=^!) 
does not admit abstraction anyway. Indeed, in 1£PQ we may derive 

x:A =>■ x:A 

x:A =>• \x:x:A 

but for no proof polynomial p does 1£PQ derive 

=$> p:(A^x:A), 

since A—*x:A is not provable in £P. 

The dual operation to A-abstraction i.e. ß-conversion 

(XxA.tB)sA    -^ß   tB[xA/sA] 

is naturally presented as the following transformation of pure derivations in 1£PQ: 

p:T,x:A=> t(x):B 

p:T=> \*xt{x):(A^B) p:T => s:A 

transforms into 

p:T=> (X*xt(x)-s):B 

p:T=>s:A p:T,s:A^-t(s):B 

p:T =>■ t(s):B 

The rule of ^-conversion 

(XxA.tB)sA    —>v   t       if x is not free in t 

is treated in the same way. Finally, a-conversion corresponds to an obviously valid rule of 
renaming bounded variables in Z££*7-derivations with abstraction. 
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All other standard A-term constructors for Int can also be realized as admissible rules in 
ICPQ (cf.[6],[7]). This is a straightforward corollary of the fact that Int is a fragment of ICPQ 
and of the lifting lemma adapted for ICPQ. Indeed, if ICPQ hT^fl, then by induction on 
the given proof one can construct a proof polynomial p(y) such that ICPQ \- y :T =>■ p(y):B. 

Since both modal logic «Si and all standard A-term constructors can be emulated by proof 
polynomials, the Logic of Proofs can also emulate modal A-calculi. As it was shown in [6], [7] 
ICPQ naturally realizes the modal A-calculus for 254 ([10], [45], [60], cf. also [15]) and thus 
supplies modal A-terms with standard provability semantics. This result may be considered as 
a more general abstract version of the well-known Curry-Howard isomorphism which relates 
terms/types with proofs/formulas. 

10    Discussion 

Roughly speaking, CP is an advanced system of combinatory logic that accommodates not 
only the "application" operation, but also "proof checker" and "choice". These operations 
subsume the simply typed A-calculus together with the modal logic 54, and thus the entire 
modal A-calculus. In particular, CP creates an environment where modality and A terms are 
objects of the same nature, namely proof polynomials. Another way to look at it: modal logic 
is a forgetful projection of a combinatory logic enriched by the operations "proof checker" 
and "choice". 

There was a major difficulty standing in the way of presenting modality via a system 
of terms: such a presentation should be self-referential and accommodate types containing 
terms of any type, including its own, for example, x : F(x). The choice of the combinatory 
logic format for CP versus the obvious A-term one in both Gödel's explicit provability logic 
sketch from [26] and CP in fact allows a concise presentation of this self-referentiality. The 
corresponding straightforward A-term system requires infinite supply of new term constructors 
and is hardly observable. 

The realization of 54 in CP provides a fresh look at modal logic and its applications in 
general. Proof polynomials reveal the dynamic character of modality. It raises the general 
question of finding explicit counterparts to all major modal logics. 

Such areas as modal A-calculi, polymorphic second order A-calculi, A-calculi with types de- 
pending on terms, non-deterministic A-calculi, etc., could benefit from viewing their semantics 
as proof polynomials delivered by CP. 

Gabbay's Labelled Deductive Systems ([23]) may serve as a natural framework for CP. 
Intuitionistic Type Theory by Martin-Löf [46], [47] also makes use of the format t:F with its 
informal provability reading. CP may also be regarded as a basic epistemic logic with explicit 
justifications; a problem of finding such systems was raised by van Benthem in [9]. 
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The studies of the logic QC of implicit provability Provable(x) ([67],[65],[12], [13],[14],[31]) 
has given vast experience in arithmetical self-referential semantics for modal logics. The 
completeness theorem for £P (Theorem 7.1) could not probably have been obtained without 
the knowledge accumulated in this area. 
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