
Chapter 2
A Review of Database
System Terminology
Marion G. Ceruti

MANY PUBLICATIONS, TECHNICAL MANUALS, AND MARKETING BRO-
CHURES related to databases originated from sources that exhibit a wide
variety of training, background, and experience. Although the result has
been an expanded technical vocabulary, the growth of standards — partic-
ularly with regard to a comprehensive, uniformly accepted terminology —
has not kept pace with the growth in the technology itself. Consequently,
the nomenclature used to describe various aspects of database technology
is characterized, in some cases, by confusion and chaos. This is true for
both homogeneous databases and for heterogeneous, distributed data-
base systems.

The state of imprecision in the nomenclature of this field persists across
virtually all data models and their implementations. The purpose of this
chapter is to highlight some areas of conflict and ambiguity and. in some
cases, to suggest a more meaningful use of the terminology.

GENERAL DATABASE TERMS

What Does the Word Data Mean?
According to Webster, the word data is a noun that refers to things

known or assumed; facts or figures from which conclusions can be in-
ferred; information. Derived from the Latin word datum, meaning gift or
present, data can be given, granted, or admitted, premises upon which
something can be argued or inferred. Although the word data is most fre-
quently observed, the singular form, datum, is also a real or assumed thing
used as the basis for calculations.

The Department of Defense defines data as a representation of facts,
concepts, or instructions in a formalized manner suitable for communica-
tion, interpretation, or processing by humans or by automatic means.

19990617 009 2-1

L

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

The word data is also used as an adjective in terms such as data set, data
fill, data resource, data management, or data mining. A data set is an aggre-
gate of data items that are interrelated in some way.

Implicit in both definitions of data is the notion that the user can reason-
ably expect data to be true and accurate. For example, a data set is as-
sumed to consist of facts given for use in a calculation or an argument, for
drawing a conclusion, or as instructions from a superior authority. This
also implies that the data management community has a responsibility to
ensure the accuracy, consistency, and currency of data.

Data Element vs. Data Item
In an attempt to define database terms with a view toward practical ap-

plications, the Department of Defense (DoD) defines a data element as a
named identifier of each of the entities and their attributes that are repre-
sented in a database. As such, data elements must be designed as follows:

• Representing the attributes (characteristics) of data entities identified

in data models.
• According to functional requirements and logical (as opposed to phys-

ical) characteristics.
• According to the purpose or function of the data element, rather than

how, when, where, and by whom it is used.
• With singularity of purpose, such that it has only one meaning.
• With well-defined, unambiguous, and separate domains.

Other definitions are that a data element is data described at the useful
primitive level; a data item is the smallest separable unit recognized by the
database representing a real-world entity.

What is clear from all these definitions is that there is considerable am-
biguity in what these terms mean. The author proposes the following dis-
tinction between data element and data item:

A data element is a variable associated with a domain (in the relational
model) or an object class (in the object-oriented model) characterized
by the property of atomicity. A data element represents the smallest
unit of information at the finest level of granularity present in the data-
base. An instance of this variable is adata item. A data element in the re-
lational model is simply an attribute (or column) that is filled by data
items commonly called the "data fill."

This distinction clarifies but does not preclude any of the other definitions

What Is a Database?
The definitions for the term database range from the theoretical and gen-

eral to the implementation specific. For example, K.S Brathwaite,
H. Darwen, and C.J. Date have offered two different, but not necessarily in-

2-2

A Review of Database System Terminology

consistent, definitions of a database that are specific to the relational mod-
el. Darwen and Date build their definition on fundamental constructs of the
relational model, and it is very specific to that model. Brathwaite employs
a definition that is based on how databases are constructed in a specific
database management system (DBMS).

These definitions are discussed in the next section on relational database
terms. Actually, the term database can have multiple definitions, depending
on the level of abstraction under consideration. For example, A.P. Sheth and
J.A. Larson define database in terms of a reference architecture, in which a
database is a repository of data structured according to a data model. This
definition is more general than that of either Brathwaite or Darwen and Date
because it is independent of any specific data model or DBMS. It could apply
to hierarchical and object- oriented databases as well as to relational data-
bases; however, it is not as rigorous as Darwen and Date's definition of a re-
lational database because the term repository is not defined.

Similarly, P.J. Fortier et al., in a set of DoD conference proceedings, de-
fine a database to be a collection of data items that have constraints, rela-
tionships, and a schema. Of all the definitions for database considered thus
far, this one is the one most similar to that of Sheth and Larson, because
the term data model could imply the existence of constraints, relation-
ships, and a schema. Moreover, Fortier et al. define schema as a description
of how data, relationships, and constraints are organized for user applica-
tion program access. A constraint is a predicate that defines all correct
states of the database. Implicit in the definition of schema is the idea that
different schemata could exist for different user applications. This notion
is consistent with the concept of multiple schemata in a federated data-
base system (FDBS). (Terms germane to FDBSs are discussed in a subse-
quent section.)

L.S. Waldron defines database as a collection of interrelated files stored
together, where specific data items can be retrieved for various applica-
tions. A file is defined as a collection of related records. Similarly, L. Wheel-
er defines a database as a collection of data arranged in groups for access
and storage; a database consists of data, memo, and index files.

Database System vs. Data Repository

Both of these terms refer to a more comprehensive environment than a
database because they are concerned with the tools necessary for the
management of data in addition to the data themselves. These terms are
not mutually exclusive. A database system (DBS) includes both the DBMS
software and one or more databases. A data repository is the heart of a
comprehensive information management system environment. It must
include not only data elements, but metadata of interest to the enterprise,
data screens, reports, programs, and systems.

2-3

DATA DEVELOPMENT METHODOLOGIES. DEFINITIONS, AND STRATEGY

A data repository must provide a set of standard entities and allow for
the creation of new, unique entities of interest to the organization. A data-
base system can also be a data repository that can include a single data-

base or several databases.

A King et al describe characteristics of a data repository as including
an internal set of software tools, a DBMS, a metamodel, populated metada-
ta, and loading and retrieval software for accessing repository data

WHAT IS A DATA WAREHOUSE AND WHAT IS DATA MINING?

B Thuraisingham and M. Wysong discussed the importance of the data
warehouse in a DoD conference proceeding. A data warehouse is a data-
base system that is optimized for the storage of aggregated and summa-
rized data across the entire range of operational and tactical enterprise
activities The data warehouse brings together several heterogeneous da-
tabases from diverse sources in the same environment. For example, this
aggregation could include data from current systems, legacy sources, his-
torical archives, and other external sources.

Unlike databases that are optimized for rapid retrieval of information
during real-time transaction processing for tactical purposes, data ware-
houses are not updated, nor is information deleted. Rather, time-stamped
versions of various data sets are stored. Data warehouses also contain in-
formation such as summary reports and data aggregates tailored for use by
specific applications. Thus, the role of metadata is of critical importance in
extracting, mapping, and processing data to be included in the warehouse.
All of this serves to simplify queries for the users, who query the data ware-
house in a read-only, integrated environment

The data warehouse is designed to facilitate the strategic, analytical,
and decision-support functions within an organization. One such function
is data mining, which is the search for previously unknown information in
a data warehouse or database containing large quantities of data. The data
warehouse or database is analogous to a mine, and the information desired
is analogous to a mineral or precious metal

The concept of data mining implies that the data warehouse in which the
search takes place contains a large quantity of unrelated data and probably
was not designed to store and support efficient access to the information de-
sired In data mining, it is reasonable to expect that multiple, well-designed
queries and a certain amount of data analysis and processing will be neces-
sary to summarize and present the information in an acceptable format.

Data Administrator vs. Database Administrator

The following discussion is not intended to offer an exhaustive list of

tas ks performed by either the data administrator (DA) or database admin-

2-4

A Review of Database System Terminology

istrator (DBA), but rather to highlight the similarities and essential distinc-
tions between these two types of database professionals. Both data
administrators and database administrators are concerned with the
management of data, but at different levels.

The job of a data administrator is to set policy about determining the
data an organization requires to support the processes of that organiza-
tion. The data administrator develops or uses a data model and selects the
data sets supported in the database. A data administrator collects, stores,
and disseminates data as a globally administered and standardized re-
source. Data standards on all levels that affect the organization fall under
the purview of the data administrator, who is truly an administrator in the
managerial sense.

By contrast, the technical orientation of the database administrator is at
a finer level of granularity than that of a data administrator. For this reason,
in very large organizations, DBAs focus solely on a subset of the organiza-
tion's users. Typically, the database administrator is, like a computer sys-
tems manager, charged with day-to-day, hands-on use of the DBS and daily
interaction with its users. The database administrator is familiar with the
details of implementing and tuning a specific DBMS or a group of DBMSs.
For example, the database administrator has the task of creating new user
accounts, programming the software to implement a set of access controls,
and using audit functions.

To illustrate the distinction between a data administrator and a data-
base administrator, the U.S. Navy has a head data administrator whose
range of authority extends throughout the entire Navy. It would not be
practical or possible for an organization as large as the U.S. Navy to have a
database administrator in an analogous role, because of the multiplicity of
DBSs and DBMSs in use and the functions that DBAs perform.

These conceptual differences notwithstanding, in smaller organizations
a single individual can act as both data administrator and database admin-
istrator, thus blurring the distinction between these two roles. Moreover,
as data models and standards increase in complexity, data administrators
will increasingly rely on new technology to accomplish their tasks, just as
database administrators do now.

RELATIONAL DATABASE TERMS

Because relational technology is a mature technology with many practi-
cal applications, it is useful to consider some of the important terms that
pertain to the relational model. Many of these terms are straightforward
and generally unambiguous, whereas some terms have specific definitions
that are not always understood.

2-5

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

A data set represented in the form of a table containing columns and
rows is called a relation. The columns are called attributes, and the rows are
called tuples.

Darwen and Date define a tuple to be a set of ordered triples of the form
<A, V, v> where A is the name of an attribute, V is the name of a unique do-
main that corresponds to A, and v is a value from domain V called the at-
tribute value for attribute A within the tuple. A domain is a named set of
values.

Darwen and Date also describe a relation as consisting of a heading and
a body, where the heading is a set of ordered pairs, <A,V>; and the body
consists of tuples, all having the same heading <A,V>. An attribute value is
a data item or a datum.

In some respects, a relation is analogous to an array of data created out-
side a relational DBMS, such as in a third-generation language (3GL) pro-
gram like C, FORTRAN, or Ada, in which the rows are called records and the
columns are called fields. Waldron defines a field as a set of related letters,
numbers, or other special characters, and defines a record as a collection
of related fields.

The interchangeability of the terms record and row has been illustrated
by some of the major DBMS vendors in the way in which they report the re-
sults of a query to the user. Earlier versions of commercial DBMSs indicat-
ed at the end of a query return messages such as "12 records selected."
Now, it is more common to see messages such as "12 rows selected" or
"12 rows affected" instead.

Relation vs. Relation Variable
The correct manner in which the term relation should be used is accord-

ing to the definition given previously, which specifically includes values v,
from domain V. However, the term relation has not always been used cor-
rectly in the industry. Relation frequently is used as though it could mean
either a filled table with data present (correct), or an empty table structure
containing only data headers (incorrect). The confusion here stems from a
failure to distinguish between a relation, which is a filled table with tuples
containing attribute values, and a relation variable (or relvar), which is an
empty table structure with only attribute names and domains from which
to choose values. The values of a relation variable are the relations per se.
This distinction becomes especially important when mapping between the
relational and object-oriented data models

Database vs. Database Variable
In a manner similar to the relation-relvar dichotomy, a database variable

is different from a database per se. A database variable (or dbvar) is a

2-6

A Review of Database System Terminology

named set of relvars. The value of a given dbvar is a set of specific, ordered
pairs <R r>. where R is a relvar and r (a relation) is the current value of that
relvar such that one such ordered pair exists for each relvar in the dbvar
and that taken together, all relvar values satisfy the applicable constraints
On particular, integrity constraints). A value of the dbvar that conforms to
Ss definition is called a database. Some call this a database state, but this
term is not used very often.

Database vs. DBMS
As all the examples discussed thus far indicate, not all database termi-

nology is as unambiguous as "rows" and "columns." Incorrect understand,
ing of the fundamental concepts in database technology can lead to
inconsistent terminology, and vice versa.

DBMS Software Does Not Equal a Database. For example, databases fre-
quently are described according to the DBMS that manages them This is
all well and good, as long as one realizes that references to an Oracle data-
base and Sybase database refer to the databases that are managed us.ng
Oracle or Sybase software, respectively. Difficulty arises when this nomen-
clature results in the misconception that DBMS software is actually the da-
tabase itself The assumption that Informix, for example, is a database is as
illogical as thinking that the glass is the same as the water in it.

Concept vs. Implementation in Relational Databases
Darwen and Dates definition of a database, as well as that of other data-

base researchers (some of whom are mentioned by name in this chapter
and others who are not), does not require the presence of a DBMS Concep-
ually it" possible to have a database without a DBMS or a DBMS without

a database although obviously the greatest utility is achieved by comb.n-

ing the two.
In the context of a specific DBMS environment, Brathwaite defines an

IBM DB2 database as "a collection of table and index spaces where each ta-
ble space can contain one or more physical tables " This definition 1S m-
consistent with Dates definition because it allows for the possibility that
the table spaces could be empty, in which case no data would be present.
It is not clear that even relvars would be present in this case. That notwith-
standing, if physical tables are present, Brathwaite's definition becomes an
implementation-specific special case of Date's definition. (Substitute the
word "must" for "can" to resolve the problem with Brathwaite s definition.)

Except in the case where the vendor has specified default table and in-
dex spaces in the DBMS code, the database and index spaces are not actu-
ally part of the DBMS per se. The DBA needs to create both the database
space and the index space using the DBMS software.

2-7

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

DATABASE NORMALIZATION

The topic of database normalization, sometimes called data normaliza-
tion has received a great deal of attention. As is usually the case, database
normalization is discussed in the following section using examples from
the relational data model. Here, the terms relation and table are used inter-
changeably. However, the des.gn guidelines pertaining to database normal-
ization are useful even if a relational database system is not used. For
example B S. Lee has discussed the need for normalization in the object-ori-
ented data model. Whereas the intent of this section is to introduce the cor-
rect usage of normalization terminology as it applies to database technology,
it is not meant to be an exhaustive exposition of all aspects of normal.zat.on.

What Is Database Normalization?

Strictly speaking, database normalization is the arrangement of data
into tables. P. Winsberg defines normalization as the process of structuring
data into a tabular format, with the implicit assumption that the result
must be in at least first normal form. Similarly, Brathwaite defines data nor-
malization as a set of rules and techniques concerned with:

• Identifying relationships between attributes
• Combining attributes to form relations (with data fill)
• Combining relations to form a database

The chief advantage of database or data normalization is to avoid modifica-
tion anomalies that occur when facts about attributes are lost during insert,
update and delete transactions. However, if the normalization process has
not progressed beyond first normal form, it is not possible to ensure that
these anomalies can be avoided. Therefore, database normalization com-
monly refers to further non-loss decomposition of the tables into second
through fifth normal form. Non-loss decomposition means that information
is not lost when a table in lower normal form is divided (according to at-
tributes) into tables that result in the achievement of a higher normal form.
This is accomplished by placing primary and foreign keys into the resulting
tables so that tables can be joined to retrieve the original information.

What Are Normal Forms?
A normal form of a table or database is an arrangement or grouping of

data that meets specific requirements of logical design, key structure,
modification integrity, and redundancy avoidance, according to the rigorous
definition of the normalization level in question. A table is said to be in X
normal form if it is already in "X-l" normal form and it meets the add.t.onal
constraints that pertain to level "X."

In first normal form (INF), related attributes are organized into separate
tables, each with a primary key. A primary key is an attribute or set of

2-8

A Review of Database System Terminology

attributes that uniquely defines a tuple. Thus, if a table is in INF, entities
within the data model contain no attributes that repeat as groups. W. Kent
has explained that in INF, all occurrences of a record must contain the
same number of fields. In INF, each data cell (defined by a specific tuple
and attribute) in the table will contain only atomic values.

Every table that is in second normal form (2NF) also must be in INF, and
every non-key attribute must depend on the entire primary key. Any at-
tributes that do not depend on the entire key are placed in a separate table
to preserve the information they represent. 2NF becomes an issue only for
tables with composite keys. A composite key is defined as any key (candi-
date, primary, alternate, or foreign) that consists of two or more attributes.
If only part of the composite key is sufficient to determine the value of a
non-key attribute, the table is not in 2NF.

Every relation that is in third normal form (3NF) must also be in 2NF, and
every non-key attribute must depend directly on the entire primary key. In
2NF, non-key attributes are allowed to depend on each other. This is not al-
lowed in 3NF. If a non-key attribute does not depend on the key directly, or
if it depends on another non-key attribute, it is removed and placed in a
new table. It is often stated that in 3NF, every non-key attribute is a function
of "the key, the whole key, and nothing but the key." In 3NF, every non-key
attribute must contribute to the description of the key. However, 3NF does
not prevent part of a composite primary key from depending on a non-key
attribute, nor does it address the issue of candidate keys.

Boyce-Codd normal form (BCNF) is a stronger, improved version of 3NF.
Every relation that is in BCNF also must be in 3NF and must meet the addi-
tional requirement that each determinant must be a candidate key. A deter-
minant is any attribute, A, of a table that contains unique data values, such
that the value of another attribute, B, fully functionally depends on the val-
ue of A. If a candidate key also is a composite key, each attribute in the com-
posite key must be necessary and sufficient for uniqueness. Winsberg calls
this condition "unique and minimal." Primary keys meet these require-
ments. An alternate key is any candidate key that is not the primary key. In
BCNF, no part of the key is allowed to depend on any key attribute. Compli-
ance with the rules of BCNF forces the database designer to store associa-
tions between determinants in a separate table, if these determinants do
not qualify as candidate keys.

BCNF removes all redundancy due to singular relationships but not re-
dundancy due to many-to-many relationships. To accomplish this, further
normalization is required. Fourth and fifth normal forms (4NF and 5NF) in-
volve the notions of multivalued dependence and cyclic dependence, re-
spectively. A table is in 4NF if it also is in BCNF and does not contain any
independent many-to-many relationships.

2-9

DATA DEVELOPMENT METHODOLOGIES. DEFINITIONS, AND STRATEGY

That notwithstanding, a table could be in 4NF and still contain depen-
dent many-to-many relationships. A table is in 5NF if ,t .s also ,n 4NF and
doe not contain any cyclic dependence (except for the tr.v.al one between
candidate keys) In theory, 5NF is necessary to preclude certa.n join anom-
alies such s the introduction of a false tuple. However, in practice, the
large majority of tables in operational databases do not contam attnbutes
with cyclical dependence.

What Are Over-Normalization and Denormalization?
Over-normalization of a table results in further non-loss decomposition

that exceeds the requirements to achieve 5NF. The purpose: oithis,s o m-
prove update performance. However, most operational databases rarely
reach a state in which the structure of all tables has been tested according
o5FN criteria, so over-normalization rarely occurs. Over-normalization ,s
he opposite of denormalization, which is the result of intenfona ly mtro-

duclng redundancy into a database design to ,mProve retneval perfor-
mance Here, the database design process has progressed to 3NF, BCNF,
3?F or' even to 5NF. However, the database is implemented ,n a lower nor-
mal'form to avoid time-consuming joins. Because the efficiency of select
queries is an issue in operational systems, denormalization ,s more com-
mon than over-normalization.

The first six normal forms (including BCNF) are formal structures of ta-
bles that eliminate certain kinds of intra-table redundancy ■/"***"*£
5NF eliminates all redundancy that can be removed b>'^TfJöZess
cording to attributes. Higher normal forms ex.st beyond 5NF. They address
heo eücal issues that are not considered to be of much pract.cal impor-
ance In fact Date has noted that it is not often necessary or desirable o

carry out the normalization process too far because normalizat.on opti-
mizes update performance at the expense of retrieval performance. Most
of the time, 3NF is sufficient. This is because tab.es that have.been de-
signed logically and correctly in 3NF are almost automat.cally.n4NF Thus,
for most databases that support real-time operations, especially for those
that have tables with predominantly single-attribute primary keys 3NF is
the practical limit. Note that a two-attribute relation w.th a s.ngle-attr.bute
key is automatically in the higher normal forms.

DISTRIBUTED, HETEROGENEOUS DATABASE NOMENCLATURE

What Is a Distributed Database?
Date defines a distributed database as a virtual database that has com-

ponents physically stored in a number of distinct real databases at a

number of distinct sites.

2-10

A Review of Database System Terminology

Federated Database Systems vs. Multidatabase Systems. M. Hammer and D.
McLeod coined the term federated database system to mean a collection of
independent, preexisting databases for which data administrators and da-
tabase administrators agree to cooperate. Thus, the database administra-
tor for each component database would provide the federation with a
schema representing the data from his or her component that can be
shared with other members of the federation.

In a landmark paper ("Federated Database Systems for Managing Dis-
tributed, Heterogeneous and Autonomous Databases, "A CM Computing Sur-
veys, Vol. 22, No. 3, September 1990), Sheth and Larson define FDBS in a
similar but broader architectural sense to mean a collection of cooperating
but autonomous component database systems that are possibly heteroge-
neous. They also define a nonfederated database system as an integration
of component DBMSs that is not autonomous with only one level of man-
agement, in which local and global users are not distinguished. According to
Sheth and Larson's taxonomy, both federated and nonfederated database
systems are included in a more general category called multidatabase sys-
tems. These multidatabase systems support operations on multiple-compo-
nent DBSs.

Sheth and Larson further divide the subcategory of FDBS into two types:
loosely coupled and tightly coupled FDBS, based on who creates and main-
tains the federation and how the component databases are integrated. If
the users themselves manage the federation, they call it a loosely coupled
FDBS; whereas, if a global database administrator manages the federation
and controls access to the component databases, the FDBS is tightly cou-
pled. Both loosely coupled and tightly coupled FDBSs can support multiple
federated schemata. However, if a tightly coupled FDBS is characterized by
the presence of only one federated schema, it has a single federation.

The term multidatabase has been used by different authors to refer to
different things. For example, W. Litwin et al. have used it to mean what
Sheth and Larson call a loosely coupled FDBS. By contrast, Y. Breitbart and
A. Silberschatz have defined multidatabase to be the tightly coupled FDBS
of Sheth and Larson. Sheth and Larson have described additional, conflict-
ing use of the term multidatabase.

The terms loosely coupled and tightly coupled FDBSs have also been used
to distinguish between the degree to which users can perceive heterogeneity
in an FDBS, among other factors. In this system of nomenclature (devised
by this author and M.N. Kamel), a tightly coupled FDBS is characterized by
the presence of a federated or global schema, which is not present in a
loosely coupled FDBS. Instead of a global schema, loosely coupled FDBSs
are integrated using other software, such as a user interface with a uniform

2-11

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

"look and feel" or a standard set of queries used throughout the federation,
thus contributing to a common operating environment.

In this case, the autonomous components of a loosely coupled FDBS are
still cooperating to share data, but without a global schema. Thus, the us-
ers see only one DBS in a tightly coupled FDBS, whereas they are aware of
multiple DBSs in the loosely coupled FDBS. Here, the tightly coupled FDBS
obeys Date's rule zero, which states that to a user, a distributed system
should look exactly like a nondistributed system.

Given this manner in which to characterize an FDBS, a hybrid FDBS is
possible for which some of the component DBSs have a global schema that
describe the data shared among them (tightly coupled), but other compo-
nents do not participate in the global schema (loosely coupled).

An Expanded Taxonomy. An expanded taxonomy is proposed to provide a
more comprehensive system to describe how databases are integrated,
and to account for the perspectives of both the data administrator and the
users. Essentially, most aspects of Sheth and Larson's taxonomy are logical
and should be retained. However, instead of using Sheth and Larson's
terms for tightly coupled federated database and loosely coupled federat-
ed database, the terms tightly controlled federated database and loosely
controlled federated database, respectively, should be substituted.

This change focuses on the absence or presence of a central, controlling
authority as the essential distinction between the two. In this case, the
terms tightly coupled and loosely coupled can then be applied to describe
how the user, rather than the data administrator, sees the federation. Given
this change, the coupling between components in a federated database will
describe how seamless and homogeneous the database looks to the users
and applications.

The expanded taxonomy can accommodate federated databases that
differ widely in their characteristics. For example, if a tightly controlled
federated database is tightly coupled, the global data administrator and
the global database administrator have exercised their authority and ex-
pertise to provide a seamless, interoperable environment that allows the
federation's users to experience the illusion of a single database for their
applications and ad-hoc queries.

A tightly controlled federated database can also be loosely coupled, in
which case the global data administrator allows the users of the federation
to see some heterogeneity with respect to the component databases.

Both conditions are within the realm of possibility. However, a loosely
controlled federated database is almost certain to be loosely coupled. This
is because a loosely controlled federated database lacks a central authori-
ty capable of mediating disputes about data representation in the federat-

2-12

A Review of Database System Terminology

ed schema and enforcing uniformity in the federation's interfaces to user
applications. A loosely controlled federated database is not likely to be
tightly coupled.

Local or Localized Schema vs. Component Schema vs. Export Schema. A 1 o- i
cal or localized database generally starts as a stand-alone, nonintegrated !
database. When a local, autonomous database is selected for membership |
in a federation, a local schema is defined as a conceptual schema of the !
component DBS that is expressed in the native data model of the compo- i
nent DBMS. j

i
When the local database actually becomes a member of a federated da-

tabase, it is said to be a component database. The schema associated with
a given database component is called a component schema, which is de-
rived by translating a local schema into the common data model of the
FDBS. An export schema represents the subset of the component schema
that can be shared with the federation and its users.

Similarly, Date defines a local schema as the database definition of a
component database in a distributed database.

Federated Schema vs. Global Schema vs. Global Data Dictionary. Afeder-
ated schema is an integration of multiple export schemata. Because the
distributed database definition is sometimes called the global schema, fed-
erated schema and global schema are used interchangeably.

A global data dictionary is the same as a global schema that includes the
data element definitions as they are used in the FDBS. A data dictionary is
different from a schema, or database structure specification, because a
data dictionary contains the definitions of attributes or objects, not just
the configuration of tables, attributes, objects, and entities within that
structure.

It is especially important to include the data element definitions with the
export schemata when forming a federated database in which multiple
data representations are likely. Simply having a collection of database
structures is insufficient to complete a useful federated schema. It is nec-
essary to know the meaning of each attribute or object and how it is con-
strued in the component database.

Middleware vs. Midware. In a three-tier client/server architecture de-
signed to connect and manage data exchange between user applications
and a variety of data servers, the middle tier that brokers transactions
between clients and servers consists of middleware, which is sometimes
called midware.

P. Cykana defines middleware as a variety of products and techniques
that are used to connect users to data resources. In his view, the middle-

2-13

m

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

ware solution is usually devoted to locating and finding data rather than to
moving data to migration environments.

In addition, Cykana describes two options for middleware, depending
on the degree of coupling between the user and the data resource. Loosely
coupled middleware products allow flexibility in specifying relationships
and mappings between data items, whereas tightly coupled middleware
products allocate more authority to standard interfaces and database ad-
ministrators. Each option has its advantages and disadvantages, as follows:

• Loosely coupled middleware. This type of middleware does not require
the migration or legacy data structures to be modified, but it allows
users to access multiple equivalent migration systems transparently
with one standard interface. Its disadvantage is that it does not pre-
vent multiple semantics and nonstandard structures.

• Tightly coupled middleware. This option represents a more aggressive
strategy that combines applications program interface (API) and
graphical user interface (GUI) technologies, data communications,
and data dictionary design and development capabilities to provide
distributed data access. Data standardization and reengineering are
required.

The concept of loose and tight coupling to middleware is somewhat sim-
ilar to, but also differs slightly from, the loose and tight coupling between
data resources as discussed by Sheth and Larson and other researchers. In
the case of middleware, the coupling occurs between software at different
tiers or layers (between the middle translation layer and the data servers);
whereas, in the case of an FDBS, the coupling occurs between data servers
that reside at the same tier. (However, this difference does not preclude
software that achieves the coupling between data servers from being locat-
ed in the middle tier.)

G.V. Quigley defines middleware as a software layer bet%veen the appli-
cation logic and the underlying networking, security, and distributed com-
puting technology Middleware provides all of the critical services for
managing the execution of applications in a distributed client/server envi-
ronment while hiding the details of distributed computing from the appli-"
cation tier. Thus, midware is seen in a critical role for implementing a
tightly coupled FDBS.

Similarly, Quigley considers middleware to be the key technology to in-
tegrate applications in a heterogeneous network environment.

Database Integration vs. Database Homogenization. Many organizations in
both industry and government are interested in integrating autonomous
(sometimes called "stovepipe") databases into a single distributed, heter-
ogeneous database system. Many terms describe the various aspects of

2-14

J

A Review of Database System Terminology

this integration. The multiplicity of terminology occurs because of the
many ways in which databases can be integrated and because of the many
simultaneous efforts that are underway to address integration problems.

Because the degree to which database integration takes place depends
on the requirements of the organization and its users, the term integration,
as it is used in various contexts, remains rather vague. For people whose
fields of expertise are outside the realm of database technology, it is neces-
sary to hide the specific details of database system implementation behind
midware layers and a user interface that together create the illusion of a
single, unified database. By contrast, more experienced users with knowl-
edge of multiple DBMS can function efficiently in an environment that pre-
serves some distinctions between the database components.

Within all architectural options, database integration, in its broadest
sense, refers to the combination and transformation of database compo-
nents into a database system that is homogeneous on at least one level
(e.g., the data level, the schema level, the program interface level, or the
user-interface level). Such an integrated database system must satisfy the
primary goals of interoperability between database system components,
data sharing, consistent data interpretation, and efficient data access for
users and applications across multiple platforms.

K. Karlapalem et al. describe the concept of database homogenization as
the process of transforming a collection of heterogeneous legacy informa-
tion systems onto a homogeneous environment. Whereas they do not de-
fine what they mean by the term homogeneous environment, they list three
goals of database homogenization:

• To provide the capability to replace legacy component databases
efficiently

• To allow new global applications at different levels of abstraction and
scale to be developed on top of the homogenized federated database

• To provide interoperability between heterogeneous databases so that
previously isolated heterogeneous localized databases can be loosely
coupled

This definition of database integration explicitly includes multiple archi-
tectures and implementations; by contrast, the description of database ho-
mogenization is associated with loose rather than tight coupling of
localized databases into a homogeneous environment. Sometimes the
term database normalization is used incorrectly to mean database integra-
tion.

Interoperability vs. Interoperation. The conditions necessary for inter-
operability include:

• Interconnectivity via the necessary networking facilities

2-15

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

• Resolution of system heterogeneity
• Resolution of semantic heterogeneity
• Derivation and integration of schemata and views

There are three levels of heterogeneity, including platform heterogene-
ity, data model heterogeneity, and semantic heterogeneity. Excluding se-
mantic heterogeneity, the term system heterogeneity is seen to be some
combination of platform heterogeneity (e.g., different DBMS software and
implementation) and data model heterogeneity (e.g., schemata, query lan-
guages, integrity constraints, and nullness requirements). Because Karla-
palem et al. have already listed the integration of schemata as an item
separate from system heterogeneity, system heterogeneity logically
should refer to the differences between DBMS vendors, transaction pro-
cessing algorithms, query languages, query optimization techniques, in-
tegrity constraints, and nullness requirements. If this definition is assumed
for system heterogeneity, the necessary conditions for database interoper-
ability listed above become sufficient conditions.

Similarly, computer system heterogeneity and data management system
heterogeneity must be resolved as a requirement for interoperability
among existing information systems.

The achievement of database interoperability simply supplies users and
applications with the ability to interoperate in a common data environ-
ment. It does not guarantee that interoperation will occur. Database inter-
operation results when users and applications take advantage of a
common, integrated environment to access, share, and process data
across multiple databases.

Legacy Information System vs. Migration Information System. Autono-
mous systems that become candidates for integration into a more modern,
global, and distributed system sometimes have been called migration sys-
tems. These systems are supported by migration information systems with
migration databases.

The term migration databases indicates unambiguously that the data-
base in question has been chosen to be included in some form of a modern
database system, especially a distributed system such as an FDBS. By con-
trast, the term legacy information system has been used in two different

ways.

At one extreme, some people use legacy information system and legacy
database to be synonymous with migration information system and migra-
tion database, respectively. Others have referred to a legacy information
system as if it were not a migration information system and is therefore de-
liberately excluded from the final integrated database configuration. This
is the opposite extreme.

2-16

A Review of-Database System Terminology'

More commonly than in the extreme cases, a subset of legacy data is
deemed important to the users of a shared data resource. This means that
some or all of the data in a legacy information system may be migrated dur-
ing a database integration effort. For example, Cykana describes steps in
the data integration process that start with the movement and improve-
ment of data and progress to the shutdown of legacy systems. Karlapalem
et al. refer to the difficulty of migrating legacy information systems to a
modern computer environment in which some difference is presumed to
exist between the legacy system and the modern system.

The author recommends that the following terminology be adopted as
standard:

Legacy data and legacy information system should refer to the original
data and original format, as maintained in the original, autonomous in-
formation system before any modification or migration to a new envi-
ronment has occurred. Migration data and migration information system
should be used to describe the subset of the legacy data and software
that has been chosen to be included into a new (and usually distribut-
ed) information resource environment. When data and software are
modified to accommodate a new environment, they should be called
migration instead of legacy.

TERMS ASSOCIATED WITH SEMANTIC HETEROGENEITY

Semantic heterogeneity refers to a disagreement about the meaning, in-
terpretation, or intended use of the same or related data or objects. Seman-
tic heterogeneity can occur either in a single DBS or in a multidatabase
system. Its presence in a DBS is also independent of data model or DBMS.
Therefore, the terminology associated with this problem is discussed in a
separate section.

Semantic Interoperability vs. Database Harmonization

The terms database integration and interoperability were discussed pre-
viously in a general context. For distributed, heterogeneous database sys-
tems to be integrated in every respect, semantic heterogeneity must be
resolved.

Problems associated with semantic heterogeneity have been difficult to
overcome, and the terminology to describe semantic heterogeneity has
evolved accordingly. For example, R. Sciore et al. define semantic interop-
erability as agreement among separately developed systems about the
meaning of their exchanged data.

Whereas the exact meaning of the term database harmonization is not
clear, one can infer that the goal of database harmonization must be relat-
ed to providing an environment in which conflicts have been resolved be-

2-17

DATA DEVELOPMENT METHODOLOGIES, DEFINITIONS, AND STRATEGY

tween data representations from previously autonomous systems. This
definition further implies that the resolution of semantic heterogeneity is a
prerequisite for database harmonization.

Although a more precise definition of database harmonization is need-
ed, it appears to be related to the idea of semantic interoperability.

Strong and Weak Synonyms vs. Class One
and Class Two Synonyms

A synonym is a word that has the same or nearly the same meaning as
another word of the same language. Because a metadata representation
will include more attributes (e.g., data element name, type, length, range,
and domain) than ordinary nouns, it was necessary to consider various
levels of similarity and therefore, levels of synonymy.

M.W. Bright et al. have described the concept of strong and weak syn-
onyms. Strong synonyms are semantically equivalent to each other and can
be used interchangeably in all contexts without a change of meaning, where-
as weak synonyms are semantically similar and can be substituted for each
other in some contexts with only minimal meaning changes. Weak synonyms
cannot be used interchangeably in all contexts without a major change in the
meaning — a change that could violate the schema specification.

This concept is similar to one (introduced by the author and Kamel) that
states that there are two classes of synonym abstraction: Class One and
Class Two. Class One synonyms occur when different attribute names rep-
resent the same, unique real world entity. The only differences between
Class One synonyms are the attribute name and possibly the wording of
the definition, but not the meaning. By contrast, Class Two synonyms oc-
cur when different attribute names have equivalent definitions but are ex-
pressed with different data types and data-element lengths.

Class Two synonyms can share the same domain or they can have relat-
ed domains with a one-to-one mapping between data elements, provided
they both refer to the same unique real-world entity. The concept of a
strong synonym is actually the same as that of a Class Two synonym be-
cause both strong synonyms and Class Two synonyms are semantically
equivalent and they can be used interchangeably because they have the
same data element type and length. By contrast, the concept of a Class Two
synonym includes (but is not limited to) the concept of a weak synonym
because the definition of a weak synonym seems to imply a two-way inter-
change in some contexts. The main difference is that the interchangeability
of Class Two synonyms is determined not only by semantic context, but
also by the intersection of their respective domains, as well as their data
types and lengths.

2-18

A Review of Database System Terminology

Class Two synonyms allow for a one-way, as well as a two-way, inter-
change in some cases, whereas the "each-other" part in the definition of
weak synonyms seems to preclude a one-way interchange. For example, a
shorter character string can fit into a longer field, but not vice versa.

SUMMARY

This chapter presents a review of the rapidly growing vocabulary of da-
tabase system technology, along with its conflicts and ambiguities. The so-
lutions offered address some of the problems encountered in
communicating concepts and ideas in this field

This effort is intended to be a first step toward the development of a
more comprehensive, standard set of terms that can be used throughout
the industry. More work is needed to identify and resolve the differences in
interpretation between the many terms used in data administration, data-
base development, database administration, database research, and mar-
keting as they occur in industry, government, and academia.

ACKNOWLEDGMENTS

This work was created by a U.S. government employee in the course of
employment and is therefore in the public domain.

2-19

-*

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources gathering and
maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information Including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arlinaton VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. '

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1999

3. REPORT TYPE AND DATES COVERED

Professional Paper
4. TITLE AND SUBTITLE

A Review of Database System Terminology
5. FUNDING NUMBERS

6.AUTHOR(S)

Dr. M. G. Ceruti
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Center
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENTR

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Many publications, technical manuals, and marketing brochures related to databases originated from sources that exhibit a
wide variety of training, background, and experience. Although the result has been an expanded technical vocabulary, the
growth of standards, particularly with regard to a comprehensive, uniformly accepted terminology, has not kept pace with the
growth in the technology itself. Consequently, the nomenclature used to describe various aspects of database technology is
characterized, in some cases, by confusion and chaos. This is true for both homogeneous databases and for heterogeneous,
distributed database systems.

The state of imprecision in the nomenclature of this field persists across virtually all data models and their
implementations. The purpose of this chapter is to highlight some areas of conflict and ambiguity and, in some cases, to
suggest a more meaningful use of the terminology.

Published in Handbook of Data Management, Ch. 2, S. Purba, Ed., CRC Press LLC, 1999.

14. SUBJECT TERMS

Mission Area: Communications
data base system terminology
data item
data element

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Same as Report
NSN 7540-01-280-5500 Standard lorm 298 (FRONT)

21a. NAME OF RESPONSIBLE INDIVIDUAL

Dr. M. G. Ceruti

21 b. TELEPHONE (include Area Code)

(619) 553-4068

21c. OFFICE SYMBOL

Code D4221

NSN 7540-01-280-5500 Standard form 298 (BACK)

