
Chapter 1

A Review
of Data Base
System Terminology
Marion G. Ceruti

Many publications, technical manuals, and marketing brochures related to
data bases originated from sources that exhibit a wide variety of training,
background, and experience. Although the result has been an expanded
technical vocabulary, the growth of standards — particularly with regard
to a comprehensive, uniformly accepted terminology — has not kept pace
with the growth in the technology itself. Consequently, the nomenclature
used to describe various aspects of data base technology is characterized,
in some cases, by confusion and chaos. This is true for both homogeneous
data bases and for heterogeneous, distributed data base systems.

The state of imprecision in the nomenclature of this field persists across
virtually all data models and their implementations. The purpose of this
chapter is to highlight some areas of conflict and ambiguity and, in some
cases, to suggest a more meaningful use of the terminology.

GENERAL DATA BASE TERMS

What Does the Word Data Mean?

According to Webster, the word data is a noun that refers to things
known or assumed; facts or figures from which conclusions can be
inferred; information. Derived from the Latin word datum, meaning gift or
present, data can be given, granted, or admitted, premises upon which
something can be argued or inferred. Although the word data is most fre-
quently observed, the singular form, datum, is also a real or assumed thing
used as the basis for calculations.

The Department of Defense defines data as a representation of facts,
concepts, or instructions in a formalized manner suitable for communica-
tion, interpretation, or processing by humans or by automatic means.

S-^-v-rt.
Al

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

The word data is also used as an adjective in terms such as data set, data
fill, data resource, data management, or data mining. A data set is an aggre-
gate of data items that are interrelated in some way.

Implicit in both definitions of data is the notion that the user can reason-
ably expect data to be true and accurate. For example, a data set is
assumed to consist of facts given for use in a calculation or an argument,
for drawing a conclusion, or as instructions from a superior authority. This
also implies that the data management community has a responsibility to
ensure the accuracy, consistency, and currency of data.

Data Element versus Data Item

In an attempt to define data base terms with a view toward practical
applications, the Department of Defense (DoD) defines a data element as a
named identifier of each of the entities and their attributes that are repre-
sented in a data base. As such, data elements must be designed as follows:

• Representing the attributes (characteristics) of data entities identified
in data models.

• According to functional requirements and logical (as opposed to phys-
ical) characteristics.

• According to the purpose or function of the data element, rather than
how, when, where, and by whom it is used.

• With singularity of purpose, such that it has only one meaning.
• With well-defined, unambiguous, and separate domains.

Other definitions are that a data element is data described at the useful
primitive level; a data item is the smallest separable unit recognized by the
data base representing a real-world entity.

What is clear from all these definitions is that there is considerable ambi-
guity in what these terms mean. The author proposes the following distinc-
tion between data element and data item:

A data element is a variable associated with a domain (in the relational
model) or an object class (in the object-oriented model) characterized
by the property of atomicity. A data element represents the smallest
unit of information at the finest level of granularity present in the data
base. An instance of this variable is a data item. A data element in the
relational model is simply an attribute (or column) that is filled by data
items commonly called the "data fill."

This distinction clarifies but does not preclude any of the other definitions.

What Is a Data Base?

The definitions for the term data base range from the theoretical and gen-
eral to the implementation specific. For example, K.S. Brathwaite, H. Darwen,
and C.J. Date have offered two different, but not necessarily inconsistent,

4 }

srgggSSg:

definj*fons of.
Je builc

lodel, and it i
tnatjs based
management.:

*ese dj
ya^e-wrrm^A
depending on
A.JJ'Sheth and
jrejrr
famodeyT

or Darwjen anc
DBMS^ft coulc
as>o relation;
DaWs^inniti(
defines

Similarly, F
fefine adata !

"Xonsmps,
thus fa< this
becadse the te
tionship» an
description of
user applicati<
copfect states
idteajhatdiffei
notioriis~bons
data baseteyst
sequertfsectic

,\Va
togeThetvxfiei
tions/A file is

feejes-eefwit
"access and s/c

DataBaÄeSys-

Berth of the?
data baseTfec
manage-rnent c

.e
=i ft warp anjgf

comprej:

i set/data
an

n reasor
ita sej/fs
rgjifnent,
inty/This
sibilitv tc

practice
ment as/a
ire rejpre-
s foWows:

identified

d to phys/

ithecman

ng.

the us eful
jedrfy the

iDTe~aT nbi-
igdis/ (nc-

:X>nal
?rizecT\
alles t/
:datsf
n t>fe
/ data

lefinitio/is.

al and gen-
-i. Da/wen,
:on/iste/U,

>. i

Data Base Terminology

definitions of a data base that are specific to the relational model. Darwen
and Date build their definition on fundamental constructs of the relational
model, and it is very specific to that model. Brathwaite employs a definition
that is based on how data bases are constructed in a specific data base
management system (DBMS).

These definitions are discussed in the next section on relational data
base terms. Actually, the term data base can have multiple definitions,
depending on the level of abstraction under consideration. For example,
A.P. Sheth and J.A. Larson define data base in terms of a reference architec-
ture, in which a data base is a repository of data structured according to a
data model. This definition is more general than that of either Brathwaite
or Darwen and Date because it is independent of any specific data model or
DBMS. It could apply to hierarchical and object- oriented data bases as well
as to relational data bases; however, it is not as rigorous as Darwen and
Date's definition of a relational data base because the term repository is not
defined.

Similarly, P.J. Fortier et al., in a set of DoD conference proceedings,
define a data base to be a collection of data items that have constraints,
relationships, and a schema. Of all the definitions for data base considered
thus far, this one is the one most similar to that of Sheth and Larson,
because the term data model could imply the existence of constraints, rela-
tionships, and a schema. Moreover, Fortier et al. define schema as a
description of how data, relationships, and constraints are organized for
user application program access. A constraint is a predicate that defines all
correct states of the data base. Implicit in the definition of schema is the
idea that different schemata could exist for different user applications.This
notion is consistent with the concept of multiple schemata in a federated
data base system (FDBS). (Terms germane to FDBSs are discussed in a sub-
sequent section.)

L.S. Waldron defines data base as a collection of interrelated files stored
together, where specific data items can be retrieved for various applica-
tions. A file is defined as a collection of related records. Similarly, L.
Wheeler defines a data base as a collection of data arranged in groups for
access and storage; a data base consists of data, memo, and index files.

Data Base System versus Data Repository

Both of these terms refer to a more comprehensive environment than a
data base because they are concerned with the tools necessary for the
management of data in addition to the data themselves. These terms are
not mutually exclusive. A data base system (DBS) includes both the DBMS
software and one or more data bases. A data repository is the heart of a
comprehensive information management system environment. It must

J&

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

include not only data elements, but metadata of interest to the enterprise,
data screens, reports, programs, and systems.

A data repository must provide a set of standard entities and allow for
the creation of new, unique entities of interest to the organization. A data
base system can also be a data repository that can include a single data
base or several data bases.

A. King et al. describe characteristics of a data repository as including
an internal set of software tools, a DBMS, a metamodel, populated meta-
data, and loading and retrieval software for accessing repository data.

WHAT IS A DATA WAREHOUSE AND WHAT IS DATA MINING?

B. Thuraisingham and M. Wysong discussed the importance of the data
warehouse in a DoD conference proceeding. A data warehouse is a data
base system that is optimized for the storage of aggregated and summa-
rized data across the entire range of operational and tactical enterprise
activities. The data warehouse brings together several heterogeneous data
bases from diverse sources in the same environment. For example, this
aggregation could include data from current systems, legacy sources, his-
torical archives, and other external sources.

Unlike data bases that are optimized for rapid retrieval of information
during real-time transaction processing for tactical purposes, data ware-
houses are not updated, nor is information deleted. Rather, time-stamped
versions of various data sets are stored. Data warehouses also contain
information such as summary reports and data aggregates tailored for use
by specific applications. Thus, the role of metadata is of critical importance
in extracting, mapping, and processing data to be included in the ware-
house. All of this serves to simplify queries for the users, who query the
data warehouse in a read-only, integrated environment.

The data warehouse is designed to facilitate the strategic, analytical,
and decision-support functions within an organization. One such function
is data mining, which is the search for previously unknown information in
a data warehouse or data base containing large quantities of data. The data
warehouse or data base is analogous to a mine, and the information
desired is analogous to a mineral or precious metal.

The concept of datamining implies that the data warehouse in which the
search takes place contains a large quantity of unrelated data and probably
was not designed to store and support efficient access to the information
desired. In data mining, it is reasonable to expect that multiple, well-
designed queries and a certain amount of data analysis and processing will
be necessary to summarize and present the information in an acceptable
format.

DM?

tas

sur

de«

'dät

irt<

itenprise,

aftow for
>n. ASdata
ngle data

inch/ding
:ed/meta-

ita.

f thXdata
is a «data

i surrjma-
nterurise
eous/data
npla, this
lrceä^his-

:'orriation
lata ware-
s-stamped
o cjbntäin
edjror use
ipArtance
theyware-
quen

vvRHch the
prot

formation
pie, wel

essingwq
cceptabl^

Data Base Terminology

Data Administrator versus Data Base Administrator

The following discussion is not intended to offer an exhaustive list of
tasks performed by either the data administrator (DA) or data base admin-
istrator (DBA), but rather to highlight the similarities and essential distinc-
tions between these two types of data base professionals. Both data admin-
istrators and data base administrators are concerned with the management
of data, but at different levels.

The job of a data administrator is to set policy about determining the data
an organization requires to support the processes of that organization. The
data administrator develops or uses a data model and selects the data sets
supported in the data base. A data administrator collects, stores, and dissem-
inates data as a globally administered and standardized resource. Data stan-
dards on all levels that affect the organization fall under the purview of the
data administrator, who is truly an administrator in the managerial sense.

By contrast, the technical orientation of the data base administrator is at
a finer level of granularity than that of a data administrator. For this reason,
in very large organizations, DBAs focus solely on a subset of the organiza-
tion's users. Typically, the data base administrator is, like a computer sys-
tems manager, charged with day-to-day, hands-on use of the DBS and daily
interaction with its users. The data base administrator is familiar with the
details of implementing and tuning a specific DBMS or a group of DBMSs.
For example, the data base administrator has the task of creating new user
accounts, programming the software to implement a set of access controls,
and using audit functions.

To illustrate the distinction between a data administrator and a data
base administrator, the U.S. Navy has a head data administrator whose
range of authority extends throughout the entire Navy. It would not be
practical or possible for an organization as large as the U.S. Navy to have a
data base administrator in an analogous role, because of the multiplicity of
DBSs and DBMSs in use and the functions that DBAs perform.

These conceptual differences notwithstanding, in smaller organizations
a single individual can act as both data administrator and data base admin-
istrator, thus blurring the distinction between these two roles. Moreover,
as data models and standards increase in complexity, data administrators
will increasingly rely on new technology to accomplish their tasks, just as
data base administrators do now.

RELATIONAL DATA BASE TERMS

Because relational technology is a mature technology with many practi-
cal applications, it is useful to consider some of the important terms that
pertain to the relational model. Many of these terms are straightforward

'*>j

J&

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

and generally unambiguous, whereas some terms have specific definitions
that are not always understood.

A data set represented in the form of a table containing columns and
rows is called a relation. The columns are called attributes, and the rows are
called tuples.

Darwen and Date define a tuple to be a set of ordered triples of the form
<A, V, v> where A is the name of an attribute, V is the name of a unique
domain that corresponds to A, and v is a value from domain V called the
attribute value for attribute A within the tuple. A domain is a named set of
values.

Darwen and Date also describe a relation as consisting of a heading and
a body, where the heading is a set of ordered pairs, <A,V>; and the body
consists of tuples, all having the same heading <A,V>. An attribute value is
a data item or a datum.

In some respects, a relation is analogous to an array of data created out-
side a relational DBMS, such as in a third-generation language (3GL) pro-
gram like C, FORTRAN, or Ada, in which the rows are called records and the
columns are called fields. Waldron defines a field as a set of related letters,
numbers, or other special characters, and defines a record as a collection
of related fields.

The interchangeability of the terms record and row has been illustrated
by some of the major DBMS vendors in the way in which they report the
results of a query to the user. Earlier versions of commercial DBMSs indi-
cated at the end of a query return messages such as "12 records selected."
Now, it is more common to see messages such as."12 rows selected" or
"12 rows affected" instead. . -

Relation versus Relation Variable

The correct manner in which the term relation should be used is accord-
ing to the definition given previously, which specifically includes values v,
from domain V. However, the term relation has not always been used cor-
rectly in the industry. Relation frequently is used as though it could mean
either a filled table with data present (correct), or an empty table structure
containing only data headers (incorrect). The confusion here stems from a
failure to distinguish between a relation, which is a filled table with tuples
containing attribute values, and a relation uariable (or relvar), which is an
empty table structure with only attribute names and domains from which
to choose values. The values of a relation variable are the relations per se.
This distinction becomes especially important when mapping between the
relational and object-oriented data models.

8

irs

and/

ister

que
all>

Jracl

lata
vas

Cote

rdat
igt

|-:*=äi US
*WOI7

Data Base Terminology

Data Base versus Data Base Variable

In a manner similar to the relation-relvar dichotomy, a data base variable
is different from a data base per se. A data base variable (or dbvar) is a
named set of relvars. The value of a given dbvar is a set of specific, ordered
pairs <R,r>, where R is a relvar and r (a relation) is the current value of that
relvar, such that one such ordered pair exists for each relvar in the dbvar
and that, taken together, all relvar values satisfy the applicable constraints
(in particular, integrity constraints). A value of the dbvar that conforms to
this definition is called a data base. Some call this a data base state, but this
term is not used very often.

Data Base versus DBMS

As all the examples discussed thus far indicate, not all data base termi-
nology is as unambiguous as "'rows" and "columns." Incorrect understand-
ing of the fundamental concepts in data base technology can lead to incon-
sistent terminology, and vice versa.

DBMS Software Does Not Equal a Data Base. For example, data bases fre-
quently are described according to the DBMS that manages them. This is
all well and good, as long as one realizes that references to an Oracle data
base and Sybase data base refer to the data bases that are managed using
Oracle or Sybase software, respectively. Difficulty arises when this nomen-
clature results in the misconception that DBMS software is actually the
data base itself. The assumption that Informix, for example, is a data base
is as illogical as thinking that the glass is the same as the water in it.

Concept versus Implementation in Relational Data Bases

Darwen and Date's definition of a data base, as well as that of other data
base researchers (some of whom are mentioned by name in this chapter
and others who are not), does not require the presence of a DBMS. Concep-
tually, it is possible to have a data base without a DBMS or a DBMS without
a data base, although obviously the greatest utility is achieved by combin-
ing the two.

In the context of a specific DBMS environment, Brathwaite defines an
IBM DB2 data base as "a collection of table and index spaces where each
table space can contain one or more physical tables." This definition is
inconsistent with Date's definition because it allows for the possibility that
the table spaces could be empty, in which case no data would be present.
It is not clear that even relvars would be present in this case. That notwith-
standing, if physical tables are present, Brathwaite's definition becomes an
implementation-specific special case of Date's definition. (Substitute the
word "must" for "can" to resolve the problem with Brathwaite's definition.)

9

DEFINITIONS, DATA ORIENTATION. AND ADMINISTRATION

Except in the case where the vendor has specified default table and
index spaces in the DBMS code, the data base and index spaces are not
actually part of the DBMS per se. The DBA needs to create both the data
base space and the index space using the DBMS software.

DATA BASE NORMALIZATION

The topic of data base normalization, sometimes called data normaliza-
tion, has received a great deal of attention. As is usually the case, data base
normalization is discussed in the following section using examples from
the relational data model. Here, the terms relation and table are used inter-
changeably. However, the design guidelines pertaining to data base normal-
ization are useful even if a relational data base system is not used. For exam-
ple, B.S. Lee has discussed the need for normalization in the object-oriented
data model. Whereas the intent of this section is to introduce the correct
usage of normalization terminology as it applies to data base technology, it is
not meant to be an exhaustive exposition of all aspects of normalization.

What Is Data Base Normalization?
Strictly speaking, data base normalization is the arrangement of data

into tables. P. Winsberg defines normalization as the process of structuring
data into a tabular format, with the implicit assumption that the result
must be in at least first normal form. Similarly, Brathwaite defines data nor-
malization as a set of rules and techniques concerned with:

• Identifying relationships between attributes
• Combining attributes to form relations (with data fill)
• Combining relations to form a data base

The chief advantage of data base or data normalization is to avoid modifi-
cation anomalies that occur when facts about attributes are lost during
insert, update, and delete transactions. However, if the normalization pro-
cess has not progressed beyond first normal form, it is not possible to
ensure that these anomalies can be avoided. Therefore, data base normal-
ization commonly refers to further non-loss decomposition of the tables
into second through fifth normal form. Non-loss decomposition means that
information is not lost when a table in lower normal form is divided
(according to attributes) into tables that result in the achievement of a
higher normal form. This is accomplished by placing primary and foreign
keys into the resulting tables so that tables can be joined to retrieve the
original information.

What Are Normal Forms?
A normal form of a table or data base is an arrangement or grouping of

data that meets specific requirements of logical design, key structure,
modification integrity, and redundancy avoidance, according to the rigorous

10

Data Base Terminology

definition of the normalization level in question. A table is said to be in "X"
normal form if it is already in ''X-l" normal form and it meets the additional
constraints that pertain to level "X."

In first normal form (INF), related attributes are organized into separate
tables, each with a primary key. A primary key is an attribute or set of
attributes that uniquely defines a tuple. Thus, if a table is in INF, entities
within the data model contain no attributes that repeat as groups. W. Kent
has explained that in INF, all occurrences of a record must contain the
same number of fields. In INF, each data cell (defined by a specific tuple
and attribute) in the table will contain only atomic values.

Every table that is in second normal form (2NF) also must be in INF, and
every non-key attribute must depend on the entire primary key. Any
attributes that do not depend on the entire key are placed in a separate
table to preserve the information they represent. 2NF becomes an issue
only for tables with composite keys. A composite key is defined as any key
(candidate, primary, alternate, or foreign) that consists of two or more
attributes. If only part of the composite key is sufficient to determine the
value of a non-key attribute, the table is not in 2NF.

Every relation that is in third normal form (3NF) must also be in 2NF, and
every non-key attribute must depend directly on the entire primary key. In
2NF, non-key attributes are allowed to depend on each other. This is not
allowed in 3NF. If a non-key attribute does not depend on the key directly,
or if it depends on another non-key attribute, it is removed and placed in a
new table. It is often stated that in 3NF, every non-key attribute is a function
of "the key, the whole key, and nothing but the key." In 3NF, every non-key
attribute must contribute to the description of the key. However, 3NF does
not prevent part of a composite primary key from depending on a non-key
attribute, nor does it address the issue of candidate keys.

Boyce-Codd normal form (BCNF) is a stronger, improved version of 3NF.
Every relation that is in BCNF also must be in 3NF and must meet the addi-
tional requirement that each determinant must be a candidate key. A deter-
minant is any attribute, A, of a table that contains unique data values, such
that the value of another attribute, B, fully functionally depends on the
value of A. If a candidate key also is a composite key, each attribute in the
composite key must be necessary and sufficient for uniqueness. Winsberg
calls this condition "unique and minimal." Primary keys meet these
requirements. An alternate key is any candidate key that is not the primary
key. In BCNF, no part of the key is allowed to depend on any key attribute.
Compliance with the rules of BCNF forces the data base designer to store
associations between determinants in a separate table, if these determi-
nants do not qualify as candidate keys.

11

mS&K

J&

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

BCNF removes all redundancy due to singular relationships but not
redundancy due to many-to-many relationships. To accomplish this, fur-
ther normalization is required. Fourth and fifth normal forms (4NF and
5NF) involve the notions of multivalued dependence and cyclic depen-
dence, respectively. A table is in 4NF if it also is in BCNF and does not con-
tain any independent many-to-many relationships.

That notwithstanding, a table could be in 4NF and still contain depen-
dent many-to-many relationships. A table is in 5NF if it is also in 4NF and
does not contain any cyclic dependence (except for the trivial one between
candidate keys.) In theory, 5NF is necessary to preclude certain join anom-
alies, such as the introduction of a false tuple. However, in practice, the
large majority of tables in operational data bases do not contain attributes
with cyclical dependence.

What Are Over-Normalization and Denormalization?

Over-normalization of a table results in further non-loss decomposition
that exceeds the requirements to achieve 5NF. The purpose of this is to
improve update performance. However, most operational data bases rarely
reach a state in which the structure of all tables has been tested according
to 5FN criteria, so over-normalization rarely occurs. Over-normalization is
the opposite of denormalization, which is the result of intentionally intro-
ducing redundancy into a data base design to improve retrieval perfor-
mance. Here, the data base design process has progressed tö 3NF, BCNF,
4NF, or even to 5NF. However, the data base is implemented in a lower nor-
mal form to avoid time-consuming joins. Because the efficiency of "select"
queries is an issue in operational systems, denormalization is more com-
mon than over-normalization.

The first six normal forms (including BCNF) are formal structures of
tables that eliminate certain kinds of intra-table redundancy. For example,
5NF eliminates all redundancy that can be removed by dividing tables
according to attributes. Higher normal forms exist beyond 5NF. They
address theoretical issues that are not considered to be of much practical
importance. In fact, Date has noted that it is not often necessary or desir-
able to carry out the normalization process too far because normalization
optimizes update performance at the expense of retrieval performance.
Most of the time, 3NF is sufficient. This is because tables that have been
designed logically and correctly in 3NF are almost automatically in 4NF.
Thus, for most data bases that support real-time operations, especially for
those that have tables with predominantly single-attribute primary keys,
3NF is the practical limit. Note that a two-attribute relation with a single-
attribute key is automatically in the higher normal forms.

12 $

-iigSsK.;:-...

.":ia-:"

' l^"*.

r.s^:

; ;-rttS" -

■ ..fr '^T "
dtibn ;ÜS~-

= - $*i-.-*K' •-?

is to :
arejly ; -'V ;r^ ■

rdiAg j ■'; ';.

iorj is ■■ "■■"'"? •^ > . /
inttro- V ^'*-

erfpr-]
:

3Ci)lF,
r rybr-
al/ct" ■-•' ;
qpm-

■

es of i f

1 male, ! ; ;
aoles : ;.
Jhey ■;

yttlcal j i
[desir- i :

latiön j (

Vnce. j
b\een 1

i 4NF. 1
il/for j

/keys, • E ;

single- >„: J
E •'^•■'

K, ,,A-.'(I. .

H "<ir:
§& 'V-i^T?'....,
& **£-^.

i P^fet^
.■^j^vs^sgtfSi
i*l S33§?»§o*ä

Da/a Base Terminology

DISTRIBUTED, HETEROGENEOUS DATA BASE NOMENCLATURE

What Is a Distributed Data Base?
Date defines a distributed data base as a virtual data base that has com-

ponents physically stored in a number of distinct "real" data bases at a
number of distinct sites.

Federated Data Base Systems versus Multidata Base Systems. M. Hammer
and D. McLeod coined the term federated data base system to mean a col-
lection of independent, preexisting data bases for which data administra-
tors and data base administrators agree to cooperate. Thus, the data base
administrator for each component data base would provide the federation
with a schema representing the data from his or her component that can be
shared with other members of the federation.

In a landmark paper ("Federated Database Systems for Managing Distrib-
uted, Heterogeneous and Autonomous Databases," ACM Computing Surveys,
Vol. 22, No. 3, September 1990), Sheth and Larson define FDBS in a similar
but broader architectural sense to mean a collection of cooperating but
autonomous component data base systems that are possibly heteroge-
neous. They also define a nonfederated data base system as an integration of
component DBMSs that is not autonomous with only one level of manage-
ment, in which local and global users are not distinguished. According to
Sheth and Larson's taxonomy, both federated and nonfederated data base
systems are included in a more general category called multidata base sys-
tems. These multidata base systems support operations on multiple-compo-
nent DBSs.

Sheth and Larson further divide the subcategory of FDBS into two types:
loosely coupled and tightly coupled FDBS, based on who creates and main-
tains the federation and how the component data bases are integrated. If
the users themselves manage the federation, they call it a loosely coupled
FDBS; whereas, if a global data base administrator manages the federation
and controls access to the component data bases, the FDBS is tightly cou-
pled. Both loosely coupled and tightly coupled FDBSs can support multiple
federated schemata. However, if a tightly coupled FDBS is characterized by
the presence of only one federated schema, it has a single federation.

The term multidata base has been used by different authors to refer to
different things. For example, W. Litwin et al. have used it to mean what
Sheth and Larson call a loosely coupled FDBS. By contrast, Y. Breitbart and
A. Silberschatz have defined multidata base to be the tightly coupled FDBS
of Sheth and Larson. Sheth and Larson have described additional, conflict-
ing use of the term multidata base.

The terms loosely coupled and tightly coupled FDBSs have also been used
to distinguish between the degree to which users can perceive heterogeneity

13

Ji»

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

in an FDBS, among other factors. In this system of nomenclature (devised
by this author and M.N. Kamel), a tightly coupled FDBS is characterized by
the presence of a federated or global schema, which is not present in a
loosely coupled FDBS. Instead of a global schema, loosely coupled FDBSs
are integrated using other software, such as a user interface with a uniform
"look and feel" or a standard set of queries used throughout the federation,
thus contributing to a common operating environment.

In this case, the autonomous components of a loosely coupled FDBS are
still cooperating to share data, but without a global schema. Thus, the
users see only one DBS in a tightly coupled FDBS, whereas they are aware
of multiple DBSs in the loosely coupled FDBS. Here, the tightly coupled
FDBS obeys Date's rule zero, which states that to a user, a distributed sys-
tem should look exactly like a nondistributed system.

Given this manner in which to characterize an FDBS, a hybrid FDBS is
possible for which some of the component DBSs have a global schema that
describe the data shared among them (tightly coupled), but other compo-
nents do not participate in the global schema (loosely coupled).

An Expanded Taxonomy. An expanded taxonomy is proposed to provide a
more comprehensive system to describe how data bases are integrated,
and to account for the perspectives of both the data administrator and the
users. Essentially, most aspects of Sheth and Larsons taxonomy are logical
and should be retained. However, instead of using Sheth and Larson's
terms for tightly coupled federated data base and loosely coupled feder-
ated data base, the terms tightly controlled federated data base and loosely
controlled federated data base, respectively, should be substituted.

This change focuses on the absence or presence of a central, controlling
authority as the essential distinction between the two. In this case, the
terms tightly coupled and loosely coupled can then be applied to describe
how the user, rather than the data administrator, sees the federation. Given
this change, the coupling between components in a federated data base
will describe how seamless and homogeneous the data base looks to the
users and applications.

The expanded taxonomy can accommodate federated data bases that
differ widely in their characteristics. For example, if a tightly controlled fed-
erated data base is tightly coupled, the global data administrator and the
global data base administrator have exercised their authority and exper-
tise to provide a seamless, interoperable environment that allows the fed-
eration's users to experience the illusion of a single data base for their
applications and ad-hoc queries.

A tightly controlled federated data base can also be loosely coupled, in
which case the global data administrator allows the users of the federation
to see some heterogeneity with respect to the component data bases.

'14

.narta

fAl«

. ofj
f.CC

wit
dii

C)I

.««M

:iature
hara<(t£j*i'2eg/Dy
lot present/in a
coupled/fDBSs

i with ayuniform
: the federation,

uplfed FDBS are
amk. Thus, the
they-ar-c aware

:ightly coupled
distributed sws-

hybrid FDBS is
)al schema that
t other/ccmipo-
Med):

ed to o^ovide a
ire integrated,

ratpr and the
riya«rToljical
and Larson's

coupled/leder-
ase ana loosely
ititute

ral, controlling
this case, the

ed tcrdegcrfbe
ieration. Grven
ited data/base
>e looks/to the

ata bjasgs'fhjat
controlledfed-
trator anp the
ity and/exper-
illows/the fed-
bas<r for J*r?ir

:ly coupfed, it
the federation
ata bass

Data Base Terminology

Both conditions are within the realm of possibility. However, a loosely
controlled federated data base is almost certain to be loosely coupled. This
is because a loosely controlled federated data base lacks a central author-
ity capable of mediating disputes about data representation in the feder-
ated schema and enforcing uniformity in the federation's interfaces to user
applications. A loosely controlled federated data base is not likely to be
tightly coupled.

Local or Localized Schema versus Component Schema versus Export Schema.

A local or localized data base generally starts as a stand-alone, noninte-
grated data base. When a local, autonomous data base is selected for mem-
bership in a federation, a local schema is defined as a conceptual schema
of the component DBS that is expressed in the native data model of the
component DBMS.

. When the local data base actually becomes a member of a federated -
data base, it is said to be a component data base. The schema associated
with a given data base component is called a component schema, which is
derived by translating a local schema into the common data model of the
FDBS. An export schema represents the subset of the component schema
that can be shared with the federation and its users.

Similarly, Date defines a local schema as the data base definition of a
component data base in a distributed data base.

Federated Schema versus Global Schema versus Global Data Dictionary. A
federated schema is an integration of multiple export schemata. Because
the distributed data base definition is sometimes called the global schema,
federated schema and global schema are used interchangeably.

A global data dictionary is the same as a global schema that includes the
data element definitions as they are used in the FDBS. A data dictionary is dif-
ferent from a schema, or data base structure specification, because a data
dictionary contains the definitions of attributes or objects, not just the con-
figuration of tables, attributes, objects, and entities within that structure.

It is especially important to include the data element definitions with the
export schemata when forming a federated data base in which multiple
data representations are likely. Simply having a collection of data base
structures is insufficient to complete a useful federated schema. It is nec-
essary to know the meaning of each attribute or object and how it is con-
strued in the component data base.

Middleware versus Midware. In a three-tier client/server architecture
designed to connect and manage data exchange between user applications
and a variety of data servers, the middle tier that brokers transactions

15

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

between clients and servers consists of middleware, which is sometimes
called midware.

P. Cykana defines middleware as a variety of products and techniques
that are used to connect users to data resources. In his view, the middle-
ware solution is usually devoted to locating and finding data rather than to
moving data to migration environments.

In addition, Cykana describes two options for middleware, depending on
the degree of coupling between the user and the data resource. Loosely
coupled middleware products allow flexibility in specifying relationships
and mappings between data items, whereas tightly coupled middleware
products allocate more authority to standard interfaces and data base
administrators. Each option has its advantages and disadvantages, as
follows:

• Loosely coupled middleware. This type of middleware does not require
the migration or legacy data structures to be modified, but it allows
users to access multiple equivalent migration systems transparently
with one standard interface. Its disadvantage is that it does not pre-
vent multiple semantics and nonstandard structures.

• Tightly coupled middleware. This option represents a more aggressive
strategy that combines applications program interface (API) and graph-
ical user interface (GUI) technologies, data communications, and data
dictionary design and development capabilities to provide distributed
data access. Data standardization and reengineering are required.

The concept of loose and tight coupling to middleware is somewhat sim-
ilar to, but also differs slightly from, the loose and tight coupling between
data resources as discussed by Sheth and Larson and other researchers. In
the case of middleware, the coupling occurs between software at different
tiers or layers (between the middle translation layer and the data servers);
whereas, in the case of an FDBS, the coupling occurs between data servers
that reside at the same tier. (However, this difference does not preclude
software that achieves the coupling between data servers from being
located in the middle tier.)

G.V. Quigley defines middleware as a software layer between the appli-
cation logic and the underlying networking, security, and distributed com-
puting technology. Middleware provides all of the critical services for man-
aging the execution of applications in a distributed client/server
environment while hiding the details of distributed computing from the
application tier. Thus, midware is seen in a critical role for implementing a
tightly coupled FDBS.

Similarly, Quigley considers middleware to be the key technology to
integrate applications in a heterogeneous network environment.
16

ometimes

lniques-
leTnuTdle?
er than to

ending 08
:. Loosafy
tionsh/ps
ddlejware"
iatarbase
taees, as

^require
allows

arentl^
ot pre-

ire/sive
i apH-

data-
buted

ed.

e aepli-
-3d com-
or/man-
's£rver,
rc/rn t>fe//

10

ology to

■*'■•:

Data Base Terminology

Data Base Integration versus Data Base Homogenization. Many organiza-
tions in both industry and government are interested in integrating auton-
omous (sometimes called '"stovepipe") data bases into a single distributed,
heterogeneous data base system. Many terms describe the various aspects
of this integration. The multiplicity of terminology occurs because of the
many ways in which data bases can be integrated and because of the many
simultaneous efforts that are underway to address integration problems.

Because the degree to which data base integration takes place depends
on the requirements of the organization and its users, the term integration,
as it is used in various contexts, remains rather vague. For people whose
fields of expertise are outside the realm of data base technology, it is nec-
essary to hide the specific details of data base system implementation
behind midware layers and a user interface that together create the illusion
of a single, unified data base. By contrast, more experienced users with
knowledge of multiple DBMS can function efficiently in an environment that
preserves some distinctions between the data base components.

■ Within all architectural options, data base integration, in its broadest
sense, refers to the combination and transformation of data base compo-
nents into a data base system that is homogeneous on at least one level
(e.g., the data level, the schema level, the program interface level, or the
user-interface level). Such an integrated data base system must satisfy the
primary goals of interoperability between data base system components,
data sharing, consistent data interpretation, and efficient data access for
users and applications across multiple platforms.

K. Karlapalem et al. describe the concept of data base homogenization as
the process of transforming a collection of heterogeneous legacy informa-
tion systems onto a homogeneous environment. Whereas they do not
define what they mean by the term homogeneous environment, they list
three goals of data base homogenization:

• To provide the capability to replace legacy component data bases
efficiently

• To allow new global applications at different levels of abstraction and
scale to be developed on top of the homogenized federated data base

• To provide interoperability between heterogeneous data bases so that
previously isolated heterogeneous localized data bases can be loosely
coupled

This definition of data base integration explicitly includes multiple archi-
tectures and implementations; by contrast, the description of data base
homogenization is associated with loose rather than tight coupling of local-
ized data bases into a homogeneous environment. Sometimes the term
data base normalization is used incorrectly to mean data base integration.

17

m<

DEFINITIONS, DATA ORIENTATION, .AND ADMINISTRATION

ÄST,weroperato-The conditl°"s
necessary for inter-

• Interconnectivity via the necessary networks facilities
• Resolution of system heterogeneity
• Resolution of semantic heterooeneity
• Derivation and integration of schemata and views

semantic hetero°eneitv the IL <„„!if °e'erogeneity. Excluding
co.bina.lon o, Ät^ÄTÄ^.? * >°™

paten et ai. nave «SX^"U lne".re<",lremi!"'=)- because Karla-

hefroS.y°Z\TeySveedTge"eity ^ d!"a ma"a°™-' *«»
amongListi/gS^^Xr * ^e,U"'eme", "" '"'««'■»»bUH,

«'•ooesno^a^Ä
operation results when us^r* ar,H a„ Y- *■ ta base inter-
mon, integrated e^vi^m To^tTe and "^ °' * ^
multiple data bases. ' d Process data across

global, andlitribu^d SvsteT, ' *? ^ !nte§ration ""° a more modern,
terns. These sj ternsaIZ^l^T™* haVe been ca,led mi§rati°n ^
migration daS baTes '" ^ ^ m'grati0n info™^ion systems with

^^Z^S^^rT^ unambiguously that the data
data base sysZlloeT^TZX* T^^ in S°me form of a mod^n

■^■«sv

-sary for inter-

ii heterogene-
ty. Excluding
en to be some
software and

ita, query lan-
ecause Karla-
s an item sep-
fically should
<n processing
integrity con-
ed for system
aroperability

?ment system
;roperability

ipplies users
data environ-
ta base inter-
tge of a corn-
data across

em. Autono-
lore modern,
ligration sys-
jystems with

hat the data
of a modern

DBS. Bycon-
wo different

i and legacy
n and migra-
information

■■IS**?---

Data Base Terminology

system as if it were not a migration information system and is therefore
deliberately excluded from the final integrated data base configuration.
This is the opposite extreme.

More commonly than in the extreme cases, a subset of legacy data is
deemed important to the users of a shared data resource. This means that
some or all of the data in a legacy information system may be migrated dur-
ing a data base integration effort. For example, Cykana describes steps in
the data integration process that start with the movement and improve-
ment of data and progress to the shutdown of legacy systems. Karlapalem
et al. refer to the difficulty of migrating legacy information systems to a
modern computer environment in which some difference is presumed to
exist between the legacy system and the modern system.

•' The author recommends that the following terminology be adopted as
standard:

Legacy data and legacy information system should refer to the original
data and original format, as maintained in the original, autonomous
information system before any modification or migration to a new envi-
ronment has occurred. Migration data and migration information system
should be used to describe the subset of the legacy data and software
that has been chosen to be included into a new (and usually distrib-
uted) information resource environment. When data and software are
modified to accommodate a new environment, they should be called
migration instead of legacy.

TERMS ASSOCIATED WITH SEMANTIC HETEROGENEITY

Semantic heterogeneity refers to a disagreement about the meaning,
interpretation, or intended use of the same or related data or objects.
Semantic heterogeneity can occur either in a single DBS or in a multidata
base system. Its presence in a DBS is also independent of data model or
DBMS. Therefore, the terminology associated with this problem is dis-
cussed in a separate section.

Semantic Interoperability versus Data Base Harmonization

The terms data base integration and interoperability were discussed pre-
viously in a general context. For distributed, heterogeneous data base sys-
tems to be integrated in every respect, semantic heterogeneity must be
resolved.

Problems associated with semantic heterogeneity have been difficult to
overcome, and the terminology to describe semantic heterogeneity has
evolved accordingly. For example, R. Sciore et al. define semantic interop-
erability as agreement among separately developed systems about the
•meaning of their exchanged data.

i 19

DEFINITIONS, DATA ORIENTATION, AND ADMINISTRATION

Whereas the exact meaning of the term data base harmonization is not
clear, one can infer that the goal of data base harmonization must be
related to providing an environment in which conflicts have been resolved
between data representations from previously autonomous systems. This
definition further implies that the resolution of semantic heterogeneity is a
prerequisite for data base harmonization.

Although a more precise definition of data base harmonization is
needed, it appears to be related to the idea of semantic interoperability.

Strong and Weak Synonyms versus Class One
and Class Two Synonyms

A synonym is a word that has the same or nearly the same meaning as
another word of the same language. Because a metadata representation
will include more attributes (e.g., data element name, type, length, range,
and domain) than ordinary nouns, it was necessary to consider various
levels of similarity and therefore, levels of synonymy.

M.W. Bright et al. have described the concept of strong and weak syn-
onyms. Strong synonyms are semantically equivalent to each other and can
be used interchangeably in all contexts without a change of meaning, whereas
weak synonyms are semantically similar and can be substituted for each
other in some contexts with only minimal meaning changes. Weak synonyms
cannot be used interchangeably in all contexts without a major change in the
meaning — a change that could violate the schema specification.

This concept is similar to one (introduced by the author and Kamel) that
states that there are two classes of synonym abstraction: Class One and
Class Two. Class One synonyms occur when different attribute names rep-
resent the same, unique real world entity. The only differences between
Class One synonyms are the attribute name and possibly the wording of
the definition, but not the meaning. By contrast, Class Two synonyms
occur when different attribute names have equivalent definitions but are
expressed with different data types and data-element lengths.

Class Two synonyms can share the same domain or they can have
related domains with a one-to-one mapping between data elements, pro-
vided they both refer to the same unique real-world entity. The concept of
a strong synonym is actually, the same as that of a Class Two synonym
because both strong synonyms and Class Two synonyms are semantically
equivalent and they can be used interchangeably because they have the
same data element type and length. By contrast, the concept of a Class Two
synonym includes (but is not limited to) the concept of a weak synonym
because the definition of a weak synonym seems to imply a two-way inter-
change in some contexts. The main difference is that the interchangeability
of Class Two synonyms is determined not only by semantic context, but

20 ■

the
'wo

<jsS

Data Base Terminology

also by the intersection of their respective domains, as well as their data
types and lengths.

~ Class Two synonyms allow for a one-way, as well as a two-way, inter-
change in some cases, whereas the "each-other" part in the definition of

■ weak synonyms seems to preclude a one-way interchange. For example, a
shorter character string can fit into a longer field, but not vice versa.

3n
of

■~a&5ü."'

It SUMMARY

This chapter presents a review of the rapidly growing vocabulary of data
base system technology, along with its conflicts and ambiguities. The solu-
tions offered address some of the problems encountered in communicating
concepts and ideas in this field.

- This effort is intended to be a first step toward the development of a
more comprehensive, standard set of terms that can be used throughout
the industry. More work is needed to identify and resolve the differences in
interpretation between the many terms used in data administration, data
base development, data base administration, data base research, and mar-
keting as they occur in industry, government, and academia.

ACKNOWLEDGMENTS

This work was created by a U.S. government employee in the course of
employment and is therefore in the public domain.

21

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

™i^»wSÄHt,^l^lo^ nectton of information Is estimated to average 1 hour per response, including the Urne for reviewing Instructions, searching existing data sources gatherina and '

suggestions for reducing this burten, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JeffersonDavis Highway Suite law AriingtoTvA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

4. TITLE AND SUBTITLE

A Review of Data Base System Terminology

6.AUTHOR(S)

Dr. M. G. Ceruti
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Center
San Diego, CA 92152-5001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

3. REPORT TYPE AND DATES COVERED

Professional Paper
5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENTR

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) ~

This chapter presents a review of the rapidly growing vocabulary of data base system technology, along with its conflicts
and ambiguities. The solutions offered address some of the problems encountered in communication concepts and ideas in
this field.

This effort is intended to be a first step toward the development of a more comprehensive, standard set of terms that can be
used throughout the industry. More work is needed to identify and resolve the differences in interpretation between the many
terms used in data administration, data base development, data base administration, data base research, and marketing as they
occur in industry, government, and academia.

Published in Handbook of Data Management, Ch. 1, B. Thuraisingham, Ed., CRC Press LLC, 1998.

14. SUBJECT TERMS

Mission Area: Communications
data base system terminology
data item
data element

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
NSN 7540-01-280-5500

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Same as Report

Standard form 298 (FRONT)

21a. NAME OF RESPONSIBLE INDIVIDUAL

Dr. M. G. Ceruti

21 b. TELEPHONE (Include Area Code)

(619) 553-4068

21c. OFFICE SYMBOL

Code D4221

NSN754<H>1 -280-5500 Standard form 298 (BACK)

