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Objectives 

The Seventh conference was held on July 26-30, 1998 and had the following 
basic objectives: 

1. Development of a better understanding of nonlinear dynamical phenom- 
ena, 

2. Assessment of the state of the art of experimental, computational, and 
analytical techniques for nonlinear dynamics, including presentations from 
some of the leading international researchers, 

3. Exchange of ideas among some of the leading national researchers, 

4. Suggestions for directions of future research, and 

5. Bringing graduate students in contact with the experts in nonlinear dy- 
namics, giving some of them an opportunity to present their research, and 
helping them to know the state of the art. 

Scope 

The Seventh conference focused on the following topics: 

1. Multibody dynamics, 

2. Vehicle dynamics, 
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3. Rotorcraft dynamics, 

4. Modal interactions 

5. Nonlinear modes and localization, 

6. Parametrically excited vibrations: single- and multi-frequency excitations 
of single- and multi-degree-of-freedom systems, 

7. Analytical methods, 

8. Computational techniques: efficient algorithms, use of symbolic manipu- 
lators, integration of symbolic manipulation and numerical methods, and 
use of parallel processors, 

9. Experimental methods: benchmark experiments, measurements in hostile 
environments, and instrumentation techniques, 

10. Structural control, 

11. Identification of nonlinear systems, 

12. Dynamics of composite structures, 

13. Dynamics of adaptive structures, and 

14. Fluid/structure interactions. 

Report 
The program consisted of invited and contributed papers. The leading re- 
searchers were identified and invited to give presentations. Potential contrib- 
utors were asked to submit a two-page abstract by January 15, 1998. They 
were notified of their acceptance by March 31, 1998. Full-length papers were 
due on April 1, 1998. There were one hundred oral presentations. Two-page 
extended abstracts of the invited and the contributed presentations were pub- 
lished in a Proceedings that was available at the time of the conference. Please 
find attached ten copies of the Proceedings, including the Program. 

The conference was well-received and attended by many prominent researchers. 
It provided a forum for many fruitful exchanges of ideas and for an assessment 
of the state of the art. The participants agreed that it was also very successful 
in: a) contributing to the development of a better understanding of nonlinear 
phenomena, b) providing an assessment of the state of the art of experimental, 
computational, and analytical techniques for nonlinear dynamics, and c) foster- 
ing an exchange of ideas among leading researchers and a discussion of priorities 
for future research. 

One hundred forty participants came from many countries, including Canada, 
Germany, Italy, France, Japan, Greece, Turkey, Jordan, The Netherlands, Ukraine, 
Norway, Lithuania, Sweden, Czech Republic, Israel, Austria, Russia, Poland, 
Hong Kong, and Brazil. The papers were uniformly good; many were submit- 
ted for publication in the journal Nonlinear Dynamics and the Journal of 
Vibration and Control. Many papers were reviewed by participants who 
were in the audience during the presentation. This review process contributed 
to the lively discussions following many of the presentations and considerably 
reduced the time needed to evaluate submitted papers. 
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Schedule for the Seventh Conference on Nonlinear 
Vibrations, Stability, and Dynamics of Structures 

in Blacksburg, Virginia 24061 
at the Donaldson-Brown Continuing Education Center on the Campus of the 

Virginia Polytechnic Institute and State University 
July 26-30,1998 

Sunday Monday Tuesday Wednesday Thursday 

08:00 3. 7. 11. 15. 

09:30 Break Break Break Break 

10:00 4. 8. 12. 16. 

11:30 Lunch Lunch Lunch Lunch 

13:30 

Conference begins. 

1. 5. 9. 13. 17. 

15:00 Break Break Break Break Break 

15:30 2. 

6A. 

6B. 

10A. 

10B. 

14. 18. 

Sponsored by the Army Research Office, Research Triangle, NC and the Department of Engineering Science 
and Mechanics, Virginia Polytechnic Institute and State University 



Sunday, July 26 
1320-1330 Opening Remarks  

Session 1. 
Co-Chairs: V. J. Modi, University of British Columbia, Vancouver, British Columbia, 
CANADA and S. W. Smith, University of Kentucky, Lexington, KY 

Sunday, July 26 
1330-1500 

Deterministic and Stochastic Responses of Nonlinear Coupled Bending-Torsion Modes 
in a Cantilever Beam 
R. A. Ibrahim and M. Hijawi, Wayne State University, Detroit, MI 

Dynamics of a Flexible Structure with Pendulum Studied at Various Angles Between 
Vertical and the Horizontal Positions 
A. Ertas, O. Cuvalci, and S. Ekwaro-Osire, Texas Tech University, Lubbock, TX 

The Effects of Combination Resonance on the Performance of a Nonlinear Vibration 
Absorber 
S. G. Kelly, The University of Akron, Akron, OH and T. Rohde, SES, Inc., Alliance, OH 

Nonlinear Nonplanar Dynamics of a Parametrically Excited Inextensional Rotating 
Elastic Shaft 
C. D. Morgan, Kumho Technical Center, Akron, OH and C. M. Krousgrill, Purdue 
University, West Lafayette, IN 

A Fuzzy Chip Controller for Nonlinear Vibrations 
F. Casciati, L. Faravelli, F. Giorgi, and G. Torelli, University of Pavia, Pavia, ITALY 

Sunday, July 26 
1500-1530 Break 

Session 2. 
Co-Chairs: R. A. Ibrahim, Wayne State University, Detroit, MI and M. Yoshizawa, 
Keio University, Yokohama, JAPAN 

Sunday, July 26 
1530-1700 

Localization Phenomena in Flexible Systems with Nonlinear Joints 
T. A. Nayfeh and A. F. Vakakis, University of Illinois at Urbana-Champaign, Urbana, DL 

Regions of Instability of Satellite's Vibrations Parametrically Excited with Harmonics of 
Gravity Potential 
A. Chigirev, Crosna Space Communications, Moscow, RUSSIA and J. Volkova, 
Moscow University of Electronics and Mathematics, Moscow, RUSSIA 



Identification of PV Array Nonlinearities from On-Orbit Optical Measurements 
K. D. Dippery and S. W. Smith, University of Kentucky, Lexington, KY 

Dynamics of an Orbiting Platform-Based Flexible Manipulator System 
M. Caron, V. J. Modi, C. W. de Silva, University of British Columbia, Vancouver 
British Columbia, CANADA, and A. K. Misra, McGill University, Montreal Quebec 
CANADA 

Parametric Excitation and Internal Resonance of a Flexible Solar Array 
K. Mei and S. W. Smith, University of Kentucky, Lexington, KY 

Sunday, July 26 
1900-2100 Reception 
  Monday, July 27 

Session 3. 
Co-Chairs: F. Vestroni, Universitä di Roma "La Sapienza", Roma, ITALY and K. 
Yasuda, Nagoya University, Nagoya, JAPAN 

Monday, July 27 
0800-0930 

Response of a Parametricallv Excited Rectangular Metallic Plate to a One-to-One 
Internal Resonance 
M. Ustertuna, Ö. Elbeyli, and G. Anlas, Bogazici University, Istanbul, TURKEY 

One-to-One Internal Resonance of Laminated Shallow Shells 
A. Abe, Y. Kobayashi, and G. Yamada, Hokkaido University, Sapporo, JAPAN 

Nonlinear Modal Interaction of Liquid Tmpact-Structural Dynamic under Parametric 
Excitation 
M. A. El-Sayad and R. A. Ibrahim, Wayne State University, Detroit, MI 

Internal Resonance in Wire Electro-Discharge Machining 
K. D. Murphy, University of Connecticut, Storrs, CT 

Effects of the Lorentz Force on Lateral Vibration of a Conducting and Nonmagnetic 
Cable 

S. Shimokawa, H. Kawamoto, T. Sugiura, and M. Yoshizawa, Keio University 
Yokohama, JAPAN 

Monday, July 27 
930-1000 Break 



Session 4.  | 
■ Co-Chairs: S. Hanagud, Georgia Institute of Technology, Atlanta, GA and P. Sniady, 
Wroclaw Technical University, Wroclaw, POLAND 

Monday, July 27 
1000-1130 

Vibration Conveyor Dynamics 
F. Pfeiffer and P. Wolfsteiner, Technische Universität München, Garching, GERMANY 

Computing Analysis of Dynamic Properties of Interactive Drive Systems 
C. Kratochvfl and V. Kotek, Technical University of Brno, Brno, CZECH REPUBLIC 

Sway Control for Trolley with Pendulum Load 
G. Roberson and G. Tao, University of Virginia, Charlottesville, VA 

Nonlinear and Experimental Analyses of the Hunting Motion in a Railway Wheelset 
H. Yabuno, M. Nunokawa, and N. Aoshima, University of Tsukuba, Tsukuba-City, 
JAPAN 

Prediction of Incipient "Ground Resonance" Instability in a Physical Model of a 
Rotorcraft 
P. V. Bayly, C. M. Cueman, and M. E. Clark, Washington University, St. Louis, MO 

Monday, July 27 
1130-1330 Lunch 

Session 5. 
Co-Chairs: F. Pfeiffer, Technische Universität München, Garching, GERMANY and F. 
Casciati, University of Pavia, Pavia, ITALY 

Monday, July 27 
1330-1500 

On the Reconstitution Problem in the Multiple Time Scale Method 
A. Luongo and A. Paolone, University of L'Aquila, L'Aquila, ITALY 

Escape Criteria for Imperfection Sensitive Single Degree of Freedom Structures Under 
External Harmonic Loading 
D. M. Santee and P. B. Goncalves, Pontiffcia Universidade Catölica, Rio de Janeiro, 
BRAZIL 

Response and Stability of Piecewise Linear Oscillators under Parametric and External 
Excitations 
S. Theodossiades, I. Goudas, and S. Natsiavas, Aristotle University, Thessaloniki, 
GREECE 



On Applying Special Non-Smooth Temporal Transformations to Systems Parametrically 
Excited by Discontinuous Forces 
V. N. Pilipchuk, State Chemical and Technological University of Ukraine, 
Dnepropetrovsk, UKRAINE 

Delaminated Beam Nonlinear Dynamic Response Calculation and Visualization 
H. Luo and S. Hanagud, Georgia Institute of Technology, Atlanta, GA 

Monday, July 27 
1500-1530 Break 

Session 6A. 
Co-Chairs: H. G. Davies, University of New Brunswick, Fredericton, New Brunswick, 
CANADA and F. Petrone, Universitä di Catania, Catania, ITALY 

Monday, July 27 
1530-1700 

Self-Excited Oscillations of Machine Tools 
T. Kalmär-Nagy, F. C. Moon, Cornell University, Ithaca, NY, and G. Stepan, Technical 
University of Budapest, Budapest, HUNGARY 

Stability of Diamond Turning Processes that use Round Nosed Tools 
D. E. Gilsinn, M. A. Davies, National Institute of Standards and Technology, 
Gaithersburg, MD, and B. Balachandran, University of Maryland, College Park, MD 

Milling of Flexible Structures: Dynamics of Workpiece-Tool Interactions 
M. X. Zhao and B. Balachandran, University of Maryland, College Park, MD 

Session 6B. 
Co-Chairs: S. C. Sin ha. Auburn University, Auburn, AL and L. N. Virgin, Duke 
University, Durham, NC 

Monday, July 27 
1530-1700 

Active Flow Control for Twin-Tail Buffet Alleviation 
E. F. Sheta and O. A. Kandil, Old Dominion University, Norfolk, VA 

Nonlinear Panel Flutter Phenomena in Supersonic and Transonic Flow 
B. A. Grohmann, Universität Stuttgart, Stuttgart, GERMANY and D. Dinkier, 
Universität Braunschweig, Braunschweig, GERMANY 

Numerical Prediction of Response Characteristics of a Vortex-Excited Cylinder 
E. Guilmineau, Ecole Centrale de Nantes, Nantes, FRANCE 



Prediction of the Initial Stage Slamming Force in Rigid and Elastic Systems Impacting on 
the Water Surface 
A. Carcaterra, INSEAN, Rome, ITALY and E. Ciappi, University of Rome 'La 
Sapienza', Rome, ITALY 

Self-Excited Oscillations of Dual Cylindrical Flexible Weir Shells due to the Overflow of 
Fluid 
S. Tanaka and S. Kaneko, The University of Tokyo, Tokyo, JAPAN 

 Tuesday, July 28  
Session 7. 

Co-Chairs: Y. Tsujioka, Keio University, Yokohama, JAPAN and S. Natsiavas, 
Aristotle University, Thessaloniki, GREECE 

Tuesday, July 28 
0800-0930 

Quadratic Map Approximations to Vector Fields 
H. G. Davies and K. Karagiozis, University of New Brunswick, Fredericton, New 
Brunswick, CANADA 

Nonplanar Vibrations of Two Phase Cables due to the Alternating Currents 
M. Yoshizawa, T. Sugiura, H. Kawamoto, S. Shimokawa, and T. Kawaguchi, Keio 
University, Yokohama, JAPAN 

Bottlenecking Phenomenon Near a Saddle-Node Remnant in an Experimental Duffing 
Oscillator 
S. T. Trickey and L. N. Virgin, Duke University, Durham, NC 

Versal Deformation and Local Bifurcation Analysis of Time-Periodic Nonlinear Systems 
A. David and S. C. Sinha, Auburn University, Auburn, AL 

Dynamic Response and Stability of a Rotating Asymmetrical Shaft Mounted on a 
Flexible Base 
T. Ikeda and S. Murakami, Shimane University, Matsue, JAPAN 

Tuesday, July 28 
930-1000 Break 



Session 8. 
Co-Chairs: O. A. Kandil, Old Dominion University, Norfolk, VA and B. T. Nohara, 
Mitsubishi Heavy Industries, Nagoya, JAPAN 

Tuesday, July 28 
1000-1130 

Using Karhunen Loeve Decomposition to Analyze the Vibroimpact Response of a Rotor 
M. F. A. Azeez and A. F. Vakakis, University of Illinois at Urbana-Champaign, Urbana, 
11-/ 

Efficient CFD Applications using Discrete-Time Volterra Kernels 
W. A. Suva, NASA Langley Research Center, Hampton, VA 

Some Computer Assisted Studies in Nonlinear Dynamics 
K. Yagasaki, Gifu University, Gifu, JAPAN 

An Efficient, Hybrid Frequency-Time Domain Method for the Dynamics of Large-Scale 
Dry-Friction Damped Structural Systems 
J. Guillen and C. Pierre, The University of Michigan, Ann Arbor, MI 

Accurate Prediction of the Nonlinear Dynamic Behaviour of an Impact Oscillator 
A. Stensson, Lulea University of Technology, Lulea, SWEDEN 

Tuesday, July 28 
1130-1330 Lunch 

Session 9. 1 
Co-Chairs: G. Rega, Universitä di Roma "La Sapienza", Roma, ITALY and A. F. 
Vakakis, University of Illinois at Urbana-Champaign, Urbana, IL 

Tuesday, July 28 
1330-1500 

On Choosing Inputs for System Identification in Nonlinear Systems 
T. Doughty, P. Davies, and A. K. Bajaj, Purdue University, West Lafayette, IN 

An Iterative Approach to Decomposing Harmonics for Nonlinear Systems 
S. O'F. Fahey, Electric Boat Corporation, Groton, CT 

Experimental Identification Technique in Time Domain for Nonlinear Rotating Shaft 
Systems 
K. Yasuda and K. Kamiya, Nagoya University, Nagoya, JAPAN 



Nonparametric Nonlinear System Identification of a Nonlinear Flexible System Using 
Proper Orthogonal Mode Decomposition 
X. Ma, M. A. F. Azeez, and A. F. Vakakis, University of Illinois at Urbana-Champaign, 
Urbana, IL 

Identification of Non-Linear Free Vibration: Time Domain Hilbert Transform Approach 
M. Feldman, Israel Institute of Technology, Haifa, ISRAEL 

Tuesday, July 28 
1500-1530 Break 

Session 10A. 
Co-Chairs: A. Luongo, University of L'Aquila, L'Aquila, ITALY and Y. Kobayashi, 
Hokkaido University, Sapporo, JAPAN 

Tuesday, July 28 
1530-1700 

Dynamics of a Flexible Cantilever Beam Carrying a Moving Mass 
S. A. Q. Siddiqui, M. F. Golnaraghi, and G. R. Heppler, University of Waterloo, 
Waterloo, Ontario, CANADA 

Nonlinear Oscillations in Coriolis Based Gyroscopes 
D. Kristiansen and O. Egeland, Norwegian University of Science and Technology, 
Trondheim, NORWAY 

Measurement of Displacements using Nonlinear Systems 
A. Mozuras, Research Laboratory, Akustika, Vilnius, LITHUANIA 

Electromagnetic Levitation Modeling and Control 
B. O. Ciocirlan, D. B. Marghitu, D. G. Beale, and R. A. Overfelt, Auburn University, 
Auburn, AL 

Modal Analysis of Jointed Plates of Composites 
M. Lacagnina, F. Petrone, and R. Sinatra, Universitä di Catania, Catania, ITALY 

Tuesday, July 28 
1500-1530 Break 



Session lOB. 
Co-Chairs: P. Davies, Purdue University, West Lafayette, IN and R. Sinatra, Universitä 
di Catania, Catania, ITALY 

Tuesday, July 28 
1530-1700 

Perturbation Analysis of Bifurcations in a Model of Phase Transitions with Order 
Parameter 
J. P. Cusumano and J. Sikora, Penn State University, University Park, PA 

Implementation of Genetic Algorithm and Simulated Annealing in Layout Optimization 
of Space Trusses 

M. H. Kadivar, M. R. Pourghassem, K. Samani, and F. Daneshmand, Shiraz University 
Shiraz, IRAN " 

Modeling and Analysis of Panel Rattle Noise in Automobiles 
J. Qiu and Z. C. Feng, Massachusetts Institute of Technology, Cambridge, MA 

Modeling General. Unsteady. Nonlinear. Aeroelastic Behavior 
S. Preidikman and D. Mook, Virginia Polytechnic Institute and State University 
Blacksburg, VA 

Control of Rolling in Ships bv Means of Active Fins Governed bv a Neural-Network 
Controller 
D. Liut, D. Mook, H. VanLandingham, and A. Nayfeh, Virginia Polytechnic Institute and 
State University, Blacksburg, VA 

1900               Banquet 

 Wednesday, July 29 
 Session 11. I 
Co-Chairs: A. K. Bajaj, Purdue University, West Lafayette, IN and K-i. Nagai, Gunma 
University, Gunma, JAPAN 

Wednesday, July 29 
0800-0930 

Parametric Identification of an Experimental Magneto-Elastic Oscillator 
B. F. Feeny, Michigan State University, East Lansing, MI, C.-M. Yuan, Taoyuan 

Institute, Taiwan, REPUBLIC OF CHINA, and J. P. Cusumano, Pennsylvania State 
University, State College, PA 



Identification of Viscoelastic Properties of Foam Used in Car Seats 
S. White, S. K. Kim, A. K. Bajaj, P. Davies, Purdue University, West Lafayette, IN, and 
D. K. Showers, Johnson Controls, Milwaukee, WI 

Tracking Slowly-Varying Hidden Variables Using Phase Space Reconstruction 
J. P. Cusumano, D. Chelidze, and A. Chatterjee, Penn State University, University Park, 
PA 

Robust Control of Adaptive Structures with Embedded Sensors and Actuators 
D. G. Wilson, C. T. Abdallah, G. P. Starr, University of New Mexico, Albuquerque, NM, 
and R. D. Robinett, Sandia National Laboratories, Albuquerque, NM 

Simulation of Structure Control and Controller Design for Smart Structures within a 
Finite Element Code 
M. W. Zehn and M. Enzmann, Otoo-von-Guericke-Universität Magdeburg, Magdeburg, 
GERMANY 

Wednesday, July 29 
930-1000 Break 

Session 12. 
Co-Chairs: S. G. Kelly, The University of Akron, Akron, OH and J.M. Balthazar, 
UNESP, Rio Claro-SP-BRAZIL 

Wednesday, July 29 
1000-1130 

On a Particles-Svstem-Model Representing the Motion of the Generated Wave - A 
Suitable Model for Control System Design 
T. Kobayashi, K. Osuka, Osaka Prefecture University, Nagoya, JAPAN, B. T. Nohara, 
Mitsubishi Heavy Industries, Nagoya, JAPAN, and T. Ono, Osaka Prefecture University, 
Nagoya, JAPAN 

Neural Networks used for Dynamic Systems Simulation and Neurocontrollers Design 
T. Brezina and J. Krejsa, Technical University of Brno, Brno, CZECH REPUBLIC 

Control of Large-Scale Linear Time-Periodic Dynamical Systems 
S. C. Sinha and V. Deshmukh, Auburn University, Auburn, AL 

Suppress Chaos in Mathieu's Equation by the System Variable Substitution 
F. Wu and Q. Li, Zhejiang University of Technology, Hangzhou, PEOPLES 
REPUBLIC OF CHINA 

Non-Linear Vibration of an Elasto-Plastic Beam with Damage 
L. F. P. Franca, M. A. Savi, Instituto Militär de Engenharia, Rio de Janeiro, BRAZIL, 
and P. M. C. L. Pacheco, CEFET/RJ, Rio de Janeiro, BRAZIL 



Wednesday, July 29 
1130-1330 Lunch 

 Session 13. I 
Co-Chairs: O. A. Bauchau, Georgia Institute of Technology, Atlanta, GA and S. 
Kaneko, University of Tokyo, Tokyo, JAPAN 

Wednesday, July 29 
1330-1500 

Synchronization by Linear Feedback in Chaotic Systems and Lvapunov Exponent 
M. Nakai and N. Tsukamoto, Kyoto University, Kyoto, JAPAN 

Stabilization of the Parametric Resonance of a Cantilever Beam by Boundary and 
Bifurcation Control 

J. Kawazoe, H. Yabuno, and N. Aoshima, University of Tsukuba, Tsukuba-City, JAPAN 

Stabilization of the Parametric Resonance in a Magnetically Levitated Body bv a 
Bifurication Control 
H. Sakai, H. Yabuno, and N. Aoshima, University of Tsukuba, Tsukuba-City, JAPAN 

Vibration and Control bv Parametric Excitation for Driving Belt 
H. Okubo, K. Takano, O. Matsushita, K. Watanabe, and Y. Hirase, National Defense 
Academy, Kanagawa, JAPAN 

Seismic Response Mitigation bv a Nonlinear Sliding Mode Controller 
M. P. Singh, E. E. Matheu, and L. M. Moreschi, Virginia Polytechnic Institute and State 
University, Blacksburg, VA 

Wednesday, July 29 
1500-1530 Break 

     Session 14.  
Co-Chairs: P. Hagedorn, Darmstadt University of Technology, Darmstadt, 
GERMANY and C. Kratochvfl, Technical University of Brno, Brno CZECH 
REPUBLIC 

Wednesday, July 29 
1530-1700 

Influence of Static Nonlinearitv to Resonances Due to a Crack fSuperharmonic 
Resonance) 
Y. Ishida and F. Lu, Nagoya University, Nagoya, JAPAN 

Simulation Study of Orbits with Impacts Between a Rotor and a Backup Bearing 
H. Ecker, Vienna University of Technology, Vienna, AUSTRIA 



Perturbed Rotations of a Rigid Body, Close to the Lagrange Case 
L. D. Akulenko and D. D. Leshchenko, Odessa State Academy, Odessa, UKRAINE 

Dimensionality and Spatial Coherence in the Complex Finite Dynamics of an 
Experimental Continuous Elastic System 
R. Alaggio, Universitä dell'Aquila, L'Aquila, ITALY, G. Rega, Universitä di Roma "La 
Sapienza", Roma, ITALY, and F. Benedettini, Universitä dell'Aquila, L'Aquila, ITALY 

Modeling and Analysis of Switching-Mode DC-DC Regulators 
M. Alfayyoumi, A. H. Nayfeh, and D. Borojevic, Virginia Polytechnic Institute and State 
University, Blacksburg, VA 

 Thursday, July 30  
Session 15. ~J 

Co-Chairs: D. Dinkier, Universität Braunschweig, Braunschweig, GERMANY and D. 
D. Leshchenko, Odessa State Academy, Odessa, UKRAINE 

Thursday, July 30 
0800-0930 

The Characterization of Stochastic Layers in Duffing Oscillators 
A. C. J. Luo, University of California, Berkeley, CA and R. P. S. Han, University of 
Iowa, Iowa City, IA 

Instant Chaos and Hysteresis in Beam-Pendulum Systems 
I. B. Schwartz, Naval Research Laboratory, Washington, DC and I. T. Georgiou, 
Science Applications International Corporation, McLean, VA 

Synchronization and Chaos in a Parametrically and Self-Excited System with Two 
Degrees of Freedom 
J. Warminski, G. Litak, and K. Szabelski, Technical University of Lublin, Lublin, 
POLAND 

Experiments on the Chaotic Vibrations of a Cylindrical Shell-Panel: Influence of 
Boundary Condition on Chaotic Responses 
K-i. Nagai, Gunma University, Gunma, JAPAN, T. Hata, ANEST IWATA, Co., Ltd., 
Yokohama, JAPAN, and T. Yamaguchi, SUBARU Research Center, Co., Ltd., Gunma, 
JAPAN 

On the Appearance of Chaos in a Nonideal System 
D. Belato, UNICAMP, Campinas-SP-BRAZIL, J.M. Balthazar, UNESP, Rio Claro- 
SP-BRAZIL, H.I. Weber, PUC, Rio de Janeiro-RJ-BRASIL, and D.T. Mook, Virginia 
Polytechnic Institute and State University, Blacksburg, VA 



Thursday, July 30 
0930-1000 Break 

Session 16. 
Co-Chairs: B. Balachandran, University of Maryland, College Park, MD and F. Lu, 
Nagoya University, Nagoya, JAPAN 
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Deterministic and Stochastic Responses of Nonlinear 

Coupled Bending-Torsion Modes in a Cantilever Beam 

R. A. IBRAHIM AND M. HUAWI 
Wayne State University, Department of Mechanical Engineering, Detroit, MI 48202 

Abstract. The purpose of this study is to understand the main differences between the 

deterministic and random response characteristics of an inextensible cantilever beam (with a tip 

mass) in the neighborhood of combination parametric resonance. The excitation is applied in the 

plane of largest rigidity such that the bending and torsion modes are cross-coupled through the 

excitation. In the absence of excitation, the two modes are also coupled due to nonlinear inertia 

forces. This means that both linear generalized and normal coordinates are the same. For 

sinusoidal parametric excitation, the beam experiences instability in the neighborhood of the 

combination parametric resonance Q = (^ + c^, where Q is the excitation frequency, and ©u and 

(£)<> are the first bending and torsion mode natural frequencies, respectively. The dependence of the 

response amplitude on the excitation level reveals three distinct regions: nearly linear behavior, 

jump phenomena, and energy transfer. In the absence of nonlinear coupling, the stochastic 

stability boundaries are obtained in terms of sample Lyapunov exponent. The response statistics 

are estimated using Monte Carlo simulation and measured experimentally. The excitation center 

frequency is selected to be close to the sum of the bending and torsion mode frequencies. The 

beam is found to experience a single response, two possible responses, or non-stationary 

responses, depending on excitation level. Experimentally, it is possible to obtain two different 

responses for the same excitation level by providing a perturbation to the beam during the test. 



DYNAMICS OF A FLEXIBLE STRUCTURE WITH PENDULUM STUDIED AT VARIOUS ANGLES 
BETWEEN VERTICAL AND THE HORIZONTAL POSITIONS 

Atila Ertas, Olkan Cuvalci and S. Ekwaro-Osire 
Texas Tech University,     Dept. of Mech. Engineering,     Lubbock, TX 79401 

ABSTRACT 

A passive vibration absorber for large flexible structures is modeled by a column/beam with an appendage 
consisting of a mass-pendulum attached at its tip. The model is rotated from the vertical position to the 
horizontal and vise versa at 5 degrees increments to investigate energy interaction between the system 
(column/beam) and the absorber (appendage). Autoparametric conditions are only tuned in the horizontal or 
in the vertical position of the model. Experimental dynamics indicate that the motion is quasiperiodic when ■ 
the system is around the vertical position. In the quasiperiodic motion, there are some windows which 
include periodic motions. If the system is oriented in the horizontal position, it shows periodic motion and 
one-to-two and one-to-one relation between the modes. The objective of this study is to show the effect of 
the energy absorption phenomenon at various column/beam positions in the x-y plane. 

INTRODUCTION 

Nayfeh [1] examined the response of the two-degree-of-freedom system to multifrequency 
parametric excitations for different resonance combinations. Ibrahim [2] investigated two mode interaction 
in a structure containing liquid as a model of an autoparametric absorber. It was shown that energy transfer 
could occur when the lower mode frequency is equal to one-half of the higher mode frequency. 
Autoparametric vibration has been investigated among others by including Zavodney and Nayfeh [3], and 
Sprysl [4]. 

Mustafa and Ertas [5] investigated a flexible column with an appendage consisting of a mass- 
pendulum attached to its tip, and Cuvalci and Ertas [6] studied the beam-tip mass-pendulum model as a 
vibration absorber devices. In this present study, the models studied by the previous authors, were rotated 
from vertical position to horizontal position and vise versa at 5 degrees increments. Internal frequency ratio 
was tuned in the vertical or in the horizontal position just before starting experiments, such that 

Q. = cos = 2coa (1) 
The above ratio remained unchanged for each rotation. From the experimental data, frequency 

response curves, time series, phase planes, FFT and two and one dimensional sections of the torus were 
plotted. The aforementioned plots offered an insight in the dynamics of the system. 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

Experiments were performed for two main setups. First, the model was setup as a beam-tip mass- 
pendulum system. Then it was rotated in 5 degrees increments to the vertical position. Second, the model 
was set up as a column-tip mass-pendulum system. Then it was rotated in 5 degrees increments to the 
horizontal position. For both cases, internal frequency ratio was tuned in the initial position (vertical or 
horizontal) as described in Equation (1). 

To observe the dynamics of the experimental system, four sets of plots were extracted from 
experimental data. The first set of plots were frequency response curves. The second set of plots includes 
time histories, phase planes, and Fast Fourier Transforms. The third set of plots show the cover of the two- 
torus and , specified section on it, and the first return map of the specified section. The fourth set of 
plots show maximum displacements of the system and the absorber, the response relation between the two 
modes and the absorption regions with respect to the rotating angel. 

CONCLUSION 

The system in vertical direction (column-tipmass-pendulum) shows more complex dynamics than 
the system in horizontal direction (beam-tipmass-pendulum). The column-tip mass-pendulum system has 
quasiperiodic motion interrupted by webs of periodic windows. This dynamic was not changed by rotation 
of the system. However, after a critical angle of rotation, the autoparametric interaction disappeared. 
Therefore, beyond this critical angle the energy interaction between the system and absorber was not 



observed. The same phenomenon was valid for the beam-tip mass-pendulum system. Experiments show 
that the relation between the system and absorber was also related to the forcing amplitude. The 
autoparametric interaction region becomes larger by increasing the forcing amplitude. Hence, when 
autoparametric condition for the system was tuned in the horizontal or the vertical position, the energy 
transfer between the modes was perfectly observed in the neighborhood of the resonance at the current 
positions. The energy absorption effect on the system was observed to gradually decrease by rotating the 
angle of rotation. The absorber device absorbs energy from the system until the critical boundary0 was 
reached. The critical boundary angel depends on the forcing amplitude and is increased or decreased by 
increasing or decreasing the forcing amplitude, respectively. At the internal frequency ratio 0.5 (1/2), a 
perfect absorption was observed. In the close neighborhood of 0.5 (i.e.. 0.48-0.52) the absorption decreases 
and for the values more diverging from 0.5 the absorption was completely unobservable and the system 
behaved as an uncoupled system. 
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The Effects of Combination Resonance on 
the Performance of a Nonlinear Vibration Absorber 

S. Graham Kelly 
Department of Mechanical Engineering 

The University of Akron 

Tim Rohde 
SES, Inc. 

Alliance, Oh 

A dynamic vibration absorber can be used to alleviate the large amplitude response of a system 
when it is subject to a harmonic excitation at a frequency near one of the system's natural 
frequencies. Addition of a correctly tuned linear vibration absorber to a n-degree-of-freedom 
system (the primary system) leads to a n+1-degree-of-freedom system with natural frequencies 
away from the excitation frequency. If both the primary system and the absorber are undamped 
then the steady-state amplitude of the primary system is zero at the frequency to which the 
absorber is tuned. However the frequency response of the system is such that a small deviation in 
frequency from the tuned frequency can lead to a large steady-state amplitude in the primary 
system. In addition one of the natural frequencies of the resulting system is less than the tuned 
frequency, leading to the possibility of large amplitude during start up and shut down. 

If a nonlinear elastic element is used in the vibration absorber the above concerns are reduced. If 
an elastic element with a cubic nonlinearity is used a jump phenomenon occurs during start up 
and shut down, reducing the maximum amplitudes during these periods from those attained using 
a linear absorber. The presence of the backbone curve also leads to a frequency response curve 
that is nearly flat near the excitation frequency. 

Previous investigator [1], [2], and [3] using the Galerkin method or the Duffing method to 
analyze the frequency response of the primary system using an elastic element with a cubic 
nonlinearity in the absorber. However these methods do not capture combination resonance 
effects that may be present. Consider a one-degree-of-freedom linear system excited by a 
harmonic excitation of frequency co. When an absorber is added the natural frequencies of the 
linearized two-degree-of-freedom system are ©i and ©2. Since the excitation frequency is near 

a)i + a)2~2a} 

the primary system's natural frequency it can be shown that 
Since this is the case a combination resonance exists in the resulting system. The purpose of this 
paper is to analyze the system in the presence of this combination resonance. 

The primary system is an undamped mass-spring system exited by a single frequency harmonic 
excitation whose frequency is near the primary system's natural frequency. The absorber added 
to the primary system is a mass-spring-viscous damper system in which the nondimensional 



F=X+£   3 
X 

force-displacement relationship for the elastic element is 
where e is a small dimensionless parameter. The damping ratio of the absorber is also of order e. 
The method of multiple scales is used to solve the coupled nonlinear nondimensional differential 
equations relating the displacements of the primary mass and the absorber mass. The presence of 
the combination resonance is apparent only when a transformation is made to the system's 
principal coordinates. A detuning parameter is introduced to capture the essence of the 

BO = 2ü) - C0i - 0)2 

combination resonance 

Equations for the amplitudes and phases of the principal coordinates are derived. These equations 
are solved using Runge-Kutta. Transformation is made to the set of original coordinates. 
Frequency response of the primary mass in terms of the detuning parameter is obtained for 
various values of the damping ratio. The effect of the combination resonance on the performance 
of the absorber is discussed. 

[1] Arnold, F.R., Journal of Applied Mechanics, Vol.22, pp487-492, 1955. 
[2] Pipes, L.A., Journal of Applied Mechanics, Vol. 75., pp515-58, 1953. 
[3] Roberson, R.E. Journal of the Franklin Institute, Vol. 254, pp205-220, 1952. 
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NONLINEAR NONPLANAR DYNAMICS OF A 

PARAMETRICALLY EXCITED 

INEXTENSIONAL ROTATING ELASTIC SHAFT 

Christopher D. Morgan, Kumho Technical Center and Charles M. Krousgrill, Purdue University 

ABSTRACT 

The nonlinear dynamics of a clamped-clamped/sliding inextensional rotating elastic shaft 

subject to a harmonically varying axial load is investigated by means of a perturbation method, 

numerical integration, and Floquet Theory. The equations of motion that govern the flexural 

motion about two principal axes and torsion retain the order three nonlinear inertia and geometric 

terms. The frequency of parametric excitation is set to be nominally 2 times the primary shaft 

resonance and the primary shaft resonance in orthogonal directions are set to be nominally equal. 

A stifmess detuning parameter is introduced to quantify the effect of small variations in orthogonal 

resonance frequencies and a frequency detuning parameter is used to quantify the effect of small 

variances in parametric excitation frequency. 

Divergence and flutter limits are demonstrated as a function of stifmess detuning, 

frequency detuning, and rotation rate. Where divergence is detected, steady state amplitude 

motions are shown to exist due to the nonlinear terms. Where flutter is detected, periodic 

amplitude limit cycles are shown to form. Period-doubling bifurcations and symmetry-breaking 

bifurcations are demonstrated, as is chaotic motion. 



A Fuzzy Chip Controller for NonLinear Vibrations 

F. Casciati, L. Faravelli and F. Giorgi 
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and 

G. Torelli 
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Abstract. Fuzzy Logic ability in managing nonlinear vibration control problems shows a major 
drawback: the slow reaction time offered by a software implemented controller. The adoption of 
integrated chip controllers permits one to overcome it. Nevertheless, designing a fuzzy controller 
for structural control purposes requires a fine work of tuning. This can be done over an equivalent 
electronic circuit, rather than by an expensive laboratory environment for testing frame specimen. 
Conceiving and implementing electronic circuit equivalent to a single degree of freedom system 
is the topic of this paper. 
A case study is finally developed. It discusses the major features of the adopted chip controller. 
A brief overview of the results of the laboratory tests performed in order to properly tune the 
fuzzy project for the control of civil structures is also given. 

Key words: Fuzzy chip, Fuzzy controller, Fuzzy logic, Nonlinear vibration, Vibration control 
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Localization Phenomena in Flexible Systems with Nonlinear Joints 

T. A. Nayfeh and A.F. Vakakis 
Department of Mechanical and Industrial Engineering 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 

The control of unwanted vibrations in modern lightweight, flexible space 

structures presents a real challenge to design engineers. Traditional techniques for 

controlling the vibrational energy include the use of elastomers, vibration isolation 

padding, damping tapes, springs, rubber mounts, and cork padding, passive vibration 

absorbers, and, in many instances, active controllers. There are many disadvantages to 

the use of the above measures. The linear passive elements are effective only in small- 

predetermined frequency ranges. Active controllers require energy and add to the weight 

of the structure, which will significantly increase the cost of the use of such devices in 

space structures. Recent works in the literature have shown that the use of nonlinearities 

may actually create more desirable dynamic behavior in such structures. 

In this work, we show how the use of nonlinearities can enhance the control of 

unwanted vibrations by passively confining the vibrational energy to substructures. The 

dynamics of large flexible space trusses subjected to impact and repetitive loading is 

considered (Figure 1). Each truss element is modeled as a thin beam whose transverse 

motion is coupled to the axial motion by quadratic nonlinear stretching terms 
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where p is mass per unit length, E is the modulus of elasticity, A is the cross sectional 

area, / is the mass moment of inertia, G and F are the applied external forces, and u and w 

are the longitudinal and transverse displacements respectively. Additional nonlinearity is 

introduced through the use of joints of the preloaded backlash type. These joints behave 

as tri-linear springs (Figures 2 and 3).  The system is modeled using the finite-element 



method and the equations of motion are solved by a second-central-difference explicit 

time integration scheme. 

Figure 1: A representative truss. 
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Figure 2: A schematic of the joint with preloaded backlash. 
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Figure 3: Joint with a backlash: (a) equivalent model, (b) a typical load-deflection curve (Modified from: 
Onoda, Sano, and Minesugi, "Passive Damping of Truss Vibrations Using Preloaded Joint 
Backlash," AIAA Journal, 33,1995, pp. 1335-1341). 



Regions of Instability of Satellite's Vibrations Parametrically Excited with 

Harmonics of Gravity Potential 

A.Chigirev, J.Volkova 

The problem under consideration is vibration instability of satellite revolving around a 

central body with non-central gravitational field. This problem is closely connected with 

nonlinear vibration dynamics. As a result of the study the asymptotic expressions for 

boundaries of the instability regions of satellite's vibrations were derived. 

It is well-known that the trajectory of a satellite in low orbit differs significantly from 

expected orbital movement following the Keplerian law, for the effective Earth's gravity 

potential slightly deviates from a central gravity potential. Moreover, the lower the 

satellite's orbit the more is discrepancy between the observed satellite's path and the 

expected Keplerian orbit. 

Both global positioning system (GPS) with low-orbit satellites and communication systems 

based on low-orbit satellite constellations such as "Iridium" are widely put into operation. 

To operate satellites of the systems properly it is important to predict precisely the 

satellite's spatial position as well as its trajectory which is perturbed by non-central 

gravitational field of the Earth. In the paper a special attention is paid to destabilizing 

effect of the non-central gravitational field on satellite's movement in the resonance cases. 

Along with mentioned threat of instability just the same destructive resonance effect might 

be also considered as helpful one to propel the satellites by means of such an unusual 

non-reactive propulsion technique. 

A simple two-dimensional plane model was chosen to estimate the resonance effect of 

spatial non-uniformity of gravity potential upon a satellite's movement. When the satellite's 

orbit is close to a circle, its eccentricity can be treated as a small parameter. For this case 

the linearized equations of satellite's movement in a non-inertial rotating coordinate 

system are studied. In the coordinate system the equations' yields a solution resulting in 

ellipse-shaped trajectories both for satellite as well as for central body. Making its 

oscillation with respect to the rotating coordinate system the satellite moves uniformly in 



the ellipse-shaped "suborbit" with center near satellite's equilibrium point expected. The 

ellipse has a constant eccentricity, with ellipse's center drifting along the unperturbed 

.satellite's orbit at a small constant velocity. 

Affected upon the satellite the non-central gravity force is assumed to depend only on an 

angle variable describing satellite's revolution around the Earth rotating about the same 

axis of rotation. That is why in this elementary model the gravity force can be expanded 

into spatial Fourier series of the angle variable only. The motion equations are reduced to 

Mathieu equation and a linear equation of the second order. The system resembles well- 

known equations of a pendulum with vibrating suspension. 

Dependence of instability regions on the mechanical system parameters is analyzed. An 

asymptotic solution of Mathieu equation was searched, the ratio of amplitudes of second 

and zero harmonics being assumed to be a small parameter. Separation of the "slow" and 

"fast" variables results in a new form of equations, which allows to overcome some 

difficulties connected with complicated motion of satellites in orbit. 

It is found that the second harmonic of transversal component of gravity force applied to 

low orbital satellite can induct satellite's vibration. Asymptotic calculation of boundary 

parameters of Mathieu equation were made. A number of instability regions of satellite's 

vibrations were plotted in term of the calculation. 

In the paper is shown that if even taking into consideration atmospheric drag inherited for 

low orbit satellite the examined resonance phenomenon is able to bring about certain 

satellite's vibration emerging in mechanical system comprising a lump-shaped rotating 

planet and its satellite. It is found that on getting significant amplitude in vibration the 

satellite leaves the boundaries of resonance area. Thus, at exciting these types of 

oscillations the satellite's vibration amplitude appeared to be practically restricted. 

It is reasonable to expand the method developed for circular orbits to orbits with high 

eccentricity when effect under investigation is manifested essentially stronger. The effect 

might be made even more powerful by redistributing the satellite's mass periodically in 

step with satellite's reaching the perigee and apogee of the orbit with high eccentricity. 



Identification of PV Array Nonlinearities from On-Orbit Optical 
Measurements 

K. D. Dippery 
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Department of Mechanical Engineering 
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ABSTRACT 

Recent investigations into the dynamics of large flexible substructures have revealed a wide 

variety of complex behaviors. Experiments conducted on a laboratory phenomena model of a 

solar array mast, for example, revealed nonlinear modal interactions resulting in subharmonic, 

superharmonic and combination resonances, in addition to jump phenomena, saturation and 

two-way modal energy exchange [1]. Nonlinear modal interactions are also suspected of play- 

ing a role in complex behaviors exhibited by solar arrays on the Hubble Space Telescope [2]. 

A method of identifying mathematical models for systems which exhibit modal interactions 

caused by internal resonance has recently been developed [3]. This method combines time-fre- 

quency and wavelet transform analysis with the Minimum Model Error state estimation algo- 

rithm [4] to produce an optimal model form for the system nonlinearities. A least squares algo- 

rithm then produces best-fit estimates of the unknown coefficients in the model. 

In this paper, this method is applied to on-orbit measurements to produce a model of the 

Kvant-H solar array of the Russian Mir space station. These measurements were recorded as 

part of the PASDE (Photogrammetric Appendage Structural Dynamics Experiment) experi- 

ment, flown on space shuttle mission STS-74, in November 1995. In this experiment, six video 

cameras recorded over 113 minutes of structural response of the Kvant-H solar array to various 

excitations, including shuttle-Mir docking, shuttle reaction control system firings, and day-to- 

night / night-to-day transitions. Photogrammetric techniques, including two-dimensional 

cross-correlation and sub-pixel interpolation methods, were used to produce measurements of 

displacement at 12 locations on the solar array, in the x-, y- and z-directions [5, 6]. 

Sample measurements of the solar array response are shown in Figure 1. The lowest-fre- 

quency wavelet coefficients for these sample measurements are shown in Figure 2. The varia- 



tions in amplitude of the wavelet coefficients in the range 25-70 seconds indicate the possible 

presence of nonlinear interactions. 
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Figure 1. Sample on-orbit optical measure-    Figure 2. 1st wavelet coefficient of measure- 

ments, ments shown in Figure 1. 
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Space manipulators present several features uncommon to ground-based robots: they 
operates in a microgravity environment; are highly flexible; often mobile; and have a 
degree of redundancy (Caron, 1996). The space platform, which supports the manipulator 
and negotiates a prescribed trajectory, can have its attitudes affected by the manipulator's 
maneuvers. On the other hand, libration of the platform can influence the performance of 
the manipulator, thus making the platform and the manipulator dynamics highly coupled 
(Xu and Shum, 1994; Caron, 1996). 

In general, the links of space manipulators tend to be long, light, and consequently 
highly flexible. The mobile manipulator system abode the proposed International Space 
Station will be 17.6m long, even without an end-effector. The manipulator will be able to 
handle payload with a mass two orders of magnitude greater than its own (payload mass 
* 100,000kg, manipulator mass * 1,000kg; Robert, 1997). Moreover, the platform 
supporting the manipulator can be highly flexible, as is the case for the Space Station 
(Modi and Suleman, 1989). The combination of these factors can result in large structural 
vibrations. 

An important aspect of the space system design is the built-in redundancy to cope 
with possible failure (Kimura, Tsuchiya and Suzuki, 1995). This implies a greater 
number of degrees of freedom than required to execute a given task. The redundancy is 
also important for obstacle avoidance, performance optimization, and introduction of 
desired constraints. 

With this as background, the paper studies, using an 0(N) Lagrangian formulation, 
dynamics of a novel mobile flexible manipulator system, operating abode an elastic 
platform in a given orbit around the Earth. The manipulator consists of an arbitrary 
number of interconnected modules forming a chain geometry. Each module comprises of 
two links, one free to slew while the other can deploy and retrieve. Such a manipulator 
with a combination of revolute and prismatic joints is able to change its geometry (Figure 
1), has relatively simple kinematics, a marked decrease in dynamic coupling, and a 
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reduction in the number of singularity conditions. This class of problems are of 
contemporary interest and have never been encountered before. 

An extensive parametric study assesses the effect of initial disturbances, system 
flexibility, admissible functions for discretization, number modules, payload" and 
maneuver profiles. Results suggest significant coupling between the rigid body motion 
and structural vibrations, with the system flexibility substantially affecting the 
manipulator's performance. 
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Figure 1      A schematic diagram of the mobile flexible deployable manipulator, based 
on an elastic space platform, considered for study. 



PARAMETRIC EXCITATION AND INTERNAL RESONANCE OF A FLEXIBLE SOLAR ARRAY 

Kuiyin Mei and Suzanne Weaver Smith 
Department of Mechanical Engineering 

University of Kentucky 
Lexington, KY 40506-0046 

Orbiting platforms of the size and complexity of the impending International Space Station (ISS) present many 
challenges. Among these is anticipating and understanding the dynamics of the large, flexible, deployable solar arrays 
An experimental survey with a laboratory model solar array (support structure only as shown in Figure 1 left) revealed 
nonlinear behaviors including subharmonic and combination resonances, jumps, and modal energy exchanges A 
smaller benchtop model array exhibited similar phenomena [1]. With longitudinal base excitation of the° arrays 
representing vibrational motion of the spacecraft, repeated failures of the lower crossbars of the models occurred 
(Figure 1 right). This was unexpected due to the small-amplitude motion of the mast at the lower crossbar attachment 
point. 

Linear and nonlinear analytical models were previously developed for the laboratory solar array. These models were 
correlated to experimental modal results [2]. In this paper, a new analysis is undertaken, following the approach of 
Nayfeh, Nayfeh, and Mook for a "T-shaped" structure [3]. Deflection functions are first expressed as an expansion 
with the third (primarily mast second bending) and fifth (primarily lower crossbar first bending) linear free-vibration 
modes of the solar array structure. This expansion is substituted into the kinetic and potential energy expressions and 
the result is integrated over the lengths of the beams. Nonlinear differential equations of motion are then obtained 
by substitution of the result into Lagrange's equations. 

To analyze the parametric response of the out-of-i)lane coupled motion, the method of multiple scales is used. Two 
detuning parameters are defined to represent the relationships between the crossbar and mast mode frequencies 
(<u5 - 3o>3) and the excitation and mast frequencies'(ß = 2ü>3). The final equations for steady-state motion are as 
follows: 

(ü3C,X{ - j(a»|E61 + co2En - co3a>5Eu + co2En - EulyX*X2sm(ßd + EmA0Xlsin<02) = 0 (1) 

a>3X,<r2+ J(- 2co2
5E2l + 2a>2E3l + 2co\Em - 2El5l)XlX

2 + \{- a>2Em + 3co2Em - 3Em)X\ 

+ ?(ö>|E61 + co2E7l - co3(o5Esl + Cü
2
E91 - EM)X\X2cos(ßO - E„^£xcos()S2) = 0 (2) 

<o5C2X2 + \{w\Emi + <ojEm - En2)X\sinOS,) + EmA^l sin(j32 - 0,) = 0 (3) 

<ü5X2(3a2 - 2a,) + I(- m\En + 3co2E52 - 3El62)X\ + I(- 2co2E62 + 2co2E72 + 2m]E92 - 2E^X\X2 

+ |(<»!Ei<n + ^3^112 - Em)X\ cosfyS,) - E^^ cos(j32 - ßx) = 0 , (4) 

where X„ X2,ß1} ß2 are unknown; ct>3 and w, are the 3th and 5th natural circular frequencies; C, and C, are damping 
constants; a, anda2 are frequency detuning; A0 is excitation acceleration amplitude; and E„ are constants i=l 17° 
j=1...2. 

These equations are identical in form to those obtained in Reference 4 for a system with cubic nonlinearities, internal 
resonance and parametric excitation. They can be solved for Xlt X2,ß,, and ß2 using a Newton-Raphson technique. 
Several cases are considered with various detuning and damping values. Figures 2 and 3 present the results for two 
of these. The amplitudes of the modes are plotted with respect to the amplitude of the excitation. The crossbar motion 
is smaller than the mast motion, but as the detuning increases, the amplification of the crossbar motion increases as 
well. Crossbar response acceleration amplitudes are an order of magnitude larger than those of the mast. Parametric 
excitation combined with internal resonance is therefore a possible explanation for the lower crossbar failures. 

1. Knowles, G.I., "Effects of Parameter Variation on the Nonlinear Response of a Solar Array Phenomena Mod- 
el," Masters Thesis, University of Kentucky, November 1996. 

2. Mei, K., "Analytical Models for the Nonlinear Response of a Flexible Solar Array," Masters Thesis, University 
of Kentucky, August 1997. 

3. Nayfeh, T.A., A.H. Nayfeh, and D.T. Mook, "A Theoretical and Experimental Investigation of a Three-Degree- 
of-Freedom Structure," Nonlinear Dynamics, Vol. 6, pp. 353-374, 1994. 

4. Nayfeh, A.H. and D.T. Mook, Nonlinear Oscillations, John Wiley and Sons, New York, 1979. 
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Figure 1. Solar Array Schematic (left) and Failed Lower Crossbars (right) 
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Response of a Parametrically Excited Rectangular Metallic Plate to a One-to-one Internal 

Resonance 

M. Üstertuna, Ö. Elbeyli and G. Anlas 

Department of Mechanical Engineering Bogaziri University, 

80815 Bebek, Istanbul, TURKEY 

EXTENDED ABSTRACT 

The study of nonlinear vibrations of plates includes the study of free vibrations, forced vibrations 

with an external forcing normal to the midplane of the plate, and parametric vibrations as a result of 

parametric in-plane excitations. There are many physical examples of parametrically excited systems: 

cylindrical shells and plates subjected to time dependent axial (in-plane) loads, moving belts, vertical cables 

in suspension bridges. In the case of externally excited systems, the excitations appear as in-homogeneties 

in the governing differential equation; whereas in the case of the parametric excitation, the excitation 

appears as time varying coefficients in the governing differential equation. When the excitations appear as 

parameters in the governing equations, these excitations are called "parametric excitations" as discussed by 

Nayfeh&Mook(1979). 

There are a number of recent investigations that deal with parametrically excited dynamic systems: 

The response of two-degree-of-freedom systems with quadratic nonlinearities to a combination parametric 

resonance, where the excitation frequency is the sum of the natural frequencies, in the presence of two-to- 

one internal resonances is investigated by Nayfeh and Zavodney (1985). They used the method of multiple 

scales to obtain the equations governing the modulation of the amplitudes and the phases of the two 

interacting modes. Nayfeh and Jebril (1986), determined the response of two-degree-of-freedom systems 

with quadratic and cubic nonlinearities to multifrequency parametric excitations by using the method of 

multiple scales. Zavodney, Nayfeh and Sanchez (1988), investigated the response of a one-degree-of- 

freedom system with quadratic and cubic nonlinearities to a principal parametric resonance. They used the 

method of multiple scales to determine the modulation equations and determined the fixed points and their 

stability. The nonlinear response of a slender cantilever beam carrying a lumped mass to a principal 



parametric base excitation  was  observed  by Zavodney  and Nayfeh  (1988)  both  theoretically  and 

experimentally. They used the Euler-Bernoulli beam theory to derive the governing nonlinear partial 

differential equation for an arbitrary position of the lumped mass. The method of multiple scales was then 

used to determine an approximate solution of the temporal equation for the case of a single mode. Nayfeh 

and Chin (1993), investigated the transfer of energy from high- to low-frequency modes in a two-degree-of- 

freedom system with widely spaced frequencies and cubic nonlinearities in the presence of a principal 

parametric resonance of the high-frequency mode. Nayfeh, Chin and Mook (1994) used the method of 

normal forms to study the nonlinear response of two-degree-of-freedom systems with repeated natural 

frequencies and cubic nonlinearity to a principal parametric excitation. They analyzed the character of the 

stability and various types of bifurcation. The nonlinear nonplanar response of cantilever inextensional 

metallic beams to a principal parametric excitation of two of its flexural modes was investigated by Arafat, 

Nayfeh and Chin (1997). They used the   method of time-averaged Lagrangian to derive four first order 

nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two 

interacting modes. 

Yang and Sethna (1990), studied nonlinear flexural vibrations of nearly square plates subject to 

parametric excitations. Their theoretical results are based on the analysis of a fourth order system of 

nonlinear ordinary differential equations in normal form derived from Von Karman equations. They used a 

variation of the constants procedure and the method of averaging to obtain the modulation equations. They 

also analyzed the local and global bifurcation. Yang and Sethna's work is a special and simpler application 

of the study presented here, because this analysis considers the general rectangular metallic plate subjected 

to in-plane parametric loading. In Yang & Sethna's work the sides are equal, and most of the terms 

simplify. 



One-to-one Internal Resonance of Laminated Shallow Shells 

Akira Abe, Yukinori Kobayashi and Gen Yamada 
Division of Mechanical Science, Hokkaido University, Sapporo, Japan 

Abstract - This paper presents the response of laminated shallow shells with an internal 
resonance of u2 « w3, where u>2 and ui3 are linear natural frequencies of asymmetric vibra- 
tion modes (2,1) and (1,2). Galerkin's procedure is applied to the governing equation based 
on the first order shear deformation theory, and the shooting method is used to analyze the 
steady-state response when the driving frequency Q is near w2. In order to take the effect of 
quadratic nonlinearities into account, we consider (1,1) mode in addition to (2,1) and (1,2) 
modes. The effect of quadratic nonlinearities due to (1,1) mode on the response are studied. 

ANALYSIS 
Consider a laminated shallow shell as shown in Fig.l. When a symmetric cross-ply laminated shallow shell is 

subjected to a harmonic excitation, the equation of motion and the compatibility condition for the shell based 
on the first order shear deformation theory can be expressed as 

f>w ~ <l>,yy w,xx +2<j>,xy w,xy -<j>,xx w,yy -S« (w,yy +i>y,yy) - S55 (w,xx +^x,xx) = q(x, y) cos n't ' 

£>llV>x,xx +D*66^x,yy +{D\2 + D*m)^y,xy -S55 Kx +^x) =0 1,(1) 

(£>J2 + Dls)ipx,xy +D^y,xx +D^y,yy -544 (w,y +ipy) = 0 

A.22&XXXX +(2Ai2 + A%%)(j>,xxyy +A\xcj).yyyy = w,2xy -w,xx w,yy +w,yy /R^ + w,xx /Ry, (2) 

where w is the transverse displacement, <p is the stress function, ^x and % are the rotations of midsurface about 
the y and x axes, respectively. Constants A£, £>£ and Sij correspond to the stiffness coefficients of the shell. 

In the following analysis, the boundary conditions for the shell are considered as simply supported along its 
four edges. The displacement functions are expressed using the eigenfunction of the linear vibration as 

w = h £ 12 W^n(t) sm(mnx/a) sm(mry/b)    ^x = Y2Ys Xmn(t) cos(mirx/a) sin(niry/b)   ' 
m     n m     n 

^y = z2z2 *"™(f) sm{mnx/a) cos(mry/b) 
(3) 

where m and n are the number of half waves in the x and y directions, respectively. The stress function satisfying 
the boundary conditions is assumed to be of the form 

^ = 12 12 BPI 
COS

(PWG) cos(qwy/b) + ]T ]T Crs sm(rirx/a) sm(siry/b). (4) 

Fig.l Coordinate system of a shallow shell 



Substituting Eqs.(3) and (4) into the compatibility condition (2), the coefficients Bpq and Cr3 can be deter- 
minated by comparing the coefficients of trigonometric functions in both sides of Eq.(2). Further we assume 
that only the vibration mode (2,1) is directly excited by the transverse force. Therefore q(x, y) is defined as 

q(x,y) = <7osin(27rx/a)sin(7ry/6). (5) 

By substituting Eqs.(3), (4) and (5) into (1) and applying to Galerkin's procedure, we obtain the following 
simultaneous nonlinear ordinary differential equations in terms of the vibration modes (1,1), (2,1) and (1,2): 

m + fMlWl+ w?Wi + GaiWl + Ga2Wl + Ga3W$ + GaiWf + G^WxWl + Ga6WxW$ = 0 ' 

W2 + ^2W2 + u\W2 + GblWlW2 + Gh2WlW2 + Gb3W$ + GMW2W$ = FCOSQT 

W3 + MWgW's + <4W3 + GdWi W3 + Gc2W*W3 + Gc3W$W3 + Gc4W| = 0 

,     (6) 

where fi, u>, G, r, F and Q are the non-dimensional damping coefficient, the non-dimensional linear natural fre- 
quencies, the non-dimensional coefficients of the nonlinear terms, the non-dimensional time, the non-dimensional 
amplitudes and frequency of the load, respectively. Subscript i of the non-dimensional displacements is redefined 
as {Wi, W2, W3} = {Wu, W2i,Wi2}. As can be seen from Eq.(6), Wx is activated by the nonlinear term G^W^ 
when W2 is excited. Therefore the amplitude of (1,1) mode affects the response for (2,1) mode through the 
nonlinear terms Gbi W\ W2 and Gb2WxW2. However, the effect of the quadratic nonlinear terms as Gbi W{W2 is 
not considered in the case of W\ is negligible. The steady-state response is obtained by applying the shooting 
method to Eq.(6). 

RESULTS AND DISCUSSION 
A symmetric cross-ply laminated shallow shell (6 = 90°/0°/90°) is treated in the following numerical examples. 

Each lamina is assumed to be made of graphite/epoxy which is a highly orthotropic fiber-reinforced material, and 
the material properties are EL = 138(GPa), ET = 8.96(GPa), GLT = GLz = 7.10(GPa), GTz = ET/2, vLT = 
0.30. Other parameters are 

Rx/a = Ry/a = 5,     h/a = 0.01,    b/a = 1.22, 
wi = 34.52,    u2 = 45.85,    UJ3 = 46.08,    p = 0.01, F/<4 0.01 (7) 

Figure 2 (a) and (b) show frequency-response curves by two-mode analysis (Wi is negligible) and three-mode 
analysis, respectively. In each figure, solid and broken lines denote stable and unstable responses, respectively. 
In the case of two-mode analysis, a stable two-mode response occurs at Q/u>2 « 1.014 via a pitchfork bifurcation, 
and then the single-mode response loses its stability. As the excitation frequency is increased from low frequency 
(e.g., n/ui2 = 0), the single-mode response change into a two-mode response through the bifurcation point 
continuously. As seen from Fig.2 (b), the responses for three-mode analysis are quite different from those for 
two-mode analysis. In contrast to the result for two-mode analysis, a stable response of (1,2) mode occurs at 
n/u)2 ss 0.985 via a saddle-node bifurcation. Although the response curve of (1,1) mode is omitted due to space 
restriction, the amplitude of Wi is very small compared with that of W2. 

0.0 0.0 
0.95 1.00 1.05 1.10 0.95 1.00 1.05 1.10 

Fig.2 Frequency-response curves for the shell, (a) two-mode analysis, (b) three-mode analysis 



NONLINEAR MODAL INTERACTION OF LIQUID IMPACT-STRUCTURAL DYNAMIC UNDER 
PARAMETRIC EXCITATION 

By Mohamed A. El-Sayad and Raouf A. Ibrahim 
Wayne State University 
Department of Mechanical Engineering 
Detroit, MI 48202 

ABSTRACT: 
The nonlinear modal interaction of liquid sloshing hydrodynamic impact with 
an elastic support structure subjected to parametric excitation is examined 
for three parametric resonance conditions. The liquid sloshing mass is 
represented by a pendulum experiencing impacts with the tank walls. The 
impact loads are modeled based on a phenomenological representation in the 
form of a power function with a higher exponent.  In this case the system 
equations of motion included two types of nonlinearities; impact 
nonlinearities (taken to be of order five) and structural geometric 
nonlinearities (of order three). The method of multiple scales is used to 
determine the response amplitude characteristics in the absence and in the 
presence of impact loading.  When the first mode is parametrically excited 
the system experiences hard nonlinear behavior and the impact loading 
reduces the response amplitude.  On the other hand, when the second mode is 
parametrically excited, the impact loading results in creating more fixed 
points and the response switches from soft to hard nonlinear 
characteristics.  Under combination parametric resonance, the system 
behaves like a soft system in the absence of impact and like a hard system 
in the presence of impact.  The system geometric nonlinearities may also 
give rise to the occurrence of internal resonance. 



Internal Resonance in Wire Electro-Discharge Machining 

Kevin D. Murphy 
Department of Mechanical Engineering 

University of Connecticut 
Storrs, CT 06269-3139 

Wire electro-discharge machining (wire EDM) is a manufacturing technique in which material 
is eroded from a workpiece by producing an electrical discharge between the workpiece and a 
translating wire electrode that is in close proximity, see Figure la. While there are numerous 
benefits to wire EDM, wire vibrations and instabilities detract from the precision of the cut, 
reduce productivity, and may lead to wire rupture resulting in prolonged downtime. 

The translating wire fits in the broad classification of an axially moving material. Axially 
moving systems have been studied for a number of years and have been shown to be susceptible 
to vibrations and various instabilities, particularly at high transport speeds [1]. In the case of the 
EDM wire, it has been shown that the wire undergoes both pitchfork and Hopf bifurcations [2]. 
This is evident from Figure lb and lc which shows the behavior of the eigenvalues, generated by 
linearizing the equations of motion about the stable equilibrium configuration (Figure Id), as a 
function of nondimensional transport speed. 

In the present study, Hamilton's principle is used to develop the nonlinear equations governing 
the displacements in the ai, a2, and a3 directions along with the associated boundary conditions. 
These equations are then discretized using a Galerkin projection resulting in the following equa- 
tions for forced, undamped motion: 

& + üfiAiö + (K2 - K3)A2a - K3A3ß
2 - K3Aa

2 = 0 (1) 

ß + KiBj + (K2 - K4)B2ß + Bzß - K3B4aß - 'K3B5l
2ß - K3B6ß

3 = F sin (ut)      (2) 

7 + ÜC1C17 + (K2 - K4)C2l + C3j - K3C4a~, - K3C5ß
2j - K3C6f

3 = 0 (3) 

where a, ß and 7 are the modal amplitudes in the ai, a2 and a3 directions, respectively. Note that 
these equations are gyroscopically coupled and contain both quadratic and cubic nonlinearities. 
The external excitation in the a2 direction arises from the periodic electrical discharges which 
momentarily repel the wire from the workpiece. 

As is evident from Figure lb and lc, the eigenvalues are sensitive functions of the transport 
speed. At a nondimensional transport speed of approximately Cy/mL'2/(EI) = 5.1, the imaginary 
parts of the ß and 7 eigenvalues are equal creating the necessary conditions for a 1:1 internal res- 
onance [3], [4]. Using a second order perturbation analysis, the 1:1 internally resonant response 
and its stability are examined. In addition, the implications for large amplitude, steady state 
motion in 7 are explored. Specifically, the possibility of large amplitude "snap-through" motion 
is considered via numerical integration of the equations of motion. 
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Figure 1: a) A schematic of the wire electro-discharge machining (wire EDM) process, b) The 
imaginary parts of the ß and 7 eigenvalues (i.e., the natural frequencies) as a function of nondi- 
mensional axial transport speed, c) The real part of the ß and 7 eigenvalues, d) The stable, static 
modal amplitudes (the deflected state of the wire). This figure is taken from reference [2] 
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EFFECTS OF THE LORENTZ FORCE ON LATERAL VIBRATION 
OF A CONDUCTING AND NONMAGNETIC CABLE 
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Department of Mechanical Engineering, Faculty of Science and Technology, Keio 

University, 
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa, 223, Japan 

Abstract. There are many problems of cable vibrations 

due to the Lorentz force in the power transmission 

systems using high voltage cables or superconducting 

cables [1]. This paper discusses the effects of the 

Lorentz force on a lateral vibration of a conducting and 

nonmagnetic cable. Finally we observe the dynamic 

behaviors of a copper cable under the Lorentz force. 

(Lorentz Force) 

B 

Fig.l 

When a conductor carrying an electric current I is in a magnetic field B, the Lorentz 

force, expressed as F=IxB, acts on the conductor as shown in Fig.l. This force has two 

types as follows. 

First, the unsteady magnetic field B(t) is applied to a 

nonmagnetic and conducting cable which is a part of a 

closed electric circuit [2]as shown in Fig.2. In this case 

the induced current occurs in the cable which is a part 

of a closed electric circuit. According to Faraday's law, 

the induced current is expressed as follows: 

I = il-f^-dS+f(y*Bydl] 

Closed 
'Circuit 

Conducting 
Cable 

Fig.2 

where R is the electric resistance of the closed circuit, S 

is a surface enclosed with the closed electric circuit and v is the velocity of the cable in a 

plane perpendicular to S . The first component of the induced current expressed by 

the first term in the right-hand side of the above equation, yields due to the periodically 

changed magnetic field, and the second one due to the movement of the cable. The 



Lorentz force for the first one acts on a lateral vibration of a cable as an exciting force 

as shown in Fig.3.   While that for the second one acts as a damping force as shown 

Fig.4. 
m 

due to Time-Varying Magnetic Field        due to Lateral Motion of a Cable 

+ B5 ^1 

F        TV 

(Exciting Force] 
Fig.3 

Damping Force 
Fig.4 

We observe the nonplanar cable vibration (Fig. 5), in a 

system as shown in Fig.2. 

Second, the alternating current 

I(t) is applied to a nonmagnetic 

conducting cable in a magnetic 

field [3] as shown in Fig. 6 . Then 

the Lorentz force occurs in the 

cable. We estimate theoretically 

the Lorentz force acting on the 

cable, which is produced by I(t). 

We observe the nonplanar cable 

vibration (Fig. 7), in a system as 

shown in Fig.6. 
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VIBRATION CONVTCVQR DYNAMICS 

Friedrich Pfeiffer, Peter Wolfsteiner, Garching 

Vibration conveyors are used in mass production facilities for providing automated ma- 

nufacturing processes with parts like screws, bolts or electronic devices. They store, feed, 

orientate and isolate such parts. Due to the complex mechanics of the feeding process the 

design of the feeders is stiU depending on trial and error. This paper presents a complete 

dynamical model of the transportation process including unilateral constraints and mul- 

tiple impacts, both with Coulomb Friction. Simulation results, computed with a three 
dimensional model, explain the practical benefit of the proposed tool. 

Compared with other machines applied in the automated assembly vibratory feeders are 

quite uncomplex. The high number of different variants of devices based on the vibratory 

feeding-principle, and the large amount of applications give the impression that we deal 

with a weU developed and reliable tool. This impression is wrong. Especially errors that 

occur in part feeders are mostly responsible for troubles in the automated assembly. The 

reason is the exclusively experimental tuning of the feeders which is often done without 

a theoretical background, especially as far as the mechanics of the transportation process 
is concerned. 

The transportation process in a vibratory feeder (see Figure) is based on a micro ballistic 

principle that is driven by an oscillating track. The mechanical model can be splitted 

in the dynamics of the base device, mostly represented by an electro magnetically exci- 

ted oscillator, and the dynamic of the transportation process. This does not mean that 

there is no reaction from the parts on the track, but the modeling is quite different. In 

contrast to the transportation process, the base device can be modeled as a bilaterally 

coupled system with well-known standard techniques. Due to the highly sensitive contact 

mechanics all oscillating frequencies and flexible structures have to be well analysed. Fur- 

thermore interconnections to an oscillating environment must be taken into consideration. 



Nevertheless, this paper focuses more on the modeling of the transportation process. 

'track ~ 

base 
device 

\\\\ 

Changing contact configurations between the transported parts and the track and the 

parts themselves are characteristic for the feeding process. These contacts appear either 

continuously for a certain time interval, or for a discrete moment (impact). Friction has 

a fundamental importance for the transportation process. It would not work without it. 

Consequently the modeling must be done with respect to the friction effects. Therefore a 

structure- variant multibody system with unilateral constraints and Coulomb Friction" is 

an optimal tool. It's formulation results in a set of differential equations with inequality 

constraints that require a special mathematical and numerical treatment. The geometric 

model has three dimensions, thus the contact model is twodimensional. The formulation 

of the inequality constraints is also capable to treat time-discrete multibody impacts with 

Coulomb Friction. The assumption of rigid bodies realizes a wide variety of different 
parts. 

The shape of the contact surfaces is modeled by flat plane-elements, so that any geometric 

objects can be approximated. Point-contacts are therefore between point-plane and line- 

line. Line- and plane-contacts are composed by single point-contacts. 

Theory is verified by experiments with very good correspondance. Simulations provide 

detailed informations on the transportation rate, the influence of different parameters, the 

stability of the process which means its sensitivity to unsafe parameters, the performance 

of the orienting devices, and the influence of different base-devices. They can therefo- 

re either support the experiment-based design, or replace it completely by theoretical 



methods. 
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Computing analysis of dynamic properties of interactive 
drive systems 

Ctirad Kratochvil, Vladimir Kotek 

Introduction 

Methods of mathematical modeling have spread widely in all fields of human activity. 
Engineering practice requires therefore a complete and consistent system of qualitative 
analysis of mathematical models and their quantitative processing. The problem of the system 
approach utilization for the solution of concrete technical problems is related to the problems 
of modeling methods, to the possibilities and usefulness of mathematical methods, and is 
connected with the problems of simplicity or alternatively of complexity, too. 

Drive systems as a dynamical system 

With respect to the fact that the most of factual technical systems have their hierarchy- 
oriented structure represented by more or less wide set of inside and outside interactions, for 
example the drive system of working machine - see fig. 1, it is necessary to study these 
internal interactions in more details, especially when they are the concrete reflections of 
mutual connections among the substructures of often different physical nature. In these cases 
the utilization of dynamic systems general theory results may be very useful. 
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Figure 1: Drive system of working machine 

If we came from the definition of the dynamic system (according to ZADEH) in the sense of 
the identification of real technical object (primary object) and abstract model formed by the 
dynamic system (secondary object), we may create on primary objects with respect to the 
solution of concrete problems (i.e. for the given purpose) on the selected or prescribed 
differentiating level. At the very beginning the designer determines the degree of the 
structural complexity of the dynamic system, decides the transient from the lower types of 
models to the higher ones and influences on the target, working and informative functions on 
the system and on the higher degree even the control functions. So we define the specialized 
and partially structured dynamic systems. 
Professor Ctirad Kratochvil, Vladimir Kotek. M.Sc 
TU Brno, Faculty of Mechanical Engineering, Institute of Solid Mechanics. Czech Republic 



Models of real machine drives 

Example 1: 
We can see results of structural analysis of controlled electromechanical drive systems - 
rolling mills and trains (one-motor drive models and multi-motor drive models); time courses 
of frequency response functions at working, transition and failure overload states. 
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Figure 2: Dynamic of the rolling train drive (M-el. motor, C-coupling, 
GB-gear box, RU-rolling unit, MDF-main distribution frame) 

Example 2: 
We can see result of structural analysis of gearbox system, e.g. epicyclical gearbox used i 
off-the-road vehicles. 
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Figure 3: Schematic representation of gear box structure (B-brake, 
S-coupling, I-input, O-output) 

Conclusion 

The aim of our paper is to reveal one of less used methods of computing models 
establishment by means of analogies i.e., by electroanalogy concretely. Furthermore 
experiments in modeling using drives models design enable analysis of dynamic properties 
under so called nonstandard serviceable conditions first of all emergency ones, also they 
allow to find the evaluations of expected extreme loads or deformations, etc. 



Sway Control for Trolley with Pendulum Load 
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The paper will describe the results of the authors' investigation into the control of a 
trolley and pendulum system. The research includes the following areas of investigation: 
evaluation of a sway controller presently used in industry, improvements in the response 
of the present controller, design of a new sway control system using a more accurate 
model for the trolley and pendulum, analysis of various reference conditioning schemes, 
compensation for noise in measured system feedbacks, online identification of pendulum 
frequency, and final position control for the pendulum load. 

Sway control for the trolley and pendulum is important to industry. A prevalent 
application of the trolley and pendulum system is the crane system that moves large 
containers from one location to another. The trolley in the crane system is generally 
operated by a person who provides a speed reference with a joystick or other control 
mechanism. Crane operation is expensive, so the application demands a short cycle time. 
The containers must be stacked accurately on the receiving end of the process. Control of 
load position and speed must be realized without sudden and violent trolley movements 
which could endanger the operator. The control must be effective over a range of system 
parameters. Considerations such as these must be made when designing the sway 
controller. 

Evaluation of a present industry controller shows that improvements can be made by a 
different selection of closed loop poles. Simulation of the system shows that without any 
degradation in the time it takes the load speed to change from one steady state value to 
another, trolley acceleration and jerk can be decreased significantly. Trolley acceleration 
and jerk indicate how uncomfortable the trolley movement is for the operator in the crane 
application. The improvements are observable over the specified operating range. 
Justification of a particular set of closed loop poles will be pursued. 

The present industry controller makes simplifying assumptions about the physics of the 
trolley and pendulum system. A more accurate model of the system has been developed 
and simulated. Controller design using the improved model is proceeding. The goal of 
this area of research is to produce a controller that improves the response of the trolley 
and load to the operator reference but that does not add much complexity to the 
implementation of the control. 

In the crane application, the reference input that the operator provides to the sway 
controller is often conditioned using a rate limiter or a filter. The reference conditioning 



provides a smoother trolley ride for the operator. The effects of the reference 
conditioning on the overall response of the trolley and load will be analyzed. 

The present industry controller controls the speed response of the pendulum load to a 
reference signal. Currently no load position control is being performed. One of the 
objectives of the research is to design a position regulator for the trolley and pendulum 
system. 

Feedback measurements in the trolley and pendulum system are often corrupted by noise 
Especially bothersome is DC noise in the load position measurement, which causes the 
feedback to have a constant offset. The DC noise introduces inaccuracies in load position 
control. Methods for eliminating noise from the feedback measurements will be 
investigated. 

In the present system the pendulum frequency is not measured, and an estimate for 
frequency is used in the controller. Using the measured frequency as a system feedback 
will improve the accuracy of the control. A goal of the research is to develop a method 
for online identification of pendulum frequency. 

Simulations of the trolley and pendulum system will be performed to demonstrate the 
effectiveness of the control design in each of the research areas. Any conclusive 
improvements to the present sway controller will be implemented in a forthcoming 
industry product. 



Nonlinear and Experimental Analyses of the 
Hunting Motion in a Railway Wheelset 

Hiroshi YABUNO, 
Institute of Applied Physics, University of Tsukuba, 

Tsukuba-Science-City 305 Japan, Email: yabuno@aosuna.esys.tsukuba.ac.jp 

Masato NUNOKAWA, 
Doctoral Program in Engineering, University of Tsukuba, 

Nobuharu AOSHIMA, 
Institute of Applied Physics, University of Tsukuba, 

Recently, significant attention has been focused on nonlinear dynamics on railway ve- 
hicle dynamics [1]. It is known that wheelset rolling on a railway track loses its stability 
above a critical speed due to creep forces. This phenomenon called hunting motion is a 
kind of self-excited oscillation due to a nutter instability. The critical speed which has 
been obtained by the eigenvalue analysis (linearized stability analysis) often gives a higher 
critical speed than the experimental one. It is therefore necessary to perform the non- 
linear analysis. Jensen and True showed the chaos and the bifurcations in a speed range 
by numerically solving the governing equations including nonlinear creep forces [2]. Xu, 
Troger, and Steindl investigated the governing equations whose friction force is approxi- 
mated by the fifth order polynomial by using the center manifold reduction and classified 
the nonlinear characteristics of the hunting motion by using the method of normal form 
[3]. It is analytically shown that the wheelset loses its stability through a subcritical Hopf 
bifurcation at the critical speed obtained by the linear analysis. However, there are few 
experiments on the nonlinear phenomena in the hunting motion and are few studies on 
comparison between the experimentally and theoretically obtained phenomena. 

In this paper, the theoretically and experimentally obtained nonlinear phenomena are 
qualitatively compared in a test apparatus of a wheelset rolling on a railway track as 
shown in Fig. 1. Experiment shows that the hunting motion occurs depending the lateral 
disturbance, even if the speed is below the experimental critical speed which is assumed to 
be the experimentally obtained critical speed in the case of no artificial disturbance, i.e., 
in the case with only fluctuation noise due to the roughness of the rail, the wheelset and 
etc. Figure 2 shows the limitations of the lateral disturbance in some cases when the speed 
is below the experimental critical speed; the hunting motion occurs and does not occur in 
the cases when the lateral disturbance is smaller than the symbol o and larger than the 
symbol x, respectively. Also, it follows from this figure that the limitation increases as 
the speed decreases. Next, the above experimentally obtained nonlinear characteristics 
of the hunting motion is analytically explained by considering only linear component of 



the creep forces and the restoring forces including the geometrical nonlinearity by the 
springs attached to the wheelset. The dimensionless equations governing the yow and 
lateral motions are derived as follows: 

y   +   A*y(l - e)y + ayy - a^ + ayyyy
3 - a^ytf + a^^3 = 0 

tf   +   Ml-^ + ^ + ^-^V + ^#2-^^3 = 0, (1) 

where ßy, H, a, and ß are positive constants. The method to obtain the values of the in- 
dependent dimensionless parameters corresponding to the apparatus is shown. The above 
dynamical system is reduced by the center manifold theory. It is furthermore clarified 
that the the bifurcation at the critical speed (the bifurcation from the trivial solution) 
is a subcntical Hopf bifurcation. Therefore the hunting motion can occur depending on 
the disturbance even if the speed is below the critical speed. By expressing the unstable 
hmit cycle m the vicinity of the bifurcation point, one can show the disturbance such 
that the wheelset loses its stability in the case when the speed is lower than the critical 
speed. Figure 3 shows the limitation of the lateral disturbance; the hunting motion occurs 
m the case when the disturbance is lager than the limitation, even if the speed is below 
the critical speed obtained by the eigenvalue analysis (linearized stability analysis) Also 
the limitation increases as the speed decreases. These theoretical results are qualitative 
agreements with the above experimental ones. 
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Prediction of incipient "ground resonance" instability in a physical 
model of a rotorcraft 

Philip V. Bayly, Christopher M. Cueman, Melissa E. Clark 
Mechanical Engineering 

Washington University, St. Louis, MO 

Introduction The stability of periodic motion in a physical model of a rotorcraft is investigated 
as the system approaches a ground resonance instability. Stability is characterized by the 
eigenvalues of discrete, linearized models fitted to points on the Poincare section. 

Ground resonance is a well-known instability in rotorcraft caused by the coupling between 
fuselage motion and rotor blade dynamics [1. Ground resonance remains an important 
prototypical instability, and may involve both nonlinearity and periodic coefficients depending 
on the configuration of the rotor and fuselage. For several reasons, a ground resonance model is 
an attractive test bed for evaluating stability measurement techniques. The phenomenon does not 
depend on aerodynamic forces, and hence can be studied experimentally without a wind tunnel. 
In addition, the theory governing the instability [1] is well known and accurate, although the 
system has multiple degrees-of-freedom. 

The ability to measure stability and predict instability of rotorcraft behavior in real time is 
potentially very useful. The stability of periodic behavior in systems with periodic coefficients 
and nonlinearity can be determined from the eigenvalues of a local Poincare map [2,3]. This 
approach has been applied to nonlinear single degree-of-freedom (1-DOF) oscillators [2] and 2- 
DOF systems [3]. Measurement of stability and prediction of instability in a physical ground 
resonance model represents an important extension and application of these methods to a 
practical, multi-degree-of-freedom (N-DOF) system. 

Ground resonance model A photograph of the physical model is shown in Figure 1. The model 
is based on a similar experiment designed in the 1960s by R. Bielawa, and used recently by 
Flowers [4]. The "fuselage" of the model is an aluminum plate mounted on a two-axis gimball 
assembly. Stiffness is provided by extension springs attached to the underside of the fuselage. 
Viscous damping (as well as some additional stiffness) is provided by adjustable air dashpots. A 
brush-type DC-servo motor drives the rotor directly at a commanded speed. Two or four 
cylindrical "blades" with lead-lag hinges are mounted symmetrically on the rotor hub. Thin, 
cantilevered music wire beams attached to the blades serve as centering springs. Bearings at the 
blade hinges and on the gimball are all low-friction (ABEC-5 or higher) ball bearings. The entire 
assembly is housed in a steel-frame box with panels of Lexan safety glass. 

Angular displacements of the fuselage iß, <p) and blades (£,, £, £, £) are measured by RVDTs. 
Signals from the hub are transmitted through a slip-ring to the data acquisition system. To obtain 
Poincare sections, a signal from the motor encoder is used to trigger the acquisition of data once 
per revolution. Since only displacement is measured, time-delayed measurements 
(6(t+dt), <p(t+dt), etc.) are also acquired once per revolution. 

Measurements and stability analysis At a given rotor speed the model exhibits small 
oscillations. A small perturbation is applied to the system at a random phase in the forcing cycle, 
and 20-30 points on the Poincare section are obtained. Typical transients of the discrete points on 
the Poincare section are shown in Figure 2. All the measurements taken at the start of the n'h 



revolution are stored in a pseudo-state vector xn; a total of N of these vectors are stored. A 
linearized map is assumed to approximate the transient dynamics of points on the Poincare 
section: 

x„+1 =Ax„+b (1) 
A least-squares fitting procedure [2] is used to estimate the matrix A (the Floquet transition 
matrix) and the constant vector b, and the eigenvalues of A are found numerically. The inverse 
maP (xn-i = Cx„+d) is also estimated, and the eigenvalues of C are compared those of A to 

eliminate spurious estimates. The eigenvalues with largest magnitude describe the stability of the 
system. 

Both the magnitude and phase of the eigenvalues may be used to track changes in stability as a 
function of rotor speed. Experimental trajectories of eigenvalues in the complex plane as rotor 
speed approaches the ground resonance condition will be presented and compared to theory. 

References 
1. R.P. Coleman and A. M. Feingold, 'Theory of self-excited mechanical oscillations of helicoper rotors 

with hinged blades," NACA TR-1351 (1958). 
2. K.D. Murphy, P.V. Bayly, L.N. Virgin and J.A. Gottwald, "Measuring the stability of periodic attractors 

using perturbation-induced transients: application to two nonlinear oscillators," Journal of Sound and 
Vibration, 172:85-102, 1994. 

3. P.V. Bayly and L.N. Virgin, "An empirical investigation of the stability of periodic motion in the forced 
spnng-pendulum," Proceedings of the Royal Society of London, 443A:391-408, 1993. 

4. G.T. Flowers, "A study on the effects of nonlinearities on the behavior of rotorc'raft in ground and air 
resonance," PhD Thesis, Mechanical Engineering, Georgia Institute of Technology, Dec. 1988. 

gmprf 

Figure 1: Ground resonance model    Figure 2: Points on the Poincare section plotted vs iteration number 
and in state space. Eigenvalues are (respectively at 1.98, 2.64, and 
2.86 rev/sec): A = -0.57 ± 0.65, X = -058 ± 058, and A = -1.00 ± 0.78. 
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The multiple time scale method has been widely used to analyze the dynamical response of 

weakly nonlinear mechanical systems, both in free oscillations and in forced oscillations regime 

[1]. More recently, it has been also used in the description of non-linear normal modes [2] and 

in the analysis of the local post-critical behavior in bifurcation problems [3, 4]. Furthermore it 

has been applied to discrete-time dynamical systems [5]. Similarly to other reduction methods, 

the multiple time scale method reconducts the analysis of the evolution of a multidimensional 

dynamical system to that of an equivalent dynamical problem of dimension less than the 

original one, and equal to the number of amplitudes and/or phases that characterize the 
response at regime. 

The multiple time scale method often implies a minor computational effort if compared 
with other reduction methods. For example, in the description of nonlinear normal modes 
it is simpler and involves less algebra than the normal form method [2]. Analogous result is 

found m the analysis of local bifurcations, when comparison is made with the center manifold 

reduction method [3, 4]. Nevertheless, the cases in which the equivalent dynamical system 

equation is obtained through a unique non-trivial step of the perturbative procedure, should 

be distinguished from those in which more non-trivial steps have to be performed. In fact in 

the former case, the method brings to motion amplitude equations already reduced in normal 

form [2]-[4], while in the latter the presence of additional extraneous terms is possible. 

As shown in [6]-[7], spurious solutions can arise when a reconstitution of the time scale 

[8] is performed. This inconvenient can be avoided if the steady-state solutions are deter- 

mined by separately vanishing the different amplitudes time-derivatives at each order of the 

perturbation procedure [9], thus giving up to obtain the equivalent dvnamical system These 

solvability conditions can be satisfied if a suitable number of control parameters are expanded 

m series of the perturbation parameter or, less conveniently, if the homegeneous solutions of 

the perturbative equations are accounted for at each step. In problems of local bifurcation 

the number of the parameters to be expanded turns out to be equal to the co-dimension of 
the bifurcation itself [4]. 

Notwithstanding this circumstance seems to be well known in literature, due to computa- 
tional reasons, a strong interest is still devoted to obtain a dynamical system equivalent to the 

original one and, obviously, exempt from additional extraneous steady-state solutions. This 

has given rise to a great deal of proposals alternative to the reconstitution method, which 



often are confusing [10]-[11]. 

In this paper, after an analysis of the state of art on the subject, two classes of meth- 

ods employed in literature are individuated. In the first class the reconstituted system is 

"£-dependent", while in the second one the perturbation parameter "e" is absorbed (e.g. by 

imposing "e = 1"). The first class of method is here called "coherent", the second class "inco- 

herent", since in the latter the logic on which the asymptotic method is based is violated. It is 

shown that incoherent methods sometimes furnish wrong results, since the "exact" numerical 

solution of the reconstituted equations contains £-terms which are of higher order than the 

highest order term present in the equations. Moreover, in each class of methods applied in 

literature, two different procedures are followed. In the first one all the time-derivatives on the 

slower scales are retained in the solvability conditions at each step; in the second (simplified) 

procedure such derivatives are instead neglected by invoking questionable reasons [10]-[11]. 

Obviously the neglected terms do not influence the steady-state solutions; however they can 

affect the eigenvalues of the linearized problem and therefore to play a non-trivial role on the 

stability of the stead! y-state solutions. By evaluating t he eigenvalues with respect to the 

concept of "coherence", the limits of validity of the simplified procedure are discussed. 

Finally the particular cases in which the "incoherent" reconstitution method together 

with the simplified procedure do not involve spurious solutions neither errors on stability are 
illustrated. 
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Imperfection sensitive structures, under externally applied loading, when reduced to one degree of 
freedom, and assuming small amplitude vibrations can be expressed by the ordinary differential 
equation (1), for structures liable to an asymmetric bifurcation, and (2), for structures liable to an 
unstable symmetric bifurcation. The dots on expressions (1) and (2) mean time (O derivatives, ^> 0 

is a viscous damping parameter, 6>0
2 is the effective stiffness, e is an imperfection parameter, ß and 

y > 0 are non-linearity parameters, finally F and Q. are the maximum intensity and frequency of the 
externally applied driving force. 

x + 2£a)0x + a)j;x + £ + ßx
2=Fcos(nt) (1) 

x + 2£a0x + co* x + s-yx3 = Fcos(Qt) (2) 

Solutions to particular cases of these equations have been studied both numerically and analytically by 
several authors [1,2,3,4,5], and been found to be very complex. Generally from the engineers point of 
view, the main concern is with the unbounded solutions or escape from a safe potential well 
Physically this means the ruin or failure of the structure. In this sense it is important to engineering 
design the existence of analytical criteria to predict these unbounded, or escaping, solutions. 

The objective of this work is to study different criteria to predict the minimum value, of F that leads to 
escaping solutions of equations (1) - for structures liable to asymmetric bifurcation, and (2) - for 
structures liable to unstable symmetric bifurcations, considering all the other parameters fixed. The 
following criteria are compared: 

a) The Melnikov Criterion:. This criterion is based on the fact that when the stable manifold of a 
saddle point crosses transversally its unstable manifold, they cross at infinitely many points This in 
turn makes the boundary of the basin of attraction become fractal, making the whole basin loose its 
integrity. The value of the forcing parameter F that makes the stable and unstable manifolds cross is 
the escape force can be considered as a safe lower-bound of the escape load. 

b) The Criteria of Maximum Displacement, Maximum Velocity or Potential Barrier: These 
criteria are based on an approximate analytical solution. The value of the forcing amplitude parameter 
F that makes the maximum displacement, maximum velocity or maximum energy of the approximate 
analytical solution, become greater then the maximum displacement, velocity or potential energy of 
the conservative basin of attraction, is the escape force. The precision of the results are dependent on 
the quality of the approximate solution. 

c) The Bifurcation Criterion:. For this criterion the escape force is the value of F that makes the 
approximate solution loose its stability, either by a fold or a flip bifurcation. 



Most of these criteria depends strongly on the analytical expression of the approximate solution, this 
means that for different frequency regions, where different approximate solution expressions are 
needed lead to different escape expressions, figure a shows the results of the different escape criteria, 
and the numerical solution, for a structure liable to asymmetric bifurcation (1) with the following 
parameters: e = Q, to0 = 1, /?=-! and £"= 0.05, on the vicinity of the natural frequency. 
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ABSTRACT 

Dynamical systems with piecewise linear characteristics are frequently encountered in many 

engineering applications. When the coefficients appearing in the equations of motion of 

these systems are constant, it may be possible to apply methodologies which locate exact 

solutions of these equations. However, in cases of oscillators with time-varying coefficients it 

is no longer possible to obtain exact analytical solutions. 

The main objective of the present study is to develop a methodology which determines 

approximate periodic steady-state solutions for a general class of piecewise linear systems. 

The equations of motion of these systems involve weakly periodic coefficients and periodic 

external forcing terms. The method of analysis combines characteristics of classical 

perturbation approaches applied to oscillators with time-varying coefficients as well as of 

exact methods employed for piecewise linear systems with constant coefficients. Through 

the application of a proper analytical scheme, the task of locating periodic steady-state 

motions of such systems under parametric and external excitation is reduced to the solution 

of relatively small sets of algebraic equations. In addition, the analytical part of the method is 

complemented by appropriate methodologies for investigating the stability properties of the 

various types of located periodic solutions. 

In the second part of the study, a gear-pair model with backlash is employed as an 

example mechanical oscillator. First, the accuracy of the new analytical procedure is 

confirmed with numerical results obtained by direct integration of the equations of motion. 

Then, numerical results are presented in the form of frequency-response diagrams, showing 

the effect of the variable stiffness, the damping and the external load parameters on the 

system response. In places where branches of periodic solutions lose stability, the resulting 

dynamic response is captured by direct integration. This reveals the coexistence of multiple 

solutions, the appearance of boundary crises phenomena and the existence of period 

doubling and trippling sequences leading to a repeated interchange of periodic and chaotic 
responses of the system. 
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The action of instantaneous impulses on a mechanical system is frequently simulated 

using one of the two methods. The first one imposes special conditions for the velocities 

in the neighborhoods of the impulses location, while the second one requires an 

introducing the Dirac's function into the equations. An advantage of the first approach is 

that the differential equations describing the system are the same as when there are no 

impulses acting. However, these equations are treated separately in each of the intervals 

between the impulses, and hence, instead of a single system, a whole sequence of systems 

must be analyzed. The second method gives a single set of equations over the whole time 

interval without introducing the above-mentioned conditions imposed on the variables. 

However, in this case the analysis can be carried out correctly within the framework of 

the theory of generalized functions (distributions). This requires additional mathematical 

proofs in non-linear cases and cases of the parametric loading of a mechanical system as 

well. Both of the mentioned above ways of analysis are fruitfully employed for different 

quantitative   and   qualitative   considerations   of  mechanical   systems   under   pulsed 

excitations. 

A method is described in this paper which enables one, on the one hand, to 

eliminate the singular terms in the equations of motion and, on the other hand, to obtain 

solutions as a single analytic expression over the whole time interval. The analytical 

technique related is based on an idea of non-smooth transformations of variables. At least 

two different ways by which the idea of non-smooth transformations can be realized are 



possible. The first realization deals with the spatial coordinates  of "the so-called 

vibroimpact systems. This kind of transformations enables one to eliminate absolutely 

rigid constrains that the vibroimpact systems must include by its definition. The second 

way does not necessarily imply that a system includes any rigid constrains. Instead of the 

spatial coordinates, the parameter of time is transformed by means of a non-smooth 

function. As a result the spatial coordinates get a special algebraic structure with a series 

of mathematically suitable properties. This kind of transformations is applied to systems 

subjected to the impulsive and discontinuous excitations. It is suggested that the solutions 

of differential equations of motion for mechanical systems with periodic impulsive 

excitation can be found in a special form that contains a standard pair of non-smooth 

periodic functions and possesses the structure of an algebra without division. This form is 

also suitable in the case of excitation with a periodic series of the first kind of 

discontinuities. The transformations are illustrated on the series of examples. An explicit 

form of analytical solutions has been obtained for periodic regimes. In the case of 

parametric impulsive excitation, it is shown that a dipole-like shift in the periodic series 

of impulses has an impotent mechanical meaning. For example, the sequence of 

instability zones loses its different subsequences dependently on a parameter of the shift. 

The pair of non-smooth functions plays an important role in the proposed method. In 

the symmetric case these functions are associated in a natural way with the motion of a 

free point mass between two fixed arresting devices, that is, with one of two simplest 

mechanical oscillators. The functions belong to the set of elementary ones and can be 

treated as the sawtooth sine and rectangular cosine. Hence, the technique applied in this 

work also has a certain physical meaning. 



DELAMINATED BEAM NONLINEAR DYNAMIC RESPONSE CALCULATION AND 
VISUALIZATION 
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One of the earliest models for vibration analysis of composite beams with delaminations was proposed by 
Ramkumar et al.tlJ. This model simply used four Timoshenko beams connected at the delamination edges 
to model a composite beam with one through-width delamination. The predicted frequencies based on mis 
model were consistently lower than the results of experimental measurements. Wang et al.[2] improved the 
analytical solution by including coupling between flexural and axial vibrations of the delaminated 
sublaminates. Using an isotropic beam with splits and the classical beam model, they found that the 
calculated natural frequencies were closer to experimental results. With similar considerations, Nagesh and 
Hanagud[j] formulated a finite element solution for arbitrary composite beams. In the finite element models, 
they considered a classical composite beam model as well as the beam model with high order shear 
deformations. Later, Mujumdar and Suryanarayanw proposed a model which imposed a constraint between 
the delaminated sublaminates to force them to have the same flexural displacement. This model was unable 
to predict the delamination opening mode observed in experiments. 

Experimental research on delaminations can be found in a paper by Shen and Gradyf5]. In their report, 
opening modes were found even in the first mode for some cases of delaminated beams. Experimental 
research conducted by Hanagud and Luo'6"73 has indicated that the delamination modes can also be found in 
combination with higher order modes for through-width as well as embedded delamination cases. 

The existence of delamination modes in delaminated composites has been corroborated by analytical and 
experimental research. Due to the change of effective stiffness caused by delamination opening and 
closing, we expect nonlinear effects in the dynamic response of delaminated structures. The purpose of this 
paper is to develop a procedure that is able to calculate the dynamic response of a delaminated structure by 
using the analytical modes obtained by a delamination analysis method proposed by the authors. The 
analysis is used for nondestructive examination of damaged composite structures. 
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Recently, there has been an increased interest in vibrations in material re- 
moval processes such as cutting and drilling. Some of these vibrations arise 
due to a regenerative effect. This study concerns regenerative machine tool 
oscillations in cutting. 

During machining the tool may start a damped oscillation relative to 
the workpiece. This motion will make the surface of the workpiece uneven. 
Thus the chip thickness will vary at the tool after a revolution. The cutting 
force therefore not only depends on the current position of the tool and 
the workpiece but also on a delayed value of the displacement. This is the 
so-called regenerative effect. The corresponding mathematical model is a 
delay-differential equation. 

Recent experiments as well as the earlier results of Shi and Tobias ([6]) 
clearly show the existence of unstable periodic motion of the tool around its 
asymptotically stable position related to the stationary cutting. These ob- 
servations strengthen the possibility of a Hopf bifurcation. The PhD theses 
Johnson ([3]) and Fofana ([2]), as well as the paper of Nayfeh, Chin, Pratt 
([5]) presented the analysis of the Hopf bifurcation in different models us- 
ing different methods, like the method of multiple scales, harmonic balance, 
Floquet Theory and of course, numerical simulations. 

Here we study a simple 1 degree of freedom (DOF) damped oscillator 
model of orthogonal cutting. By doing so, we hope we are able to isolate and 
study the effects related to the delay. The model is 

x + 2K,O>X + a2x = AFx(Af) (l) 



with a and K being the natural angular frequency of the undamped system 
and the relative damping factor, respectively. AFX is the cutting force varia- 
tion and given by a truncated power series expansion around the zero value 
of the chip thickness variation A/ = f — fo = x(t) — x (t — r) 

^FI(Af)=lk4Af'^Af + ^Af^   i!Af>-f° (2) l-|*i/o if A/<-/„ { ' 
where fc2 is the so-called cutting force coefficient, while r is the time of one 
revolution of the workpiece. 

The aim of this paper is to give a rigorous analytical investigation of the 
Hopf bifurcation present in the regenerative machine tool vibration model 
using computer algebra (see also [4]). 

We also consider nonlinear phenomena when the tool leaves the material 
(as in [1], [6]). In this case the regenerative effect disappears, and the result 
of the local analysis is not valid anymore. We show that in this case there 
exists an attractor (see also [7]). 
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In this article, a multi-mode model is developed for a boring bar in a diamond-turning process. The model 
takes into account the cutting forces that result from the geometry of the chip area cut by a round nosed 
tool An underlying assumption of this model is that during one feed pass of the round nosed tool it produces 
a hehcal groove in the workpiece that overlaps with itself depending on the feed rate and spindle speed The 
current model assumes that the feed rate is slow relative to the spindle speed so that the grooves overlap 
and can lead to regenerative effects.This leads to a system of retarded differential equations that is studied 
to determine the stability of the cutting process with respect to parameters such as feed rate, depth of cut 
and spindle speed. These cutting forces are assumed proportional to the uncut chip area. The chip area' 
Ac generated during the cutting action is approximately modeled as a parabolic segment that is a function 
of the tool feed rate, the depth of cut, and the current and previous tool-displacement histories. In order to 
study the stability of the system the linear approximation to Ac was computed as 

Ac = a0 + OLiV + ß-^Vr M\ 

where 
_ 24dfR -f- I2d?f f f 

00 24Ä-12d ><*i = 2+Zo'ßl = 2-Zo (2) 
The delay differential equations take the form 

äi + 26^ + dim    =    -Wi[L-R)K{. "0 

+aiJ^aj(t)Wj(L - R) + ß^a^t - T)WJ(L - R)) (3) 
3=1 j=l 

where «? » f£ [^^j , fco* = -y/pA for i = 1,...JV, the spatial mode shapes Wt(z) are approximated 

by the spatial modes associated with the free vibrations of an undamped, isotropic cantilever beam and 
aj{t) represents the time dependent amplitudes. L is the length of the boring bar, R the radius of the tool 
tip r the time for one spindle revolution and K aparameter related to the workpiece cutting energy The 
right hand side of equation (3) contains a constant that represents the static cutting force that would be 
experienced under nonoscillatory cutting conditions. For the purpose of stability analysis this term can be 
ehimnated. Because this problem is somewhat different than that of simple orthogonal cutting, calculation 
of stability boundaries is somewhat more involved. However, for feeds, /, and depths of cut, d, much smaller 
than the tool tip radius, R, the equations are amenable to analytic solution. Following the orthogonal cutting 
analysis, let s be a complex variable. Then the characteristic equation becomes 

N 

1 + K{a, + fte-") J2 ®m(s)Wl = 0 (4) 
m=l 



where 

$™(s) = TJT^ TT (5) 

For the stability boundary analysis, let s = iu, $m(zcj) = Gm(w) + iHm(u) and G(w) = X^=1 WmGmM, 

#M = J2m=i WmHm(u)- From the imaginary part of (4), one can obtain §£$ =    a^mwT  . The method 
G(u>) _ i+ 

<»i 
coswr 

of perturbations can be used in two steps to show that the right hand side of this equation can be put 
into a form similar to one that arises in the stability analysis of orthogonal cutting. From (2), one obtains 
I? = i+ep£Li Ä _1 + 2e> e = 2^> where zo is tne half-chip width. To be meaningful the feed must 
be less than the denominator, which is the chip width.   In the case of diamond turning e is often very 

small. This implies that    °^_ « I+^+^^ZLT • As a **rst steP> if we consider a perturbed frequency 
«i cosuT 

u(e) — UQ + euji + e2u>2 + ••-, then, to a first order e approximation, we can solve for the coefficient wi so 
that, using the Taylor series, sum of angles formulas and the assumption that GUTJ is small, 

H{UQ) + ecJiH'juo) ^     -sinajQTo + e(2sincjoro — O^TQ COS^QTQ) 

G{IJJQ) + ajJiG'faa)      (1 - coswoTo) + e(2cosworo - UJITQ sinwoTo) 

where UJQ and TQ are obtained as a first term generator for w(e) by an orthogonal cutting argument. In order 
to use the methods from orthogonal cutting to develop stability charts for round nosed tools we must, in the 
second step, find a function r(e), defined on an interval about e = 0, such that r(0) = r0 and 

(-l + e)sina;(e)To _   - sincj0T(e) 
(1 -t- e) + (-1 + e) cos w(e)r0 ~ 1 - cosw0r(e) ^ ' 

Then GH| 
= i-rr0T(€) = tanV", where ij; is the phase of the transfer function that is given by V = 

arctan f g|"$)) • To solve for wor(e), half angle formulas are used to show that u)0r(e) = 2 (ip + pn) + Zn 

for p = 0,1,2,.... The spindle rotation rate is computed as fi(e) = ^r. Finally, using the real part of the 
characteristic equation, 

K{€) * 2alG{uQ) + ealP{wQ) 
(8) 

where P(w0) is a perturbation term computed by assuming first order approximation in terms of e. As e -»• 0, 
the cutting energy parameter K(e) approaches the form for orthogonal cutting. The results can be presented 
as a graphs of K(e) versus fi(e), which form the stability charts. For round nosed tools, these charts are 
found to be perturbed forms of those obtained for orthogonal cutting tools. For a given fixed feed rate, the 
two most significant parameters that affect the stability regions are found to be the tool nose radius and the 
material damping ratio. The predicted stability results are found to be consistent with observations made 
during experiments. This work also points to the importance of considering a multi-mode formulation for 
high-speed turning processes since the boundary lobes for the higher modes can interleave the stable regions 
for lower modes. This occurs most prominently at higher spindle rotation rates. 
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Analytical and experimental investigations into workpiece-tool interactions during müling of flex- 
ible structures are conducted in this study. A first generation mechanics based model is developed 
and numerically implemented. The various aspects of this model include the following: a) the work- 
piece and the tool each have two degrees of freedom (see Figure 1), b) inclusion of process damping 
along the lines of Tlusty (1985), c) a refined orthogonal cutting model inclusive of the effects of the 
helix angle of the tool, and d) accommodation of partial engagement of the tool with the workpiece 
and regenerative effects. The approach used for describing the cutting forces along the tool is simi- 
lar to a certain extent to the approach followed by Kline, DeVor, and Lindberg (1982). Numerical 
simulations are conducted for milling operations carried out with a high-speed steel helical tool on 
a flexible aluminum workpiece. The results are analyzed by using the following tools: a) time histo- 
ries, b) phase portraits, c) power spectra, and d) dimension calculations. Bifurcation diagrams on 
Poincare sections are also presented. 

^U   ///////// 

m-TT7   S7~ 

Figure 1: Model of workpiece-tool system 

The results obtained in the numerical simulations are compared to observations made in experi- 
ments, which were conducted by using the set up illustrated in Figure 2. 



\=7 1 SPINDLE 

2 CUTTER 
3 WORKPIECE 

4 TUBE 

5 SENSOR 

6 BASE 

7 WELDING 

Figure 2: Experimental arrangement 

The numerical results are found to be in good agreement with the experimental observations 
presented in the reports of Balachandran (1996-1997). Stability charts obtained by using the current 
model are also compared with those obtained by Altintas and Budak (1995). It is believed that the 
current model, which is unique in terms of description of cutting forces, is applicable to a wide 
range of cutting operations including partial immersion cuts, high immersion cuts, and slotting cuts. 
Unlike the other available models, the current model allows us to study cases where both regenerative 
effects and nonlinearities due to intermittent engagement of the cutter are likely to have a significant 
influence on the dynamics of workpiece-tool interactions. 
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ACTIVE FLOW CONTROL FOR TWIN-TAIL 
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Essam F. ShetaWd Osama A. Kandil* 
Aerospace Engineering Department 

Old Dominion University, Norfolk, VA 23529 

ABSTRACT 

Effectiveness of active flow control for twin-tail buffet alleviation is investigated. Tangential 
leading-edge blowing and flow suction along the path of the wing leading-edge vortices are used to 
alter the vortex breakdown flow upstream of the twin tail. The tangential leading-edge blowing (TLEB) 
alters the path and breakdown location of the leading-edge vortices, and moves the leading-edge vortices 
laterally towards the twin tail, which increases the aerodynamic damping on the tails. The flow suction 
from the core of the wing leading-edge vortices effectively delays the breakdown location at high angles 
of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and 
swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved 
sequentially using three sets of equations on a dynamic multi-block grid structure. The first set is 
the unsteady, compressible, full Navier-Stokes equations which are solved accurately in time using the 
implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending 
and torsion aeroelastic equations of cantilevered beams which are solved accurately in time using fifth- 
order accurate Runge-Kutta scheme. The third set is the grid-displacement equations which are used 
for updating the grid coordinates due to the tails deflections. The computational model is pitched 
at 30° angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, 
respectively. 

INTRODUCTION AND BACKGROUND 

• The maneuver capabilities of the F/A-18 fighter are achieved through the combination of the 
leading-edge extension (LEX) with a delta wing and the use of vertical tails. At some flight conditions, 
the vortices emanating from the highly-swept LEX of the delta wing breakdown before reaching the 
vertical tails which get bathed in a wake of unsteady highly-turbulent, swirling flow, which produces 
severe buffet on the tails and has led to their premature fatigue failure. 
Experimental investigation of vertical tail buffet models have been conducted by several investigators 
such as the extensive work by Washburn, et al.1. Recently, Moses and Ashley2 conducted extensive 
wind tunnel tests on a refurbished 16% , rigid, full-span model of the F/A-18 A/B aircraft with three 
flexible and two rigid vertical tails. 
Kandil, et al.3 studied the buffet response of twin-tail models in turbulent flow over wide range of angles 
of attack. The computational results were in good quantitative agreement with the experimental data 
of Washburn, et al.1. In a recent paper by Sheta and Kandil4, the effects of dynamic pitching-up motion 
of the configuration model on twin tail buffet response were investigated. 
In this paper, the fundamental issue of twin-tail buffet alleviation is investigated using two methods of 
flow control; tangential leading-edge blowing5 and flow suction from the vortex cores along the vortex 
path6. Details of the formulation of the multidisciplinary problem, the solution methodology, and the 
configuration geometrical, aerodynamical, and structural parameters specifications are given in Ref. 3. 

'This research work is supported under Grant No. NAG-1-648 by the NASA Langly Research Center. 
fPh.D. Graduate Research Assistant. 
'Professor, Eminent Scholar and Dept. Chair. 



RESULTS AND DISCUSSION 

Figure 1 shows the buffet excitation spectra of the inner and outer surfaces of the right tail. The 
buffet excitation parameter is defined by \JnF(n), where F(n) is the contribution to power spectrum of 
p2/?od in a frequency band Arc. The TLEB has shown a reduction of up to 23% on the inner surface, 
and a reduction of up to 33% on the outer surface in favorable of TLEB case. The flow suction has 
shown a reduction in the buffet parameter of up to 23% on the inner surface, and a reduction of up to 
30% on the outer surface in favorable of flow suction case. 
In summary, the vortex-core flow suction shows some improvements in the buffet excitation spectra, 
torsion acceleration spectra, root twisting moment, and an appreciatable reduction in the bending de- 
flection. However, it also shows an increase in the bending acceleration spectra and in the root bending 
moment. On the other hand, the TLEB shows improvements in the buffet excitation spectra, root bend- 
ing and twisting moments, and torsion deflections and accelerations. Thus, a combination between the 
TLEB and vortex-core flow suction may be suggested to combine between the reduction of the bending 
deflection gained by the flow suction and the lower root moments gained by the TLEB to effectively 
alleviate the buffet responses of the tails. 
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Figure 1: Effects of Leading-edge blowing and flow suction on buffet excitation spectra of the right-tail- 
tip transducer, 50% chord and 90% span. M^ = 0.3, a = 30°, Re = 1.25 x 10ö. 
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The present work deals with nonlinear panel flutter phenomena in supersonic and transonic 
flow. For this purpose, a high order accurate and efficient method for computational aeroe- 
lasticity has been developed. Aerodynamics are modeled using the inviscid, compressible 
Euler equations and nonlinear Timoshenko beam elements are employed for the structure. 
Time-discontinuous Galerkin least-squares finite elements are employed for both the tran- 
sonic fluid flow [3] and the elastic aircraft wing structure [4]. Time dependent deformations 
of fluid domains are modeled using space-time mappings for the finite element geometry [6] 
A least-squares term is applied to stabilize the convective term. In order to get sharp resolu- 
tion of discontinuities without spurious oscillations, a consistent high order shock-capturing 
operator is added. The resulting implicit time marching scheme is unconditionally stable 
and 1st or 3rd order accurate. 

Based on the discretization of equal type for fluids and structures, an overall iterative solver 
strategy for the fully coupled problem analogous to [1] has been developed. For this purpose 
a modified Newton iteration of the fluid nonlinearity, a structure iterative solver and the fluid- 
structure coupling iteration are combined in one common loop. This leads to a significant 
reduction of the overall computer time without any convergence problems of the present 
scheme. 

The algorithms are proofed by the following two applications: 

For supersonic flow at M = 2 influences of the structures curvature on flutter stability have 
been investigated. The comparison of results obtained by the present CFD methodology to 
earlier works [5] employing different versions of the aerodynamic piston theory shows very 
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TPhone: +49/531-391-3667, Fax: +49/531-391-8116, Email: d.dinkler@tu-bs.de 



Nonlinear Panel Flutter Phenomena, in Supersonic and Transonic Flow 2 

good agreement. It is shown, that even moderate surface curvature reduces flutter boundaries 
significantly. This is caused by nonlinear buckling mechanisms of the shell, which are not 
present for plane structures. With increasing amplitude interaction of structure and flow 
may lead to very complex, partly chaotic oscillations. 

While structural nonlinearities are the driving factors for flutter in supersonic regions, non- 
linear shock motions in fluid domain are the governing effect in transonic flow and may lead 
to limit cycle oscillations. Comparison to results obtained by [2] shows very good agreement. 

0.015 ■ 

"o 
o 
o > 

0.005 
c 
u 
E 
0) o ra 
Q. 
tn 

'•O 

-0.005 r 

-0.015 

0.0075 /**\     /^^^"^S         ^ 

0.0025 'nAK   \\\   \ 
o 
> -0.0025 

f   f   *    ^         ' I     j    •      I            ' i        -: 

-0.0075 

-n ni9n 
20.0 40.0 

time 
-0.015 -0.005 0.005 

displacement 
0.015 

Figure 1: Transonic panel flutter at M = 1.1, A = 314, fi = 0.1 and h/t = 0: time history 
(left) and phase diagram (right) of deformation w(t) and velocity w<t(t) at x/l = 0.75. 
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Abstract 

In this paper, the incompressible viscous flow past cylinder is numerically simulated by solvin- the in 
compressible Navier-Stokes equations. These equations are written in primitive formulation of the partial 
transformation and m a conservation form. The Cartesian velocity components and pressure share the same 
location at the center of the control volume. The numerical method uses a consistent physical reconstruc- 
tion for the mass and momentum fluxes: the so-called CPI approach. This method is presented in details 
by Deng et al. [1] for laminar problems and extended to turbulent flow problems bv Deng et al [21 and 
more recently by Guilmineau et al. [3]. The momentum and continuitv equations are solved in a sedated 
way. using the PISO algorithm. A second-order accurate three-level fully implicit time discretisation°is used. 

The structural model allows motion with two-degrees-of-freedom: pitch and vertical displacement (Fi- 
1). The equations of motion for the airfoil incorporate linear and torsional springs, structural dampin° 
in both axes and structural coupling effects [4]. These equations equations are integrated in time usin* a 
fourth-order Runge-Kutta algorithm. ° 

To start a fluid-structure interaction, aeroelastic response analyses are carried out for a NA.CA 001"' 
airfoil which is considered as single or two degrees of freedom systems. In all case, the airfoil pitches about 

■ mnni^1101 ^ '^^ incidence is a° = QA rad- The Reynolds number , based on the airfoil leimh 
is 1000. Therefore, the flow is laminar. The mesh is generated using a conformal mapping technique and 
we use a 100x60 grid with a time step At = 0.01. The first case is those of airfoil pitching onlv with 
the mass moment of inertia is one, the natural frequency ff/2 and the damping zero (2). The response 
for the pitching displacement corresponds to the neutrally stable condition. This motion is dominated bv 
a simple harmonic motion which have a period T=4.55. The second case corresponds to an airfoil with 
two degrees of freedom. The mass is ten, the mass moment of inertia one. the plunging frequencv 2T the 
pitching frequency pi/2 and both damping coefficients zero. The computed response is presented"in figure 
•3. I he pitching motion is dominated by a simple harmonic motion and it is not true for the plunging motion. 

In contrast to the dynamic stall, we want to point out the dramatic lack of experimental data bases for 
such computations, specially for incompressible flows around airfoils. In order to validate the model of fluid- 
structure interact™, comparison with experimental results is necessary. Anagnostopoulos and Bearman [5] 
conducted a series of experiments on vortex-induced cross-flow oscillations of a circular cylinder mounted 
elastically in a water channel. They intended to capture 'lock-in' in fully laminar wakes; the Revnolds 
number ranged from 90 to 150. They captured the 'lock-in' phenomenon over the Reynolds number" range 

The first case computed corresponds to a Reynolds number equal to 106 and a reduced velocity of 5 90 
The solution of vortex shedding behind a fixed cylinder is attempted first. When the lift force becomes peri- 
odic, he easticaUv mounted cylinder is allowed to oscillate. The oscillograms of the cylinder displacement 
and of the lift and drag forces are presented in figure 4.The increase of the mean drag and of the fluctuation 
oi the drag force as the oscillation amplitude increases are apparent from figure 4. The vortex-sheddin- fre- 
quency when the cylinder remains fixed is /, = 0.1710 and when it oscillates /„ = 0.1709. These frequencies 
are higher than the natural frequency /„ = 0.1695. The frequency of cylinder oscillations is equal to the 

TZt  TenML^nuSt0P°,Ul0S [6] d06S n0t f°Und this reSult' the frecluenc-v of cylinder oscillations is slightly higher (100.64%) than /„. 

In the final paper, other Reynolds number will be investigated to plot the parameters of the cylinder 
oscillation versus to the Reynolds number. 
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Figure 1: Airfoil with linear and torsional springs 
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ABSTRACT 

The present paper addresses the attention to a particular phenomenon in fluid-structure interaction. 
The new arising requirements in the field of high speed marine vehicles impose a careful investigation of 

the impact phenomena of the hull over the water. In fact very large force and stress are induced in the ship's 
structure and a correct evaluation of them is needed. 

A general solution of the problem is particularly difficult involving the coupling between the fluid and 
structural equations. Although in recent time the problem has been investigated by several authors [1,..,7 ] 
by theoretical and numerical models, it seems to be still open. 

Two different stages in the water entry process can be identified [2]. In a very early stage of the impact, 
the fluid response is dominated by compressibility effects and small particle displacements take place and 
elastic waves are radiated into the liquid [3]. A second stage follows in which the fluid motion is 
characterized by large displacements and compressibility effects can be definitely neglected [4,5,6]. 

During the first impact phase the value of the water pressure on the entering body surface assumes very 
large values that cannot be correctly predicted when using incompressible models. 

In this paper some general features of the slamming forces, arising under variable impact velocity, are 
accounted for and it is assumed that the acoustic approximation can be used [3]. Three simple impact 
models are considered. 

The first model consists in analysing the water entry of a blunt shaped rigid body. The general 
relationship between the hydrodinamic force and body shape equation is determined in closed form. The 
characteristic time evolution of the slamming force is analitically recovered for both the wedge and the 
cylinder case and the expression of its maximum is given. Two dimensionless parameters affect the 
maximum of the slamming force: the edge Mach number, related to the velocity of propagation of the 
intersection between the water line and body surface, and the mass ratio, related to body mass and water 
density. 



Moreover the theoretical correlation between the hydrodynamic force and the body geometry, allows tc 
control the time evolution of the slamming force acting on the body's shape. The inverse problem oJ 
determining the shape associated with a constant slamming force is analitically solved. 

A second model consists of a two degrees of freedom system (fig.l). An external blunt body, directel> 
impacting on the water, is elastically connected to an inner second body. Two different forces are accounted 
for The first is the hydrodinamic force, the second the induced elastic force. A systematic numerical 
analysis of this system is performed by investigating the maximum induced stress versus the characteristic 
dimensionless parameters of the problem. Moreover a comparison of the obtained results with those related 
to the rigid body impact is considered. 

The last model consists of an elastically deformable wedge impacting on water (two degrees of freedom 
system, fig.2). In this case the body shape change under the hydrodynamic load arising during the impact 
Both the maximum slamming force and the elastic induced stress are investigated versus the dimensionless 
involved quantities. 

Fig.l Fig.2 
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ABSTRACT 

Self-exited oscillations of the structure coupled with inner fluid occurred in the 

insulation wall cooling system of the fast breeder reactor Super-Phoenix -l(SPX-l) in 

France during test operations. In this system, the lower temperature sodium in the feeding 

plenum goes up along the wall of main vessel and brims over the cylindrical flexible weir 

shell and then flows into the restitution plenum. It is reported that the self-exited 

oscillation were found to occur at the same natural frequency of the sloshing in the 

restitution plenum; the free surface of the fluid in both feeding and restitution plenum 

oscillated at large amplitudes; and the cylindrical shell oscillated with an oval vibration 

mode, which are called "coupled sloshing mode instability". 

In connection with this instability problem, the research on fluid-structure coupling 

system by the analysis using FEM code was first performed by Aita, where he pointed 

out that the unstable vibration is excited only at the specific combination of the flow rate 

and the distance between the feeding and restitution plenum liquid level. 

Successively, many studies on the coupled sloshing mode were carried out by Eguchi 

et al., and Kaneko et al. The excitation mechanism of the self-excited oscillation is 

basically understood by the previous studies as follows; at first a weir begins to oscillate 

due to a small disturbance, and then the free surface of the feeding plenum and the fluid 



discharge rate fluctuates; as a result the flow rate flowing into the restitution plenum 

changes accompanied with the time lag generated by the fluid moving from the surface of 

the feeding plenum to that of the restitution plenum, which excites the restitution plenum 

sloshing, finally, an oscillatory force acting on the internal and external of the weir shell 

due to the sloshing of both plenums makes the weir oscillate. In this way, a self-excited 
vibration loop can be described. 

Nagakura and Kaneko, furthermore, set up governing equations of the weir motion 

taking the effect of fluid force due to the sloshing of the fluid in both restitution and 

feeding plenums and the added mass of the weir into consideration. Then, they analyzed 

the instability taking account of the shearing stress at the wall of the weir where the fluid 

is falling to calculate out the time lag generated by the fluid moving from the surface of the 

feeding plenum to that of the restitution plenum precisely. 

In SPX-1, countermeasures were taken against self-excited oscillations of the fluid- 

structure coupling system, however, it is difficult to say that the excitation mechanism of 

its vibration is fully elucidated dynamically. Most studies on analyses have been 

undertaken so far were on a single cylindrical flexible weir shell, in spite of the fact that 

the wall cooling system of actual fast breeder reactors is composed of multiple shells. 

Therefore, the study on the case of multiple shells is necessary. 

In this study, we will analyze and perform experiments on the instability of multiple 

cylindrical structure system with dual cylindrical flexible weir shells. The analysis was 

done on the basis of the theory developed for the case of a single cylindrical weir by 

Nagakura and Kaneko. In a set of experiments, it was found that dual cylindrical shell 

oscillation with anti-phase oval vibration mode was excited under the specific 
experimental conditions. 
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Introduction 

Vector fields are often analysed by sampling the field on a suitable Poincare section. Limit cycles of 
vector fields, for example, became fixed points of the Poincare map. Additional information can be 
obtained by sampling the transient response, for example as the field asymptotes to a stable limit 
cycle, and plotting successive Poincare points on a return map. In some cases the map may have a 
simple smooth character (for example, the one-dimensional map that characterises the Rössler 
oscillator, (Thompson and Stewart [1] or Jackson [2]). Floquet theory gives, in suitably chosen 
coordinates, the slope of the map at the fixed point, and hence gives information on the local stability 
of the associated limit cycle. Standard Floquet theory is based on a linear approximation to 
perturbations of the limit cycle. Here a quadratic approximation is used to find a quadratic form of 
the return map in the vicinity of the fixed point. 

General case 

Consider the vector field described by y_ = f(y, u) or ys = fj&u), where u is a control parameter. 
Suppose y_*(t) is a stable limit cycle with period T. The transformation ys = y}* + {. yields the 
perturbation equations. 

The coefficients are evaluated at y*(t) and are periodic. It is convenient to diagonalise the equations 
in the following manner, using just the linear term. The monodrony matrix M obtained from the linear 
approximation has eigenvalues ^ one of which is unity. Suppose C is the matrix that diagonalises 
M. Then the transformation £ =Cj Vj gives 

*i = Dft + Eijk Vk + 0(v3)- (2) 

Both D and E are periodic. Note that D is not diagonal; it is the map not the vector field that has 
been diagonalised. Note also that if f includes only linear and quadratic terms, as is often the case, 
the perturbation equations (2) are exact. 

Now choose a suitable Poincare plane, define time t=0 when y* intersects the plane, and impose 
perturbations Vj° at this point. Assume a quadratic approximation 

v/0 = a/W + b.Ji) v/ vj (3) 



Then, on substituting (3) into (2): 

a.t(f) = DJitpjft     with  aa(p) = 6,( (4) 

*«■ = D,J bfln, + A aji atn,      with   h<M = 0 

The solutions ^(T) = Ajö^ and b^CT) are the required parameters of the quadratic map. 

R5ssler oscillator 

The Rössler oscillator 
yi = -yi -y3 

y2
=yi + ay3 

y3 = a + y3(yi-u) 
(5) 

with (y2 = 0, yt < 0) chosen as the Poincare plane yields a smooth one-dimensional map in y^ 1,2]. 
Figure (1) shows results for a = 0.2, u = 2.2, values giving a stable period -1 limit cycle. A one- 
dimensional map seems to emerge because one of the Floquet eigenvalues is very close to zero. An 
approximate linear diagonalisation is Ci = vx, C2 

= v2 - 8vl5 C3 = v3, where for this value of u, 6 » 
1.3566. It is sufficient to consider only perturbations of the yx variable Vi° and write V;(t) = a^t)^0 

+ bi(t)(vi°)2. The resulting map shown in Figure (1) is 
o\2 

Vl(7) = a^v,0 + ^(7)00 (6) 

with a^ = -0.5455 and bjOO = 0.6132. The circles are values obtained from the exact perturbation 
equations. 
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In the new power electric transmission systems using SF6 gas insulation or super- 
conducting cables, it is predicted that the lateral vibrations of the cable with very high 
current densities are excited due to the Lorents force in the high magnetic field which is 
occurred by other current-carrying cables. Moreover the nonlinear coupling osculations 
of the current-carrying cables will be occurred in the two-phase or three-phase cables. 

The main purpose of this paper is to 
investigate the induced lateral vibra- Ay 
tions of the current-carrying cables in 
a system of two phase current-carrying 
cables as shown in Fig.l.       The two 
phase cables are placed at a distance     _ 
RQ from the origin in the x — y plane 
of the orthogonal coordinates, respec- 
tively .  Compared with R, the length 
I of the cables is sufficiently long and 
their radius is negligible. Fig.l Two Phase Cables 

The electromagnetic force Fx acting on Cable 1, which is caused by the interaction 
between the current I0sin JVt in Cable 1 and I0sm(Nt + TT) in Cable 2, is expressed as 
follows: 

L=Iosinvt 

 ®— 
Cable 1 

l2=Lsin(vt+jt) 

 <8  

Cable 2 

F^ = 
16TTRQ 

{cos2Nt-l}(2+Ul~U2\ 

) 
F» = T£k^™-»{: 

Ro 

(1) 

(2) 

where Flx and Fly are the x and y component of Fu respectively. Ui(z,t) and m(z t) 
are the x and y components of the displacement of the cable i(i = 1,2),respectively. The 
force actmg on the cable 2 is expressed in the same manner from the symmetry. 

Then the basic equations governing the nonplanar lateral vibrations of the two current- 
carrying cables are derived as follows: 

pA ̂ ä+c^-lr +EA fl M+m *»£+* (3) 

(4) 



Ui(-l,t) = Ui(l, t) = Vi(~l, t) = Vi(l, t) = 0 (5) 

where p, E, A and T« axe the 
mass density, Young's mod- 
ulus, the cross-sectional area 
and the initial tension of the 
cable respectively, and i = 1,2. 

As a theoretical main result, 
it is cleared from the analyti- 
cal solutions of the above equa- 
tions that there are basically 
three vibration patterns of the 
two phase cables for the case 
when the frequency of the al- 
ternating current N is close to 
half of the fundamental natu- 
ral frequency of the cable. 

The experiments have been 
conducted to observe the in- 
duced lateral vibrations of the 
two phase cables due to the al- 
ternating currents. The three 
vibration patterns of the two 
phase cables were observed as 
shown in Fig.2. 

1     „ 1L.1      '      Pattern 31      ' ,° 

Cable! 
1 

Cable 2 

Fig.2 Motions of Two Phase Cables in x - y Plane 
(Experimental Results) 
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Bottienecking Phenomenon near a Saddle-node Remnant 
in an Experimental Duffing Oscillator 
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Abstract 

The bottienecking phenomenon near a saddle node remnant or ghost is 
discussed for an electronic circuit modeling Duffing's equation. 
Numerical simulation and a useful experimental perturbation method, 
stochastic interrogation, are used to confirm the analytic inverse 
square root scaling law associated with saddle-node bifurcations. 

Significant advances have been made in the study of nonlinear 
phenomenon by examining the local dynamics of systems.  Local analysis 
near bifurcations can provide great insight into transitions from one 
characteristic type of behavior to another. Using this type of local 
approach and then extending the view of the analysis, a greater 
understanding of the system's global dynamics can be achieved.  The 
emphasis in this talk is placed on the dynamics near a saddle node 
bifurcation and the resulting bottienecking phenomenon. 

Originally observed inadvertently on an oscilloscope during automated 
data acquisition, the bottienecking phenomenon piqued our curiosity. 
The analytic result, derived and discussed for generic saddle-node 
bifurcations in [1,2] and in the context of intermittency [3,4,5] states that the 
time required to pass through a bottleneck induced by a saddle-node remnant 
scales with the inverse root of the change in bifurcation parameter 

VPC-P 

A trivial matter to confirm numerically, experimental confirmation 
provides more of a challenge. How can initial conditions be generated 
that lead the system into the bottienecking region? The answer is an 
experimental perturbation method called stochastic interrogation [6]. 
The talk will be comprised of a description of the experimental setup, a 
review of the scaling law, and a presentation of experimental procedures and 
results. 



The following figure shows preliminary results. Of note is the fact that there 
is considerable scatter near the critical frequency which will be addressed in 
the talk and the constant of proportionality is approximately n in accordance 
with theory. 
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Versal deformation and local bifurcation 
analysis of time-periodic nonlinear systems 
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Abstract 

In this study an analytical method for local bifurcation analysis for time-periodic nonlinear 
systems is presented. In the neighborhood of a local bifurcation point the systems equations 
are simplified via Lyapunov-Floquet transformation which transforms the linear part of the 
equation into a dynamically equivalent time-invariant form. Then time-periodic center 
manifold reduction is used to separate the "criticaT variables and reduce the dimension of 
the system to a possible minimum. On the center manifold the equations can be simplified 
further via time-dependent normal form theory. The normal forms for the cases of 
codimension one bifurcations become completely time-invariant and can be solved in a 
closed form . Then, for the time-invariant normal forms, versal deformation analysis can be 
earned out and the bifurcation phenomenon can be studied in the neighborhood of the critical 
point Closed form post-bifurcation steady-state solutions can be obtained for the case of flip 
and secondary Hopf bifurcations. As physical examples, a simple and a double pendulum 
subjected to periodic parametric excitation are considered. A comparison with results 
obtained from the traditional averaging method is also made illustrated by a simple two 
degrees of freedom example. All results are verified by numerical integration. 

Acknowledgments: Financial support provided by the National Science Foundation (grant 
number CMS-9713971) and the Army Research Office (grant number DAAH04-94G-0337) 
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1. Introduction 
The dynamic response of a rotating asymmetrical shaft supported by a flexible base is investigated. The 

unstable regions of the system and the resonance curves for the steady state oscillations due to a rotor 
imbalance and gravity forces are presented. Finally, the theoretical resonance 
curves are compared with the experimental results. 

2. Equations of Motion and Natural Frequencies 
Figure 1 shows a theoretical model where an asymmetrical shaft system is 

installed on a base with mass M. The base is supported by a structure that has 
a spring stiffness io and a damping coefficient Co. Let xo be the 
displacement of the base and define a moving coordinate system O-xy which 
is fixed on the base. The rotor with mass m is mounted in the middle of the 
asymmetrical shaft S(x, y). The damping coefficient of the shaft is designated 
by c. The axes xi and yi represent the directions of the minimum and 
maximum bending stiffness of the shaft, k- Ak and k+ Ak, respectively. The 
coordinate system O-x iy i rotates with angular velocity of the shaft co. We 
define the time t=0 when the xi axis coincides with die x axis. X (=x+xo) 
represents the absolute displacement of the midpoint of the shaft in the xo 
direction. Define e as the distance between point S and the center of gravity 
of the rotor G, and a as the angular position between the xi axis and the 
line SG. Then, we can write the equations of motion as follows: 

Fig. 1   Theoretical model. 

mx + mx0 + ex + kx - M(xcos2<af + y sin2<af) = meco1 cos(fitf + a) 

my + cy + ky- M(xsin2<af - y cos lot) = meea1 sin(ätf + a)-mg 
Mxa -cx + c0x0 -kx + k0x0 + M(xcos2ß)T + ysin2ß)r) = 0 

(1) 0.8 1.0 1.2 
Rotating  speed    a* 

Fig.2 Natural frequency diagram. 
where g is the acceleration of gravity. 

Figure 2 shows the natural frequency diagram \p*(=p/Vlc/m): the natural frequency], which is enlarged 
near (Cü *,/>*Kl, 1) (where co *=co/Vk/m) when p. (=m/M)=10, d *(= Ak/k)=0A5, and ko*(=ko/k)=l0. 
We name each group of unstable regions seen in Fig.2 as A i, B2, -, E1. Here, region A1 is not seen, but it 
exists near (a> *,p*)=(l, -1). The subscript "1" indicates the type of unstable region (we call this a one-mode 
type with frequencies i co ) where the value of p becomes a complex number on the straight line p=±(x>. The 
subscript "2" represents an alternative unstable region (we call this a 
two-mode type with frequencies t CD ± j3 ). 

=3. 40 

3. Width of Unstable Regions and Resonance Curves 
In this section, we will investigate the above system in more in 

detail by considering the damping. We assume the solutions of 
steady state oscillations in Eq.(l) near the major critical speed as 
follows: 

x = rl+Rlcos(äX + öl) + R1cos(-a>t + 61)+e-fl(cö,-a>j 
y = rJ + R1sia((Ot + Sl) + R2sia(-a)t + S2)+s-f2(co,-(o) (2) 
x0 = r3 + Äj cos( at + Sy) + s- f3 (0?) 

where  £   is a small parameter. Substituting Eq.(2) into Eq.(l) leads 

0.8 1.0 
Rotating  speed 

1.2 
a' 

Fig.3 Influence of the mass ratio p. 
on the width of unstable subregion. 
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1.0 
Rotating speed 

1.2 

Fig.4 Resonance curves for p =10 
e =0.02, and a=10deg. 

to the simultaneous differential equations. Then, the width of unstable regions and the resonance curves can be 
numerically obtained. 

Figure 3 shows the influence of the mass ratio p( = m/M) on the_width of unstable regions when AA = 
M/k)=0.l5,ko (=^o//r)=105c'(=c/v/^)=0.025andco*(=coV^)=0.07.Asthevalueof p changes it 
is found that the unstable region can be divided into one to six subregions. For example, five unstable 
subregions appear when p =10. We call these subregions A, B, C, D, and E in order of increasing co * Each 
of these corresponds to the region with the same name as that shown in Fig.2. 

Figure 4 shows an example of resonance curves. The parameter values are p=l0, e*(=e/x 
-mg/k)=0.02, and a =10 deg, and the others are the same as 
those treated in Fig.3. The solid line represents a stable 
solution, and the dotted line an unstable one. The ordinate in 
Fig.4 represents the amplitude of absolute displacement of the 
shaft X(=X/xst). Subregions A through E in Fig.4 
correspond to those for p =10 in Fig.3. Near the boundaries of 
subregions A and E (which are of one-mode type), the 
amplitude is infinite. On the contrary, the amplitude does not 
become infinite at the boundaries of subregion B and D (which 
are of two-mode type), but changes continuously from a stable 
solution to an unstable one. The symbols • in Fig.4 represent 
the amplitude of the waveform calculated by integrating Eq.(l) 
numerically and by using the FFT analysis. 

4. Experimental Results 
Figure 5 shows the resonance curves when the values of 

the base mass M (including the bearing pedestals) were 86.16 
kg (p =Mm=15.81). Y represents y. Now, we can see the 
existence of five unstable subregions in Fig.5, where one-mode 
type unstable vibrations appeared in subregions A, C, and E, 
and two-mode type appeared in subregions B and D. In 
addition, the resonance curves correspond to those of Fig.4, 
and the shape outside of the unstable region is very similar 
between the two figures. 

Figure 6 shows a comparison of theoretical and 
experimental results. The theoretical boundaries of unstable 
regions are plotted in thin lines, and the widths of unstable 
subregions found by experimentation are drawn in the thicker 
horizontal tines. This comparison shows that the theoretical 
width of the unstable subregions coincides well with those 
measured in the experiments. 

5. Conclusions 
The conclusions are summarized below: 

(1) The unstable region for the system treated here is 
divided into six subregions at most 

(2) The modes of vibration in these divided unstable 
subregions are classified into two types; a one-mode type and a 
two-mode type. 

(3) As for the shape of the resonance curves, the amplitude becomes infinite at the boundary of a one-mode 
type of unstable region, while the amplitude is finite at the boundary of a two-mode type of an unstable region 
changing continuously from a stable solution to an unstable one. 

(4) It was also found that the experimental results coincided well with the corresponding theoretical results 
when comparing the widths of unstable subregions and the shapes of the resonance curves. 
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Fig.5 Experimental resonance curves 
when the base was flexibly supported. 
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Fig.6 Comparison of theoretical and 
experimental unstable subregions. 
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Using Karhunen Loeve Decomposition to Analyze the Vibroimpact 
Response of a Rotor 

M.F.A. Azeez and A.F. Vakakis 
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The method of Proper Orthogonal Decomposition (POD) also known as Karhunen Loeve (KL) 
method has been used successfully to create lower dimensional models in fluid mechanics ([1]) and 
heat transfer systems. The KL Method can extract dominant modes of the underlying dynamics 
of the system, from random experimental or numerical data. These modes are useful since they 
can be used as trial functions, in Galerkin-type procedures ([2]), to reconstruct the dynamics of 
the original system, using a lower order model. The KL modes of the system can also be used for 
non-parametric system identification ([3]). The KL method can be applied to nonlinear as well as 
dissipative systems. 

In this presentation, the application of the KL method to study the dynamics of an overhung rotor 
undergoing vibroimpacts (Fig. 1 (a)) is discussed. This system has already been considered where 
comparisons between experiments and numerical simulations have been performed, in an earlier 
work by the authors ([4]). In the current work, the KL modes are obtained for various speeds of 
rotation and different clearances. It is found that in regions of periodic response a single KL mode is 
sufficient to capture nearly all the energy of the system; in chaotic, subharmonic and quasiperiodic 
regions, more than one KL modes are needed. The degree of nonlinearity is manifested as high 
energy transfer between the KL modes(Fig. 1 (b),2(a)) anil changes in their shapes. 

Once the KL modes are obtained they can be used for reconstructing the response of the system. It 
was reported in [4] that several physical modes are needed to obtain accurate transient responses, 
as the degree of the nonlinearity is high. It will be shown that only a few KL modes can capture the 
transient responses accurately. This is demonstrated for a few cases of nonlinearities. The advantage 
of the KL modes, is that the data required for their computation need not be very closely spaced 
in time and only a few cycles of simulation are sufficient. The advantage is immediate, because any 
large scale structure with nonlinearities, can be simulated using Finite Elements Method, for only 
a few cycles and the KL modes can then be obtained and used to reconstruct the original system 
response in a profitable manner. One such reconstruction using 3 and 4 KL modes, is shown in 
Fig. 2 (b) and there is an excellent match of the time responses. Hence, the KL method provides 
a promising way to develop low-dimensional modes for systems with even strong or nonlinearizable 
nonlinearities. 

Keywords: Karhunen Loeve method, system identification, rotor, impacts, 
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Figure 1: (a) Schematic of the rotor; (b) sample chaotic (800 rpm) and higher period (1300 rpm) 
rotor orbits [correspond to points 5 and 6 of Fig (2)] 
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Figure 2: (a) The percentage of energy vs the frequency index in the first three KL modes as the 
speed is varied for a given clearance of 0.2 mm; (b) comparison of Exact (Ex) and reconstructed 
(KL) responses (horizontal displacements at x=0.302m), for point 6 of Fig 2 (a) 



EFFICIENT CFD APPLICATIONS USING DISCRETE-TIME VOLTERRA KERNELS 

Walter A. Silva 
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INTRODUCTION 

During the early development of mathematical models of unsteady aerodynamic 
responses, the efficiency and power of superposition of scaled and shifted fundamental 
responses, or convolution, was quickly recognized. This led to the classical Wagner's 
function, which is the response of a two-dimensional airfoil, in incompressible flow, to a 
unit step variation in angle of attack. Similar functions such as Kussner's function, which 
is the response of a two-dimensional airfoil to a sharp-edged gust in incompressible flow 
were developed as well. 

As geometric complexity increased, however, the analytical derivation of these time- 
domain fundamental functions became quite difficult and, therefore, impractical. As a 
result, frequency-domain aerodynamics for three-dimensional configurations became the 
method of choice for computing linear unsteady aerodynamic responses. For the case 
where geometry- and/or flow-induced nonlinearities are significant in the aerodynamic 
response, time integration of the nonlinear equations is necessary, as is done in aeroelastic 
CFD codes. As CFD codes and models have grown in complexity, there is a very real 
need to develop alternative and efficient nonlinear models for use in preliminary design. 
Research in this area, combined with the relatively new fields of digital filter design and 
digital signal processing (DSP), has led to a new method for numerically defining the 
classical fundamental aerodynamic functions for any configuration in compressible flow, 
and to the existence of an even more fundamental aerodynamic function: the aerodynamic 
impulse response function. 

This paper will address the mathematical existence and the numerically-correct 
identification of linear and nonlinear aerodynamic impulse response functions. Differences 
between continuous-time and discrete-time sytem theories, which permit the identification 
and efficient use of this function, will be detailed. Important input/output definitions and 
the concept of linear and nonlinear systems with memory will also be discussed. It will be 
shown that indicial (or step) responses (such as Wagner's function), forced harmonic 
responses (such as those from Doublet Lattice theory), and responses to random inputs 
(such as gusts) can all be obtained from an aerodynamic impulse response function. This 
will establish the aerodynamic impulse response function as the most fundamental 
aerodynamic function that can be extracted from any given discrete-time, aerodynamic 
system. These results help to unify our understanding of classical two-dimensional 
continuous-time theories with modern three-dimensional, discrete-time theories and 
applications. 

First, the method is applied to the nonlinear viscous Burger's equation. Then the 
method is applied to three-dimensional aeroelastic models using the CAP-TSD 
(Computational Aeroelasticity Program - Transonic Small Disturbance) code and the 
CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings 
will be also presented. Because of its mathematical generality, an important attribute of this 
methodology is that it is applicable to a wide range of nonlinear, discrete-time problems. 

CONCLUSIONS 

The mathematically correct and numerically-accurate identification of linear and 
nonlinear aerodynamic impulse responses was presented. For the linear case, the 



aerodynamic impulse response functions were used to reproduce exactly the responses of a 
linearized three-dimensional aeroelastic CFD model to arbitrary inputs consisting of 
aeroelastic motions at a fraction of the computational cost and time. The relationship 
between classical time-domain aerodynamic functions (Wagner's and Kussner's) and the 
discrete-time, linear aerodynamic impulse responses identified was demonstrated. It was 
shown that the classical functions can be computed from the impulse response functions, 
establishing the aerodynamic impulse response function as the most fundamental 
aerodynamic function that can be extracted from a discrete-time aerodynamic system. 

For the nonlinear case, the existence, identification, and application of nonlinear, 
discrete-time, aerodynamic impulse responses was presented. Applications of the method 
to the nonlinear viscous Burger's equation revealed the existence of well-behaved first- and 
second-order impulse response functions. These functions represent an alternative input- 
output mapping of the nonlinear discrete-time equations that can be used to predict the 
response of the system to arbitrary inputs. The method was then applied to nonlinear 
aeroelastic CFD models using the CAP-TSD and CFL3D codes. The results prove the 
existence of these functions for complex, three-dimensional numerical models and their 
application proves their usefulness in terms of accuracy and computational efficiency. 



Some Computer Assisted Studies in Nonlinear Dynamics 
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1. Introduction 
Recently the author and his coworker [1] developed a package of the computer algebra svstem 

Mathematica [2], to implement necessary computations for higher-order approximations of the averaging 
method (e.g., [3]). They used the package for some specific examples and showed that the higher- 
order averaging results can not only quantitatively but also qualitatively improve the lower-order ones. 
Moreover, the package and its improved version were used to perform higher-order averaging analyses for 
ultra-subharmonics as well as higher-order superharmonics and subharmonics [4, 5]. 

On the other hand, some computer softwares have been developed for numerical analysis of bifur- 
cations. In particular, the computer software AUTO [6] has been widely used and its usefulness has been 
demonstrated for numerous examples. A driver to AUTO was also developed for numerical analysis of 
homochnic and heteroclmic behavior of maps and periodically forced systems [7]. The effectiveness of 
the driver was proven for several examples there. 

In this talk, we review the series of computer assisted researches [1, 4, 5, 7]. We consider some 
examples, for winch the usefulness of the Mathematica package and AUTO driver is demonstrated Their 
latest versions are available from the author (email: yagasaki@cc.gifu-u.ac.jp) on request. See the original 
papers for details on the results. 

2. Higher-Order Averaging 
Higher-order averaging can be easily performed by means of the Lie transformation [3]. The devel- 

oped Mathematica package, haverage.m, includes two programs implementing the higher-order averaging 
procedure and van der Pol transformation for periodically forced, multi-degree-of-freedom weakly non- 
linear systems. 

As an example, we consider the periodically forced, standard Duffing oscillator, 

X + ÖX+X +X3 =: JCOSWt, (1) 

where 6, j and u are positive constants. We set 6 = ed6 and j = ^7, where 5, j = 0(1) and d is a 
positive integer. Letting x = ^e{z -Tcosut) with T = 7/(u2 - 1) in equation (1), we obtain a weakly 

z + z = e(z - Tcoswt)3 + €d6(z + uTsmut). (2) 

The (higher-order) averaging analyses for equation (2) were performed with the assistance of the package 
haverage.m. See [5]. The obtained approximate bifurcation sets are shown in Fig. 1 Numerical 
simulation results by AUTO are also plotted as broken curves in the figure. 

3. Homoclinic Behavior 
The developed AUTO driver, HomMap, can treat three- or more dimensional problems and detect loci 

of homoclinic and heteroclmic points if the unstable or stable manifolds are one-dimensional. The user 
only has to prepare a simple Fortran source and data files for a new problem as in the standard version 
oi AUTO. 

We first consider the forced Duffing oscillator with double well potential, 

i\=x2,    x2=x1-x3-5x2+jcosut, (3) 

where 6, w and j are positive constants. For 6, j > 0 sufficiently small, there is a hyperbolic periodic 
orbit near the origin. Running AUTO with HomMap found several types of homoclinic orbits and produced 
homochnic bifurcation curves in the (w,7)-space for 6 = 0.1, as shown in Fig. 2. 

We next consider the forced, coupled Duffing oscillators, 

±i = *3,    i2 = *4,    x3 = x1-(xl+x2
2)x1-6x3+y1cosut!    x4 = ax2-(x\+xl)x2-6xA+l2cosut,  (4) 



Fig. 1. Bifurcation sets of the Duffing oscillator (1) for 6 = 0.0001. The theoretical results are shown solid and 
the numerical simulation results shown broken. The curves indicate a pitchfork bifurcation set if it is labeled "pf", 
and a saddle-node bifurcation set otherwise. The rational number m/n represent the results for ultra-subharmonic 
resonances of order m/n. 

Fig. 2.   Homoclinic bifurcation sets of the Duffing 
oscillator (3) for 6 = 0.1. 

Fig. 3. Homoclinic bifurcation sets of the coupled 
Duffing oscillators (4) for 6 = 0.1, u = 1 and 
72 = 0.05. 

where 6, w, a and jj} j = 1,2, are positive constants. When 6 and jj, j = 1,2, are sufficiently small, 
equation (4) has a hyperbolic periodic orbit near the origin. Running AUTD with HomMap found three 
types of homoclinic orbits and produced homoclinic bifurcation curves in the (a,7i)-space for 6 = 0.1, 
u = 1 and 72 = 0.05, as shown in Fig. 3. 
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An efficient, hybrid frequency-time domain 
method for the dynamics of large-scale 
dry-friction damped structural systems. 
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The steady-state response to periodic excitation of multi-degree of free- 
dom structural systems with several attached dry friction dampers is studied. 
The general case of elastic/perfectly plastic dampers is considered. One dis- 
tinguishing feature of the work is that no further approximation of Coulomb's 
friction law is made in the calculation of the friction force. Namely, the dis- 
placement of and the force transmitted by a friction damper are deduced in 
the time domain from the displacement and velocity of the corresponding de- 
gree of freedom to which the friction damper is attached. All other terms in 
the equations of motion are transformed, following a multi-harmonic balance 
procedure, into the frequency domain through the use of a Fast Fourier Trans- 
form. The resulting solution algorithm is thus hybrid in the frequency and 
time domains. The convergence of the method is ensured by a modified Broy- 
den's algorithm, which is used to solve iteratively the set of multi-harmonic 
nonlinear equations in the frequency domain. 

The resulting solution procedure is robust and highly performant for all 
cases considered. It features fast convergence and yields extremely accurate 
results when compared to direct time integration, in part because no approx- 
imation of the friction force is made. For example, in the study, complete 
frequency responses are obtained for systems with 108 degrees of freedom 
and 36 dry friction dampers, over the entire range of friction parameters, 
and where as many as 17 temporal harmonics are taken into account. In the 
latter case the resulting 1836 frequency-domain equations, of which 612 are 
nonlinear, are handled effortlessly by the Broyden solver. 

The method can handle both friction dampers that are attached to ground 
and the general case of dampers that connect two degrees of freedom of the 
structure. As an application, a cyclic assembly of beams coupled by lin- 
ear elastic elements is studied, with friction dampers located between the 
beams and the ground or between two beams, or both.   This system is a 

1Graduate student research assistant, guillen@engin.umich.edu 
2Professor, pierre@umich.edu 



simplified model of a dry-friction damped bladed disk used in turbomachin- 
ery applications. Assemblies with various number of beams (blades) and of 
friction dampers are considered. Results are obtained for both tuned and 
mistuned configurations of these systems subject to various traveling wave 
"engine order" excitations, for a variety of structural and friction parame- 
ters. Interesting, complex features of the nonlinear response are revealed, 
such as: motions for several stick-slip phases per period; localized motions 
for mistuned systems, which feature mostly sticking motion at most blades 
and mostly slipping motion at a few blades; subresonances; effects of higher 
harmonics. 

This work is believed to be the first to develop a robust solution procedure 
for predicting the complex, multi-harmonic reponse to periodic excitation of 
large-scale structural systems with many friction dampers. Current efforts 
include the extension of the method to study the stability of autonomous, 
dry-friction damped, multi-degree of freedom systems with negative viscous 
damping. Preliminary results for the latter topic will be presented. 



ACCURATE PREDICTION OF THE NONLINEAR DYNAMIC 
BEHAVIOUR OF AN IMPACT OSCILLATOR 

Assistant Professor Annika Stensson 
Division of Computer Aided Design 

Department of Mechanical Engineering 
Lulea University of Technology 

SE-971 87 Lulea, Sweden 

Impact is an event often occurring in engineering and it is well known that mathematical 
models of impacting systems can exhibit complex dynamic behaviour. The nonlinearity 
may cause the system to show phenomena such as multiple attractors, subharmonic 
response and chaotic motions. This means that different initial conditions can lead to 
completely different asymptotic behaviour. As a consequence, if a parameter or an initial 
condition is only changed a small amount, the response can suddenly bifurcate to another 
type of motion. Most studies on systems with clearances and impacts are theoretical and 
effects due to small changes in parameter values have been studied. In practice, the 
parameter values can only be determined within a range of resolution. The parameter 
values will change during the lifetime of the product, due to wear, variation in 
temperature, inexact mountings etc. It is also, for most cases, impossible to keep track on 
the exact initial conditions. 

This work focus on to what extent numerical simulation can be used in order to predict 
the nonlinear behaviour of an impact oscillator. To analyse this problem extensive 
experiments have been made and the results are compared with numerical simulations. 

The mechanical system consists of a harmonically forced impact oscillator with initial 
clearance, see Figure 1. The system is studied using a systematic variation of the 
excitation frequency. The chaotic regions are studied carefully. Subharmonic responses of 
different periodicity are presented and probable coexisting solutions are described. 
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Figure 1. Illustration of the experimental setup. 



The investigated region of excitation frequency is shown to include two regions of main 
chaotic motion which are bounded on both sides by periodic resonance. There are also 
subharmonic motions within the regions of main chaotic motion. A subharmonic response 
of type period two/ten and a chaotic motion were obtained in the experiment for the same 
measured parameter values. 

The mass is much heavier than the beam and the deflection is relatively small, which 
makes it possible to model the system as a single-degree-of-freedom mass/spring system 
with a linear spring coefficient. The model also includes viscous damping, an 
instantaneous impact and an initial clearance. The dissipation in the impact event is 
described by a coefficient of restitution. Within the investigated parameter space, the two 
main chaotic regions surrounded by large periodic resonances were found by numerical 
simulations. The experimentally obtained subharmonic motions within the regions of 
main chaotic motions were shown to be periodic windows in the numerical simulations. 
The structure of some experimentally obtained chaotic attractors are compared with 
corresponding attractors from numerical simulations. 

It is shown that coexisting solutions are present for some parameter values, but not for 
others. The periodic two/ten motion and the chaotic motion that were found in the 
experiment for the same parameter values were studied carefully using numerical simula- 
tions. Investigations using the cell-mapping technique showed no coexisting solutions due 
to sensitivity to initial conditions. However, it is shown that a small variation of the initial 
gap and/or the excitation amplitude results in these different types of responses. This 
indicates that the main reason for the two different solutions found in the experiment is 
due to measuring errors. A measuring error of about 0.4% is inevitable due to the 
resolution of the inductive displacement transducers and the accuracy of the measuring 
card. 

To conclude, it is shown that the experimentally observed behaviour of the system is 
closely predicted by numerical simulation of the governing equation of motion. 
Coexistence of solutions, sensitivity to the parameter values and measuring errors are 
discussed. By using the information about the dynamical behaviour of the system 
included in the equations of motion and by using graphical representations such as time 
histories, phase plane projections, Poincare sections, bifurcation diagrams and cell-maps, 
a practising engineer should able to select a good design. For example, the excitation 
frequency ranges in which stable periodic low amplitude responses can be expected to 
occur are possible to determine, and the peak amplitudes of such response can be 
predicted. This can lead to much lower stresses, less noise level and better endurance. 
However, the designer must be very careful when examining possible variations in 
parameter values and initial conditions in order to get enough information to be able to 
make a good choice. 
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On Choosing Inputs for System Identification in Nonlinear Systems 

T. Doughty, P. Davies and A.K. Bajaj 
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288. 

Nonlinear systems can display a wide variety of interesting behavior: from jumps in the 
response to amplitude-modulated motions and chaos. The conditions under which the 
system exhibits this behavior depend on the system parameters, the initial conditions and 
the nature of the excitation. Small changes in any of these may lead to very different 
response characteristics. Seeking out this interesting behavior in an experimental system 
may be nearly impossible without analysis of accurate models of the system to guide the 
experimenter, thus the requirement for system identification to develop accurate models 
of the system. 

Nonlinear system identification requires a deep understanding of the behavior of the 
system under investigation. Unless the system exhibits behavior that depends on all the 
terms in an accurate model of the system, some of the model terms will be poorly 
identified. The experimentalist, therefore, must create excitation conditions that ensure 
nonlinearities are strongly influencing the response. The problem becomes determining 
what these desirable excitation conditions might be. This is where analysis of the 
theoretical model of the system plays a role. Approximations to model coefficients could 
be used in model analysis to determine the region where the response of interest is likely 
to be. Experimentally exploring this region, and comparing model predicted response 
characteristics to measured response characteristics will help identify the regions where 
the most useful data for system identification might be generated. This data will be used 
to improve the model estimate and the exploration process can be repeated, fine tuning 
the model until the theoretical and experimental responses are close. 

The research reported in this presentation focused on three different approaches to 
identification of models of modes in structures. The first identification method uses 
measured states (displacement, velocity and acceleration) and the continuous time 
nonlinear differential equation of the system [1]. A matrix relation is constructed 
wherein time dependent vectors (linear and nonlinear combinations of the states) are 
known. The model parameters are obtained by solving the matrix equation. The method 
of Harmonic Balance is the basis of the second approach. Following the work of Yasuda 
[2] the system's output is assumed, in Fourier Series form, and then substituted into the 
differential equation generating relationships between the spectral amplitudes of the 
input and output. As in the first method, a matrix relation is constructed. Knowing the 
spectral amplitudes, the differential equation's parameters are again obtained by solving 
a linear matrix equation. The third method is based on the steady state amplitude 
equation arising from a Multiple Time Scales analysis of the differential equation. When 
fitted to a collection of input and output data sets, the steady state amplitude equation 
gives rise to a system of nonlinear, coupled algebraic equations. These are then solved to 
find the differential equation parameters. 

The first two methods both use measured time histories and specifically the 
information at the excitation frequency and harmonics of the excitation frequency. In an 
experiment the data will be low-pass filtered to prevent aliasing in data acquisition, and 
this will remove some of the higher frequency information. The implications of this on 
the system identification are explored. The higher sampling rates and wider bandwidth 



required to retain the significant harmonic data are not necessary for the third method, 
where only the amplitude at a single frequency is tracked, and compared to the model 
predictions of the steady state amplitude. However, this approach relies on the smallness 
of certain terms in the differential equation, and as this assumption is violated the 
accuracy of the model parameter estimates degrades. The results from both simulations 
and experiments on cantilevered beams will be discussed. 

[1] Young, P., 1996, "Identification, Estimation and Control of Continuous- Time and 
Delta Operator Systems," Proc. of the International Conference on Identification in 
Engineering Systems, University of Wales, Swansea, UK, pp. 1-17. 

[2] Yasuda, K., Kawamura, S., and Watanabe, K., "Identification of Nonlinear Multi- 
Degree-of-Freedom Systems (Presentation of an Identification Technique), JSME 
Int. J., Ser m, Vol. 31, No. 1 (1983), p. 8-14. 



An Iterative Approach to Decomposing Harmonics for Nonlinear Systems 

Sean O'F. FAHEY 

Acovstics Department, Electric Boat Corporation, 75 Eastern Point Road, Groton, CT 06340, USA 

Abstract 
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the spectral components near auq ± bur by the values near uq and ur alone, incorporating our understanding about what 
occurs near cujq ± b(jr. In this sense we discuss a minimum eigenvalue set. 

We desire the difference between measure and model to be minimal. The two common expressions for quantitatively 
expressing differences between measure and model are the maximin norm and the Euclidean norm (Forsythe 1957). The 
maximin norm expresses the single largest deviation between measure and model. The Euclidean norm expresses the sum of 
squared differences. Our interest remains with a distributed measure of error. Hence, we consider the problem in terms of 
the Euclidean norm. In column matrix form, a real error vector is expressed 

{.^measure} ~ \XmodelS = {e} (1) 

such the Euclidean norm is 

l|0|| = 6re (2) 

where T denotes matrix transpose. We desire to minumize the Euclidean norm with a minimum set of parameters describing 
the model. This formulation of the problem is ideal. Unfortunately such problem statements are not practical or efficient 
under many circumstances. 

We consider an example in explaining why the Euclidean norm is often sacrified to suboptimal procedures. Given a time 
limited signal known to be governed by IM constant coefficient complex exponentials 

2M-1 

E[x] = ^2 Ak exp[Xkt] (3) 
fc=0 

2M-1 

*i-  E M exp[Xkti] = £i (4) 
Jc=0 

where x, represents a physical measurement. The signal is evenly sampled and has no spectral content above the Nyquist 
criterion /„^ equal to l/2Ai, where At is the sample rate. The signal is considered in the presense of some added Gaussian 
noise. In order to minumize the contribution of noise the quantity of data obtained must be strictly greater than that 
explicitly required for parameter estimation. Hence, x is a data vector choosen with length strictly greater than 2M. Forming 
the Euclidean norm, one resolves 

N-l N-12M-1 N-12M-1 

\\o\\ = E ** -2 E E A^ «*M+E E Al «p[2A**ii (5) 
i=0 i=0    fe=0 i=0    fc=0 

This objective function should be a minimum when its first partial derivatives with respect to Ak and \k equal zero, expressed 

N-l N-l 

°=-2EXiea:pfAfe^ + 2j4*:Eexp[2Afc^'   V   fce{0..2M-l} (6) 
i=0 i=0 

N-l N-l 
0 = 2Ak E Xiti exPlxkU] - 2A\ E U exp[2Xktil   V   ke{Q..2M-l} (7) 

i=0 i=0 

The solution of these equation represents the least squares realization for Ak and Xk. These equations also represent nonlinear 
expressions in terms of Ak and A^ for which no closed form solution is available (McDonough and Huggins 1968; Marple 
1987). Because of such difficulties suboptimal procedures are often applied in the determination of corresponding parameters. 

McBride, Schaefgen, and Steiglitz (1966), McDonough and Huggins (1968), and Evans and Fischl (1973) discuss maintain- 
ing the Euclidean norm by simultaneous and iterative minimization by gradient decent procedures or Newton's method. We 
take their lead; but provide only a minimum set of eigenvalues to explain our model. We evaluate the Euclidean norm and use 
the conjugate gradient technique to determine optimal eigenvalues, magnitude and phase. This procedure produces estimates 
that are appropriate for considering the phase difference between spectral components irrelevant of sampling periodicity, when 
phase locked behavior is known to exist. 



Experimental Identification Technique in Time Domain 
for Nonlinear Rotating Shaft Systems 

Kimihiko YASUDA and Keisuke KAMIYA 
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Furo-cho, Chikusa-ku, Nagoya, 4640814, Japan 

Abstract 

For identifying rotating shaft systems, modal testing methods are 
often used. But the present modal testing methods are not appropriate for 
rotating shaft systems. The reason is that the methods are unable to 
determine parameters inherent to the systems such as the unbalance and 
anisotropy. Furthermore the methods are not applicable to nonlinear 
rotating shaft systems. 

In a previous paper [1], we proposed a new experimental 
identification technique applicable to nonlinear systems. Then we extended 
the technique so that it can be applicable to nonlinear rotating shaft systems 
[2]. These techniques are based on the principle of harmonic balance, and 
uses data of periodical responses of the systems. To obtain this type of data is 
not always convenient. 

In this study, we attempt to develop other new identification 
techniques free from inconvenience with respect to the type of data. We 
consider a rotating shaft system composed of a shaft with a disk mounted on 
it. The basic procedures of the techniques are to evaluate the error contained 
in the equations of motion when the experimental data are substituted and 
to find the parameters which make the error the smallest. To find such 
parameters, we adopt two techniques, the usual least square method and the 
Lagrange's multiplier method. In this way, we proposed two identification 
techniques. The proposed techniques have no limitations as to the type of 
data. 

To check applicability of the proposed techniques, we first conducted 
numerical simulation. We found that, for data without noises, both 
techniques yield accurate results. Also we found that, as noises increase, the 
first method using least square method loses accuracy but the second 



method using the Lagrange's multiplier method does not so much. Thus, the 
latter usually yields better results. But for applying the latter technique, 
some iteration technique has to be used, starting from some initial values. To 
have initial values, the former technique can be used. So both techniques are 
of value. 

Finally we conducted experiments. We compared the maximum 
amplitudes of deflections obtained in the experiment with those predicted by 
the identification results. An example of the comparison is shown in the 
figure below. We found that both techniques yield good identification result. 
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Nonparametric Nonlinear System Identification of a Nonlinear Flexible 
System Using Proper Orthogonal Mode Decomposition 

X. Ma, M. A. F. Azeez and A. F. Vakakis 
Department of Mechanical and Industrial Engineering 

University of Illinois at Urbana-Champaign, Urbana, Illinois -61801, U. S. A. 

The method of Proper Orthogonal Decomposition which also known as Karhunen Loeve 
(KL) method can be used to extract dominant modes of any physical system from time 
measurement made at several points in the special domain. This has been applied in 
different fields such as fluid mechanics of acoustical systems. In the current work, we 
analyze the system of two linearly coupled cantilever beams each grounded by nonlinear 
springs with cubic nonlinearity (Fig. 1). The dynamics of the system has been studied 
numerically and experimentally in previous work ([1], [2]). The important parameters of 
the system are linear coupling stiffness efc and the nonlinear coefficient of the grounded 
springs ea. It has been observed that the system possesses two stable modes when the 
ratio fc/ap2 is greater than a critical value, where p is the total energy of the system. 
When the ratio is smaller than the critical value, the system possesses three stable modes. 
It is the aim of the current work to find these regions using numerical data and observe 
the change of the KL mode shapes as the energy in the system is changed. 

The KL modes are obtained by exciting each of the beams by means of distributed 
harmonic forces and recording the displacements along the span of the beams. Then a 
correlation matrix is created and the dominant mode shapes of energies are obtained from 
it. Figure 2 gives an example of the first KL mode shapes of a weakly coupled system, the 
energy percentage of the first KL modes corresponding to two beams are 97 90% and 
99.77% respectively. 

The energy stored in KL modes gives the measure of the dimensionality of the system., 
These modes can be used to reconstruct the dynamics of the system using a reduced order 
dynamical mode. It is numerically verified that the first KL mode can be used to construct 
the response the system. The energy ratio between the two beams with nonlinearities and 
without nonlinearities is shown in Figure 3. From it we see that nonlinear localization 
happens when the two beams are weakly coupled. 

Key Words: proper orthogonal decomposition, nonlinear system identification, beams 
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IDENTIFICATION OF NON-LINEAR FREE VIBRATION: 

TIME DOMAIN HUBERT TRANSFORM APPROACH 
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Haifa, 32000, Israel, email: merbe02@tx.technion.ac.il 

This paper summarizes the results of a non-linear free vibration identification that is per- 

formed on the base on the Hubert transform. Some different attempts of applying the HT to 

frequency domain for non-linear vibration system identification are presented in [7]. The HT of 

the Frequency Response Function (FRF) of a linear structure reproduces the original FRF, and 

any departure from this, i.e. distortion, can be attributed to non-linear effects. There exists a 

possibility to distinguish the common types of weakly non-linearity in mechanical structures from 

the distortions in the FRF. But the FRF distortion gives no way to quantify the non-linearity 

which can then be incorporated into the system -dynamical model.- 

Other results of applying the HT to time domains [1, 2] do better:  they enable the deter- 

mination of the non-linear system dynamical model.   For this non-parametric identification in 

the time domain it was proposed that relationships be constructed between the instantaneous 

, frequency and amplitude (system backbone or skeleton curve) plus relationships between the 

damping coefficient (or decrement) as a function of amplitude [3]. 

Of course, modern Time-frequency and Time-scale analysis methods (the Wigner-Ville distri- 

bution, the Wavelet transform etc.), based on the transient data precessing, could be successfully 

applied to the non-linear vibration system identification. However the HT in time domain ap- 

proach has two principal advantages: it leads directly to non-linear parameters of the vibration 

system model and also it offers the best resolution in the time domain. Really, the obtained 

instantaneous system modal parameters are functions of time and can be estimated at any point 

of the transient process. The total number of these points which map the free vibration is much 

greater than that of the peak points of the signal. It opens the way for averaging and for other 

statistical processing procedures, making the identification result more precise. 

The proposed direct non-parametric time domain method based on the HT allows a direct 

extraction of the linear and non-linear parameters of the system from the measured time signal of 



output. The resulting non-linear algebraic equations are rather simple and do not depend on the 

type of non-linearity that exists in the structure. When applying this direct method for transient 

vibration, the instantaneous modal parameters are estimated directly. That enables us to consider 

an inverse identification problem, namely, the problem of estimation of the initial non-linear 

elastic and damping force characteristics. The method is robust, uses measurement techniques 

in current engineering practice and would appear to have considerable practical promise. 
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Dynamics of a Flexible Cantilever Beam Car- 
rying a Moving Mass 
SULTAN A.Q. SIDDIQUI, M. FARID GOLNARAGHI 
Department of Mechanical Engineering, University of Waterloo 
GLENN R. HEPPLER 
Department of Systems Design Engineering, University of Waterloo, Water- 
loo, Ontario, N2L 3G1 CANADA 

Abstract. A number of systems in mechanical and civil engineering can 
be idealized as a flexible beam carrying a moving mass. Examples include 
motion of vehicles on bridges, cranes carrying moving loads, robotic arms 
and space structures. The basic problem in analyzing such systems is that 
even with a simple model for the beam (e.g., an Euler-Bernouli beam) the 
coupling between the mass and beam makes the solution of the equations of 
motion difficult to obtain. The motion of the mass makes the inertial and 
stiffness properties of the beam time dependent. 

Dynamics of the system is described by two coupled nonlinear partial dif- 
ferential equations (PDEs) involving time dependent Dirac-delta functions. 
Numerically the problem was solved using two approaches both based on 
Rayleigh-Ritz discretization method. In the first technique the mode shapes 
of a simple cantilever beam were used as basis functions and the resulting 
nonlinear ordinary differential equations were solved using an automatic stiff 
ordinary differential equation (ODE) solver. It should be noted that the 
mode shapes are not eigen functions as in linear systems but they are used 
here as basis functions in the Rayleigh-Ritz method. Increasing the number 
of basis functions would approximate the solution more closely. However it 
also increases the number ODEs, rendering the system "stiff" and quite im- 
possible to solve using automatic ODE solvers. In the second approach the 
basis functions were obtained using finite elements. The nonlinear terms in 
the equations of motion impose high degree of continuity requirements (con- 
tinuous second derivative) on the finite element formulation. As a result, the 
finite element basis functions have to interpolate the deflection, slope and 
curvature at each node. The process leads to a large number of ordinary dif- 
ferential equations (ODEs). Finite differences were used to reduce the ODEs 
to algebraic equations. The resulting nonlinear algebraic equations are quite 
difficult to solve using conventional methods, so a new iteration technique 
was presented. Unlike Newton's method or its variants, this technique does 



not require computing the Jacobian which imposes another degree of conti- 
nuity on the finite element formulation. 

The problem was attacked analytically using a perturbation method. For 
a simplified model (neglecting nonlinearities higher than quadratic) an ana- 
lytical solution was obtained for the nonlinear equations in terms of elliptic 
functions. The focus of this analysis was on the behaviour of the system un- 
der internal resonance between the mass and the beam. Using the analytical 
solution, a parametric study was done to investigate the system behaviour 
in various regions. The frequency interactions between the moving mass 
and the beam were studied using time-frequency analysis techniques. The 
results obtained and the techniques developed apply to beams undergoing 
small oscillations. 

This is an extension of an earlier work by Golnaraghi [1, 2] where the 
beam was modeled rigid and flexibility was incorporated through springs. 
Later Khalily et. ed. [3] used an improved eigen functions method which 
accounts for the motion of the mass and obtained numerical results. The 
presentation would be based on a previous publication by the authors [4] 
and incorporating new results obtained using time-frequency analysis. 
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Note: This "abstract" only includes the Abstract, Introduction and Conclusion of our paper. 

Abstract: In this paper we model and analyze nonlinear oscillations which are known to exist in some 
Conohs based Gyroscopes under certain circumstances. A detailed derivation of a nonlinear coupled 
electro-mechanical model of the gyroscope is given and analyzed using perturbation theory. The model is 
also simulated and the results are shown to give an accurate description of the experimental results. This 
work can be used as a starting point of designing nonlinear observers and vibration controllers for the 
gyroscope in order to increase the performance. 

Introduction 

Coriolis based gyroscopes, in which vibrating 
cylindrical shells are used as sensing 
elements, are gyroscopes which possesses a 
number of advantages over conventional 
spinning wheel gyroscopes. Troublesome 
bearings are totally eliminated, they have low 
power requirements, short start up time and 
very low inherent noise 
[6]. In addition, if the vibrating cylinder is 
designed to give a dynamically balanced 
oscillator, it is known that performance is not, 
at least to a first order, sensitive to linear 
acceleration [2],[4]. 

Although this type of gyro has many attractive 
properties, it also introduces some challenges 
with respect to modeling and control. One of 
the most important problem is the existence of 
unwanted superharmonic resonances [9] in the 
drive and sense loop of the gyroscope when 
the excitation amplitude becomes large. This 
cannot be explained by linear vibration 
theory. Using nonlinear vibration theory, this 
phenomena may theoretically be reduced by 
changing the physical parameters of the 
gyroscope such as length, radius, height, 
thickness and material parameters and thereby 
changing the relative spacing between the 
linear natural frequencies. However, due to 

the complex dynamics of the gyroscope and to 
the fact that one wants to minimize the size, this 
seems like a very hard task [7] and is of course 
not applicable to already manufactured 
gyroscopes. 

[5] and [2] analyzed cylinder gyroscopes by 
representing it as an infinite cylinder. [1] 
investigated the feasibility of a piezoelectric 
cylinder gyroscope and derived a electro- 
mechanical model by using Lagrange's equation. 
[8],[3] and [10] analyzed the effect of mass 
imperfections in cylinder gyroscopes. Common 
for all these references are that they were only 
analyzing linear models and therefore did not 
include important nonlinear effects. 

In existing industrial gyroscopes, the problem of 
superharmonic resonances is ^solved" by 
reducing the excitation amplitude, but since the 
Coriolis acceleration is proportional to this 
amplitude, this means that the sensitivity of the 
gyro decreases. However, a more constructive 
solution may be to introduce vibration damping 
controllers to reduce the effect of the 
superharmonic resonances and therefore be able 
to increase the performance of existing gyros. 

In this paper we extend previous proposed 
models by including geometrical nonlinearities. 
Based on experimental observations and by using 



Lagrange's equation, we derive a nonlinear 
three-mode model of a cylinder gyroscope. By 
applying the method of multiple-scales [9], 
we show analytically the presence of 
superharmonic resonances. The model is then 
simulated and the results correspond well to 
the theoretical analyzis. 

Conclusions 

In this paper we have proposed a nonlinear 3- 
mode coupled model of a cylinder gyroscope 
made of steel with attached piezoelectric 
transducers. The model was derived based on 
experimental results and by using the 
Donnell-Mushtari theory and Lagrange's 
equation. 

We then analyzed the model using the method 
of multiple-scales. It was shown analytically 
that the nonlinearities produced perfect tuning 
for the primary (external) resonance as well as 
the internal resonances, and that this was a 
good description of the experimental 
observations. A simulation of the model 
supported this conclusion. In the future, we 
will use this model to design a nonlinear 
observer and a vibration control law which 
will enable us to improve the performance of 
the gyroscope. 
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Linear properties of primary information converters are mostly used in conventional 
measurement devices. However, purely linear converting systems are not available. 
The use of the linear features in measurement process finally causes the drawbacks, 
e.g., systematic error due to nonlinear distortions, low information signal-to-noise 
ratio, the necessity to evaluate a great number of the a priori parameters of the 
transducer in order to receive an absolute result, and low thermal stability because 
every a priori parameter itself has a temperature dependence. To exclude these 
drawbacks a method has been developed employing nonlinear systems in the base of 
displacements' measurement. 

Suppose we have a contactless converter with nonlinear monotonous characteristic 
fix), where x is the distance between the object and the converter head. Let us make 
the latter to vibrate harmonically in the direction perpendicular to the object surface 
with the amplitude xo and the cyclic frequency a. 

converter 

*• output 

Thus, x = s+x0 cosat, where 5 is the average distance. Our task is to determine s 
and its variation (displacement). During the measurement process the output signal of 
the transducer is registered. For extracting s, we differentiate the output signal with 
respect to time and obtain the coded signal. The information about quantity 5 lies in 
the characteristic time intervals Ar and Jbetween the extrema of the coded signal y/. 

T 

The coded signal may be written as 
w_df{x)dx 
V-~ax~-dt (1) 
From the condition dyddt = 0 we find the time instants of the signal extrema. After 
simple transformations, the equation for finding the extrema instants takes the form 
d . ,  ,        x"        d . ,. ,        1 
s>^wH-^r«fi4r(x)/*|= cot <p , (2) 



where x' and x" are the first and the second derivatives with respect to time, 
respectively, <p is the phase of the coded signal y/ extrema. Note that phase q> is 
related to the typical time intervals At and T. 
<p=<p\tsl,T). (3) 
This relation is found by considering the symmetry properties of the signal y for each 
particular ßx). Since Equation (2) relates 5 and q>, the coded signal y/ carries the 
information about quantity s. During measurement we measure the characteristic time 
intervals and restore quantity s from them applying the Equations (2) and (3). 

When using the electrostatic transducer as a converting physical system, the output 
signal is the charge accumulated on the measuring electrode Q(x)=EsaS{/x, where E, 
Ea, and Sa are the electromotive force, absolute dielectric permittivity of the 
environment, and the area of the electrode, respectively. In the case of the electretic 
converter the output signal is the charge density induced on the object surface by 
electret oind(x)=-aLJe/(LJe+x), where a, Le, and s are the surface charge density, 
thickness, and permittivity of the electret, respectively. In the both cases the coded 
signal is yr = Bx~* sin <ot(S + cos cot)'2, where quantities S and B for the electretic 
transducer are equal to: 
S = (s+L/e)/x0, 

B = -KRLSeaals, 
and for the electrostatic transducer: 
S = s/x0, ,„ 

B = KRESeG)sa. 
(K and R are amplification factor and load resistance, S>1.) The average distance is 
calculated using the formula: 

s=cosV:2, (6) 
cos <p 

where cos9?* = cos(7rAt/T). 

The proposed method allows one to exclude the systematic error due to nonlinear 
distortions and to increase the information signal-to-noise ratio. 
The accuracy of the measurement of displacement A 5 is influenced neither by the 
a priori parameters E, sa, Se, Le, e, <J, K, and R included in the output signal 
expressions. Since these parameters are temperature-dependent, absence of their 
influence contributes to the thermal stability (only the parameter x0 has an effect). 
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When a piece of metal is placed above a coil carrying a high frequency 
current, the induced eddy currents in the metal produce a Lorenz force which 
can support it against gravity. At the same time the heat produced by Joule 
dissipation can melt the metal. This is the process of "levitation melting1', 
which is well-establish technique in fundamental work in physical and chem- 
ical metallurgy. The great advantage of the electromagnetic levitation melt- 
ing method is the containerless processing of the melt. This is an important 
condition when a pure homogenous melt is required. 

The greatest difficulty facing levitation melting is the maintenance of 
stability of the suspended droplet. The possible instabilities are either global 
or local to the surface. The global instabilities, which cause the metal to 
move as a whole, must be prevented by a carefully choosing the external 
current distribution that generates the supporting field so that the droplet 
is close to a local field minimum. The local instabilities are due to the 
interaction of the electromagnetic forces with the molten metal producing 
several effects such as changing of the shape of the surface, surface oscillations 
or stirring of the material. In most cases a control scheme to assure the 
stability of the levitated droplet is to be developed. For simulations, a model 
of electromagnetic levitation is also required. 

Our levitation setup was designed by Space Power Institute at Auburn 
University for purposes such as containerless melting or surface tension mea- 
surements in microgravity environment. The instrument is composed of a 
vacuum chamber enclosing the excitation coil that levitates and heats vari- 
ous small pieces of metal, and several monitoring and measurement systems. 

The first step in out work was to reveal the determinism in the under- 
lying dynamics of the molten droplet placed in a high-frequency magnetic 
field of the levitation coil. We suspended a nickel sample during a parabola 
performed by the aircraft flowing the levitation instrument, thus simulating 



the microgravity conditions. Several nonlinear dynamics tools were employed 
to analyze the output signal of a top position sensor. The method of delays 
was first used in order to reconstruct the state space in which the state tra- 
jectories can be drawn. The saturation method was then applied in order 
to determine the attractor dimension and the embedding dimension. The 
largest Lyapunov exponent was also computed whose sign is a strong crite- 
rion to distinguish the chaotic from nonchaotic (periodic and quasiperiodic) 
motion. Finally, the surrogate data test was performed in order to ascer- 
tain the outcomes of the analysis. It was mainly found that the underlying 
dynamics of the levitated droplet is in fact chaos. 

Considering the previous result of the nonlinear dynamics analysis and 
our observations over the experiments, a control scheme was designed. Since 
a comprehensive model of the electromagnetic levitation that have to couple 
the analysis of all phenomena such as the electromagnetic field diffusion, the 
changing of the shape of the droplet or internal the fluid flow is difficult to 
be developed or would be computationally very slow comparing to the high 
speed time varying levitation process, a fuzzy logic control scheme was con- 
sidered.  In order to offer an intuitive image of how such a control scheme 
works the fuzzy login control of a magnetic particle using DC electromagnets 
is presented. A pair of horizontal electromagnets were added to the typical 
magnetic levitation system in order to handle the unexpected horizontal dis- 
placements of the particle. To control the vertical motion (i.e. change the 
vertical equilibrium position), the top electromagnet is commanded so that 
the net force between the magnetic force generated by the current flowing 
into the coil of the electromagnet and the gravitational force induce an up 
and down motion of the particle to the desired position. The pair of horizon- 
tal electromagnets are used to bring the particle from its initial horizontal 
location to a position situated on the vertical symmetry axis of the system. 
A fuzzy logic control strategy was employed to control the motion of the par- 
ticle and to keep it stable at the desired position. The mathematical model 
of the system was also developed and the state-space equations were derived. 
The behavior of the controller was tested for various initial positions. It was 
found that for all cases the controlled system behaves in a similar way, the 
particle being rapidly positioned. 
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1. INTRODUCTION 
The spread of composites in the various applications draws more and more attention to problems 

relating to the correct analytical simulation of structural elements which, due to their characteristics, are 
not classifiable as homogenous and isotropic. 

The study of the dynamic behaviour of composites deserves special attention when vibration and 
noise arise in use. Various studies have been carried out on the subject and software codes using more 
or less approximate methods provide results which are quite reliable. Yet it still remains difficult to 
simulate the behaviour of jointed elements, both because of the various building methods and because it 
is not possible to know the theoretical modelling underpinning the software. While several authors have 
verified good correspondence between the theoretical and experimental results in flat plates, little is 
known on the correspondence of the analytical simulation of joints tested under dynamic conditions. 

The aim of this paper is to test the correspondence of the results obtainable through modal analysis 
on joined panels using a widely-spread calculation code together with those experimentally obtained. 
The simulation of the joint was therefore improved to obtain results as close to reality as possible. 

2. EXPERIMENTAL 

2.1 Description of the materials used and of the joints. 
The experimental tests on plates of composites were carried out using 5 different kinds of com- 

posites: two with glass fibre barks and cores respectively 1/2" and 1" thick, and one with aluminium 
barks and a core 1" thick. 

The panels share the characteristics of a similar kind core made of an aluminium hexagonal honey- 
comb cell. In the panels with aluminium bark, the joints were made using a staff bead system and blu- 
ing aluminium angulars (readily available) with an L profile and a 30mm inner edge and angulars with 
an L profile 30x60mm on the outer edge. 

In the glass fibre plates a 50mm wide 'prepreg' bark was glued to both edges using a phenolic 
glue; the thickness of the glue was checked using a steel wire whose diameter was 0.2mm. 

Tests were carried out on plates which were moulded in different ways: L, Z and Omega so as to 
have a different number of joints (1,2,4 in the various shapes). 

Shape and dimensions are identical both in the aluminium bark panels and in the glass fibre bark 
panels. The L shape is made of 2 panels whose dimensions are 800x600 and 600x400 joined together. 
The Z shape is made of 3 panels two of which are 800x600 and one is 600x400 with two joints; the 
omega shape is made of 5 panels, 3 of which are 800x600 and one is 600x400 with 4 joints. 

2.2 The measurement chain. 
Picture 1 shows the measurement chain used. Excitation on the structure is performed using an 

8202 Bruel 8 Kjaer hammer with a dynametric head on various points (j) and the vibration in the refer- 
ence knots is recorded (I); the signals coming from both the hammer and the accelerometer suitably 
amplified, filtered by the switchboard and run by D-Tac software; then the modal analysis is carried out 
using a Cada-PC software. 



In order to avoid recording double moding and placing the accelerometer on a nodal point two ac- 
cele-rometers were used. 

The experimental results were confirmed by the CADA PC checking process, in particular by 
MAC (Modal Assurance Criterion) which evaluates the geometrical correlation between two modal 
deformations; MPC (Modal Phase Collinearity & Scatter) which shows the relationship between the 
real and imaginary parts of the modal deformation; another indicator of the complexity of modal de- 
formations is Phase Scatter which represents the statistical variation of the phase angle in each eigen- 
vector of average value. In the real mode shapes it should be close to 0%. 

The kind of constraint used in the tests was free-free as it is the easiest to carry out.the suspension 
system of the structure was built using elastic elements. The dimensions of the panels were chosen so 
that the rigid mode frequencies are low enough not to interfere with its mode shapes. 

In every case the FRF was recorded in a single test discarding the signals that were unclear. 

3. NUMERICAL SIMULATION 

NASTRAN, a widespread finite element code, was used for the FEM simulation; the material was 
patterned as 2D ortothrope composite whose core is simulated as a homogenous material with a low 
mass density. In the finite element code analysis, the core simulation with two different moduli of tan- 
gential elasticity was fundamental to obtain the exact correspondence of mode shapes at various fre- 
quencies; contrary to what literature shows in studies on static analysis on sandwich panels whose cores 
are simulated with an average G, in the present study the core anisotropy was not neglected to confirm 
the analytical mode shapes. 

Simulation was carried out taking into consideration the outer banks made of a single layer 0.5mm 
thick having equal modulus of elasticity in the longitudinal and transverse directions thus avoiding er- 
rors in the evaluation of the E-value transversally to the fibres in the single layer. The density of the 
banks is 1.700kg/m3. The L-shaped plates are patterned through a mesh 25mm side, the joint was 
simulated using a composite whose bank thickness was equal to the sum of the real bank and the angu- 
lar using a 25mm side mesh. 

The Z-shaped plates are patterned through a mesh 30mm side, the joint was simulated using a 
composite whose bank thickness was equal to the sum of the real bank and the angular using a 
25x30mm mesh. 

The omega-shaped plates are patterned using a 40mm square mesh, the joint was simulated 
through a composite whose bank thickness was equal to the sum of the actual bank and that of the an- 
gular using a 25x40mm mesh. 

4. RESULTS 

The comparison between the values of natural frequencies obtained with the FEM model and those 
obtained with experimental analysis for the aluminium bank composite the L-shaped structure the dif- 
ference is just over 4%; in the z-shaped structure it is just over 5%; in the omega shape the average dif- 
ference is just over 5%.The comparison between the natural frequency values obtained with the FEM 
model and those obtained through experimental analysis for the glass fibre composite of 1/2" thickness 
in the L shaped structure the difference is just over 1.5%; in the Z shaped one, the average difference is 
just over 2%; in the omega shaped structure the average difference is just over 3%. 

The comparison between the natural frequency values obtained with the FEM model and those 
obtained through experimental analysis for the glass fibre composite of 1" thickness in the L shaped 
structure the difference is just over 2%; in the Z shaped one the difference is just below 2%; in the 
omega shaped one the results obtained show 2 very close/similar modes (12.2 Hz and 16.3 Hz) with 
similar vibrating modes. In the same frequency interval, we do not obtain the same experimental results. 
Moreover, by excluding the 15.2 Hz analytical mode we obtain a good correspondence between ana- 
lytical and experimental values; therefore it is obvious to think that the 15.2 Hz analytical mode is not 
real. The average difference is just over 7%. 
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INTRODUCTION: Spatial distributions of phases have been observed experimen- 
tally in materials that undergo stress-induced solid-solid phase transformations. The 
main feature of the phenomenon is that two or more phases of material may co-exist 
separated by well defined phase boundaries. Known examples of this kind of material 
are shape memory alloys. Recently, a theory has been proposed for thermally and 
stress induced solid-solid phase transitions, (Fried and Gurtin 1993, Fried and Gurtin 
1994). In this theory, the material phase is characterized by an order parameter, and 
phase boundaries are identified with thin layers within which the order parameter 
suffers large variations. In this paper we investigate a specific one dimensional ver- 
sion of the model of Fried and Gurtin. In the investigations, we limit ourselves to 
the isothermal process of stress-induced phase transformations. Using a phase plane 
analysis, we show that such a model is capable of supporting many spatially peri- 
odic steady state solutions, each with a multiplicity of phase boundaries. We also 
perform a bifurcation analysis on the steady states using a perturbation technique, 
which we use to shed some light on the fundamental continuum-mechanical phenom- 
ena involved. The perturbation results are compared to the numerical solutions of 
the governing partial differential equations. 

DESCRIPTION OF THE MODEL: A simple, one-dimensional special case of 
the theory of Fried and Gurtin (1994) is examined in this paper. Consider an elastic 
bar, which occupies the interval [0,1] in the reference configuration. The longitudinal 
motion of the bar is described by a mapping y(x,t) = 1 + u(x, t), where u(x, t) is the 
displacement and y(x,t) is the placement. Taking e(x,t) = ux{x,t) and s(x,t) to be 
the strain and stress, respectively, and letting the material phase be represented by the 
order parameter (ß(x, t), the theory can be formulated by fully specified by prescribing 
a so-called kinetic coefficient and a free energy density. The kinetic coefficient, which 
in general is a positive-definite function of (e, 4>, (j)x, <j>), here is assumed to be a positive 
constant, and is denoted by ß. Writing p(x, t) = (f)x(x, t), the free energy is postulated 
in the following form: 

tf (e, 0, p) = ip(c - kef)2 + vG{4>) + ^7V (1) 



The first term in equation (1) represents the strain energy, which is a convex function 
with respect to both independent variables. The second term in equation (1) is the 
exchange energy: we assume that 

G(<j>) = ±<f>2(<f>-1)2. (2) 

The function G has two minima corresponding to the energetically preferred states 
of <f> = 0 and 0 = 1, and a local maximum at <f> = \. The third term in equation (1) 
represents the energy of an interface. 

Based on the above free energy, the displacement u and the order parameter <f> can 
be shown to satisfy the following system of equations: 

utt   =   ß{ux- k(j))x (3) 

ß<f>t   =   72^xi + kfx (ux - k(j)) - vg{4>) 

where £/,/?, 7, and v are material parameters, k = J\ is a constant, and where 

g(<p) = G'(<p). The first of equations (3) is a hyperbolic wave equation representing 
the balance of linear momentum in the bar. The second equation is a nonlinear 
reaction-diffusion equation governing the time evolution of the order parameter. The 
two equations are coupled through the strain energy terms. 
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1. Introduction 

The topic of global optimization is an area of active research where new algorithms are emerging 
and old algorithms are constantly being improved[l-3]. A methodical way of dealing with multiple 
minima for discrete optimization problems is the use of either random search techniques that would 
sample the design space for the global minimum or to employ enumerative type algorithms In 
either case, the efficiency of the solution process deteriorates dramatically as the number of the 
variables is increased. 

Two algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) have emerged more 
recently as tools ideally suited for optimization problems where a global minimum is sought In 
addition to being able to locate near global solutions, these two algorithms are also powerful tools 
for problems with discrete-valued design variables. Both algorithms rely on naturally observed 
phenomena and implementation calls for the use of random selection process which is guided by 
probabilistic decision. Application of these algorithms to structural design will be demonstrated for 
optimum topology of a truss in this paper and the results obtained from these algorithms will be 
compared. 

2. Problem Definition 
In this paper, shape optimization via GA is applied to a three dimensional structure. Possible node 
positions are predefined and the objective is to connect the nodes in the way that the weight of the 
obtained truss becomes minimum, satisfying certain constraints.The structure consists of 19 nodes 
and 48 elements, hence the design space contains 248 or 2.8E+14 points. The ground structure is 
such defined that only the elements that are on the surface of the dome are allowed. In other words 
each node is restricted to be connected only to its adjacent ones. The ground structure is shown in 
tig. 1. To represent the structures in string form, a 48-bit binary string is used. The external load is 
a concentrated one applied at the top node.The objective function is the weight of the truss The 
constraints are corresponding to the stresses in members and the stability conditions. So we can 
formulate the optimization problem as follows: 

Minimize   W 
Subject to 



Ci -öta<0 Element in tension 

Qj  ~ Q QO Element in compression 

Where W is the weight of the structure 
3. Results 
1. In both algorithms the interfacing of problem-specific design constraints and data is easily carried 
out involving the writing of an penalized objective function. Constraints violation are considered by 
changing the cross sectional areas, proportion to violation ratio for kinematically stable structures, 
and by assigning a low value of fitness for unstable ones. 
2. In GA, with different runs, it is seen that larger populations can reach the optimum faster (i.e. 
with treating fewer strings), although at long runs different runs with various population size may 
reach the same optimum. The obtained results could be largely affected by the selection of genetic 
algorithm parameters. So, these parameters should be appropriately selected. 
3. SA algorithm is sensitive to cooling schedule. 
4. Although both algorithms have reached the same result but the implementation of genetic 
algorithm seems to be easier with less computational effort. 
Finally, genetic algorithm and simulated annealing are efficient and simple optimization methods 
that are specially suitable for discrete and nonconvex problems. 
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Modeling and Analysis of Panel Rattle Noise in 
Automobiles 
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Rattles generated by impact of two parts are associated with high peaks of 
radiated sound pressure waves. The impact process is highly nonlinear and the 
associated dynamics is extremely complicated. We have conducted experimental 
study and theoretical analysis of the nonlinear dynamics involving panel impact 
m order to predict the noise radiation by impact. 

Experimental results. Experiments are conducted on a plate which is clamped 
on two opposite edges and free on the other two edges. The plate is under si- 
nusoidal base excitation at frequencies near the natural frequency of the first 
mode. A bolt placed beneath the center of the plate serves as the striker When 

ÄÄr*"*exceeds the gap between the plate and the striker' 
Measurement of the plate vibration is made through accelerometers mounted 

Z 1 1 %T\ PreSSUr,e leVdS are als° reCOrded hy a mtaophone located 
50 cm above the plate surface. Tests are conducted for a range of forcing 
amp itudes. In a typical test, the forcing amplitude is held fixed while the forcing 
frequency is swept upwards or downwards through the resonance frequency. Tht 
plate response show hysteresis for these kinds of frequency sweeps 

For an upward frequency sweep, the impacts occur when the forcing fre- 
quency is sufficiently below the natural frequency for the first mode 2 the 
forcing frequency is slowly raised, contact between the plate and the striker 

ltedSsofnHe- 6 ^^r have reIat-ely small velocity henc thTre- 
ated sound pressure is low. These contacts are intermittent in nature charac- 
terized by repetitive contacts separated by no contact for several forcing ^ 
As frequency M further raised, the intermittant impacts gradually changeTinto 
more contant impacts. The plate strikes the bolt at a higSr veloclt/anhign r 



radiated sound pressure is recorded. 
Multiple impacts within one forcing cycle have also been recorded. This 

phenomenon occurs when forcing frequency is above the natural frequency. It 
seems that the higher vibrational modes of the plate play an essential role for 
this phenomenon. Hence multiple degree-of-freedom models are needed to model 
the process. 

Modeling. There are existing theoretical models for the impact process. 
Most models are based on a single degree-of-freedom system. We have carried 
out analysis of the single degree-of-freedom model to understand the bifurcation 
sequences observed in the experiments. We partition the space of forcing ampli- 
tude and frequency into bifurcation sets; inside each of these sets, a particular 
dynamic phenomenon is observed. The qualitative partition of the parameter 
space allows us to obtain analytic predictions of the impact velocity which is 
most important in noise prediction. 



Modeling General, Unsteady, Nonlinear, Aeroelastic Behavior 
by 

S. Preidikman  and  D. Mook 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 

Modeling unsteady aeroelastic behavior is a topic of long-standing interest and importance. The approach 
followed in this study is to treat the flowing air, the structure, and the devices of the control system as elements of 
a single dynamical system; and to integrate all of the governing equations numerically, simultaneously and 
interactively in the time domain. In contrast with solutions performed in the frequency domain, time-marching 
schemes can model sub- as well as super-critical nonlinear, aeroelastic behavior as long as the effective angles of 
attack are not large enough to cause stall. As a consequence, these schemes can be a very effective tool for the 
design of flutter-suppressing control systems. Because the equations are solved numerically, structural 
nonhneanties do not present a problem; the present aerodynamic model is inherently nonlinear. 

There is a fundamental complication with the time-domain approach: to predict the aerodynamic loads one must 
know the motion of the structure, and to predict the motion of the structure one must know the aerodynamic loads 
To overcome this complication, an iterative scheme was developed. The procedure is based on Hamming's fourth- 
order predictor-corrector method. Hamming's method was extended and adapted to the present problem to avoid 
evaluating the aerodynamic loads at fractional time steps and to accommodate aerodynamic loads that are 
proportional to the acceleration (the so called added-mass effect in hydrodynamics). It turns out that the present 
numerical scheme, with some further adaptations and innovations, is also ideally suited for ship dynamics 
problems. 

The general unsteady vortex-lattice method, a generalization of the familiar vortex-lattice method for steady 
incompressible flows, is used to predict the aerodynamic loads. The technique accounts for the aerodynamic 
nonhneanties associated with angles of attack, static deformation, vorticity-dominated flow, and unsteady 
behavior; and is valid for arbitrary angles of attack, planforms, and motions as long as stall and vortex-bursting do 
not occur The distribution of vorticity in and the shape of the wakes are determined as part of the solution so the 
history of the motion is stored in the wakes. 

As an example, we consider the flutter of a wing. The entire wing is modeled as a cantilever beam with an elastic 
support to capture the influence of the fuselage. The elastic, linear, and structurally undamped wing is free to bend 
about two axes and twist. The mass center of each section does not coincide with the elastic axis; thus there is 
dynamic coupling between flexural and torsional motions. The equations of motion are discretized by the finite 
element method. 

The deformation of the wing is represented as an expansion in terms of the mode shapes. The time-dependent 
coefficients are the generalized coordinates of the motion. The modes may be found by experiments, analysis 
energy methods, and finite-element techniques. For complicated geometries and/or anisotropic materials it is 
advantageous to use a finite-element element method. The use of composite materials has created numerous 
opportunities in the field of aeroelastic tailoring. To transfer the aerodynamic loads from the aerodynamic grid to 
the finite-element mesh, we have developed a method based on the concept that the virtual work done by the 
elastic and aerodynamic loads be equal 

Li the presentation, we discuss some calculated responses to initial conditions at various subsonic airspeeds and 
angles of attack. The examples include sub- and super-critical responses as well as true limit cycles (i.e motions 
that are independent of the initial conditions) in between. The calculated results show the frequencies of the first 
and fourth modes merging near the onset of unstable behavior. 



Control of Rolling in Ships by Means of Active 
Fins Governed by a Neural-Network Controller 

D. Liut, D. Mook, H. VanLandingham and A. Nayfeh 
Department of Engineering Science and Mechanics 
Virginia Polytechnic Institute and State University 
Blacksburg, VA 24061 USA 

A method to reduce the rolling motion of a ship in a seaway by means 
of actively controlled fins is described. The method is based on a 
multidisciplinary simulation: 1) the motion of the ship in a seaway is 
simulated by a numerical model called LAMP (Large-Amplitude-Motion 
Program), which is based on a source-panel method to model the flowfield 
around the ship, 2) the forces on the fins are simulated by a general 
unsteady vortex-lattice method, and 3) the commands to the fins are 
generated by a neural network. The ship is considered to be a rigid body 
and the complete equations of motion are integrated numerically in the 
time domain so that the motion of the ship and the complete flowfield are 
calculated simultaneously and interactively. The program to predict the 
forces generated by the sea on the ship and the one to predict forces on the 
fins, originally quite different, have been efficiently implemented together. 
The motion of the ship is taken into account when the flowfield around, 
and the loads on, the fins are calculated. But the disturbance in the 
flowfield around the ship generated by the fins is ignored when the loads 
generated on the ship by the sea are calculated. The neural network 
controlling the fins is progressively trained, by means of a new moment- 
matching strategy. The results show substantial reductions in roll. 
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Parametric Identification of an Experimental Magneto-Elastic Oscillator 
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We applied the harmonic-balance parametric-identification scheme (Yasuda et al. 1988) to 
unstable periodic orbits extracted from chaotic data of an experimental periodically driven magneto- 
mechanical oscillator with a two-well potential. 

Unstable periodic orbits can be extracted from chaotic data from either discrete or continuous- 
time systems. These orbits have been used in system identification, usually in the Poincare section 
(Hammel and Heagy, 1992; Kesaraju and Noah, 1994; Van de Wouw et al., 1995). The harmonic 

balance method has been used with the unstable periodic orbits in a variety of numerical test cases, 
including autonomous and non-autonomous oscillators (Yuan and Feeny, 1998). 

The experiment consisted of a stiffened beam buckled by two magnets. Additional rigidity was 
included to make the system behave as a single degree of freedom (Cusumano and Kimble, 1994). 
The uncovered portion of the beam near the clamped end acted as an elastic hinge from which the 

position of the beam was measured by strain gauges. Two rare-earth permanent magnets were placed 
on the base of the frame holding the beam to create the two-well potential. The frame was then 
fixed through a rigid mount to an electromagnetic shaker. A periodic driving signal was fed through 
a power amplifier to the shaker to provide the external forcing function, by which the chaotic data 

were generated. The experimental chaotic set was reconstructed by the method of delays, and the 
unstable periodic orbits were extracted. 

The identification process involves the choice of a mathematical model of the form 

p 

x + ax + ^2ßifi(x) = acosQt, 
J=I 

where the parameters are unknown. We chose two models for the nonlinear stiffness in the differential 
equation of motion. We first chose a polynomial to fit the characteristics of the nonlinear function, 
since we know that the magnetic and elastic forces are smooth. The second model we implemented 
was an interpolation model (Yasuda and Kawamura, 1989). 

The identification results for the polynomial model were evaluated by consistency from various 

combinations of periodic-orbit data. The interpolation-model force characteristic is consistent for a 



range of about 10 to 18 interpolation functions. A visual comparison between the polynomial and 

interpolation models suggest a qualitative fit of the actual physical force characteristic. 

We also evaluated the identified model by comparing numerical simulations with the experiment, 
and also by comparing the properties of the models linearized about the stable equilibria with small- 

motion properties of the experiment. The interpolation model seemed to accomodate finer qualitative 
details in the phase portraits, an also produced better estimations of the equilibrium locations and 

natural frequencies near each equilibrium. 
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Identification of Viscoelastic Properties of Foam Used in Car Seats 

S. White, S.K.Kim, A. K. Bajaj, P. Davies 
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288. 
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Quantifying vibration comfort of passengers in car seats is a complex problem, involving 
understanding how people respond both physically and subjectively to vibration. The 
investigations described in the presentation focus on a component of the physical 
modeling, the modeling of the seat foam behavior. The person in the seat is a 
complicated dynamical system involving nonlinearities due to geometry (posture) and 
material properties of both the human and the seat. Two approaches to modeling the 
system are finite element modeling and simplified multiple mass, spring and damper 
modeling [1]. The large computational time required to run full finite element model 
simulations of the system makes it attractive to investigate the simplified modeling 
approach. Both modeling approaches require estimates of material properties. This 
presention will be focused on an investigation into the seat foam properties and its 
modeling by using spring-mass-damper type models. 

Four inch foam blocks cut from car seats were used in the investigation. A fixture 
was fabricated so that the foam was sandwiched between a base plate and a mass that 
could be varied to induce different compression ratios. Both the static and dynamic 
stiffnesses of the foam vary nonlinearly as the foam passes through different behavior 
regimes at different levels of compression. Under the assumptions of unidirectional 
strain and negligible inertia for the viscoelastic foam material, the behavior of the foam 
block plus mass may be described by a second order integro differential equation with a 
nonlinear (polynomial type) stiffness and a linear relaxation term which is the 
convolution of the response with a relaxation kernal. Different models of the relaxation 
kernel appear in the literature, but one commonly used is a model in the form of a sum of 
exponentials [2]; this was used in the investigations described here. The model also 
includes a linear viscous dissipation term. Both this term and the relaxation term 
contribute to energy dissipation in the system. Three issues were investigated: does the 
relaxation term improve the model, what is the appropriate form of the nonlinear stiffness 
term, and how do these terms change at different compression ratios? 

The method of harmonic balance was used to predict the response of the model to 
harmonic base excitation and these predictions were compared with measured responses 
System identification was performed in two stages. The parameters in the linear 
relaxation term m the analytical model were estimated by fitting a complex exponential 
model to the measured response at low excitation levels. The nonlinear terms were 
estimated from responses at higher excitation levels using a system identification method 
based on harmonic balance. 

The results indicate that nonlinear behavior is of high order with both softening and 
hardening characteristics becoming apparent as the excitation level changes. The 
stiffness characteristics change as a function of compression ratio, becoming larger as the 
compression ratio increases. The role of the relaxation terms is difficult to quantify 



though this may be, in part, due to the difficulties of accurately identifying these terms. 
The benefits and limitations of this approach to modeling foam will be discussed in the 
context of occupant in car seat vibration modeling. 

[1] Nishiyama, Shuji, "Development of simulation system on vehicle-occupant 
dynamic interaction (1st Report, Theoretical analysis and system verification)", 
Transactions of the Japan Society of Mechanical Engineers, Part C v 59 n 568, Dec 
1993. p 3613-3621. 

[2] Enelund, M., Fenander, A., and Olsson, P. "Fractional integral formulation of 
Constitutive equations of viscoelasticity". AIAA Journal, Vol 35, No.8, August 
1997, pp. 1356-1362. 



Tracking Slowly-Varying Hidden Variables Using Phase 
Space Reconstruction 
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INTRODUCTION: Current efforts to develop machinery condition monitoring and 
failure prediction technology are hampered by the fact that most damage processes 
are hidden from the observer, especially during the early stages. In this paper, a 
model based method that can be used to experimentally track damage evolution is 
described. Our approach treats damage as evolving in a hierarchical dynamical sys- 
tem consisting of a "fast time" directly observable subsystem coupled to a "slow time" 
subsystem which can be thought of as a hidden rate law governing the damage evolu- 
tion. The method exploits the time scale separation between fast dynamic variables 
and slowly drifting parameters. Locally linear tracking models are constructed using 
data sampled on a fast time scale, employing delay coordinate embedding. The short 
time prediction error of the reference tracking models are used as the parameter drift 
observer. The method is successfully applied to a forced mechanical oscillator with a 
two-well potential. A small perturbation in one of the potential energy wells is pro- 
vided by a battery-powered electromagnet. In this context, the battery state is taken 
to be "hidden," and the system "fails" as the battery runs down. We demonstrate 
that the slow-time battery discharge curve can be tracked quite well using only scalar 
strain time series from the fast-time mechanical subsystem. 

TRACKING ALGORITHM: Multiple records of scalar time series are collected, 
with the time between records being long. Each record consists of data collected 
in fast time. The scalar time series is used to reconstruct the state space with an 
appropriate dimension (say n) for the system. The reconstructed vectors xel" are 
modeled by an as yet undetermined fc-step map of the form 

xl+k = Pk{xl;(j>). (1) 

It is assumed that the "parameter" <f> is approximately constant over the time needed 
to collect one fast time data record, and hence the fast subsystem as modeled by 
Eq. (1), can be considered approximately stationary. Local linear maps are used to 
estimate Eq. (1) from the initial data record. This reference system is then used as a 
predictor for subsequent data records collected at later times. 
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Fig. 1: Tracking results using fast-time model prediction errors: (left) plot of RMS 
5-step predictor error, e5, vs. time; (right) adjusted value of e5 plotted over the actual 
battery data. The light grey gives the envelope of the battery voltage, and the solid 
medium grey line is its time local average in each of 100 equal time intervals. 

EXPERIMENTAL RESULTS: The method was applied to a forced single degree 
of freedom oscillator with a two-well potential. The pendulum-type oscillator con- 
sists of a flexible steel beam with additional stiffening elements added to constrain 
the system to one degree of freedom over the frequency range of interest (< 50 Hz). 
The nonlinear potential at the beam tip is realized using a permanent magnet for one 
well and permanent/electromagnet stack for the other. Electric power for the electro- 
magnet is supplied using a 9 V battery which discharges during the experiment until 
it fails. As the battery drains, the stiffness in the potential well with the electromag- 
net decreases by a few percent. The uniformity of power spectra taken during the 
experiment shows that the system was chaotic throughout most of the experiment, 
and that the chaotic motions did not undergo any drastic changes in character. 

The results of applying the procedure are shown in Fig. 1. The raw 5-step predictor 
error e5 is shown on the left, and exhibits a clear change over the time of the experi- 
ment. The model residual, //5, is a measure of the mean norm of the modeling error 
vector, whereas the predictor error e5 is a measure of the mean norm of the estimated 
error vector. However, what is needed to observe the nonstationarity of the system 
is a measure of the true drift error vector. It is therefore reasonable to assume that a 
"calibration" of the drift observable can be obtained by a suitable function of ß5 and 
e5. In particular, we looked for a least squares fit to the battery data of a linear com- 
bination of e5 and ß5 by minimizing the following expression The result of carrying 
out this fit is shown on the right of Fig. 1. 

The results show that the local linear model's short time prediction error performs 
reasonably well as an observer for the evolution of the hidden state of the the slow- 
time system. 



Robust Control of Adaptive Structures with Embedded Sensors and 
Actuators 

D. G. Wilson *       C. T. Abdallah t        G. P. Starr *       R.D. Robinett § 

The development of lightweight flexible structures involving both advanced control and mate- 
rial system research will impact several application areas. Future Space applications will require 
lightweight robotic arms capable of accurately positioning larger payloads, performing tasks at 
high bandwidths, while exerting large external forces, and satisfying challenging slew requirements. 
Underground storage tank remediation, a Department of Energy application, requires long reach 
slender manipulators to fit through small openings, yet once inside they must perform in a large 
workspace. These operations in hazardous environments will increase structural bending of the 
members and suggest the need for vibration suppression capabilities. Industrial robots have used 
massive stiff structures to suppress deflection, resulting in relatively slow motion and high power 
consumption. In the development of Large Space Structures slewing and repositioning of spacecraft 
with flexible appendages while suppressing vibrations is of much interest. 

The application of composite material technology for fabricating lightweight structures has the po- 
tential to reduce weight and improve performance at the cost of increased deflection and vibration. 
One way to reduce vibration is the application of robust controller designs that utilize smart struc- 
ture technology. Smart and/or adaptive structures with both sensors and actuators, strategically 
embedded along the structure, can actively suppress vibrations and perform optimal slewing. 

Two major approaches to controller design for slewing flexible structures are 1) model-based con- 
trollers which utilize state estimators based on plant information and 2) dissipative controllers 
which use knowledge of plant information to optimize performance but not for closed-loop stability. 
Typically the controller design is combined with a near-minimum time input trajectory optimal 
rotational maneuver. Examples of these methods are highlighted in the following references. In 
Liu and Yang [1] three simple and efficient methods are presented for the vibration control of slew- 
ing flexible structures. They investigated efficient rigid-body slewing using a constrained motion 
method and applied optimal control at the terminal state to minimize the flexible body vibration. 
This method produced the minimum residual vibration or settling time of the structure. The second 
method uses a combination of constrained motion with active clamping which utilizes piezoceramic 
actuators with velocity feedback for active damping control. This method improved the transient 
vibration characteristics. The third method combines both the first and second methods to pro- 
duce optimal torque control for vibration suppression during and after the slewing motion. Joshi, 
Maghami, and Kelkar [2] propose a class of dynamic dissipative compensators which robustly stabi- 
lize the plant in the presence of unmodeled dynamics and parametric uncertainties. They develop 
both robust stability criteria and a method for implementing the controller as a strictly proper 
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compensator. Results are shown for a large space antenna and a laboratory model of a flexible 
spacecraft. The results demonstrated that dynamic dissipative compensators can ensure robust 
stability and performance. 

The authors have designed and analyzed a robust controller based on the dynamic dissipative 
compensator methodology [2] utilizing a prototype single-axis adaptive structure. The results of 
this study include both analytical and numerical verification. The dynamic dissipative controller 
has been applied to an adaptive structure. The testbed includes; 1) an adaptive structure designed 
and constructed from graphite/epoxy composites with embedded structural actuation and sensing 
capability, and 2) a single-axis servo motor and encoder for rigid motion slewing. Using the dynamic 
dissipative compensator methodology, only the positional information from both the rigid-body 
and beam strain deflection sensors are used. The controller is considered to be marginally strictly 
positive real. Each controller channel is based on second order transfer functions. Criteria is also 
given for the selection of each of the transfer function coefficients. The compensator is diagonal or 
decoupled from each individual sensor/actuator pair. 

Near-minimum time maneuvers based on an equivalent rigid structure are used to slew the flexible 
adaptive structure. The set of input trajectories used are adapted from a near-minimum time ma- 
neuver of a rigid body for a flexible slewing structure and are discussed in reference [3]. Tests were 
performed to compare the benefits of using adaptive rather than passive structures. The adaptive 
structure was developed using graphite/epoxy woven fabric prepreg material with embedded piezo- 
ceramic patches for actuation and embedded strain gauges for sensing. Dynamic characteristics 
of the adaptive structure are reported in reference [4]. The geometry of the adaptive structure is 
such that the first two cantilever bending modes are in the neighborhood of 8 and 40 Hz, respec- 
tively. A dynamic model was developed, which included the derivation of the equations of motion, 
based on the quadratic modes technique. This technique automatically captures the centrifugal 
stiffening term. A nonlinear optimization algorithm was used to determine controller coefficients 
to produce a rest-to-rest, residual vibration-free, 90° near-minimum time maneuver. Comparisons 
are made with a conventionally designed LQG controller. By using different varying tip masses, 
the controllers were tested in relationship to parametric uncertainty. The results from slewing the 
adaptive structure showed a reduction in residual vibration, improvement in slewing near-minimum 
time maneuvers, and robustness to parameter variations. 

[1] Y.C. Liu ad S.M Yang, "Three Simple and Efficient Methods for Vibration Control of Slewing 
Flexible Structures", J. of Dynamic Systems, Measurement, and Control, Trans. ASME, Vol. 115, 
pp. 725-730, Dec., 1993. 

[2] S.M. Joshi, P.G. Maghami, A.G. Kelkar, "Design of Dynamic Dissipative Compensators for 
Flexible Space Structures", IEEE Trans, on Aerospace and Electronic Systems, Vol. 31, No. 4, 
pp. 1314-1323, Oct. 1995. 

[3] J.L. Junkins, Z.H. Rahman, and H. Bang, "Near-Minimum-Time Control of Distributed Param- 
eter Systems: Analytical and Experimental Results," J. of Guid., Control, and Dyn., Vol. 14(2), 
pp. 406-415, 1991. 

[4] D.G. Wilson, I.R. Searle, R. Ikegami, G.P. Starr, "Dynamic Characterization of Smart Structures 
for Active Vibration Control Applications", ASME Winter Annual Meeting, Symposium on Vibro- 
Acoustic Applications, Atlanta, GA, Nov. 17-22, 1996. 



Abstract 

Simulation of structure control and controller design for smart structures within a 
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This paper investigates some aspects of control of smart structures for suppression of vibration 
(active damping), in terms of both controller simulation and design. It is fundamental for 
understanding of interaction in an actively controlled structure to have an accurate model. The 
basis structure as well as the active elements the piezo sensors and actuators can be modelled 
with appropriate piezo-elements. In the examples shown in the paper PZT patches mounted on 
the surface are modelled for sensing and control actuators. The leads to rather complex FE- 
models in particular if 3D modelling are applied. Sensor and actuator location and collocation 
are not topic of the current paper. However complex the FE model might be it always lacks to 
reality. And moreover model reduction techniques are necessary to make a controller design 
feasible. To close the gap between the FE model and reality experimental model identification 
is used to correct the model with an updating procedure before put to use to controller design 
and simulation. In order to integrate controller design methods and the simulation of control 
action into a Finite Element package, appropriate interfaces between structure and controller 
have to be designed. From the control-system designer's point of view the definition of these 
interfaces must absolutely take the nature of the plant and the possible control-design methods 
into consideration. 

The control of mechanical structures will in most cases be a MIMO (Multiple Input - Multiple 
Output) problem. The complexity of these problems (controllability and observability of 
structures with spatial distributed parameters) renders the application of time-continuous 
controllers extremely difficult and thus enforces the use of digital controllers. 

Actuator nonlinearities, uncertain parameters and boundary conditions, neglected plant 
dynamics and measurement noise are -among others- potentially destabilizing factors, that any 
controller will have to cope with. This makes robustness a stringent requirement for the 
controller. In recent years a number of new control design methods have emerged, which 
incorporate robustness issues in the design process. Most of these techniques make' use of 
state-space descriptions of plant and controller. 

Due to the large order of Finite-Element models it is not possible to transform the FE 
description into a state-space description directly and use the resulting plant model. For 
disturbance-attenuation and damping-augmentation problems modal reduction techniques have 
been applied rather successfully. The modal control philosophy is that controlling vibration is 

1 presenter 



tantamount to controlling the structure's normal modes of vibration. Nevertheless, depending 
on the measurement signals a simple modal truncation can lead to an incorrect dynamical 
model with respect to input/output properties of the plant. At the University of Magdeburg's 
Innovative Research Group ADAMES we have developed, implemented and tested a model 
reduction technique that takes the control-designer's needs into consideration, can be 
implemented in or interfaced to any FE package rather effortlessly and requires only a small 
number of additional computations. For modal control the FE model (provided that we have a 
proper model) gives us much better quality eigenvektors with more co-ordinates distributed 
over the structure as experimental modal analysis is capable. 

A reduced state-space description of the mechanical structure can very easily be transferred to 
Matlab, if it is desired to use the wealth of control-system related toolboxes that this package 
offers. If on the other hand control design algorithms are to be implemented in the Finite- 
Elements package, it might be necessary to include algorithms that dicretise the plant model in 
time as a last component of the structure-control interface. 

The control-structure interface requires a number of additional calculations. Assuming a zero- 
order-hold at the controller input, the controller output must be calculated for every time step, 
using controller states and plant outputs. The resulting signal is assumed to be constant over a 
sample period, thus the integration in time will process from one sampling instant to the next. 

To do all that preliminary work before testing and final tuning on real structure within the FE- 
system is a challenging undertaking, but it can reduce the number of experiments necessary for 
final design of controller. On the other hand influences of changing in the structure on the 
controller can be examined. 

The paper concluded with few examples to illustrate methods and tools proposed can be very 
helpful in design of structural controllers. 
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ON A PARTICLES-SYSTEM-MODEL REPRESENTING THE MOTION OF THE 
GENERATED WAVE 

- A SUITABLE MODEL FOR CONTROL SYSTEM DESIGN - 

Tuneo KOBAYASHI*, Koichi OSUKA*, Ben T. NOHARAt, and Toshiro ONO* 
* Osaka Prefecture University, f Mitsubishi Heavy Industries 

1 INTRODUCTION 
The motion of the generated wave is usually represented using the potential theory(1). In the potential theory 
however, it is difficult to obtain the equation of state or the transfer function, which is a presentation of the 
characteristics of the control object as well as a design tool for control system. Therefore, it is important to obtain 
a suitable model for the control system design of the generated wave. 

The authors show a particles-system-model to be appropriate in order to obtain the equation of state or the 
transfer function for the generated wave. The effectiveness of the model is confirmed by some computer 
simulations as well as experiments using a one-dimensional test tank. The feature of the obtained model is 
equivalent to the induced results from the potential theory. 

2 A PARTICLES-SYSTEM-MODEL REPRESENTING THE MOTION OF THE GENERATED 
WAVE 
2.1 WAVE GENERATION THEORY 

Fig.l shows the wave generation by the piston type paddle, where (x, y), h, r\{x, i) indicate the coordinate system 
water depth and the surface elevation at the position x and the time t, respectively. 

Let the motion of the paddle X(t) be a sin(<y t) as shown in Fig.l. Then y\{x, t) is written by the following 
equation in the potential theory. 

30 

r]{x,t) = Aa cos(o) t - kx) + ^ C;e~*'r« sin(<u t) 
y'-i 

(1) 

Here, co, k and kj indicate angular frequency, the wave number of the progressing wave and the wave number of 
the local wave, respectively, k and k} satisfy the following dispersion relations. 

co2 = gk tanh(kh),     co2 = -gk. tan(kjh) (2) 

where g denotes the acceleration due to gravity. Moreover^ and q     are written by 

A _ 2sinh2(£/Q 2sin2(fc,it) 

*Ä + sinh(AÄ)cosh(A*)'        J ~ k/i + sin(£;A)cos(£;/z) (3) 

In Eq.(l), the first and second terms of the right hand side correspond to the progressive wave to the right 
direction and the local wave, respectively. The local wave vanishes exponentially as* increases. 

2.2 A PARTICLES-SYSTEM-MODEL 
Fig.2 shows a particles-system-model which presents the motion of the generated wave. Here, M Ko d and x (t) 
indicate the mass of a particle, the constant of spring, the distance between two particles and the displacement of 
each particle, respectively.    We assume that the number of particles is sufficiently large. 

The following equation must stand up in order to satisfy the condition: the displacement of a particle xn(t) 
equals the surface elevation x=nd. 

2(l-cos(Arf) (4) 

Here, M and K0 mean the mass of a particle and the spring constant, respectively. 

3 COMPARISON WITH THE THEORETICAL SURFACE ELEVATION 
The obtained model is compared with the theoretical surface elevation of Eq.(l) by the computer simulation 

Fig.3 shows the simulation result and the theoretical surface elevation, which are represented by the solid line 
and the dashed line, respectively. The simulation result gives good agreement with the value of the theoretical 
surface elevation without the transient region. 



4 COMPARISON WITH THE MEASURED SURFACE ELEVATION 
Here, the obtained model is compared with the measured surface elevation by experiments using a one- 
dimensional test tank(2). Photograph 1 shows an experimental apparatus of a test tank. Fig.5 presents the outline 
of an experimental apparatus. 

The result is shown in Fig.4, where the dashed line and the solid line represent the calculation result of the 
model and the measured surface elevation, respectively. The simulation result is in beautiful agreement with the 
measured surface elevation. 

5 CONCLUDING REMARK 
The authors proposed a suitable model for the control system design of the generated wave. The followings were 
confirmed. 
(l)The feature of the obtained model is equivalent to the induced results from the potential theory. 
(2)The obtained model simulates the real motion very well. 

REFERENCES 
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Neural networks used for dynamic systems simulation and 
neurocontrollers design 

T. Brezina, J. Krejsa 

Faculty of Mechanical Engineering 
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The contribution summarises our experiences with the usage of artificial neural 
networks, particularly in design of neurocontrollers and simulation of non-linear 
dynamic systems. Neural networks as part of artificial intelligence methods become 
widely used tools in various engineering tasks. Well trained network is robust, noise 
nonsensitive, it has short time response time and creation of solved problem's 
mathematical model is not necessary. But several limiting problems occur while 
working with neural networks: 

a) difficult verification of neural networks responses (network always produce output 
even for invalid inputs) 

b) time consuming training phase (which increases dramatically for real tasks = big 
networks) 

c) design of network's optimum topology (the way neurons are connected to each 
other) 

The topology essentially changes behaviour of the network (responses precision) 
together with training times. So far there is no general method for optimum topology 
determination. This is a big limitation for usage of neural networks in real tasks, 
because usually neural network expert is needed to set network's properties! 
Therefore several methods for automatized topology design were presented. 
Methods based on use of evolutionary algorithms (such a genetic algorithm) are the 
most advanced. 

In the paper we discuss the practical experiments with optimum topology design, 
coming from genetic programming. Topologies of neural networks, types of nodes 
transfer functions non-linearities and weights values are described via certain 
modifications of the cellular encoding. . Encoding is chosen in such a way, that the 
consistency of the network described by the code, same as required number of its 
inputs and outputs is ensured for the arbitrary chromosome. The code also contains 
types of nodes transfer functions and synaptic weights values. The code is further 
understood as the chromosome manipulated by genetic algorithm (selection, cross- 
over and mutation operators are defined on the chromosome). Neural networks 
described by cellular code, represent the individuals with corresponding 
chromosomes. 

The concept of neurocontroll is based on the design of neural network, which 
simulates the behaviour of controlled system, with exchanged inputs and outputs of 
the system. 



Serial connection of control unit with controlled system then represents the unit with 
the transition of input to output with transport delay. Such unit can be used in more 
complex controller. The unit which provides the inverse behaviour of the system is 
realised by artificial neural network - neurocontroller. Realisation of such controller 
therefore becomes the simulation task (the simulation of dynamic system behaviour 
using neural networks) 

The data describing the behaviour of modelled dynamic systems were found by 
numerical simulation. Following tasks were solved using evolution neural networks: 

Simulation of non-linear dynamic system 
• DC motor with non-linear load 
• 1DOF system with attached pendulum 

Control 
• Reluctance motor 
• DC motor with non-linear load 
• Polymerization unit 

Obtained simulators and neurocontrollers of dynamic systems are made of neural 
networks with generally non-standard topologies. Those topologies can have 
surprisingly small structure while keeping reasonable properties of the network. So 
far it seems that evolutionary evolved networks can save about 30 % of neurons and 
up to 60 % of network's connections compare to the classical networks with the same 
quality of response. This is important mainly for purposes of real time control, when 
fast responses of the controller are required. Other nice feature of this approach is 
that neural network expert is no longer needed, the network is designed 
automatically. 

Numerical precision of evolved networks was compared with traditional multilayer 
perceptron networks trained by back-propagation algorithm. Evolved networks 
reached significantly better results mainly in the simulation tasks, for the control tasks 
the evolved networks had only slightly better results (in term of global test error). 

Main disadvantage of this approach is very high computational cost in the evolution 
part - training, but genetic algorithm used for evolution of topologies is ideal for 
hardware implementation, which could increase the speed of learning process 
dramatically. 

We have found evolutionary neural networks useful and promising as the tools for 
both the simulation and control of dynamic systems. So far this method was tested 
only on simulation data but at the present time real control tasks are being 
proceeded. 
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Abstract 

This study is intended to provide a general methodology for developing reduced order controllers for linear 
time periodic large-scale dynamical systems which arise in modeling of numerous engineering structures' 
A vast amount of research has been done to study the dynamics and control of large-scale time invariant 
systems, however, very little has been accomplished in case of time varying large-scale systems. 

First, the linear time periodic dynamical system is converted into a time invariant one by application of the 
Lyapunov-Floquet transformation. An efficient computational scheme is used for computing the state 
transition matrix which can be subsequently factored to yield the Lyapunov-Floquet transformation matrix 
The dimension of the time invariant large-scale dynamical system is then reduced on the basis of number 
of modes to be controlled. The order reduction is achieved using methods such as modal decoupling or 
aggregation and the controller gains are calculated by classical control techniques. The time periodic control 
gams are then transformed back to the original coordinates to guarantee the asymptotic stability of the large- 
scale time periodic system. The computational procedures discussed above are highly time efficient and 
suitable for real time implementation. Robustness of the controller is tested by perturbing the asymptotically 
stable dynamical system with linear, non-linear (in terms of state) and stochastic disturbances The strength 
of disturbances influence the controller gains of the order reduced systems. The proposed scheme is 
illustrated by examples. 

Acknowledgments: Financial support provided by the National Science Foundation (grant number: 
CMS-9713971) is gratefully acknowledged. Computer time provided on C-90 by the Alabama 
Supercomputer Authority is also acknowledged. 



SUPPRESS CHAOS IN MATHIEU'S EQUATION BY THE 

SYSTEM VARIABLE SUBSTITUTION 
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310014JP.R.C.) 

ABSTRACT 

Based on Pecora-CarroH's idea of synchronization of chaotic systemfl], we present 

a method to suppress chaos through the system variable substitution , i.e. using some 

external signals to take the place of the variables of chaotic system. The signal can be 

either periodic one or quasi-periodic, or chaotic which is produced by another system. 

The chaotic system is a special form of Mathieu's equation[2-4] described as follows: 

X + X + S(X + nlX
2X) + JuX + /3l0X

i+2ecos2t(-X + Xi/6) = 0. (1) 

Many bifurcations and chaotic phenomena have been shown in this system[5]. 

With certain set of parameters and initial condition, system (1) shows chaotic 

behavior. If we replace the Zterm in system (1) with X*(t), system (1) with control 

can be described as: 
X=Y 

Y = -X*{t)-S(Y + nlX
2Y)-^X-ßwX3 -2scos2t(-X + X316), (2) 

X*(t) are the external signals. We got them from a system which is described by the 

same evolution equations, but with a set of parameters such that the system are in the 

periodic, quasi-periodic or chaotic regimes. 

By using these signals, we have achieved the goal of suppressing chaos numerically 

through substituting for the X term. 

If we use these signal to replace the variable X of ß^ term in system (1), we can 

also achieve the chaos suppression and get regular orbits, theoretically all the terms 



about X in system (1) can be substituted. 

With the same signal, the behavior of controlled system can be changed by varying 

the moments of control switching on or off. It is obvious that the cause of this 

phenomena is the sensitivity to initial condition of chaotic system. 

On the other hand, system (1) can also be switched its behavior from the periodic 

to the chaotic by the same method. This possibility may be of interest to many 

biological systems showing that chaos can be healthier than order under some 

circumstances. 

In conclusion, the numerical results indicate that the proposed method is capable 

of suppressing chaos of chaotic system and switching the behavior of a nonlinear 

system from periodic to chaotic. These results may be applied to other chaotic 

systems including multi-degree-of-freedom systems described by a set of differential 

equations. 

1    Pecoea L M and Carroll T L, Synchronization of chaotic system. Phys Rev Lett, 

1990,64:821-828 

2. T.Paston and I.Stewart, Catastrophe Theory and Its Applications,( Pitman,San Francisco, 1978) 

3. A.H.Nayfeh and D.T.MookNonlinear Oscillations,John Wiley and Sons,New York,(1979) 

4. M.Golubitsky and D.G.Schaeffer, Singularities and Groups in Bifurcation Theory, Springer- 

Verlag,    New York,( 1985) 

5. F.M.Wu, Chaos and Bifurcation in Euiefs dynamically buckling problems. J.of Nonlinear 

Dynamics in Science and Technology,3£.61{ 1994) 
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Vibration analysis of elasto-plastic structures is important in many engineering problems. 
Damage phenomenon, observed in situations like low-cycle fatigue, introduces non-linear effects 
that can promote alterations on the structure behavior. 

The present contribution considers a pin-ended beam submitted to cyclic loading by 
employing an idealization, known as Symonds' model (Symonds and Yu, 1985). The considered 
idealization proposes a model where a pin-ended beam with length 2L, and uniform rectangular 
cross section, is represented by two rigid links, each of length L, which are joined by an elasto- 
plastic element. The two rigid bars are assumed to have mass per unit length p, the same as for 
the uniform beam. A constitutive model with internal variables is introduced to describe the 
inelastic deformations and the damage processes of the elasto-plastic element. Both kinematic 
and isotropic hardening are considered. 

By geometric and equilibrium considerations, it is possible to establish the following 
governing equations to describe the pin-ended beam motion (Symonds and Yu, 1985), 

y\ = y2 (1) v2 = -c0y2 -n sin y, + p0 m + S sin(ßr) 

where n and m are forces and moments, respectively, acting on the elasto-plastic element. c0 is 
the dissipation parameter, Ho is a constant.«? and Q are forcing parameters. The constitutive 
equation is given by (Savi and Pacheco, 1997), 

a = (1 -D)E(e -ep) 

ep=ysign[a-(l-D)ß]   ä = \ep\   ß = Hep 

1 ^/      Dv    Ka       1   o2 -E[e-£p) + + B2 

2 v '       2      2H 
(2) 

where sign(x) = x I \x\. a is the one-dimensional stress, e and e° are the total and plastic one- 
dimensional strain, respectively, ß is the back stress and a is the internal hardening variable, ß 
and a are associated with kinematic and isotropic hardening, respectively. D is the damage 
variable, /represents the rate at which plastic deformations take place. E is the Young modulus. 
K and H are the isotropic and kinematic hardening parameters, respectively. S0 is the damage 
parameter. The yield function, h{a,a,ß,D), the Kuhn-Tucker conditions and the consistency 
condition are given by: 



h(a,a,ß,D) = \a-(l-D)ß\-[(jy-a-D)Ka] 

y>0, yh(<j,a,ß)=0, Yh{o,a,ß)=0   if   h(o,a,ß)=0. (3) 

A numerical procedure is developed using operator split scheme to promote the 
separation of the variables space in a phase space and a plastic-damage space. First, equation of 
motion (1) is integrated using any classical scheme, like fourth order Runge-Kutta, assuming that 
the variables n and m are known parameters, n and m are evaluated by considering an elastic 
predictor step (trial state), where plastic variables ((?,a,ß,D) remain constant from the previous 
time instant. The next step of solution procedure consists on a plastic corrector step where the 
feasibility of trial state is evaluated using the return mapping algorithm (Simo and Taylor, 1985). 
An iterative process is used to determine damage variable, D. After this step, it is possible to 
recalculate variables n and m, and a new iterative process takes place until the convergence is 
achieved (Savi and Pacheco, 1997). 

Qualitative changes on the beam response, predicted by the models with and without 
damage, may occur. Figure 1 shows phase plane orbits predicted by these two models. Damage 
effect promotes the material softening which causes changes on the motion. The beam may 
oscillate around different equilibrium points. Figure la shows steady state response for both 
models when Q, = 0.75 and 8 = 0.3. Figure lb shows the response for ß = 1 and 8 = 0.5. In this 
situation, the model without damage presents a periodic steady state response while the model 
with damage presents no steady state since a critical damage, Dcr = 0.8, is reached after 254 
cycles. 
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Figure 1: Phase plane orbits predicted by the models with and without damage, 
(a) Q = 0.75 and 5= 0.3; (b) Q = 1 and 5= 0.5. 
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This paper describes gain constant in synchroniza- 
tion of chaotic systems by linear feedback and the 
maximum Lyapunov exponent. As the subsystems 
A and B of chaotic systems, the following Duffing 
oscillator systems are considered. 

A: 
dxi 
~dT 
dx2 

dt 

X2 + «i 

-kx2 — arf + Bcos(t) + u2    (1) 

B:   rZi    _ dm 
dt 

dy2 

dt 

V2 

=    -ky2-yf + Bcos(t) (2) 

where parameters k and B  have the same values in 
the subsystems A and B. 

The following negative feedback was introduced 
into the A subsystem so that the subsystems A and 
B can synchronize. 

«i    =    -K1(Xl-y1) 
u2    =    -K2(x2-y2) 

where K\ and K2 are gain constants. 
Figure 1 shows bifurcation diagram of the A sub- 

system for k = 0.1, B = 5.0-9.0 when no feed- 
back is performed, Kx = K2 = 0. In two cases gain 
constants are K = Kx > 0,_ K2 = 0 and K = 
Kx = K2 > 0 for k = 0.1, B = 5.8 where chaotic 
motion occurs, we investigated the relationship be- 
tween the gain constant K and periods ns, when the 
synchronization can be achieved. Those results are 
presented in Fig.2. When K = Kx > Q,K2 = 0, two 
subsystems does not synchronize for K < 0.2. For 
K > 0.2, n, decreases exponentially as the value of 
K increases. Here, denote the minimum value of K 
in the synchronization by Kamin. 

On the other hand, when K = Kx = K2 > 0, the 
minimum value Kbmin of K is Kbmin = 0.1 in the 
synchronization, and this value is a half of Kamin. 

Also, it nearly equals to the maximum Lyapunov ex 
ponent \max = 0.10079. As K increases, the perioc 
n, exhibits more remarkable decrease than that foi 
K = Kx > 0, K2 = 0. 

H   2.0 

Figure 1: Bifurcation diagram in the Duffing oscilla- 
tor system for k = 0.1 

Kbmin    Kamin 

\     I 
2500 K=Ki, «2=0 

Figure 2: n, versus different values of K in the syn- 
chronization of the two Duffing oscillator subsystems 
for k = 0.1, B = 5.8 
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Figure 3: Ka Kbmin and Xmax in the synchro- 
nization of the two Duffing oscillator subsystems 
(B = 5.5 ~ 6.0) when there is a phase difference 
of one or two periods between periodic orbits of the 
A and B subsystems 

Figure 4: Kbmin and Xmax in the synchronization 
of the two Duffing oscillator subsystems (B — 5.5 ~ 
6.0) when the response of the A subsystem converges 
to a periodic orbit in phase with that of the B sub- 
system 

Next, we examine the relation among Kamin, 
Kbmin and Xmax- For the initial value of £i(0) = 
x3(0) = -1-0 and jfc(O) = y2(0) = -1.01, Fig.3 
shows the values of Kamin, Kbmin and Xmax versus 
B, when B is changed from 5.5 to 6.0. From this 
figure it is found that the relation of Kbmin « Xmax 

is applicable to the region of 5.54 < B < 5.92 where 
chaotic motions occur and then \max > 0. Further- 
more, in this region, the relation of Kamin/Kbmin « 
2 is valid. However, in the region where the two sub- 
systems converge to a periodic orbit, Xmax < 0, both 
Kamin and Kbmin are smaller than those in chaotic 
motions, but Kbmin does not coincide with Xmax. For 
an example, over the range of B > 5.92, the subsys- 
tems A and B converge to the period-3 orbit as shown 
in Fig.l. However, since there is a phase difference 
of one or two periods between two subsystems for 
this region, Kamin = Kbmin = 0.01. Figure 4 shows 
Kbmin obtained by taking the initial value in order to 
converge to a periodic orbit with the same phase in 
two subsystems and the maximum Lyapunov expo- 
nent Xmax. This figure reveals that Kbmin « Xmax is 
applicable to all regions of period orbits and chaotic 
motions. 

In addition, for the piecewise linear, the Lorenz 
and the Rössler systems, we also examined the re- 
lation among Kamin, Kbmin and Xmax. The results 
suggest that the following relation can establish if 
the two subsystems are the same chaotic systems. 

the phase difference of several periods, Kbmin ~ 
Xmax > 0. It could be further proved that the re- 
lation Of Kbmin « Xmax holds. 

These above results therefore lead to the conclu- 
sion that the maximum Lyapunov exponent of the 
system can be determined by calculating gain con- 
stant Kbmin in the synchronization of the same two 
systems. 

Furthermore, if the linear feedback gain K can be 
increased sufficiently, mean error e between x\ and 
yi in the synchronization of two different subsystems 
becomes constant. The value of e can be allowed to 
measure similarity in two different subsystems. 
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Abstract 

There are many studies on oscillations of the column subjected to a base excita- 

tion. For instance, there are the analysis of the response of a beam-mass oscillator 

under combined harmonic and random excitation[l], and the investigation of a 

method of active control for suppressing the vibration of a mechanically flexible 

cantilever beam which is subject to a distributed random disturbance and also a 

seismic input at the clamped end [2]. However, these studies are investigated with 

respect to the response in the case when the base is laterally excited. 

On the other hand, the analysis of the response in the case when the base is 

vertically excited receive much attention in recent years. The vertical excitation 

produces the parametric resonance in the case when the excitation frequency is in 

the neighborhood of twice the natural frequency of the beam . Anderson et al theo- 

retically and experimentally show that the inertia and curvature nonlinearities and 

quadratic damping term have significant influence on the nonlinear characteristics 

of the frequency-response [3]. By the way, there are some studies on the control 

of the oscillation for the parametric resonance in the single-degree-freedom model. 

Yabuno theoretically proposes the bifurcation control method in order to stabilize 

a parametric resonance [4]. But, there is no study on the control of the oscillation 

of the parametrically excited beam in the continuum system. 

In this research, an experimental and theoretical investigation into the passive 

control method for stabilization of a parametrically excited slender cantilever beam 

is presented. As mentioned above, the beam subjected to the sinusoidal and verti- 

cal excitation is parametrically excited in the case when the excitation frequency 

is in the neighborhood of twice the natural frequency of the beam. The cantilever 

beam is treated as continua, and a simple pendulum mounted to a tip mass of the 



beam is used as a passive vibration absorber for the parametric resonance. The 

equation governing the motion of the system is formulated by Hamilton's princi- 

ple, taking into account the coupling effect between the beam and the pendulum 

mounted to the tip mass of the beam. Using the method of multiple scales, the 

modulation equations of the system are derived. By theoretically analyzing the 

modulation equations, we show that the beam is stabilized, even in the case when 

the excitation frequency is in the neighborhood of twice the natural frequency of 

the beam, by shifting the unstable region due to the coupling effect between the 

beam and pendulum. In addition, the experimental results verify that the theoret- 

ically proposed method makes it possible to stabilize the parametric resonance of 

the beam. 
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Parametric resonance occurring in a magnetically levitated body subjected to period- 
ically varying magnetic force is stabilized by a bifurcation control. A pendulum mounted 
to the body is used as a vibration absorber under the bifurcation control method [The 
analysis using the method of multiple scales] The appropriate feedback gain of the bi- 
furcation control method is obtained by (Yabuno, H. 1997). We consider the system as 
shown m Fig. 1. The magnetically levitated body can be moved freelv only in the vertical 

Main system    \® 

Base 

Fig. 1 The analytical model. 

direction. The magnetic force acting on the body is regardes as a asymmetric nonlinear 
restoring force. The base with the magnet which repulses the magnet on the bodv is 
smusoidary excited in the vertical direction, and then the magnetic force acting on "the 
body is periodically changed. Due to the asymmetry and the periodically change of the 
magnetic force, the govering equation is simillar to parametric exciting Duffing system A 
parametric resonance therefor occurs in the case when the frequency of the base excitation 
is m the neihborhood of twice the natural frequency. 

The dimensionless equations governing the motion of the system under the feedback 
torque, r, constructed with the linear combination of the displacement and velocity in 
trie vertical direction are expressed as follows 

7** * 
1 + C1 + -p ~ 2eazz cos vt)z - k'r'd = e cos ut -pgz-Tl. 

(1) 



6 + k"(l + —m)6 + 1{1 _ l(i + J_)T- _ 2ea„ cos vt\z 
m* r* r* m* 

= ~z:ecos vt ~ no + -2 (i + —K i. m* (2) 

Here z is a dimemsionless vertical displacement in the Z-direction, azz is a dimensionless 
coefficient with respect to the quadratic nonlinear component of magnetic force and this 
coefficient the causes parametric resonance, e is the amplitude of the excitation, and v 
is the frequency of the excitation. The symboles with * express dimensionless constant 
values; rx*(^0) and TV^O) are the dimensionless feedback gains with respect to z and i, 
respectively. The dot denotes the derivative with respect to the dimensionless time. 

Analyzing Eqs.(l) and (2) by the method of multiple scales, we obtain the boundary 
between the stable and unstable regions, i.e., the bifurcation set, for the trivial solution 
as follows: 

e=Ja(V-by + {c + dr;)\ (3) 

where a, 6, c and d are the functions of r*. Figures 2 and 3 illustrate the bifurcation sets 
for several values of r2* and rx, respectively. 

T,* = 0 

Fig. 2 Bifurcation set (xx* = 0). Fig. 3 Bifurcation set (x2* = 0). 

As a results, the influence of T{ and r2* on the stabilization for the parametric resonance 
is summarized as follows: 

• Increasing the dimensionless feedback gain with respect to the dimensionless vertical 
velocity, r2*, corresponds to increasing the viscous damping force in the vertical 
direction. The boundaries are shifted to the positive direction of the dimensionless 
amplitude of the excitation, e, as shown in Fig. 2 and the stable region becomes 
wider. 

• Increasing the dimensionless feedback gain with respect to the dimensionless vertical 
displacement, r*, corresponds to increasing the natural frequency. The boundaries 
are shifted to the positive direction of the dimensionless frequency of the excitation, 
i/, as shown in Fig. 3 and the stable region is not changed. 



Vibration and Control by Parametric Excitation for Driving Belt 
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Abstract 

Belt systems are applied to driving equipments for power transmission in industrial machinery 
as in a tank, snow mobile, automated teller machine, etc. A part of the driving unit installed 
with the crawler driven vehicle by a DC motor is operated in the running performance test. 
1 his is similar to the running performance test of a vehicle tire. In certain conditions of high 
speed, called critical speeds, the upper part of the belt between the driving and idler wheels 
vibrates in the vibration shape of the first bending mode. The high speed operation of these 
axially moving belt systems encounters the belt resonance vibration problem. These vibration 
resonances at critical speeds are a barrier for the trend to design the high speed operating 
machines. to 

In this paper, the simplest belt system(Fig.l) as a bridge structure connecting driving and 
driven pulleys located at both ends is selected for proposal as a basic idea for vibration reduction 
control methods. 

Driving motor 

Idler pulley , Driving pulley 

Figure 1: Driving Belt model. 

The belt vibrating system can be thus described by the equation of motion of the string In 
this system, the eccentricity of a pulley causes the forced vibrations of the belt in relation to 
the pulley revolution, as well as rotor vibration caused by unbalance. 

In order to combat these forced vibrations, many ideas are presented which includes the 
addition of external damping devices and roller bearings in the middle of the belt span Some 
ol the references propose a vibration control method using the feedback control theory which 
implies the closed loop electric device. The result is not practical for industrial uses All of 
these ideas imply relevant additions of equipment to machines. 

Our idea allows for no additional mechanical parts and incorporates with the open loop 
control technique. Usually, motor input torque to drive the pulley employs DC voltage fed 
to the motor. However, if a harmonic wave is superimposed using modified DC voltage the 
pulley rotation speed fluctuates with the changing tension, i.e., the parametric excitation 
This nonlinear parametric excitation can be adjusted to reduce the vibration by directing the 
magnitude and phase of the additional harmonic wave to the opposite vibration source of 



the linear system. The parametric excitation cancel the vibration source so that the resultant 
vibrations disappear. This method is realized through only electronic modification of the motor 
driving circuits. 

In this paper, the resonance vibration characteristics are analysed. The causes of vibration 
are identified from the results of forced vibrations of the linear system. 

The mathematical models are introduced by using the equation of motion of the forced 
vibration including the parametric excitation. 

x + LUI{1 + hcos (vt + a)}x + 2C,ujnx = eu2 coscut + g 

where x    = the displacement of the belt vibration 
the natural angular velocity of the belt vibration 
damping ratio of the belt 
pulley ratational speed 
ecdentricity 
fluctuation angular velocity of tension 
gain to be selected 
phase to be selected 
gravity 

The control method by parametric excitation can be discussed in order to combat these 
forced vibrations. The harmonic fluctuation frequency can be selected in two case; v — u or 
v = 2u in case of resonace of u = ujn. According to this mathematical analysis on the forced 
nonlinear vibration, the strategy of vibration reduction control is clarified. 

The vibration amplitude a of x is shown in Figure.2 and 3. 

c = 
UJ — 

e = 
v = 
h = 
a = 
9 = 

x X u                                            u 

a                                           o 

0 .     • "=2?     ; 

a                                           a = h=3C 

o                                     a « h=4£ 
o                                a 

•♦****♦ 

o                            0 # *                                     * „ 

a                    a - 
♦      o               a      * #.. *.^ 

t-    *                          *   ••" ' 
♦t.o          0    !♦ 

**♦•♦♦• 

• •a 

' 

X 
a                              * 

a                    # *       *♦ 

3 -*              O                              X 

a                  * 
»           a           x           * . 

o              • 
Zb 0»*#" 

.   ° a              *            ♦* 

*•                     *        *     .* 
•              o           o 
♦    *           °0=° • 

. 
1 s •   ♦ * *   * * 

•  * *    •       oh" = £ 

« + h" = 2? 

0.5 
'•4 

x h!=6£ 

X^ 
1 
Xit 

Figure 2:  Amplitude at vibration resonance by 
parametric excitation {v = 2ui). 

Figure 3: Amplitude at vibration resonance by 
parametric excitation (y = u) in case of C = 
1.93e2c4/<72. 

As the result, the follows are obtained. 

• This system is subject to the limitation of stability in case of v = u and v = 2u. 

• Control good parameters (h, a) for the vibration reduction are proposed. 

• The effectiveness of parametric excitation control is proven numerically. 
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ABSTRACT 

The sliding mode control approach is gaining increasing attention in the structural 
dynamics community for the control of structural motions caused by earthquakes and 
wind, primarily for the reason of its robustness under parametric uncertainty. The 
approach consists of enforcing constraints that satisfy certain stability and optimality 
conditions by means of appropriate control actions. In the classical approach, the control 
actions are usually defined as linear functions of the measured system states. However, 
to reduce the required control effort and also to reduce the peak response more 
effectively, one can also utilize a nonlinear controller with certain advantages. 

In the sliding mode approach, it is common to define the control actions 
consisting of two parts: (1) equivalent control that depends on the available states and 
compensates for the system's response and, (2) and the second term that compensates for 
the unmeasured disturbance and keeps the sliding motion in an acceptable regime. The 
second terms is usually defined as linear function of the sliding motion variables. For 
seismically excited buildings, the first term is more dominant than the other. One can, 
however, choose to reduce the dominance of the equivalent control term. This can be' 
accomplished by using a nonlinear controller where the second term is expressed as a 
nonlinear function of the sliding state variables. The paper will present the numerical 
example of a multistory building structure subjected to earthquake induced ground 
motions to demonstrate the relative effectiveness of these two control action terms in 
reducing the peak structural response and their respective contributions to the magnitude 
of the overall control effort. 
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INFLUENCE OF STATIC NONLINEARITY 
TO RESONANCES DUE TO A CRACK 
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Introduction 

There are many studies on vibrations of cracked rotors. However, most of them investigated changes 
which appeared m vibrations when cracks occurred in linear rotor systems. Cracked rotors have rotating 
nonlinear characteristics of a piecewise linear type due to open-closed mechanisms. Previous researchers 
proposed to utilize resonance caused by this rotating nonlinearity as a signal of the occurrence of a cracklf a 
rotor system has mechanical elements, such as ball bearings and journal bearings, static nonlinearity appears 
and, as a result, nonlinear resonances similar to those due to cracks appear. Therefore, it is difficult to detect 
cracks in such nonlinear systems using existing diagnoses. In this paper, we investigate vibrational changes 
which appear when cracks occur in rotor systems with static nonlinearity. Especially, we focus on the effect 
of the static nonlinearity to the 2nd and 3rd order superharmonic resonances due to crack. Nonlinear 
equations of motion with both static and rotating nonlinear spring characteristics are derived. Changes in the 
shapes of resonance curves are investigated by theoretical analyses and numerical simulations. 

Equations of Motion 

The equations of motion of a cracked rotor with static nonlinear spring characteristicsfFig 1) are given 
as follows. '      ^ 

6X + ipco6y + c6x + (1 + A2)6X + (A1±A2) (dxC2+6yS2) + n6x -Mcos(cot + a) 

9y-ipcodx+cey+(l+A2)ey+(A1±A2) (0xS2-6yC2) + ngy -Msin(a,t + a) + M0 (1) 
If the restoring forces are approximated by power series, these equations become 

ex + ip0>ey + cex+ex+A(dxc2 +eys2) +N6X + nex = Mcos(cot + a) 

Ö,-i,«>ex+ce,+ey+A(6xS2-0yC2)   + Ney+ney-Msin(a>t + a) + M0 (2) 
WhT, S»-sinncot md Cn -cosncot. We call Eq.(l) a piecewise linear model, and Eq.(2) a power series 
model. The rotating nonlinear terms N6x and Ney are given by(1) 

Nex-(e2l4)[(-3S1+S3)ex
2+2(C1-C3)6xey-(S1+S3)dy

2  ] 

»By = (B2 14) [ (Cr -C3)6X
2 -2(Sj + S3) dx6y + (3Cj + C3) 8/ ] (3) 

and the static nonlinear terms n 6x and n 6y are given by 

*.,-*vm/Mx, ne,-avBi9e, , v = v0+v„=v0+  J  eijßx
ie/+  2    ßijex'e,J (4) 

d+J-3) (i+j-4) 

NONLINEAB -^^ 

(Open) 

NONUNEAR 

where v is the corresponding potential energy,  ,tj is the static unsymmetrical nonlinear coefficients ,and 

£1    f iT;^ DOnlinear coefficients -„By the transformation e,~Bmv,   «L -«**, we can 
transform Eq.(4) into the polar coordinate expression(2). y 

V =V0 +(ec
(1> cos<p + es

(1) sirup +ec
(3) cos3<p 

+ es
(3) sin3q>)03 +(ß<°> +ßj2> cos2<p (5) 

+ ß/2) sin2cp +ße
(4) cos4(p + ßs

(4) sin4cp)d4 

2nd Order Superharmonic Resonance 
In order to investigate the effect of the static 

nonlinearity , we carry out numerical simulations 
by Eq.(l) and theoretical analyses by Eq.(2) for the 
cases with only the rotating nonlinearity,and with both 
static   and   rotating   nonlinearities.    In theoretical Fig.l   Model of a cracked rotor 



(6) 

analyses, we assume the approximate solution in the accuracy of order 0(e) as follows: 

6 x~ Rcosdj +Pcos(cot + ß) +s(acosdf +bsindj ) + Ax 

6 y= Rsindj +Psin(cot + ß) +e(a'sindj +b'cosdj ) + Ay 

where 6f 'Coft + 6 and cof - 2 a .The terms with the small parameter e represent deviations. Substituting 
Eq.(6) into Eq.(2) and using the harmonic balance method, we can obtain the expression for the resonance 
curves. The results of numerical simulations and theoretical analyses are shown in Fig.2~Fig.4. Figure 2 
and Fig.3 show the influence of the static unsymmetrical nonlinearity. The resonance curves for es

(I) - 0 
show the resonance due to only crack. As es

(1) increases in the positive side, the magnitude of the resonance 
increases. On the contrary, as ss

(1) increases in the negative side, the resonance decreases and finally 
disappears. Figure 4 shows the influence of the static symmetrical nonlinearity. The resonance curves 
become a hard spring type for ß(0> > 0, and a soft spring type for ß(0> < 0. 

3rd Order Superharmonic Resonance 
The influence of the static symmetrical nonlinearity are shown in Fig.5. 

Conclusions 
Concerning the resonance of superharmonic resonances [2a>]and [3a>] in cracked rotors, we obtained the 

following results: 
(1) The static nonlinearity has an influence on the resonances due to a crack. (2) The static unsymmetrical 
nonlinearity has an influence on the magnitude of the resonance. (3) The static symmetrical nonlinearity 
has an influence on the inclination of the resonance. It becomes a hard spring type or a soft spring type 
depending on the sign of the nonlinear coefficient. (4) The results of the theoretical analysis by a power 
series model agree well with the results of the numerical simulation by a piecewise linear model. 
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Summary 

This paper investigates the steady-state response of a rigid, single mass rotor with imbalance eccentricity supported 
by an active magnetic bearing with nonlinear characteristic. The rotor may have intermittent contact with a fixed 
rigid and circular backup bearing. An offset position of the the backup bearing is assumed. 

Backup bearings are necessary to prevent the non-rotating parts of an Active Magnetic Bearing (AMB) from solid 
contact with the rotor. They are in regular use during the transient behavior of a rotor when a magnetic bearin* starts 
or stops operating and a transfer of support from the backup bearing to the AMB (or vice versa) take/place 
However, a rotor might also have intermittent or permanent contact with the backup bearing during steady-state 
operation due to abnormal operating conditions. This can occur, for instance, due to a bearing overload resulting in 
an off-center orbit of the rotor which cannot be compensated by the magnetic bearing controller, or a high rotor 
unbalance leading to a steady-state orbit exceeding the backup bearing clearance. Misalignement of the effective 
centers of an AMB and the backup bearing in combination with a small clearance between rotor and backup bearin* 
may also cause contact and rub between a rotor and a backup bearing. ° 

This investigation is based on a magnetic bearing actuator that consists of two pairs of opposed electromagnets 
arranged symmetrically about x-axis and y-axis. Each pair of magnets is independently controlled by an idealizedW 
controller based on the magnetic flux in the airgap. However, control is nonlinear since geometric coordinate 
coupling is taken into account. The magnetic bearing model employed in this investigation was developed in Nl and 
used in several investigations [2] and [3]. 

A rather simple model for the backup bearing is used in this investigation. It is assumed that the sleeve bearin* is a 
fixed and rigid ring. This assumption is valid only if the mass and stiffness ratios between the backup bearing housing 
and the AMB-suspended rotor are sufficiently high As this investigation is mainly focused on the effect of impact 
friction and bearing offset, the model is kept as simple as possible. 

The contact between the rotor and the backup bearing is modeled as an impact of infmitesimally short period of time 
occunng between two rigid surfaces with Coulomb friction coefficient u. Energy dissipation during the impact is 
accounted for by introducing a coefficient of restitution e. Different kinds of impact are possible when friction is 
taken into account. "Sticking impact" occurs when the contact points on both bodies do not move relative to each 
other within a tangential plane to the contact surfaces. However, for low values of the friction coefficient and/or for a 
large tangential velocity at the contact point, compared to the radial velocity of the rotor "sliding contact" occurs 
Since, in general, the radius of the rotor at the bearing station is much larger than the clearance of the backup bearing 
and since the rotational frequency of the rotor is constant, only sliding contact is considered in this investigation.     °' 

The nonlinear equations of motion of the rotor were solved by numerical simulation with a state-of-the-art Run^e- 
Kutta algorithm. A state vector was picked from a sufficiently large steady-state orbit without rotor-bearing contact 
and chosen as initial condition for a single simulation run. In the presented parameter studies the excitation frequency 
Q was increased step-by-step. The state vector at the end of the previous simulation run was used as an initial vector 
for a subsequent run. Usually, the simulation was stopped after 300 revolutions (periods) of the rotor. 

Numerically, the most crucial point in this investigation is the precise calculation of the time instant at which a 
contact occurs Since the domains of attraction for certain periodic solutions are rather narrow, results can change 
qualitatively if numerical errors introduced at the instant of contact are not sufficiently small. Therefore a root 
finding procedure was started each time when a contact event was detected after an integration step. After calculating 



the exact contact time, impact equations were evaluated and integration was restarted with new initial conditions after 
the impact. 

Figure 1 shows bifurcation diagrams for the Y-amplitude of a rotor in a backup bearing with offset values as used in 
[3]. Note the different frequency ranges and the different scales on the vertical axes of the left and the right figures. 
The diagrams at the bottom of Fig. 1 show the corresponding angular position of the rotor at the contact. In the case of 
a periodic solution it is shown primarily how many contacts occur during a single period of a periodic orbit. The one- 
periodic solution for excitation frequencies ß < 0.795 corresponds to an orbit of the rotor without backup bearing 
contact. After a bifurcation at Q = 0.795 a stable two-periodic orbit develops. However, above ß = 0.805 this 
periodic solution was not attracted anymore within 300 periods. A small window with multiperiodic solutions is 
observed in the frequency range of 0.807 < Q < 0.809. A rather large window with a number of different multi- 
periodic solutions occurs in the vicinity of ß = 0.82. Above ß = 0.823 quasi-periodic solutions were found. 

Figure 2 shows various orbits for selected frequencies, corresponding to the bifurcation map in Fig.l. Note the 
difference between the two-periodic orbit (a) with one contact at ß = 0.80 and the complicated twelve-periodic orbit 
with eighteen contacts at ß =0.822. Orbit (c) at ß =0.83 is a quasi-periodic orbit with three contacts. 

0.45 c 

0.795 0.8 0.805 0.81 
Excitation Frequency Omega [-] 

0.815 0.82 0.825 
Excitation Frequency Omega [-] 

Figure 1: Bifurcation diagram for friction coefficient u=0.25 and restitution coefficient e=0.9. 
Backup bearing offset is approx. 10% of AMB-clearance. 
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0.6-0.4-0.2     0     0.2   0.4   0.6 

Figure 2: Orbits of the rotor axis within backup bearing clearance corresponding to Fig.l: 
(a) ß = 0.80, (b) ß =0.822 and (c) ß =0.83 
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Perturbed rotations of a rigid body, close to the Lagrar.ge case 

Leonid  D. Akulenko and Dmitrii D. Leshchenko 

i 

The-, authors investigated some new problems of the motion of 

a rigid body, about a fixed point under the action of perturbing 

torque of forces of different physical nature. The motion with 

the moment of external forces in Lagrange's case is considered 

as a nonperturbed motion. The influence of the perturbations is 

determined by the averaging method for the Lagrange-Poisson 

motion. 

We have established the conditions of the feasibility to 

average (with, järespect to the nutation angle) the equations of 

the rigid body motion related to the Lagrange case. The averaged 

system of equations is obtained and qualitative analysis of 

motion is conducted. In the case of the rotational motion of the 

body in the linear-dissipative medium, the numerical integration 

of the averaged system of equations is conducted. 

The authors investigated perturbed rotational motions of a 

rigid body that are close to regular precession in the Lagrange 

case. The averaged systems of equations of motion is obtained in 

the first and second   approximations. We considered mechanical 

models of perturbations related to the rigid body motion in the 

following cases: a) the linear-dissipative medium; b) under the 

action of a torque that is constant in the attached axes; c) 

with  the  cavity  containing  viscous  fluid;  d)  with  the 

distribution of mass that is close to Lagrange's case.  The 

qualitative distinctions of the motion in these cases are noted. 

/The authors investigated perturbed rotational motions of a 

rigid body Jthat are close to regular precession in the Lagrange 

case when the restoring torque depends on the nutation angle. 

Analogously to the case of constant  restoring torque,  the 

averaged systems  of  equations  of motion  is  obtained  and 

investigated in the first and second approximations. For the 

motion under the action of the resistance torque, applied by the 

medium, and the torque that is constant in the body-connected 

axes, we have found out the evolution of the precession and 

nutation angles. 
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The in-depth characterization of the nonregular finite dynamics of an experimental flexible continuous system on the basis 
of measures of its nonregular response involves some main steps: (i) quantitatively characterizing complex attractors as to 
strangeness and chaoticity; (n) describing bifurcation paths in parameter space, with main attention devoted to transition 
from regular to nonregular dynamics; (iii) locally and globally characterizing the flow structure in phase space- (iv) 
identifying the configuration variables that mostly contribute to nonregular motions. The analysis of the asymptotic 
response has to be performed on attractors reconstructed by means of the delay-embedding technique The topic of the 
system dimensionality has to be tackled by performing an analysis of the spatial coherence of the nonregular flow too 
The consistency between attractor dimension calculations and spatial coherence calculations has to be verified All 
previous topics, besides being of interest in themselves, are necessary steps for building and verifying proper mathematical 
models of the experimental system. 

In this work, the relevant analyses are made with reference to an experimental elastic cable/mass model han<nn<> at two 
supports which can move sinusoidally either in phase or out-of-phase in the vertical plane. The system parameters realize a 
condition of 2:2:1 multiple internal resonance involving the first antisymmetric in-plane (V2) and out-of-plane (H2) 
modes, and the first symmetric out-of-plane (HI) mode. In previous works (Rega et al., 1997), the regular response of the 
system over wide ranges of excitation frequency was studied. Very rich regular dynamics, as well as some zones of 
nonregular motion, were observed. The transition to nonregular dynamics is herein investigated in-depth in various 
external resonance zones, characterizing the bifurcation paths and identifying the involved configuration variables 
Though being the non-regular behaviour quite varied, the bifurcation paths exhibited near primary and '/2-subharmonic 
resonance conditions can be traced back to two canonical scenarios of dynamical systems, which are here seen to compete 
sometimes with each other: (1) the quasiperiodic scenario and (ii) a scenario in which is involved the global bifurcation of 
an homoclmic invariant set of the symmetric flow. The nonregular dynamics exhibited by the continuous system in each of 
the two resonance zones has low correlation dimension (2 < Dc < 4), and the first scenario generally results in higher 
correlation and linear phase space dimensions. 
Attention is mostly focused on the quasiperiodic scenario, which is recognized responsible for transition to chaos in 
primary and V2- subharmonic resonance zone with in-phase and out-of-phase support motion, respectively The results we 
deal with refer to the former condition. The system exhibits a strongly varied behaviour due to the involvement in the 
dynamics of a third harmonic of frequency incommensurable compared to the two harmonics formerly responsible for a 
two-frequency quasiperiodic motion, namely the first in-plane (VI) and out-of-plane (HI) modes of the cable (motion on a 
2-Torus). The spatial coherence analysis shows that the first antisymmetric out-of-plane mode (H2) is the one responsible 
for the further incommensurability. In the overall transition   region the model shows a close sequence of regular and 
nonregular response classes: (1) two-frequency quasiperiodic motions on two-dimensional manifolds; (ii) two-frequency 
phase-locked quasiperiodic motions on three-dimensional manifolds; (iii) stable three-frequency quasiperiodic motions- 
(iv) chaotic motions ensuing from evolution of unstable three-frequency quasiperiodic motions; (v) phase-locked periodic 
solutions which are invariant sets of dimension 1 on three-dimensional manifolds. Various types of bifurcation are 
documented: (1) transition from 2T-quasiperiodic (on a 2-Torus, as well as phase-locked on a 3-Torus) to stable 3T- 
quasipenodic; (11) transition from stable to unstable 3T-quasiperiodic, with   evolution of the latter towards a chaotic 
attractor; (111) phase-locking of chaotic motion on a 2T-quasiperiodic attractor and of stable 3T-quasiperiodic motion on 
high periodicity solutions. Due to subsequent Hopf bifurcations, the number of configuration variables (experimental 
eigenfunctions) involved in the motion grows - from 1 (periodic motion: VI) to 2 (2T-quasiperiodic- VI HI) to 3 (3T- 
quasipenodic, phase locked 2T-quasiperiodic, phase locked periodic motions: VI, Hl, H2). Almost the whole power of the 
chaotic response can be decomposed on a three-modal (VI, Hl, H2) basis, thus showing that the dynamics of the 
continuous system - which are governed by relatively few modes in the regular response regions - remain substantially 
low-dimensional in nonregular regions, too. In any case, the importance of the first antisymmetric out-of-plane mode (H2) 
in the transition to nonregular motion is recognized. 
Some results relevant to the second recognized scenario, which involves the bifurcation of an homoclinic invariant set in a 
symmetric flow, are also presented. 



The second recognized scenario manifests itself at one edge of the stability zone of the antisymmetric ballooning regular 
motions characterized by the coupling VnHn (n = even, antisymmetric modes, respectively in-plane and out-of-plane). Due 
to the nature of the phenomenon (herein illustrated for the case of Vi-subharmonic resonance and out-of-phase motion), the 
experimental analysis regards not only attractor global properties (as dimension or strangeness) but also the flow structure, 
in particular the presence and the features (dimension and stability) of associated invariant sets. When the cable model 
follows the aforementioned scenario, the attractors exhibited in chaotic zones show the lowest observed dimensionality: 
indeed, the transition from regular to nonregular behaviour happens without increasing the number of involved modes over 
the two (Vn, Hn) already present in the neighboring regular zones. 
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Abstract 

The nonlinear dynamics of PWM DC-DC switching regulators operating in the continuous conduc- 

tion mode are investigated.  A quick review of the existing analysis techniques of DC-DC PWM 

switching converters and their limitations are first presented.   A discrete nonlinear time-domain 

model is developed for open-loop DC-DC converters. This model is then extended to closed-loop 

regulator systems implementing any type of compensation scheme.  The equilibrium solutions of 

the closed-loop regulator system are then identified. The eigenvalues of the Jacobian matrix eval- 

uated at the equilibrium solution of the discrete nonlinear system are used to asses its stability. 

The methods developed are used to study the dynamic behavior of a buck DC-DC regulator imple- 

menting different types of compensation design: proportional, integral, proportional-integral, and 

proportional-integral-derivative feedback control.  A detailed bifurcation analysis of the dynamic 

solutions as a design or a control parameter is changed is presented. An interesting period-doubling 

route to chaos is shown to be inherent in voltage-mode regulators, depending on the parameter val- 

ues of the compensator.  A comparison with the expected behavior of the system using averaged 

techniques is also presented. The equilibrium solutions and their stability were also found to be in 

agreement with the results obtained using iterative mapping. Further investigations were carried 

out to identify the chaotic behavior and improve the understanding of DC-DC converters operating 

in chaotic regions. 
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Extended Abstract 

A new analytical approach to study stochastic layers in the vicinity of a separatrix is proposed 
in this work, so as to gain a better understanding of the chaotic motion caused by the 
interaction of nonlinear resonance in Hamiltonian systems. It is based on an accurate whisker 
map formed by energy increments and resonant conditions. Noting that their resonant 
conditions are different, it is proposed that the stochastic layer be divided by the separatrix 
into 2 subdomains termed the a and ß-layers. For the twin-well potential Duffing oscillator, 
they correspond respectively, to the inner and outer layers with the following characteristics; 
for the former, the resonant order is based on the (ml) resonant orbit and for the latter, the 

((2» -l):l) resonant orbit. This is contrary to existing approaches where the resonant order is 

selected arbitrarily. We called our approach the incremental energy (IE) method. 

Consider a 2-D time-periodic system: 

x 
x = f(x) + g(x,t);    x=  XJe9?2, (1) 

in which /(*) is an unperturbed Hamiltonian vector field on 9?2 and g(x,t) is a ^-periodic, 

time-dependent Hamiltonian. They are of the form given by, 

L and **.,)« /(*)= rr: i, and £(*,*)= s\' '* (2) 

and assumed to be sufficiently smooth (C, r > 2) and bounded on bounded sets D <z 9?2 in 
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the phase space. The total Hamiltonian of Eq. (1) comprises an unperturbed and a perturbed 
Hamiltonian, H0(x,y) and Hx(x,y,t) respectively. That is 

H(x,y,t) = H0(x,y) + Hx (x,y,t). (3) 

In view of Eq. (3), the terms in Eq. (2) can be expressed by, 

J1 —    a.     ' J 2 — a      ' oy ox 

_dHL dHx 
£l ~    a.     '   ^2 — - oy ox 

(4) 

In transiting from tt  to ?,. + Ta  in £#. (3), the map that describes the change of 

H0(x,y) and the phase angle in suppra is given by 

cp/+1=9,. + Acpa(£,.+I); 
(5) 

where Ei =HQ(q{ti)), 9,. = q> (#(£,)). Also, in Eq. (5), Ai/"(cp,) denotes the energy increment 

of Eq. (1) based on the a -orbit of Et for the initial phase angle q>,., and A(pa (Ei+l) denotes 

the change of phase angle related to the a -orbit. The map of supprß can be obtained in a 

same manner. If Ei = E0 is the energy of the separatrix, Eq. (5) becomes the generalized 

separatrix map (or the generalized whisker map). 

In Eq. (1), if Vs>0, 38 >0 and the resonance number set at (ma:wa)ei?*  (or 

(mß :«p) 6 i?p ), the strength of excitation can be determined from, 

AfljfooH2^7* ~E°\ -6 or K(CPO)|= E;^ -EQ 
<8 (6) 

This provides for an analytic prediction (instead of numerical) when the specific resonance 

{ma:na) eR* is absorbed into the stochastic layer. Note that the resonant number sets in the 

stochastic layer are defined as 
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K ={K:«a)| Va =«cA ma>n* ^K areirreducible, and \qa{t)-q0{t)\<z), 

Rl ={(wß:»ß)|'«pO>p =npQ, mp,nß eK are irreducible, and|^p(?)-90(?)|<£]. 
(7) 

The condition given by Eq. (6) implies that the current practice of restricting the 
excitation strength Q, to small values in order to preserve computational accuracy of the 

energy increments becomes unnecessary. We find that it is more meaningful to apply this 

limitation on a parameter y pertaining to the elliptic modulus of the unperturbed orbit. Since 

this parameter is independent of Q,, we showed from its usage that good accuracy is 

maintained even for very strong excitations. Additionally, it is found that if the energy of the 

resonant orbits is employed in evaluating the IE-based Q0, the result will remain bounded for 

all magnitudes of Q,. 

As a illustration of the proposed method, the twin-well potential Duffing oscillator is 
investigated. Using the IE approach, the excitation strength based on the energy of the 
resonant orbit, as well as that from the homoclinic orbit are determined. Also, similar results 
based on approximate and accurate standard mapping methods, the Chirikov overlap criterion 
and the renormalization group technique are computed. These and the IE-computed results are 
then compared against numerically generated solutions obtained via a symplectic scheme. 
Good agreement is observed in all cases. Finally, Poincare mapping sections are provided to 
illustrate these stochastic layers and to demonstrate the good agreement between the analytical 
and the numerical predictions of the number of resonance observed in the computer 
simulations. 
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Abstract: A novel bifurcation to high-dimensional hyperchaos is observed in a 
driven coupled pendulum-flexible rod system. When the rod is in resonance with 
the pendulum, the system changes from a low dimensional periodic attractor to 
a high dimensional chaotic attractor abruptly. The bifurcation, which is hyster- 
etic, is conjectured to stem from an unstable global invariant manifold of slow 
frequency motions. 
One of the prime problems studied in physics is that of the forced, damped pen- 
dulum [1,2]. Studied extensively in isolation, the pendulum is always attached 
to some support. If the rod is sufficiently stiff, one expects the pendulum dynam- 
ics to be slightly perturbed from the ideal infinitely stiff case. However, if the rod 
itself is sufficiently flexible, the overall picture may be changed dramatically. In 
this letter we report on some new dynamical behavior in the numerical simula- 
tions of a forced, damped pendulum coupled to a linear rod which is flexible. In 
particular, we examine the system when it is operating in a resonant mode, 
where the pendulum frequency is half that of the fundamental frequency of the 
rod. It is known that when the rod is sufficiently stiff, the dynamics resides on a 
global slow invariant manifold; i.e., the rod is slaved to the motion of the pendu- 
lum [3]. As a result of this slaving motion, the dynamics is a perturbation of a 
parametrically driven pendulum. However, when operating at resonance, the 
dynamics changes dramatically in that there exists some critical amplitude of the 
driving force that causes an abrupt change from periodic behavior to high dimen- 
sional hyper-chaotic behavior, where there are two or more positive Lyapunov 
exponents. That is, there is no bifurcation sequence to chaotic behavior since the 
chaos appears discontinuously. In contrast, low dimensional systems which 
either possess certain symmetries [4] or have piecewise linear vector fields [5], 
have also produced what is termed "instant chaos". When chaos appears, it is 
small amplitude in nature, implying it bifurcates as a supercritical bifurcation 
[5]. In our model, we have smooth vector fields, and the chaos appears as high 
dimensional dynamics. Furthermore, it appears as a subcritical bifurcation point 
since it exhibits hysteretic behavior as a function of amplitude forcing. 
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1. Introduction 

Vibrations described by differential equations with self-excited as well as parametric excitation 
terms occur in some dynamic systems [1,2,4]. Systems with one degree of freedom have been 
studied deeply by Tondl [1] and Yano [2]. Recently systems wth many degrees of freedom 
attract the interest in context of chaotic vibrations and synchronization phenomena [3]. Such type 
of differential equations one can also meet while describing some mechanisms of vibrations 
generation in case of manufacture processes [6]. 

2. Vibrating system model 

Dimensionless equations of motion can be written as: 

Xx + (-a, + ßxX*)Xx +6,Xl+ yxX\ +(S2-jucos23r) (Xl-X2) = 0 

X2 +M{-ax + ßlX2
2)X2 +M5XX2 +MyxX

3
2 -M(S2 - fxcos23r){Xx -X2) = 0 

The mathematical model consists of two Van der Pol oscillators with Duffing, coupled by 
linear spring with periodically changing elasticity. The physical model of this system is 
presented in Fig. 1. 

< '   '   ' 
(-c1+c2xI

2)xI   j^r   ^7   klxl+tc3xl 
mi 

Mf X, 

£        (k2 - k0 cos 2a> t) (x, - x2) 

(- c, + c2x\ )x2 Jfcjj7    Jp    kxx2 + Kx. 
3-v2 

Fig.l Physical model of the parametric self-excited system 

3. Regular and Chaotic Vibrations 

We have made the simulations of the examined system for various sets of parameters. For 
small value of parameter \L the system has periodic and quasi-periodic solutions. In Fig. 2a we 
present the bifurcation diagram versus excitation frequency 3=[0.5,1.5] and ai=0.01, ß^O.05, 
Yi=0.3, u=1.6, M=1.0, 5i=0.1, 52=0.3. The picture shows a number of interesting details of 
bifurcations. In the major part of this plot periodic oscillations, represented by singular points 
for given value of &, are visible however the region of vibrations near 0=1.0 exhibits chaotic 
vibrations represented by a dark interval. Examples of phase diagrams for co-ordinates xi, x'i 
for chaotic solutions are presented in Fig 2b. 



10 

X!    I 

-10 

10 

X'! 

■10 

0.5 0 1.5 -10 Xi 

Fig.2 Bifurcations diagram versus » parameter (a); phase diagram chaotic vibration for 0=1.0 (b) 

4 Remarks and Conclusions 

In this note we have investigated the complex system of coupled non-linear oscillators excited 
parametrically. As usual the interaction between self-excited and parametric excitation leaded 
to a number of interesting results like entrapment of frequency and synchronisation 
phenomena. The transition from regular to chaotic solutions was discussed The paper is the 
continuation of [5] where authors carried out a detailed analysis of one parametrically excited 
van der Pol oscillator. 
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Experimental results are presented for chaotic vibrations of shallow cylindrical shell-panels with 
square boundary under periodic lateral excitations. The chaotic responses of the shells are tested 
under two different boundary conditions. Both curved sides of the shell boundary are simply 
supported and other straight sides include a pair of free edges or a pair of simply supported edges. 
Two boundary conditions are distinguished by a symbol (SF) of the shell having the free edges and 
the symbol (SS) with all edges simply supported. As shown in Figure 1, the simply supported edge 
of the shell is formed to be a rounded edge to swing on a flat wall of boundary. Adhesive films 
connect the edge to the shell frame. Static deflections due to concentrated static force and natural 
frequencies with small amplitude are measured. Changing the exciting frequency, chaotic regions 
are examined carefully in the frequency response test. The chaotic responses of the shell are 
confirmed by the Fourier spectrum analysis, the Poincare projection and the maximum Lyapunov 
exponent. Frequency regions of the chaos are plotted in various excitation amplitudes. The vibrator 
shakes both the shell and the shell frame. The relative displacement of the shell to the supporting 
frame is measured by two laser displacement sensors and the chaotic responses are recorded. The 
representative non-dimensional notations are introduced as follows; 

f =x/a, T]=y/b, a=a2/Rh, ß=a/b, w=W/h, pfVjpa^/D, qs=Q/i2ßtDh, v=Qtf, G^lxflQ^   (1) 

D = £/z3/12(l - v2), Q0=(l/a2)<fD/ph , (2) 
where, a is the non-dimensional shell curvature, ß is the aspect ratio of the side length of the 
rectangular boundary. pd is the non-dimensional intensity of distributed load due to the periodic 
acceleration ad. qs is the non-dimensional static load by the concentrated load Q . D is the bending 
rigidity of the shell. CO and % are the non-dimensional exciting frequency and the non-dimensional 
time, respectively./is the exciting frequency. 

a =140mm b = 140mm 
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Figure. 1 Cylindrical shell-panel and frame Figure.2   Deflection of the shells under concentrated load 
acting on the center and measured at £=0.6, 77=0.4 



The shell curvatures a = 53 of the (SF) and a = 54 of the (SS) are tested. Figure 2 shows the 
static deflection w under the concentrated static force qs. Both of shells show the soft-hardening 
spring included negative slope. Figure 3 shows the frequency response curves, w is the root 
mean square value of the periodic response. CO is the non-dimensional exciting frequency. In the 
figure, chaotic responses are assigned by name of chaos. A sign (m,n) denotes the mode of 
vibration with small amplitude, while the integer m and n imply predominant half wave number of 
the deflection in the x-direction and v-direction, respectively. Figure 4 shows the Poincare maps 
of the chaos at the phase delay 9 measured from the maximum amplitude of the exciting force. 

It is found that following results: the typical chaos attractors of the shells are focused onto the 
Poincare section. The chaotic responses of the shells are generated mainly close to the principal 
resonance response. The chaos of the shell is emerged mainly due to the characteristics of dynamic 
snap-through. In a higher frequency range, the chaos is excited accompanied with an internal 
resonance condition of multiple modes of vibration. The maximum Lyapunov exponents for 
individual chaotic responses of the shell including the free edges are ranging from 0.03 to 0.15, 
while the values of the shell of all edges simply supported are taken within 0.1 to 0.4. 
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Abstract. A nonlinear dynamic system consisting of a simple pendulum with a moving pivot is investigated. 
A nonideal DC motor produces an oscillatory motion of the pivot. Near resonance the response of the system 
can exhibit intermittent chaos. 

Introduction. Generally, in modeling vibrating mechanical systems, one assumes that the external driving 
force is not influenced by the response of the system; such systems are said to be ideal. In many practical 
situations, however, a small force excites a relatively large mechanical system, and the excitation can no 
longer be considered ideal; one must account for the influence of the response on the excitation. One must 
include governing equations for the excitation, which gives the system an additional degree of freedom, and 
determine the vibrations and the excitation simultaneously. Nonideal systems were exhaustively studied by 
Kononenko (1969), and a complete overview of different approaches and bibliographic references was 
presented by Balthazar et al. (1998). 

The particular mechansim considered here consists of a simple pendulum whose pivot is forced to 
oscillate along a horizontal axis by a nonideal DC motor as shown in Figure 1. We investigated this 
system by numerically integrating the equations of motion and found that it displays complex 
behavior as the control parameter (voltage supplied to the motor) is varied. Near the fundamental 
resonance, there is a transition from periodic to aperiodic motion through an intermittent 
phenomenon. Krasnopol'skaya and Shvets (1990,1993) studied a similar system using an averaging 
method. They also found that the system exhibited periodic as well as chaotic responses. 

Equations of Motion. The equations of motion are given by the following [see Belato (1998) for the details]: 

shaft 

rotor 

roller 

DC motor 

pendulum     m 

Figure 1. Schematic of the electromotor-pendulum system 



where 

(J + ß4F
2 sin2 a)6 = ßi-(ß2+ß3F

2)6-ß4 (sin2 a)FF6-ß5F(cosa + ä2)sina 

ä + sin a = £2(F0 + FG) cos a - ß6ä 

F = 1+ 
£xcosB 

^\-£2s,m26 
sin 6,   t*= (Ot,   ßx is the control parameter,   ß, =    T  E + *^- 

Ra> CO 

_ u3 c,a' 

0) 
ß4 = ma2,   ßs = mal,   ß6 = ß _a _a 

(Oml b l 

and the overdot indicates the derivative with respect to t*; c3 is the damping coefficient for the friction at the 
axle (pivot); // is the damping coefficient and co is the natural frequency for the pendulum; and J is the 
moment of inertia of the rotor, R is the electrical resistance, KT is the torque constant, KE is the back EMF 
constant, and cm is the internal-loss constant for the motor. 

Numerical Simulations and Concluding remarks. SIMULINK™ was used to numerically integrate these 
equations for the following parameters and initial conditions: ß2 = 0.02448, ß3 = 0,ß4 = 0.002, 

ß5 = 0.0084, ß6 = 0.01, and £,=£,= 0.233 and 0 (0) = a(0) = 0 and 0 (0) = ä(0) = o'. 
In Figure 2 a is plotted as a function of time for two values of the control parameter: 
(a) ßx = 0.02253 and (b) ßx = 0.02254. For the former the motion is periodic, and for the latter it is 
aperiodic with random bursts in the regular regime. 
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Figure 2. a as a function of time:   (a) j0, = 0.02253 and (b) yÖ, = 0.02254 
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Abstract: 

Non-stationary responses occur when vibrating systems are subjected to 
sweep tests. A common industrial practice is to mount the vibrating 
system on a vibrating shaker and subject it to a specified frequency sweep 
These sweep tests occupy an important place in the quality control of 
many products and in the design of robust packaging for transporting 
sensitive electronic equipments. Another context of applications 
is vibration isolation. The objective in this work is to explore 
the role of nonlinear damping in the analysis of non-stationary responses 

dLn^f pfKHSYStem?\Zt  1S kn°wn that' °rifice tyP* dampers, pneumatic 
Sa??rf' l^tZ  ls°lators etc  exhibit nonlinear damping characteristics. 
in stell Lamf ^^%hf? bSen observed in the experiments that damping phenomena in steel beams also follows a power-law type description 
The aim of this paper is to provide a framework for analysing 
these diverse systems when subjected to a non-stationary excitation 
The change_in bifurcation structure due to the non-stationarity 
of excitation is also examined. 
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Abstract 

The presence of stick-slip vibrations can be highly detrimental to the 
performance of mechanical systems. 

The first step to reduce or avoid these vibrations is to create a represen- 
tative numerical model that can be used to evaluate all possible phenomena 
and can be incorporated in a control system. The study of stick-slip vibra- 
tions is faced with difficulties, as during the stick-slip motion two different 
mechanisms take place. The modeling of the static friction mechanism and 
that of the kinetic friction mechanism yield a set of differential equations 
with discontinuous right-hand side. 

A standard method to solve discontinuous differential equations consists 
of applying a smoothing method (also called normalization method). The 
smoothing method replaces the discontinuous system by a smooth adjoint 
system. The smoothing method yields a system of ordinary but stiff differ- 
ential equations and consequently leads to large computational times. 

The problems of the smoothing method led to the development of mod- 
els which switch between different sets of equations, the so-called "alternate 
friction models" or "switch models". The classical approach to integrate the 
switch model starts from an initial state with a set of differential equations. 



After each timestep the state vector is inspected on a possible event within 
this timestep (e.g. slip to stick transition). If an event happened, the in- 
tegration process is halted and an iteration procedure is started to find the 
switching point (within a certain range of accuracy). Having thus evaluated 
the switching point, a new integration process is started with a modified set 
of differential equations and initial conditions identical to the state at the 
switching point. 

The need to halt the integration process, determine the discontinuity with 
an iteration process and restart the integration again is undesirable from a 
numerical point of view. Standard integration methods integrate a set of 
differential equations over a specified time interval. So, if the integration 
needs to be halted at the discontinuity, standard integration methods cannot 
be applied. 

In the present paper a simple and efficient switch model is presented 
to simulate stick-slip vibrations. The specific switch model presented here 
consists of a set of ordinary non-stiff differential equations. This has the 
advantage that the system can be integrated with any standard ODE-solver 
available in mathematical packages (MATLAB, MATHEMATICA, MAPLE) or 
ODE-solvers of existing software libraries (NAG). The system is thus inte- 
grated without the need to halt which minimizes start-up costs. 

Shooting methods as periodic solution solvers in combination with switch 
models have not been addressed in the past. A method to combine shooting 
with the proposed switch model, without the use of normalization, is pre- 
sented. The fundamental solution matrices, necessary for the application of 
the shooting method, are obtained with a sensitivity method where initial 
disturbances are tracked in orthogonal directions. 

A single-degree-of-freedom model is used to introduce and evaluate the 
numerical methods. An important advantage of the switch model is the 
possibility of incorporating tribological enhancements of the classical friction 
model. It is shown how time-dependent static friction can be incorporated 
in the switch model. 

The switch model can also be used for systems with greater complexities. 
A single violin string with a bow that is moving at a constant velocity over 
the string is considered. The friction force between bow and string induces 
lateral displacement and rotation of the string (2-DOF system). This two- 
degree-of-freedom system can efficiently be modeled with the switch model. 
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A of growing interest has been registered for the dynamical behaviour of hysteretic systems 

and the appearance theoretical and experimental papers became more frequent in recent years. 

Theoretical interest arised from the circumstance that hysteretic restoring forces are non- 

monodromic when described, as usually, in terms of force and displacement. This does not 

allow modern methods from nonlinear dynamics to be used for the investigation of these 

systems. Consequently, most of published papers in the past employed heuristic methods which 

do not require the explicit formulation of the vector field, such as the methods of harmonic 
balance and slowly varying parameters [1]. 

It has been shown that for the elastoplastic [2], and for a general class of hysteretic 

models [3-5], the restoring force, when formulated in a differential form, can be described as 

a single-valued function, with a low continuity order, by enlarging the dimension of the space 

of the state variables. This formulation facilitates the investigation of the dynamic response. 

According to this formulation, the present work deals with the study of the dynamic 

response of a simple discrete system to a harmonic excitation and can be considered as the 

complementary continuation of [5]. The complementarity consists in the fact that the stationary 

response is studied by means of harmonic balancing with many components [3], that is a modal 

domain instead of a time domain approach is used. The motivation is due to the difficulty over 

convergency encountered in some parameter values range with the time domain approach. 

Indeed the harmonic balancing, because of its integral nature, reduces the effects of the 

singularity in the vector field and it is potentially more effective from a numerical point of 
view. 

The hysteretic model referred to is composed of a nonlinear elastic model and a pure 

hysteretic Masing model; the two contributions are joined together in such a way that the 

degree of hysteresis, the yielding force value and the initial stiffness can be varied 

independently. The peculiar characteristic of the Masing models allows for an efficient 

procedure to find periodic motions. The only unknowns are the Fourier coefficients of the 

displacement history; no explicit use is necessary of the Fourier coefficients for the state 

variables. In practice, for a chain model with n masses, the algebraic system resulting from the 

application of the harmonic balancing to the motion equations is 2nm, where m is the number 

of harmonic used, and the factor 2 accounts for the sine and cosine coefficients. For m=l the 
classic harmonic balancing method is recovered. 



The results obtained refer to the two degree-of-freedom structure already considered in 

[5], which is in internal resonance condition of the type 1:3. The results previously obtained are 

confirmed and because of the efficiency of the algorithm a larger set of parameters are 

considered which make it possible to have a better view of the various phenomena. When the 

hysteretic model used has full hysteresis, the behaviour is similar to that obtained with 

elastoplastic model [2]: the response is mainly IT periodic solution, strong coupling is present 

around first resonance, while it is negligible around the second resonance. Where two modes 

are involved in the response by the internal resonance phenomenon, each mode oscillates with 

its own frequency and even though the motion is periodic the deformed shape configuration 

changes during a period. Since the hysteretic model can be seen as a nonlinear elastic model 

with numerous odd nonlinearities, the second mode resonance is involved at various frequency 
values. 

The reduced hysteresis model exhibits multivaluedness in the frequency response curves, 

both around the first and second resonance; the behavior becomes very complex and difficult 

to explain around the first resonance. For increasing level of excitation, a new important 

resonance arises in the region of combination resonance; the inspection of the eigenvalues of 

the Poincare map reveals that the resonance in this frequency range, still due to the second 

mode, consists of unstable IT periodic oscillations: here stable quasi-periodic motion occurs. 
According to the level of hysteresis and of the excitation, this zone shows windows of 
apparently 2T periodic motion. Though the quasi-periodic motion cannot be studied with the 

harmonic balancing, it is shown however that some approximate conclusions can be drawn also 
in this situation. 

It is worth noticing that resonance phenomena are very important not only for systems in 

1:3 internal resonance conditions, but in a large range of the ratio between the two frequencies, 

as a consequence of the wide resonance around the first natural frequency. This is one of 

notable differences from the nonlinear elastic systems', which exhibit internal resonance 
phenomena in a very small region of frequency ratio. 

1 D. Capecchi F. Vestroni, "Periodic response of a class of hysteretic oscillators", Int. J. of 
Non-Linear Mechanics, 25, 309-317, 1990. 

2 D. Capecchi, F. Vestroni, "Asymptotic response of two degree-of-freedom elastoplastic 
systems under harmonic excitation", Nonlinear Dynamics, 7, 1995, 317-333 

3 D. Capecchi, "Periodic response and stability of hysteretic oscillators", Dynamics and 
Stability of Systems, 6, 1991, 89-106. 

4 D. Capecchi, R. Masiani, "Reduced phase space analysis for hysteretic oscillators of Masing 
type", Chaos, Solitons & Fractals, 1996. 

5 D. Capecchi, R. Masiani, F. Vestroni, "Periodic and non-periodic oscillations of a class of 
hysteretic two degree of freedom", Nonlinear Dynamics, 13, 1997, 309-325. 
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1    Abstract 

This study is motivated by the need to develop belt drive models which predict the drive's dynamic 

response to harmonic excitation. Particular attention focuses on modeling nonlinear belt response 

in frictional contact at the belt/pulley interface. To this end, a first model is proposed appropriate 

for accessory drives with "small convection," that is, belts with small translational speed. Figure 1 

depicts a simple model of a belt in frictional contact with a pulley, which is utilized to study the 

belt's elastodynamic response to a train of incoming harmonic tension waves. Convective effects are 

ignored and the frictional surface is assumed to obey Coulomb's friction law, where ß is the coefficient 

of friction. The belt is treated as a one-dimensional rod. Through a non-dimensionalization, a single 

dimensionless parameter 

nN*c* v ' 
is identified which governs the dynamic response. Here, co* denotes the frequency of tension waves, P* 

denotes their amplitude, \i represents the coefficient of friction, N* the normal force, and c* denotes 

the elastic wave speed. 

A numerical solution is developed and exercised over a wide range of values of £2. An approximate 

closed form solution is derived assuming the belt stretches quasi-statically, and is shown to yield 

accurate results for small values of Q. Reported results include the distortion of an initially harmonic 

tension wave, the energy reflected from the frictional support (Figure 2), and the distance harmonic 

waves penetrate into the support. The results suggest that the quasi-static stretching assumption may 

be further utilized as a modeling simplification for belt drives characterized by values of Q, < 1/3. 



2    Figures 

TÜ= I sin[(ö*(t*-xVc*)] n u*(x*,t*) 

E*XP* 

x*=0 
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Figure 1: Small convection model. E\ A*, and p* represent material properties of the belt, p denotes 
the coefficient of friction, N* the normal force, and u* the displacement field as a function of space x* 
and time t*. Incoming tension waves travel at wave speed c\ have amplitude P*/2, and frequency u . 

100 

90 

80 

_« 70 

£ 60 
o 
© 50 

^ 40 

UJ 
30 

20 

10 

0 
0.01 

% 

0.1 
£2 

o 
o 
o 
o 
o 
o 
o 

\ o 
% 

"% 

1.0 10.0 

Figure 2: Percent energy reflected as a function of fi for small convection model. Numerical Solution 
o, closed-form solution —. 
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The dynamics of elastic rings, disks and cylinders is well-understood. If the effect of a sta- 
tionary rotational speed is incorporated, modeling and analysis of the dynamic behavior 
are more difficult but also for that case, the essential problems are completely discussed. 
As well for rings, but also for disks and cylinders, eigenfrequencies, critical"speeds and 
the stability of the steady-state response were recently dealt with by several authors. It 
was shown that former results obtained by neglecting the pre-deformation owing to cen- 
trifugal forces completely, were corrected significantly. Meanwhile it is well-established 
that the so-called stiffening effect is fundamental to explain all the appearing dynamic 
phenomena. 

In recent years, considerable attention has been given to the study of vibrations of 
piezoelectric and pyroelectric solids. But in all related papers, structural members at rest 
were examined. The main objective of the present contribution is to focus attention on 
rotating media for which only some limited results exist not applicable for higher speed 
rates for which the stiffening effect becomes significant. Such high angular speeds together 
with an external pressure will now be taken into consideration. Discussing the stability 
of the resulting stationary deformation state is of special interest, here for the most basic 
case of one-parametric thin rings (with one characteristic space coordinate). 

^ ^ To formulate the governing eigenvalue problem, the conventional electrically quasista- 
tic theory and the classical linear constitutive equations for a piezoelectric material (of 
hexagonal 6mm class) are used. To calculate not only the stationary deformation due to 
the steady centrifugal forces and the radial pressure but also the superimposed vibrations 
characterizing the stability behaviour, a geometrically nonlinear deformation theory has 
to be applied. It can be taken for elastic rings from a former work of the author [2] to be 
generalized to piezoelectric material or from a recent paper by Tzou and Bao [1] presen- 
ting a general theory of piezothermoelastic shell laminates at rest to be spezified to the 
rotating ring problem. Anyway, a nonlinear boundary value problem for the deformation 
varibles and the electric field variable is the starting point. 

For convenience, the crystal axes are chosen to be coinciding with the rotational axis 
and two perpendicular other ones located in the plane of the ring. The deformation of the 
ring will be described in a body-fixed reference frame. Based on Bernoulli-Euler theory, 
it is expressed by the radial and circumferential displacements of the middle fibre. As the 



electric field variable, the electrostatic potential is introduced. As mechanical body force, 
a radial pressure load is assumed (but electrical source terms could also be taken into 
consideration). 

In a first solution step, the stationary electromechanical state is determined (in a li- 
near approximation). After that, the linearized variational equations characterizing the 
superimposed coupled small piezoelectric oscillations are deduced. They form a multi- 
field eigenvalue problem to be solved finally. The quantitative influence of the rotational 
speed and the pressure load on the eigenfrequencies is presented where for uniform ring 
properties, semi-analytical results can be obtained. Also the effect of the piezoelectric 
moduli is shown; the limiting case of a purely elastic ring is deduced. The eigenvalue- 
speed diagram with the varied load parameter yields a clear stability proof to summarize 
the present work. By a slight modification, it can also be used to identify possible critical 
speeds. 
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ABSTRACT 

The drop of a magnetic bearing supported rotor on auxiliary bearings is 
a matter of significant importance.  The rotor may be operating at full 
rotational speed when the magnetic bearings may be shut off, for one reason or 
another, and drop on the auxiliary bearings.  If large amplitude whirling 
motions of the rotor in the auxilary bearings result, contact or other effects 
may result in significant damage to the machine.  If the rotor simply drops 
onto the bottom of the auxiliary bearing clearance and oscillates back and 
forth a few times, little or no damage may result in the machine. 

Previous literature has discussed rotor drops [Kirk et al., 1994  19971 
fLc?1^ aS °^hers tRa^u et al., 1995, Ramesh et al., 1994, and Swanson'et al.' 
1995] for a drum type rotor to simulate an aircraft gas turbine compressor. 
The results included experimental rotor drops and theoretical modeling. 
Tessier [1997] reported on the mathematical modeling and experimental rotor 
drop for an industrial compressor.  Foiles and Allaire [1997] discussed 
nonlinear transient modeling of two rotors as they drop on auxiliary bearings. 
This work extends the results of the previous paper by the same two authors. 

This paper investigates rotor drops for two rotors with somewhat 
different physical characteristics but mounted on the same auxiliary bearing 
sytems.  Rotor No. 1, which may simulate a generator or turbine rotor, has the 
rotor mass distributed along the rotor for a relatively long distance in the 
axial direction.   It has rotor of length 2.36 m (92.9 in), magnetic bearing 
span of 1.36 m(53.4 in) auxiliary bearing span of 1.75 m (69.0 in), center of 
mass diameter 1.03 m (40.5 in) from the left end, weight 13,450 N (3,024 lbf) 
The magnetic bearings are located at stations 7 and 23 while the auxiliarv 
bearings are located at stations 4 and 26. 

Rotor No. 2, which may simulate a centrifugal compressor with a few 
stages in the center, has a large central mass on a nearly uniform rotor. 
Rotor No. 2 has a total length of 2.32 m (91.4 in), magnetic bearing span of 
, 5n m {tl ~n)-'   auxil:Lary bearing span of 2.08 m (82.0 in), center of mass of 
1.40 m (55.0 in) from the left, diameter of 356 mm (14 in), shaft diameter at 
the magnetic bearings of 146 mm (5.75 in), catcher bearing diameter of 4.35 in 
at station 2, shaft diameter at the right catcher bearing of 5.1 in at station 
23, and weight of 13,400 N (3,000 lbf).  Magnetic bearings are located at 
stations 7 and 20.  Each rotor is assumed to have an operating speed of 7,000 

Two rotors similar to typical industrial rotors supported on magnetic 
bearings were subject to rotor drops on auxiliary bearings with various levels 
of Coulomb friction and unbalance on auxiliary bearings with relatively low 
support stiffness and damping properties.  The rotors had relatively similar 
properties with the first free-free mode of Rotor No. 1 at 6,947, just below 
the operating speed of 7,000 rpm and the first free-free mode of Rotor No. 2 
at 7,974 rpm is just above operating speed. 

Rotor No. 1 almost never went into full clearance whirl while Rotor No. 
2 nearly always did. The rotors have rather similar characteristics so it is 



not clear why one rotor consistently went into full clearance whirl while the 
other did not. 

When Rotor No. 1 oscillated in the bottom of the bearing clearance, the 
whirl pattern was neither forward or backward in character.  However, in full 
clearance whirl for Rotor No. 2, the whirl precesses in the backward 
direction, similar to the results obtained by Kirk and Ishi [1993] and Maslen 
and Barrett [1995].  In each case, a critical coefficient of friction exists 
where the rotor will go from not whirling to whirling under similar conditions 
of imbalance and support characteristics. 

For Rotor No. 1, the higher the level of imbalance, the higher the level 
of vibration in the bottom of the clearance circle.  The phase angle of 
imbalance at the time of rotor drop for Rotor No. 2 did have an influence on 
initiation of full clearance whirl at 30 oz-in, no whirl at 0 degrees and full 
whirl at 180 degrees.  In a number of cases, the initiation of full clearance 
whirl was delayed well past the first bounce after striking the bottom of the 
auxiliary bearing surface, as also noted by Fumigali and Schweitzer [1995]. 

There seem to be quite a few factors affecting the initiation of full 
clearance whirl in industrial rotating machines supported in magnetic 
bearings.  These include the rotor mechanical characteristics such as free- 
free modes, distribution of mass as well as auxiliary bearing properties such 
as mass, friction coefficient, stiffness and damping coefficients.  The 
influence of specific rotor or auxiliary bearing properties on full clearance 
whirl is not very well understood at this time. 
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Active magnetic bearings are one of the most 
innovative recent developments in the field of rotating 
machinery. This technology provides the potential 
for significant improvements over other types of rotor 
support, including elimination of wear and bearing 
friction-related energy losses as well as a means of 
actively suppressing rotor vibration. 

A critical component of any magnetic bearing design 
is the auxiliary bearing, which protects the soft iron 
core of the magnetic bearing and provides rotor 
support in case of overload or failure of the primary 
(magnetic) bearing. Magnetic bearing systems 
appear to provide particularly great promise for use 
in aeronautical applications. In this regard, current 
effort is directed toward developing jet engines and 
flywheel energy storage systems for satellites with 
rotors supported by magnetic bearings. For such 
applications, the rotor will be subjected to much 
higher than nominal loads for brief periods (during a 
rocket launch for satellites or during a high g-force 
maneuver for an aircraft). Since the weight of the 
bearing system is an important consideration, a 
sensible strategy is to design the magnetic bearings to 
handle nominal loads (with an appropriate safety 
factor) and have auxiliary bearings to provide 
support during critical loading periods. 

A number of different bearing types have been 
suggested as auxiliary bearings. These include 
bushings, rolling element bearings, and various types 
of journal bearings. The most commonly considered 
are rolling element bearings. For extended periods 
of operation, methods for providing adequate 
lubrication (for removal of friction produced heat) 
and damping (for acceptable rotordynamic 
performance) must be found. In addition, a major 
disadvantage associated with using rolling element 
bearings (or bushings) is the requirement of a 
clearance between the rotor and the inner race of the 
bearing, without which many of the advantages 
associated with using magnetic bearings would be 

reduced or eliminated. This clearance introduces a 
nonlinear dynamical feature, which may significantly 
impact the behavior of the rotor. The present work is 
specifically concerned with addressing the dynamical 
problems associated with this nonlinear effect. 

There are quite a number of studies in the literature 
concerned with nonlinear rotordynamics. 
Groundbreaking work includes that of Yamamoto 
(1954), who conducted a systematic study of rotor 
responses involving bearing clearance effects. Also, 
Black (1968) studied the rotor/stator interaction with 
a clearance. Enrich (1966, 1988 and 1991), Bently 
(1974), and Childs (1979 and 1982) observed and 
studied subharmonic responses associated with 
clearance effects. Gelin, et al, (1990) was one of the 
first to consider the dynamics of a magnetic bearing 
supported rotor interacting with an auxiliary bearing. 
Additionally, Lawen and Flowers (1996) provides a 

good background review of other work specifically 
related to auxiliary clearance bearings. 

A potential solution to the clearance problem is the 
use of a bearing configuration that will be non- 
contacting when auxiliary support is not needed and 
will automatically close the clearance when auxiliary 
support is needed. A conceptual diagram for one such 
auxiliary bearing configuration is shown in Figure 1. 

It consists of a series of rollers that are constrained 
to move along slotted paths. Under normal operating 
conditions (non-contacting), there is a clearance 
between the rollers and the shaft. During contacting, 
the friction force between the spinning rotor and the 
rollers drives the rollers along their slotted paths, 
forcing the shaft toward a centered configuration. 

This concept is quite new and the dynamics are (of 
course) very nonlinear. There are many design issues 
that must be addressed with regard to the best choice 
of bearing parametric configuration. With this need 
in mind, the present study examines the dynamical 
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Figure 1: Diagram of the Auxiliary Bearing Model 

behavior of a rotor system interacting with this type 
of self-centering auxiliary bearing during critical 
operating conditions. Of particular interest is the 
transient and steady state behavior of such a system. 
A simulation model was developed to predict the 
dynamic behavior of such a system. It consists of a 
shaft coupled with a self-centering bearing. The shaft 
and the rollers are assumed to be rigid. A number of 
studies (for a variety of parametric configurations) 
using this model were performed to evaluate the 
relative dynamic response characteristics and load 
capacity. Some insights and observations were made 
with regard to possible dynamic behaviors. 
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Active magnetic bearings are electro-mechanical systems whose stiffness and damping characteristics can 

be changed by varying the gains of the feedback controllers. They levitate a rotor by the attractive forces 

of magnetic fields generated by the electromagnets. Magnetic bearings use ferro magnetic materials such as 

silicon iron (saturation flux density, Bsat = 1.5 tesla) and cobalt iron (B,at = 2.2 tesla). Such high flux levels 

make it possible for them to support heavy rotors. They have been used to support shafts with diameters 

from 14 mm to 1.25 m, and have load capacities up to 300 kN per radial bearing. 

The system studied here is an eight-pole (four-electromagnet) radial magnetic bearing with a laminated 

stator and rotor. The input currents to electromagnets are controlled by two proportional-derivative (PD) 

current feedback controllers, one for each x and y axes. The current though each magnet is the sum of a 

bias current and a control current. The magnetic force, F, is directly proportional to the square of the coil 

current, and inversely proportional to the square of the gap between the stator and rotor. 

The magnetic force is directly proportional to the square of the resulting flux density, B. B is linearly 

proportional to the applied flux intensity, H, for a certain range of B. There is a saturation flux density, 

Bsat, which cannot be exceeded by increasing H, thus limiting F. This becomes a problem for large rotor 

"Author to whom correspondence should be addressed. 



motion that may be caused by large unbalance loads. 

The flux saturation levels of various magnetic materials are reported in [1]. The flux saturation was first 

studied for a magnetic bearing in [2], where the authors present an iterative procedure to estimate the flux 

density. Peak bearing forces are estimated by considering flux saturation and assuming that control current 

is equal to bias current [3]. For a magnetic bearing with linear stiffness and damping, the flux saturation 

was studied using finite element method [4]. 

In this research, it is assumed that the B-H relation is piecewise linear; the magnetic force is nonlinear 

in rotor displacement even in the linear portion of B-H curve. The focus of the paper is to investigate the 

effects of flux saturation nonlinearity on the rigid rotor dynamics. 

It was found that for a bearing with hardening spring nonlinearity, the effect of flux saturation is to 

increase the bearing stiffness. There are also minimum values of Bsat below which the bearing cannot 

provide any stable restoring forces to levitate the rotor. 

When the rotor weight was neglected, the rotor did not show any subharmonic motion due to flux 

saturation nonlinearity. When rotor weight was included, the rotor had period-2 subharmonic for a range of 

rotor excitation forces. 
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1    Introduction 

This paper is concerned with the dynamic analysis of flexible, nonlinear multi-body systems undergoing 
intermittent contacts. Contact can occur between two rigid or deformable bodies of the system, or with an 
external body. Intermittent contact can be of an accidental nature, such as, for instance, the impact of a 
member of the system on an unexpected obstacle. Another common source of intermittent contact is the 
presence of clearance at the joints of a multi-body system. Clearance can be associated with manufacturing 
imperfections, or caused by unavoidable wear such as, for instance, fatigue or damage induced looseness in 
revolute joints and bearings. Proper understanding and modeling of the behavior of multi-body systems with 
clearances is a key step toward health monitoring of such systems. Finally, intermittent contact is sometimes 
an inherent feature of the system such as, for instance, in the Geneva wheel mechanism, or in cam-follower 
systems operating at off design conditions resulting in intermittent separation of the cam-follower pair. 

The approaches to modeling of intermittent contact fall into two broad categories depending on the 
assumed duration of contact. In the first approach, contact is treated as a discontinuity, i.e. the duration of 
contact is assumed to tend to zero. The configuration of the system is assumed to be identical before and after 
impact, and the principle of impulse and momentum is used to compute the momenta after impact. Energy 
transfer during impact can be modeled in a heuristic manner using the concept of coefficient of restitution 
This approach was first proposed by Kane [1], then applied to rigid multi-body systems by Wehage and 
Haug [2], and extended to flexible systems by Khulief and Shabana [3]. The accuracy of this approach is 
mherently limited by the assumption of a vanishing impact duration. Furthermore, energy balance is not 
necessarily satisfied when the principle of impulse and momentum is applied [4]. 

In the second approach to contact modeling, the impact duration is finite, and the time history of the 
forces acting between the contacting bodies which can be either rigid or deformable is explicitly computed 
during the simulation. Of course, a constitutive law describing the force-deformation relationship for the 
contacting bodies is required if the bodies are deformable. This approach was used by a number of re- 
searchers [5, 6, 7], among others. Various types of constitutive laws were used, but the classical solution of 
the static contact problem presented by Hertz [8] has been used by many investigators. Energy dissipation 
can be added in an appropriate manner, as proposed by Hunt and Crossley [9]. 

In this work, the contact event is assumed to be of finite duration. The overall approach to the modeling of 
intermittent contact is broken into three separate parts: a purely kinematic part describing the configuration 
of the contacting bodies, a unilateral contact condition, and an optional contact model. The first, purely 
kinematic part of the problem is developed. The candidate contact points [10], i.e. the points of the 
bodies that are the most likely to come in contact if the bodies were in contact, are defined by a number 
of holonomic constraints that involve the kinematic variables defining the configuration of the contacting 
bodies and the parameters that describe the curve defining their outer shape. The knowledge of the location 
of these candidate contact points leads to the definition of the relative distance q between the bodies. The 
implementation of these nonlinear holonomic constraints is discussed in detail. 

The second part of the model, described in the next section, is the unilateral contact condition which 
is readily expressed in terms of the relative distance as q > 0. In previous work, this condition has been 



enforced by means of a logical spring-damper system, i.e. a spring-damper system acting between the bodies 
when they are in contact, and removed when they separate. The properties of the spring-damper system can 
be selected to model the physical characteristics of the contact zone, as was done in ref. [5]. In ref. [7], the 
logical spring constant is taken to be a large number that enforces the non-penetration condition through a 
penalty approach, and the logical damper is added to control the spurious oscillations associated with this 
penalty formulation. In this work an alternate route is followed: the contact condition is enforced through a 
purely kinematic condition q - r2 = 0, where r is a slack variable used to enforce the positiveness of q. This 
approach is shown to yield a discrete version of the principle of impulse and momentum. 

The last part of the model, is the contact model which takes into account the physical characteristics of 
the contacting bodies. When these bodies are perfectly rigid this model is not necessary. When the bodies 
are deformable, their local inter-penetration, or approach, is defined, and the contact model consists of a 
constitutive law that relates this approach to the contact force. 

The nonlinear holonomic constraints and the contact model associated with intermittent contacts in 
multi-body systems will be formulated within the framework of the energy preserving and decaying schemes 
introduced in [11, 12]. In these schemes, unconditional stability is achieved for nonlinear elastic multi-body 
systems by combining two features: an energy preservation or decay statement for the elastic bodies of the 
system, and the vanishing of the work done by the forces of constraint. The use of these unconditionally 
stable schemes is of particular importance in intermittent contact problems whose dynamic response is very 
complex due to the large, rapidly varying contact forces applied to the system. Numerical examples are 
presented. An automated time step size selection procedure developed in [12] is used to obtain accurate 
solutions in an efficient manner. 

2    Conclusions 

This paper has presented an analysis methodology for nonlinear, flexible multi-body system undergoing 
intermittent contact. Contact events are assumed to be of finite duration, and the contact force is explicitly 
computed as part of the simulation. The overall approach to the modeling of intermittent contact is broken 
into three distinct parts: a purely kinematic part describing the configuration of the contacting bodies, a 
unilateral contact condition, and an optional contact model. 

The first part of the model involves a number of nonlinear holonomic constraints which are enforced using 
a Lagrange multiplier technique. These constraints are enforced in such a way that the work they perform 
vanishes exactly. This feature, together with the energy preserving or decaying statement associated with 
the elastic bodies, imply the unconditional stability of the time integration process. The unilateral contact 
condition is transformed into a holonomic constraint by the addition of a slack variable. For a simple case, 
this procedure was shown to yield a discrete version of the principle of impulse and momentum. The optional 
contact model describes the relationship between the contact force and the deformation of the contacting 
bodies. 

Several numerical examples were presented and an automated time step size adaptation procedure was 
used in the simulations. The model allows a detailed analysis of intermittent contact problems. The efficiency 
and accuracy of the model was demonstrated. 
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ABSTRACT 

Modal interactions occurring in the response of nonlinear mechanical systems, due to the 

presence of an internal resonance, have been the subject of intensive research work, over 

the last three decades. For such systems, some of the energy supplied to a mode of the 

system by the excitation may be transferred and activate other modes, participating in the 

internal resonance. However, most of these studies analyzed systems with stiffness 

nonlinearity only. On the other hand, many mechanical oscillators may exhibit significant 

damping nonlinearities, leading to self-excited behavior. For such systems, vibration modes 

which are not excited directly by external forcing may eventually get excited through ? 

nonlinearities and mixed-mode response may arise, even in the absence of internal 

resonance. 

The main objective of this study is to present an analysis for the response of a class 

of two degree of freedom self-excited oscillators, in the presence of 1:2 internal resonance. 

The normalized equations of motion are first presented in a general weakly nonlinear form. 

Then, a perturbation methodology is applied, yielding a set of three slow-flow equations for 

the amplitudes and phases of approximate motions of the system. The stability analysis of 

these motions is also performed. In the second part of the study, numerical results are 

obtained for an example mechanical system. First, response diagrams are presented, 

showing the existence of various solution branches and illustrating the effect of the system 

parameters on the response. Then, more numerical results are presented, obtained by direct 

integration in linear damping ranges where the slow-flow equations possess no stable 

constant solution. These results, demonstrate the existence of periodic and chaotic solutions 

of these equations. More specifically, for small levels of linear damping, a Hopf bifurcation is 

found to occur, marking the transition from phase-locked mixed mode response to phase- 

entrained motions. These motions are found to develop phase drift eventually, through the 

occurrence of a homoclinic explosion of the slow-flow equations. Moreover, escape 

phenomena are also observed for certain combinations of the system parameters. 
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Applying the POD Method for Modal Analysis and Modal 
Interaction in Coupled Structural/Mechanical Systems 
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In phase space, a normal mode of vibration manifests itself as a two-dimensional 
invariant manifold of motion.   The dynamics restricted on the invariant manifold 
evolve on characteristic time scales. Basic issues arise when trying to associate multi- 
time and multi-space scales in spatio/temporal data of structural dynamical systems 
to normal modes.   We are developing novel methodologies to relate multi-time and 
multi-space scales in numerical and experimental spatio/temporal data to normal 
modes. In particular, we employ the POD (proper orthogonal decomposition) method 
as a primary tool to extract the dominant normal modes and the associated charac- 
teristic multi-time scales in discrete spatio/temporal data of the motion of a coupled 
nonlinear structure consisting of a linear viscoelastic beam coupled to a pendulum. 
The POD method reveals that, for weak coupling between the nonlinear pendulum 
oscillator and the linear continuum, the dynamics are governed by a slow nonlinear 
normal mode.   The POD method identifies both the amplitude dynamics and the 
spatial distribution of the slow normal mode.   Thus, the time scales for a motion 
due to the slow normal mode reflect the nonlinearity of a single normal mode.  The 
dynamics in the neighborhood of the nonlinear slow normal mode involve interac- 
tion between the slow normal mode and the fast linear dynamics of the continuum. 
Slow/fast modal interaction manifests itself in the distribution of the frequency spec- 
trum content of the amplitudes of the POD modes: They contain mixed time-scales, 
that is, a sequence of time scales associated with the nonlinear slow normal mode and 
fast time scales associated with the linear fast normal modes.  We have found that 
during abrupt changes from periodic motions to chaotic motions high frequencies are 
generated. These high frequencies reflect interaction among active normal modes and 
the generation through transverse bifurcations of new normal modes.   We present 
numerical and experimental results. 

* Research Engineer, SAIC-Science Applications International Corporation, McLean, VA 22102 
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Abstract - This paper describes the capabilities of an aeroelastic rotorcraft 
code, developed in-house at the Politechnico di Milano. which is based on multi- 
body dynamics theory. The current investigation is focused on correlation of the 
multi-body code predictions with experimental results associated with the Wing 
and Rotor Aeroelastic Testing System (WRATS), a 1/5-scale semi-span aeroe- 
lastic model of the V-22 FSD, which has been tested and is currently located at 
NASA Langley Research Center. Advantages of the multi-body aeroelastic code 
over existing comprehensive aeroelastic codes include the capability of modeling 
highly nonlinear phenomenon such as rotor blade motions during wind-up and 
maneuvers, and a more exact math model of hub components such as pitch 
links, pitch horns, and and bearings. The simulations addressed in the paper 
include: 1) correlation of the aeroelastic stability, with particular regard to the 
proprotor/pylon instability that characterises the tilt rotor, 2) determination 
of the dynamics of the system and the loads due to typical maneuvers with 
particular regard to the conversion from helicopter to airplane mode, and 3) 
determination of stresses in critical components like the pylon downstop. 

Introduction - The 1/5-scale aeroelastic model of the V-22 has undergone 
a long testing campaign. It was built and tested in the period from 1983 to 1988 
to support the preliminary design and the full scale development of the tilt rotor 
aircraft known then as the JVX. The wind tunnel tests began at Langley's TDT 
on a semispan model and were performed globally in three different facilities 
including the Boeing Helicopter VSTOL tunnel for both the semispan and the 
fullspan model configurations. The model returned to Langley in 1993, where is 
now employed as the Wing Rotor Aeroelastic Testing System (WRATS) under 
a loan agreement between the US Navy and NASA Langley Research Center. 

The numerical simulations are performed by means of a Multi-Body for- 
mulation developed at the Dipartimento di Ingegneria Aerospaziale of the Po- 
litecnico di Milano, Italy, which resulted in a proof-of-concept code that is still 
under development. The proposed approach is based on a "Lagrangian Multi- 
pliers" or "Redundant Coordinate Formulation". It is intended for the simul- 
taneous solution of multi-disciplinar problems including non-linear dynamics, 
aero-servoelasticity, electric and hydraulic networks. It aims at the modeling 
of complex systems, a clear example of which is the proposed aeroservoelastic 
model of a tiltrotor aircraft. 

'■Corresponding Author, E-mail: masarati@aero.polimi.it 



The equations of the dynamics of a constrained system are written in form of 
a system of first order Differential-Algebraic Equations (DAE). For each inertial 
body it consists in the six equations defining the momentum and the six ones 
assessing the equilibrium of forces. In this way both the equations and the 
unknowns have a clear physical meaning, thus leading to an efficient as well 
as easy-to-implement and easy-to-enhance formulation. Constraint equations 
are added if needed. They can be both holonomic or non-holonomic and they 
introduce algebraic unknowns that are analogous to the well known Lagrange 
multipliers and directly represent the reaction forces and the couples. 

Increasingly detailed models are considered in the work. The following sub- 
models are taken into account: 1) rotor with both rigid and flexible blades, 2) 
rotor plus clamped wing and conversion mechanisms, with flexible downs'top 
and conversion beam, 3) rotor plus swashplate and control svstem flexibility, 
and 4) complete flexible semispan model. 

The inertial properties are modeled by means of lumped masses while the 
"lumped" and "distributed" deformable elements are represented by means of 
simple rods and flexible rotational hinges, and finite volumes beam elements, 
respectively. This is a new and original interpretation of the finite volumes 
concept applied to structural dynamics. It simplifies the determination of the 
elastic contribution of the beam element to the equilibrium equations and proved 
to be free from shear locking. 

Simple quasi-steady strip-theory is considered for the aerodynamics of both 
the rotor and the wing. Dynamic inflow is also modeled in order to account for 
the rotor induced velocity. 

The authors wish to aknowledge the NASA Langley Research Center which 
cooperated in providing data for the correlation studies. 

KEYWORDS: TILT-ROTOR, MULTI-BODY DYNAMICS 
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The elastodynamic behavior of a nonlinear elastic 
spherical membrane with an internal periodic pressure 
and lying in an external fluid models a cranial aneurysm. 
Such a model has independent interest for studying the 
question of how the material of the membrane affects its 
dynamic response. Singularities in the potential function 
for the static loading of the sphere will be reflected in the 
dynamic behavior. A similar study of how singularities 
in the potential function for a dissipative mechanical sys- 
tem affect its dynamic response has been made for a rigid 
body with different types of supports [1]. Here, the exter- 
nal fluid resists expansion of the nonlinear elastic spher- 
ical membrane but aids contraction. The system, under 
periodic loading, is therefore not always dissipative. 

The configuration of the system is described by the 
stretch variable A = a(t)/A, where a(t) is the current 
radius and A is the undeformed radius. The equation 
of motion, as derived by Shah and Humphrey [2], for an 
arbitrary material having Cauchy stress, T(X), is 

fpHA 2 \ d2X     3     Ai(d\ 

2T(A) + 
A   X = Pi(t)-P« 

where p and pj are the densities of the membrane and 
of the external fluid respectively, H is the undeformed 
membrane thickness, Pi(t) is the internal pressure, and 
Poo is the constant pressure of the external fluid infinitely 
far from the sphere. Both the membrane and the external 
fluid are assumed incompressible so that their densities 
are constant. 

A comparison is made of membrane material models 
which do and do not exhibit a static bifurcation with re- 
spect to the mean internal pressure. The Fung model 
for biological materials exhibits no bifurcation, while the 
neoHookean and some Mooney-Rivlin models for incom- 
pressible rubber produce a limit bifurcation, a fold catas- 
trophe in the energy, with respect to static internal pres- 
sure changes. The dynamics of the Mooney-Rivlin spher- 
ical membrane under constant internal pressure has been 
studied numerically in a few cases by Akkas [3]. 

The homogeneous case of constant internal pressure, 
Pm, in the spherical membrane is described by the vec- 
torfield, with P = Pm - Px and xi = X, 

Xi     = 

x2    = 

X2 
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+ P 

This is a family of vectorfields indexed by P. Fixed points 
(A(P),0) correspond to the static equilibria, A(P), ob- 
tained from 

The behavior near the fixed points can be investigated us- 
ing the Jacobian of the vectorfield, putting x-i = g{x\,X2), 

= ( ° M V 9i    92 ) ' 
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The Jacobian has eigenvalues at fixed points 
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The divergence of the vectorfield, 

—xi 
pHA + pfA

2xf 3pfA
2x2 

shows that the system is contracting if x2 > 0 and ex- 
panding if X2 < 0. Therefore the system is not always 
dissipative. Recall that always xi > 0. The divergence 
also shows, by the Bendixson theorem, that any periodic 
orbit must intersect x2 — 0 in phase space. 



The Fung model is r(A) = c(d + C3)(A
2 - 

l)exp[.5(Ci + C3)(A
2-l)2]. The static equilibria for each 

P are the solutions of the monotonic, increasing, concave 
up function, for F = 2c(d + C3)/A, 

PW = j(A2 - l)exp[.5(Ci + C3)(A
2 - l)2]. 

Put C = pHA and D- pfA
2. The vectorfield is 

ii    =    x2 

x2    = SB««?-£(-?-!) C + Dx3 

«pI^d + CsKarf-l^ + P]. 

The vectorfield for each fixed P has a single fixed point. 
Then, gx < 0 and g2 = 0 at any fixed point. Since the 
eigenvalues are purely imaginary, each fixed point is a 
center. 

The Hamiltonian for the undamped Fung system at 
constant pressure, P, is 

\xl + W#eXp[0-5<Cl + C*KX' ~ W ~ 3^4«?- 
Numerical experiments indicate the existence of an 
asymptotically stable limit cycle under internal pressures 
of the form P = Pm+B sin(ut). The linearized vectorfield 
is of the form of a nonhomogeneous Mathieu oscillator, 
but this equation may not capture the behavior since it 
is area preserving, while the Fung model is not. 

The incompressible Mooney-Rivlin strain energy for 
the isothermal equilibrium states of a flat membrane is, 
in terms of the in-plane stretches, 

ci(A2 + A2 + Ar2Aj2 - 3) + c2(X-2 + \~2 + A2A2 - 3) 

The material is called neoHookean if c2 = 0. The neo- 
Hookean static equilibrium states for the sphere are 

PW = ~(^-1-x-7). 

A limit point occurs at dP/dX = 0. For any neoHookean 
material, the bifurcation is at A = 71/6 = 1.38309 when 
Pc = 0M973(4ClH/A). No equilibria exist for P > Pc. 
The function T(A)/A, proportional to P(A), is therefore 
increasing up to the limit point and is then decreasing. 

The undamped Mooney-Rivlin constant pressure sys- 
tem has Hamiltonian, for T = c2/ci, and p = P/F, 

l'l-p(xi-l)~(l-xl)+hixl-(i + irx2) (l-*r6). 

The full neoHookean dynamic system, with C = pHA, 
D = P/A2, and F = AciH/A has Jacobian entries 

F(7x^6 - 
Si    =    — — 

(P-F(-x^7 + x^)-1.5Dx2
2) 

-SDx\x2 

cr6 -1)      /      x2       _      SDxj     \ 
+ Dxf    T\C+Dxl     (C + Dxf)2) 

There are no fixed points if P > Pc. On the other hand, 
if 0 < P < Pc, there are two fixed points with xi cor- 
responding to the static equilibria and x2 = 0. The sec- 
ond two terms in gx are zero at the fixed points corre- 
sponding to a given P < Pc. The fixed point less than 
x1 = 71'6 is a center since gx < 0. The fixed point greater 
than xi = 71/6 is a saddle since gx > 0. This is as ex- 
pected from the fact that the left hand equilibrium point 
is statically stable and the right hand equilibrium point 
is unstable. As P tends towards Pe, the two fixed points 
approach (T1/6^). They annihilate each other at Pe, a 
saddle-center bifurcation. As P tends to zero, the left 
hand equilibrium moves towards xi = 1 and the right 
hand towards infinity. For negative P, the saddle fixed 
point disappears and there is a single fixed point, which 
is a center. But, there is no local bifurcation at P = 0. 

A normal form at the bifurcation pressure, Pc, arises 
from translating the fixed point (71/6,0) to the origin and 
then taking the Taylor series to second order, 

J/i    = 

2/2     = zDyl 

+ 

+ 

V2 

C+V7D\7Ve+P)     lbC + V7DJ 

7^6(2C-V7D) (-6F       \ l  7-ißZF 

(C + V7D)2     V 77/6 +rJyi+ [(C + V7D) 
{C2-7Z'2CD + 7D2) f-QF 

(C + V7D)3 

7i/3 

V77/6 
+p)]*? 

92     = 
C + Dx\ 

This is a saddle-center bifurcation. The undamped sys- 
tem (D = 0) for each 0 < P < Pc has a homoclinic 
loop emanating from the saddle point which surrounds 
the region of periodic orbits about the center point. The 
addition of the damping does not change the location or 
type of the fixed points. A periodic forcing function with 
large enough amplitude may generate transverse homo- 
clinic points by perturbing the loop. 
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MOTION REDUCTION IN SYSTEMS WITH UNCONTROLLABLE MODES 

AND/OR NONCOLLOCATED INPUTS: 
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A new open-loop control strategy applied to a planar pendulum subjected to the most severe 

combination of base excitations, horizontal motion at the primary-resonance frequency and vertical 

motion at the principal-parametric resonance frequency, is developed. The control action is typical 

of many single-input control systems; the control authority in one direction is high and the control 

authority in the orthogonal direction is zero in a linear sense. Although the action of the controller 

is linearly decoupled from part of the system dynamics, effects are transferred to the orthogonal 

direction through nonlinear coupling. Proper detuning of the control input allows the nonlinear 

coupling to provide control action in the direction that is uncontrollable in a linear sense. The 

dynamics at reduced orders, determined by a multiple-scales perturbation analysis, suggest the 

appropriate form of the control detuning. The normal form of the system provides information 

about how each parameter of the detuning affects the steady-state pendulation of the system. In 

this case, heuristic arguments are used to reduce the dimension of the unknown detuning parameters 

to a manageable size. The maximum pendulation angle of the steady-state motion of the system 

is one of the appropriate metrics of the system response; here it is used as the cost function for 

evaluation of the optimal detuning gains. Because the size of the design parameter set has been 

reduced, a simple grid search is employed to find the optimal control. 

This work is not the first to examine the effects of multi-frequency excitation on the steady- 

state amplitude of dynamic systems by using perturbation methods (Nayfeh, 1984). Also an indirect 

adaptive quenching algorithm for a nonlinear single-degree-of-freedom system subjected to external 

and/or parametric disturbances with unknown constant system parameters was developed by using 

a perturbation-based approach (Heydon et al., 1990). Here the importance of transferring energy to 

uncontrollable modes via nonlinear coupling (through either plant or actuator action) is recognized 

and explored for control objectives. Application of perturbation techniques to problems of this type 

provides a unified approach that may be applicable to a broad class of such systems. 

The control strategy is referred to as "open loop" because neither the system states nor a 



measured output axe employed in direct feedback. However, the approach tacitly assumes direct 

availability of the disturbance levels and relative phases. In practice, these values could be directly 

measured or estimated through use of an augmented state observer. Determination of the resonant 

excitation character could be extracted from base excitation measurements by means of phase- 

locked loop electronics (Algrain et al., 1997). 
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ABSTRACT 
The study of nonlinear dynamic beam theory has a long history. Although many 

large deformation beam theories have been developed, engineers are still looking for 
some simple but useful models for general engineering problems. It is known that the 
effect of transverse shear strain on the bending solutions cannot be neglected when 
dealing with thick beams or sandwich beams with low shear modulus, because this effect 
becomes relatively significant. In order to study the shear control of nonlinear thick 
beams subjected to arbitrary loading systems, a fourth order nonlinear beam model was 
proposed recently [1]: 

rh 
EI{wtXXXX - aw2

xwjXX + XwjXX) = f(x) + E I   yviXXXdy (1) 
J—h 

v,xx + ßv>yy = ywtXXX, ' (2) 

where a = 3/i(l — u2) > 0 and ß = (1 — v)/2 > 0 are constants. The shear deformation 
v(x,y) is assumed to be an odd function of y. Hence, this beam model can only handle 
special external shear load on the top and bottom of the beam. 

In the present paper, a new second order nonlinear dynamical beam theory is pro- 
posed as the following: 

£,xx + ß€,yy = ~(1 + v)w,XW,xx + (>€,tt, (3) 
1     fh 

(3(1 + v)w% + ß)wtXX + — y   ((1 + v)Z,xw!X + ßiy),xdy + f = pw,tt,        (4) 

€,v(x, ±^> *) = -w,x ± q±{x, t), (5) 

where £(x, y, t) is horizontal displacement of the beam, f(x,t) is the lateral load on the 
beam, q+(x, t) and q~(x,t) are shear loads on the top (y = h) and bottom (y = —h) 
of the beam, respectively. In dynamic buckling analysis, if the beam is subjected to a 
compressive load A0 at x = L, the horizontal displacement can be written as 

£{x, V, t) = -px - J —Y~w%dx + v(x, y, t) 

where v(x,y,t) is a pure shear deformation. Then the governing equations for the 
dynamic buckling problem in large deformed thick beam theory are 

v,xx + ßv,yy = 0 V(z, y) e fi, 
3Q,2 g 

(—w% + ß- Ac*)™,** + ^VAX^ V)\y=±h + f = pw,tt 

vy(x, ±h) = -w,x(x) ± q±(x, t) Vx € [0, L], 



where a = y/1 - v2, and A > 0 is a parameter. This is a coupled nonlinear dynamic 
problem. For a given periodical external load f{x,t) and A > 0, this second order non- 
linear system may have chaotic solutions. The total potential of this dynamic buckling 
problem is a nonconvex functional 

W   r 1 T 
P(v> W) = J JJ(v,x + 2a™?* " A)2 + ß(v,y + wtX)2]dQ - I  fwdx. (6) 

If the shear effect is ignored, the total potential P{w) reduces to the well-known van der 
Waal's double-well energy. The associated dynamical system is a Duffing-type equation. 

Based on the general duality theory developed in nonconvex finite deformation me- 
chanics [2], a pure complementary energy extremum principle (involving the Kirchhoff 
type stress only) is constructed. An interesting triality theorem in dynamical buckling 
analysis is discovered. The speaker will show that in unstable systems, if the so-called 
complementary gap function, introduced by Gao and Strang in 1989, is positive, this 
complementary energy principle gives a global stable buckling state. However, if the 
gap function is negative, this general complementary energy may have two so-called 
super-critical points The one which minimizes the pure complementary energy gives an- 
other local stable buckling state. The other super-critical point, which maximizes the 
complementary energy is a unstable buckling state. 
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