
. f

White Paper on the Next-Generation Data-Access Architecture
for Naval C4I Systems

Dr. Marion G. Ceruti
Space and Naval Warfare Systems Center, San Diego, CA

and

Mr. Scott A. Gessay
FGM, Inc., 131 Eiden Street, Suite 108, Herndon, VA

ABSTRACT

The Joint Maritime Command Information System (JMCIS), is the primary
Command, Control, Communications, Computers, and Intelligence (C4I) system for
the maritime services. To promote efficient information access in this system, the
JMCIS Data Engineering Group formed a committee with a three-fold mission: to
evaluated the state of new data-access technology, methods and architectures; to
explore the systems and software developed within the C4I sector that can use this
technology; and to recommend an architecture on which to base the framework of
data-access methodologies into which Naval C4I systems could evolve. The various
technologies and approaches available for the next-generation data-access
methodology in Naval C4I were investigated, including an examination of both
commercial-off-the-shelf and government-off-the-shelf technologies, international
standards, and general industry trends. The approach was to define the
requirements, evaluate the available technologies, and to compare them to one
another. The option of combining technologies was explored. The findings of this
investigation are presented here.

I. INTRODUCTION

The Joint Maritime Command Information System (JMCIS) has been
installed on ships and shore-based locations to meet the command, control,
communications, computers, and intelligence (C4I) requirements of the Navy,
Marine Corps and the Coast Guard. (See, for example, [3].) The JMCIS plan calls for
a common hardware and software to be installed on more than 200 ships [17]. The
JMCIS database architecture is a critical part of the design of this system. Therefore,
JMCIS Data-Access Committee (DAC) was established to provide support to the

Proceedings of the Fifteenth Annual Federal Database Colloquium,
"Combining Emerging Technologies for the Information Systems of the Future,"

San Diego, CA, September 9 -11,1998.

JMCIS Data Engineering Group (DEG). Its mission was to accomplish three goals:
• Evaluate the state of technology concerning new data-access methods and

architectures.
• Explore the systems and software developed within the C4I sector that used

this technology.
• Recommend an architecture on which to base the framework of data-

access methodologies into which Naval C4I systems could evolve.

The JMCIS DAC completed an 18-month investigation of various
technologies and approaches available for the next-generation data-access
methodology in Naval C4I. This effort included the examination of both
Commercial off-the-shelf (COTS) and Government off-the-shelf (GOTS)
technologies, ANSI ISO standards, and general industry trends. (See, for example,
[22].) The approach for this examination was to define requirements (both
immediate and long term), evaluate the available technologies, and to compare
them to one another. In so doing, the option of combining technologies instead of
recommending a single technology or approach also was explored.

II. REQUIREMENTS

Standard Access Methods

The next-generation data-access architecture will need to provide several
methods of information access for user applications. This section describes three
fundamental access methods that will be required in this architecture.

Most importantly, a generic, standard access method is required for
applications to interface to databases without being tied to one particular source of
data or COTS-specific interface. This methodology should be robust enough to
utilize all the advanced features of the target Database Management System(s)
(DBMSs) and of the databases they manage, while preserving a standard interface
method in the code of the developed client applications. This will ensure lower
code maintenance costs, and the ability of the client applications to access a variety of
data repositories with no code changes.

Secondly, the access method must include an object and Structured Query
Language (SQL) "pass-through" capability, to allow a "native" connection directly to
the data repository as though in a client-server architecture. (See, for example, [15,
18].) This is important for two reasons:

• To provide a flexible environment during migration to this new
architecture, and

• To provide specific applications that cannot change or those that employ
non-standard, specialized, advanced database features to continue to
connect to the required data repositories.

9<-^.<*i«iMV5fi»:

Third, the next-generation data-access architecture will need to support access
from web browsers. Web pages will be built with back-end interfaces directly hooked
to data repositories. This technology, which is prevalent in the industry, will
alleviate the need to replicate large amounts of data throughout C4I systems.
Information access will be much faster for users when a "need-to-know" has been
established. (See, for example, [4,10,16].)

Non-RDBMS or Lowered-RDBMS Dependence

JMCIS component systems are implemented with Oracle or Sybase DBMS
servers. Informix DBMS is used by the U. S. Coast Guard and also by the systems
that provide meteorological and oceanographic data to JMCIS. Client applications
developed for JMCIS Ashore are written to interface with an Oracle server, whereas
JMCIS Afloat variant client applications use a Sybase server. Therefore, to introduce
JMCIS Ashore variant applications into a JMCIS Afloat system an Oracle server
must be installed or the applications have to be rewritten to interface with Sybase.
Also, JMCIS needs to interface with other DBMS server products, such as Informix
DBMS.

The requirements in this area for the JMCIS data-access architecture are as
follows:

• Provide the interfaces to reduce the application software's dependence on
a specific vendor's RDBMS product.

• Application software must be portable to other RDBMS products.
• Reduce RDBMS dependence without settling on the least common

denominator of functionality.
• Base the JMCIS data-access architecture interfaces on industry standards.

Reduce RDBMS dependence using industry-standard interfaces, such as
SQL Call Level Interface (SQL/CLI) and Remote Data Access (RDA), which
are ANSI/ISO standards. (See, for example, [14,15,18].)

• Although complete RDBMS independence probably is not possible,
reduce and manage RDBMS dependence without introducing a
proprietary middleware or Fourth-Generation Language (4GL)
dependence.

• Provide a framework for developing applications that can be ported
efficiently to other RDBMS products.

Accommodation of New Database Technologies

Many new advanced database features that could be of great use to C4I systems
are offered by RDBMS vendors. Several of these technologies are described below.
Most importantly, many of these technologies can improve performance and
interoperability significantly in C4I information systems. Therefore, it is essential to
ensure that any new data architecture will be flexible enough to allow the use of
these technologies where applicable within C4I. Accommodating these technologies
is related to the concept of "pass-through" mentioned above. Proper architectural

planning will ensure that COTS expenditures on new technologies provide the
maximum return on the investment.

Several technologies are available in the form of COTS products. One such
technology is an HTML-to-RDBMS interface. This technology could streamline
significantly custom-application development, while providing access to users in a
fraction of the time and cost. Similarly, advanced replication techniques available
from the major RDBMS companies is another mature technology that could solve a
plethora of problems in C4I. Thirdly, a COTS On-Line Analytical Processing (OLAP)
and Decision Support Systems (DSS) technologies could solve many of the spatial
data and Very Large Database (VLDB) issues in C4I.

Data warehousing and data mining are becoming extremely useful data
storage and application architectures that give users the ability to keep vast amounts
of data on line. Data can be viewed from different perspectives to determine trend
analysis, post-event analysis, etc.

Performance Issues

Database performance is a critical aspect of the JMCIS data-access architecture.
The architecture must address query-response time, transaction processing, and
concurrence. A major concern in designing a data-access architecture is the tradeoff
between performance and portability (i.e. lowered RDBMS dependence). Typically,
an interface layer is designed to provide for portability but this additional layer will
degrade performance. However, if designed correctly the interface layer should
provide for lowered RDBMS dependence with minimal impact on performance.

The following are performance requirements for the JMCIS data-access
architecture:

• Support a three-tiered architecture consisting of clients, application servers,
and resource (e. g. database servers). (See, for example, [6].)

• Support the concept of a database transaction as a unit of work.
• Maintain a database connection throughout the session.
• Support native RDBMS locking capabilities, such as row-level locking to

provide the optimum transaction throughput and to minimize deadlocks.
• Support threads. Multithreading allows the system to split an application

program to perform multiple tasks in parallel.
• Support load balancing.
• Support RDBMS parallel processing environments.
• Minimize network overhead through capabilities such as stored procedures

and array processing.

Distributed, Heterogeneous Federated Database Architectures

The term, Federated-Database System (FDBS), was first defined to mean a
collection of independent, pre-existing databases (for which the data administrators
and/or the database administrators) agreed to cooperate [13,14]. Thus, the database
administrator (DA) for each component database provides the federation with a
schema representing the data from his or her component that can be shared with
other members of the federation [13]. In a broader architectural sense, an FDBS is a
collection of cooperating but autonomous component database systems that are
possibly heterogeneous [23]. The collection of databases that supports JMCIS fits this
description. (See, for example, [5, 23].)

The next-generation, data-access system for JMCIS will include services
designed to provide seamless access to heterogeneous, distributed data for
applications and operational users. The technical approach will be based on general
principles of federated-database management implemented with an open
architecture that facilitates the integration of new segments, systems, and technology
into the existing configuration, as they become available. Requirements are as
follows:

• Hide the heterogeneity on the network from applications to provide a
seamless, client-server interface to the data.

• Utilize intelligent, object-model and legacy-data-schema managers.
(See, for example [6, 8,9].)

• Utilize intelligent-query caching and auto-refresh capabilities.
• Dynamically identify changes in class and in data-source structure.

• Perform heterogeneous joins across multiple servers for ad hoc queries
and applications that require them.

• Maintain relational reliability and flexibility.
• Implement a client-server architecture.
• Preserve the vast majority of the important, present capabilities visible to

the user that are necessary for the complete function of current
applications. (See, for example [21].)

The architecture and infrastructure will enable the system to evolve to satisfy the
following long-term requirements:

• Introduce more object-oriented architectures, software and techniques
into the JMCIS environment, including object-oriented data modeling, and
other technology that will address the fundamental connection between
the relational and the object-oriented models [6].

• Function according to approved procedures in an SCI environment using
SCI databases, and operate on the JMCIS SCI LAN.

• Construct the data-access system using the tightly coupled federated
database approach in which component databases offer shared data
represented to the applications and users by a global schema.

• Provide the capability to perform joins at the federated database
management level or "middle tier," thus relieving the applications level

of this task.
• Identify and resolve multiple levels of heterogeneity and the problems
they introduce in the integration of legacy systems by instantiating objects
with conflicting-data attributes from multiple sources.

• Optimize global query execution within a distributed object environment,
thus addressing the performance implications of the additional software
layers to minimize their impact on the efficiency with which JMCIS

applications can obtain their required data.
• Sense the network configuration and report to the user the nodes that are

connected actively to the network.
• Require little or no recoding of existing applications and no redesign of

legacy databases, as a minimum for participating in the federation.
• Provide access to multi-media databases containing graphic, audio, video,

binary, and multidimensional data objects that may reside in flat-file,
relational or object-oriented DBMS formats.

• Use GOTS components where possible to obtain maximum leverage from
funding of other sponsors. Keeping the cost down is a high priority.

• Minimize the requirement of sites to purchase additional software
licenses by including the functionality of COTS middleware products.

• Provide a smooth transition to migrate data access from the present
methods to the more-advanced information services and technologies.

Objects and Object-Oriented Database Management System (OODBMS)

The object-technology requirements for the data-access system are as follows:
• Provide a database-processing capability for both the relational and object-

oriented approaches to C4I System Development.
• Provide Object-Relational technology that results in data-source

independence.
• Provides an architecture that allows DoD to "plug and play" data

management systems.
• Optimize global query execution within a distributed-object environment.
• Notify client automatically of changes to registered objects of interest.
• Perform object-oriented data modeling.
• Provide interfaces that fully comply with the Common Object Request

Broker Architecture (CORBA).
• Offer object-query relaxation techniques.
• Offer object-query optimization techniques.
• Support fine-grain client C++ proxy objects. (This is a performance issue

also. Server objects are instatiated on the client platform to minimize
network traffic and the consequent performance degradation.)

The architecture and infrastructure will enable the system to evolve to satisfy the
following long-range, object-oriented requirements:

• Introduce more object-oriented architectures, software and techniques into
the JMCIS environment, including object-oriented data modeling, and

other technology that will address correctly the fundamental connection
between the relational and the object-oriented models.

• Utilize not only fully CORBA-compliant interfaces, but also demonstrate
portability between the different CORBA instantiations, so that an ORBIX-
developed CORBA application could interface to a different CORBA
application without being redesigned or recoded.

• Identify and resolve multiple levels of heterogeneity and the problems they
introduce that are inherent in the integration of legacy systems by
instantiating objects with conflicting data attributes from multiple sources.

• Provide for the establishment of intelligent, object-model and legacy
-data-schema managers.

• Implement intelligent placement and replication of data objects based on
access considerations, including but not limited to priority and frequency

• provide data-source transparency to the user.
• Dynamically identify class and data-source structural changes, and

incorporate them into the metadata schema automatically.
• Provide clients with automatic notification of changes to registered objects

of interest.
• Include multiple options for Application-Program Interfaces (APIs),

including full C++ language integration, standard C code, and ORBIX.

Redundant and Prioritized Database Access

Requirements for the near term are as follows:
• Provide data access methods to selected JMCIS data sources.
• Provide read-only or read-write, data-access capabilities for segments and

applications, depending on their purpose.
• Use redundant data sources automatically for first-level fault tolerance to

provide data-source transparency to the user.
• Provide intelligent placement and replication of data objects based on access

considerations, including but not limited to priority and frequency.
• Provide synchronous, asynchronous and query scheduling capabilities.

The architecture and infrastructure will allow the system to evolve to satisfy
the following long-range requirements:

• Make available to the user and applications (consistent with user profiles)
the capability to read, write, update and delete both static and dynamic
data, including data from automatic message handling, depending on the
purpose of the various segments and applications.

• Provide a flexible, incremental development environment to
accommodate the next industry or Government standard, whatever that

may be.
• Provide a conceptually shared and global JMCIS database that will be

physically distributed and somewhat redundant, (to avoid a single point of
failure.)

Interoperability with GCCS

The Global Command and Control System (GCCS) provides a Common
Operating Environment (COE) that defines a set of core services for mission
applications [7, 20]. Data-access services are a component of the GCCS-COE
architecture. Navy-mission applications will have to operate within the GCCS
COE.

The following sections identify the requirements for GCCS interoperability in
the JMCIS data-access architecture.

• The JMCIS data-access architecture must be able to operate within the GCCS
Common Operating Environment (COE).

• The JMCIS data-access architecture must be able to operate within the GCCS
database server's runtime environment.

• The JMCIS data-access architecture must comply with the GCCS database
server's integration standards.

• The client applications of the JMCIS database must be able to operate within
the GCCS COE.

Ensuring an Efficient Migration Path

JMCIS has many applications that interface with either the Ashore or the
Afloat server. These interfaces vary from vendor APIs to embedded SQL.
Applications using these interfaces must migrate to the JMCIS data-access
architecture.

Software and databases can exist at various levels of compliance with a
standard, common operating environment. The point at which one observes
software module or data segment on the migration path will be determined
primarily by what has been done to comply with these standards. For example, a
migration database that has undergone little or no modification may be at an "entry
level" in an FDBS, whereas, a database system that was designed specifically with a
particular federation in mind may be fully compliant with the rules of the
federation as soon as it is integrated. Most JMCIS software and databases fall
somewhere between these two extremes.

The following sections identify the requirements for ensuring the migration
of legacy applications in the JMCIS data-access architecture. In particular, the data-
access architecture should provide the following capabilities:

• Tools and/or libraries for phasing legacy applications into the architecture.
• A migration path with multiple levels of compliance that allow

applications and systems to phase into the overall architecture.

Emerging Standards

When defining the next-generation data-access architecture, careful
consideration should be giving to trends in industry with respect to ANSI and ISO
standards. In the past, focus has been placed on building C4I database applications
according to what was standardized already. This has put many C4I applications at a
disadvantage because some or many advanced, database technologies have gone
unused, due to the lack of accepted standards at the time of development. Many of
these technologies (such as triggers, replication, etc.) could have been used by
keeping abreast of ongoing standardization efforts, so as not to "go out on a limb"
technologically. For the next-generation architecture, it is important to embrace
these emerging standards and utilize the advanced technologies provided by COTS
DBMS products that are destined to become standards. More on this topic can be
found in the section on Current Access Methods, Technological Advancements, and
Emerging Standards.

III. THE CURRENT STATE OF TECHNOLOGY AND CASE STUDIES

ORB Architecture - The JTF-ATD Data Server

The Joint Task Force Advanced Technology Demonstration (JTF-ATD) Data
Server project is sponsored by the Defense Advanced Research Projects Agency
(DARPA). The JTF-ATD Data Server's advanced information services can provide
the required client-server communications between applications and the DBMSs
throughout the JMCIS network. This will eliminate the need for DoD to continue
to purchase additional COTS, client software for the database manager. These
services will also provide capabilities for minimizing the effort to rehost JMCIS
segments in this advanced architecture. This can be done by exploring the approach
of providing libraries that interface with the OODBMS services and that mimic the
C-library interfaces of the Oracle, Sybase, Informix, and other RDBMSs.

The JTF-ATD Data Server, which has played an important role in the Joint
Warrior Interoperability Demonstration (JWID), is considered one of the highlights
of the very-successful technologies that were demonstrated. The JTF-ATD Data
Server has received a great deal of attention in industry, government and academia.

The JTF-ATD Data Server complies with CORBA, which consists primarily of
the object model, the Object Request Broker (ORB) and object adapters, and the
Interface Definition Language (CORBA-IDL). Each component is discussed below.
The information on CORBA discussed here is from [6] and [19]. (For further
information on object technology, see also [8].)

The object model describes object semantics and object implementation.
Object semantics include the semantics of an object, type, requests, object creation
and destruction, interfaces, operations, and attributes. Object implementation

includes the execution model and the construction model. In general, the essential
constructs of most object models can be found in the object model of CORBA.

An essential feature of the ORB is that it enables communication between a
client and a server object. A client invokes an operation on the object and the object
implementation consists of the code and data needed to implement the object [19].
The ORB provides the required mechanisms to identify the object implementation
for a particular request and enables the object implementation to receive the request.
The ORB also provides the communication mechanisms needed to deliver the
request. Furthermore, the ORB supports the activation and deactivation of objects
and their implementations. The ORB generates and interprets object references. To
summarize, the ORB provides the mechanisms to locate the object and
communicate the client's request to the object. The client does not need to know
the exact location of the object or the details of its implementation. Objects use
object adapters to access the services that the ORB provides.

IDL is a declarative language that describes the interfaces that the object
implementations provide and that the client objects call. It should be noted that the
clients and object implementations are not written in IDL. The IDL grammar is a
subset of ANSI C++ with additional constructs to support the operation invocation
mechanism. An IDL binding to the C language has been specified, whereas other
language bindings are in progress. IDL is used to communicate between a client and
a server in the following manner. Two types of modules, the IDL stub and the IDL
skeleton, are connected to the ORB core. The client's request is passed to the ORB
core via an IDL stub, and an IDL skeleton delivers the request to the server object
from the ORB core.

CORBA can be used for Integrating Heterogeneous Database Systems. Some
directions on using CORBA for this purpose are described below.

A major motivation for adopting a CORBA-like approach to the integration
of heterogeneous databases is the complexity of migrating legacy databases to new-
generation architectures. Whereas the migration of such databases and applications
to the client-server architectures is desirable, the costs of such migration can be
enormous. Therefore, a better approach is to keep the legacy databases and
applications and develop mechanisms to integrate them with new systems. These
mechanisms include the approach of the distributed-object-management systems in
general and the CORBA approach in particular.

The major advantage of the CORBA approach is the ability to encapsulate
legacy database systems and databases as objects while eliminating the need for
major modifications [6]. However, the techniques to handle the various types of
heterogeneity are still needed. This is because CORBA itself does not handle some
problems like transaction heterogeneity and semantic heterogeneity. However, the
procedures for handling the various types of heterogeneity can be encapsulated in

the CORBA environment and invoked appropriately. These concepts are illustrated
below with some examples.

Consider the need for clients to communicate with a group of database
servers. One way is to encapsulate the database servers as objects and have the
clients issue appropriate requests and access the servers through an ORB. If the SQL-
based servers are used, the entire SQL query or update request could be embedded in
the message. When the method associated with the server object gets the message,
the method can extract the SQL request and pass it to the server for execution. The
results from the server objects are encoded as a message and passed back to the client
via the ORB.

Next, consider the issue of how to deal with a particular type of heterogeneity.
Suppose a SQL-based client is present with a server is some legacy database system
based on the network model. In that case, the client's SQL query will need to be
transformed into an appropriate language that the server can understand. (For
more information on the issues of transforming one representation scheme into
another, see [6].) The client's request is sent to the module responsible for
performing the transformations. This module, called the "transformer," could be
encapsulated as an object. The client's SQL request is sent to the transformer, which
converts the request into a format that the server can understand. The transformed
request is sent to the server object. Note that the transformer could transform the
SQL representation directly into a network representation or it could use an
intermediate representation to complete the transformation.

The distributed processor, which is a module that can perform the functions
of distributed-data management, is responsible for handling functions such as
global- query optimization, and global transaction management. This module also
can be encapsulated as an object and processes the global requests and responses.
The server assembles the response sent to the transformer to convert into a
representation that the client can understand. All the communications are carried
out through the ORB [6].

Distributed Computing Environment (DCE) Architecture

DCE is a technology that could evolve into an industry standard method to
provide distributed computing access. In addition to DCE's many positive technical
features and services, the GCCS community has considerable interest in DCE.
Moreover, DCE can provide support to JMCIS as well. (See, for example, [1, 2].)

The Open Group's DCE provides a set of services that address the problems
found in distributed client-server environments today. The core components are
remote procedure calls (RPCs), directory services, and security services. The goal of
DCE is to provide solutions for the problems inherent in distributed computing and
to make sure those solutions work well in a complex, multi-vendor world.

The DCE RPC models two distributed processes as a subroutine and a caller of
the subroutine. The fact that these processes may run on different machines
connected by a network is hidden from the programmer. The client and server can
communicate, locate one another on the network, and convert data formats via
RPCs. One of the reasons so many developers are interested in working with the
DCE RPC is that it functions independent of any particular protocol or network type.

With many systems on a network, providing clients with the ability to locate
servers is important. Using two DCE components, the Global Directory Service
(GDS) and Cell Directory Service (CDS), a hierarchy is produced in which the names
and attributes of systems are supplied throughout the network. GDS and CDS
provide ways for applications to locate one another. These services provide a way
for the servers to store information that clients will need to contact those servers.
GDS and CDS also provide those clients with a way to retrieve the information.

One of the more critical components of DCE is the security service. DCE
provides four key security services: authentication, authorization, data integrity, and
data privacy. DCE supports authorization using POSIX-based, access-control lists
(ACLs). Because distributed security requires clock synchronization among
machines, DCE provides a Distributed Time Service (DTS) that performs this
function.

Two other services that DCE supports are threads and a Distributed File
System (DFS). Based on standard, POSIX interfaces, threads provide a means to
improve application performance by implementing parallelism. DFS allows a
program to access files on the file server just as though they were located on the
local system's disk. This goes beyond an ordinary network-file system (NFS) because
with DFS every node in the network identifies the same file by the same name and
sees it located in the same directory thereby hiding the physical layout of the
network. Whereas DFS is officially part of DCE, DFS is really an optional application
built on top of the core components.

DCE provides the foundation and some tools that allow applications to
interface with different operating systems, network protocols and databases in a
distributed environment. DCE has a set of APIs that developers can use to build
client-server applications. Various third-party vendors have built additional layers
on top of DCE to support database client applications, which could represent a cost
savings if implemented throughout JMCIS. Without this third-party product, a
programmer would have to become familiar with the 600 DCE API calls and would
need to know about multithreaded applications, the ACL manager, and server
initialization.

A second generation of client-server computing lends itself well to the DCE
environment. A three-tier architecture that uses a client workstation, application
server and a database server is a trend that benefits the higher-end applications.
With the application server centered in a three-tier architecture, organizations can

achieve higher availability and performance, along with the benefits of transaction-
processing (TP) monitors. The benefits of a TP monitor include:

• control of a single unit of work through a two-phase commit protocol
against distributed, heterogeneous databases, and

• high availability and performance because a TP monitor can use multiple
regions to balance the workload.

Disadvantages include:
• higher complexity in coding for TP monitors, and
• the need for the application developers to code explicitly many of the

features that the monitor supports.

The most popular way of accessing databases in the DCE environment
appears to be through middleware from third-party companies, especially those that
have formed alliances with the major DBMS vendors, such as Oracle Corp.

The more a heterogeneous environment is characterized by marked
dissimilarities between the components, the more beneficial DCE will be in that
environment. DCE satisfies many of the core interoperability, security and
transparency requirements needed for an open distributed processing solution.
Whereas this may be true for applications to interact and security to be maintained,
when the differences between database components are extreme, access becomes
very difficult especially if the software has been developed with DCE APIs. The
support of multiple databases by third party vendors needs periodic investigation.

One major benefit of DCE is the security service. If this can be exploited
through APIs or third party vendors when writing database applications, data access
in the DCE environment may have an advantage over a traditional client-server
architecture. (For more information on database security, see [11].)

How does a DCE-based application compare in performance to the identical
application written with sockets? DCE will be less efficient than a simple TCP-based
connection. This performance issue will also be somewhat of a problem for data
access in the DCE environment versus in the typical client-server architecture.
However, traditional applications won't be as robust or provide DCE services.
Without middleware to provide seamless access to databases, programmers must
understand RPC, security and networking, as well as have threads experience. This
is considered one of the biggest disadvantages to creating client/server applications
within DCE.

In summary, the attractive features of DCE can provide some needed services
for the distributed environment of JMCIS. Some of the problems with DCE may be
solved by combining DCE with other software. Whereas DCE alone is not a
complete solution, it would add utility and flexibility to the data-access approach in
JMCIS.

COTS-Specific, Middleware-Enabled Architecture

Advancements in the area of middleware have provided the industry with
significantly enhanced capabilities with regard to client applications accessing
various data repositories. Companies such as Sybase and Oracle have produced very
robust midleware products. One such middleware product, OmniSQL Gateway, is a
part of the Sybase Enterprise Connect product line. For the purposes of discussion,
the OmniSQL Gateway product was chosen as an example to demonstrate the range
of possibilities with middleware technology.

The OmniSQL Gateway was one of the first RDBMS middleware products
released in the industry, and offers some very interesting capabilities of dealing with
a federated, heterogeneous database schema. This section explains how this product
might be used in the next-generation data-access architecture for Naval C4I.

The entire framework of today's RDBMS middleware products revolves
around the concept of a "database broker" that acts as gateway to link user
applications to required data repositories. Applications must have been written
using embedded SQL, and must not stray too deeply into the proprietary SQL dialect
of the original RDBMS, or else the gateway will be unable to translate to a different
data repository (thus requiring a "pass-through" method of data access). This is the
main limitation of current middleware products, pending the standardization of the
various components concerning data access. Metadata are stored in the middleware
product; in OmniSQL Gateway, this information actually resides in local database
tables. When applications require access to data repositories, lookups in Omni's
local tables are enabled to determine the database to access, how to deal with the
interface, how to construct the SQL statement (not done in pass-through mode), and
how to complete the transaction.

Data sources are accessed via the gateway. This requires preparation and
maintenance of the metadata tables in the gateway itself. Translation occurs to some
level of the native SQL dialect of the target data repository. The OmniSQL Gateway
also provides a "pass-through" capability, for access to data repositories preserving
the original SQL dialect to the target DBMS.

By design, Sybase and other middleware vendors would prefer that their
particular access protocol and bindings be used from all client applications to the
middleware gateway. For the Sybase OmniSQL Gateway, the access would be
through Open Client to Open Server. The advantage is that customers can
standardize to a single access method, and let the gateway deal with the translational
issues. Another benefit is gained in that a prioritization schema can be employed for
redundant data repository access. Significant flexibility is achieved using this
approach, and the Navy's initial effort testing the OmniSQL Gateway in
Philadelphia in 1994 showed that performance issues were not a big concern in a lab
environment. Other benefits are as follows:

• Location independence of the Data

• Replication independence
• Distributed-query processing
• Some level of distributed-transaction processing
• Some level of DBMS independence
• Hardware, Network, and Operating System Independence
• "Pass-Through" Capability

A cost is associated with the use of any technology. First and foremost is the
penalty of not being able to use seamlessly the advanced SQL implementations that
each RDBMS vendor provides without having to use "pass-through." Another
disadvantage is the possibility of having to standardize on one vendor's particular
access protocol and bindings. Thus, some disadvantages are:

• Rewriting application code to ensure accurate SQL-dialect translation
• Changing access protocol and bindings of non-Sybase client applications
• Possible performance bottlenecks (implications unknown in a

production/live environment)
• Additional costs and maintenance of middleware products

The premise of the Navy's effort to test Sybase middleware was to enable the
JMCIS-Afloat applications to access an Oracle database (instead of the native Sybase
database) by employing the use of the OmniSQL Gateway in place of the native
Sybase database. The goal was to prevent both the applications and users from
detecting any difference in the functionality of the applications. The databases to be
ported included the various intelligence databases, the Naval Information
Processing Services Database (NIPSDB), and the Message Database (MSGDB).

To begin the project, all of the Sybase stored procedures were moved from the
Sybase RDBMS environment into the OmniSQL Gateway, a process that was fairly
straightforward. Next, all the data were loaded from Sybase RDBMS to Oracle
RDBMS. This step was more complex. Special utilities had to be written to
accommodate this transfer, as differences between the manners in which Oracle and
Sybase handle date data types, long fields, and reserved words did not allow a simple
porting of the data. When this was accomplished, the OmniSQL Gateway was
configured inside the JMCIS Afloat environment and the Sybase-native JMCIS
Afloat applications could be connected seamlessly to the Oracle DBMS via the
OmniSQL gateway, with no difference in functionality available to the users and no
code changes in the user applications. In summary, the effort was successful, with
consideration to the fact that specialized utilities had to be developed to convert the
data from Sybase to Oracle.

Current Access Methods, Technological Advancements, and Emerging Standards

Today in client server environments, a common problem creates a rather
rigid access method for applications to communicate to data repositories. This
problem is the interface from the client applications to the database. In the
relational world, RDBMS vendors have developed proprietary-access methods and

bindings. Access methods to image and text files typically have been custom built
(yet HTML is becoming widely used and may well become the industry's de-facto
text and image standard access method).

Problems continue with current database-access methods. C4I applications
virtually always have been developed to run against a single, homogeneous
database in a client-server environment using the access methodology provided by
that vendor's RDBMS. This makes software-application maintenance costs higher,
portability more cumbersome, and typically limits or constrains both clients and
servers that are to be used for these applications. Also this situation creates a
development environment where teams of software developers must be disciplined
in one or more access methodologies. This is primarily a result of the different
approaches that RDBMS vendors employ to deal with data access at the protocol,
binding, and language levels.

At the protocol level, a proprietary method generally is layered onto the base
communication protocol. Oracle uses SQL*Net, Sybase uses Open Server/Open
Client, etc. Both can be encapsulated in a TCP/IP-communication layer. The
problem is that each vendor has addressed this issue with a custom approach, as no
standards existed when the first client-server architectures emerged in the mid-to-
late 1980s.

At the binding level, the data in a database are manipulated via a language
such as SQL. The problem here is that beyond the most elementary usage of SQL,
each vendor has implemented their own "flavor" or dialect of SQL to deal with
vendor-proprietary stored objects (such as procedures, functions, and internal-record
identifiers).

At the language level, RDBMS vendors have come up with their own
method of advanced, SQL-language features. Oracle's name for this is PL*SQL;
Sybase calls theirs TRANSACT SQL. These language extensions, or SQL dialects do
not communicate with each other above the generic SQL level. Thus, the real
power of the RDBMS becomes usable only when one employs a vendor's custom
SQL dialect, thus making the code less portable and tied to a particular RDBMS
implementation.

In the following sections, we will examine the standards committees'
progress in addressing these problems at each of these levels.

In response to the limitations and constraints dealing with data access at the
protocol level, International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) have been working on SQL/RDA
(Remote Data Access) [14, 15]. This standard interface defines how RDBMS servers
can utilize a common-protocol interface, known as the "RDA-SQL Server Protocol
Interface." SQL/RDA provides the basic services and protocols for SQL
interoperability in a distributed, wide-area, client-server environment.

In response to the limitations and constraints dealing with data access at the
binding level, the software industry is addressing this problem in a variety of ways.
One of the most widely known is the ODBC method from Microsoft. This
"common denominator" approach to translate SQL from client applications to a
variety of RDBMSs works only at the lowest levels of SQL, but is effective. ANSI
will be standardizing this approach in something called ANSI-SQL Call-Level
Interface (CLI) [24]. The obvious drawback is the lack of a standard, such as the SQL
Persistent Stored Modules (PSM), which will keep SQL/CLI operating within the
same limitations of ODBC. Another reported drawback is performance penalties
with this translational binding method. But at least the industry has recognized the
problem and is taking steps to solve it. (See, for example [18].)

To bring some structure to the RDBMS vendors' proprietary implementation
of stored objects (procedures, functions, etc.), ANSI has the SQL/PSM, mentioned
above. This is the extension to SQL that provides advanced SQL capabilities in a
standardized format. This extension is comprised of variables, procedures,
functions, and flow-control statements that execute at the RDBMS kernel, providing
robust performance and functionality. Thus, SQL/PSM will go a long way towards
solving the "SQL dialect" problem between RDBMS vendors.

Another area in which ANSI has been working to solve the data-access
dilemma is ANSI SQL External Repository Interface (ERI) [24]. This standard
interface defines how RDBMS servers can provide limited SQL access to non-
RDBMS data repositories, such as Full-Text Document Systems, Legacy Systems,
Graphic Information Systems (GIS), or ODBMSs. SQL/ERI will use SQL/RDA to
accommodate "calls" or "messages" to request and manipulate non-SQL data. As
this type of data is increasingly being accessed simultaneously with RDBMS data, it
has become necessary to provide the industry with an acceptable, common interface
to accommodate this requirement. This standard will ease significantly some of the
problems that developers face each time a new system is developed or expanded.
This is part of SQL3 [18].

IV. A COMPARISON OF TECHNOLOGIES AND APPROACHES

All three of the major approaches, the JTF-ATD Data Server (which is
CORBA compliant), DCE, and Sybase Omni-SQL Gateway provide some level of
generic, distributed database access capabilities. Although DCE and CORBA provide
some of the same kinds of services on networks, DCE was designed to support
procedural programming in languages such as "C," whereas CORBA supports
object-oriented programming in languages such as "C++." This is the main
difference between the two [1]. (Another difference lies in the area of security
support.) In the JMCIS environment, legacy programs in C as well as new object-
oriented software will require data-access services. Therefore, the best solution for
JMCIS and for other C4I systems is to utilize both DCE and CORBA. One way to

implement this is for C programs to include calls to C++ modules when the code is
complied. Some CORBA implementations can run "on top of" DCE (Brando, 1995).
Other combinations of the above technologies also could prove to be useful. For
example, DCE can be integrated into the products of the RDBMS vendors. (See, for
example, [2].) Therefore, it is reasonable to expect that DCE also can run in the same
environment as Sybase Omni SQL Gateway.

GCCS Efforts with DCE and ORB

At the time of this writing, the GCCS plan was to incorporate DCE and
CORBA into the COE. GCCS supports an open-system environment and the COE is
based on the distributed client-server computing model that can be implemented in
many ways. At the time of this investigation, DISA had chosen the Open Group's
DCE as the baseline architecture and standard for implementing a client-server
computing model. DCE is an implementation designed to support environment
such as that of GCCS, in which information flows across heterogeneous and
distributed hardware and software platforms in a manner transparent to the end
user. Future development of the GCCS's distributed environment could be object
oriented with a strategy of running a CORBA-based product on top of DCE.

V. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

The committee's findings presented in this White Paper support the
following recommendations:

• At the time of this investigation, the Global Command and Control System
(GCCS) community at the Defense Information Systems Agency (DISA) was
involved in a similar effort. The services in general and the Navy in
particular must combine their efforts with DISA's to share findings, stay
involved in the decision-making process, and remain compatible with the

GCCS data-access standards.
• No single technology or method will accommodate all Naval C4I

requirements, but combining technologies in concert with the GCCS
direction can accommodate nearly all requirements and facilitate the
process of determining the next-generation data-access architecture for
GCCS as well as JMCIS.

• Although the level of maturity of many of the of latest technologies may be
insufficient to permit a full commitment, it is necessary to start working
with these new technologies in order to gain insight into what works best.
Thus, when some of the more advanced technology reaches a mature state

C4I systems can take full advantage of them. Personnel already will be
familiar with the requirements that need to be met in order to remain
interoperable with GCCS.

Several prototypes including DCE, CORBA and COTS technologies can be
integrated in concert with GCCS, conforming to DISA's standards, to ensure that the

JMCIS data-access methodology would be interoperable with GCCS. This approach
also would avoid duplication of effort. Thus, JMCIS could build on what already
has been accomplished with GCCS as a point of departure for the next-generation,
data-access services for the maritime forces.

Each of the major approaches described here needs to be further tested,
including each two-way combination of each of the three subject technologies. For
example, the engineer responsible for testing the JTF-ATD Data Server's
implementation of CORBA also could test how DCE would fit into that
environment, whereas the engineer who is testing the COTS approach could also
test how Sybase OMNI would run in the same environment with CORBA and the
JMCIS Federated Database.

While evaluating the prototypes, the requirements for the functionality in
JMCIS should be re-analyzed and appropriate matches of technology and
requirements should be fielded first at specific sites and later, for all JMCIS sites.
This functionality should be developed and integrated for the JMCIS high-
performance, distributed data, information base and world model according to the
requirements.

A key approach to developing these advanced capabilities will be to utilize
object-oriented and world-wide-web technologies, and to develop military and
geopolitical classes and instances, various logical relationships and dependencies,
self-updating, temporal and spatial indexing, configuration management, event
monitors, and mechanisms for management of redundancy and inconsistencies due
to latency, bandwidth limitation, priority, heterogeneity, and uncertainty. This
effort will utilize state-of-the-art technologies to provide a federated-database
management system to enable JMCIS to meet the requirements of users and
applications at operational afloat and ashore command centers.

A phased approach can be implemented to identifying and validate the above
the requirements, developing, and integrating the advanced information services
and technologies into selected JMCIS segments. This will provide a proof-of-concept
demonstration of integrating next-generation, intelligent-information collection,
analysis, fusion, and dissemination services into JMCIS.

These data services will provide DoD with Object-Relational technology that
results in data-source independence and provides an architecture that allows DoD to
"plug and play" data-management systems.

The JTF-ATD Data Server's approach should be compared to and weighed
against the approach of developing DCE and COTS tools that support application
migration to object-oriented capabilities. All approaches discussed above should be
explored and prototypes should be develop to assess the benefits of each approach,
including the approach(s) to translating DBMS-embedded C-language calls to data
services within the next-generation information infrastructure.

ACKNOWLEDGMENTS

The authors thank Perry (Peter) Cherpes, formerly of Science Applications
International Corporation, for his significant contribution, and the Space and Naval
Warfare Systems Command who sponsored this investigation. This article is the
work of a U. S. Government employee in the capacity of official duty and is not
subject to copyright. It is approved for public release with an unlimited distribution.

REFERENCES

[1] T. J. Brando, Comparing DCE and CORBA, MP 95B0000093, Bedford, MA:
The Mitre Corporation, 1995.

[2] D. Brown, DCE Open Client and Open Server Support of the Distributed
Computing Environment. Emeryville, CA: Sybase Corp.
Technical Paper Series, 1995.

[3] M. G. Ceruti, "Development options for the Joint Maritime Command
Information System (JMCIS) specialized data servers," Proceedings of the
Department of Defense Database Colloquium '96, pp. 217-227, Aug. 1996.

[4] M. G. Ceruti "Application of knowledge-base technology for problem
solving in information-systems integration," Proceedings of the Department
of Defense Database Colloquium '97, pp. 215-234, Sep. 1997.

[5] M. G. Ceruti, "A Review of Data Base System Terminology," Handbook of
Data Management, Chapter 1, pp.3-21, CRC Press, LLC, Boca Raton, 1998.

[6] M. G. Ceruti, M. N. Kamel, and B. M. Thuraisingham "Object-oriented
technology for integrating distributed heterogeneous database systems,"
Proceedings of the Department of Defense Database Colloquium '95,
pp. 79-98, Aug. 1995.

[7] P. Cooper, "GCCS gives allies unique data sharing powers," Defense News,
October 28,1996.

[8] R. T. Due, "Object technology essentials," Handbook of Data Management,
Chap. 14, pp.187-203, CRC Press, LLC, Boca Raton, 1998.

[9] M. A. Farrar, "Object-oriented technology for abstracting access to object-
oriented database systems and other heterogeneous sources," Proceedings of
the Department of Defense Database Colloquium '97, pp. 299-408, Sep. 1997.

[10] M. Frank, "Database and the Internet," DBMS Magazine, vol. 8, no. 13,
pp. 44-64,1995.

[11] J. N. Froscher, "Security information through a replicated architecture,"
Handbook of Data Management, Chap. 13, pp. 173-183, CRC Press, LLC,
Boca Raton, 1998.

[12] M. Hammer and D. McLeod, On Database Management System Architecture,
Tech. Rep. MIT/LCS/TM-141. Cambridge, MA, Massachusetts Institute of
Technology, 1979.

[13] M. Hammer and D. McLeod, "On database management system architecture,"
Infotech State of the Art Report ,vol. 8: Data Design. Pergamon Infotech
Limited, 1980.

[14] International Organization for Standardization & International
Electrotechnical Commission (ISO/IEC), Information Technology - Open
Systems Interconnection - Remote Database Access Part 1: Generic Model,
Service and Protocol (ISO/IEC 9579-1, 1993(E)), Geneva, Switzerland: ISO/IEC
Copyright Office, 1993.

[15] International Organization for Standardization & International
Electrotechnical Commission (ISO/IEC), Information Technology - Open
Systems Interconnection - Remote Database Access Part 2: SQL
Specialization. (ISO/IEC 9579-2,1993(E)), Geneva, Switzerland: ISO/IEC
Copyright Office 1993.

[16] R. Lawson, "Developing Web-based Internet applications with reusable
business components," Proceedings of the Department of Defense Database
Colloquium '96, pp. 503-520, Aug. 1996.

[17] J. McKee, "JMCIS: 'The big picture.' " Surface Warfare, vol. 20, no. 4,
pp. 10-11,1995.

[18] J. Melton, "ANSI SQL3 update." Database Programming and Design.
vol. 8, no. 11, pp. 61-63,1995.

[19] Object Management Group (OMG) & X/Open Company Limited, The
Common Object Request Broker: Architecture and Specification, Revision 1.1,
OMG Document Number 91.12.1 Revision 1.1, 1992.

[20] P. Piper, "Defense Information Infrastructure (DII) Shared Data
Environment (SHADE)," Proceedings of the Department of Defense
Database Colloquium '96, pp. 407-418, Aug. 1996.

[21] D. C. Reilly and J. A. Flemming, "Lessons learned in legacy data access,"
Proceedings of the Department of Defense Database Colloquium '95,
pp. 623-629, Aug. 1995.

[22] R. J. Richards, "Data sharing in future technology: COTS software vs. COTS
objects," Proceedings of the Department of Defense Database Colloquium '96,
pp. 573-585, Aug. 1996.

[23] A. P. Sheth and J. A. Larson, "Federated Database Systems for Managing
Distributed, Heterogeneous and Autonomous Databases", ACM Computing
Surveys, vol. 22, no. 3, pp. 183-236, Sep., 1990.

[24] U. S. Dept. of Commerce, National Institute of Standards & Technologies
(NIST), Federal Information Processing Standards Publication 193.
Gaithersburg, MD, 1995.

AUTHOR BIOGRAPH IES

Dr. Marion G. Ceruti
Space and Naval Warfare Systems Center

Code D4221,153560 Hull Street San Diego, CA 92152-5001
Tel. (619) 553-4068, DSN 553-4068, Fax (619) 553-5136,

INTERNET: ceruti@spawar.navy.mil

Dr. Ceruti is a scientist in the C4I Systems Engineering and Integration Group
of the Command and Intelligence Systems Division at the Space and Naval Warfare
Systems Center, San Diego (SSCSD). She received the Ph.D. degree in 1979 from the
University of California at Los Angeles, where she was awarded a research
fellowship from the International Business Machine Corporation. Her present
professional activities include information systems research and analysis for C4I
decision-support systems. Dr. Ceruti has served on the program committee and as
Government Point of Contact for all annual Database Colloquia since 1987. An
active member of AFCEA and several other scientific and professional
organizations, she is the author of numerous publications on various topics in
science and engineering, including information management. Dr. Ceruti has
received publication awards of merit and excellence from SSCSD and its predecessor.

Mr. Scott A. Gessay
FGM, Inc., 131 Eiden Street, Suite 108, Herndon, VA 22070

Tel. (703) 478-9881, Fax (703) 478-9883, INTERNET: scottg@fgm.com

Mr. Gessay is a senior systems architect and the CEO of FGM, Inc. with more
than 20 years of experience in large-scale software development for C4I projects. His
experience includes managing C2 software development efforts, requirements
analyses; system design; software, relational database, and user-interface design and
development; systems integration, testing, training, installation, and on-site
support. Mr. Gessay received his M. S. degree in electrical engineering, from the
George Washington University in 1988. He has participated in the development of
several major C4I systems including the JMCIS Ashore and GCCS.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arlington VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. '

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

September 1998

3. REPORT TYPE AND DATES COVERED

Professional Paper
4. TITLE AND SUBTITLE

White Paper on the Next-Generation Data-Access Architecture for Naval C4I Systems
5. FUNDING NUMBERS

In-house

6.AUTHOR(S)

Dr. M. G. Ceruti(l), and S. A. Gessay(2)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Center(1) FGM, Incorporated(2)
San Diego, CA 92152-5001 Herndon, VA 22070

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Naval Warfare Systems Command
San Diego, CA 92110-3127

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENTR

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Joint Maritime Command Information System (JMCIS), is the primary Command, Control, Communications,
Computers, and Intelligence (C4I) system for the maritime services. To promote efficient information access in this system,
the JMCIS Data Engineering Group formed a committee with a three-fold mission: to evaluate the state of new data-access
technology, methods and architectures; to explore the systems and software developed within the C4I sector that can use this
technology; and to recommend an architecture on which to base the framework of data-access methodologies into which
Naval C4I systems could evolve. The various technologies and approaches available for the next-generation data-access
methodology in Naval C4I were investigated, including an examination of both commercial-off-the-shelf technologies,
international standards, and general industry trends. The approach was to define the requirements, evaluate the available
technologies, and to compare them to one another. The option of combining technologies was explored. The findings of this
investigation are presented here.

Published in Proceedings of the Fifteenth Annual Federal Database Colloquium, "Combining Emerging Technologies for the
Information Systems of the Future," pp. 451-472, September 1998.

14. SUBJECT TERMS

Mission Area: Command, Control, and Communications
Common Object Request Broker Architecture (CORB A)
Global Command and Control System (GCCS)
Joint Maritime Command Information System (JMCIS)

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Same as Report
NSN 7540-01-280-5500 Standard form 298 (FRONT)

;

21a. NAME OF RESPONSIBLE INDIVIDUAL

Dr. M. G. Ceruti

21 b. TELEPHONE (include Area Code)

(619) 553-4068

21c. OFFICE SYMBOL

Code D4221

NSN 754001-280-5500 Standard lorm 298 (BACK)

