
>

A 1 t
• y
^\ k / ä\ b ■: M

enter for
oundations of
ntelligent
ystems

Technical Report
98-15

Normal Forms and Syntactic
Completeness Proofs for Functional

Independencies (final version)

D. WIJESEKERA, M. GANESH, J. SRIVASTAVA
AND A. NERODE

November 1998

CORNELL
UNIVERSITY

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

1 J ■ i .

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

1 March 1999
3. REPORT TYPE AND DATES COVERED

TftHNIC AL.

4. TITLE AND SUBTITLE

NORMAL FORMS AND SYNTACTIC COMPLETENESS PROOFS FOR
FUNCTIONAL INDEPENDENCIES (final version)

5. FUNDING NUMBERS

DAAH04-96-1-0341

6. AUTHOR(S)
D. WIJESEKERA, M. GANESH, J. SRIVASTAVA, and

A. NERODE
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We prove normal form theorems of a complete axiom system for the inference of functional
dependencies and independencies in relational databases. We also show that all proofs in our
system have a normal form where the application of independency rules is limited to three levels.
Our normal form results in a faster proof-search engine in deriving consequences of functional
independencies. As a result, we get a new construction of an Armstrong relation for a given set
of functional dependencies. It is also shown that an Armstrong relation for a set of functional
dependencies and independencies do not exist in general, and this generalizes the same result
valid under the closed-world assumption.

14. SUBJECT TERMS

completeness proofs, data mining, functional dependencies,
integrity constraints

15. NUMBER OF PAGES

42
16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

PTCC QUALITY INSPECTED 4

Technical Report
98-15

Normal Forms and Syntactic
Completeness Proofs for Functional

Independencies (final version)

D. WIJESEKERA, M. GANESH, J. SRIVASTAVA

AND A. NERODE

November 1998

Normal Forms and Syntactic Completeness Proofs
for

Functional Independencies

Duminda Wijesekera1, M. Ganesh2, Jaideep Srivastava3 and Anil Nerode4

Honeywell Space Systems, Clearwater, FL1

Lawrence Livermore National Laboratory, Livermore, CA2

Dept. of Computer Science, Univ. of Minnesota Minneapolis, MN 554553

Dept. of Mathematics, Cornell University, Ithaca, NY 148534

e-mail: {wijesek|ganesh|srivasta}@cs.umn.edu, anil@math.cornell.edu

Abstract

We prove normal form theorems of a complete axiom system for the inference of functional
dependencies and independencies in relational databases. We also show that all proofs in our
system have a normal form where the application of independency rules is limited to three levels.
Our normal form results in a faster proof-search engine in deriving consequences of functional
independencies. As a result, we get a new construction of an Armstrong relation for a given set
of functional dependencies. It is also shown that an Armstrong relation for a set of functional
dependencies and independencies do not exist in general, and this generalizes the same result
valid under the closed-world assumption.

Keywords: Completeness Proofs, Data Mining, Functional Dependencies, Integrity Con-
straints

This work is supported by Air Force contract number F30602-96-C-0130 to Honeywell Inc, via subcontract number

B09030541/AF to the University of Minnesota, and DOD MURI grant DAAH04-96-10341 to Cornell University

1

1 Introduction

Databases have proven to be a very useful tool for the storage, retrieval, and manipulation of data
in an organized, and systematic fashion. Commercial database systems have matured over the
years and have been successfully utilized in various business and scientific applications, resulting
in a multi-billion dollar industry [Gra95, Yan95]. Although newer and later developments have
an object-oriented flavor to varying degrees, the basic framework of databases were developed
on relational technology [Cod70]. At the heart of this successful paradigm are two simple but
overwhelmingly strong abstractions of storing data in tables and a non-procedural language to
query such tables.

Additional constraints that need to be imposed between data tables or between attribute values
of the same table have to be imposed by specifying extra conditions. Functional dependencies, which
are constraints between values of sets of attributes in a data table is the focus of this paper. A set
of attributes Y is said to be functionally dependent on a set of attributes X (denoted X -*■ V) if
any two rows that have the same values for attributes in X, also have the same values for attributes
in Y. Data dependencies of various kinds were defined and investigated as a means of specifying
and enforcing known relationships between entities in a database. Relations in which given types
of dependencies hold among entities result in particular normal forms [BBG78], thereby making
cleaner and more modular data tables. The modularity is necessary to maintain proper semantics
during insert, delete and update operations [Var88]. There are algorithms that automatically
produce normalized designs of logical data models from specifications of dependencies that exist
between attributes in a relation [U1188].

In addition to enforcing semantic constraints, functional dependencies have many other uses
such as in semantic query optimization [Bel96, Dec87], data cleansing, where the nature of schema
can be used to identify invalid entries and correct some erroneous entries, in schema integration,
in database restructuring [CAdS84, MR94, MR92a], and in knowledge categorization [PS92]. The
publication [MR94] lists other applications of functional dependencies.

If functional dependencies are known at schema design time, they can be used in the design
process itself. Conversely, over the years there has been a lot of collected data, without apriori
knowledge about their dependencies, requiring the need to mine for functional dependencies from
attribute values in databases. In process of mining for dependencies the search for dependencies
holding in the given state of the database can be enhanced by accounting for logical consequences
of already mined ones, thereby using the well known inference rules for functional dependencies,
commonly referred to as Armstrong's axioms [Arm74], which we shall refer to as Armstrong's Rules.

Algorithms that mine for functional dependencies such as [Bel95a, Jan88] use Armstrong's rules
in the stated way. In such algorithms once a functional dependency is known to fail, it is equally
expedient to weed out other potential functional dependencies that would imply the invalid one.
For this explicit purpose Functional Independencies were proposed in [Jan88]. Hence, eliminating
mining for consequences of learned dependencies and independencies is facilitated by finding a set of
rules to infer new dependencies and independencies from already discovered ones, and consequently
a complete axiomatization of functional dependencies and independencies merit interest.

In this respect, Janas [Jan88] presented an axiomatization for both functional dependencies and
independencies, which was argued to be incomplete by Bell [Bel95a, Bel95b]. We find some of the
arguments presented in these two publications incomplete and inaccurate, and this paper remedies
those defects.

Consequently, this paper provides a syntactic completeness proof of a complete axiomatization
of functional dependencies and independencies. In the process we show that all proofs in our system
have normal forms. The existence of normal forms can be exploited by a proof execution engine in

two different ways. Firstly, the structure of proofs that we look for is restricted. Secondly, we need
not search for any non-normal proofs, and that results in considerable savings in time.

1.1 Independencies and Excluded Dependencies

Simultaneously with the work of Janas [Jan88] there has been work done in excluded function
dependencies (XFD's) [Tha88, GL90]. Both these papers use excluded functional dependencies
(XFD's) to refer to functional dependencies that are not valid in any given instance of a database,
but the notions of completeness used in them are remarkably different. In [GL90], a set A of
XFD's are said to be complete if there is a database instance in which A constitute the set of all
invalid dependencies. Using the closed world assumption they show how to construct an Armstrong
relation from a complete set of XFD's. Conversely, the notion of completeness given in [Tha88]
is the same as ours, and using the deduction theorem for closed formulae, it shows an equivalent
system is complete for functional dependencies and independencies.

1.2 Related Work

Dependency theory has a long and rich history as been summerized in [FV86, Var88, Kan90]
In addition to developing diverse notions of data dependencies, these works also addressed the
issues of equivalence and relationships between them. In the field of dependency mining there are
fewer works. Although this article does not deal directly with dependency mining, it is the main
beneficiary of our work and hence we summerize some of the related works.

Mining for functional dependencies can be reduced to a computing a small cover (a set of
deductively equivalent set of functional dependencies holding in a database state [Mai83]). The
work reported in [MR87] provides an efficient algorithm to compute a small cover by considering
possible counter examples for assumed functional dependencies (called disagree sets in [MR87]). and
complexity bound of finding a small covers are given in [MR92b]. [BMT89] shows that for relations
of modest sizes the algorithms presented in literature for dependency mining accomplish their task
in reasonable time, thereby showing that tools such as [BMR85] that use such algorithms run with
acceptable performance. [SF96] also address the problem of mining for functional dependencies from
relations by constructing positive and negative covers. They maintain a set of possible dependencies
and independencies in the potential positive and negative covers. They express the need to use,
but do not use inference rules to expedite the process of constructing positive and negative covers.
Work reported in [MR94] presents algorithms to extract functional dependencies from relations
that uses optimizations other than the usage of inference rules.

1.3 Summary of Work

We show that Janas' axiomatization [Jan88] is incomplete with respect to functional dependencies
and independencies and that a variant of Bell's axiomatization [Bel95b] in conjunction with the
Armstrong's Rules is complete. These new axioms are called the FI Axioms, referring to the
fact that they are axioms for functional independencies. Our approach follows the proof-theoretic
tradition [Tak91] in mathematical logic.

In Section 2, we present the notations used and review appropriate concepts from logic. In
Section 3 we describe various proof-theoretic properties of the FI axiom system to show soundness
and completeness. In Section 4, we show that Janas' system is incomplete with respect to deriving
functional dependencies and independencies. Departing from standard practice in dependency
theory, in Section 5 we prove that every proof that uses FI axioms can be transformed into a proof
in normal form. In Section 6, we derive the consequences of the normal form theorem to prove

completeness. Some of the more detailed auxiliary results in this section are proved in detail in
the appendix. In Section 7, we show that the FI axioms are complete for functional dependencies
and independencies. In our approach, we develop consistency properties to create models and then
show that a failed attempt to derive a functional independency produces a complete consistency
property. In Section 8 we show the connection between Armstrong relations and our construction
of counter models.

One of the advantages of our approach is that, in addition to giving direct proof-theoretic
justifications of syntactic results, we also state and prove a normalization theorem. The important
property of this normal form is that the application of independency axioms are limited to three
levels and are in a specific order. This fact can be utilized when searching for derived independencies
in that, one need only look for proofs that satisfy these conditions. Hence the running time of the
proof-search procedures are reduced significantly.

2 Syntax, Semantics and Proof Rules

This section contains basic terminology used to formulate and prove the completeness theorem for
functional independencies.

2.1 Syntax

Our syntax consists of the following components:

1. U is the set of all attributes.

2. Subsets of attributes (i.e., subsets of U) are denoted by upper case letters (possibly sub-
scripted). Union of subsets X and Y is denoted by XY.

3. Attribute values are denoted by lower case letters (possibly subscripted) of corresponding
attribute sets.

4. Two connectives —»• and y^ denote respectively dependencies and independencies, and the
connective C denotes subset relationship between sets of attributes.

5. Sentences of the form (X -» Y) and (X -fi- Y), and (X C Y) where X and Y are sets of
attributes as given in 2.

2.2 Semantics

A model to interpret our syntax consist of a data table that has all elements of U as attributes.
For the purposes of this work, we assume that the database consists of a universal relation (i.e. all
data tables in a database as one data table). Rows i and j are respectively denoted by U and tj.
The values of attributes corresponding to the attribute set A in row tj is denoted by t{[A].

Definition 1 (Satisfaction) Let T be a model and A, B be sets of attributes. Then:

1. We say a data table (model) T satisfies functional dependency (A -» B) (Notation: T (=
(A -> B)) [EN94], if for all rows i and j ofT ift{[A] = tj[A], then U[B] = tj[B].

2. We say a data table (model) T satisfies functional independency, (A -fa B) (Notation: T f=
(A -ft B)) ifT\£{A-* B), i.e there are two rows i and j of T with ti[A] = tj[A] and
ti[B]^ti[B].

2.3 Rules of Inference

Rules of inference popularly know as Armstrong's axioms [EN94] are used to derive functional
dependencies as listed below. Keeping with the spirit of this terminology we denote other rules of
inferences by the description Axioms.
Armstrong's Rules (Axioms)

Reflexivity UXCY then Y -» X FD\

Augmentation wcv X-+Y FD2
XV ^YW

Transitivity X^Y Y^Z FD3
x->z

Armstrong's Rules have been shown to be complete for functional dependencies [U1188, Mai83].
In order to compute the set of valid functional dependencies in a given data table, the concept

of functional independency was proposed. Analogous to Armstrong's Rules, Janas proposed an
axiomatization [Jan88] as given below.
Janas' Rules

X-frY J\
X-frYZ

XZ-frYZ J2
XZ-frY

X^Y X-frZ J3
Y -frZ

The above axiomatization was claimed to be incomplete by Bell [Bel95a, Bel95b]. However
no satisfactory proof was provided. In addition, Bell proposed the following axiomatization for
functional independencies.
Bell's Rules

WCV V-/>YW 51

m

 m
X-/*Y

Following Bell's work we propose the following axiomatization, which in the presence of Arm-
strong's rules is equivalent (i.e. has the same set of theorems) as that of Bell's. The only difference
between our rules and those of Bell's are that we have replaced 51 with FR, where the set in-
clusion in the antecedent has been replaced by a dependency. The reason for this change, which
will become clear in Section 5, is to have a dependency instead of set inclusion so as to lend proof
method to a more syntactic analysis.
FI Rules (Rules for Functional Independency Inference)

V -frY

x->-y X-frZ
Y-frZ

Y^Z X-frZ

V-*W V A YW FR

FF2

V-/*Y

X^Y X-frZ
Y -frZ

Y^Z X-frZ FU
X-frY

By constructing appropriate consistency properties for proof rules (eg. [Fit83]), we prove that
the last axiomatization is complete for functional independencies.

2.4 Equivalence of Bell's and FI Systems

The only difference between proof rules we use and those proposed by Bell [Bel95a, Bel95b] is that
the antecedent WC.Vm.Bl has been replaced by (V -¥ W) in the antecedent of FR. In this
section we show that 51 and FR are equivalent in the presence of Armstrong's rules. In order to
so we prove FR using B\ and vice-versa.
Proving FJ1 using 51, £3 and FD2

V-*W FD2
VY^WY V-/>YW 53

VCV V -frVY 51
V-frY

Proving Bl using JF71

W C V FDl
W V -f> YW FR

V-frY

3 Proof-Theoretic Properties

We first prove some structural theorems about proofs. In these proofs, we use notation from proof
theory, such as threads in proofs, proof fragments and equivalence of proof fragments, etc. We
provide the basic definitions here and refer the reader to a standard textbook in proof theory such
as [Tak91] for further details. We do so because our proofs are proof-theoretic in nature, as opposed
to model-theoretic proof provided by Bell. Hence we redefine some terminology to better suit our
proofs. Throughout we use S as a set of dependencies and £' as a set of independencies.

3.1 Notation from Logic

Definition 2 (Rule) A rule (of inference) is an expression of the form §: or of the form Qjß2-,
where S, S\, S2 andT are sentences. In these rules, S, S\ and S2 are respectively called antecedents
and T is called the consequent.

Definition 3 (Proof) A proof [Tak91] P is a tree of sentences satisfying the condition that every
non-leaf node and its children constitutes an instance of an inference rule.

Throughout this paper we use S and E' for sets of dependency and independency sentences
respectively.

Following customary nomenclature, the sentences at the leaves of a proof P are called the
assumptions of P and the sentence at the root in a proof P is called the conclusion of P. Also,
following our convention, suppose E and E' are respectively sets of functional dependencies and
independencies. Then, we say that a sentence ip is a logical consequence of set of sentences SUE'
if there is a proof of ip where the assumptions are taken from the set E U E', and where the rules
of inference are drawn from the FI system. Then we also say that ip is a logical consequence of of
EuE'. We use the notation EuE' h ip to indicate so. We also write Cn(EuE') for the set of logical
consequences of SUE', i.e. Cn(EUE') = {ip : E U E' h ip}. Also, proof that uses only Armstrong's
rules (i.e. FD1, FD2 and FD3) is called a FD-proof and one which involves the FI rules (i.e. FR,
FR and FR) is called an independency proof. We use E \~FD ip to indicate that there is a proof
of ip using assumptions from E with rules of inferences drawn from Armstrong's system. Similarly
E' hj ip to indicate that there is a proof of ip using assumptions from E' using independency rules.
Similarly, E U E' h janas ip indicates that there is a proof of ip with assumptions drawn from E U E'
using rules of Janas' system.

Definition 4 (Threads in Proofs) A sequence of sentences is called a thread [Tak91] if :

• It begins with an assumption and ends with the conclusion and

• All sentence in the sequence except the last is an antecedent of an inference rule and it is
immediately followed by the consequent of the same inference rule.

Definition 5 (Fragment of a Proof) A part of a proof which itself is a proof is called a fragment
of a proof (sometimes called a subproof [Tdk91]).

3.2 Domain Specific Results

Notice that our proof system is stated as a natural deduction system [Pra65] with two connectives,
-> and -ft. In this section we prove many proof-theoretic results that would reveal the nature of
deductions (i.e. proofs) in our system and eventually lead us to the proof of the completeness
theorem. Some of the results proved have appeared in [Bel95b, Bel95a], but with a very different
flavor of proofs. Some proofs given in [Bel95b] and [Bel95a] are inaccurate, unjustified, or lemmas
used in them are unproved and non-trivial. Specifically they are as follows: In Lemma 1 of [Bel95b],
it is claimed that a partially filled table can be completed without affecting E because a set of
dependencies and independencies E U E' is consistent. Consistency as defined in this paper says
that there is some data table that satisfies E U E', and not that a partially filled up table can be
completed. Furthermore, Corollary 1 (presumably to Lemma 1) is stated without a proof, and we
do not see it is a corollary to any lemma proved up to the statement. We prove this corollary by
syntactic means. In Lemma 4, where the incompleteness of Janas system is shown, at one step it
is claimed that Jl and J2 could not have been applied, and we do not see any trivial justification.
In Theorem 2 (Completeness of Bell's system) it is not clear that the case analysis is exhaustive.
To avoid such problems, we provide all necessary proofs in complete detail.

We begin by first showing that the addition of independencies does not affect the derivable
dependencies, in the following lemma.

Definition 6 (Dependency Property) We say that a proof system A has the Dependency prop-
erty i/SUS' hA (X -> Y), then E \-FD (X -> Y).

Lemma 1 (Dependence Property of FI) 7/SUE'l-(I->y) then S \-FD (X -> Y)

Proof: By induction on the height of the proof tree of (X ->■ Y)

Suppose that 2 U E' h (X -> Y). Then consider the proof t of (X ->• Y) from S U £' with
the minimal height. Notice that the only proof rules that have -> as the main connective in the
consequent could have been used in t as the last step. Hence, they have to be one of Armstrong's
rules, FD 1, FD 2 or FD3.

Case 1. The last rule used to deduce (X -> Y) is either FD 1 or FD 2.

Then t is of the form:

Q
X^Y

Thus, (P'XQ) is a proof of (P -)• Q) from SUE' with a length shorter than that of t. Hence,

by the inductive assumption, there is a proof t\ of (P -> Q) from S. Hence, UXY) *
S

a Pr0°f OI"

{X -> 7) from S.

Case 2. The last rule used to deduce (X -)• Y) is FD 3.

Then t is of the form:

h h
P\ -» Qi P2 -» Q2 FD3

Consequently, by an argument similar to Case 1, there are proofs t[and t'2 respectively of
(Pi -» Q\) and (P2 -*• Q2) from S. Hence, the following is a proof of (X -► Y) from S:

n *2_

At the heart of all our arguments is the simple but powerful fact that every proof in this system
has a unique proof thread in which the major connective is ■/¥.

Definition 7 (Independency Thread and Single Independency Thread Property) •
A proof thread in which the connective at every step is -/* is said to be an independency thread.

• If a proof that has a unique independency thread is said to have the single independency thread
property.

Lemma 2 (Single Independency Thread Property of FI) Every FI proof has at most one
independency thread. If the conclusion is an independency then it has an independency thread,
otherwise it does not have any.

Proof: (By induction on the height of the proof tree)
Suppose t is a proof tree with the least height, of ip from SUE', where ip is either a functional
independency or a functional dependency.

Case 1. t/) is of the form (X ft Y)
We show by induction on the height of t that there is exactly one thread where the main connective
is ft.

In this case, proof rules that could have been used in the last step are FI1, FI1 or FB. Then
t is of the following form:

W PftQ FT2
X-ftY

Consequently, by the inductive argument, (pXo\ tna* nas (P A Q) as ^e conclusion and a
smaller height has a single thread of independencies. Hence t has a single thread of independencies;
namely the thread that extends the thread in ipXo) by adding (X ft Y) to its bottom.

Case 2. ip is of the form (X ->■ Y)
In this case, we show that ft does not appear in the proof tree.

In this case, because the main connective of the conclusion is ->, only Armstrong's axioms (i.e.
FD1, FD2 or FD3) could have been applied at the last step of the proof. If the last rule applied is
either FD\ or FD2, then t is of the following form:

Q

Then, by the inductive hypothesis ft does not appear in /P%Q\ ■
Suppose the last rule used is FD3, then t is of the following form:

*1 *2
Qi P2 -> Qi FD3

X^Y

Hence, by the inductive hypothesis, ■/¥ does not appear in either /P.%Q.) for i = 1,2. ■

Corollary 1 (Independence Property: Corollary to Lemma 2) Let S be a set of functional
dependencies and S' be a set of functional independencies. If S U S' t- (X •/* Y) then there are
some R, S such that (R ■/> S) and S U {{R ■/> S)} r- {X -ft Y).

Proof:
Suppose t is a proof of (X -ft Y) from S U S'. Then, by Lemma 2, t has a unique independency
thread. Let (R -ft S) be at the head of this independency thread. Then, (R -ft S) is the only
functional independency that is being used as an assumption in t. Hence t is a proof of (X -ft Y)
from SU{(fl> S)}. m

4 Incompleteness of Janas' System

In this section, using proof-theoretic arguments we show that proof rules of Janas are incomplete
for functional independencies. In particular, as stated by Bell [Bel95a, Bel95b], we show that the
following proof rule is sound, but cannot be derived in Janas' rule system.

X^Y Z-frY
Z-frX

In order to justify our claim, we need some properties about Janas' system, which are in the
following lemmas.

Lemma 3 1. The following proof rule is sound.

X-+Y Z-frY
Z-frX

2. Janas' system has the single independency thread property.

3. It has the dependence property.

Proof:
For the proof of (1), which is a rather trivial fact, see [Bel95b], and [Bel95a]. Proof of (2) and (3)
are similar to the corresponding proofs in our FI system.
■

Lemma 4 (Incompleteness of Janas' Proof System) The following proof rule cannot be de-
rived in Janas' system of rules.

X^Y Z -frY F3
Z-frX

Proof: This can be easily seen semantically. A detailed syntactic proof appears in the appendix.

5 Normal Forms for Proofs

In this section, we prove a normal form theorem for proofs in our system. We show that every
proof in our system is equivalent to one in which there are at most three applications of FI axioms
in the order F73, FR, FI2.

Towards this end we need some auxiliary facts, which are summarized below.

• Repeated applications of any independency rule can be replaced by a single application of
the same rule.

• The order of F12 and FI3 can be interchanged.

• The order of applications of independency rules FR, FR or FR, FR can be reversed, but not
vice-versa.

Section 5.1 is devoted to precise statements of these facts, which are proved in the appendix.

10

5.1 Auxiliary Facts

Lemma 5 (Proof Rule Merging) The following facts hold about repeated applications of proof
rules.

1. A sequence of successive applications of ¥11 is equivalent to a single application of ¥11, i.e.
given a proof t where the single independency thread has a sequence of applications of ¥11, is
equivalent to a proof that has a single application of ¥11.

2. A sequence of successive applications of ¥12 is equivalent to a single application of ¥12, i.e.
given a proof t where the single independency thread has a sequence of applications of ¥12 is
equivalent to a proof that has a single application of ¥12.

3. A sequence of successive applications of ¥13 is equivalent to a single application of ¥13, i.e.
given a proof t where the single independency thread has a sequence of applications of ¥13 is
equivalent to a proof that has a single application of ¥13.

Proof:
See Appendix A. ■

Lemma 6 (Proof Rule Interchangeability) The following facts hold about the interchangeabil-
ity of inference rules in FI proofs.

• For every proof fragment in which ¥13 is applied immediately after ¥12, there is an equivalent
proof fragment in which ¥12 is applied after ¥13.

• The following hold for the reversal of application orders of rules ¥11, ¥12 and ¥13.

1. For every proof fragment in which ¥11 is applied immediately after ¥12, there is an
equivalent proof fragment in which ¥12 is applied after ¥11.

2. For every proof fragment in which ¥13 is applied immediately after ¥11, there is an
equivalent proof fragment in which ¥11 is applied after ¥13.

Proof:
See Appendix A. ■

Using Lemmas 5 and 6, we show that every proof in our system can be reduced to a normal
form. In this normal form, every proof has at most three applications of functional independency
rules, and furthermore they are applied in the order FI 3, FI 1 and FI 2. Accordingly, we define
normal forms for proofs.

5.2 Proof of the Normal Form Theorem

In this section we state and prove the normal form theorem.

Definition 8 (Normal Form) A proof is said to be in Normal Form if and only if its unique
independency thread has atmost three applications of independency rules in the order FI 3, FI 1,
FI 2, if they do appear at all.

11

Now, we show a weak normalization theorem, namely that every proof in in our system has
a normal form. The proof of the normal form theorem, while syntactic in nature, consists of
three main steps. In the first step, we use the lemma 5, and reduce successive applications of the
same independency rule to a single application of the rule, resulting in a proof without successive
applications of the same rule. This lets us visualize the independency thread as consisting of
a sequence of blocks where each block begins by an application of FR , and is followed by an
application of either FR or FR, followed by the other rule. Then we show that interchangeability
lemmas can be used to reduce such a proof segment to the order FR, FR, FI2. Lastly, we show
that any two successive blocks can be reduced to a single block.

Definition 9 (Block) A fragment of a proof is said to be a block if it has an independency thread
in which either:

• There are at most three applications of distinct independency rules, of which the first one is
FI1, and the other two are applications of distinct independency rules FI2 and FIS in any
order.

• Or there are at most two applications of distinct independency rules FI2 and FI3 in any order.

Definition 10 (Normal Block) A fragment of a proof is said to be a normal block if it is a block
in which the independency rules are applied in the order FIS, FI1, FI2.

Lemma 7 (Blocking of Proofs) Suppose EUE' h (X -ft Y). Then there is a proof t of{X -ft Y)
in which the unique independency thread consists of a sequence of blocks, of which only the first
block (i.e. the block at the top of the independency thread) may miss an application ofFll.

Proof:
Suppose SuS'h(X^y). Then there is a proofs of (X -ft Y) from SUE'. By applying lemma 5
to ti, we obtain a proof t-i of (X -ft Y) from SUE', that does not contain successive applications
of FR, FI2 or FR.

Then, define the blocks in ti as the proof segments starting with any application of FR and
extending up to, but excluding the next application of FR along the unique independency thread.
If the first rule of application is not FR, then the first block may contain FR, and/or FR in any
order. ■

Lemma 8 (Block Normalization) For every block there is an equivalent normal block.

Proof:
Suppose b is a block. Then, by definition, the unique independency thread of b does not have an
application of FR, in which case (if need be) Lemma 6 can be used interchange the application
order of rules FR and FR to make it a normal block, or it has an application of FR at the top of
the independency thread, i.e. at the beginning of the independency thread.

If the first rule of application in the independency thread is FR, and the order of application
of other rules is FR, FR, then by Lemma 6, there is an equivalent proof fragment &i where the
rules are applied in the order FR, FR, FR. Then, by Lemma 6 there is an equivalent normal block
°normah ■

12

Lemma 9 (Normal Block Merging) A sequence of two normal blocks can be reduced to a nor-
mal block.

Proof:
Suppose a proof fragment t consists of two successive normal blocks a and b. Let the blocks a
and b both have the application of all three independency rules Fi3, FH and FT1, respectively
denoted as 03,01,02 and 63,61,62- By using the interchangeability lemmas and merging they can
be transformed into a proof in normal form, as given below.

1. Apply Lemma 6 to get a proof segment in which the order is 03, ai, 63,02,61,62.

2. Apply Lemma 6 to get a proof segment in which the order is 03,63,01,02,61,62.

3. Apply Lemma 6 to get a proof segment in which the order is 03,63, ai, 61,02,62.

4. Apply Lemma 5 to respectively merge successive applications of rules F71, FR and FR in
03) 63, ai, 61, and 02,62 to a single application of respective proof rules.

In the cases of degenerate blocks, i.e., where application of one or two independency rules are
missing, we can still apply the same procedure to group application of similar rules together. Some
steps in the process will have become redundant because of the absence of some of the independency
rule applications. The details are given in the appendix. ■

Theorem 1 (Normal Form Theorem for Proofs) Suppose S U S' h (X ■/> Y). Then there is
a normal form proof of (X -/* Y) from S U S'.

Proof:
Suppose t is a proof of (X -ft Y) from £ U S'. Then:

1. Apply transformations given in the Lemma 7 to obtain a proof t\ in which the independency
thread consists of blocks.

2. Apply transformations given in the Lemma 8 to every block in t\ to obtain an equivalent
proof *2 in which every successive block is a normal block.

3. Inductively apply the transformation given in Lemma 9 to blocks of <2 to obtain an equivalent
proof <3, which consists of a single block.

5.3 Proof-Theoretic Properties of Functional Dependencies

In this section, we show some proof-theoretic properties that are used in constructing Armstrong
relations.

Lemma 10 (Merging Lemma for Functional Dependencies) Successive applications of the
Augmentation Rule (i.e. ¥D2) is equivalent to a single application ofFD2; i.e., given a proof t in
which there are two successive applications of FD2 on a proof thread, they can be replaced with a
single application of FD 2.

Proof:
See Appendix A.

13

Lemma 11 (Interchange Lemma for Functional Dependencies) Any proof fragment in which
the order of application is FD5, FD2 can be replaced by a proof fragment in which the order of ap-
plication is FD2, FD3.

Proof:
See Appendix A.

The results in Lemmas 11 and 10 can be combined to show that all proofs for FD's can be
transformed in to a standard form called semi-normal form.

Definition 11 (Semi-Normal Form for Functional Dependency Proofs) We say that a proof
t of a functional dependency is in semi-normal form if it satisfies the following properties.

• The application ofFT>2 in t is limited to once per proof thread in t.

• If FD2 is applied in a proof thread in t, then it is applied to the top sequent of the thread.

We now show that every proof in FD has a semi-normal form.

Theorem 2 (Semi-Normal Form Theorem for FD Proofs) Any proof of a functional depen-
dency (X -»• Y) can be transformed to a proof in semi-normal form.

Proof:
By applying Lemma 10, successive applications of FD2 can be replaced by a single application of
FD2, and by applying Lemma 11, applications of FD2 can be pushed upto the top sequents of proof
threads. ■

In the next theorem we show that for any proof in which any given dependency X —> Y appears
more than once as an assumption can be replaced with an equivalent proof in which it appears only
once as an assumption. To prove this result, the following definition is in order.

Definition 12 (Transitive Envelope of a FD Proof Tree) Consider a FD proof t in semi-
normal form. Suppose Ti,... ,rn is a left-to-right listing of all proof threads oft. Then a listing
(Xi —► Yi),...,(Xn -¥ Yn) of functional dependencies satisfying the following properties is called
the transitive envelope oft.

• (X{ -¥ Yi) is on Ti for all i < n. Suppose the position at which (Xi -» Yi) appears in Tj is ji.

• 7,- is the farthest position from the conclusion of t where there are no application of FD2
between 7,- and the conclusion of t.

The following definition states properties of transitive envelopes, which are needed in later
proofs.

Definition 13 (Chains of Dependencies) A listing of dependencies of the form (X -> Xi), (Xx ->•
X2),.. - (Xn -*Y) is said to be a chain of dependencies. We say that X is the head and Y is the
tail of the chain.

The next theorem proves an important property of a transitive envelope of a FD proof tree.

Theorem 3 (Structural Property of Transitive Envelopes) Suppose t is a semi-normal form
proof of (X -»• Y) and T is the transitive envelope oft. IfT is non-null, then it is a chain with
head X and tail Y; i.e. (X\ -» X2),... (Xn -» Xn+i) where X is Xx and Y is Xn+1.

14

Proof:
See Appendix A. ■

As Theorem 3 states, the transitive envelope of a FD proof is a chain. The next theorem shows
that repeated assumptions in this chain can be removed, i.e. that cycles can be removed.

Theorem 4 (Repetition Removal from Transitive Envelopes) Every proof t of a functional
dependency (X -f Y) in which the transitive envelope T has a repetition of some functional de-
pendency (A -»• B), can be reduced to a proof t' in which (A -¥ B) is not repeated in its transitive
envelope.

Proof:
See Appendix A. ■

In the next theorem we show that proofs in FD can be reduced to a form where assumptions
that are functional dependencies are used atmost once. In order to prove it, we need the following
lemmas.

Lemma 12 (Some Useful Proof fragments) Following are auxiliary facts.

1. There is a FD proof of {Y -* WY) from assumptions (Y -»• A), {A -> XV) and W C V.

2. There is a proof of (YV ->• YB) from assumptions W C V, (YW -» XA) and B C A.

Proof:
See Appendix A.

The results such Lemma 12 state some obvious monotonicity facts about -> and -fr with respect
toC.

Lemma 13 (Fusing FD Proofs) Suppose ti,...tn is a sequence of proofs that have respectively,
(Ai —»■ A2),..., (An —> An+i) as their conclusions; then there is a proof of {A\ -¥ An+i) that has
the same assumptions as those oft\,...tn.

Proof:
By applying FD3 repeatedly, we can create a proof of {A\ -¥ An+i) from the chain {A\ -¥
An),... (An —t An+i). By fusing the proof trees t{ — 1 on top of (A, —> Aj+i) for all 2 < i < n, we
get the desired result. ■

Now, we use lemma 12 to generalize Theorem 4.

Theorem 5 (Repetition Removal from Assumptions) For every proof t of (E -> F) in FD
and every assumption (X —¥ Y) used in t, there is an equivalent proof tf in which the assumption
(X -> Y) is used at most once.

Proof:
See Appendix A. ■

15

5.4 Proof Inversions

In this section, we show that proofs that assert a functional dependency can be constructively
transformed into proofs that assert functional independencies, and vice versa. Specifically, we show
that if £U{Z ybY}\-(P -f>Q) then £U{P _> Q) \- (X -> Y) and vice versa. This fact is later
used in the proof of the completeness theorem. The results contained in this section seemed trivial
from semantic consideration. They are stated for the sake of completeness sake and to show that
the syntactic method used throughout this paper is capable of showing all necessary facts.

Definition 14 (Inverse Fragments) Consider the following proof fragments.

h h
FD3 1. X->Y Y^Z

X^Z

t\
2. X^Y X-frZ

Y -frZ

t2
3. Y -+Z X-frZ

X-frY

, ADB X-+Y

FI2

FI3

FD2
AX^BY

ADB
AX -+B AX-frBY ¥11

AX ^X AX-frY FI2

7.

t

X-frY

V-+W V-frYW ¥11
V-frY

t
vcv V^W ¥D2 WCW V-+Y ¥D2

V->VW VW->YW FD5
V^YW

In these proof fragments, (2) and (3) are said to be respectively the left and the right inverse
of (1), and conversely (1) is said to be the inverse of (2) and (3). Similarly, (4) and (5) are
said to be inverses of each other and (6) and (7) are said to be the inverses of each other.

We denote the inverse of proof fragment, left inverse and right inverse proof fragment of f
respectively as f~l, f£l and f^1.

Now we show the following properties about inverse fragments.

Lemma 14 (Properties of Inverse Fragments) The proof fragments listed in Definition 14
have the property that if the fragment prove (P -* Q) from (X ->■ Y), possibly using t\, then its
inverse fragment (if applicable, left and right inverses) proves (X ■/* Y) from (P -fr Q) (the inverse

16

uses ti if the original fragment used t\). Conversely, if a proof fragment listed in Definition 14
proves (P ft Q) from (X ft Y) using the assumption t\, then its inverse proves (X -> Y) from
(P -> Q) using the assumption t\.

Proof:

The fragments and their inverses (left and right, if applicable) are listed in Definition 14, with
the corresponding proof rules used to justify the fragment. ■

Definition 15 Suppose t is a proof in FD and 7 is a thread in t where the topmost sequent of'y is a
functional dependency, say (X -> Y). Then define the 7 inverse oft (Notation t~l(i)) inductively
as follows.
Base Case:
Suppose t consist of only (X -t Y). Then define <-1(7) as (X -ft Y).
Inductive Case:
Let t' be the proof that uses the consequent of the first application of a proof rule to (X —»■ V) as its
assumption. Let Y be the proof thread in t' that is obtained by removing the first sequent from 7.

• Suppose the first proof rule applied on 7 is FD2, and let f be the proof fragment that constitute
the application ofFD2, say B

2X-^EY • Vf constitutes all oft, then define t~l(-y) as f~l.

Otherwise, define i_1(7) as the proof obtained by fusing the consequent of ^~l(^f) to the
assumption that is the only functional independency in f~l. The next theorem shows that
this functional independency is (AX ft BY), so that they can be fused, and the resulting tree
constitutes a valid proof.

• Suppose the first proof rule applied on 7 is FD5, and that (X ->■ Y) is the left antecedent of
that application o/FD5. Let f be the proof fragment corresponding to this application. If f
constitutes all oft, then define <-1(7) as f£l.

Otherwise, define t_1 (7) to be the proof obtained by fusing the consequent of i'-1 (Y) to the
assumption that is the only functional independency in f£l, say (Aft B). The next theorem
shows that 1?~l (Y) proves (Aft B), so that they can be fused, and the resulting tree constitutes
a valid proof.

• Suppose the first proof rule applied on 7 is FD5, and that (X ->• Y) is the right antecedent of
that application of FD5. Let f be the proof fragment corresponding to this application. If f
constitutes all oft, then define i-1(7) as f^1.

Otherwise, define £-1(7) to be the proof obtained by fusing the consequent o/i/-1(Y) to the
assumption that is the only functional independency in fjj1, say (Aft B). The next theorem
show that t'~1(Y) proves (Aft B), so that they can be fused, and the resulting tree constitutes
a valid proof.

Let t be a proof in which functional independency (X ft Y) is at the top of the unique indepen-
dency thread. Then define the inverse oft (Notation t~x) inductively as follows.

Base Case:
Suppose t consist of only (X ft Y). Then define t~l as (X ->• Y).

17

Inductive Case:
Let t' be the proof that takes the consequent of the first application of the appropriate proof rule to
{X -fiY). Then define t~l as follows.

Let f be the proof fragment corresponding to the first application of a proof rule (FI1, FI2 or
FI5). If f constitutes all of t, then define the inverse of t to be f~l

Otherwise, define t~l to be the proof obtained by fusing the consequent of i'-1 to the right
assumption of proof fragment of f~l. The next theorem shows that they can be fused, and the
resulting tree constitutes a valid proof.

In the next theorem, we show that the results shown in Lemma 14 about inversions of proof
fragments carry over to inversions of complete proofs.

Theorem 6 (Properties of Inverse Proofs) The proofs listed in Definition 15 have the prop-
erty that ift proves (P -»■ Q) from (X —y Y), possibly using a set of functional dependencies, say
E, then its inverse proof indexed by a thread 7, t-1(7) proves (X ■/* Y) from (P -ft Q), possibly
using E. Conversely, if t proves (P ■/> Q) from (X -ft Y) and other dependencies E, then, t~l

proves (X -*• Y) from SU{P-> Q}.

Proof:
See Appendix A.

6 Consequences of the Normal Form Theorem

In this section, we explore the consequences of the normal form theorem which are relevant in the
completeness proof. In order to do so, we need to define consistency for a set of sentences.

Definition 16 We say that SUE' is consistent if E U£' \f {W -fr V), (W -»• V) for some sets of
attributes W and V. Here E is a set of dependencies and S' is a set of independencies.

Lemma 15 (Inconsistency Test) Suppose S is a set of dependencies and £' is a set of inde-
pendencies. SUS' is inconsistent if and only if there is an independency (P ■/* Q) e S' such that
EH(P->Q)

Proof:
See Appendix A. ■

Lemma 16 (Consistency when adding a dependency) Suppose £ is a set of dependencies
and'S' is a set of independencies. If EWS,' is consistent and SUE' \f {X -frY) then SUE'l^X ->■ Y}
is consistent.

Proof:
See Appendix A. ■

Lemma 17 (Consistency when adding an independency) Suppose E is a set of dependen-
cies and E' M a set of independencies. If E U E' is consistent and E U E' \f (X -> Y) then
E U E' U {X -/¥ Y} is consistent.

Proof:
See Appendix A. ■

18

7 Completeness of the Proof System

In this section, we present the consistency properties for the Fl-system. Then we show that every
consistency property yields a model. Finally we show the completeness theorem by proving that
if S U £' \f ip, then there is a complete consistency property that satisfies EUS' but not ip. This
kind of proofs are common in model theory of first order logic.

Definition 17 (Consistency Property) We say that a set C is a consistency property if follow-
ing hold.

• Non-Contradictory Nature
For every R, S C U not both (R-t S) €C and (R-fi-S)<=C hold.

• Closure Under Proof Rules
C is closed under proof rules; i.e

1. IfXCY then (Y^-X)GC

2. If{B-+A)eCandXCY then (YB -»• XA) G C

3. If (X -> Y), (Y^-Z)GC then {X -> Z) G C.

4. If (B -> A), (B-^Y)GC then {A -fr Y) G C.

5. If {Y -* Z), {X-f>Z) EC then {X -/> Y) e C.

6. If (X -> Y), {X-frZ) eC then {Y-/> Z) G C.

• Disjunctive Nature of -fa-
If S = {Si : 1 < i < n} where each Si is a single attribute, and (R ■/> S) G C, then
[R ■/* Si) G C for some i <n.

Definition 18 (Complete Consistency Property) We say that a set C is a complete consis-
tency property if following properties hold.

• C is closed under the proof rules given in Definition 17.

• For every R, S C U one and only one of (R -+ S) G C, (R-ft S) G C. hold.

The next lemma show an important property of complete consistency properties.

Lemma 18 (Conjunctive and Disjunctive Nature of Consistency Properties) Suppose C
is a set of dependencies and independencies.

• Conjunctive Nature of ->
If C is a consistency property, then it satisfies the conjunctive nature of -K i.e., if S = {S{ :
l<i<n} and(R->S)£ C, then (R -»■ Si) G C for all i < n.

• Disjunctive Nature of -ft
If C is a complete consistency property, then it satisfies the disjunctive nature of -ft. i.e., if
S = {Sitl <i < n} where each Si is a single attribute, and (R-fr S) G C, then (R -ft Si) EC
for some i < n.

19

Proof:
The conjunctive nature of -> holds in a consistency property C because (R ->• S) \-Armstrong (R ->
Si), and C is closed under deduction.

If the disjunctive nature of -ft is not true in a complete consistency property C, then there is
S = {Si : 1 < i < n} where each Si is a single attribute, and {R-ft S) G C, but {R-ft Si) ^.C for
all i < n. Then (iJ -► $) G C. But {R -> 5j : 1 < t < n} h (R -r S), leading to a contradiction,
because now (R -r S), (R-ft S) G C.

Lemma 19 (Complete Consistency Property and Consistency Property) Every complete
consistency property is a consistency property.

Proof:
Suppose C is a complete consistency property. By Lemma 18, C satisfies the disjunctive nature of
-ft. Hence, C is a consistency property. ■

7.1 Constructing Models from Consistency Properties

Theorem 7 (Constructing Models) IfC is a consistency property, then there is a model M(C)
with the following properties

l.If(R-ftS)(=C then M(C) \=(R-ft S).

2. If(R->S)€C then M(C) (= (R -> S).

3. If C is a complete consistency property then
M(C) \=(R-ftS) implies {R-ftS)e C.

4-IfC is a complete consistency property then
M(C) [= (R -► S) implies {R-+S)e C.

Proof:
In this construction, we assume that the domain of every attribute can take at least countably
many values. First, we construct the model M(C) as follows.
Construction :
Let U be the set of all attributes. We construct the model M(C) in stages, i, called the ith segment
Mi(C) of M(C). Each Mi(C) consisting of two rows of a table (model) as follows.

1. Suppose A = \J{B C U : (<t) -T B) € C} For each attribute A{ e A, let o» be an attribute
value valid in its domain.

2. For each attribute S & A (where 1 < i < n) where there is some set of attributes R satisfying
the condition R -ft S G C, let S be the set of all such maximal attribute sets R. Formally S
can be defined to satisfy the following properties.

• Any R! £ S satisfies (R! -ft S) G C.

• If any attribute set R" satisfies (R" -ft S) G C then there is some attribute set R' G S
satisfying R' D R".

20

• If R' G S, then R" 0 S for any proper subset R" of R.

Let W be Use(rA^) ^ an(* {^*: 1 < «} be a listing of elements of W.

3. Wi = {S : (Wj ■/> S) e C}. Now we construct Mj(C) consisting of two rows (say row 0 and
row 1) by filling in the attributes as follows.

(a) For every attribute that appear in A, say A^, fill in its value by a^.

(b) For each S € Wi, fill the value of S in rows 0 and 1 with Sifi and s^i where they satisfy:
(1) Both Sift and s^i are valid for their domains.
(2) sifi # «i,i.
(3) They do not appear in any table segments created so far.

(c) Let Wf = \J{V CU : (Wi -¥ V) € C} Fill all the corresponding attribute values of
W±~ in both rows 0 and 1 with the same set of values that have not appeared in any
other table segment created so far.

(d) Fill other (unfilled thus far; i.e. U \ Wf \Wi\A) attribute values of in both rows 0 and
1 with two sets of values that satisfy:

• None of them have appeared in any other table segment created so far.

• None of the corresponding component values in two rows are equal.

These choices are possible because of the assumption that every domain of attribute
values in U is countable.

4. Notice that except for attribute values filled in for Wi and A in rows 0 and 1 of the same
table segment Mi(C), none of the other attribute values are equal.

We show that our construction satisfies the required properties in the following lemma.

Lemma 20 M(C) constructed in Theorem 7 satisfies following properties.

1. If(R-/>S)(=C then M(C) \={R-fr S).

2. If(R->S)eC then M{C) f= (R -»• S).

3. If C is a complete consistency property
M{C) \={R-/¥S) implies (R-^S)& C.

4-IfC is a complete consistency property
M(C) \=(R^-S) implies (R^-S)eC.

Proof:

To show (1):
Suppose (R-fr S) € C. Then by definition of C, (R ■/> Si) G C for some singleton subset Si of S.
Hence, by construction of M(C), there is a maximal Wk such that R C Wk and (Wk -ft Si) £ C.
Consequently, in Mk(C), attribute values of Wk in rows 0 and 1 have the same values and the at-
tribute values of 5j are distinct. Hence M(C) f= (Wk -ft Si). Hence, M(C) \={R-/> Si). Therefore,
M(C)\=(R^S).

21

To show (2):
Suppose (P -> S) G C. Then by definition of M(C), for all singleton subsets Si of S, (P -»■ Si) G C,
because C is closed under deduction and (R ->• S) l~4rmstronfl (P ->• Si). We show that Af(C) f=

(*-►$)■
Notice that there is no P D P with (P -ft S{) G C. For if not, then [P ^ R) e C, (because

P D R h (P ->• P)) and hence by P/2, (P -fr St) G C, (because C is closed under deduction),
contradicting (R -4 Sj) G C. Hence, fi^t for any Wk used in the construction of Mk(C).
Furthermore the attribute values were chosen so that, except for the attributes from A, no two
rows across distinct segments have the same attribute values. Now, if R C A, then (A ->• R) G C
and hence (0 -» Si) G C, and hence Si has the same attribute value across all rows, satisfying
M(C) f= (P -» Sj). Conversely, if P %. A, then there is an attribute of P that is not in A. Two
distinct rows in M(C) with the property that they have same values for attributes in P happens
only when P C W£. In this case Wk -*■ P G C and hence Wfc ->• Sj G C implies M*(C). Con-
sequently, M{C) \= (P -+ Sj). Because M(C) |= (P ->■ Sj) for every i, we get that M(C) \= (P -> S)

To show (3):
Suppose M(C) (= (P T^ S). Then there is a singleton subset Sk of S satisfying M(C) \={R-fr Sk).
Then there are two rows in M(C) that have the same value for attributes in P and different values
for attributes of Sk. By construction, except for attributes from A, only pairs of rows from the
same segment of M(C) have equal value vectors.

Now suppose RCA. Then (<j> -> P) G C, and thus S* g A, for if not, then Sk C A, an hence,
by construction all rows of M(C) have the same value for Sk. Therefore, (A ->• Sk) g" C, for, if
not, then (A -> Sk) G C, and hence (0 -► S*) G C, and hence by the definition of A, Sk C A.
Because C is a complete consistency property (A ■/> Sk) G C. By applying P/2 to (A ■/>■ Sk) G C
and (A -► P) G C, we get (P -ft Sk) G C. By the deductive closure of C, we get that [R-ft S) G C.

Now suppose R% A. Hence, both rows of attributes in P that have equal values vectors must
come from the same segment, (say) Mt(C). Then P C Wi. To show that (Wi -ft Sk) G C, notice that
Sk has distinct values in rows 0 and 1 in Wi imply that Sk & W,+, and hence (Wf ->• Sk) &C. Conse-
quently, because C is a complete consistency property (Wf -ft Sk) G C. But (W/ ■/¥ Sk) h(fl^ Sk)
and (Wi -fr Sk) \- (P y^ S). Because C is closed under deduction, we get (R-fr S) G C.

To show (4):
Suppose M(C) f= (P -> S) and (R -> S) g C. Because C is a complete consistency property,
(P -fr S) G C. By Part(2), M{C) f= (P A S), contradicting the assumption M{C) (= (P -* S). ■

7.2 Constructing Consistency Properties

In this section, we show how to produce a consistency property from an underivable sentence.

Theorem 8 Suppose £ is a set of functional dependencies and S' is a set of functional indepen-
dencies and S U E' \f ip. If S U £' is consistent, then there is a complete consistency property C,
satisfying SUS'CC and tp £C.

Proof:
Let L = {(Pi, Qi) : 0 < i} be a list of all pairs of subsets of U such that PQ is X and Qo is Y, where
V> is either (X ->• Y) or (X ■/* Y). By stages {i < w} construct the consistency property C as follows:

22

At Stage 0:

1. If V is the dependency (X -* Y). By Lemma 17, S U £' U {X -ft Y} is consistent. Then
define C(0) = Cn(E U S' U {X ft F}).

2. If ip is the independency (A" ft Y). By Lemma 16, S U E' U {X -> Y} is consistent. Then
define C(0) = Cn(EUS'U{I-> Y}).

Notice that in both cases, C(0) is consistent.

At Stage i + 1 > 0 :

1. If C(i) h (Pi -»■ Qi), define C(i + 1) as Cn(C(f)).

2. If C(i) 1/ (Pi -► Qi), by Lemma 17, C(t') U {Pi ft Q,} is consistent. Hence define C(i + 1) as
Cn{C{i)\J{Pi^Qi})

Notice that at every stage i, following hold.

• If C(i) is consistent, then C(i + \) is consistent. Therefore, at every stage i, we have that C(i)
is consistent.

• {Pi -> Qi) e C{i + 1) or (Pi ft Qi) G C(i + 1).

Let C — U0<j C(i). Then C is a consistency property. This is true because of the following facts.

1. C is non contradictory.
There are no attribute sets R and S satisfying (R ft S), (R —► S) G C because, C(i) satisfies
that property for each i, due to the consistency of C(i), and C(i + 1)2 C(i) for all i > 0. The
construction at stage i 4- 1 ensures that either (P* —» Qj) € C(«) or (Pi ft Qi) € C(i) for all
i>0.

2. C is closed under deduction.
This is because of the unitary nature of the proof rules. For suppose C h 0, then because any
proof of 0 uses finitely many assumptions from C, there is a stage i where C(i) h 0. Hence
0 € C(i + 1), as C(i + 1)D Cn(C(i)) implying 0 € C

Finally, ip £ C because of the following reasons.

• If V is a dependency (X -*• Y), then (X ft Y) € C, and because of the non-contradictory
nature of C, (X -> Y) <£ C.

• If ip is a independency (^^7), then (X -4 Y) e C, and because of the non-contradictory
nature of C, (X ftY)<£ C.

23

7.3 Proving the Completeness Theorem

In this section, we prove the completeness theorem.

Theorem 9 (Completeness of the Proof System) Our proof rules are complete for functional
dependencies and independencies; i.e if M \=ip whenever M (= S U£', then SUS'hi/). Here £ is
a set of functional dependencies and S' is a set of functional independencies.

Proof:
Suppose not, then there are sets £, S' and a sentence ip satisfying S U E' \/ tp. Then we produce

a model M satisfying M |= £ U £', but M ^ V-

1. If £ U £' 1/ V> then by Theorem 8, there is a complete consistency property C satisfying
£ U £' € C and V g C.

2. By Theorem 7, there is a model M(C) satisfying M(C) (= £ U £', and M(C) ^ ^- This is
true because M(C) (= ir if and only if 7r € C for any dependency or independency IT.

8 Armstrong's Relations

In this section, we show the connection between Armstrong's relations [BDFS84] and our proof of
completeness. For a given set of functional dependencies Armstrong's relations are relations that
satisfy all those and only those functional dependencies that are logical consequences of the given
set.

8.1 The Classical Case: Another Construction

Given a set of functional dependencies £, [BDFS84] shows how to produce an Armstrong relation.
Their construction is as follows.

• Let A be defined as U{B CU : (<f>^- B) e C}.

• For each dependency ip where S \f tp, construct a model M^ with two rows that satisfy S but
not tp, satisfying the property that for each attribute in A take the same value across models
M^, for all such S \f ip.

• Let M — l+Jsi^M,), where |+| is the disjoint union; i.e., M is constructed by taking all rows
ofallM^'s.

For a given set of consistent functional dependencies S, we can create an Armstrong relation
by using our construction as follows. Suppose {Xi -> Yj : i > 1} = {ip : S \f ip}. Then, we show
that S U {X{ -fr Y{ : t > 1} is consistent. Suppose Sn = S U {Xt- /► Yj : i < n}. Due to lemma
1. £n VArmstrong {Xi -¥ Yj). Hence, by Lemma 17, Sn U {Xi -fr YJ is consistent. Therefore, by
induction, S U {Xi •/¥ Yt- : i > 1} is consistent and in fact it is a complete consistency condition.
Therefore by Theorem 9, S U {X{ -fr Yt : i > 1} has a model, say M. Then M f= V if and only if
S h ip. Hence M is an Armstrong relation. A careful examination of the construction of Theorem
20 shows that M has the potential of a model with a smaller number of rows than the construction
given in [BDFS84].

24

8.2 Armstrong Relations in the presence of Independencies

In light of known results and the importance of Armstrong relations, a natural question that arises
is: given a set of functional dependencies and independencies, is there a relation that satisfies all
those and only those that are logical consequences of the given set ? The answer to this question
is that in general there is no relation that can satisfy above stated requirements as shown in
the following example. Suppose a relation schema has attributes A,B,C,D and E, and let the
set of dependencies and independencies be E U S' = {(A -» B), (B -fr C)}, where £ is the set of
dependencies and £' is the set of independencies. Then {(A ->• B), (B -/¥ C)} \f (D -> E),(D -ft E).
Notice that there is no relation that satisfies both (D -)• E) and (D -fr E). The reason for the
failure above is that £ U £' U {(D ->• E), (D -fr E)} is inconsistent in our proof system.

In general, following is possible. Suppose E and £' are respectively a set of dependencies and
independencies where E U E' is consistent. Then, any consistent complete extension E" of E U £'
has a model, where complete means for any sets of attributes X, Y either (X ->■ Y) € E" or
(X^y)6 £". This is derivable from our theorems.

9 Use of Inference Rules

In [Bel95a] and [Bel95b] it is shown how to use proof rules in the inference of functional dependencies
from data values. In this work, a Prolog-based inference engine is interleaved with the mining
engine. The inference engine adds newly mined dependencies and independencies to an existing
known set. When the mining engine is used, it omits mining for facts in that have already been
derived, or rejected on the basis of derived independencies.

In [GJS+96] it is shown that for probabilistic functional dependencies, the performance of a
mining algorithm can be enhanced based on inference rules to reject and accept already derived
dependencies.

In other general data mining work such as, [AIS93] and [AS95], proof rules are not explicitly
used, but based on the properties of the dependencies that is being mined for, some facts are
automatically accepted or rejected. Since all that proof rules do is generate new facts from already
known facts, those usage of properties can be considered as using an inference engine to some
extent. One thing that a complete proof procedure does to such a process is to provide a complete
set of properties that can be used in such circumstances.

10 Conclusions

In this paper, we have presented a sound and completeness axiomatization of functional indepen-
dencies. We have also outlined the proof of completeness of this system using a syntactic method.
One of the consequences of the completeness proof is that a straightforward method for generating
the Armstrong relation for a given set of dependencies is obtained. The second advantage of this
axiomatization is that we have shown that every proof in this system has a normal form with
atmost three levels of application of FI-rules, and this can be used to search for proofs with very
high efficiency. Consequently, as shown by Bell [Bel95a], these rules can be profitably used to mine
for functional dependencies. Mining of FDs can prove useful in various situations such as semantic
query optimization, database design, and database restructuring. Other applications [PK95] where
the search space can be pruned using both positive and negative knowledge can also take advantage
of this axiomatization. In the same vein, other data mining applications domains such as associ-
ation rules, sequential patterns can also take advantage of negative knowledge of relationships, as

25

well as the positive knowledge. Search mechanisms will only be reinforced with such capabilities.
Our goal in this direction is to produce a general mining engine which utilizes both positive

and negative knowledge as discussed above. Functional dependencies present themselves as a prime
candidate for this application due to their highly structured nature and well-known properties. For
constructing a mining system for FDs, we have to have highly efficient and mechanizable proof
methods. Such a proof method using tableaux are presented in [WGSN97].

26

A Appendix

Proof of the Incompleteness of Janas' System (Lemma 4)
(By Contradiction)

Consider the case where X, Y, and Z each consists of one attribute and they are all different from
each other. Assume there is a proof t of (Z ft X) from {X -¥ Y, Z -ft Y}.

The plan of our proof is as follows. By induction on the number of applications of J3 in the
independency thread, we show that there is a proof of (Z -ft X) from {X ->• Y, Z -ft Y} that does
not use J3. Next we show that it is impossible to prove {Z -ft X) from {X ->• Y, Z -ft Y} only by
using Jl and J2.

Suppose t is a proof of Z -ft X that uses J3. Then the first application of J3 in the independency
thread must be of the following form:

Z-+T ZftP J3
TftP

Hence, by By part (3) of Lemma 3, {X ->• Y} \-FD (Z -> T). This is impossible by the
completeness of Armstrong's rules and the existence of counter models for {X -+ Y} \/FD (Z -+T),
except when T C Z or Z D X and TDY. But notice that Z D X is impossible by our choices of
attributes. In this case, the application of J3 is superfluous. By induction, we can argue that all
subsequent applications of J3 are superfluous. Hence there is a proof of F2 in Janas' system that
does not use J3.

Now, to show that this is impossible, suppose t does not have an application of J3. By part (1)
of Lemma ??, t has a single independency thread. In order to apply J2 non-trivially, the left hand
side of the independency must have more than one attribute. But, in our application we start with
a single attribute set X and it does not change if the only rules applied are Jl and 72. Hence the
rule J2 cannot be applied to our situation. The only rule applicable is Jl. But then X D Y, which
is a contradiction because X and Y are distinct single attribute sets. ■

Proof of the Merging Lemma (Lemma 5):
Case 1:
To show the merging of Rule FR, suppose a proof segment of t is as follows:

V -» U2 V -ft YUiU2 FR
V ->E/j V ftYUx FR

VftY
t"

This proof fragment is equivalent to the following:

t'
V -» UiU2 V -ft YUXU2 FR

V-ftY

Case 2:
To show the merging of FT1, suppose there is a fragment of t of the following form.

27

t\ t
t2 X-*Yi X-/>Z FR

Yi-*Y2 Yi-frZ FR
Y27bZ

Then it is equivalent to the following fragment:

X-+Y1 Y1-*Y2 t
X-+Y2 X-frZ FR

Y2-frZ

h

Case 3:
To show the merging of FR, suppose there is a proof fragment with two successive applications of
FR of the following form:

*1 *2
t3 Y ->Z X-frZ FR

Ui^Y X-/>Y FR
X-frVx

U

It is equivalent to the following proof fragment with a single application of FR:

h h
UX-*Y Y->Z t2

Ui-tZ X-frZ FR

U

■
Proof of the Interchangeability Lemma (Lemma 6):
Suppose there is a proof fragment of the following form, where FR is applied following an application
ofFß:
Case 1: (Interchangeability of FI2 and JF73

<i t2

t3 X^Y X-frZ FR
W^Z Y-frZ FR

Y-frW

U

This proof fragment is equivalent to the following proof fragment.

h W^Z X-frZ FR
X^Y X-/>W FR

Y^W
U

28

Conversely, a proof fragment of the later form is equivalent to a proof fragment of the earlier
form.
Case 2: (Partial Interchangeability of FI1 and FI2)

Suppose there is a proof fragment of the following form, where FR is applied following an
application of FT1:

t2 h
h W^-V W -frYX FI2

v^x V -frYX FI\
V-frY

Above proof fragment is equivalent to the following proof fragment in which the order of application
FR and FTl are reversed.

W^V V->X <3

W -*X W-frYX t2 FI\
W-/>Y W-+V FI2

V-frY
U

m
Case 3: (Partial Interchangeability of FH and FR)

Suppose there is a proof fragment of the following form, where FIS is applied following an
application of FR:

h V^X V -frYX FI\
W ^Y VJ>Y FI3

V-/>W
U

Above proof is equivalent to the following proof fragment, in which the order of application of FI
1 and FI 3 are reversed.

V^X W^Y
VW -+XW XW^ YX t2

VW -> YX V-frYX FI3
V -> V V-frVW FI1

v-/>w
u

Proof of the Normal Block Merging Lemma (Lemma 9):

29

In the degenerate cases, reduction of all possible combinations of two normal blocks to a single
normal block is shown below. The blocks are assumed to be in the order a followed by b. Due to the
large number of cases we use the following notation. The application of functional independency
rules in each block is denoted by the block name subscripted by the rule number; for example
03> «I) 02 means that in the independency thread of a, the application of independency rules are in
the order FR, FR and FR. In this notation, we can denote all possible types of normal blocks a and
6 can be in, for example, where they may or may not contain applications of all the independency
rules in their independency threads. We denote these cases by the digital equivalent of the binary
pattern where a 1 denotes the application of a rule and a 0 denotes its absence in the normal block.
For example, Pattern 56 corresponding to the binary pattern - 101 110, stands for the case where
block a has FIZ, does not have FI1, and has FI2, and block 6 has FI3, and FI1, but no FI2.
We show the application of lemmas 5 and 6 through the stages in the reduction of the two normal
blocks into an equivalent normal block.
Pattern 77:
„„„iii Lemrnaß , , , Lemrnaß , , , Lemrnaß , , , Lemmah
030102030162 1 ► 030103020162 1 > 036301026162 1 > 030301610262 •—-f C3C1C2

Pattern 76:
~. _ _ L L Lemrnaß , , Lemrnaß , , Lemrnaß , , Lemmah
0301026361 1 > 0301630261 1 >• 0363010261 1 > 0363016102 1 > C3C102

Pattern 75:
, 1 Lemrnaß , , Lemrnaß , , Lemmah

0301026362 1 >• 0301630262 1 > 0363010262 1 > C3O1C2

Pattern 74:
r Lemrnaß , Lemrnaß , Lemmah

03010263 1 > 03016302 ■ ► 03630102 1 > C30i02

Pattern 73:
, , Lemrnaß , , Lemmah

0301026162 1 V 0301610262 1 > 03C1C2

Pattern 72:
, Lemrnaß , Lemmah

03010261 1 > 03016102 1 ► 03Ci02

Pattern 71:
7 Lemmah

03010262 1 1 0301 Ci

Pattern 67:
,11 Lemrnaß , , , Lemmah ,

0301636162 1—► 0363016162 1—► C3C162

Pattern 66:
r 1 Lemrnaß , , Lemmah

03016361 1 > O3Ö3O1Ö1 1 >■ C3C1

Pattern 65:
6, Lemrnaß , , Lemmah ,

„ - 3O2 1 ► 03630162 1 >• C301&2

Pattern 64:
■ Lemrnaß , Lemmah

030163 1 ¥ 036301 1 > C30i

Pattern 63:
T 1 Lemmah t

03016162 ■ > 03C1&2

Pattern 62:
* Lemmah

O3O1Ö1 1 > a^Ci

Pattern 61:
030162

Pattern 57:
- - L *. 1. Lemrnaß , , , Lemrnaß , , , Lemmah ,
0302636162 1—t 0363026162 1—> 0363610262 1—> C361C2

Pattern 56:
1 1 Lemrnaß , , Lemrnaß , , Lemmah ,

03026361 1 >• 03630261 1 T 03636102 1 ► 036102

Pattern 55:
T 1 Lemrnaß , , Lemmah

03026362 1—> 03630262 1—>■ C3C2

30

Pattern 54:
, Lemmab , Lemmab

030203 1—> 030302 1—> C3O2

Pattern 53:
, . Lemmab , , Lemmab ,

O3O2O1O2 1—► 03610262 '—► O361C2

Pattern 52:
, Lemmab , Lemmab ,

030261 1—> 036102 1—>■ 036102

Pattern 51:
1 Lemmab

O3O2O2 ' ► 03C2

Pattern 47:
» » » Lemmab . •

03636162 1—t C36162

Pattern 46:
» T Lemma5 »

036361 1—>■ C361

Pattern 45:
T 7. Lemmab »

036362 1—»• C3&1

Pattern 44:
1 Z>emrna5

O363 ' ► C3

Pattern 43:
036162

Pattern 42:
0361

Pattern 41:
0362

Pattern 37:
0102636162 •—>■ 0163026162 •—>• 6301026162 i—^a 6301610262 e£^° 63C1C2

Pattern 36:
. „ 1 L X.emma6 , , £emma6 , , Lemma6 , , Lemmab ,
01026361 I >- 01630261 1 > 63010261 1 » 63016102 I > 630102

Pattern 35:
- - t u £emTna6 , , Lemma6 . > Lemma5 ,
01026362 1 ► 01630262 1 ► 63010262 1 > &301C2

Pattern 34:
• Lemmab , Lemma6 , Lemmab ,

010263 1)• 016302 1 >• 63O1O2 »—-f 630102

Pattern 33:
i_ 1 Lemmab , , iemrno5

01026162 • ► 01610262 »—f C1C2

Pattern 32:
. Lemma6 , Lemmab

OlO20i 1 > Oi6i02 ■ ► Ci02

Pattern 31:
T Lemmab

C102&2 1—> d\C2

Pattern 27:
111 Lemmab . 1 . Lemmab , .

O1Ö3Ö162 1—► 63016162 1—> 63C162

Pattern 26:
T t Lemrraaß • , Lemmab .

016361 1—> 630161 1—> 63C1

Pattern 25:
j_ T_ Lemmab » »

016362 1 ► 630162

Pattern 24:
1 Z>emrna6 .

O1Ö3 1—> 63 Oi

Pattern 23:
» i_ Z/emma5 «

O1Ö1Ö2 1 > Ci&2

Pattern 22:
1 Lemma5

OlOl 1—► Ci

31

Pattern 21:
ai&2
Pattern 17:

i , , Lemma6 , , , Lemma6 , , , Lemmaü , ,
02030162 1—f 03026102 1—> 6361O262 1—V O361C2

Pattern 16:
• 1 LernmaG , , Lemmad * ,

026361 1—> 630261 1—> 636102

Pattern 15:
t » Lemma6 T • Lemma5 ,

026362 1 ► Ö3O2Ö2 1 > 63C2

Pattern 14:
1 Z<eroma6 i

O263 1—> 6302

Pattern 13:
L 1 Lemma6 » » Lemma5 »

O261Ö2 1—> 610262 1—> 0\C%

Pattern 12:
• LemmaG *

02&1 •—> 6102

Pattern 11:
C2 02Ö2 1 >

Proof of the Merging Lemma for Functional Dependencies (Lemma 10)
We first show that two successive applications of FD2 can be reduced to a single application of

FD2. Suppose two successive applications of FD2 are as follows:

wcv X^Y FD2
W1QV1 XV ^YW FD2

XVVi -> YWWX

t"

This can be replaced by the following proof fragment, which has only one application of FD2.

t'
WWX CVVi X -»• Y FD2

XVVj -» YWWi
t"

Then, by induction, the general result follows.

Proof of the Interchange Lemma for Functional Dependencies (Lemma 11)
Suppose the following proof fragment is an application of FD3, FD2.

h «2
X-+Y y->z FDZ

WCV X^Z FD2
XV ->ZW

t"

The it can be replaced by the following proof fragment, in which the proof rules appear in the
reverse order FD2, FD3.

32

h t2

WCV X -+Y FD2 W CW Y ->■ Z FD2
XV ->YW YWCWZ FD3

XV -+WZ

Proof of Structural Property of Transitive Envelopes (Theorem 3):

The proof is by induction on the structure of the proof tree, T.
For the base case, if the last proof rule applied is FD2, then T is null. If the last proof rule

is FD3, and the rules that are applied at levels immediately higher are not FD3, then T is of the
following form.

t\ t2
X^Y Y-*Z FD3

Then T is (X -+ Y), {Y ->• Z), which satisfies Theorem 3.
Now, for the inductive case assume that proof trees above t\ and t2 have transitive envelopes

(Ai -*• A2),..., (A„_i ->■ An) and (An+i -> An+2),..., (Am_x -+ Am). By the inductive hypothe-
sis, Ai is X, An is Y, An+i is Y and Am is Z. Hence (Ai ->• A2),..., (Am_x -» Am) is the transitive
envelope of t. ■

Proof of Repetition Removal from Transitive Envelopes (Theorem 4):

Suppose the chain {A\ -¥ A2),..., {An -»• An+i) is a transitive envelope of a proof t of (A\ -»
An+i) and (X -> Y) appears in (Ai ->• A2),..., (An ->■ An+i) more than once. The aim is to get
a proof t' of (Ai ->■ An+i) using of the same set of assumptions (possibly a subset thereof) as that
of t, but without repeated occurrences of (X -> Y) in the transitive envelope of t'. Also suppose
that ti is the sub-proof tree that has (A,- ->• Aj+i) as its root (conclusion) in the proof tree t.

Suppose the first and last occurrences of (X -> Y) in the transitive envelope (Ai ->• A2),..., (An -
An+i) are respectively (A<, -4- A0+i) and (A& -» Afc+i).

Case 1: (a > 1 and b < n — 1)
Then, there is a FD proof 1/ of (Ai ->• An+X) that uses only FD3 as proof rules and (Ai -»
A2),..., (A„_i ->• A0), (Aj+i -> A&+2)... (An -4 An+i) as assumptions. Then the following is a
proof of (Ai -> A„+i) from the same set of assumptions (possibly less).

h • • • tg-l tb U+i ... tn

Ai-»A2 ... Aa-i-»JT X^Y Y -»A&+2 ... An -»An+i

Ai in+l

Case 2: (o = 1 and b<n)
Following is a proof of (Ai -*■ An+i) form the same set of assumptions (possibly less).

33

^6 h+1 ••• tn

X-+Y Y -» Ab+2 ... An ->■ An+i

Ai -> An+1

Case 3: (a > 1 and b = n)
Then the following is a proof of (A\ —y An+\) form the same set of assumptions (possibly less).

h • • • ta
Ai -> A2 ... X -+ Y

Ai -»• An+i

Case 4: (a = 1 and b = n)
Then (A\ -* An+i) is the proof of itself, as Ai is X and An+i is Y.

Proof of Lemma 12 :

(1)
Following proof in semi-normal form suffices.

YCY Y^A YCY A-+XV WCV
Y -+ YA YA-* XVY YW C XVY

Y -> XVY XVY -> YW
Y^YW

(2)
The following proof in semi-normal form suffices.

WCV
YWCYV YCY YW-+XA BCA
YV -+YW YW -> YXA YB C YXA

YV -+ YXA YXA ->• YB
YV-+YB

Proof of Repetition Removal from Assumptions (Theorem 5):

Suppose that t is a proof of (E -» F) in FD and that the assumption (X -)• Y) is used more
than once in t. Let t' be the semi-normal form of t. Notice that the set of assumptions used in i/ is
a subset of the set of assumptions used in t. Suppose that (X -4 Y) appears more than once in i!.

If all multiple uses of (X -¥ Y) as assumptions occur in the transitive envelope of i7, then by
Lemma 4, there is a proof t" that does not repeatedly use (X -t Y) as an assumption. Hence, we
need to prove that such repeated occurrences can be eliminated only when not all of them occur in
the transitive envelope. To prove so, we consider pairs of such duplicates, where not both of them
occur in the transitive envelope, and reduce the proof so that the reduced proof contains only one
occurrence, instead of two of them. In order to do so, let T', TE' be the ordered listing of the

34

assumptions and the transitive envelope of t' respectively.

Case 1: Suppose (X -> Y) occurs successively in T', once as an antecedent to FD2 and next
as an antecedent to FD3 (hence this occurrence is included in the transitive envelope) in that
order. Hence there is some subsequence (X ->■ Y), (Y -» A{), {A\ -> A2)... {An-\ -> An), (An ->•
XV), {XV -4 YW) in TE' where the dependency {XV -4 YW) is a consequent of the rule FD2
applied to some W CV and {X -* Y), as shown below.

tx ty U tn wcv X->Y
Aj ->• Ai+i ... An -+ XV XV -> YW

Let the subsequence {Y ->• Ax), {Ai -> A2),... {An-i -> An), {An -» XV), {XV -> YW) in TE'
be denoted by SUB. Also, let ty,t\,.. .,tn,t" be the subproofs of t' that have these dependencies
as conclusions. Then {Ai -+ A2),...{An-1 -> An),{An -4 XV) is a chain, and thus by Lemma
13, there is a proof tT of {A\ -4 XV) from t\,...tn. By Lemma 12 (1), there is a proof, say
ts of {Y -> YW) from (Y ->■ Ai), {Ax ->• XV) and WCV, that uses tT. Notice that the
proof tr does not use {X ->• Y) as an assumption. Now suppose TE' = TE\,SUB,TE2. Then
TE" = TEX, (Y -> Y W), TE2 is a chain of dependencies. Therefore, by Lemma 13 there is a proof,
say t finai of {E -*• F) from dependencies in TE", using proof fragments of i! that have dependencies
oiTE\,TEi as conclusions and tr- Notice that since tr does not use {X -» Y) as an assumption,
2/inaJ use one less instance of {X -4 Y) as an assumption than i!. The structure is shown below.

SUB
TEi, „ TE2

^>(y-»Ai)(Ai-»A2)... {A-» XV) (XV -> YWJ^rr^

*S
7\Ei , s TE2

» „
TE"

Case 2: Suppose (X -► Y) occurs successively in T, once as an antecedent to FD3 (and thus is
included in the transitive envelope) and again as an antecedent to FD2 in that order. Then there is
some subsequence {XV ->• YW), {YW -)• A{),{Ax -»• A2),..., {An-X -* An), (An -» X), (X -4 Y),
say SUB in TJ5', where the dependency (XV -> YW) is a consequence of applying FD2 to some
WCV and (X -»• Y), as shown below.

WCV X->Y
XV-»^ YW-*Ai AX-*A2 ... An-^X X-»Y

£

Then (XV -»• X) is derivable by F£>1, because X C XV. Suppose TE' = TEUSUB,TE2.
Then T£i, (XV -> X), (X -» Y),Ti?2, is a chain. The proof fragments that prove dependencies
in TEi,TE2 are subproofs in t'. By Lemma 13, we get a proof, say </,nQ/ of {E -» F) that has one
less occurrence of (X ->■ Y) as an assumption, because proofs fragments that had conclusions in
SUB used (X -4 Y) as an assumption, which is not there in tfinai-

35

Case 3: Suppose (X ->■ Y) occurs successively in t', both as antecedents to FD2. Then there is a
subsequence, (XV -> YW), {YW -f Ax), (Ax -» A2)... (An_i ->■ An), (An -> XA), (XA -»• YB)
in T£', say SZ75, where (XV -> VW) is a consequence of applying FD2 to some W C V and
(X -)• Y") and (XA -> Y"5) is a consequence of applying FD2 to some B C A and (X -»■ V), as
follows.

WCV X^Y ti t2 tn X^Y
XV -+YW YW^Ai AX^A2 ... An^XA XA^YB

E->F

Then, by Lemma 13, there is a proofs of (YW ->• XA) from (YW -»• Ai), (Ax -> A2),..., (An_i
^n)j (A„ -> XA) that uses the same proof fragments t\,...tn.

Then by Lemma 12 (2), there is a proof, say tT of (YV ->• YB) from (ytV ->■ XA), W C V and
f? C A. Hence the following, say ty, is a proof of (XV -*■ YB) using (X -> Y) as an assumption
only once.

VCV X -»• y tr

xi^-»yy yy->-yg
xy->-yß

T£7" = T£q, (XV ->• YB),TE2 is a chain of dependencies. Hence by Lemma 13, there is a
proof, say tfinai of (JE? ->• F) from the subproofs of t' that have dependencies in TEi,TE2, and iy
as assumptions. Notice that i/jnaz has one less occurrence of (X -»• y) than i' because <r used it
as an assumption only once. The situation is as follows.

SUB
TEi, TE2

O (XV -»• YW) (YW ->• AX)(A2 -> A2)... (An -> XA) (XA -»• yj5)cT>

TE

tv
TEi, s TE2

<?>{xv-*YB)<r>
v v ■

TE"

Proof of the Theorem on Properties of Inverse Proofs (Theorem 6):

Case 1: t Proves the functional dependency (X ->■ Y)
The proof is by induction. For the base case where t is (X -» Y), t-1 is (X -/>Y). In case t is

a single application of FD2 or 2*7)3, the result follows from the proof of Lemma 14.
In case t consists of more than one application of a rule, let the proof fragment which corre-

sponds to the application of the first proof rule be /, and its conclusion be (A -» B), and, say
(P -»• Q) is at the top of 7. Then (A -> B) is the head of j and t' proves (X ->• Y). By the
inductive hypotheses, </_1(Y) proves (A 7^ 5) where (X ■/* Y) is at the top of its independency
thread. By Lemma 14 the inverse of /, say f~l has (A ft B) as the head of the independency
thread and (P ■/> Q) as the consequent. Hence consequent of /-1 can be fused to the head of the
independency thread of f-1(7/), to derive the desired result <-1(7).

36

Case 2: t proves functional independency (X -ft Y)
Once again, the proof is by induction. For the base case where t is (X -ft Y), t~l is (X -+Y).

In case where the result where t is a single application of FR, FR or FD3, the result follows from
the proof of Lemma 14.

For the inductive case, the proof is similar to Case 1, except that we use the unique indepen-
dency thread. ■

Proof of the Inconsistency Test (Lemma 15):

If E h (X -» Y) for some independency {X -ft Y) G E', then by Definition 16, E U E' is
inconsistent.

To prove the converse, suppose SUE' is inconsistent. Then by definition 16, there are attribute
sets P and Q such that E U E' h (P -ft Q), (P -f Q). Then, by the normal form theorem, there is
a normal proof t of (P -ft Q) from E U E'. In the following case analysis we show that this always
leads to the desired result.

Case 1: Suppose all rules FR, FR, and FR, are applied in the independency thread of t.
Then the proof is of the following form.

S AQ^-Y X-ftY FR
S X^A X-ftAQ FR

X^P X-ftQ FR

P-ftQ

Hence we get Sh(l4 P), (P ->■ Q), {X -»• A), (AQ -> Y). Consequently, we get
E h (X -t Y) from Armstrong's axioms, where (X -ftY) G E'.

Case 2: Suppose the application of independency rules were restricted to only FJZ and P71.
Then only the first two proof rules are relevant. Therefore we get that P is X, and therefore
S h {AQ -» Y), (X -»- A), (X -> Q). Consequently, we get E U E' h (X ->• Y), for (X -ft Y) G E'.

Case 3: Suppose the application of independency rules are P/3, FR.
Then the proof is of the following form.

S
E Q->Y X-ftY FR

X^P X-ftQ FR

P-ftQ

Hence we get E I- (X ->• P), (P ->• Q), (Q -► Y). Consequently, we get E h (X ->• Y) from
Armstrong's axioms, for (X -ft Y) G £'.

Case 4: Suppose the application of independency rules are FR, FR.
Then the proof of (P -ft Q) is of the form given below. In the proof we see that Y must be of the
form TQ for some attribute set T.

E
E X^T X-ftTQ Pil

X^P X-ftQ FR
P-ftQ

37

Hence we get E h (X -+ P), (P -> Q), (A" -»■ T)). Consequently, we get E h (X -*• TQ) from
Armstrong's axioms, for (X ^ TQ) € E'.

Case 5: Suppose the only independency rule applied is P/3.
Then only the first application of the proof rule in case 1 is relevant and we get that P is X,
AQ is Y, and E h (QU -* Y), (X -»• Q). Consequently by applying Armstrong's axioms we get
S U S' h (X -¥ Y), for (X -ft Y) € E'.

Case 6: Suppose the only independency rule applied is FR.
Then only the first two lines of the proof of case 4 are relevant. Then P is X and Y is TQ. Hence
we get that E h (P ->• T), (P -+ Q), and by Armstrong's axioms we get E h (P ->■ TQ), i.e.
s h (x -»• y), for (x yv y) e E'.
Case 7: Suppose the only independency rule applied is FR.
Then the proof of (P -ft Q) is of the following form.

X->P X-ftQ FT2

P-frQ

Then, we get that Y is Q and that E h (X -> P), (P ->• Q), and by Armstrong's axioms get
E h (X -»• y). ■

Proof of Consistency when adding a dependency (Lemma 16):

Suppose E U E' U {X -► Y} is not consistent. Then by Lemma 15, there is an independency
(P ■/> Q) e E' such that E U {X -» Y} h (P -^ Q). Because E U E' is consistent, the proof of
(P -> Q) must use (X ->■ y) as an assumption. Then, by Theorem 5, there is a proof of (P -»■ Q)
from assumptions SU{X->7} that uses (X ->• y) only once as an assumption. Call this proof
t. Let 7 be the proof thread of t that begins at the assumption (X -»■ y). Then, by Theorem 6,
t_1(7) is a proof of (X ■/> Y) from the assumptions SU{P^ Q}. Because (P y^ Q) 6 E',
E U E' h (X T^ y), contradicting the hypotheses of the Lemma. ■

Proof of Consistency when adding an independency (Lemma 17):

Suppose E U E' i/ (X -+ Y) and E U E' U {X ■/¥ Y} is inconsistent. Then there a dependency
(P -»• Q) such that E h (P -»■ Q) with E U E' U {X ■/> Y} h (P ^ Q). By the normal form theorem
(i.e. Theorem 1), there is a normal proof t of (P -ft Q) from E U E' U {X -ft Y}. Notice that a
normal proof applies independence rules in the order P/3, FR, F12.

Case 1: Suppose all rules P/3, FR, FR are applied in the independency thread of t.
Then the proof is of the following form.

S AQ^Y X-ftY FR
S X-)-A X-ftAQ FR

X^P X-ftQ FT1

P-frQ

Hence we get S h (I 4 P), (P ->• Q), (X ->■ A), (AQ -»■ Y). Consequently, we get
E h (X -> Y) from Armstrong's axioms, contradicting E U E' \/ (X ->■ y).

38

Case 2: Suppose the application of independency rules are FR and FR in that order.
Then only the first three lines of the above proof are relevant, and hence we get that P is X, and
therefore E h {QA -»• Y), {X -»■ A), (X -> Q). Consequently, we get SUS'h(I-^y) for a
contradiction.

Case 3: Suppose the application of independency rules are FR, FT1 in that order.
Then the proof is as follows.

Q-+Y X-frY FR
X-frQ FR

Hence we get E h (X -> P), (P -> Q), (Q -> Y). Consequently, we get E h (X -*• F) from
Armstrong's axioms, contradicting E U E' 1/ (X -> V).

Case 4: Suppose the application of independency rules are FR, FT1 in that order.
Then the proof of (P ■/¥ Q) is of the form given below. In the proof we see that Y must be of the
form TQ for some attribute set T.

£ X -»T X-frTQ FR
X^P X-frQ FT1

P-frQ

Hence we get Sh(I-4P), (P ->■ Q), (X -> T)). Consequently, we get Sh(I-4 TQ) from
Armstrong's axioms, contradicting SuS'l/(l-> V).

Case 5: Suppose the only independency rule applied is FR.
Then only the first two lines of the proof in case 1 are relevant and we get that P is X and
E h (QA -> Y), (X -► Q). Consequently by applying Armstrong's axioms we get SUE' h (X -»• F)
for a contradiction.

Case 6: Suppose the only independency rule applied is FR. Then only the first two lines of the
proof of case 4 are relevant. Then P is X and Y is TQ. Hence we get that Eh(P-> T), (P -> Q),
and by Armstrong's axioms get SI-(P-> TQ), i.e. £ I- (X -»■ Y) for a contradiction.

Case 7: Suppose the only independency rule applied is P/2.
Then the proof of (P -f* Q) is of the following form.

X-+P X-frQ FD.
P*Q

Then, we get that Y is Q and that £ h (X ->■ P), (P -t Q), and by Armstrong's axioms we get
E h (X -¥ Y) for a contradiction. ■

39

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Association Rules Be-
tween Sets of Items In Large Databases. In ACM SIGMOD Conference on Management
of Data, volume 1, pages 207-216. SIGMOD, 1993.

[Arm74] W. W. Armstrong. Dependency Structure of Database Relationships. In Proc. IFIP
74, pages 580-583. North Holland, Amsterdam, 1974.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining Generalized Association Rules. In
Proc. of the 21st VLDB Conference, Zurich, Switzerland, 1995.

[BBG78] C. Beeri, P.A. Bernstein, and N. Goodman. A Sophisticate's Introduction to Database
Normalisation Theory. Proc. of the Fourth Int'l. Conf. on Very Large Data Bases,
pages 113-124, 1978.

[BDFS84] Cartriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. On The Structure
of Armstrong Relations for Functional Dependencies. Journal of the ACM, 31(l):30-46,
January 1984.

[Bel95a] Siegfired Bell. Discovery and Maintainence of Functional Dependencies. In Proc. of the
First KDD Conference, pages 27-32, Montreal, Canada, 1995.

[Bel95b] Siegfred Bell. The Expanded Implication Problem of Data Dependencies. Technical
Report LS-8 Report 16, Dept of Computer Science, University of Dortmund, 1995.

[BeI96] Siegfred Bell. Deciding distinctness of query results by discovered constraints. Technical
Report To Be Published, Dept of Computer Science, University of Dortmund, 1996.

[BMR85] Dina Bitton, Heikki Mannila, and Kari-Jouko Räihä. Design-By-Example: A design
Tool for Relational Databases. Technical Report TR 85-692, Dept of Computer Science,
Cornell University, 1985.

[BMT89] Dina Bitton, Jeffrey Millman, and Solveig Torgersen. A Feasibility and Performance
Study of Dependency Inference. In Proc. of the 5th Int'l Conf. on Data Engg., pages
635-641, Los Angeles, CA, 1989.

[CAdS84] M. A. Casanova and J. E. Amarald de Sa. Mapping uninterpreted schemes into entity-
relationship diagrams. IBM Journal of Research and Development, 28-1:82-94, 1984.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM, 13:377-387, 1970.

[Dec87] R. Dechter. Decomposing an n-ary relation into a tree of binary relations. In Proceedings
of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, volume 1. ACM-SIGMOD, March 1987.

[EN94] Ramez A. Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Benjamin Cummings, Redwood City, CA, 2nd edition, 1994.

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic. Riedel, Amsterdam,
1983.

40

[FV86] Ronald Fagin and Moshe Vardi. The theory of data dependencies - a survey. Symposia
in Applied Mathematics, 34:19-72, 1986.

[GJS+96] M Ganesh, Namit Jain, Jaideep Srivastava, Sujal Parikh, Travis Richardson, and Du-
minda Wijesekera. Efficient mining for probabilistic functional dependencies. Technical
Report In Preparation, Dept of Computer Science, University of Minnesota, 1996.

[GL90] G Gottlib and L Libkin. Investigations on armstrong relations , dependency inference,
and excluded functional dependencies. Acta Cybernetica, 9:385-402, 1990.

[Gra95] J. N. Gray. Database systems: A textbook case of research paying off. In
http://cra.org/research.impact, 1995.

[Jan88] J. M. Janas. Covers for Functional Independencies. In Conference on Database Theory,
volume 338. Springer-Verlag, Lecture Notes in Computer Science, 1988.

[Kan90] Paris C. Kanellakis. Elements of relational database Theory, chapter 17, pages 1074-
1156. The MIT Press and Elsevier, Amsterdam, 1990.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville,
Maryland, 1983.

[MR87] Heikki Mannila and Kari-Jouko Räihä. Dependency inference. In Proc. of 13th VLDB
Conference, pages 155-158, Brighton, UK, 1987.

[MR92a] Heikki Mannila and Kari-Jouko Räihä. The Design of Relational Databases. Addison-
Wesley, Workingham, U.K., 1992.

[MR92b] Heikki Mannila and Kari-Jouko Räihä. On the complexity of inferring functional de-
pendencies. Discrete Applied Mathematics, 40:237-243, 1992.

[MR94] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring functional dependencies
from relations. Data and Knowledge Engineering, 12:83-99, 1994.

[PK95] Bernhard Pfahringer and Stefan Kramer. Compression-Based Evaluation of Partial
Determinations. In Proc. of the First KDD Conference, pages 234-239, Montreal,
Canada, 1995.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist and Wiksell, Stockholm, 1965.

[PS92] Gregory Piatetsky-Shapiro. Probabilistic data dependencies. In Machine Learning
Workshop, volume 1, 1992.

[SF96] Iztok Savnik and Peter. A. Falch. Bottom-up induction of functional dependencies from
relations. In PDIS, volume 1. PDIS, 1996.

[Tak91] Gaisie Takeuti. Proof Theory. North Holland, Amsterdam, 2 edition, 1991.

[Tha88] B. Thalheim. Logical relational detabase design tools using different classes of depen-
dencies. Journal of New Genaration Computing Systems, 13(3):211-228, 1988.

[UU88] Jeffrey D. Ullman. Database and Knowledge-Base Systems. Computer Science press,
Rockville, Maryland, 1988.

41

[Var88] Moshe Vardi. Fundamentals of Dependency Theory, pages 171-224. Computer Science
Press, 1988.

[WGSN97] Duminda Wijesekera, M. Ganesh, Jaideep Srivastava, and Anil Nerode. Tableaux for
Functional Dependencies and Independencies. In Tableaux'97, 1997.

[Yan95] Mihalis Yannakakis. Perspectives on Database Theory. In Foundations of Computing,
pages 224-246. IEEE FOCS, 1995.

42

