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1. INTRODUCTION: 

We consider the following model of multiple superimposed exponential signals in presence 

of stationary noise; 
M 

Y(t) = ]T a°e^ + X{t);   for t = 1,..., N. (1) 

Here a0,..., a°M are unknown complex numbers known as amplitudes and all of them are 
different from zero, % = >/=T. Theu[,...,u°M are unknown frequencies lying between 0 and 
2TT and they are distinct. X{t)'s are stationary processes with mean zero and they satisfy 
Assumption 1 as given at the end of this section. M is assumed to be known. Given a 
sample of size N, the problem is to estimate the unknown parameters a's and w's and some 
times the error variance. 

This is a very important and well discussed model in Statistical Signal processing. For 
example, in electromagnetic pulse (EMP) situations (Ricketts et al; 1976 and Sircar; 1987), 
the EMP pickup can be characterized by a sum of complex exponentials whose parameters 
are to be determined. The parameters are a means of coding the various pulse wave forms 
and the signal approximation thus obtained can be readily employed to analyze responses 
in various subsystems under EMP environment. In system identification problems, the 
characterization of the impulse responses of a linear system by a sum of complex exponentials 
and then identifying or approximating the complex amplitudes and natural frequencies with 
high degree of-accuracy has it's special importance in a wide variety of applications. 

Quite a number of papers appeared dealing with the estimation of the parameters for 
this model particularly when the X(t)'s are independent and identically distributed {i.i.d.) 
random variables. See for example the review articles of Rao (1988), Prasad et al. (1995) 
and also the paper of Stoica (1993) for an extensive list of references. Few articles appeared 
in the last few years developing the theoretical properties of the least squares estimators, like 
Bai et al. (1991), Rao and Zhao (1993), Kundu (1995), Kundu and Mitra (1995,1998). Pillai 
(1989) pointed out that although the assumptions of the i.i.d. errors are quite common, but 
in many situations the noise might be correlated. The problem has some theoretical interest 
also. No body, at least not known to the authors considered the theoretical properties of the 
LSE's under this general set up. 

It is worth mentioning that the model (1) does not satisfy the standard sufficient con- 
ditions of Jennrich (1969), Wu (1981) or Kundu (1991) for the LSE's to be consistent even 
when the errors are i.i.d. random variables, see Kundu and Mitra (1998) for details. There- 
fore, it is not immediate how the LSE's will behave in this general set up. Hannan (1971) 
and Walker (1971) considered a similar kind of model in the context of non-linear time series 
regression. They considered the following model 

Y(t) = ßi + ß2cos(tu) + ß3sin{tu) + X{t) (2) 



where X{t)'s are i.i.d. random variables with mean zero and finite variance. They mentioned 
that it may be difficult to obtain the asymptotic properties of the LSE's directly. Instead of 
considering the LSE's they make the Fourier transform of the data and obtained the estima- 
tors of the frequencies by maximizing the periodogram. They called them as approximate 
least squares estimators (ALSE's). They obtained the consistency and the asymptotic nor- 
mality property of the ALSE's. Hannan (1973) extended the results of Hannan (1971) and 
Walker (1971) to the case when X(t)'s are from a stationary time series with mean zero and 
finite variance and has a continuous spectrum. Hannan (1973)'s approach is quite similar to 
that of Hannan (1971) or Walker (1973). 

Bai et al. (1991) first proved directly the consistency of the LSE's of the parameters under 
the assumptions that X(i)'s are i.i.d. normal random variables with mean zero and finite 
variance Rao and Zhao (1993) obtained the asymptotic distribution of the LSE's under 
the same assumption as that of Bai et al. (1991). Kundu (1995) obtained the consistency 
of the LSE's when the errors are i.i.d random variables with mean zero and finite variance, 
but under some restrictions on the parameter space. Kundu and Mitra (1995) obtained the 
strong consistency of the LSE's under the i.i.d. assumptions of the error random variables 
and very recently Kundu and Mitra (1998) obtained the asymptotic distribution of the 
LSE's under the same assumption as that of Kundu and Mitra (1995). In this paper we try 
to generalize the result when the errors are from a stationary sequence. Our approach here 
is quite different from Hannan (1971, 1973), Walker (1971), Bai et al. (1991), Rao and Zhao 
(1993) and Kundu (1995). We make the following assumptions on X{t). 

Assumption 1: X(t) is a complex valued stationary process and X{t) = U(t)+iV{t). Here 

00 °° 
U(t) =  £ a(j)e(t - j) V(t) =  £ ß(j)e(t - j) (3) 

j=-oo j'=-oo 

where e(t)'s and e(t)'s are i.i.d.   real valued random variables with mean zero and finite 
variance a2.   Also e(t)'s and e(t)' are independent of each other and E^-ooKi)! < oo, 

£~-ool/50')l<°°- 
We denote Var(X(t)) = <x2 ( ££_ |a(j)|2 + ££_«, W)\9) = 72 < oo. The major 

aim of this paper is to prove directly the consistency of the LSE's of the parameters of the 
model (1) under Assumption 1, of the error random variables. We also obtain that the least 
squares estimators are asymptotically normal with mean vector zero and certain variance 
covariance matrix. The explicit expression of the asymptotic variance covariance matrix is 
obtained, which it seems is not available in the literature. We also obtain the consistency 
and the asymptotic properties of the estimator of 72. This paper generalizes the works of 
Bai et al (1991), Rao and Zhao (1993), Kundu (1995), Kundu and Mitra (1995, 1998). It 
is important to point out that Hannan (1971, 1973) or Walker (1971) did not consider the 
exact LSE's and moreover, Hannan (1973) did not consider the multiparameter situation 
or the estimation of the variance of error random variables. The exact expression of the 
asymptotic distribution of the multiparameter situation is not available in the literature. 



Therefore, our results extends the results of Hannan (1971, 1973) and Walker (1971) to the 
complex parameter and also to the multiparameter situation. In this paper the almost sure 
convergence means with respect to the Lebesgue measure and it will be denoted by a.s.. The 
notation a = 0{Nb) means -fa is bounded for all N. Also the real and imaginary part of a 
complex number, say o, will be denoted by aR and a7 respectively. Therefore any complex 
number a can be written as a = oÄ + ia/. JV„(a, B) denotes the p variate normal distribution 
with mean vector a and the covariance matrix B and N(a, b) denotes the univariate normal 

with mean a and variance b. 

The rest of the paper is organized as follows. In Section 2, we prove the consistency and 
asymptotic normality of the LSE's of the parameters of the model (1) for the case M = 1. 
For general M, the result is established in Section 3. The asymptotic properties of the 
estimator of 72 is obtained in Section 4. Some experimental findings are discussed in Section 
5 and finally we draw conclusions from our results in Section 6. 

2. CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE LSE'S: 

Let's denote 9 = (a,u) be the LSE's of 6° = (a0, w°), obtained by minimizing; 

Q(a,w) = E|nt)-«e*ia (4) 

t=i 

Note that 9, a, ob and Q(a,u) depend on N, but for brevity we don't make it explicit. To 
prove the necessary results we need the following lemma. 

Lemma 1: Let U(t) be a stationary sequence which satisfies Assumption 1, then 

lim sup 
TV—>oo   u 

1 £ U(t)cos(tu) = 0 a.s. (5) 

Proof: See Appendix. 

Comments: The following result also can be proved along the same line. 

lim sup 
N—>oo   w 

?—Y,tLX(t)cos(toj) 
NL+l t=i 

= 0 a.s. (6) 

for L = 0,1,2,..., and X(t) satisfies Assumption 1. Note that the above results (5) and (6) 
are true if the cosine function is replaced by sine function. 

Using Lemma 1 and the same techniques as of Theorem 1 of Kundu and Mitra (1995), 
the following result can be established: 



Theorem 1: For M = 1, 9 is a strongly consistent estimator of 9 . 

Now we will establish the asymptotic normality property of the LSE's. The idea is quite 
similar to that of Kundu and Mitra (1998). The major difference here is that, the center 
limit theorem for lid. random variables was used in Kundu and Mitra (1998) to prove 
the asymptotic normality , but here we need to use the central limit theorem for stochastic 
processes. The details will be explained below. Let's denote 

mm     (dQ{9) dQ(9) 6Q{6)\ (7) 

and Q"{9) be the corresponding 3x3 matrix which contains the double derivative of Q{9). 
Therefore, expanding Q'(9) around 0° by multivariate Taylor series, we have 

Q'(9)-Q'(9°) = (9-9Q)Q"(9) (8) 

where 9 is a point line joining 9 and 9°. Since Q'(9) = 0, (8) implies, 

(8-9°) = -Q'(9°)[Q"(9)}-1 (9) 

The main idea to prove that (9 - 9°) converges to a multivariate normal distribution will be 
as follows. Consider the following 3x3 diagonal matrix 

(10) 

(11) 

(12) 

(13) 

D = diag{Ar2,iV-2,iV-l} 

Now write l-i 
(9-9°) = -Q'(9°)B[BQ"(9)D] 

It can be easily shown (see Kundu and Mitra; 1998) that 

lim [DQ"(0)D1 = lim [DQ"(0°)D] = E 

where 

E = 
2 
0 

,o   i 

-ori   a .0       21^,012 
R a" 

and E_1 exists if a0 ^ 0 and it is as follows; 

E-^ 

1,3°; 
2 "^ 2 |a°|2 

2 IQ°|
2 

v0|2 

3°M 
2 |a°|2 

o2 

1 _i_ 3 QR 
2 "^ 2 la°|2 

a0 

°U0|2 

°l«0|2 

>0|2 

(14) 

Using the Central limit theorem of stochastic processes (see Fuller 1976, page 251), it easily 
follows that Q(0°)D tends to a multivarite (3-variate) normal distribution as given below; 

Q'(0°)D-+iV3{o,a2cE} 



here c = £*=- Pu(h)eiw°h + T,h=-ooPv(h)eiu,°h, where Pu{h) and pv(h) are the autocor- 
relation functions of the stationary process {U(t)} and {V(t)} respectively. Therefore, we 

have 

Now we can state the result as the following theorem: 

Theorem 2: Under the conditions of Theorem 1, 

{NH&R ~ *R),NH&I - a?),i\rf (w -V)} -> NiiO^cZ-1) 

where c and E2 are as defined before. 

Remark: It may be mentioned that if we rewrite the model (1) as follows 

y(t)=a°e^-Hl(t);      for   t = l,...,N, (15) 

where t = ^i, then it can be shown along the same line as above that 

{NH&R - aR),NH&i - «?),iV§(u, -u,0)} -> Ns^cT"1) 

and \ o    o 
o \    o 
0   0 

(16) 

*°|2 J 

Here aR, &i and CJ are LSE's of the corresponding parameters of the model (15). Although, 
the model (15) is more convenient to deal with, because of the independence structure of 
the LSE's, but in practice the data may not be available in that form. 

3. MULTIPARAMETER CASE: 

In this section we extend the result of Section 2 of the model (1) for general M. Let's 
use the following notations; 6M = (01,.. .,9M),9j = (o^a,/,^), where a, = ajR + iajr for 
j = 1,..., M. Similarly, 9M and 6M0 are also defined. 6M0 and 6M denote the true parameter 
value and the LSE's of the true parameter value, respectively. We have the following results. 

Theorem 3: If X(t) satisfies Assumption 1, then 6M is a strongly consistent estimator of 
ßMO 

Proof: The proof can be obtained similarly as Theorem 1, see also Kundu and Mitra (1995). 



To obtain the asymptotic distribution, first let's define a 3M x 3M diagonal matrix V 

as follows 113 ii3 
V = diag{N*,N*,N*,. ..,N>,N>,Ni} 

Theorem 4: Under the assumptions of Theorem 1, {6M - 6M0)V converges in distribution 
to a 3M variate normal distribution with mean vector 0 and the dispersion matrix a2^ \ 

where 

*_1 = 

and 

s- = 

' c^r1 0 o    " 
0 C2^i 

-i 0 

0 0 cM^M   . 

1 , 3 4, 
2 + 2 |QjT 

3 aiRajI 
2   |a«|2 

«° 
3-H£- ÖKF 

1 
2 

2   |^|2 

,   3 «fn 
+ 2 |ayp 

H^i2 

3|afp 

6 
Kl2 

(17) 

(18) 

and Cj = Er=-oo PiM«^* + ESUo Pv(h)e^h. 

Proof: The proof can be obtained similarly as that of Theorem 2, so it is omitted. 

4. CONSISTENCY AND ASYMPTOTIC NORMALITY OF f2 

In this section we obtain the consistency and the asymptotic properties of the LSE of 
Var{X{t)) = 72, given by f = jjQ(0M). Other than Assumption 1, we need to make the 
following assumptions on {e(t)}'s and {e(t)}'s, 

Assumption 2: Both {e(t)}'s and {e(£)}'s have finite six moments and E(e{t)4) = E{e(t)4) = 
■qa*. First prove the following lemma; 

Lemma 2: If G), is the LSE of w? for j = 1,..., M, for the model (1), then as N -» oo, 

N(UJ - w°) ->• 0     o.a. 

for j = 1,..., M. Expanding Q(9M) around 9m by multivariate Taylor series and using (6) 
the result can be obtained. Note that 

f = ^Q(9M)=Tl+T2 + n 



where 

iE^W + vw») 
JV 

To   = N 2-* 1S t=i 

JV 

JV 

T*   = 
TV ^ iV t=i 

JV 

N 2-s iy t=i 

£ a)Rcos{u]t) - ajRcos{Cjjt) - a]jsin{u)]t) + ä^sin^t) 
3=1 

M 

Y, a^cos^t) - ajicos{Q)jt) + a$Äsm(wJt) - aifism^t) 

V(t) f 5]a5/COs(w}t) - ajiCos{üjt) + aJÄam(o;Jt) - dJÄsm(%t) 

+ 

+ 

u=i 
(19) 

Observe that Ti converges to 72 a.s., T3 converges to zero a.s. by Theorem 3 and (6) and 
T2 converges to zero a.s. can be established with the help of Lemma 2 and Theorem 3 along 
the same line of Rao and Zhao (1993). Thus we have the following theorem. 

Theorem 5: If 9M is the LSE of 6M0 for the model (1), with X{t) satisfies Assumptions 1 
and 2, then 72 is a strongly consistent estimator of j2 

Now we obtain the asymptotic distribution f. First we need to consider the following 

lemmas. 

Lemma 3: If {X(t)} is the sequence of random variables as defined in Section 1 and üj is 
the LSE of wj, for j = 1,..., Af, of the model (1), then 

-j= Y, X{t) (cosiup) - cos{G)jt)) -> 0 in probability 

Proof: Using the mean value theorem on (cos(wJt) - cos^t)) and using Theorems 3, 4 and 
(6) it can be obtained. 

Lemma 4: If Uj and a5 are the LSE's of wj and a} respectively of the model (1), then 

JV JV 1 

y/N 

1 

|a°|2 £ cos2 (a;°i) - o^&jY^cos^cos^t) 
t=\ t=i 

|a°|2 £ cos2(Qjt) - aja,- jr cosiufycosfat) 
t=i t=i 

0 in probability 

0 in probability 

8 



Proof: Using Theorem 3 and Lemma 2 the results can be established. 

The results in Lemmas 3 and 4 are true if the cosine functions are replaced by sine 

functions. 

Lemma 5: If 72 is the LSE of 72, then 

y/N if - i_|x(t)|2] -► 0 in probability 

Proof: Consider 

jNf = y/NTx + VNT2 + VNTz = Gi + G2 + G3 (say) 

Expanding G2 and using Lemma 4 it follows that G2 converges to zero in probability. Using 
Lemma 3 and Theorem 3, it can be shown that G3 also converges to zero. Therefore, the 

result follows. 

We also have the following lemma. 

Lemma 6: If U{t) and V(t) satisfy Assumptions 1 and 2, then 

v^fiiW)2-*3 £ «(i)A^iv(o,(7?-3)r1(o)2 + 2 f; r^/i)2], 
\N t=i i=-oo / \ i=-°° / 

similarly 

>/# (4 5>(*)2 - ^ £ W)2) ^ iv (o, (r? - 3)r2(o)2 + 2 f; ra(h)! 

\N t=i i=-oo / \ i=-°° 

and they are independent. Here Ti{h) and T2(h) are the auto covariance functions of U(t) 
and V(t) respectively. 

Proof: See Fuller (1976). 

Therefore, we have the following result: 

Theorem 6: Under the Assumptions 1 and 2 

oo 
2 V^(f-a2(E a(jf+  £ ß(j) 

J——00 j=—oo 

OO 

2 iv(o,(r?-3)(r1(o)2 + r2(o)2) + 2 £ rx(/i)2 + 2 £ r2(/i) 
j=-oo j=—oo 



Proof: Using Lemmas 5 and 6, it follows immediately. 

Note that when both e(t)'s and c(t)'s are normally distributed random variables, with 
U(t) = e{t) and V{t) = e{t) for all t, then the asymptotic distribution a2 as obtained by Rao 
and Zhao (1993) can be obtained from Theorem 5, by substituting rj = 3, Ti(0) = T2(0) = a2 

and I\(/0 = T2{h) = 0 for all h ^ 0 

5. NUMERICAL EXPERIMENTS AND DISCUSSIONS: 

In this section we perform some Monte Carlo simulations to see how the asymptotic 
results work for small sample. We considered the following model: 

Y(t) = 2tiJ2*ht + 3.0ei2*ht + X(t);      t = l 25. (20) 

where h = .15Hz and /2 = MHz. X{t) = U(t) + iV(t), U(t) = e(t) + .be{t - 1) and 
Vlt) = e(t) + 5e(t - 1). Note that |/x - /2| < £ and this is quite important from the 
applications point of view (see Tufts and Kumaresan; 1982 or Breslar and Macovski; 1986). 
Here e(t) are i.i.d. random variables with mean zero and finite variance, similarly c(t)'s 
are also normal random variables with mean zero and finite variance. e(t)'s and e(t)'s are 
independent. Numerical results are obtained for different SNR = 5dB, lOdB, 15dB and 20 

dB. SNR is defined as 
SNR = 10log10—.—  

noise power 

where signal power = |c*i|2 + ia2|
2 and noise power = E\X{t)\2. 

All these computations are performed at the Pennsylvania State University , using SUN 
workstation and using the IMSL random deviate generators. For a particular data set we 
estimate the nonlinear as well as the linear parameters by the least squares method. We 
compute the average estimates and the average mean squared errors (MSE's)over 1000 repli- 
cations. The results can be obtained directly from the authors on request. We present the 
main findings. From the results it is observed that SNR increases the MSE's decrease for 
both the linear and the nonlinear parameters which indicates the consistency of the least 
squares estimators of both the linear as well as nonlinear parameters. It is also clear from 
the results that the rate of convergence of the nonlinear parameters are more than that of 
the linear parameters. As SNR increases the MSE becomes closer to the asymptotic variance 
(ASVA), although in some cases, particularly for small SNR, it is observed that the MSE 
is more than the ASVA. For the nonlinear parameters MSE-ASVA converges to zero faster 
than that of the linear parameters. 

10 



6. CONCLUSIONS: 

In this paper we consider the one parameter and multiparameter superimposed expo- 
nential signal model under the assumption of additive stationary noise. We obtain the 
asymptotic properties of the least squares estimators directly which generalizes some of the 
existing results. We also obtain the explicit expression of the covariance matrix for the mul- 
tiparameter case, which it seems is not available in the literature. We prove the consistency 
and the asymptotic normality of the estimator of the error variance in this general set up. 
From the numerical studies it is observed that the finite sample inference can be drawn 
from the asymptotic result for reasonable sample sizes for both the linear and nonlinear 

parameters. 
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Brunswick, Saint John and the Department of Statistics, The Pennsylvania State University, 
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APPENDIX: 

Proof of Lemma 1: 

Therefore 

sup 
e 

±J2U{t)cos{tß) = ±Y,  £  a(j)e(t - j)cos(t6) 
t—l j=—oo 

-,       oo N 

=   T7  E  a(j)cOS(j0):Ce(t-j)cos((i-j)0) 
N J=-0O 

oo 

N 

c 
t=l 

N 

£ 
I OO 'i 

j-  JT  a(j)sm(j0)£e(t-j)Sm((t-j)0) 
^ j=-oo 

<   sup 

+   sup 
e 

1       oo N 
i-  £  a(j)cos(je)Y,<t-J)™s((t-j)6) 
N j=-CO 

oo 

t=l 

N 1 _ 
i-  £  a(j)sin(j9)Y,<t-j)sin((t-j)9) 
iV j=-O0 t=l 

(21) 

11 



We would like to prove that both the terms on the right hand side of (21) converges to zero 
as N tends to infinity. Now observe that 

Esup 
9 

N -I oo JV 

i-  52 a(j)coS(j6)Y,<t-j)cos((t-j)6) 
N j=-oo t=l 

< 

N 

"£e{t-j)co8{{t-j)e) 
t=l 

< I  £  |a(j)|£sup 
^v j=-oo e 

-l oo 

öT? E  I^OOK^sup^t-i)^^0 +£sup 
ny j=-oo e 

e(t - fie«1-»]} (22) 

Also 

-i-  £  \a(j)\Esupe(t-j)e 
2N 

_ A\J{t-i)o 

]=—oo 

<^  tW)\{EB^\e{t-j)e^-^ 

i 
.21 2 

<  _L y \a(j)\\N+   £   E( ye(m)e(m + t) (23) 

where the sum Et=-N+i omits the term t = ° and the sum E™ is over ^ ~ '*• termS 

(dependent on j). Since 

£ £(£e(m)e(m+t) 
t=-jv+i     V m 

N 

<    E    \EY,e(m)e(m + t) 
t=-N+l 

l 
2^  2 

= 0{N*) 

uniformly in j, therefore (23) is 0(JV"*) and so (22) is also 0(N~). Observe that if we 
choose any subsequence {Ns} of {N}, where 8 > 4, then we can make (22) to be summable 
over that subsequence, so let's choose in particular the subsequence K = N5. Therefore, 

£sup 
9 

1       °° ■K' 
\-  y  a(j)cos(j9)ye(t-j)cos((t-j)9) 
K 

= O(K-t) 
K 

E 
j=—oo t=l 

Similarly the result is true if the cosine function is replaced by sine function. So we have 

jßsup 
9 

K 

±yu(t)cos(te) 0{K~i) 

Therefore, by using the Chebyshev's inequality we obtain, 

sup 
9 

±yu(t)cos(te) 
K t=i 

a.s. 

12 



when K = N5. Now 
j 

sup       sup 
0    N5<J<(N+1)S 

±j:u(t)cos(t9) - j-^mcosm 
-,  (N+l)5 

<4   E   1^)1 (24) 
ly    t=iV5+l 

The mean squared errors of the right hand side of (24) is dominated by N 2, therefore, the 
left hand side of (24) converges to zero a.s., which proves the lemma. 
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