
-* * < i

AFRL-IF-WP-TR-1998-1527

STANDARD ANALYZER OF VHDL APPLICATIONS
FOR NEXT GENERATION TECHNOLOGY (SAVANT)

HERBERT L. HIRSCH, PRAVEEN CHAWLA,
DALE E. MARTIN, PHILIP A. WILSEY,
MICHAEL W. SHELLHAUSE

MTL SYSTEMS, INC.
3481 DAYTON-XENIA ROAD
BEAVERCREEK, OH 45432-2796

JULY 1998

FINAL REPORT FOR 04/25/1995 - 06/30/1998

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE II REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

1999G6K 009

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND Imnn,
WRIGHT PATTERSON AFB OH 4543 3-7 334**"° QUALITY INSPECTED 4'

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NHS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

A i*XU
AL SCARPELLI, Electronics Engineer JÄflES S. WILLIAMSON, Chief
Embedded Information Sys Eng Branch Embedded Information Sys Eng Branch
Information Technology Division Information Technology Division

g.E
EUGENE C. BLACKBURN, Chief
Information Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response Jnduding the to» for reviewing instructk^
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONtY (leave blank) 2. REPORT DATE

July 1998
3. REPORT TYPE AND DATES COVERED

Final Report, 04/25/1995 - 06/3071998

4. TITLE AND SUBTITLE

Standard Analyzer of VHDL Applications for Next Generation Technology
(SAVANT)

6. AUTHOR(S)

Herbert L. Hirsch, Praveen Chawla,
Dale E. Martin, Philip A. Wilsey, Michael W. Shellhause

5. FUNDING NUMBERS

C F33615-95-C-1638
PE 65502
PR 3005
TA 06
WU 82

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MTL Systems, Inc.
3481 Dayton-Xenia Road
Beavercreek, OH 45432-2796

8. PERFORMING ORGANIZATION
REPORT NUMBER

MFR-98-004/CSC349

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7334
POC: Al Scarpelli, AFRL/IFTA (937-255-7698, ext 3603

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-WP-TR-1998-1527

11. SUPPLEMENTARY NOTES

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE H REPORT

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The problem this Phase II SBIR effort addressed was the absence of an established, standard intermediate form (IF) for
the exchange of VHDL-encoded electronic data among CAD systems. This absence has severely constrained basic
resrearch environments, and has precipitated the current sub-optimal nature of CAD-in-VHDL tool development. Our
Baseline Program developed this standard intermediate form (IF), as well as a VHDL design environment utilizing it, which
is provided to the research community at no cost, and to commercial developers or users under a licensing fee. The
SAVANT environment consists of an Analyzer (implementing the IF), a Code Generator, and a System Support
Environment (SSE) containing debugger and visualization/analysis tools (called the VHDLyzer Toolkit or VTK). An option
task implemented Object-Oriented Extensions to VHDL in the SAVANT environment, and assessed their utility and
effectiveness.

The Phase II baseline objectives focused upon developing and validating the SAVANT system (analyzer, code, generator,
debugger, visualization tools), and commercializing the resultant technology. The option task objectives addressed
implementation of O-O VHDL costructs in SAVANT, and subsequent model selection, implementation and assessment of
O-O VHDL performance in the SAVANT environment. All baseline and option task objectives were achieved, except for
commercialization, which was partially achieved.
14. SUBJECT TERMS

VHSIC Hardware Description Language (VHDL) Intermediate Form (IF)
Advanced Intermediate Form for Extensibility (AIFE) VHDL Analyzer
Electronic Design Automation (EDA) VHDL Simulator
SAVANT Object-Oriented (O-O)

15. NUMBER OF PAGES

74

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

TABLE OF CONTENTS

Page

1.0 EXECUTIVE SUMMARY 1

2.0 INTRODUCTION 3

2.1 The Problem 3

2.2 The Phase I Results 5

Phase I Objective 1: Establish the technical feasibility of the SAVANT
technology as a standard A/IF exchange medium for CAD in VHDL 5

Phase I Objective 2: Establish community acceptance of the SAVANT
technology and Define the Commercial Product 6

Phase I Objective 3: Produce valid preliminary design concepts for the
two principal elements of SAVANT: the IF and the Analyzer 7

2.3 The Phase II Baseline Program and Option Task Objectives 9

2.3.1 Baseline Phase II Objectives 9

Objective 1: Establish the Preliminary Standard Intermediate Form (IF) 9

Objective 2: Demonstrate the capability of object-oriented
techniques for building an extensible intermediate form 10

Objective 3: Develop the software capability to support
construction of the intermediate form 10

Objective 4: Develop robust public domain software 10

Objective 5: Promote Standardization of SAVANT 10

Objective 6: Produce the Prototype SAVANT System 11

Objective 7: Commercialize the SAVANT System 11

2.3.2 Option Task Overview and Objectives 12

Option Task Objective 1 - Demonstrate that 0-0 extensions
to VHDL do not have to be expensive 12

Option Task Objective 2 - Build a system to allow exploration
ofO-O-VHDL 12

Option Task Objective 3 - Provide validation of the utility
of 0-0 extensions 12

Option Task Objective 4 - Leverage the public-domain nature
of SAVANT to provide a VHDL-0 test platform 13

Option Task Objective 5 - Set the stage for early release of a
1998 O-0-conforming simulation 13

TABLE OF CONTENTS (continued)

Page

2.4 The Technical Approaches 13

2.4.1 Baseline Program Technical Approach 13

The Standard Intermediate Form 14

Planned Implementations and the Deliverable IF 17

Scram: Translation from VHDL to the Intermediate Form 18

Transmute: Rewriting the Intermediate Form 18

Publisher: Output Routines for the Intermediate Form 19

Archive: Archiving the Intermediate Form 19

Debugger: A Debugger for the Simulator 20

Interactive User I/F: An Interactive User Interface to the Simulator 20

2.4.2 Option Task Technical Approach 20

2.4.3 Technical Approach Summary 21

2.5 The Project Organization and Management Approach 22

2.5.1 The Original Program Project Plan 22

2.5.2 Option Task Project Plan 23

2.5.3 Project Organization and Management Approach Summary 24

3.0 RESULTS AND DISCUSSION 25

3.1 The SAVANT System - An Overview of Related Technologies 25

3.2 Task 1: The Analyzer 27

3.2.1 Task la: Analyzer Development 29

3.2.2 Task lb: Analyzer Code Improvement 30

3.2.3 Summary of the Analyzer and IF Development 30

3.3 Task 2: The Code Generator 30

3.3.1 Task 2a: Code Generator Development 32

3.3.2 Task 2b: Code Generator Code Improvement 32

3.4 Task 3: SEE Development 33

3.4.1 The Debugger 33

3.4.2 The VHDLyzer Toolkit (VTK) 34

VTK Overview 34

IV

TABLE OF CONTENTS (continued)

Page

VTK Functionality 35

VTK Issues 39

3.5 Task 4: Testing and Distribution 41

3.5.1 Task 4a: Conformance Testing 41

3.5.2 Task 4a: Performance Testing 42

The Benchmarking Environment 43

Performance Analysis and Results 46

3.5.3 Task 4b: Distribution 49

3.6 Task Z: Survey of Proposed 0-0 Extensions to VHDL 50

3.7 Task A: Extend the SAVANT IF 51

3.8 Task B: Extend the SAVANT Analyzer 52

3.9 Task C: Extend the SAVANT Code Generator 52

3.10 Task D: Extend the QUEST Simulation Kernel 52

3.11 Task E: Build Demonstration VHDL-0 Models 53

3.12 Task F: Evaluate performance impact of the object-oriented extensions 54

3.12.1 Metrics Selection 54

Lines of Code 55

Reuse 56

Interface Complexity 56

Cohesion. 57

Coupling 57

3.12.2 Test System Implementation 58

3.12.3 Assessment Results 60

3.13 Summary of the Results 61

4.0 CONCLUSIONS • 63

5.0 RECOMMENDATIONS 64

6.0 REFERENCES 65

APPENDIX A: Published Papers 66

APPENDIXE: WWW Sites 68

LIST OF FIGURES

Page

1 Illustrating the Derivation of Objects in the Intermediate Form 15

2 Extending the Basic Intermediate Form 15

3 Implementation and Delivery Class Structure for the SAVANT Project 16

4 The Original SAVANT Project Plan 23

5 SAVANT Option Tasking 24

6 UC Program Relationships to SAVANT 26

7 A method for iterative and Incremental customization 35

8 VTK Main Window 36

9 The HR Tree Viewer '. 37

10 The HR Class Viewer 38

11 A 32X32-Bit Parallel Multiplexer 44

12 Performance of Benchmark One and Two 46

13 Performance of Benchmark Three and Four 47

14 Performance of Benchmark Five and Six 48

15 Performance of Benchmark Seven and Eight 49

16 SimPLANModel 59

17 Test Method Used 60

LIST OF TABLES

Number Title ^ge

1 Benchmark Set 43

2 ISCAS Benchmark Characteristics 44

3 Metrics Assessment 60

1.0 EXECUTIVE SUMMARY

This Phase II SBIR effort addressed a problem defined as the absence of an established,

standard intermediate form for the exchange of VHDL-encoded electronic data among

CAD systems. The result of this absence was a severely-constrained basic research environment

and sub-optimal nature of CAD-in-VHDL tool development. Our Baseline Program sought to

provide this standard intermediate form (IF), as well as a VHDL design environment

utilizing it, which could be provided to the research community at no cost, and to commercial

developers or users under a licensing fee. The SAVANT environment consisted of an

Analyzer (implementing the IF), a Code Generator, and a System Support Environment (SSE)

containing a debugger and visualization/analysis tools (called the VHDLyzer Toolkit, or

VTK). An Option Task, also reported herein, sought to implement Object-Oriented (O-O)

Extensions to VHDL in the SAVANT environment, and to assess their utility and

effectiveness for the designer.

The Phase I program, preceding the effort reported herein, developed certain critical

SAVANT concepts to the point of demonstrating their feasibility to overcome the problem. In

Phase I we implemented and demonstrated a preliminary version of the analyzer and IF,

and produced a preliminary design to carry into Phase II.

Our Phase II Baseline Objectives focused upon developing and validating the SAVANT

system (analyzer, code generator, debugger, visualization tools), and commercializing the

resultant technology. The Option Task Objectives required implementation of O-O VHDL

constructs in SAVANT, and subsequent model selection, implementation and assessment of

O-O VHDL performance in the SAVANT environment. Our performance against these

objectives, which this report elaborates in detail, is summarized as follows:

Develop Analyzer and (IF): Achieved, software is being released on the WWW

Develop Code Generator: Achieved, software is being released on the WWW

Validate the above: Achieved, high conformance to accepted test suites

Develop the Debugger: Achieved, not extensively tested

Develop Visualization Tools: Achieved, not extensively tested

Commercialize SAVANT: Partially achieved, diverges from MTL business model

Implement 0-0 Extensions: Achieved, considered a prototype version

Implement 0-0 Models: Achieved, results discussed

Assess O-O Performance: Achieved, results discussed

Summarily, we regard the Phase II SAVANT Program as successful in all aspects except

commercialization. The remainder of the report supports these assertions.

2.0 INTRODUCTION

In this introductory section, we provide certain background information which will be use-

ful to the reader in perusing the remainder of the report. Our purpose here is to provide suffi-

cient background information, in a concise and succinct manner, that the reader will have a good

understanding of the background without having to review other documentation. We begin with

a review of the original problem to be solved (Section 2.1), as stated in the Phase I proposal, and

explain how that original problem relates to the problem we sought to solve in Phase II. Next,

we describe our Phase I results (Section 2.2) in the context of how, by achieving certain Phase I

Objectives, we made progress toward solving the problem addressed in Phase II. Then, we out-

line the Objectives (Section 2.3) we set for this Phase II program, and include the goals for an

Option Task which was added while the Baseline Phase II program was in progress. We

conclude with a discussion of our technical (Section 2.4) and management (Section 2.5)

approaches to the Baseline and Option Task efforts.

2.1 The Problem

In this section, we review the original problem assertions from our Phase I program, and

identify their specific relationships to the Phase II effort being reported herein.

The problem identified in the Phase I proposal was the absence of an established,

standard intermediate form for the exchange of VHDL-encoded electronic data among CAD

systems. The result of this absence was, and is, apparent within the presently-constrained basic

research environment and sub-optimal nature of CAD-in-VHDL tool development.

Consider how VHDL is applied in such a tool development. VHDL presents a standard

format for human comprehension or encoding of digital system designs. Analyzing and pro-

cessing VHDL source code is quite difficult and requires considerable effort. Furthermore, a

broad range of complex CAD tools are generally available to support the computer system

design process, and each distinct CAD tool must input design data encoded in VHDL. Presently,

most CAD tool vendors must execute a cumbersome process to realize a CAD-in-VHDL

product. Typically, they:

1. Design an in-house intermediate form (IF).

2. Build a VHDL analyzer that validates the (static) correctness of the input VHDL,
producing an IF representation of the input.

3. Input the IF to each in-house-developed CAD tool.

In other words, processing VHDL as the source input language places additional, unnec-

essary burden upon the construction of such CAD tools. The result is a tightly-coupled, non-

standard analyzer and IF, within a particular, vendor (application)-specific environment.

A resulting problem is the current proliferation of several of these vendor-proprietary,

non-standard EFs and analyzers. In rare instances, a vendor may sell (at high cost) the IF and

analyzer to a third party. Unfortunately, no vendors are currently willing to standardize (and

fully productize) their IF. Each vendor maintains an internal IF and markets both tools that use

the IF and the VHDL analyzers to produce the IF. Consequently, either users are forced to use

the CAD tools from one vendor or to purchase several VHDL analyzers, one from each CAD

tool vendor whose design tools are being used.

This lack of a widely-available, standard IF for VHDL also inhibits basic research.

Before embarking on a research investigation on CAD with VHDL, researchers must either de-

sign their own particular IF and then build an analyzer to translate VHDL to the IF, or they must

purchase a vendor-supplied VHDL analyzer/intermediate form (A/IF). The former approach is

expensive in time and effort, and generally results in an inferior VHDL anälyzer/CAD system

that operates only over a limited VHDL subset. The latter approach is subject to the nature of

the chosen A/IF. It consequently suffers from high cost and the research project is vulnerable to

changes in the IF produced by the vendor to support their internal tool development. Further-

more, because the IF is generally not a primary product for the vendor, accompanying documen-

tation and support tools are generally of poor quality.

SAVANT was proposed to directly mitigate these problems. Its significance was ex-

pected to be that of a community-wide improvement in tool compatibility, as well as a significant

enhancement to the overall effectiveness of basic CAD-in-VHDL research and development.

We considered SAVANT to consist of two principal components: the IF and the analyzer; and a

supporting component, the record/ playback tool for archiving the IF in file form. The standard

IF would provide a common internal representation that vendors could follow and to which users

could request adherence. Furthermore, the availability of a public domain analyzer and library

subsystem would dramatically promote additional research and development in CAD and its

integration with VHDL. Finally, source code availability would also enable and promote inte-

gration and cross-coupling between other design language efforts. For example, concurrently

with the SAVANT program an MTL contract was underway, sponsored by AFRL Rome Site, to

develop a standard Analog/Mixed-signal and mixed-technology hardware description language

(VHDL-AMS) simulator. This VHDL-AMS simulator effort extended Scram (SAVANT's

VHDL analyzer) to support the additional features of analog description and promotes a rapid

integration of VHDL-AMS technology with VHDL technology among users.

The problem originally asserted for the Phase I program, the lack of an established, stan-

dard intermediate form for the exchange of VHDL-encoded electronic data, remained as the

Phase II problem statement. However, in the Phase I program, we made significant progress by

validating SAVANT's ability to solve the stated problem. In the next section, we describe the

progress we made in Phase I.

2.2 The Phase I Results

In Phase I, generally speaking, we developed certain critical SAVANT concepts, as

described in our Phase I proposal,[1] to the point of demonstrating their feasibility to overcome

the problem cited in Section 2.1. More specifically, we satisfied particular Phase I Objectives

and made progress toward solving the problem, as follows:

Phase I Objective 1: Establish the technical feasibility of the SA VANT technology as a stan-

dard A/IF exchange medium for CAD in VHDL. Here we produced quantified technical inves-

tigation results which confirmed that the innovations represented by SAVANT could be con-

structed in today's technology. We established the technical feasibility of the SAVANT tech-

nology by creating a preliminary definition of the IF and an analyzer prototype. The prototype

was used to successfully parse over 1400 VHDL test files. In addition, the IF was defined to be

object-oriented, thereby allowing easy integration with other CAD tools, and was planned to be

well-documented, for easy comprehension.

To elaborate, we explored several aspects of this objective in Phase I. Most significantly,

we reviewed different aspects of object-oriented representations and decided that an object-

oriented design would be most suitable for the IF. This approach also had been followed by

several others in their designs, however, our approach differed significantly in that our design

allowed for an extensible class definition within the object-oriented representation. Thus, the

CAD researcher could augment the class hierarchy with additional data and methods for prob-

lem-specific needs. Therefore, decoration of the IF with additional data/information/function-

ality would be well supported and furthermore, the CAD researcher would directly benefit from

the fact that the IF is object-oriented (and self-defining). That is, the CAD researcher benefits

from all aspects of an object-oriented representation such as inheritance, polymorphism, and

encapsulation. Lastly, we also discovered an implementation technique for C++ that would fully

support this design abstraction. Preliminary demonstration of this functionality was successfully

accomplished during Phase I.

For the analyzer portion of this objective, we located and copied all of the public-domain

parser generators announced in the monthly posting of the comp.compilers bulletin board. The

parser generators were all examined for their suitability in a VHDL analyzer. In addition to re-

viewing the capabilities of each of the parser generators, an analysis of the available grammars

for VHDL was conducted. We found that the Purdue Compiler Construction Tool Set (PCCTS)

provided an excellent support environment for the SAVANT analyzer development effort.

PCCTS supports an extended BNF (EBNF) notation and inputs LL(k) grammars. Inherited and

synthesized attributes, parser exception handling, token classes, and lexical classes are all sup-

ported by PCCTS. The software is in the public domain and runs on a variety of platforms

including SUN, DEC, SGI, VAX, HP, Linux, NetBSD, MSDOS, and OS/2. Furthermore, the

VHDL grammar input to PCCTS was originally developed at UC and was the only available

public-domain grammar that supported the VHDL 1993 standard (VHDL '93).

Phase I Objective 2: Establish community acceptance of the SA VANT technology and Define

the Commercial Product. Here we focused upon what was required of SAVANT to ensure

cornmunity endorsement of, and desire for, the SAVANT technology. We also defined what

portion of the SAVANT technology could be effectively transitioned into a commercial product.

We determined that the SAVANT Analyzer (Scram) and IF definition should be freely and easily

made available (at no charge, through the World Wide Web (WWW)) to anyone who wanted it.

In addition, we decided to provide a robust simulator based on SAVANT technology, also at no

charge through the WWW. Users of the SAVANT Analyzer/IF/Simulator would then be

allowed to create derivative products. In addition, we would allow distribution of derivative

6

work for non-commercial purposes. However, for-profit distribution/support/rent/lease of

SAVANT-based technology would be allowed only upon completion of a profit-sharing agree-

ment between MTL and the distributor.

By using a liberal licensing and distribution scheme, such as the one described above, we

expected to stimulate research in the VHDL community and to continually extend SAVANT's

utility to the community. Stated simply, our strategy was to establish community acceptance by

proliferating the SAVANT technology and by encouraging development of its extensions to

realize a viable product. MTL would also profit by providing products that enhanced the utility

of the basic SAVANT technology. Such products would include an interactive and fast simula-

tion environment, a man-machine interface for SAVANT, and derivative products developed by

third-party vendors. MTL would also be able to profit from a pay-per-use service based on

SAVANT.

In addition, we began the process of creating SAVANT awareness. MTL representatives

had discussed possible utilization of SAVANT with several EDA vendors, such as Exemplar,

Synopsys, Intergraph, Mentor Graphics and Intermetrics, at the Fall 1996 VTUF conference.

EDA vendors were receptive to our ideas and expressed interest in obtaining copies of the

software and documentation when it became available.

Phase I Objective 3: Produce valid preliminary design concepts for the two principal elements

of SAVANT: the IF and the Analyzer. Here we developed a solid foundation for Phase II

development. Its achievement also supported the feasibility and commercialization aspects by

showing the beginning of a clear path to development and subsequently to productization and

proliferation of SAVANT wilhin the community. Specifically, we produced preliminary analy-

zer and IF designs. As previously mentioned, we chose PCCTS for the construction of Scram

primarily since it allowed the creation of an LL(k) parser. Then, we employed PCCTS to pro-

duce a preliminary analyzer which correctly parsed over 1400 test files. Although the Phase I-

level analyzer performed no semantics testing, it did build parts of an initial version of the IF. In

addition, the IF design was object-oriented, which made it easily extensible. This would allow

easy integration of SAVANT with other CAD tools. Furthermore, we chose texinfo as the for-

mat for documentation of the IF. Texinfo can be translated into info format for on-line viewing,

dvi format for hardcopy output, and HTML for WWW access. This easy conversion into various

forms ensured easy comprehension of the SAVANT IF.

To elaborate, the basic elements of a VHDL '93 analyzer had been constructed and many

of the initial class definitions for the IF had also been constructed. In particular, we had a full

VHDL '93 grammar that input to PCCTS (see statement on Phase I Objective 1). The resulting

parser correctly parsed over 1400 test files, however, it had no semantics testing. In addition,

many classes for the object-oriented representation had been constructed. The classes were

organized into three components, namely: base nodes, CAD tool nodes, and leaf nodes. The

base nodes contained all the data and method definitions for the standard IF definition. The leaf

nodes were dummy classes that were used by the parser to create IF objects. The leaf nodes

were derived from the CAD nodes and allowed for user-added constructor/destructor invocations

as well as enabling a search up the derivation tree for the correct implementation of virtual func-

tions. The CAD tool nodes were organized into parts. The first part contained pure virtual func-

tions that served as base classes from which the common base nodes for all of the standard IF

nodes were derived (thus making the virtual functions visible). The second part was the actual

implementations of the functions for each node in the standard IF. Thus, for example, a code

generator CAD tool defined a pure virtual function cgen from which the base standard IF node

was derived. The remaining standard IF nodes had a derived class containing an implementation

for cgen. Lastly, the leaf classes were modified to derive from the classes for cgen and the

desired extensibility was accomplished.

This functionality was completely demonstrated (but not fully implemented) in the Phase

I effort. In addition, we actually showed the implementation of two functionalities. First, we

implemented a transmute method that rewrote the IF nodes for concurrent statements into an IF

node (and descendants) for the equivalent process statement. Second, we implemented a pub-

lish_yhdl method that outputs VHDL. Furthermore, we added a publish vhdl method derived

from the concurrent statement IF node that automatically caused an invocation of the transmute

function. Thus, publish_yhdl need not be defined for the nodes derived from concurrent state-

ment and an automatic translation to a process statement IF node was invoked. The publish_vhdl

method could then operate only on a subset of VHDL but actually achieve the desired capability

across the entirety of VHDL.

In summary, by achieving these Phase I Objectives, we made considerable progress

toward solving the problems asserted in Section 2.1. Through accomplishing Objective 1, we

established the feasibility of the SAVANT technology to fulfill the need for an established, stan-

dard intermediate form for the exchange of VHDL-encoded electronic data among CAD sys-

tems. By achieving Objective 2, we demonstrated how the SAVANT technology could be ac-

cepted and proliferated among the EDA community, thus ultimately abating the proliferation of

vendor-proprietary, non-standard IFs and analyzers. Finally, by producing the preliminary de-

signs demanded by Objective 3, we showed how our SAVANT concepts could be captured into a

design which would support, rather than inhibit, basic research in VHDL/CAD tool technology.

Our success in these Phase I endeavors then led us to define our Phase II Objectives, as we pre-

sent in the next section. Additional details regarding the Phase I accomplishments and results

may be found in the Phase I Final Report.[2]

2.3 The Phase II Baseline Program and Option Task Objectives

Our Phase II Objectives were designed to ensure the focus of the effort upon the problem

described in Section 2.1. In the context of completing the problem solution begun under Phase I,

the SBIR program demands from a Phase II effort the realization of a prototype system to serve

as a proof-of-concept platform, and a specific plan for commercialization of the technology,

either directly from the Phase II effort or as a result of subsequent Phase IE actions. In

consideration of these issues-the problem, the need for a demonstrable prototype, and the need

for a resulting commercial product-we defined seven specific objectives for the Baseline Phase

II program. In addition, an Option Task for integrating VHDL Object-Oriented Extensions into

SAVANT was defined and subsequently activated.

2.3.1. Baseline Phase II Objectives - We first outline our Baseline Phase II Objectives, and

then describe additional objectives defined for the Option Task. The objectives of the Baseline

Phase II SAVANT project, and their relationship to the problem, were as follows:

Objective 1. Establish the Preliminary Standard Intermediate Form (IF). This activity was to

act upon the preliminary IF design accomplished in Phase I, and to provide the basis for stan-

dardization and final refinement. Upon standardization, it would satisfy the need for a standard

intermediate form for the exchange of VHDL-encoded electronic data among CAD tools. In

addition, it would abate proliferation of proprietary, non-standard IFs and analyzers, as discussed

in Section 2.1. The presence of a standard IF would allow the construction of CAD tools that

could interface with a standard analyzer format to facilitate the insertion of research technology

into the commercial sector.

Objective 2. Demonstrate the capability of object-oriented techniques for building an exten-

sible intermediate form. This demonstration was to establish proof of extensibility, with bene-

fits to both proliferation and ease of use. Extensibility of the intermediate form would allow

easy integration of the SAVANT Analyzer/Intermediate Form (A/IF) with other CAD tools. In

addition, it would promote reuse of already-existing software, since its object-orientedness

would allow use of inheritance and polymorphism. Therefore, extensibility would stimulate

further research in the design automation area due to the ease of CAD tool creation and inte-

gration.

Objective 3. Develop the software capability to support construction of the intermediate form,

with the affiliated support routines needed to enable the SAVANT technology for CAD

researchers. Here we were to produce the means for potential users to integrate SAVANT tech-

nology into their particular environments. This would further promote the proliferation of

SAVANT in place of non-standard IFs. Since such software could be re-utilized by every CAD

tool developer who used the SAVANT IF, free and easy access to such software would promote

the use of SAVANT, thereby helping to establish it as a standard.

Objective 4. Develop robust public domain software that provides a simulation environment

based on SAVANT technology. A simulator based on SAVANT, which would also be freely

and easily accessible, would allow us to provide the users of SAVANT with an end-to-end elec-

tronic design simulation capability. We intended to provide such capability by interfacing SA-

VANT with the Quick Execution of Simulation, Synthesis, and Test (QUEST) simulator (from

the University of Cincinnati's ongoing DARPA/QUEST project). A free and easily-available

SAVANT-based simulator would further promote SAVANT use and again help establish it as a

standard.

Objective 5. Promote Standardization of SAVANT. After we had created a clear definition of

the SAVANT IF and produced robust software that allowed easy use of this IF, we were to en-

courage standardization of the IF through the IEEE Design Automation Standards Committee

(DASC). We expected that the SAVANT IF and associated software would be available to the

10

user community and, we hoped, in active use by several users, before any DASC subcommittee

reactivation initiatives would be started. Existence of the SAVANT IF as an IEEE standard

would establish it as a standard intermediate form for exchange of VHDL-encoded electronic

data among CAD systems.

Objective 6. Produce the Prototype SAVANT System. Here we were to aggregate the elements

of SAVANT into a deliverable package. Such a system would integrate the SAVANT IF defini-

tion and documentation with SAVANT-based software, namely the Analyzer, the Record/

Playback Tools, and the Simulator. The integrated SAVANT system would then be made avail-

able to anyone and everyone through the WWW. Easy access to a well-integrated system at a

minimal cost would promote the use of SAVANT technology and research into its possible ex-

tensions. The prototype SAVANT software system was planned to include the following com-

ponents:

1. Scram: Translating VHDL source programs into the intermediate form.

2. Transmute: Manipulating the intermediate form and rewriting nodes from one form
to another. In particular, the rewriting of concurrent statements into their equivalent
process statement definition.

3. Publisher: Output routines that generate VHDL (publish-vhdl) and C++ (publish-
cpp) representations of the intermediate form.

4. Archive: Library manager functions that load and store the intermediate form.
Initially these functions would rely on VHDL as the intermediate form and invoke
Scram and publish-vhdl to read/write the library files.

The above-described SAVANT software would be made freely available to the user com-

munity through the WWW. The software would be free to all for non-commercial use and not

under export control. Commercial use of the SAVANT software would require licensing

through MTL Systems, Inc. In addition to the public-domain software, the following commer-

cializable software was to be developed under the SAVANT Phase II program:

1. Debugger: Basic debugging utilities provided through a command-line interface.
The debugger would be derived from the object-oriented QUEST simulation kernel
and code generator.

2. Interactive Simulator: An easy-to-use, man-machine interface for interactive
simulation and animation. The simulator was to be based upon the QUEST
simulation kernel, the QUEST code generator, and the SAVANT debugger.

Objective 7. Commercialize the SAVANT System. Here we were to accomplish the prolifera-

tion of the SAVANT technology, as we have discussed in the preceding sections, and to establish

li

the plan to realize the near- and long-term software enhancements which were to become the

accompanying commercial products. Commercialization of the SAVANT system would essen-

tially be done by selling these software enhancements to provide added functionality, perform-

ance and ease-of-use. In addition, profits/royalty from third-party tool developers providing

extensions to SAVANT would make SAVANT immediately commercially viable, even without

the MTL enhancements.

2.3.2. Option Task Overview and Objectives - For our baseline Phase II SAVANT Program,

we asserted our problem as the lack of an established, standard intermediate form (IF) for the

exchange of VHDL-encoded electronic data among CAD developers. Within this problem there

was another, very important issue-Object-Oriented (O-O) design. As the practice and benefits of

0-0 continued to proliferate, we expected that more and more CAD tools would be aligned with

this paradigm. Realistically, we could envision an almost exclusively object-oriented design

world in the not-too-distant future. Hence it was not merely convenient, but imperative, that

evolving CAD tool designs should support object-oriented design practices. The integration of

VHDL-0 extensions into SAVANT was deemed critical to its success, its acceptance within the

design community it is intended to serve, and to the general improvement in effectiveness of

VHDL-in-CAD tools we wished to achieve through SAVANT.

Our Option Task, whose objectives we describe herein, was designed to provide these

needed 0-0 extensions, in a manner synergistic with the Phase II SAVANT development pro-

gram. In general, the objectives of the proposed VHDL-0 extensions Option Task related to

technical accomplishment as well as to community acceptance. By performing this Option Task,

we planned to achieve the following objectives:

Option Task Objective 1 - Demonstrate that 0-0 extensions to VHDL do not have to be

expensive in VHDL analysis and simulation performance-that they can be both performance and

cost-effective.

Option Task Objective 2 - Build a system to allow exploration of 0-0 VHDL for the 1998

VHDL standardization effort. This would allow the implementation of 0-0 constructs in the

next standardization cycle.

Option Task Objective 3 - Provide validation of the utility of 0-0 extensions for hardware

design and description. This would not only allow 0-0 benefits (reusability, modularity, etc.) in

12

hardware design, but would also promote more cohesion between software and hardware

designers as a whole.

Option Task Objective 4 - Leverage the public-domain nature of SAVANT to provide a VHDL-

O test platform to the VHDL community for the early exploration of the proposed extensions for

the 1998 standardization effort. This would provide the platform when the community is ready

for it.

Option Task Objective 5 - Set the stage for early release of a 1998 O-0-conforming simulation

environment, and possibly allow joint development of the 1998 language standard and IF defi-

nition. This would bring together the standardization and implementation elements as a cohesive

package for the community.

These objectives, for both the Phase II Baseline Program and for the Option Task, were

deemed achievable. Next, we describe the technical approaches and the program plan by which

we sought to accomplish them.

2.4 The Technical Approaches

Here, we overview our Phase II Technical Approaches for both the Baseline Program and

the Option Task. These discussions outline the application of the relevant technologies, leaving

the programmatic aspects of tasks and management for the next section. The reader requiring

additional detail regarding our technical approach may wish to review the Phase II Proposal[3] for

this effort.

2.4.1 Baseline Program Technical Approach - Here, we explicitly detail the technical methods

we planned to apply to produce the results, to achieve the objectives and to clearly show an ad-

vancement in research appropriate for this Phase II effort.

The key technical contribution of the SAVANT Phase II Program was seen to be the

establishment of a standard intermediate form of digital systems for machine-processable CAD

tools. In general, the intermediate form representation of a digital system design can be input

from a variety of sources (textual languages, graphical languages, etc.); however, the primary

source for this effort would be the DoD standard hardware description language, VHDL. Thus,

in addition to designing and documenting the intermediate form, SAVANT would include a

VHDL-to-intermediate form translator. The intermediate form would be an in-memory tree data

13

structure. Consequently, SAVANT would also require some mechanism for off-line archival and

retrieval of digital system designs represented in the intermediate form. Finally, the SAVANT

project must address the problem of technology insertion; how would the industrial, govern-

mental, and academic communities be encouraged to use the SAVANT technology? These

issues are more fully addressed in the ensuing discussions.

The Standard Intermediate Form - The importance of and need for a standard intermediate form

was discussed in Section 1. Briefly, a standard intermediate form is important and would serve

the design automation community by providing a unifying, easy-to-process representation of

electronic designs. That is, instead of analyzing, verifying correctness, and manipulating VHDL

source code, CAD tools would be able to interface with a machine-generated intermediate form

of the design which has already been analyzed for static semantic correctness.

The design of an intermediate needed to preserve as much semantic content from the

original source input as possible. However, it was not necessary to retain an ability to exactly

reproduce the source input. That is, for example, comments, new lines, and spaces are not lang-

uage constructs with semantic content (while semantic constructs can be added as comments,

such as "cf VAL/VHDL," the VHDL language does not formally relate semantic content with

comments). Thus, some information from the original source input could be discarded.

While the intermediate form would not preserve all information from the original source

input, it needed to allow for the augmentation of the design data by CAD tools. More precisely,

a CAD tool may need to mark components of the intermediate form with additional information

for later use (by the same or by other CAD tools). For example, a simulation code generator

might need to decorate the intermediate form with code templates for later phases in the code

generation process. Thus, the intermediate form needed to be extensible for the inclusion of

additional CAD tool-synthesized information.

As a result of these needs, the intermediate form was to be designed as an object-oriented

data structure with each node in the tree derived from a common base object. The intermediate

form would be an extensible definition that is capable of adding additional data members and

methods to each node in the intermediate form. This derivation structure, shown in Figure 1 for

illustrative purposes and to help simplify the example for discussion purposes only, should be

14

considered only a partial definition of the final derivation tree. The actual design has consid-

erably more intermediate class definitions.

BASE

Design
Unit

/\
Primary Secondary

Unit Unit

Concurrent
Statement

Process
Statement

Concurrent
Signal Assignment

Sequential
Statement

/\
If Case

Statement Statement

1 /\
Process Selected Conditional

Statement Concurrent Concurrent
With Signal Signal

Sensitivity Assignment Assignment

Figure 1. Illustrating the Derivation of Objects in the Intermediate Form.

BASE

Design mr Concurrent ^ Sequential
Unit Statement Statement

/\ /v /\
Primary Secondary Process Concurrent If Case

Unit Unit Statement Signal Assignment Statement Statement

1 /\ 1
Process Selected Conditional Case

Statement Concurrent Concurrent ff Statement
With Signal Signal Cgen

Sensitivity Assignment Assignment

i \/
Process Concurrent

Statement Signal Assignment
Cgen Cgen

Figure 2. Extending the Basic Intermediate Form.

15

An example of how the basic intermediate form was to be extensible is shown in Figure

2. In this figure, the nodes inside the shaded areas are the base intermediate form definition.

The nodes outside the shaded areas illustrate what might be used for a simple code generator

(cgen).

Figures 1 and 2 show the logical organization of the desired intermediate form. The soft-

ware implementation accompanying SAVANT that builds the intermediate form would be writ-

ten in C++ and would require some additional structure to achieve the desirable functionality. In

particular, the implementation would follow a structure as shown in Figure 3.

Archive

Publisher Transmute

Base
Statement
Publisher

BASE

Process Selected Conditional
Statement Concurrent Concurrent

W/Sensitivity Signal Assignment Signal Assignment

T I I
Process Selected Conditional

Statement Concurrent Concurrent
Publisher Signal Transmute Signal Transmute

1 I 1
Process

Statement
Process

Statement
Process

Statement

Figure 3. Implementation and Delivery Class Structure for the SAVANT Project.

In Figure 3, the basic intermediate form is captured by the nodes shown in the shaded

areas. Other nodes such as those needed for research CAD tools are shown outside of the shaded

areas. Four important observations need to be made about this figure.

16

1. The base node of the intermediate form class derivation tree is actually derived from
base nodes for each of the research CAD tools.

2. In instantiating new nodes for the intermediate form, only those nodes shown in the
shaded area at the bottom of the structure are to be created. This is enforced by
having a single procedure called createjnode defined in the base class that actually
performs all node creation.

3. The leaf nodes of the intermediate form must be maintained as the research CAD
classes and are added to the intermediate form. This is necessary so that
constructors/destructors are invoked and methods/data of the intermediate classes
become known.

4. Intermediate nodes in the intermediate form may also have classes derived by the
research CAD tools. The reason for this is explained below (see the discussion of the
publisher/transmute classes to be included with the initial SAVANT software
release).

Planned Implementations and the Deliverable IF - As we previously described in Section 2, the

initial SAVANT software release was planned to include the following components and capa-

bilities:

Scram: Translating VHDL source programs into the intermediate form.

Transmute: Manipulating the intermediate form and rewriting nodes from one
form to another. In particular, the rewriting of concurrent statements
into their equivalent process statement definitions.

Publisher: Output routines that generate VHDL publish_vhdl and C++
publish_cpp representations of the intermediate form.

Archive: Library manager functions that load and store the intermediate form.
Initially these functions would rely on VHDL as the intermediate form
and invoke scram and publish_vhdl to read/write the library files.

Debugger: Basic debugging utilities provided through a command line interface.
The debugger would be derived from the object-oriented QUEST
simulation kernel and code generator.

Interactive user I/F: Easy-to-use, man-machine interface for interactive simulation and
animation. The simulator would be based upon the QUEST simulation
kernel, the QUEST code generator and the SAVANT debugger. (See
Section 4 for details about the QUEST project).

The first four software objects would be publicly available and would be developed by

our subcontractor, the University of Cincinnati, who retained the copyright. The last two soft-

ware objects (for debugging and interactive simulation) would be commercial software, devel-

oped by and the property of MTL Systems, Inc. In the following discussions, we describe how

17

these software objects which comprise the SAVANT system, were expected to perform their cri-

tical functions.

Scram: Translation from VHDL to the Intermediate Form - As previously mentioned, the con-

struction of a VHDL analyzer is a complex problem. In fact, this problem is sufficiently com-

plex that it prevents many research investigations from reaching full integration with VHDL.

Even the problem of merely forming a machine-processable set of grammar productions for

VHDL is quite difficult. Despite much interest and many queries, little progress had been made

toward the construction of a public domain VHDL parser at the inception of this project. The

chief problem is that the grammar given in the language reference manual is written primarily for

human consumption and does not easily translate to a machine-processable form. Most attempts

at building a VHDL parser fail because most available compiler-compiler toolsets produce

parsers with only one token look-ahead and an LL(1) or LR(1) grammar for VHDL is difficult to

construct.

In this project, we planned to use the PCCTS compiler construction toolkit to build the

VHDL analyzer. PCCTS generates LL(k) parsers and was selected over other tools, such as

YACC/LEX or Cocktail, because (i) it is LL(k), (ii) it supports predictive parsing, (iii) it readily

supports attribute transmission, and (iv) it builds a parser compatible with C++. Because VHDL

designs can easily grow quite large and because LL parsers tend to be slightly faster and more

compact, we felt that PCCTS was an excellent choice for SAVANT's VHDL analyzer. Further-

more, the PCCTS developers were actively engaged in extending the tool suite and were incor-

porating extensive error recovery capabilities into the PCCTS. Finally, PCCTS generates ANSI

C that is processable by g++. Consequently, we planned to build the parser actions in C++.

Initial development of a VHDL analyzer had been conducted under Phase I of this SBIR

program. The analyzer was called Scram and the PCCTS grammar productions and token defini-

tions for VHDL were already complete. The resulting parser was LL(2); it correctly parsed over

1400 test files. The version of Scram exiting at the Phase I conclusion performed no semantic

testing but did build parts of an initial version of the intermediate form. A preliminary symbol

table class had been developed that included both hash and scope class definitions.

Transmute: Rewriting the Intermediate Form - The transmute base class defines a single vir-

tual method called transmogrify, that would be written for several of the objects in the intermedi-

18

ate form. The reason for having this method is that many VHDL objects have equivalent forms

as VHDL process statements. Thus, instead of building tools that operate across the entire

VHDL language, transmute would allow the research CAD tool developer to work with a smaller

subset of VHDL. These methods would be used by the publisher class (next section) to reduce

the complexity of the output generation task.

Publisher: Output Routines for the Intermediate Form - Output generation for the SAVANT

project would be implemented by the publisher class definitions. In particular, two virtual

methods (publish_vhdl and publish_cpp) would be defined in the publisher class. By default,

this class would also automatically use the methods from transmute whenever a publisher

method was not written for the intermediate form node. This ability is achieved by having pub-

lisher methods derived from the intermediate form base class definition that we call the

transmogrify method. This was illustrated earlier in Figure 3 by the Base Statement Publisher.

The reader should note that transmuteQ does not run with publish jyhdlQ. It is, however,

used with publish_cc(). The problem we ran into was caused when publishjyhdlQ used trans-

muteQ. The basic issue was that every time one invokes the analyzer, the VHDL is analyzed and

then stored into a library. Since the library item was written using publish_vhdl(), the IIR tree

for the model would be modified by the transmuteQ function. Thus, any later work (e.g., synthe-

sis) over the IIR tree would see the modified tree instead of the original. Consequently, the post-

library write phase would not see any concurrent statements other than process statements (since

everything else was transmuted to the process statement). In some cases the backend tools

needed to still see the original tree. Therefore, we modified the publish_yhdlQ functions to work

without the transmuteQ method (basically this meant implementing publish_yhdlQ for all of the

nodes in the IIR tree).

Archive: Archiving the Intermediate Form - The VHDL analyzer, Scram, would translate

VHDL into the intermediate form. The intermediate form would be a memory resident data

structure (tree) that must be archived into some library format for later use. That is, VHDL de-

sign units (design entities, packages, etc.) must be analyzable and storable into a design library

for later use by other VHDL design units. Therefore, SAVANT would also include two addi-

tional functions called RECORD and PLAYBACK to archive the intermediate form. RECORD

would save the intermediate form representation of a VHDL design unit into the design library

19

and PLAYBACK would read a design unit from the design libraries into the intermediate form.

For simplicity, initial implementations for RECORD/PLAYBACK would simply use VHDL as

the library format using publish_yhdl to output the VHDL and Scram to input the VHDL.

Debugger: A Debugger for the Simulator - The debugger would provide basic debugging util-

ities through a command line interface. More specifically, at least the following functionality

would be provided: (i) start or stop simulation at a specified simulation time, (ii) examine signal

and variable values, and (iii) set breakpoints on specified statements. The debugger would be

derived from the object-oriented QUEST simulation kernel and code generator.

Interactive User I/F: An Interactive User Interface to the Simulator - An easy-to-use, man-

machine interface for interactive simulation and animation would be defined and implemented.

Such interface would be based upon the QUEST simulation kernel, the QUEST code generator

and the SAVANT debugger. The interface would be X-based and implemented using a cross-

platform development tool suite such as XVT. However, we would evaluate other available

tools during the initial phases of the program to determine a suitable development environment.

Our objective was to develop an interface that would be portable across workstations and

personal computer environments. The interface would provide all the functionality of the debug-

ger through an easy-to-use man-machine interface. In addition, it would provide animation capa-

bilities based upon process graph representations of VHDL.

In summary of our baseline technical approach, it was designed to produce the appropr-

iate results and deliverables to achieve the program objectives. As described, these approaches

were founded upon sound engineering principles and proven technologies from the Phase I pro-

gram, and other associated projects (such as QUEST). Next, we describe our approach to the

Option Task, designed to assess 0-0 extensions to VHDL.

2.4.2 Option Task Technical Approach - As VHDL continued to evolve, it was clear that

many of the emerging concepts in programming languages would be considered for inclusion in

the VHDL language standard. That is, as new constructs are incorporated into contemporary

programming languages, it is only natural to explore the inclusion of the same (or similar) con-

structs into VHDL. Currently, one of the most rapidly emerging concepts in new programming

languages is the notion of the language being object-oriented. While the specific constructs used

to make a specific language object-oriented vary widely, the basic notion of designing and using

20

object-oriented programming languages was gaining wide acceptance. In direct response to the

widespread interest in object-oriented programming languages, several investigators were ex-

ploring object-oriented extensions for VHDL.

Despite the widespread interest in object-oriented technologies and programming lang-

uages, there remained considerable skepticism regarding the utility and cost of object-oriented

computer languages. For example, in some cases object-oriented extensions to programming

languages have resulted in serious compromises to compile-time and run-time performance (such

as in Ada, C, and C++). Consequently, some argue that object-oriented extensions are a burden

and should not be incorporated into (new or) existing languages. However, these costs can be

mitigated by careful analysis of the cos^enefit ratio of a particular set of language extensions.

Furthermore, the costs are also reduced as compiler technology advances (consider the early

performance of Ada compilers from the mid 80's vs the performance of Ada compilers released

today).

This option for the SAVANT program was to explore and to attempt to quantify the com-

pile-time and run-time costs of object-oriented extensions to a VHDL analyzer and simulator. In

particular, we planned to implement most (if not all) of the object-oriented extensions to VHDL

that the IEEE DASC Object-Oriented Study Group was to submit in preparation for the 1998

language (re)standardization effort. The extensions were to be incorporated into the SAVANT

software suite. Each extension would be carefully profiled in an attempt to quantify its analysis,

elaboration, and run-time costs. Furthermore, the SAVANT IF would also be extended to ac-

commodate the object-oriented extensions. The successful completion of this option would help

support arguments in favor of object-oriented extensions whenever the costs are (or can be made)

acceptable. Furthermore, the extended IF and public domain analyzer would allow the rapid

integration of the 1998 language standard into the CAD community.

2.4.3 Technical Approach Summary - We have outlined our technical approaches to the

Baseline SAVANT program, as well as the Option Task for 0-0 VHDL assessment. Next, we

describe the approach we implemented to manage the SAVANT program.

2.5 The Project Organization and Management Approach

Our planned and actual organization of the project tasking included the Baseline Phase II

program and the additional option which was exercised. The original program was focused upon

21

developing, testing, and distributing the SAVANT system, while the option concentrated upon

implementing and testing Object-Oriented (O-O) extensions to SAVANT. In the course of the

program, additional subcontracting assistance was required, which MTL obtained from EDAp-

tive Computing, Inc. In the remainder of this section, we describe the evolution from the

planned to the actual execution of the program, as well as the roles each organization played in

the activities.

2.5.1 The Original Program Project Plan - Figure 4 illustrates our original project plan for the

SAVANT Baseline Program, as well as the manner in which we actually executed it. Although

both MTL and UC participated to some degree in all tasks, those that were primarily MTL's or

UC's responsibility are indicated in the Task numbers (Task x-UC or Task y-MTL). We

originally planned that UC would develop the Analyzer and Code Generator (Tasks la, 2a). The

Analyzer Development would include development of a standard Intermediate Form (IF), and

the Code Generator Development would include the use or adaptation of an existing simulation

kernel (TyVIS and WARPED). MTL would then add code improvements, toward the goal of

producing a more "commercial-grade" level of code than was expected from the university.

MTL would also provide some supporting tools in a System Support Environment (or "SSE"),

and would test and distribute the entire package. All the development tasks within the plan were

expected to incur several cyclic iterations of specification, design, implementation, and evalua-

tion, in a more-or-less typical "spiral" development paradigm.

As it turned out, this organization of tasks, if executed as planned, would have introduced

severe inefficiency into the whole process. Hence, we altered our approach.

First of all, we executed the code improvement tasks (lb and 2b) by providing

recommendations from MTL back to UC throughout the course of the program. MTL would re-

ceive some interim version, would test it, would discover ways to improve it, and would then

send these recommendations to the UC team. In this manner, the number of different versions at

different organizations was minimized and the core development work remained at a single

point-UC.

22

Recommendations

Figure 4. The Original SA VANT Project Plan.

Second, MTL performed the Support Environment Development (Task 3), consisting of a

VHDLyzer Toolkit and Debugger (which we describe in detail later in Section 3), concurrently

with the Analyzer and the Code Generator development. MTL developed these components,

with subcontract assistance from EDAptive, based upon interim releases of the Analyzer and

Code Generator, and upgraded them as deemed appropriate throughout the project, to pace the

changes in the Analyzer and the Code Generator. Finally, MTL and UC shared the testing and

distribution activities (Task 4). UC tested interim versions as they developed, as part of the de-

velopment process. MTL performed additional testing, and provided feedback to UC. MTL and

UC released interim versions through coordinated WWW pages throughout the program.

2.5.2 Option Task Project Plan - Under the Option Task, MTL, UC, and EDAptive all per-

formed research and development aimed toward assessing the value of object-oriented (O-O) ex-

tensions to VHDL. The SAVANT components provided the experimental platform for the as-

sessment, as illustrated in Figure 5. Under this option, UC conducted a survey of the planned 0-

O extensions to VHDL (known as VHDL-O), both to understand the nature of the planned exten-

sions and to obtain VHDL user community opinions regarding them (Task Z). Based upon the

survey results, UC then modified certain components of SAVANT to produce a test-implemen-

23

survey results, UC then modified certain components of SAVANT to produce a test-implemen-

tation of the extensions under the SAVANT framework. (Tasks A-D). EDAptive, in coor-

dination with MTL, developed 0-0 models by which the performance of the extensions could be

evaluated (Task E), and then executed these models within the extended SAVANT component

framework to quantify the performance of the 0-0 extensions (Task F). The assessment of the

0-0 extensions concentrated more upon usability than upon performance issues.

Figure 5. SAVANT Option Tasking.

2.5.3 Project Organization and Management Approach Summary - In summary, the project

was executed slightly differently than was planned, in order to gain efficiency, and additional

subcontracting support was obtained to provide necessary expertise. The results of the original

task were the SAVANT components and their test results, and the results of the option tasking

were the extended components, the 0-0 extension models, and the results of the 0-0 extension

performance assessment.

In the next section, we describe all these results, and the activities leading to them, in

detail.

24

3.0 RESULTS AND DISCUSSION

In this section, we describe the results of our development of the SAVANT system, and

the assessment of the 0-0 extensions to VHDL in our Option Task. We also include any signifi-

cant events, discoveries, or problems we encountered in the course of our work which we feel

would benefit'the reader. For the SAVANT portion of this section, we first discuss the com-

ponents of SAVANT: the Analyzer (and IF), the Code Generator, and the Support Environment

(consisting of the Debugger and the User's Toolkit). These components were developed for use

on Unix systems. We did not achieve an NT-based version in this effort. We then address the

testing and distribution aspects of SAVANT. For the 0-0 Extensions, we first outline a survey

of the 0-0 extensions we conducted, then describe the 0-0 extensions we made to the compo-

nents, the models we selected to assess them, and the results of the assessment. First, however,

before delving into the SAVANT development and results aspects, we provide some background

information regarding how other programs' technologies and products related to SAVANT.

3.1 The SAVANT System - An Overview of Related Technologies - The SAVANT project

interacted with a number of important, related projects at UC, and it is helpful to understand how

these contributed to the SAVANT development. Specifically, components from the DARPA

RASSP, QUEST II, and HEPE programs were used by the SAVANT program. The interactions

among the VHDL components from the SAVANT/RASSP (Rapid prototyping of Application

Specitic Signal Processors)/QUEST (Quick Execution, Synthesis and Test Vector Genera-

tion)/HEPE (Heterogeneous Environment for Performance Evaluation) research programs are

illustrated in Figure 6. Here, we also indicate use of an intermediate form (IF) standard, AIRE

(Advanced Intermediate Form for Extensibility), being developed with support from this project.

The Advanced Intermediate Representation with Extensibility (ATRE/CE) is a specifica-

tion describing an object oriented representation of VHDL parse trees. The AIRE specification

includes support for VHDL '87, VHDL '93, and VHDL-AMS (although SAVANT supports only

VHDL '93). The AIRE-CE specification was developed jointly by MTL Systems and the Uni-

versity of Cincinnati with contributions from many other organizations. Online documentation

for AIRE-CE can be found on the web at http://www.mtlsystems.com/aire/.

AIRE/CE specifies two different representations of VHDL: (i) the Internal Intermediate

Representation (IIR), an in-memory representation of the parse tree; and (ii) the File Intermediate

25

VHDL
Source
Code

Scram
Analyzer

To
Multi-Processing

Platform

I

IIR - In-Memory
Intermediate

(from AIRE Spec.)

SAVANT

FIR - File
Intermediate

(as VHDL source)

I

I
SAVANT

Transmogrifier

SAVANT
Code Generator

& Optimizer

I
IIR - In-Memory

Intermediate
(from AIRE Spec.)

(reduced form)

TyVIS:
VHDL

Simulation
Kernel

WARPED:
Time-warp
Simulation

Kernel

MPI

QUEST II/HEPE

Figure 6. UC Program Relationships to SA VANT.

Representation (FIR) used to store parse trees to files. This discussion will concentrate on the

HR. At present, SAVANT does not use FIR for the file format and instead uses a machine gen-

erated VHDL to build library files.

SAVANT's implementation of the IIR is written in C++, which uses the notion of a class

in order to encapsulate objects. Each node specified by the IIR has been implemented as a class

in the SAVANT implementation, and the various functions specified are methods of these

classes. The resulting hierarchy is used to create an efficient representation of a VHDL program.

Our implementation of AIRE/CE provides extensibility by using the inheritance feature built into

C++.

The interactions among these projects provided a synergistic working relationship, while

each project attended to its particular goals. The objective of the SAVANT program was to

26

build a VHDL analyzer with a well-documented, extensible, object-oriented intermediate form.

The RASSP program investigated the development of formal semantic models for VHDL and a

set of affiliated theories for manipulating the models. The QUEST program investigated parallel

algorithms and architectures for simulation, synthesis, and Automatic Test Pattern Generation

(ATPG). The HEPE program attempted to simultaneously apply digital simulation and formal

methods to network performance evaluation.

A single point of reference for the VHDL analysis and simulation aspects of these three

projects is available on the WWW at http://www.ececs.uc.edu/~paw/lab. Individual sites for the

QUEST and HEPE projects are:

QUEST Project: (http://www.ececs.uc.edu/~hcarter/questll.html)

HEPE Project: (http://www.ececs.uc.edu/~kbse/hepe)

We discuss the specifics regarding our use of these technologies from other projects in

more detail, as we proceed through the various components of SAVANT within this section. We

begin now with the Analyzer.

3.2 Task 1: The Analyzer

The SAVANT package includes a VHDL analyzer, called "Scram," that inputs and vali-

dates the correctness of VHDL models. For correct VHDL models, Scram then builds the cor-

responding Intermediate form Representation (IR) using the fci-memory IR (IIR) format defined

by the emerging AIRE/CE standard (discussed more fully in the next paragraph). Scram is built

using the freely-available LL(k) parser/generator called PCCTS (from Purdue). The VHDL

grammar for Scram is an LL(2) grammar, with some additional embedded lookahead predicates

to aid the parsing process. The grammar also includes the affiliated action code to type-check

and build the intermediate form (ER).

As originally proposed, the SAVANT project was to develop its own intermediate form

representation with accompanying online hyper-linked documentation. At the end of the first

year, we decided to merge our intermediate form with FTL Systems' John Willis' work, and to

strive toward an international standard intermediate form. Thus began the AIRE/CE intermedi-

ate form. AIRE/CE actually defines two intermediates:

1. The HR, which is an In-memory Intermediate Representation form definition, and

2. The FIR, which is a File Intermediate Representation form.

27

At the beginning of the second year of the project, we began our conversion to this IIR.

The version of the SAVANT intermediate form implemented at the close of the SAVANT

project is fully compliant to the HR, to the extent we have tested it.

The file format used by SAVANT is raw VHDL. More precisely, the SAVANT project

has extended the HR node definitions with several key extensions, namely: publish_cc, pub-

lish_yhdl, and transmute. The publish jyhdl methods reproduce VHDL code from the IIR inter-

mediate. Thus, any model stored in the IIR can be rewritten as VHDL using the publish jyhdl

methods. It should be noted that the VHDL written by publishj>hdl is not formatted exactly as

the original input VHDL. More precisely, there may be extra or missing spaces, tabs, or new

lines. Extensive testing has been performed to validate that the publish_yhdl methods faithfully

reproduce the equivalent VHDL. This is discussed in Section 3.4.

After the conversion to the IIR intermediate, a good deal of time was spent attempting to

implement the FIR format. Unfortunately, the FIR format definition was not as mature as the IIR

format and we found too many gaps in the standard to continue at that time. Furthermore, the

publish_yhdl functions were becoming crucial to our user community for examining the results

of their manipulations of the HR. More precisely, we have found that users of SAVANT will

frequently decide to add routines to the HR nodes that analyze and manipulate the IIR tree. They

will then use the publish jyhdl functions to output the modified tree and finally they (frequently)

use commercial tools against the rewritten VHDL. This is done by at least two different groups,

one studying synthesis and one studying fault modeling. Furthermore, we found the pub-

lish _vhdl functions helpful to our debugging within the SAVANT project. Consequently, we

abandoned our efforts to implement the FIR output routines and instead focused on the pub-

lish_vhdl methods. The work done in writing the FIR output routines has not been continued.

However, the partial implementation is still present in the extension classes and the FIR output

routine development could easily be continued.

The aforementioned publish_cc methods and transmute methods are important to our

integration with the QUEST II and HEPE program codes to develop an operational VHDL par-

allel simulator. In particular, the publish_cc routines output C++ code that links with the TyVIS

and WARPED simulation kernels (see Figure 6). The transmute methods implement the reduc-

tion algebra from the UC RASSP project in order to simplify the IIR nodes for whichpublish_cc

28

methods would need to be written. More simply, the transmute nodes rewrite the VHDL con-

current statements (or, at least, their IIR nodes) into simpler forms. For example, except for the

process statement, all concurrent statements are rewritten into their equivalent process statement

form; process statements with sensitivity lists are rewritten as process statements with a trailing

wait statement; and sequential signal assignment statements with a set of waveform elements are

rewritten into a set of signal assignment statements, each with only one waveform element.

Originally the transmute functions were used before all of our extensions (publish_vhdl

mdpublishjcc). However, since we were using the publish _yhdl functions to write our libraries,

the IIR tree handed to backend users was actually the "transmuted" tree. Unfortunately, some

backend CAD tools (such as behavioral synthesis) impose additional semantic information into

concurrent statements (for instance, concurrent signal assignments are assigned additional se-

mantic constraints over their equivalent process statement representation); consequently these

tools were unable to perform optimally on the transmuted form. We discovered this error only at

the beginning of 1998, but were able to quickly extend the publish jyhdl methods to the entire

node set of IIR and are now able to hand the original IIR tree off to the backend CAD tools.

3.2.1 Task la: Analyzer Development. The analyzer (Scram) development built upon the '87

grammar originally developed by Dr. P. A. Wilsey in the early 90s. The grammar was originally

written using only the PCCTS tools, however, it was discovered that the lack of a backtracking

lexer tool in PCCTS complicated the implementation of a fully-compliant VHDL '93 analyzer.

Consequently, at the beginning of the SAVANT project the grammar conversion to VHDL '93

(partially completed by Dr. Wilsey) was completed and the PCCTS lexer was replaced by a flex

lexer (flex is also a freely-available tool).

Various versions of the analyzer have been released over the lifetime of the SAVANT

project. The first releases occurred just after the first year of the program and have continued

regularly throughout the program. In general, we have tried to release new versions just before

significant VHDL related conferences were held or whenever significant advances were made to

the capabilities of the system. Just before the Design Automation Conference (DAC '98),

version 0.9.1 was released and a final version (1.0) is slated for release in October 1998. These

versions are fairly complete, passing over 97% of the no error cases of the Billowitch test suite.

We have also worked to build a system that produces reasonable error messages and that aborts

29

gracefully (instead of giving segmentation violations).

3.2.2 Task lb: Analyzer Code Improvement. In the general sense, MTL and UC interacted

throughout the program to identify and implement coding changes deemed appropriate. While

MTL sought to identify and suggest such changes, UC was the final authority on implementation

for two reasons: (1) UC was doing the development, and, consequently, had the expertise to im-

plement changes. MTL's expertise lay more within the ability to test and assess functionality.

(2) UC was executing an iterative development program with their own version control imple-

mented. For MTL to inject an additional version with changes was deemed potentially disrup-

tive to the development process at UC. In this sense, several suggestions for improving output

handling, entity identification, and other minor aspects were communicated to the UC develop-

ment team.

The most significant improvement suggestion was one concerning compile time improve-

ment (reduction). We discovered that although the initial compilation time was largely not

improvable, techniques could be implemented to improve subsequent re-compilations. We de-

veloped a technique which would basically segment the compilation process, and then only re-

compile those portions affected by changes when re-compilation was invoked. This avoided the

need to recompile the whole system every time, and seemed to have the effect of reducing the re-

compilation times by 30-50%, depending upon the degree of changes and the amount of code

affected.

3.2.3 Summary of the Analyzer and IF Development - This development produced a working

analyzer, as well as IIR and FIR specifications. Code improvements were made in the course of

the development. Next, we describe the development of the Code Generator.

3.3 Task 2: The Code Generator

As noted above in Section 3.1, the IIR nodes have been extended for the SAVANT pro-

ject to include three key methods, namely: transmute, publish_cc, and publish_vhdl. The pub-

lish jyhdl methods are used to write the library files (which are then parsed back in automatically

by the parser as use clauses are encountered), and for debugging purposes. These output routines

have been extensively tested; our tests show that anything that the parser can correctly recognize,

we can correctly reproduce back into its VHDL form.

30

The transmute and publish_cc methods operate in conjunction to write C++ code for

simulating the input VHDL. The resulting output links with TyVIS and WARPED, and uses

runtime elaboration, to effect a parallel simulation of the input VHDL.

TyVIS is a VHDL simulation kernel that links the C++ output from SCRAM to the simu-

lation support libraries of WARPED. VHDL constructs and statements are represented as C++

classes, methods, and members in the TyVis simulation kernel so they can be simulated using the

WARPED distributed simulation kernel. The design of the TyVIS simulation kernel takes into

consideration two sets of constraints. The first is imposed by the simulation semantics of VHDL

as specified by the Language Reference Manual. The other constraints are imposed by the

WARPED distributed (Time Warp synchronized) simulation kernel. Examples of these con-

straints are the ability of a process to rollback, save state, and so on. Careful consideration is re-

quired to make sure that the design adheres to all of these constraints.

The VHDL description must be elaborated before it can be simulated. According to the

language reference manual, "The process by which a declaration achieves its effect is called the

elaboration of the declaration." TyVIS uses dynamic elaboration to elaborate the design. In this

technique, the "code" required to elaborate the design is generated when it is analyzed. This is

then compiled and executed to elaborate the design. Once elaborated, the fanouts and the hier-

archy information in the design are captured for use during simulation.

Another important construct of VHDL is the "wait" statement. This is typically used to

synchronize processes. An execution of a VHDL wait statement is implemented in a process by

sending a wait event to itself after the specified time interval. On a signal update the sensitivity

list and the condition clause of the wait statement are inspected to check for its resumption.

Other major components in the TyVIS kernel are the type system, the marked queue for

updating signals, the resolution tree, which is responsible for resolution and type conversion of

signals, package standard, and package textio. Additional information, including the source code

for the current release of TyVIS, is available on the web at http://www.ececs.uc.edu/~paw/tyvis.

The WARPED project defines a general purpose discrete event simulation interface and

contains two simulation kernel implementations for that interface. One of the implementations is

a sequential kernel and the other is a parallel kernel that uses the Time Warp synchronization

mechanism. Consequently, any application that conforms to the WARPED API can be executed

31

with either kernel. The following paragraphs provide a brief overview of WARPED, focusing on

the parallel kernel implementation.

The parallel simulation kernel of WARPED is organized into a collection of communicat-

ing Logical Processes (LPs), with each LP containing numerous simulation objects. Each LP is a

distinct simulator with a single, multi-threaded event list. Each simulation object in an LP main-

tains its own simulation clock and can rollback independently. The LPs schedule events for pro-

cessing and exchange event messages to/from their constituent simulation objects to/from other

LPs. Dynamic control for optimization occurs at the simulation object level and adjustment is

triggered by a circulating token passed among the simulation objects.

The WARPED kernel provides the functionality to develop applications modeled as dis-

crete event simulations. Considerable effort has been made to hide the details of Time Warp

from the application interface. For example, sending events from one simulation object to an-

other is done in the same way regardless of whether the objects are on a single processor or on

different processors; all Time Warp specific activities, such as state saving and rollback, are per-

formed automatically by the kernel without intervention from the application. A more detailed

description of the internal structure and organization of the WARPED kernel is available on the

www at http://www.ece.uc.edu/~paw/warped.

3.3.1 Task 2a: Code Generator Development - The code generator methods {transmute, pub-

lish_yhdl, and publish_cc) have been jointly developed with support from the QUEST II and

HEPE programs. Investigators from all three programs (SAVANT included) have worked to

complete the publish_cc methods and the TyVIS core. The WARPED core was developed sepa-

rately from SAVANT. To the best of our testing, the publish_yhdl functions are complete and

100% correct; the transmute functions are also likewise 100% complete (again within the limits

of our testing); and finally, the publish_cc routines are operational for about 90% of the Billo-

witch test suite and 80% of the Ashenden test suite (Section 3.5).

3.3.2 Task 2b: Code Generator Code Improvement - As in the case of the Analyzer Develop-

ment (Section 3.1), MTL and UC interacted throughout the program to identify and implement

coding changes deemed appropriate. While MTL sought to identify and suggest such changes,

UC was the final authority on implementation, for the same development efficiency and config-

uration management reasons cited in Section 3.1.2. In this sense, several minor suggestions for

32

improving code generator effectiveness were communicated to the UC development team.

The most significant improvement suggestion was one concerning output handling. We

discovered that there was some redundancy in capturing data from the executable code, and out-

putting it to files. Elimination of the redundancies provided nearly a 50% reduction in execution

time for a few small-scale models which were tested.

3.4 Task 3: SSE Development

Our support environment, developed under SAVANT, consisted of two components. The

first, a debugger, was designed to provide all necessary debugging functionality from a com-

mand-line interface, and was set in the VHDL user's context. The second, which we named the

VHDLyzer Toolkit, was an assortment of viewing tools designed to assist the user in working

with the analyzer and IF. Here, we describe each of these components individually.

3.4.1 The Debugger - A command-line debugger is the primary system debugger. It is imple-

mented as a driver for GNU GDB, translating user requests into one or more GDB commands,

then collecting and reformatting GDB output into a form that a VHDL user will understand. The

debugger consists of the primary debugging facilities needed for a usable debugger: start run-

ning, stop running, set breakpoints, clear breakpoints, and print values (signals and objects).

Using GDB as the primary debugger with our own program as an interface allowed a number of

benefits:

• The time and effort were compressed to be within the scope of the project. Even the
simplest full debugger would have been too big and expensive to be done within the
scope of the project.

• The debugging is done within a VHDL framework, unlike directly using GDB (or
DBX), allowing a design engineer working in VHDL to understand the debugging.
Using GDB directly would require intimate familiarity with system construction,
class structures and naming conventions-all beyond what could be expected from any
but a dedicated system hacker.

• There is no question of licensing problems.

• It is relatively feasible to convert to a different debugger such as DBX or totalview
with only a modest effort at retargetting.

• By using GDB, the debugger will automatically port to most systems-as GDB will
take care of the system interface issue.

33

The debugger has been implemented in a manner in which it only takes up memory and

disk space when a user is actively debugging a program-and will only impact performance when

in actual use. Since GDB was used for the system interface, the program will run in a separate

address space and will be unaffected by the debugger unless a breakpoint is reached. In other

words, if the user just watches the program run under the debugger and takes no action to affect

the running, the program will run just as if the debugger were not present. This is about as much

as can be reasonably expected from a debugger, as memory and disk resources must be used

regardless of how it is designed.

3.4.2 The VHDLyzer Toolkit (VTK)

The VTK was developed to support users in working with the SAVANT technology and

components, particularly the analyzer and IF. Here, we first overview the VTK, then describe its

functionality, and finally describe its initial implementation and upgrade to conform to the final

version of SAVANT developed under this effort.

VTK Overview - The VTK is a development and visualization tool which aids in the extension of

the SAVANT VHDL Analyzer. The analyzer extension process is an iterative one and the VTK

provides a convenient, user-friendly, graphical interface which provides tools and methods

covering the complete process. These tools and methods include "making", analyzing, visual-

izing, and navigating the IIR results of analyzed VHDL code, and visualizing and navigating the

object inheritance and aggregation hierarchy for specific IIR nodes.

The VTK-supported method, illustrated in Figure 7, allows the user to work iteratively

and incrementally. Each iteration consists of four steps: compilation, analysis, visualization and

extension. In the compilation step, the Analyzer source is partitioned into two parts, the IIR

class hierarchy and the remaining Analyzer code (such as the lexical analyzer and the parser).

Given the IIR class hierarchy in source form, the user compiles the IIR source and then compiles

and links it with the remaining analyzer code. The result of this compilation step is an execut-

able analyzer, shown in the figure as the VHDLyzer. In the analysis step, the user employs the

VHDLyzer to analyze a VHDL description. To reduce the complexity of an iteration, a VHDL

description that contains a small subset of the language is used, although VHDL descriptions

analyzed during all iterations collectively contain all relevant language constructs that require ex-

34

tension. The analysis step produces an IIR which is saved in a file (shown as Node Log in the

figure).

In the visualization step, the user views a visual representation of the IIR tree utilizing the

file produced in the previous step. In addition, the user views visual representations of the class

hierarchies, including inheritance and aggregation, for selected nodes in the tree. This step

enables easy and intuitive identification of the classes in the IIR hierarchy where new methods

should be inserted, or places in the class hierarchy where new classes should be inserted to

extend the IIR functionality. In the extension step, add new methods or classes to accomplish the

desired extension. The iteration is repeated with new VHDL descriptions until all the language

constructs that require extension have been addressed, to completely customize the IIR class

hierarchy.

New Make
Cycle

Figure 7: A method for Iterative and Incremental customization.

VTK Functionality - The following Screenshots and accompanying discussions provide a flavor

of the VTK functionality, through a tour of its primary user interface screens. We have

organized our format to keep each screen shot and its description on the same page.

35

The VTK Main Window: Figure 8 illustrates the main VTK window. Its components and

functions include:

• A Menu Bar (A)

• A Tool Bar which includes the following functions:
(B) Exit Application
(C) Perform Make Depend Process
(D) Perform Analyze Process
(E) Start IIR Tree Viewer
(F) Start Default Text Editor
(G) Start On-line Help

• A Progress Display Pane (H)

• A Status Bar (I)

Figure 8. VTK Main Window.

The IIR Tree Viewer: The IIR Tree Viewer, shown in Figure 9, is one of the main components

of the VTK. Its components and functions are as follows:

• A Tool Button Bar which includes the following functions:
(A) Done Button, which closes the ER Tree Viewer dialog.
(B) View Class Hierarchy Button, which starts the IIR Class Viewer for the selected

IIR Tree node.
(C) Expand All Button, which completely expands the tree.
(D) Find Root Button, which repositions the view to show the root node of the

IIR Tree.
• A Node Browser (E), which permits closer inspection of node information.

36

• A ER Tree Graph Pane (F), which provides the tree graphical view.

• A Status Bar (G), which indicates status of the tool or system.

B

:v |e:

o«] n»oai*rrxi EaunH rang]

SSlBsanetrSW

3£l EnBfi«»n1«Si
52£>P«ürt!**

sau»
8S)0»ls

Fzgwre P. 77ze/ZR Tree Viewer.

The ER Tree Viewer allows the user to graphically visualize the IIR produced when a

VHDL description is processed by the analyzer. Navigation through the IIR tree can be accomp-

lished by interacting with the Node Browser or with the IIR Tree Graph Pane itself, by using the

mouse. The Node Browser allows the user to go directly to ER nodes of interest in order to

examine their contents. Any node selected with the mouse while using the Node Browser causes

the ER Tree Graph Pane to reposition itself to show the node's orientation within the IIR Tree.

The IIR Tree Graph Pane responds to both left and right mouse button clicks. Left mouse button

clicks performed on a displayed IIR Tree node either causes the tree to expand the next level of

child nodes for display, or collapses all respective child nodes, removing them from view. Right

mouse button clicks on a displayed IIR Tree node bring up the Class Viewer. Also, when the

mouse pointer is positioned atop a displayed IIR Tree node, the unique name and any related

node data are displayed in the Status Bar.

The IIR Class Viewer: The IIR Class Viewer, illustrated in Figure 10, is another major com-

ponent of the VTK. Its views, controls and functions include the following:

37

An Inheritance View (A), which presents the object inheritance hierarchy.

An Aggregation View (B), which presents a selected object's aggregations.

A Detail View, which includes the following:

(C) Class Display Box, which shows the full name of the selected object

(D) View Declaration Button, which switches the Detail View's Information Box to
show the declaration part of the selected object's header file.

(E) View Documentation Button, which switches Detail View's Information Box to
show the documentation part of the selected object's header file.

(F) Information Display Box, which shows the Declaration or the Documentation
depending upon which mode has been selected.

A Close Button (G), which closes the viewer.

c-p

Figure 10. ThellR Class Viewer.

This dialog presents information about the object inheritance and aggregations which

comprise a specific IIR tree node. It also presents either declaration information or documenta-

tion (Spy Class) information contained as part of an object's header file. This information is

presented when the user selects a specific inheritance view class or an aggregation view class.

VTK Implementation. The VTK requires a SAVANT release to be imported, so that the VTK

may work properly. It is this "Import" proces that requires updating if import problems occur.

The "Import" process performs the following sequence of steps:

38

Step 1: Gathers IIR class information for use by the rest of the import code

Step 2: Generates the nodes.dat file

Step 3: Fills in the inheritance data for the IIR class information

Step 4: Generates the IIRMTL class files

Step 5: Changes the inheritance structure of the SAVANT code to include the IIRMTL classes

Step 5: Modifies the main.cc file

Step 6: Modifies the makefile.in file

The VTK Import process takes a SAVANT release, generates extension classes

(IIRMTL) that publish the internal node information of the SAVANT IIR nodes, and modifies

the inheritance hierarchy to include the generated IIRMTL classes. Other modifications are also

made to SAVANT's main.cc and makefile.in files. The modification that is made to the main.cc

file adds the processing for the "-publish-IIR" switch that starts the publish IIR process. The

modification to the makefile.in file adds the appropriate lines to include the IIRMTL code direc-

tory in the make operation. Also, during the Import Process, a file called nodes.dat is generated

that contains a list of all the IIR class names. This file is used by the VTK to look up the names

of specific nodes by using an index into the list.

When Scram, the VTK-extended SAVANT analyzer, is used to analyze a vhdl file with

the "-publish-IIR" switch provided, the result is a file called IIRTree. The IIRTree file contains

the published information about the IIR created for the VHDL file analyzed. It is this IIRTree

file that is generated by the IIRMTL class extensions to the SAVANT analyzer and that is

needed by the VTK to graphically construct the IIR Tree Viewer.

Most of the complications occur when the VTK Import process parses the SAVANT

source code to locate aggregate IIR data that needs to be published for the VTK.

VTK Issues: There are still SAVANT class files that have problems being imported by the

VTK Import process. The following are discussions of areas where "hand modification" to the

SAVANT/VTK generated code is required to allow 100% VTK operation. These import prob-

lems are not the result of an incomplete design of the VTK Import process.

1. IIRMTL_ConfigurationItemList.cc . Normally, SAVANT lists are imported using a "list

walking" loop when the corresponding IIR publishing code is generated. In order to "walk"

through a list, there needs to be an iterator of a specific type which is compatible with the list

39

elements for the list. The VTK import process tries to determine this type by looking at each

header file for the "first" method's return type, starting with the list classes header file. If a type

for the list elements cannot be found in the list classes header file, then the inheritance chain is

followed until one is found, or until the base class header is reached. In this case, no type is

found for the ConfigurationltemList elements, so it is assumed that the type is "iir."

Unfortunately, this causes a compilation error to occur, since this is not the correct type. The

correct type is "iirjConfigurationltem." Changing the iterator type from "«>" to

"iirjConfigurationltem" and also adding an appropriate "Mnclude IIR_Configu.rationItem.hh"

directive cures this problem. To eliminate having to do this each time a SAVANT release is

imported, a modification to the "iirBa.se_ConfigurationItemList.hh" file must be made to include

the prototype for the correct "iirjConfigurationltem" type for the "first" method of that class.

2. IIRMTL_AssertionStatement.cc. During the import process, a matching "get" function is

not found for the IIR aggregate "expression." This occurs because there are two "get" member

functions that have "expression" in their names, "get_report_expression" and "get_severity-

_expression". Obviously, the import process cannot determine which is the correct one since the

return types for both functions are the same. To alleviate this problem, the IIRMTL_Asser-

tionStatement.ee file must be hand modified to include the correct publishing code for this aggre-

gate data item. To eliminate having to do this each time a SAVANT release is imported, a modi-

fication to the IIRBase_AssertionStatement class must be made to change the name of the private

aggregate data item from "expression" to "severity_expression." This was not a problem since

this data item is private.

3. IIRMTL_TextLiteralcc. During the import process, a matching "get" function is not

found for the IIR aggregate "text." This occurs because there is a type inconsistency between the

declared type of "text," "iirScram_String *" and that of the "get_text" method, which is "iir_-

Char *." This will always cause an error when importing a SAVANT release because the types

must match between the aggregate data item and the "get" method for that item. To alleviate this

problem, the IRMTL_TextLiteral.cc file must be hand modified to include the correct publishing

code for this aggregate data item. To eliminate having to do this each time a SAVANT release is

imported, a modification to the IIRBaseJTextLiteral class must be made to change the type of the

"text" aggregate, or to change the return type of the "getjext" member function, whichever

causes the least amount of impact.

40

4. IIRMTL.cc. During the import process, a matching "get" function is not found for the IIR

aggregate "_my_design_file." This occurs because a "get" method for this aggregate data item

does not exist. Because this "get" function does not exist, no access code is generated for this

aggregate data item. This means that in order to publish data for this data item, custom code

must be created to perform this function in this source file.

3.5 Task 4: Testing and Distribution

The purpose of our testing was to confirm the functionality of SAVANT, and to ensure that

adequate performance levels were achieved prior to distribution. The testing included both

conformance testing (analysis and simulation with expected results) and performance testing

(simulation execution times). The distribution was done to provide users within the community

access to working, interim versions, and to obtain any feedback or suggestions which would

benefit the ongoing development. Here, we discuss these two aspects individually.

3.5.1 Task 4a: Conformance Testing - Our conformance testing sought to confirm three

aspects of SAVANT functionality: (1) successful analysis (parsing and type-checking), (2)

successful simulation (execution to completion producing expected results), and (3) portability

(ability to function on multiple platforms). Here, we describe our testing and results in the

context of these aspects.

Before getting into the testing specifics, we need to address the issues of configuration

management. This activity was necessary in order to associate performance testing results with

the version which produced them, and to subsequently track any changes we made to fix prob-

lems revealed by the testing. The SAVANT source code was all maintained using the CVS

source code control software. This allowed us to have concurrent developers operating on the

same code; CVS attempts to automatically merge differences of simultaneous users as commit-

ments of changes are made into the archive. Change logs and histories were maintained by CVS

to aid in recovery (if necessary).

Several benchmark suites were collected or constructed to support the SAVANT project.

We used three primary benchmark suites: (a) the Billowitch benchmark suite, (b) the collected

examples from Dr. Peter Ashenden's book on VHDL[4] (hereafter called the Ashenden

benchmark suite), and (c) an informal collection of 22 VHDL models that we collected from the

public domain (hereafter called the Public Domain benchmark suite). In addition to these suites,

41

we organized a set of generic perl scripts that can run Scram against any of these three test suites.

A policy of running the scripts every Sunday evening with results distributed Monday was estab-

lished. A team of researchers were specifically assigned the task of running the scripts and of

communicating the results to the project members. Finally, a BUGS file was maintained with

assigned priorities and illustrative VHDL code (or pointers to VHDL code) that illustrated the

problem.

The Billowitch test suite is divided into error cases and no-error cases. There are

approximately 1600 no-error cases and 500 error cases. The no-error cases are further organized

into simulatable and non-simulatable. The Billowitch test suite was originally written in VHDL

'87 and had to be converted to VHDL '93. In the course of the three (3) years of the SAVANT

project, we periodically located errors in the no-error cases (approximately 20) that had to be re-

moved from the test suite. As of the 0.9.1 release of Scram, we are able to: identify errors in

about 50% of the error cases; correctly parse and type check approximately 98% of the no-error

cases; and correctly simulate just over 90% of the simulatable cases.

The Ashenden test suite contains 486 no-error test cases. These are all written in VHDL

'93 and cover all aspects of the language. Version 0.9.1 of Scram can correctly parse and type

check 84% of these models and correctly simulate 81%.

Finally, we have worked to ensure the portability of the code by compiling and devel-

oping on as many platforms as possible. In particular, we have active development being per-

formed on Intel hardware running the GNU g++ compiler, on SUN hardware running the GNU

g-H- compiler, and on SUN hardware running the SUNPro CC compiler. In addition, periodic

testing occurs on a DEC Alpha workstation running OSF. Before each release, we attempt to test

the code on all four configurations to help ensure its portability.

3.5.2 Task 4a: Performance Testing - Our performance testing sought to assess SAVANT's

execution performance. We accomplished this by executing several benchmarks upon a

multiprocessor machine. Here, we first describe the benchmarking environment, and then

present and discuss the performance analysis and results we obtained. These tests were

configured and performed by Dr. Phil Wilsey and the UC project team, and are included in a UC

report151 which also describes performance results for two other parallel logic simulators; one

from the University of Michigan and another from FTL Systems, Inc.

42

The Benchmarking Environment: A set of nine benchmarks were collated to serve as a test

suite for comparing the performance of different parallel logic simulators. These test circuits,

which included several International Symposium on Circuits And Systems (ISCAS) models,

were selected such that the SAVANT simulator (as well as others) could parse and simulate the

circuits. The benchmark set included the circuits listed in Table 1.

Table 1. Benchmark Set.

List of Benchmarks Purpose No. of Processes

Benchmark One 32-bit Parallel Multiplier 70
Benchmark Two ISCAS'85 Model (c432) 160
Benchmark Three ISCAS'89 Model (s641) 379
Benchmark Four ISCAS'89 Model (s953) 395
Benchmark Five ISCAS'89 Model (s5378) 2800
Benchmark Six ISCAS'89 Model (s6669) 3080
Benchmark Seven ISCAS'89 Model (sl3207-l) 8000
Benchmark Eight ISCAS'89 Model (s35932) 16065
Benchmark Nine Parity Tree Model (from FTL Systems) 81000+

Benchmark One is a 32x32-bit behavioral-level model of a parallel multiplier, shown in

Figure 11. In it, each 4-bit block of the multiplicand is multiplied by a separate 4-bit block of the

multiplier in separate logical processes (LPs). These 64 partial products are then shifted

appropriately and added together to arrive at the final result. This model, with support processes,

contains a total of 70 processes. This model is not an optimal model for parallelization. While

the actual multiply is performed with 64-way parallelism, all 64 partial products are shifted as

needed and added together by a single process. This bottleneck restricts the overall speedup that

can be achieved through parallel simulation but serves as a good test case to evaluate the

performance of a parallel logic simulator

Benchmarks Two to Eight are combinatorial and synchronous sequential circuits that are part of

the ISCAS'85 and ISCAS'89 benchmark suites. In Table 2, we list the characteristics of each

ISCAS benchmark. These benchmarks were chosen because they use relatively simple VHDL

constructs that we could suitably modify and are reasonably large. Although these circuits are

large in size, the process granularity is relatively small. Benchmark Nine is a model of a parity

43

tree supplied by FTL Systems. It is a combinatorial circuit similar to the ISCAS'85 benchmark

circuits, the only difference being that this is a much larger circuit. It instantiated a total of

81,915 gates. This is an ideal benchmark to test the limits of a parallel logic simulation system.

Multiplier

(4 to 7) (12 to 15) (20 to 23) (28 to 31)
(0to3) (8 to 11) (16 to 19) (24 to 27)

Figure ILA 32x32 bit Parallel Multiplier

Table 2. ISCAS Benchmark Characteristics

ISCAS Benchmark #of
Model

#of
gates

#of
flipflops

#of
input

#of
output

#of
signals

Benchmark Two c432 160 0 36 7 153
Benchmark Three s641 379 19 35 24 374

Benchmark Four s953 395 29 16 23 401

Benchmark Five s5378 2779 179 35 49 2909

Benchmark Six s6669 3080 239 83 55 3264
Benchmark Seven si3207-1 7951 638 62 152 8437

Benchmark Eight s35932 16065 1728 35 320 17473

44

When we obtain a VHDL source file for benchmarking, it is prudent to perform some

validation before proceeding to the performance testing. Hence, we performed the following

steps on the circuits listed above:

1. To ascertain whether the test file uses legal VHDL, we analyzed the test file with both the
SAVANT analyzer and a Synopsis analyzer. This allowed us to verify the errors generated
by both analyzers.

2. Once we knew the VHDL was legal, we manually edited the source file to provide data (in
the form of an output file) on internal signal values and results (testbench creation). This was
then simulated using the Synopsys sequential simulator to generate an out.good file which
was then used for correctness comparisons.

3. The test file was parsed and TyVis-compliant code was generated by using the scram -
publish-cc testfile.vhdl command. The generated code was then compiled and executed on a
parallel platform.

4. The results from the parallel execution were compared with the out.good file generated by
the sequential simulator.

We used two platforms to conduct our experiments. The first platform is where we

carried out most of our intermediate testing and development. This platform is a cluster of eight,

Pentium-H, dual-processor machines running Linux (a Beowulf-like system). The cluster is

interconnected by a 100Mbps Ethernet as well as a 1.28Gbps Myrinet. The characteristics of this

platform are:

Operating System: Red Hat Linux (version 2.1.126)
128 Mb per SMP node of main memory
2 Pentium II Processors per SMP node
16 300 MHz Pentium II Processors
32 KB on-chip unified data/instruction cache
512 KB off-chip unified data/instruction cache
Interconnected by both 100Mbps Ethernet as well as 1.28Gbps Myrinet network.

The second platform used for experimentation was the Silicon Graphics Origin 2000

machine (remote access to this machine was given by the Ohio Supercomputer Center). All

benchmarking results presented in this report were collected on the Origin 2000 machine. The

Origin 2000 is a shared-memory multiprocessor system consisting of 24 250-MHz, IP27

processors and 3GB of main memory. Each processor has a MIPS R10000 CPU and a MIPS

R10010 floating point unit. The current operating system is IRIX 6.5. These are the

characteristics of this platform:

• Operating System: IPJX 6.5

45

3 GB of main memory
Twenty-four 250 MHz IP27 Processors
MIPS R10000 CPU
MIPS R10010 FPU
64KB on-chip data cache
4MB off-chip unified data/instruction cache
has SGI's optimized implementation of the Message Passing Interface (MPI)

Performance Analysis and Results: In this subsection, we present the performance of the

SAVANT simulator. The experiments detailed in this subsection were carried out on a 24

processor shared memory workstation (SGI Origin 2000). All the experiments were executed as

batch jobs on the Origin. This was because batch jobs were allotted dedicated processors and

usually resulted in the best performance. However, there is a limit on the number of processors

that can be used in a batch job. The limit on the Origin we used, was a maximum of 8 processors

per batch job. Each experiment was run five times and the average of the results was reported.

S

8
X
ui

800

700

600 -

500 -

400 -

300

200 -

100

T T
Execution Time Analysis

 .—! 1

benchmarkOne (1000 vectors) -©—
benchmarkTwo (1000 vectors) -H—

4 5
Number of Processors

Figure 12. Performance of Benchmark One and Benchmark Two

Figure 12, above, illustrates the execution performances (in terms of execution time) of

Benchmark One and Benchmark Two. Although Benchmark One has the least number of

processes, each process has greater granularity than the processes in the other benchmarks. Due

46

to this, there is almost a linear decrease in execution time as more processors are used to simulate

the example. The reduction in execution time starts tapering off when more than 6 processors

are used. Benchmark Two, on the other hand, is the smallest of the ISCAS benchmarks in the

suite. In addition, the processes in Benchmark Two are typically of low-granularity. Hence,

while there is an improvement in the execution performance when the number of processors is

scaled up to 8, the decrease in execution time is not as large as in the case of Benchmark One.

The execution performances of Benchmark Three and Benchmark Four are illustrated in

Figure 13. As can be seen from the figure, both these benchmarks are similar in nature and in

size (similar number of processes). Their execution performance is also very similar. Due to

their low granularity-processes, the performance of the benchmark is highly dependent on

several factors. As the number of processors are scaled, we see a gradual decrease in the

execution time. However, once the number of processors used exceeds four, we start to see the

curve flatten out. If we continue to add processors, we actually see the curve go up, that is, the

performance actually degrades. This can be attributed to several factors such as under-utilization

of the processors, higher set-up and communication costs and poor partitioning.

100

80

§

20

Execution Time Analysis
 1 r— 1 1

benchmarkThree (1000 vectors)
benchmarkFour (1000 vectors)

3 4 5 6
Number of Processors

Figure 13. Performance of Benchmark Three and Benchmark Four

47

Figure 14 illustrates the execution performances of Benchmark Five and Benchmark Six.

As can be seen from the figure, due to the larger number of processes in the simulation, the

simulation takes a larger amount of time to complete. However, due to the larger number of

processes in the simulation, the processors have more work to do. As a result, as the number of

processors are scaled, the performance improves significantly. A performance improvement of

50% is obtained when 6 or more processors are used for the simulation.

800
Execution Time Anafysis

200

100

1 i i

benehmarkFive {1000 vectors)
benchmarkSix (1000 vectors)

4 5
Number of Processors

Figure 14. Performance of Benchmark Five and Benchmark Six

The execution performance of Benchmark Seven and Benchmark Eight is illustrated in

Figure 15. These two benchmarks are two of the largest ISC AS benchmarks available.

However, they have one peculiar trait. Some of the processes in the benchmarks do not process

as many events as other processes and are significantly behind other processes in simulation

time. Due to this, GVT-based garbage collection occurs very infrequently. Here, fossil

collection of memory is severely handicapped by these processes. As a result, these examples

require significantly larger quantities of memory and their performance is impacted by this

impediment. As can be seen in Figure 15, the performance improvement is not as good as what

was observed with the other benchmarks. The curves are flatter and the performance

48

improvement is considerably lower than what was attained with the other benchmarks.

Currently, efforts are on-going to compile and run Benchmark Nine, which is the largest of the

nine benchmarks in the benchmark suite. Hence, we do not present the execution performance

on Benchmark Nine in this report.

3000

2500

Execution Tmne Analysis

■g 2000
c
o

1500

1000

500

benchmarkSeven {1000 vectors)
benchmarkEight {1000 vectors)

-H—

4 5
Number of Processors

Figure 15. Performance of Benchmark Seven and Benchmark Eight

3.5.3 Task 4b: Distribution - We distributed interim versions of SAVANT via WWW page

download, which was available at both MTL and UC sites. In the course of reviewing comments

and suggestions from users, we identified and solved several potential problems in SAVANT.

These included:

• Inability to compile or execute: These comments revealed several portability problems
which we solved, and motivated our testing of releases on multiple platforms, as we
described above.

• Difficulty with user interfaces: We were continually responding to users' comments by
improving the system documentation being released with the software. This interactive fine-
tuning, with user input, has enabled us to refine our user's manual to be what we consider a
practical and useful document.

• Long compile times: Comments from users along this topic stimulated us to perform the
compile-time improvement we discussed in Section 3.1.2.

49

In addition to the above issues, we received many other helpful suggestions as a result of

our distribution activities. Altogether, we consider this activity successful in both providing the

software to the community and in obtaining useful feedback for our development efforts.

3.6 Task Z: Survey of Proposed O-O Extensions to VHDL

Our survey was focused upon gaining an appreciation of current approaches to, and moti-

vations for, 0-0 extensions to VHDL. The SAVANT project was fortunate to have Dr. Peter

Ashenden from the University of Adelaide (Australia) join the project from January 1997 to

January 1998. The project provided a minimal amount of support for Dr. Ashenden during his

yearlong sabbatical at UC. The 0-0 Extensions have now been named SUAVE (SAVANT and

University of Adelaide VHDL Extensions)[6] and a working draft of the extensions is serving to

drive tool development.

The SUAVE project aims to introduce object-oriented extensions to data modeling, type

genericity, and communication into VHDL in a way that does not disturb the existing language

or its use. Designers regularly define abstract data types by using aspects of VHDL's type sys-

tem, subprograms, and packages. The SUAVE approach builds on these basic mechanisms by

strengthening the facilities for encapsulation and adding an inheritance mechanism. In addition

to supporting object-orientation, these extended mechanisms improve the expressiveness of

VHDL across the modeling spectrum, from high-level to gate-level. By choosing an incremental

and evolutionary approach to extensions, SUAVE avoids major additions to the language that

would complicate the choice of mechanisms for expressing a design.

In our review of work proposing extensions to VHDL to make it a more object-oriented

language (VHDL is currently what is called an object-based language), we observed that two

primary strategies were followed, namely; (a) the addition of C++ like classes, or (b) the addition

of Ada-like extensions (specifically tagged types). While the former is quite popular, the latter

has been explored by only a couple of investigators.

We reviewed the objectives for the extensions and reviewed some basic principles of

computer language design. We were strongly influenced by the notions of "conceptual integrity"

by Fred Brooks ("The Mythical Man-Month").m Specifically Dr. Brooks writes: "Conceptual

integrity does require that a system reflect a single philosophy and that the specification as seen

by the user flow from a few simple minds." To this end and in recognition that the VHDL lan-

50

guage is based on Ada and not on C++, we studied closely the work of the Ada 9X community in

extending Ada with items for object-orientation.

3.7 Task A: Extend the SAVANT IF

Only a few additional ER nodes were required for SUAVE. They have all been

implemented (complete with their publish_vhdl extensions) and are used by the SUAVE anal-

yzer (see Section 3.8). The specific extensions are noted in a separate document that accompa-

nies the SUAVE analyzer, therefore only a brief overview is presented here.

These IIR node definitions were added to the AERE/CE class files in order to recognize

SUAVE:

nR_ChannelDeclaration IIR_interfaceFloatingTypeDefmition

IIR_ChannelTypeDefinition IIR_PrivateTypeDefinition

nR_ClassAttribute IIR_PrivateExtensionTypeDefinition

IR_ClassWideTypeDefinition EGMProcessDeclaration

nR_ConcurrentProcessInstantiation IIR_ReceiveStatement

nRDerivedTypeDefinition IIR_RecordExtensionTypeDefinition

nR_GenericPackageInstantiation IIR_SelectStatement

nR_GenericSubprogramInstantiation ERJSelectOr

nR_InterfaceChannelDeclaration IIR_SendStatement

IIRJtaterfaceDiscreteTypeDefinition IIR_SequentialProcessInstantiation

IIR_InterfaceIntegerTypeDefinition IIR_TagAttribute

IDRJfoterfacePhysicalTypeDefiriition

In addition, the following IIR classes had additional data and method components added

to their interface definitions.

IIR_PackageDeclaration

IIR_SubprogramDeclaration

These nodes have all been defined and added to the Scram parser. All of the C++ for the

base AERE/CE standard interface of these nodes is completed. The publish_vhdl methods have

been implemented and tested, thus SUAVE libraries can be created. This task was completed

without significant problems.

51

3.8 TASKB: Extend the SAVANT Analyzer

The SAVANT analyzer (Scram) was imported into a new archive and extended as per the

SUAVE language specifications. The new analyzer parses and type checks all the test cases

(about 50) that we developed. The SUAVE analyzer (version 0.9.2) is built on top of version

0.9.1 of the Scram analyzer. Since the CVS source code control system is used, new releases of

Scram should easily integrate into future SUAVE releases. Version 0.9.2 of SUAVE was

released at the beginning of July 1998 (http://www.ececs.uc.edu/~paw/suave).

3.9 TASK C: Extend the SAVANT Code Generator

The work to extend the SAVANT Code Generator is still ongoing. To date, we have been

unable to simulate any models that are extensions of VHDL. Solution of this task boils down to

designing how to write the C++ to link with TyVIS and writing the publish_cc methods to write

the C++. A good start to the writing of the publish_cc methods has begun, but it is still too early

to estimate a completion date. We hope to finish this task by the Spring of 1999, under other

funding. For the purposes of this project, the completion of the Code Generator tasks, although

desirable, was not significant to assessment of the applicability of VHDL-0 constructs to

designers' utilization, as we report in Section 3.11.

3.10 TASK D: Extend the QUEST Simulation Kernel

Extensions to the TyVIS simulation kernel have yet to begin. We anticipate that there

will be very few changes needed to the TyVIS code, primarily in the channel queues and

dynamic processes. Thus, the TyVIS kernel is essentially ready for the SUAVE extensions.

The WARPED kernel, however, does require additional capabilities before a full SUAVE

system can be operational. Specifically, SUAVE requires the ability to dynamically create and

destroy processes. While this generally seems an easy task to accomplish, it is somewhat com-

plicated by the Time Warp synchronization mechanism. Specifically, because objects can exe-

cute out of order, it might be possible to request a process creation and actually receive a mes-

sage for the new object before actual creation ofthat object. There are a number of issues to be

addressed before we can begin coding that addresses this problem. We are experimenting with

SUAVE and with other concurrent languages with dynamic process creation, in an attempt to

ensure that WARPED is suitably modified to be sufficiently flexible for general support of

dynamic process creation. We are testing three draft design solutions against several concurrent

52

languages. These designs remain to be finalized and deselected to be operational in the

WARPED kernel.

3.11 Task E: Build Demonstration VHDL-O Models

EDAptive Computing, Inc. performed this task for the SAVANT program. Our approach

was first to review the SUAVE 0-0 extensions to VHDL, then to identify some candidate

models, and finally to select one for implementation, based upon the desired goals for testing the

0-0 extensions within the O-0-extended SAVANT framework.

We reviewed the SUAVE extensions to VHDL as documented in Appendix A:

Published Papers 1-11. SUAVE's primary goals are to aid the management of complexity in

large designs and promote re-use. To achieve its goals, SUAVE employs the following

extensions:

• Object-orientation
- support definition of automatic data transfer (ADT) by extending the type system

and package
- type derivation and classes adopting "programming by extension" from Ada-95

inheritance using tagged record types
- polymorphism using access types

• Genericity
- subprograms and packages can have generic interface clause
- generic interface clause includes formal types, formal subprograms and

formal packages

• Abstract concurrency and communication
- channel types, channel objects, dynamically allocated channels and message

passing statements
- process declarations and static and dynamic process instantiation

The reader is referred to Appendix A: Published Papers 1-11, for further details regarding
SUAVE.

Further, we identified a set of possible test cases. Specifically, the three model candi-

dates we considered were:

• SIMPLAN - A model of a local area network in VHDL. It was developed for the
purpose of modeling the performance of a LAN, to assess the impacts of proposed
LAN upgrades and additions upon network performance. Although more of an
information technology application than an electronic design model, it represented a
level of complexity and size representative of typical VHDL usage.

• ANTMOD - A model of a radar antenna pattern simulation, from an electronic

53

warfare (EW) modeling system. This was, once again, a higher-level abstraction
rather than a circuit design application. It was smaller and significantly less complex
than SIMPLAN, and was the same nature of model.

• GSM Network - A Global System for Mobile Telecommunications (GSM) Network,
used for e-mail, fax, audio, and video applications.

• Move Machine: An ISP-level model of a simple processor.

From among these choices, we selected SIMPLAN, since it represented a real-world

model of reasonable size and complexity. We did not feel that the fact that it was a higher-level

performance model rather than a circuit model would deter from our objectives to assess the

impacts of the 0-0 extensions.

Having selected our model, we set about implementing it in three steps:

1. First, we obtained a good understanding of the SIMPLAN model. In performing this
activity, more time was required to comprehend the SIMPLAN model than we
originally expected, due to a lack of documentation. We subsequently documented
the model to enable easy comprehension and reuse.

2. Next, we studied and identified several areas of the model where the 0-0 SUAVE
extensions could be applied for reduction of complexity and enabling reuse. These
usability factors were our primary focus, rather than execution performance. The
decision to focus in this manner was a decision we reached in concert with AFRL.

3. Finally, we modified SIMPLAN using the SUAVE 0-0 extensions to SAVANT.

This resulted in a model we could use for evaluation, as we report in the next section.

3.12 Task F: Evaluate performance impact of the object-oriented extensions

Under this task, we first established measures of effectiveness, or metrics by which the

performance of the 0-0 extensions could be assessed, then implemented a test configuration to

perform the assessment, and finally performed the assessment. Here, we detail the metrics, test

configuration, and the assessment results.

3.12.1. Metrics Selection: We identified the following measures of effectiveness, or metrics,

for our 0-0 extension evaluiations:

• Reuse

• Cohesion

• Coupling

• Interface Complexity

54

• Lines of Code

We elaborate on these metrics below. However, before we describe them, we explain the

key concepts utilized in definition of these metrics. These key concepts include modularity,

invocation, control flow, and abstract nodes,[S'9] as we discuss below.

Modularity (module): We believe that there are three levels of modularity in a HDL description.

The highest level of modularity exists at the entity-architecture level. The entity-architecture

modules, in turn, consist of concurrent process modules, which in turn consist of sequential

procedure/function level modules.

Invocation: Invocation can be easily defined for a sequential module since we can easily deduce

who invokes who by looking at the HDL design. Sequential modules are invoked either by

another sequential module or by a concurrent process module. However, the concept of invo-

cation cannot be defined in a conventional sense for concurrent modules. We propose that a con-

current process module, e.g. A, should be considered as invoked by another concurrent process

module, e.g. B, ifA's sensitivity list includes a signal generated by B. Further, we propose that an

entity-architecture module, e.g. A, is invoked by another, e.g. B, if B instantiates A.

Control Flow. Again, control flow is easy to identify in a sequential module since it is easy to

identify flags in a procedure/function. We propose that we again use sensitivity lists to identify

the controlling and controlled processes. In addition, if a signal/variable generated by one is used

by another to make a decision, we will count that as a control flow. Further, we propose that we

employ ports in an entity declaration that are directly or indirectly (through signal associations)

used to make control decisions as control flow.

Abstract Nodes: We believe that either an entity-architecture pair or a process or a proced-

ure/function can be considered as an Abstract Node.

The following summarizes the metrics, their significance, and how we utilized them in

our assessment of the SUAVE 0-0 extensions.

Lines Of Code (LOC): This is the most straightforward of all metrics. We evaluated this metric

in the VHDL and its equivalent SUAVE 0-0 models by comparing the lines of VHDL/SUAVE

0-0 code. LOC is easily measurable and is a good indicator of complexity. The higher LOC

would imply higher complexity, whereas lower LOC would imply lower complexity.

55

Reuse: The Reuse metric reflects the number of times a module is accessed and is calculated

based on the number of unique invocations for each module. Specifically, the reuse formula for

software is as follows:

REU = Y,(s-l)
m

where

m = the total number of modules, and

s = the total number of module invocations.

A higher reuse number implies a design that is simpler, with higher reusability and lower costs.

We evaluated the reuse metric for procedures/functions, but not for processes and entity/

architecture modules because: (i) processes are not reused in a VHDL design (SUAVE does

allow such reuse, but we were unable to use the SUAVE extensions for the test case considered

and therefore did not feel a need to measure this metric), and (ii) we kept the structure of our

reimplemented test case the same by design. Therefore, there was no difference between VHDL

and SUAVE-extended VHDL designs with respect to use of entity-architecture modules.

Interface Complexity: The Interface Complexity reflects the magnitude of control flows in rela-

tion to modules in a software design. Specifically, the Interface Complexity metric formula is as

follows:

where,

f = the total number of control flows, and

n = the total number of modules.

Interface complexity is a measure of the complexity of design and focuses on interface aspects of

the design. This measure would be applicable to all types of modules.

However, due to lack of automated tools, a large design would require substantial manual

effort to measure this metric and is prone to errors. To simplify our task, we only measured the

number of ports among various modules without regard to whether the port constituted a control

flow. The number of ports, we believe, gave a preliminary indication of complexity. A lesser

number of ports would imply less complexity.

56

Cohesion: The Cohesion metric reflects the goodness of functional partitioning of the design

under consideration, and is calculated by examining collections of abstract nodes and their inter-

action with global data. Specifically, the Cohesion metric is calculated as follows:

InternalCohesion = 2-t(InternalStrength)
abstractnode

where,

Internal strength per Abstract Node = the sum of global variables referenced by this node and not

referenced by any other node.

ExternalCohesion = ^ExternalStrength
abstractnode

where,

External strength per Abstract Node = the sum of global variables referenced by this node and

referenced by any other node.

A high value for external cohesion indicates poor partitioning, whereas a low value for

internal cohesion indicates poor partitioning. The comparison of these two values for cohesion

determines the relative distribution of system functionality.

We did not measure this metric due to lack of automated measurement tools and, since

the structure of the design was kept intact, the cohesion among the modules did not change sig-

nificantly.

Coupling: The Data Coupling metric reflects the strength of the interconnection or dependence

between modules. Specifically, the Data Coupling metric is calculated as follows:

CO= YJCM*ICC

invocations

where,

CM = the maximum coupling number per model determined based on number, type and
scope of parameters [1], and

Ice - the number of interconnections between pairs of data processes.

57

We did not measure this metric due to lack of automated measurement tools and, since

the structure of the design was kept intact, the coupling among the modules did not change sig-

nificantly.

We chose the suggested metrics for comparing the VHDL model with the equivalent

SUAVE model. The metrics were selected due their ability to give a preliminary indication of

complexity and reuse characteristics of the design. The choice was also influenced by the feas-

ibility of what could be easily accomplished with the resources available.

3.12.2 Test System Implementation: The majority of this task was spent on understanding the

SimPLAN model. A good understanding was required in order to develop a test system as pro-

posed. We summarize our understanding of the model here. The reader is also referred to a

VHDL International User's Forum (VIUF) paper,[10] which provides an overview of the model.

Furthermore, we describe the test method below.

Model Understanding: The VHDL description models a LAN at performance-level for the pur-

pose of capacity planning. This is a model of an actual LAN and therefore the physical structure

of the LAN is reflected in the structure of the model. The model consists of three major compo-

nents: (i) network stimulants, namely clients and servers, (ii) network consisting of physical

components such as ethernet segments, Kalpana switches, Routers, and FDDI backbone, and (iii)

simulation coordinator, that provides the interface between the stimulants and the network. The

model is shown in Figure 16.

Test Method: The testing method was simple. After gaining a good understanding of the model

and its components, we identified portions of the model that would qualify for reimplementation

using SUAVE extensions. However, the structure of the model was kept intact, since our goal

was to replicate the same functionality as the original VHDL model but use SUAVE extensions

to do so wherever possible. And, since the structure of the model was important to capture the

physical structure of the LAN, we kept it intact.

We then reimplemented the original model using SUAVE extensions and manually meas-

ured the metrics as defined earlier in Section 3.12.1. Lack of automated tools to measure the

metrics hampered our ability to do a good comparison between models. Further, our desire to

keep the same structure as the original model hampered our ability to fully exploit the strengths

of SUAVE. We believe SUAVE extensions would enhance the reuse and reduce the complexity

58

S

S

0\

3 J

I <3

greatly if we could reimplement the model at a higher level of abstraction. Lack of resources did

not permit us to do so. Figure 17 illustrates our test method.

Original
SimPLAN

Model
Compare

Modified
SimPLAN

Model

Reverse Engineer
Model

Identity Portions suitable
for implementation
using SUAVE

Reimplement

Figure 17. Test Method Used.

3.12.3. Assessment Results

As part of this task, the SUAVE extensions were used to re-implement the benchmark

and the metrics were manually measured. The results of the metrics measurement are shown

below:

Table 3. Metrics Assessment.

Metric VHDL Model SUAVE Model
Lines Of Code 4260 3358
Reuse 70 72
Interface Complexity 88 76
Cohesion * *

Coupling * *

* SimPLAN would require complete re-design using 0-0 extensions to realize gains for these metrics

60

From the results, we can conclude that use of SUAVE extensions led to reduction in size

of the model, reduction in interface complexity and increase in reuse of procedures/functions.

We believe the results can be explained easily by the following:

1. Use of inheritance and generic types led to reductions in the size of the model.
A variety of queues used by the model were reimplemented utilizing SUAVE
extensions for inheritance and generic types.

2. Use of inheritance and generic types led to higher reuse.

3. Use of channels led to a reduction in the number of control signals (ports)
required to interact between various components of the model. Specifically,
coordination required between network stimulants and the network was eased
by the use of channels.

The limited test results that we were able to obtain manually indicated that use of

SUAVE extensions can reduce the complexity and increase the reuse potential of the model.

Further, we believe that if the SimPLAN model could be developed from scratch with the same

analysis goals but no constraints on the structure, the resulting model would be greatly reduced

in complexity and would have much higher reuse. Specifically, information about the structure

of the LAN is contained in the Simulation Coordinator component. We believe that we could

completely eliminate the Simulation Coordinator component, as shown earlier in Figure 16, with

the use of SUAVE extensions such as Channels and dynamic process creation and deletion.

However, that would require us to embed the LAN structure information in other components of

the model. This would require a complete overhaul of the design. The effort required to do so

was more than was permitted by the resources available.

In spite of the limitations of this study, we believe the results indicate that SUAVE exten-

sions to VHDL are promising and can lead to reduction in complexity and an increase in the

reuse potential of designs. With the fast growth of the Intellectual Property (IP) market, the reuse

potential of the IP will be increasingly significant. We believe that SUAVE extensions could

help in enabling the IP reuse.

3.13 Summary of the Results

In summary, we produced the results that we planned for the SAVANT program and for

the Option Task, although not necessarily to the degree of maturity we would have liked in all

cases. The core SAVANT components (Analyzer, IF, Code Generator) have undergone several

preliminary releases and are fairly mature. The Debugger and the VTK are somewhat less

61

mature. The 0-0 extensions were implemented to the degree necessary to support their

assessment. That assessment showed that the 0-0 extensions were useful in reducing

complexity and promoting reuse.

62

4.0 CONCLUSIONS

In conclusion, we regard SAVANT as a successful Phase II development program.

Under this program and its Option Task, we achieved most of the objectives we defined at pro-

gram inception.

For the Baseline Program, we developed and released on the WWW throughout the pro-

gram, versions of the Analyzer, the IF, and the Code Generator, as well as TyVIS and WARPED

simulations. In our final release, conformance to acknowledged test standards is high, and others

are successfully downloading SAVANT and creating useful simulations. We also developed a

debugger and some visualization tools (the VTK). These appear to be useful as well, but are not

as mature as the SAVANT core components. Our commercialization paradigm was not vigor-

ously attacked, since MTL's business model diverged from the EDA products area during this

time period.

For the Option Task, we implemented 0-0 extensions in the Analyzer, but did not fully

implement them in either the Code Generator or the Simulation Kernel. However, this imple-

mentation work will continue at UC under other programs. Using the implementation we did

accomplish, we developed models and assessed their performance.

. Overall, we find the SAVANT technology to be a useful one, and await its more wide-

spread use among the VHDL/EDA community. SAVANT software for UNIX platforms is

available at http://www.mtl.com/projects/com, and is currently free for educational institutions

and non-commerical applications. MTL is releasing SAVANT under the GNU Public License.

63

5.0 RECOMMENDATIONS

Our recommendations follow from the level to which we were able to complete our devel-

opment, and from our experiences under this program. Basically, we recommend that SAVANT

be utilized and tested under several design projects, and compared more rigorously to present,

commercial VHDL design suites. We also recommend that the 0-0 extensions be implemented

in a more final form, and made available to the community, much as the core SAVANT

technology is being proliferated.

64

6.0 REFERENCES

[i]

[2]

[3]

[4]

Hirsch, Herb, et. al. "Solid State Electronics Directorate Applied Research," SAVANT
Phase ISBIR Proposal, MTP94-010, MTL Systems, Inc., January, 1994.

Chawla, Praveen, Herb Hirsch, Hal Carter, and Wilsey, SAVANT Phase I Final Report,
MFR95-006, MTL Systems, Inc., April 1995.

Hirsch, Herb, et. al. "SAVANT Phase II," SBIR Proposal, MTP95-016, MTL Systems,
Inc., January, 1995.

Ashenden, Peter J. Designer's Guide to VHDL. Morgan Kaufman Publishers, 668 pp.,
December 1995.

[5] Wilsey, Philip, et. al. "Preliminary Investigations and Feasibility Study of Parallel
Simulation of Digital Systems," University of Cincinnati, October 1998

P. J. Ashenden, P. A. Wilsey, and D. E. Martin, "Suave: Extending VHDL to Improve
Modeling Support," IEEE Design and Test of Computers, April-June 1998.

Brooks, Frederick P. Jr. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Co., 322 pp., July 1995.

P. J. Ashenden and P. A. Wilsey, "Considerations on Object-Oriented Extensions to
VHDL," VHDL Users' Group Spring 1997 Conference, 109-118, March 1997.

J. C. Willis, P. A. Wilsey, G. D. Peterson, J. Hines, A. Zamfirescu, D. E. Martin, and R. N.
Newshutz, "Advanced Intermediate Representation with Extensibility (AIRE)," VHDL
Users' Group Fall 1996 Conference, 33-40, October 1996.

Chawla, P., W. Zhou, and H.L. Hirsch. "Performance Modeling and Analysis of a LAN
using VHDL." Proceedings of the VIUF. Fall 1993.

[6]

[7]

[8]

[9]

[10]

65

APPENDIX A: Published Papers

This appendix lists several papers published by the SAVANT Research and Development Team,
as well as ancillary or related papers to the project.

1. P. J. Ashenden and P. A. Wilsey, "Principles for Language Extensions to VHDL to Support
High-Level Modeling," VLSI Design, (submitted).

2. P. J. Ashenden and P. A. Wilsey, "Extensions to VHDL for Abstraction of Concurrency and
Communication," Proceedings of the Sixth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS '98), July 1998.

3. P. J. Ashenden, P. A. Wilsey, and D. E. Martin, "Suave: Extending VHDL to Improve Mod-
eling Support," IEEE Design and Test of Computers, April-June 1998.

4. P. A. Wilsey, D. E. Martin, and K. Subramani "SAVANT/TyVIS/WARPED: Components
for the Analysis and Simulation of VHDL," VHDL Users' Group Spring 1998 Conference,
1998.

5. P. J. Ashenden, P. A. Wilsey, and D. E. Martin, "Considerations on System-Level Behav-
ioural and Structural Modeling Extensions to VHDL," VHDL Users' Group Spring 1998
Conference, 1998.

6. P. J. Ashenden and P. A. Wilsey "A Comparison of Alternative Extensions for Data Mod-
eling in VHDL," 31th Hawaii International Conference on System Sciences (HICSS-31),
January 1998.

7. P. J. Ashenden, P. A. Wilsey, and D. E. Martin, "Reuse Through Genericity in Suave,"
VHDL Users* Group Fall 1997 Conference, 170-177, October 1997.

8. P. J. Ashenden, P. A. Wilsey, and D. E. Martin, "Suave: Painless Extension for an Object-
Oriented VHDL," VHDL Users* Group Fall 1997 Conference, 60-67, October 1997.

9. P. J. Ashenden, P. A. Wilsey and D. E. Martin, "Suave: A Proposal for Extensions to VHDL
for High-Level Modeling," Joint Technical Report, TR-7/97, Dept. Computer Science,
University of Adelaide and TR-207/08/97/ECECS, Department of Electrical & Computer
Engineering and Computer Science, University of Cincinnati, August 1997.

10. P. J. Ashenden and P. A. Wilsey, "Principles for Language Extension to VHDL to Support
High-Level Modeling," Joint Technical Report TR-03/97, Dept. Computer Science, Uni-
versity of Adelaide and TR-204/05/97/ECECS, Department of Electrical & Computer Engi-
neering and Computer Science, University of Cincinnati, May 1997.

11. P. J. Ashenden and P. A. Wilsey, "A Comparison of Alternative Extensions for Data
Modeling in VHDL," Joint Technical Report TR-02/97, Dept. Computer Science, University
of Adelaide and TR-203/05/97/ECECS, Department of Electrical & Computer Engineering
and Computer Science, University of Cincinnati, May 1997.

12. P. J. Ashenden and P. A. Wilsey, "Considerations on Object-Oriented Extensions to
VHDL," VHDL Users' Group Spring 1997 Conference, 109-118, March 1997.

13. J. C. Willis, P. A. Wilsey, G. D. Peterson, J. Hines, A. Zamfirescu, D. E. Martin, and R. N.
Newshutz, "Advanced Intermediate Representation with Extensibility (AIRE)," VHDL
Users' Group Fall 1996 Conference, 33-40, October 1996.

66

14. D. E. Martin, P. A. Wilsey, and P. Chawla, "SAVANT: An Extensible Object-Oriented
Intermediate for VHDL," VHDL Users' Group Spring 1996 Conference, 275-281, March
1996.

15. P. A. Wilsey and D. E. Martin, "Coordinating Joint Cost/No-Cost Rights for Software
Developed with SBIR Funding," First Conference on Freely Redistributable Software, 89-
94, February 1996.

67

APPENDIXE: WWW Sites

Additional information on SAVANT may be found at the following sites on the WWW:

http://cs.adelaide.edu.au/users/michael/publications.html

http://web.cs.ualberta.ca/~zhang/vhdl.html

http ://dragon.ics. es .osaka-u. ac.jp/LINK.HTM

http ://ece.uc.edu/~paw/tyvis/

http://ece.uc.edu/~paw/warped

http://ece.uc.edu/~ramanan/research/research.html

http://ececs.uc.edu/~hcarter/questll.html

http://ececs.uc.edu/~kbse/hepe

http ://ececs.uc. edu/~paw/lab

http://ececs.uc.edu/~paw/suave

http ://goethe.ira.uka.de/~schneider/other_tools/

http://hpcmo.hpc.mil/ug97/tpapers/mchung/index.htm

http ://ftlsy stems.com/aire/

http://mtl.com/projects/savant/

http ://ececs.uc. edu/~paw/hpc/main.pdf

68

