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Chapter 1

Introduction

The large computational requirement for the simulation of a wide range of turbulence [1], acroacous-
tic [2] and electromagnetic [3] phenomena motivates the development and implementation of highly
accurate schemes. In direct and large-eddy simulations of turbulence for example, high-order - for
this purpose fourth-order accurate or higher - numerical schemes bring some previously intractable
problems within the reach of modern supercomputers. An overview of recent efforts may be derived
from a study of Refs. [4, 5, 6].

Although the complexity of problems addressed with higher-order schemes has increased over the
past several years, remarkably few studies have focused on wall-bounded flows around geometrically
complex configurations. Indeed, higher-order spatial schemes are usually coupled with explicit time-
integration techniques. This is usually a good choice in situations where the limiting time-step size
1s dictated by physical rather than numerical constraints. For the large set of problems constituted
by wall-bounded flows however, the stringent mesh resolution requirements near walls incur a severe

numerical time-step-size limitation which can be alleviated by implicit methods.

The objective of this work is to describe the incorporation of a high-order accurate spatial dif-
ferencing scheme into an existing implicit flow solver. The platform chosen for implementation is
the FDL3DI code which is the primary research tool of the CFD group at Wright-Patterson AFB
(AFRL/VAAC). The basic algorithm employs the Beam-Warming approximate factorization tech-
nique [7]. Several enhancements have been added as options including a subiteration technique
and an efficient diagonalized procedure [8]. Since the code is formulated with finite-differences,
all quantities are assumed to be pointwise in nature. Consequently, the formal difficulties encoun-
tered in extending finite-volume approaches to higher-order are avoided. However, flux and metric

conservation issues are of some concern and are addressed elsewhere [9].

Several choices arise in the development of higher-order schemes. At the most basic level, the
formula can be either centered or upwinded. While each has its advantages, we choose centered
formulas because of their nondiffusive semidiscrete error. This is a particularly appropriate choice




for our present intcrests which encompass relatively low-speed (i.c., subsonic) and thus shock-free
flows. Extensions to include shock-capturing techniques arc presently under development and will
be described elsewhere. For a fixed order of accuracy, centered schemes have smaller stencil than
upwind schemes. Even within centered schemes, additional advantage is obtained through the use
of “compact” (or Padé type) formulas which require that the derivatives be computed in a coupled
fashion along an entirc line [4, 10]. With this approach. greater accuracy is obtained with fewer

boundary schemes [10].

Compact schemes do however incur a moderate increase in computational expense over their non-
compact counterparts. In order to limit this extra cffort, in this entire work formulas are restricted
to tridiagonal systems. With this simplification, a particular stencil size yields two orders higher

accuracy than an explicit equivalent.

"The formulas required to treat various aspects of the solution of the Navier-Stokes equations are
presented in Chapter 2. In developing these schemes, the approach adopts the techniques discussed
by Lele [4]. The principal mathematical tools required are Fourier analysis and Taylor series ap-
proximations. For the inviscid terms, formulas are required to evaluate first derivatives of the metric
quantities and the fluxes. The maximum stencil size for this clement of the algorithm is chosen to
be five points, the highest scheme so obtained being of sixth-order accuracy. The coeflicients of the
five point scheme can be adjusted to yield lower order schemes as well. Section 2.1 lists the various
formulas employed in this work, some of which have been derived previously elsewhere [10] but. arc
reproduced and classified within the framcwork of the optimized schemes developed in Ref. [11]. T'he
interior scheme cannot be applied at points ncar the boundary where the five point stencil protrudes
the domain. These special formulas have not been standardized to the same extent as the interior

schemes and are also presented in Section 2.1.

The numerical formation of the viscous terms in the Navier-Stokes equations requires calculation
of derivatives of the components of the shear stress tensor. The straightforward approach followed
here is to apply the formulas of Section 2.1 twice in succession. However, stability considerations
suggest that the nonconservative form be employed together with formulas which compute the second

derivatives directly (see e.g., Ref. [4]). For compact schemes, this approach is expensive either in ‘
storage or in number of operations depending upon implementation. An alternate strategy is to
utilize a midpoint interpolation and differentiate sequence to evaluate certain viscous terms. These
formulas are presented in Sections 2.2 and 2.3 respectively. The dual formulas to compute nodal

derivatives with known midpoint values are described in Section 2.4.

One of the principal problems encountered in the solution of the Navier-Stokes equations with
centered schemes is the appearance of numerical instabilities, typically arising near boundaries and
in regions of mesh nonuniformities. If left unchecked, these spurious waves contaminate the solution
and destroy the fidelity of the solution. A common method to suppress such instabilities is through
artificial dissipation in the form of a (small) additive damping term to the governing equations (e.g.,
Refs. [12, 13]). A technique of similar vintage is to filter the solution at appropriate intervals in
its temporal advancement (e.g., Refs. {14, 15]). The distinction between damping and filtering is



relatively subtle. Ref. [16] notes that filtering is a more general approach not restricted to hyperbolic
equations. In Section 2.5, tridiagonal based filters of up to tenth-order are presented. In cach formula,

control is exercised through a free parameter whose range and impact on stability are investigated.

The implementation of the various formulas into the FDL3DI code (to yield the new version
FDL3DICE) is described in Chapter 3. An additional option of time-integration has also been
added in the form of the classical fourth-order Runge-Kutta method (sce c.g.., Ref. [17]). Finally,
the Appendix presents a brief description of the input parameters to the FDL3DICE code with
particular emphasis on those which are either new or whose meaning has been modified from the

original code. Results on a range of fluid dynamic problems utilizing simple and complex mesh

systems can be found in Ref. [9].




Chapter 2

Compact Formulas

Consider a 1-D mesh, consisting of N points (or nodes), 1, 2, . e =2, 01,4, i41,i4+2, ..., N=2,
N = 1(= M), N as shown in Fig. 2.1 (a). Let ¢ = ¢(z) be a scalar variable whose pointwise values,
é; are known at these nodes. We assume that x4 — 2 = 1 .., the mesh step-size 1s normalized
to unity. For body conforming meshes, a curvilinear transformation £ = £(z) is introduced and the
same formulas are then employed in the transformed (€) plane. As noted carlier, the high-order
mcthod requires several types of quantities, formulas for which are now obtained in succession: a)
first derivatives at nodes, b) interpolation of quantities from nodes to midpoints, c) first derivatives
at midpoints in terms of known quantities at nodes, d) second derivatives at nodes from known first

derivatives at midpoints and e) filtering formulas.

2.1 First Derivative at Nodes

The problem is to utilize the known ¢; to estimate the derivative, ¢} = 0¢/0x|; at cach point in the

mesh.

2.1.1 Interior Scheme

At interior points, a centered formula is employed:

adly+d +adly, = b¢i+2 :1- Gi—2 4 a¢i+1 ‘;¢i—1 (2.1)
where a, a and b are constants which determine the spatial properties of the algorithm. Note that
the stencil consists of five points as shown in Fig. 2.1(b). Up to sixth order accurate schemes can be
obtained through proper choice of coefficients. To aid in this procedure, Taylor series approximations

about point i are inserted in Eqn. 2.1 and terms of various orders are set equal to zero. This gives
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Figure 2.1: (a) Notation for 1-D Discretization, (b) Five-point Stencil for First Derivative at Interior
Points, (c) Through (f) Stencils for First Derivatives at Points 1, 2, M = N —1 and N, Respectively
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Table 2.1: Coefficients for Interior Scheme. OA=0rder of accuracy

Scheme o a b Stencil  OA
Size

72 0 1 0 3 2
E4 0 3 5 5 1
C4 3 3 0 3 1
C6 % 2 : 5 6
0] 0.351075 1.5673833  0.1347667 ) 4
02 0.381365  1.5875767 0.1751533 5 1
03 0.347485  1.5649900  0.1299800 5 4
04 0.370733  1.5804890 0.1609770 5 4
05 0.430816 1.6205440 0.2410880 5 4
06 0.376374  1.5842493  0.1684986 5 4

07 0.400218 1.6001450 0.2002910 5 4

the following equations (see also Ref. [4]):

O(h?) : l-a+2a-b = 0
O(h?) : —a+6a—-4b = 0 (2.2)
O(h®) : —a+10a— 165 0

The solution of these equations provides values of a, b and a. Satisfaction of the first of equation
in this set results in a second order scheme. If the second equation is also satisfied, a fourth order
scheme results and the unique solution of all three equations yields a sixth order scheme.

Table 2.1 lists several standard schemes which can be derived by appropriate choice of coefficients.
The first two, E2 and E4 are “explicit” i.e., @ = 0 and hence the derivatives values are decoupled
from each other. For the remaining schemes, o # 0 and it is necessary to solve a tridiagonal system.
C/ is the original fourth-order compact scheme discussed by Hirsh [10] and consists of a three point
stencil. C6, described also in Ref. [4], is the highest-order scheme obtainable with the five-point
formula of Eqn. 2.1. A semidiscrete accuracy analysis in the context of the wave equation has been
performed in Refs. [4, 11]. Because of the centered stencil, the error is exclusively dispersive. The
wave propagation speed and isotropy characteristics are compared with the exact value in Figs. 2.2

and 2.3 respectively for these standard schemes. In these figures, w is the normalized wave number,



w = 2xkh/L where k is the physical wave number on a domain of length L and & is the grid spacing.
The dramatic improvement in the compact schemes is clear: note the higher accuracy of the CJ

scheme compared to the sixth-order explicit scheme F6.

Table 2.1 also lists a values for several fourth-order optimized schemes. These schemes are designed
to minimize selected error quantitics over various wave number ranges as detailed in Ref. [18].
01 and O3 minimize the semidiscrete isotropy error for a wave spectrum where the largest wave is
resolved with 4 and % intervals respectively. Equivalent schemes which minimize dispersion crror are
designated O2 and 04, respectively. 0J minimizes the dispersion error over the entire range of wave
numbers up to 2 points per wave. However, it has been shown in Ref. [11] that such optimization is
counterproductive because the absolute crror is prohibitively large.” 06 and O7 are relevant to the
fully-discrete situation where the time-integration method is chiosen to be the Runge-Kutta classical
fourth order method: these schemes then minimize dispersion error at CFL numbers v = 0.75 and
1.0 respectively for a wave number spectrum resolved with four or more points for every component.
Additional discussion on these optimized schemes, their derivation and error analyses can be found

in Refs. [11].

Special formulas are required at points 1, 2, N ~ 1 and N where the stencil of Eqn. 2.1 protrudes
the domain. These formulas constitute numerical (or Phase 1) conditions. Physical (or Phase II)

conditions arc addressed in Section 2.6 and in Ref. [9].

2.1.2 Boundary Point 1
In order to maintain the tridiagonal nature of the scheme, the formula employed at point 1 is:

) + a1y = a1¢; + biga+ c1¢3 +dids + e1d5 + fide + 9167 (2.3)

The stencil is shown schematically in Fig. 2.1 (c). Upon inserting Taylor series approximations
about point 1, and matching coefficients of equal order terms, a sequence of equations is obtained
whose solution yields the coefficients which are listed in Table 2.2. Again, schemes with E prefixes

are explicit because a; = 0. Note that the scheme C2 is the same as developed in Ref. [19].

2.1.3 Boundary Point 2

The general formula for the derivative at the first point away from the boundary is:

@218] + ¢ + 22 = azdy + bada + codz + d2gs + €25 + fade + 9267 (2.4)

Note that in general, both sides of Eqn. 2.4 are asymmetric about point 2. Several possibilities arise
from different utilization of ¢ in Eqn. 2.4. If the slope at point 1 is treated implicitly, two options

arise:

e Option A: @91 = a2 # 0. In this case, the left hand side is symmetric about point 2. The
coefficients obtained by Taylor series coefficient matching are presented in Table 2.3.
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Table 2.2: Boundary Cocfficients for Point 1

Scheme o, ay by ey dy e i ¢ OA

El 0 -1 1 0 0 0 0 o0 I

20 F o2 F 0 0 0 2
B0 =3 P 4 0 0 0 3
Bf 0 2 o4 -3 4 F 0 0 4
E5 0 T o5 -5 B F § 0 5
B0 5 6 F F 2 56
2 1 -2 2 0 0 0 0 0 2
cs 2 = 2 L 0o o o 0 3
c/ 3 =2 2 3% F 0o o0 0 4
c; o4 FEOF 03 F 5 0 0 5
c6 5 =R F 5 F 5F o F[ 06

Table 2.3: Boundary Coefficients for Point 2 with Option A: oy = as # 0

Scheme @21 a2 as bs ¢co do e fa g2 OA
AC4 2 22 0 % 0o 0 0 o0 4
acs & & wm T OF W os 0 05
ac6 & f 0 W R wm om o 006




Table 2.4: Boundary Coefficients for Point 2 with Option B: a2 # az2 # 0. Note BCY scheme is

same as AC/ because this formula for a fourth-order three-point scheme is unique

Scheme a9 @i  as bo o da es  fo go OA
Bcs 3 F = 2 0o o 0 0 0 3
BCY 3 i = 0 3 0 0 0 0 4
BCs ¢+ + F F 1 £ 0 0 0 5
Bos b 3 32 2 4 L os o0 0 o
AN R R A
Bes & % R OB Do k& 8

Table 2.5: Boundary Formulas for Point 2 with Option C: as; = 0,22 # 0

Scheme @91 @92 as ba ca dy es  fo g OA
cce o F =z 2 o0 0 0 0 0 2
ccs o0 + F -1 %2 0 0 0 0 3
ccy o0 1 % o 3 r 0 0 0 4
ccs o % HF = 2 1 zF 0 0 5
cce o0 2 F F i1 F & 0o 6
ccr 0§ oH M E PR A BT

e Option B: a3 # a2 # 0. Because of the extra degree of freedom, for the same stencil as in
Option A, one degree higher order of accuracy is obtained as shown in Table 2.4.

In most algorithms, the solution is updated only at interior points i.e., all points excluding 1 and N
where the values ¢; and ¢y are determined from the physical constraints of the problem. Thus, the
slopes at these endpoints are not required and it is possible to decouple them (but not the pointwise
values ¢, and @n) from the rest of the domain by setting @s; = 0. Again, two possibilities exist:

e Option C: as; = 0, @22 # 0. The coefficients of this implicit formulation are listed in Table 2.5

e Option D: as; = @92 = 0. In this case, the slope at point 2 is computed explicitly with the
coefficients listed in Table 2.6.

11




Table 2.6: Boundary Coefficients for Point 2 with Option D: ag; = a2 =0

Scheme @a; @22 as by o dy ea  fo g2 OA

DEI 0 0 -1 1 0 0 0 0 0 1
DE?2 0 0 '_2—‘ 0 ‘5 0 0 0 0 9
DE3 0 0 = 3t 1 = 0 0o 0 3
0 0 % F R h 0 0
DES 0 0 = =B 2 -1 L =1 g 5
DE6 0 0 :él ‘6’;')7 -3 :;i 2. :41 515 6

2.1.4 Boundary Point M = N — |

The difference scheme at the point away from the right boundary is similar to that derived for point

2. The formula chosen is:

aMm1BN_ot PN 1 tanmady = amON+byON_1HemON2+dudN-s3temON—at IMIN-5FIMBN -6

v (2.5)
The same options can be proposed as for point 2. Because of the structural relationship between
Eqgs. 2.5 and 2.3, Tables 2.3 through 2.6 are applicable with the modifications that 1) ap = a2,
ii) apr2 = asag, and iii) the signs of cach of the coefficients a through g are reversed i.e., ay = —as,

bM = -—bg, e
2.1.5 Boundary Point N
The formula for the boundary point N is:

andh 1+ N = andn +bnSnN-1 +eNIN—2+ dNON_3 +eNON_g+ fNON_5 +gNIN-6 (2.6)

Again, because of the structural similarity between Eqns. 2.6 and 2.3, Table 2.2 is applicable with
i) an = o1 and ii) the signs of each of the coefficients a through g are reversed, ie., ay = —ai,

by = —by, ...

2.2 Interpolation Formulas for Midpoint Values
The formation of some viscous terms may be greatly facilitated by the use of function and derivative

values at midpoints. In this section, the function values are obtained at midpoint values with inter-
polation formulas using the basic procedure of Lele [4]. The notation employed and the schematic of

12



Table 2.7: Coefficients for Interior Interpolation Formula

Scheme a b B OA
C2 Free 14 90 0 0 2
C{- Free F+3¢ =libe 0 4
C6  Frec MEGS g e
cs i % 8

the stencil are sketched in Fig. 2.4. We focus again only on tridiagonal schemes with up to & h-order

accuracy ue., two orders higher than for the derivative schemes in Section 2.1.

2.2.1 Interior Scheme

The basic formula for interpolation at interior points is:

‘ . b
ad;_ s+ iyt adiys = (—21 (Biv1 +¢i) + 3 (Giv2+ diz1) + % (Gigs + di-2) (2.7)

where it is obvious that the coefficients «, a and b have no relation to those of Eqn. 2.1. Matching
of Taylor series terms gives the coefficients listed in Table 2.7. For two reasons, « is retained as a
free parameter for all but the highest-order scheme for which « is a unique nonzero number. The
first advantage concerns notational brevity: explicit schemes can be easily derived by setting o = 0
while the equivalent compact scheme can be obtained by setting the “outermost” coefficient to zero
~ thus reducing the stencil size by 2 points — and solving for a unique «. For example, in Table 2.7,
an explicit 6th order scheme, E6, can be derived by setting o = 0 in the row labeled C6, thus giving,
a=75/64,b=—25/128 and ¢ = 3/128. On the other hand, the compact 6th order scheme can be
obtained by setting ¢ = 0 in the same row i.e., @ = 3/10 and thus @ = 3/2 and b = 1/10. The second
reason to retain o as a free parameter is that it may then be potentially employed for optimization
purposes similar to that discussed for filtering in Section 2.5.

2.2.2 Points Near Boundaries

Point %
Formula
¢3 +ads = agy+ bda + co3 + dos + eds + oo + g¢7 (2.8)

Coefficients: Table 2.8. Note: for brevity, the subscripts on each coefficient have been omitted in

this and subsequent formulas.
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Figure 2.4: (a) Notation for Midpoints in 1-D Discretization, (b) Stencil for First Derivative at
Interior Midpoints, (c) Through (f) Stencils for First Derivatives at Points %, %, M =N - % and
N -~ % Respectively
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Table 2.8: Coefficients for Interpolation Formulas at % i.c., at the Midpoint Between Nodes 1 and 2
Scheme « a b c d e f g 0OA
C1 Free 1+ a 0 0 0 0 0 1
C? Free % -3 :1,— + 323 0 0 0 0 2
C3 Free 3 3 34 3—1(1 -t+ 3 0 0 0 0 3
Ccy Free 2 - & 84 % - 43 - 0 0 0 4
C5  Free fH-7% HtE  —mter m-wm —mtios 0 0 5
C6  Free B-f& I+ OERF SgBe At e 0 6
o7 Froc 21(]1012;@ 63(1511-;%1) . 105(1—01214+9r1) 21(1215;501) 9(—?.3;-431(1) 775—1'227(1 7(;5324;(1) :
. 512 = 5y T 513 3 mw 8
Point 3
TFormula
agy +ég +adz = ady +béy + chs + dda + eds + fé6 + g7 (2.9)

Coefficients: Table 2.9. Note: It is evident from Fig. 2.4 that for lower even-order schemes (e.g.,
C}4), this is an interior point and the formulas are the same as in Table 2.7.

Point M — %
Formula

Py T Oy-_ytadyyy = adN +b0N-1+ CON-2 +dEN_3+ePN_a+ fON-s5 (2.10)
Coefficients: Table 2.9. Note: the coefficients are precisely the same as for point -ij;
PointM—{-—%:N—%
Formula

adp_ 1+ Sy = apN 0PN+ coN_2 +doN-_3+ edN_s+ fON-_5 + gbN-6 (2.11)

Coefficients: Table 2.8. Note: the coeflicients are precisely the same as for point %
2.3 Derivative Formulas at Midpoints from Known Nodal

Values

The formation of the stress tensor at midpoints also requires certain derivative values at midpoints.
The formulas may be derived in essentially the same manner as for interpolation. Since the node
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Table 2.9: Coefficients for Interpolation Formula at Midpoint

Scheme  « a b ¢ d e S g
Cct Free 14 2« 0 0 0 0 0 0
C2 Free S -a 3+ 3a 0 0 0 0 0
C3 ° Free —g+322 %-—% -g—-{-% 0 0 0 0
C4 Free —11—6+‘%“ f—6+5—§ T‘%+5—8'l -—,l—ﬁ-i-"s—g(1 0 0 0
i) Free —Tg—8+%1" ;—3—*—';’—: %%"'ST(; —%—{-]1’—;" %g-—%} 0 0 H
Cé Free _% + % 105;5:;9()(1 15(172—8%) —35;2;330 21;;}0“ —:s;;étm 0
C7 W [ e msocw) Ioiube) e e o g
Cs o 21 819 045 —21 o -9 1
38 08 1216 12i6 08 304 1216 1216

Table 2.10: Coefficients for Interior Midpoint. Differentiation Scheme. QA=0rder of accuracy

Scheme « a b OA
E2 Free | 0 2
C Free §-32 _ljle 4
C6 = & = 6

derivatives are restricted to 6th order, we seek only up to sixth order accuracy for midpoint deriva-

tives as well.

2.3.1 Interior Scheme

Formula ;
Ot¢§_% + ¢;+% + 0¢:~+% = a(diy1 — ¢i) + 3 (Piv2 — di-1) (2.12)

Coefficients Table 2.10 Note: Because of the restriction to 6th order, the general formula does not
require the coefficient c. '
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Table 2.11: Coefficients for Midpoint Differentiation Scheme at Point 3/2. OA=Order of accuracy.

Scheme ! a b ¢ d e f OA
E2 0 -1 1 0 0 0 0 2
R R
Cf  Free e gote sge e L
C5 Free =16804710 67—1:]2;1 o 1342070 =llite 29-3a T4 g
6 5 T e s s GO

2.3.2 Points Near Boundaries

Point %
Formula

¢>'% + a¢;+% = ad| + bops + ch3 + dos + eds + [ds (2.13)
Cocfficients: Table 2.11. Note: The scheme designated C4 is not really compact since « cannot. be
chosen to set e — which is a constant - to zero.
Points % and M — %

For all orders up to sixth, these are interior points. Thus, Eqn. 2.12 and the corresponding coefficients

of Table 2.10 are applicable and no special treatment is required. Note that this situation differs
from the case for interpolation where up to 8th order formulas were derived.

Point M + %
Formula

¢IN_% + ad)’N__% =adN +bdN_1 + cON_2 + dON_3+ edN_g+ fON-3 (2.14)

Coefficients: May be derived from Table 2.11 by reversing the signs of each of a through f but not
of a.

2.4 Derivatives Formulas at Nodes from Known Midpoint -
Values
The midpoint interpolated and derivative values obtained from Sections 2.2 and 2.3 can be employed

to form composite values, in this case certain components of the stress tensor as outlined later.

It 1s necessary to then differentiate these midpoint composite values to obtain essentially second

derivatives at the nodes.




Table 2.12: Coefficients for Differentiation at Point 1 with Known Midpoint Values

Scheme o a b c d e S OA
C?2 Frec -2 —a 34+a -1 0 0 0 2

. _ 7l _ 23a 47 | Ta —314a 23—a .

C3 Free 5 = 5 + 3 3 5 0 0 3

-93-22¢« 23290 17« —=224¢ 37 5 =224«

¢4 Free 73 53t 7 7 24 0 1

- —3043-563q  53534201a  —3489+143n  859-37a  —2041487n  1689—Tla "

Ch Free 640 384 192 64 384 1620 2
C6 1627 — 1104667 658913 16343 - 6041 15007 — 107990 6

g 62 39680 23808 11904 3068 73308 110040 )

2.4.1 Interior Scheme

Formula
b

agi_ + ¢+ di =a ((35,-+Lz - ¢,-_%) + 3 (d’i+§ ~ c;‘),-_-%) (2.15)
Coefficients: Table 2.10. Note: At interior points, this is the dual of the problem of Section 2.3 and

thus have the same coeflicients.

2.4.2 Points Near Boundaries

Point 1
Formula
¢ +ady =ads +bds +chz +dby +edu + foun (2.16)
Coefficients: Table 2.12
Point 2
Formula
agl +¢5+ady =ads +bds +chr +dbs +edu + fou (2.17)

Coefficients: Table 2.13.
Point M =N -1

Formula

adhrer + S +ady = a¢M+% + b¢M_% + C¢M—§ + d¢M—% + e¢M_§ + f¢M_.§- (2.18)

Coefficients: Obtained from Table 2.13 by reversing the signs of each of a through f but not of a.

Point N
Formula
Sy +ady g =ady_y +boy_3 +coy_s+dby_z+edn s+ fon_u (2.19)
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Table 2.13: Coefficients for Differentiation at Point 2 with Known Midpoini Values

Scheme « a b ¢ d € f 0OA

E? 0 -1 1 0 0 0 0 2

23 _ 35 7, 19 11 ] 110 .

C3 Free —53 = lga 'é- + Ta - —4—a -35 T 1; 0 0 3
=11-46a 17 101 & 3 33« 5(=14220a) i 11

C4 Frec 12 ZiE 87 77 39 33 12 0 1

. —1689-9058a  2014+4930a  143-3282a  —11142578a  87—2050a  —Ti41698a .

Cs Free 1920 384 To2 192 384 1930 D

C6 31 5105 4957 119 85 119 a7 6

’ 18 2508 3908 1237 1227 7908 7908

Coefficients: Obtained from Table 2.12 by rcversing the signs of cach of a through f but not of «.

2.5 Filter Formulas

The interior schemes presented in carlier sections address the issue of accuracy. An equally important
consideration is that of stability. For high-order schemes, theoretical analyses of stability are not
straightforward, the principal exceptions being the simplest cases where no boundaries are present,
the governing equations are linear and the mesh is uniform and further where the time-integration
methods are explicit. Practical calculations usually do not satisfy these stringent conditions in
several ways. Truncated boundaries, nonlinearities, curvilinear meshes and, in the case of wall-

bounded flows, implicit methods of time-integration are the norm.

As noted earlier, special schemes are necessary at points near the boundaries where the interior
formulas cannot be applied. The impact of the formulas employed at schemes has been examined in
Refs. [20, 21, 22] and the citations therein. The approach is typically to choose a well-posed linear
scalar problem discretized on a uniform discrete mesh. The composite scheme is then subjected to an
eigenvalue analysis. The algebraic complications are enormous and recourse to theories connecting
the properties of semidiscrete to fully-discrete schemes are often invoked. The complications are

more severe for systems of equations, see for example Ref. [6].

Far fewer studies address the imposition of the second or physical phase of the boundary condition
implementation. Typically, these include physical approximations. For example, the condition
Op/On = 0, where n refers to the direction normal to the boundary, is imposed at solid walls.
The condition is derived from boundary layer theory and although it is used extensively, may incur
sizeable error near points of separation or attachment. Additionally, the actual implementation of
this condition often approximates dp/8n ~ dp/0n = 0 where 7 is the coordinate line emanating from
the wall and may not point along the normal. The impact of such approximations on the theoretical
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stability of a scheme has not becn sufficiently addressed in the literature.

The quality of the mesh employed also plays a crucial role in the performance of the scheme. In
Ref. [23], it is shown that central-difference based schemes exhibit spurious reflections at. interfaces
where a step-jump in the spacing is encountered. Indeed, boundary conditions derived for uniform

meshes are not necessarily stable on curvilinear meshes: Ref. [24] notes one such instance.

All the above issues introduce uncertainty into the applicability of tractable theoretical stability anal-
yses. In practice, stability is usually achieved through the addition of a small amount of damping [13]
or less commonly through filtering which forms the focus of this study. An extensive discussion of
the basic ideas behind filtering, which is usually applied after the solution vector is updated, can
be found in Ref. [16] and the citations therein. In recent years, the increased use of very high-order
methods has encouraged the development of correspondingly high-order filters. An extensive devel-
opment of cxplicit filters, i.c. those not dependent upon the solution of matrix systems, can be found
in Refs. [16, 15] while the methodology to derive compact schemes has been outlined by Lele {4]. In

keeping with the interior algorithm, this work utilizes the latter approach.

In Ref. [4], a series of optimized tri- and pentadiagonal compact schemes were developed for up to
sixth-order accuracy. Several were designed to satisfy specific amplification propertics. We employ
the same techniques to develop a different set of filters more consistent with the interior scheme,
restricting attention to tridiagonal-based schemes of up to 10th order. Additionally, the variable
ay is retained as a free parameter in order to provide some control on the “degree” of filtering.
With these choices, a 2Nth order filter has a stencil of 2V + 1 points and the stencil is wider than
that in Ref. [4] and thus require derivation. The bounds of the independent parameter oy arc
established and the performance of the filter is characterized for various values within these bounds,
in effect providing guidelines in the choice of this parameter. At present, the conserved quantities
arc filtered though options exist to apply filtering to the various combinations of conserved and

primitive variables.

2.5.1 Interior Scheme

The filtering procedure replaces the computed (updated) value ¢ with phi obtained from the following
equation.
Formula
- - - \‘\N an LI
afdioy+ ¢i +opdip = Tnzoy (Uign + %i_p) (2.20)

Coefficients: Table 2.14. Note: ¢ are the filtered values of ¢. The spectral function (or frequency

response) of the operator is:
TN_sancos(nw)

S =
Flw) 1 + 2apcos(w)

(2.21)

which has N + 2 unknowns, consisting of a;, ag, a1, ...an. To obtain the coefficients, we first insist
that the highest frequency mode be eliminated by enforcing the condition SF(x) = 0 (see Refs [4,
16]). The remaining N + 1 required additional equations can be derived by matching Taylor series
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Table 2.14: Coefficients for Filter Formula at Interior Points. a; is a Free Parameter in the range
0<ay<0.5.

Scheme ao a, as as ay as OA
F2 3+ay 3+ay 0 0 0 0 2
5 4 3oy 1 =1, &

F4 3+ 5 +ay = + 3 0 0 0 4
; 11 S5ay 15 17a, -3 3ay 1 _ay X
F6 16T 78 2T T 6t 738 33 16 0 0 6

- 934700y 7+18ay ~T+14ay 1 ay -1 ay
r8 128 16 32 6~ 8§ 78 t & 0 8
F10 193+126a, 10543020,  15(=142ay)  45(1=2a;)  5(=1+2a;) 1-2a; 10

356 256 64 512 256 512

coefficients of the left and right sides expanded about 7. Because of the symmetric nature of Eqn. 2.20,
SF is real and the filter only modifies the amplitude of cach wave component. Further, only
even order terms persist and cach cocfficient match yields two orders of accuracy. ‘The property
|[SF(w)| < 1is verified a posteriori. For concreteness, we choose a maximum stencil of 11 points
with seven unknowns (N = 5). While the seven equations arising from the above matching procedure
can be solved uniquely to obtain a 12th order filter, the formula degenerates to an identity, a; =
1/2,a0=1,a; =1/2,a, =0 for n > 1 and SF(7) = % is indeterminate. One solution is to suppress
the highest coefficient match (thus restricting to 10th order) and to employ instead a supplemental
equation by assigning SF(w) at some specific. wave number as in Refs. [4, 11]. Another approach,
as in Table 2.14, is to retain oy as a free parameter which provides the flexibility of an explicit
filter subset (obtained by setting oy to zero). Because of the form of the denominator of Eqn. 2.21,
lay| < 0.5 . The spectral properties of these filters have been examined extensively in Ref. [25] and
are summarized in Figs. 2.5 and 2.6, respectively. Briefly, the damping effect decreases with increase

in order of accuracy and aj.

2.5.2 Points Near Boundary

For an 11 point stencil, special boundary formulas are required at points 1,...,5 and correspondingly
at N —4,..., N where the centered filter stencil protrudes the boundary. Two approaches to treat

these points are:

e At any boundary point ¢, a centered scheme of order 2 — 2 can be easily applied with the
same formulas as in the interior (and again setting all free parameters with the exception of a;
to 0). Thus, approaching the boundary from the interior this strategy systematically reduces
the order of the filter. In situations where the mesh is refined near the boundary, there is no
significant loss of accuracy. Further, a; can be considered as an optimization parameter and

at values close to 0.5 can provide an accurate boundary scheme (see Ref. [9] for details).
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Figure 2.5: Filtering Effect Variation with a; for 8th-order Filter
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Figure 2.6: Filtering Effect Variation with Order of Accuracy at ay = 0.25




o One-sided filter formulas can be incorporated within the tridiagonal structure of the present
scheme. In these, for general values of oy (still satisfying |ay| < 0.5), the spectral function is
complex - indicating that the filter may introduce artificial dispersion as well - and further, the
real component is greater than unity over select wave number ranges implying that certain wave
numbers will be amplified. Both, thc imaginary component of the spectral function as well as
the amount of excess over unity of the real part diminish as a; approaches 0.5 and thus, a valuc
of a; as close to 0.5 as possible from practical stability observation is reccommended. However,
it is also important to note that since these schemes arc applied at only a few points in the
domain, the inaccuracies introduced at higher wavenumbers may be amply compensated by the
higher accuracy at smaller wavenumbers. All formulas presented below guarantee suppression
of the odd-even mode as for the interior scheme. Each formula is designated F B, where x is

the point where the formula can be applied and y is the order of accuracy.

Point 5
Formula

apda+ ¢s + oyde = ady + bpa + cds + dds + chs + fés + g7 + hds + ide + jdio + ko (2.22)

Coefficients Table 2.15. Note: Only two schemes arc listed since those of lower order can be obtained

from Table 2.14 by considering this to be an interior point.

Point 4

Formula
apds+ s+ asds = agy + bda + cé3 + dda + eds + fds + g7 + hds + ido + jbro + k11 (2.23)

Coefficients: Table 2.16.

‘Point 3
Formula

afda+ @3+ asds = ady + boa + cp3 + dos + eds + fds + g7 + hds + ide + jé10 + ko1 (2.24)

Coefficients: Table 2.17.
Point 2

Formula
af1+ do + apds = ady + bds + cd3 + dds + eds + fds + gb7 + hos + ide + jé10+ ké11  (2.25)

with the filter coefficients described in Table 2.18.

Point 1
Formula

¢1 4 ayda = ady + bdo + cd3 + dds + eds + fos + gbr + hos + ido + jér0 + ké1 (2.26)
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Cocfficients: Table 2.19.

The filter formulas for the right boundary may be derived in similar fashion and indeed, the same

coefficients are obtained. For completeness, these are listed below.

Point N-4
Formula
QpON_5+ ON-a+ afdN_3 = adN +bdN_) + CON 2+ ddN_3+ edN_s+ fN_5+ 9ON-6 +
h¢n-7+idN_8+ jon-o+ kdN-10 (2.27)
Coefficients: Table 2.15.
Point N-3
Formula
pPN—a+ N 3+ aON_2 = adn +bdn_1 + cdnos + ddn_s+ ehN-1+ [ON-5+gbN_c +
hén_7 +idn_g+ jON—0 + kdn_10 (2.28)
Coefficients: Table 2.16. | .
Point N-2
Formula
CfdN-3+ ON_2+ QsN_1 = abN +bdN_1 + cON_2+ddN_3+edn_a+ fon-s +gdn_s+
hén-7 +1dN-5 + JON-9 + kdN-10 (2.29)
Coefficients: Table 2.17.
Point N-1
Formula
QfN-2+ N1+ 0N = adn +bdn_1 + conos+ddn_3+edN_a+ fEN_s5 + gdN_s +
hon-7+idn_8 + joN_9 + kdN_10 (2.30)

Coefficients: Table 2.18.

Point N
Formula

QyON-1+ ON = abN + bdN_1 4 cON_2+ ddN_3+edN_g+ fON_5+ gbN-6 +
hoN—7+idN_8 + jON-9 + kdN_10 (2.31)
Coefficients: Table 2.19.

2.6 Boundary Formulas for Neumann Conditions

Dirichlet boundary conditions at the endpoints 1 and N for the physical (or Phase II) conditions
are straightforward to implement in the present finite-difference scheme. Neumann conditions, such
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Table 2.20: Coefficients for Specification of d¢/dx =0

OA a b ¢ d e f
6 360 =450 400 =225 T2 -—10 147
5 300 -300 200 -75 12 0 137
4 48 -36 16 -3 0 0 25
3 18 -9 2 0 0 0 11
2 4 -1 0 0 0 0 3
1 1 0 0 0 0 0 1

as the zero pressurc gradient condition, require higher order formulas. The following formulas sets

the value of ¢; in terms of interior points in order to enforce d¢/0n = 0.

Point 1

Formula ) be b+ do )
¢]=G<P2+ o3 + ¢ 4-;' b5 + cde + @7 (2.32)

Coefficients: Table 2.20.
Point N

Formula
_apN-1+boN_2+dén_3+edN_s+ fON-5 + gPN_6 5 g
éN = y (2.33)

Coefficients: Table 2.20
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Chapter 3

Implementation for Navier-Stokes

Equations

The FDL3DI code was chosen to implement the formulas described in the previous chapters. Several
versions of this code exist, some including capabilities for turbulent simulations, aeroelastic analysis
and with overset grid generality. Some of these versions have also been parallelized. To provide
a test bed to investigate the properties of the previously developed interior differencing and filter

schemes, an elementary version was chosen with the following properties:

o Inviscid fluxes: Second-order explicit centered or Roe’s flux-difference split scheme with all
MUSCL-based options.

¢ Implicit time integration through the original Beam-Warming approximately factored algo-
rithm [26] with or without the more economical diagonal procedure of Pulliam et al. [8].

¢ Subiteration capability to reduce errors introduced by linearization, approximate factorization
and explicit boundary condition implementation.

To this were added the above compact differencing and filtering capabilities with the additional
option of explicit time-integration with the classical Runge-Kutta scheme in the low-storage form
described in Ref. [27]. The resulting version of the code has been designated FDL3D_ICE.

3.1 Governing Equations

The code solves the full, unsteady, three-dimensional Navier-Stokes equations [28]. With £, 7, ¢ and
t representing a general curvilinear transformation, and normalizing with the quantities by pes, Uso,
a representative length L, and the free stream molecular viscosity p, the equations may be written
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in vector form as:
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U,V and W are contravariant components of velocity, defined by:
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Using the compact notation z;, i = 1...3 to represent the z, y and z coordinates respectively and

similarly &; for £, 7,(, the shear stress tensor, 7 can be written as

while

9k Oui

Tij = #(5'5 A

b; = u;Ti; +

08k Ou;
Ox; Ok

k

0& Ouy

)~ 3152, d8

ag o1
(v = 1)PrME, 8z; 84

Note that the pressure is normalized by the quantity poou2,. The equation of state for a perfect
gas is assumed, the Prandtl number is fixed at 0.72 and the molecular viscosity is obtained from

Sutherland’s law.

3.2 Implementation

3.2.1

Metrics and Inviscid Fluxes

The metrics are evaluated in a straightforward fashion by utilizing the formulas of Chapter 2.
Following the recommendations of Refs. [29, 25], it is recommended that the same equations be
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utilized for metrics as for the fluxes, since this results in an error cancelation effect. The derivatives
of the inviscid fluxes are obtained by first forming these fluxes at the nodes and subsequently
employing the formulas of Section 2.1. For computational efficiency, the derivatives in an entire
plane are obtained in a vectorized fashion. To maintain the overall structure of the original code,
the %"—;f- and %’- values are obtained in a 7 plane by vectorizing in the ¢ and £ directions respectively.
aG

Similarly, 5o are formed in ¢ planes by vectorizing in & .

3.2.2 Viscous Fluxes

The formation of the viscous fluxes is more complicated since second derivatives are involved. In
conservative form, and with z, y and = represented by z;,7 = 1,2, 3 respectively, these terms have
the form aix,' (/15"%) where p is the molecular viscosity and s denotes one of the primitive variables
w,v,w,T. At present, these terms are formed by succesive application of the first dertvative operators
of Section 2.1. To avoid repeated computations of derivatives, the various terms are formed in
different subroutines which follow, with minor exception, the original layout of the FDL3DI code.
The specific routines are labeled VCMPXZRHS and VOCMPYRHS with some terms being computed
in the subroutine VCROSX.

It has been suggested that the successive application of two first derivative operators can lead to
instabilities since the damping mechanism for odd-even modes may be absent. Of course, filtering
guarantees that this mode is suppressed and indeed no evidence of such an instability was found
in the extensive tests reported in Ref. [9]. The suggested alternative to the successive application
of first difference operators is to write the chain-rule form of the viscous terms which can then be
directly computed with formulas for second derivatives. We note however that this is an expensive
approach either in CPU or memory requirement depending upon implementation, particularly in

curvilinear coordinates.

An approach of intermediate complexity can be suggested with the use of the midpoint formulas
presented previously (Sections 2.2 through 2.4). The cross-derivative terms can be computed as
before. On the other hand, the “straight” derivative terms such as for example,

6 Os IN;
5}7(”67;) = (ps’)

can be discretized by first forming the product of the midpoint values of p (with the formulas
of Section 2.2) and s’ (formulas of Section 2.3). These terms of the stress tensor can then be
differentiated to obtain values at the nodes with the dual formulas of Section 2.4. The result

degenerates to the original second order method with the appropriate choice of coefficients (scheme
E2 of Table 2.1).




3.3 Fourth-order Runge-Kutta Method

The classical fourth-order four-stage Runge-Kutta method has been incorporated into FDL3D_ICE.

With R denoting the residual, the governing equation is:

U _po (3(1’1+Fv) L 0(Gi+Gv) , 0+ Hy)
o o T on aC

The classical four stage method may be written as [17]:

ke = AtR(Uo) ki = AtR(UY)
ko AtR(I7) ks = ALR(Us) (3.2)

1
Ut = Uy + .6(];0 + 2ky + 2ka + k3)

where Uy = U™, Uy = U+ ko/2, Uy = Uy + k1 /2, Uy = Uz + ko, The scheme is implemented in the
low storage form described in Refl. [27]. The residual R may be computed with any of the schemes

outlined above.
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Appendix: Input variables for
FDL3D_ICE

The specification of input variables is illustrated with a sample input file. Since the detatls of
this file are subject to change on a frequent basis, the description is simply to provide a flavor for
the required data and various steps necessary to formulate a computation. The input file contains
comments either as complete lines or as trailing characters which describe the variable name being
read. In the first case, the line is read by the code i.e., it is a nccessary record thongh its contents arc
unimportant. In the latter case, the data is not read at all and such trailing alphabetical characters

may be deleted if desired.

A few routines, such as the one applying boundary conditions, are case-specific and must be modified
for each configuration. These routines are identified below in the appropriate context. Each input
noted below must be specified, even if it is not used by the particular scheme selected. For example,
if one of the variants of the Roe scheme is chosen, the compact, difference stencil is obviously not
utilized but must necessarily be included in the input file since it is read (though not utilized).

In the following, lines in the input file are entered in typewriter font.
4 TEST_CASE

Variable TEST_CASE determines the case being computed. This term is only employed in SUB-
ROUTINE BNDRY, which must be written by the user for each case.

0.1 XM1
100.0 RE
1.002 TW
0.38 S1
0.0 ALFA

X M1 is the Mach number and RE is the Reynolds number. TW denotes the wall temperature T,
normalized by the free stream temperature, and is employed only in SUBROUTINE BNDRY. The
convention recommended is that a negative TW signifies an adiabatic wall. S1 is the molecular
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viscosity coefficient for Sutherlands law (S1 = 198.6/7T(Rankine)). ALF A is the angle of attack
and, like TW, is only employed in the user provided SUBROUTINE BNDRY.

99999 1. 0 NDTAU CFL IBETA

NDTAU is the number of steps between update of timestep size (calls to SUBROUTINE TMSTEP)
and is meaningful only if IBETA # 0. CFL is the Courant number. IBETA controls whether the
time-step size is controlled with the CFL number or if constant time-step size values DTVIS, DTFIX
(below) are employed. For further details, SUBROUTINE TMSTEP should be consulted.

0.01 0.01 DTVIS DTFIX

DTVIS is the time-step size if IBETA=0 and the minimum time step size in the entire domain if
local stepping is chosen. If subiterations are on, IYI'FIX becomes the outer time step size while

DTVIS is the step of the “inner” iterations.
3 IDMPFIL

This parameter controls filtering/damping execution and consolidates several coefficients of the pre-
vious version of the code including ICDAMP and ISDAMP as follows:
IDMPFIL. = 1 (formerly ICDAMP=1, constant cocfficient damping, now obsolete)
= 2 (formerly ISDAMDP=1), scalar spectral damping controlled by ES4,ES2,
FES4I, FES2], OMGAV and SRCONST as before

= 3 Use filtering after each subiteration(Note implicit damping continues to be
controlled by ES4,ES2, FES41, FES2D, OMGAV and SRCONST as before)
= 4 Use filtering after all subiterations are completed (Note implicit damping
continues to be controlled by ES4,ES2, FES41, FES2D, OMGAYV and SR-

CONST as before)

0.01 0.0 ES4 ES2
2.0 1.0 1.0 25. FES41 FES2I OMGAV SRCONST

These are damping coefficient parameters. These values are always relevant for implicit approximate
factorization part of the algorithm, provided the time-integration scheme is implicit (controlled by

IRUNGE below).

0. PHI

PHI controls the order of accuracy of the implicit time integration algorithm.
1 1 1 1 IVION IV20N IV3ON IVMON

These parameters control the computation of viscous terms as in the previous version of the code:
IVION(IV20N,IV30N)=1 switches on thin layer terms in I{J,K) directions respectively. IVMON=1
switches on the cross derivative terms as well. For Euler calculations, IVION=IV20N=IV30ON=0.
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0 1 IDIAG NCONV

IDIAG=1 invokes the diagonalized option of Ref. [8] while a zero value reverts to the original

Beam-Warming scheme. NCONV controls the number of steps between runtime output (see SUB-

ROUTINE WRTHIST or SUBROUTINE MONITR).
1 0 0 400 IRUNGE ISUBON NSUBMX INMAX

IRUNGE controls time integration (0 for Bcam-Warming approximate factorization), 1 for RK4.
Note that if IRUNGE=1 (i.e., an explicit scheme), many other inputs which control the implicit,
algorithm are moot (e.g., IDIAG, ISUBON, NSUBMX). ISUBON=1 switches on subiterations whose
number is controlled by NSUBMX. The parameter is ignored if IRUNGE=1. INMAX is total number

of iterations for the present run.
16 15 156 1 1 ISCHME JSCHME XSCHME IVISC IMETRC

ISCHEME, JSCHEME and KSCHEME (previously IROE, JROE, KROE) control the choice of

scheme as follows:
0  Original second-order central scheme

First order Roe
Fully-upwind second order Roe (using MUSCL with & = —1)

Second order Roe scheme with Fromm reconstruction (x = 0)

B N —

Third order upwind-biased Roe scheme (k = 1/3)
5  Second order central subset of the Roe/MUSCL scheme (xk = 1)

15 Compact schemes as determined with the input variables below
For the Roe/MUSCL variants, the limiter may be varied by modifying MODULE LIMTRS in the

Fortran-90 version of the code or in SUBROUTINES XIRECON,ETRECON and ZTRECON of the
Fortran-77 version. IVISC controls accuracy of evaluation of viscous terms. The value 0 chooses the
second order central formulation of the original code, while 1 computes the derivatives in a compact
fashion. Note 1) the value of IVISC is ignored for the I(J, K) direction if IVION(IV20N,IV30N)=0.
Also, ii) different schemes can be employed in different directions, including different variations of the
compact scheme. However, for any given direction, the viscous and inviscid fluxes are computed with
the same scheme. Finally, IMETRC determines the difference formula for the metrics. IMETRC=0
reverts to the original second-order scheme, 1 chooses the compact scheme determined specially for
the metrics (below), while 2 causes the code to compute the metrics in each direction with the same

formula as for the inviscid and viscous fluxes in that direction.

5.0E-2 5.0E-2 5.0E-2 XICUTOFF ETACUTOFF ZETACUTOFF
0 0 0 IXIISO IETAISO IZETAISO
00000000 O ICUTY ICUT2 ICUT3 JCUT1 JCUT2 JCUT3 KCUT1 KCUT2 KCUT3

These parameters control the entropy cutoff for the Roe scheme for each of the three directions. De-
tailed formulas can be obtained from SUBROUTINE XIROEFLUX. For example, in the I direction,
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XICUTOFF controls the magnitude of the cutoff, IXIISO, 0 or 1, controls the choice of isotropic
‘or anisotropic formulas while ICUT1, ICUT2 and ICUT3 are on/off switches for the linear (u) and
nonlinear (u + ¢ and u — ¢) eigenvalues respectively.

! THIS LINE BLANK
FILE NAMES: INPUTD (FOR RECORD ONLY),RESTART,RESTORE,SAVETMP
’vc3d.dat’ ’vc3d.in’ ’vc3d.out’ ’vc3d.tmp’

These are names of files: ve3d.dat is the input data file file. The code must be executed for example
with the command “a.out < vedd.dat”. vedd.in is the restart file (must exist at the start of the job
with a flow field - see PROGRAM FDL3D_ICL), veldd.out is the restore file (created at the end of
the job). ve3d.tnp is restore file dumped every 50 iterations (sce PROGRAM FDL3DICE).

! THIS LINE BLANK
MOVIE INFO: IMOVIE, MODMOVIE IMV(MIN/MAX/INT),JMV(MIN/MAX/INT),KMV(MIN/MAX/INT)
1 25 444-1-1-1+-1,-1,-1
MOVIE FILE: GRID, ROOT NAME

‘movie.grid’ ’vc3dmv.’

These parameters control the output of files which can be combined to form a movie. The details

arc highly case-specific and may be tailored by appropriate modification of SUBROUTINE MOVIIS.

! THIS LINE BLANK
INFORMATION ABOUT COMPACT DIFFERENCING SCHEME
ok kkGR I D% * % *
C4-AC4-C4-AC4-C4
*kx*xX DIRECTIONx****
C4-AC4-C4-AC4-C4
*%%%Y DIRECTION***x*
C4-AC4-C4-AC4-C4
*%%%Z DIRECTION****
C4-AC4-C4-AC4-C4

These inputs select the compact scheme for the grid, /, J and K direction respectively. The character
variable consisting of five fields designating the scheme to be employed at points 1, 2, interior, N — 1

and N, respectively. For example,
C4-CC4~-C6~-AC4-C3
requests the fourth order compact scheme at point 1 (Table 2.2), the decoupled fourth order com-

pact scheme at point 2 (Table 2.5), compact sixth-order in the interior, the symmetric compact
fourth order scheme at point N — 1 (Section 2.1.4) and the third-order compact scheme at point N

36



(Section 2.1.5). Note: For efficiency, if the interior scheme is explicit, the tridiagonal system is not.

solved. Thus, it is not possible to combine explicit interior schemes with implicit boundary schemes.

! THIS LINE BLANK
PERIODIC BC INFO: IPERDC, JPERDC,KPERDC
111

If 1, IPERDC, JPERDC and KPERDC iimplement periodic boundary conditions in the 7, j and
k directions respectively. For compact schemes, this requires the solution of periodic tridiagonal
systems. Note that a 5 pt overlap is employed such that point 1 and 2 corresponds to IJEND — 4
and JEND — 3, respectively while points /KN — 1 and IEN D correspond to 4 and 5 IPERDC,
JPERDC and KPERDC only affect the compact differencing and filtering algorithms. For the orig-
inal scheme (ISCHME/JSCHME/KSCHME=0), it is necessary to explicitly sct periodic conditions
in SUBROUTINE BNDRY.

! THIS LINE BLANK
RK4 INFORMATION
KSTAGES, COEFFICIENTS as in CODE
41,6.1.3.1.3.1.6. 1.2, 1.2, 1. 1. 1. 2. 0. 1. 1. 1.

These inputs are the coefficients of the R4 scheme and should not be modified.

The next inputs control the application of the filter. Note that if IDMPFIL=2, the filter is not

invoked in any direction.

! THIS LINE BLANK
FILTER INFORMATION
IGFILTER,JGFILTER,KGFILTER
111
INOFIL,JNOFIL,KNOFIL
111

At the highest level, filtering can be switched on every N iterations in the I(J,K) directions by choos-
ing IGFILTER(JGFILTER, KGFILTER)=N. If IGFILTER=4 (for example), the filter is executed
every 4th iteration during which the filter is applied INOFIL number of times in succession. The
significance of JNOFIL and KNOFIL is similar.

FOR I DIRECTION: INTERIOR FILTER ORDER, ALPHA, NOOPTPARM, OPTPARM(1),...,O0PTPARM(NOOPTPARM)
10 0.4999 ©

These inputs control the filter formulas employed in the I direction for “interior” points. The first
parameter is the order of accuracy while the second corresponds to a;. The 10th order filter (the

highest considered here) requires a stencil of 11 points. If a lower order filter is specified, it is possible
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to provide free parameters e.g., for a stencil of 11 points, an 8th order scheme permits one paramecter
to be free. In Table 2.14, these free variables (NOOPTPARM in number) arc assumed to be zero
since their effect on the filter has not yet been investigated. A nonzero NOOPTPARM requires spec-
ification of the appropriate number of frec parameters (OPTPARM). For details, SUBROUTINES
FILCOEFS and BCFILCOEFS should be consulted.

For an 11 point stencil, interior points are those at least 6 points away from the boundary. It is thus
necessary to specify the formulation at the 5 points necar the boundary. As noted earlier, at each
of these points the specification can proceed in onc of two ways. The first approach takes recourse
to the fact that points near the boundary can be considered as interior points for lower orders of
accuracy. Thus, at a point N, a centered 2N order formula is easily constructed from Table 2.7.
In the sccond approach, one of the biased formulas presented in Section 2.5.2 may be utilized. 'To

allow for each, the code inputs are specified for the I-direction as follows.

Point 1: ORDER, ALPHA\_F, NOOPT, OPTPARMS (IF NOGOPT > 0)
00.00

Point 2

2 0.4999 0

Point 3

4 0.499 0

Point 4

6 0.49 0

Point 5

8 0.49 0

Only the first two inputs - order of accuracy and ay value - are relevant for the options described
here. In this example, the order of accuracy is reduced on approaching the boundary so that the
formulas are always centered. To compensate for the loss of accuracy, a; is successively increased
to provide a relatively “gentle” filter even near the boundaries. If the order of accuracy is higher
than achievable with a centered formula, one-sided equations with the coefficients of Tables 2.15
through 2.19 are employed. As noted earlier, such formulas may amplify and disperse waves and
should be utilized with some caution. Thus, at present, it is recommended that the first approach
be employed. For greater flexibility to implement optimized filters, NOOPT can be set to a nonzero
value together with additional parameters (OPTPARM(I), I=1, NOOPT). Since these values are

not yet standardized, this option is not recommended.

To permit independent specification of the filter in the different directions, separate inputs similar
to those for the I direction illustrated above, are employed for the J and K directions, respectively:

FOR J DIRECTION: INTERIOR FILTER ORDER, ALPHA, SPECIAL PARAMETERS (number and values)
10 0.4999 0 )

Point 1 Order, gamma, noopt, optparms

00.0
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Point 2
6 0.4999 0
Point 3
6 0.499 0
Point 4
6 0.49 0
Point 5
8 0.49 0

In this case, note that one-sided formulas will be invoked at points 2 and 3. The specification of the
filter for the K direction is similar.

FOR K DIRECTION: INTERIOR FILTER ORDER, ALPHA, SPECIAL PARAMETERS (number and values)
10 0.49 0

Point 1 Order, gamma, noopt, optparms
00.0

Point 2

2 0.4999 0

Point 3

4 0.499 0

Point 4

6 0.49 0

Point 5

8 0.49 0

The next inputs control the specification of H cuts in the domain. This is a useful option to define
grid-aligned objects in the field and to blank out their interiors.

! THIS LINE BLANK
MULTIPLE BLOCKS NOBLKS, ((IJKBLK(IDMY,JDMY),JDMY=1,6),IDMY=1,NOBLKS)
1724 119 36 37

NOBLKS refers to the number of such cuts. For each cut, six parameters must be specified denoting
the lower and upper bounds for I, J and K indices respectively. These parameters are employed to
automatically blank out interior points for the implicit scheme, as well as for the Phase I specification
of boundary conditions. Phase II specification is done in the user-written SUBROUTINE BNDRY.
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