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Chapter 1 

Introduction 

The large computational requirement for the simulation of a. wide range of turbulence []], acroacous- 

tic [2] and electromagnetic [3] phenomena motivates the development and implementation of highly 

accurate schemes. In direct and large-eddy simulations of turbulence for example, high-order - for 

this purpose fourth-order accurate or higher - numerical schemes bring some previously intractable 

problems within the reach of modern supercomputers. An overview of recent efforts may be derived 
from a study of Refs. [4, 5, 6]. 

Although the complexity of problems addressed with higher-order schemes has increased over the 

past, several years, remarkably few studies have focused on wall-bounded flows around geometrically 

complex configurations. Indeed, higher-order spatial schemes are usually coupled with explicit time- 

integration techniques. This is usually a good choice in situations where the limiting time-step size 

is dictated by physical rather than numerical constraints. For the large set of problems constituted 

by wall-bounded flows however, the stringent mesh resolution requirements near walls incur a severe 

numerical time-step-size limitation which can be alleviated by implicit methods. 

The objective of this work is to describe the incorporation of a high-order accurate spatial dif- 

ferencing scheme into an existing implicit flow solver. The platform chosen for implementation is 

the FDL3DI code which is the primary research tool of the CFD group at Wright-Patterson AFB 

(AFRL/VAAC). The basic algorithm employs the Beam-Warming approximate factorization tech- 

nique [7]. Several enhancements have been added as options including a subiteration technique 

and an efficient diagonalized procedure [8]. Since the code is formulated with finite-differences, 

all quantities are assumed to be pointwise in nature. Consequently, the formal difficulties encoun- 

tered in extending finite-volume approaches to higher-order are avoided. However, flux and metric 

conservation issues are of some concern and are addressed elsewhere [9]. 

Several choices arise in the development of higher-order schemes. At the most basic level, the 

formula can be either centered or upwinded. While each has its advantages, we choose centered 

formulas because of their nondiffusive semidiscrete error. This is a particularly appropriate choice 



for our present interests which encompass relatively low-speed (i.e., subsonic) and thus shock-free 

flows. Extensions to include shock-capturing techniques arc presently under development and will 

be described elsewhere. For a fixed order of accuracy, centered schemes have smaller stencil than 

upwind schemes. Even within centered schemes, additional advantage is obtained through the use 

of "compact" (or Fade type) formulas which require that the derivatives be computed in a coupled 

fashion along an entire line [4, 10]. With this approach, greater accuracy is obtained with fewer 

boundary schemes [10]. 

Compact schemes do however incur a moderate increase in computational expense over their non- 

compact counterparts. In order to limit, this extra effort, in this entire work formulas are restricted 

to tridiagonal systems. With this simplification, a particular stencil size yields two orders higher 

accuracy than an explicit equivalent. 

The formulas required to treat various aspects of the solution of the Navier-Stokes equations arc 

presented in Chapter 2. In developing these schemes, the approach adopts the techniques discussed 

by Lele [4]. The principal mathematical tools required are Fourier analysis and Taylor series ap- 

proximations. For the inviscid terms, formulas are required to evaluate first derivatives of the metric 

quantities and the fluxes. The maximum stencil size for this clement of the algorithm is chosen to 

be five points, the highest, scheme so obtained being of sixth-order accuracy. The coefficients of the 

five point scheme can be adjusted to yield lower order schemes as well. Section 2.1 lists the various 

formulas employed in this work, some of which have been derived previously elsewhere [10] but are 

reproduced and classified within the framework of the optimized schemes developed in Ref. [11]. The 

interior scheme cannot be applied at points near the boundary where the five point stencil protrudes 

the domain. These special formulas have not been standardized to the same extent as the interior 

schemes and are also presented in Section 2.1. 

The numerical formation of the viscous terms in the Navier-Stokes equations requires calculation 

of derivatives of the components of the shear stress tensor. The straightforward approach followed 

here is to apply the formulas of Section 2.1 twice in succession. However, stability considerations 

suggest that the nonconservative form be employed together with formulas which compute the second 

derivatives directly (see e.g., Ref. [4]). For compact schemes, this approach is expensive either in 

storage or in number of operations depending upon implementation. An alternate strategy is to 

utilize a midpoint interpolation and differentiate sequence to evaluate certain viscous terms. These 

formulas are presented in Sections 2.2 and 2.3 respectively. The dual formulas to compute nodal 

derivatives with known midpoint values are described in Section 2.4. 

One of the principal problems encountered in the solution of the Navier-Stokes equations with 

centered schemes is the appearance of numerical instabilities, typically arising near boundaries and 

in regions of mesh nonuniformities. If left unchecked, these spurious waves contaminate the solution 

and destroy the fidelity of the solution. A common method to suppress such instabilities is through 

artificial dissipation in the form of a (small) additive damping term to the governing equations (e.g., 

Refs. [12, 13]). A technique of similar vintage is to filter the solution at appropriate intervals in 

its temporal advancement (e.g., Refs. [14, 15]).   The distinction between damping and filtering is 



relatively subtle. Ref. [16] notes that filtering is a more general approach not restricted to hyperbolic 

equations. In Section 2.5, tridiagonal based filters of up to tenth-order are presented. In each formula, 

control is exercised through a free parameter whose range and impact on stability are investigated. 

The implementation of the various formulas into the FDL3DI code (to yield the new version 

FDL3DJCE) is described in Chapter 3. An additional option of time-integration has also been 

added in the form of the classical fourth-order Runge-Kutta method (sec e.g.., Rcf. [17]). Finally, 

the Appendix presents a brief description of the input parameters to the FDL3DJCE code with 

particular emphasis on those which are either new or whose meaning has been modified from the 

original code. Results on a range of fluid dynamic problems utilizing simple and complex mesh 

systems can be found in Ref. [9]. 



Chapter 2 

Compact Formulas 

Consider a 1-D mesh, consisting of A' points (or nodes), ], 2, ..., 7-2, i— 1, i, i+ 1, 7 + 2, ..., N -2, 

N - 1(= M), N as shown in Fig. 2.1 (a). Let <f> - <j>(x) be a scalar variable whose pointwise values, 

<j>i are known at these nodes. We assume that xi+i - a:,- = 1 i.e.. the mesh step-size is normalized 

to unity. For body conforming meshes, a curvilinear transformation £ = £{x) is introduced and the 

same formulas are then employed in the transformed (£) plane. As noted earlier, the high-order 

method requires several types of quantities, formulas for which are now obtained in succession: a) 

first derivatives at nodes, b) interpolation of quantities from nodes to midpoints, c) first derivatives 

at midpoints in terms of known quantities at nodes, d) second derivatives at nodes from known first 

derivatives at midpoints and e) filtering formulas. 

2.1    First Derivative at Nodes 

The problem is to utilize the known fa to estimate the derivative, # = d<j>/dx\i at each point in the 

mesh. 

2.1.1    Interior Scheme 

At interior points, a centered formula is employed: 

ati-i + ti +a<j>i+1    =    b + a  (2-i.) 

where a, a and b are constants which determine the spatial properties of the algorithm. Note that 

the stencil consists of five points as shown in Fig. 2.1(b). Up to sixth order accurate schemes can be 

obtained through proper choice of coefficients. To aid in this procedure, Taylor series approximations 

about point i are inserted in Eqn. 2.1 and terms of various orders are set equal to zero. This gives 
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Figure 2.1: (a) Notation for 1-D Discretization, (b) Five-point Stencil for First Derivative at Interior 

Points, (c) Through (f) Stencils for First Derivatives at Points 1, 2, M — N — 1 and N, Respectively 



Table 2.1: Coefficients for Interior Scheme. OA=Order of accuracy 

Scheme a a 6 Stencil 

Size 

OA 

E2 0 1 0 3 2 

EJ, 0 4 
3 

-l 
3 5 4 

C4 l 
4 

3 
2 0 3 4 

06 1 
3 

1 
9 5 6 

01 0.351075 1.5673833 0.1347667 5 4 

02 0.381365 1.5875767 0.1751533 5 4 

03 0.347485 1.5640900 0.1299800 5 4 

04 0.370733 1.5804890 0.1609770 5 4 

05 0.430816 1.6205440 0.2410880 5 4 

06 0.376374 1.5842493 0.1684986 5 4 

07 0.400218 1.6001450 0.2002910 5 4 

the following equations (see also Ref. [4]): 

0{h-) :        l-a + 2o-6    =    0 

0(h4) :        -a+6a-46    =    0 (2.2) 

0(h6) :        -0+10 a-16 6    =    0 

The solution of these equations provides values of a, b and a. Satisfaction of the first of equation 

in this set results in a second order scheme. If the second equation is also satisfied, a fourth order 

scheme results and the unique solution of all three equations yields a sixth order scheme. 

Table 2.1 lists several standard schemes which can be derived by appropriate choice of coefficients. 

The first two, E2 and E4 are "explicit" i.e., a = 0 and hence the derivatives values are decoupled 

from each other. For the remaining schemes, a ^ 0 and it is necessary to solve a tridiagonal system. 

C4 is the original fourth-order compact scheme discussed by Hirsh [10] and consists of a three point 

stencil. C6, described also in Ref. [4], is the highest-order scheme obtainable with the five-point 

formula of Eqn. 2.1. A semidiscrete accuracy analysis in the context of the wave equation has been 

performed in Refs. [4, 11]. Because of the centered stencil, the error is exclusively dispersive. The 

wave propagation speed and isotropy characteristics are compared with the exact value in Figs. 2.2 

and 2.3 respectively for these standard schemes. In these figures, w is the normalized wave number, 



w = 2itkh/L where k is the physical wave number on a domain of length L and /» is the grid spacing. 

The dramatic improvement in the compact schemes is clear: note the higher accuracy of the CJ, 

scheme compared to the sixth-order explicit scheme E6. 

Table 2.1 also lists a values for several fourth-order optimized schemes. These schemes are designed 

to minimize selected error quantities over various wave number ranges as detailed in R.ef. [18]. 

01 and 03 minimize the semidiscrete isotropy error for a wave spectrum where the largest wave is 

resolved with 4 and | intervals respectively. Equivalent schemes which minimize dispersion error are 

designated 02 and 04, respectively. 05 minimizes the dispersion error over the entire range of wave 

numbers up to 2 points per wave. However, it has been shown in Ref. [11] that such optimization is 

counterproductive because the absolute error is prohibitively large. 06 and 07 are relevant to the 

fully-discrete situation where the time-integration method is chosen to be the Rungc-Kutta classical 

fourth order method: these schemes then minimize dispersion error at. CFL numbers v — 0.75 and 

1.0 respectively for a wave number spectrum resolved with four or more points for every component. 

Additional discussion on these optimized schemes, their derivation and error analyses can be found 

in Refs. [11]. 

Special formulas are required at points 1,2, N — 1 and N where the stencil of Eqn. 2.1 protrudes 

the domain. These formulas constitute numerical (or Phase 1) conditions. Physical (or Phase II) 

conditions arc addressed in Section 2.6 and in Ref. [9]. 

2.1.2 Boundary Point 1 

In order to maintain the tridiagonal nature of the scheme, the formula employed at point 1 is: 

4>\ + ai<j>'2 = ai<j>i + bi<j>2 + ci4>3 -\-di<j>4 + e^ + fi<f><> + gifa (2-3) 

The stencil is shown schematically in Fig. 2.1 (c). Upon inserting Taylor series approximations 

about point 1, and matching coefficients of equal order terms, a sequence of equations is obtained 

whose solution yields the coefficients which are listed in Table 2.2. Again, schemes with E prefixes 

are explicit because a\ = 0. Note that the scheme C2 is the same as developed in Ref. [19]. 

2.1.3 Boundary Point 2 

The general formula for the derivative at the first point away from the boundary is: 

aoi^'i + 02 + Q22<?>3 = 02</'l + ^2^2 + C2<f>3 + dn^A + Cofo + f2<t>6 + 92<t>7 (2-4) 

Note that in general, both sides of Eqn. 2.4 are asymmetric about point 2. Several possibilities arise 

from different utilization of <j>[ in Eqn. 2.4. If the slope at point 1 is treated implicitly, two options 

arise: 

• Option A: ao\ = »22 7^ 0.  In this case, the left hand side is symmetric about point 2. The 

coefficients obtained by Taylor series coefficient matching are presented in Table 2.3. 



Figure 2.2:   Numerical Versus Theoretical Wave Number Dispersion Characteristics of Various 

Schemes. u;=normalized wave number, PPW = points per wave 
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Figure 2.3: Semidiscrete Isotropy Characteristics of Various Schemes 



Table 2.2: Boundary Coefficients for Point 1 

Scheme Q] «1 6, Cl rii ei h .91 OA 

El 0 -1 1 0 0 0 0 0 1 

E2 0 -3 
2 2 -i 0 0 0 0 2 

E3 0 -11 
6 3 -3 

2 
l 
3 0 0 0 3 

EJ, 0 -25 
12 4 -3 4 

3 
-1 
4 0 0 4 

E5 0 -137 
60 r> -!> 10 

3 
-5 
4 

1 
5 0 5 

E6 0 -49 
20 6 -15 

2 
20 
3 

-15 
4 

6 
s 

-1 
6 (5 

C2 1 -2 2 0 0 0 0 0 2 

C3 2 -5 
2 2 2 0 0 0 0 3 

C4 3 -17 
6 

3 3 
2 

-1 
6 0 0 0 4 

C5 4 -37 
12 3 3 _2 

IT 
1 

12 0 0 5 

C6 5 -197 
60 

-5 
12 5 -5 

3 
5 

12 
-1 
20 0 6 

Table 2.3: Boundary Coefficients for Point 2 with Option A: a\ = «2 ^ 0 

Scheme a2\ °22 02 &2 C2 ^2 e2 h 91 OA 

AC'4 1 
4 

1 
4 

-3 
4 0 3 

4 0 0 0 0 4 

AC5 3 
14 

3 
14 

-19 
28 

-5 
42 

6 
7 

-1 
14 

1 
84 0 0 5 

AC6 2 
TT 

2 
TT 

-20 
33 

-35 
132 

34 
33 33 

2 
53 

-1 
132 0 6 

10 



Table 2.4: Boundary Coefficients for Point. 2 with Option B: «21 7^ Q".'2 7^ 0.  Note BCJ, scheme is 

same as A C4 because this formula for a fourth-order three-point scheme is unique 

Scheme »21 Q22 a2 62 C-2 d2 C-2 h .92 OA 

BC3 5 
8 

-i 
8 

-3 
2 

3 
2 0 0 0 0 0 3 

BC1, 1 
4 

1 
4 

-3 
4 0 3 

4 0 0 0 0 4 

BC5 1 
6 

1 
2 

-5    ' 
9 

-I 
2 1 1 

18 .0 0 0 5 

BC6 ] 

8 
3 
4 

-13 
96 

— 5 
6 

9 
8 6 

-1 
96 0 0 6 

BC7 1 
in I — 227 

BOO 
-13 

12 6 
1 
3 

-1 
24 

1 
300 0 7 

BC8 1 
12 

5 
4 

-79 
240 

— 77 
60 

55 
48 

5 
9 

— 5 
48 

1 
60 

-1 
720 8 

CC2 0 

CC3 0 

CC4 0 

CC5 0 

CC6 0 

CC7 0 

-1 
3 

„2 
"3" 

2 
3 0 0 0 0 0 

1 
2 

-1 
4 -1 5 

4 0 0 0 0 

1 -1 
6 

— 3 
2 

3 
2 

1 
6 0 0 0 

3 
2 

-1 
8 

-11 
6 

3 
2 

1 
2 

-1 
24 0 0 

2 -1 
10 

-25 
12 

4 
3 1 -1 

6 
1 

60 0 

5 
2 

-1 
12 

-137 
60 

25 
24 

5 
3 

-5 
12 

1 
12 

-1 
120 

Table 2.5: Boundary Formulas for Point 2 with Option C: 0*21 = ^,«22 7^ 0 

Scheme     0-21     «22     «2        ^2        <-2     (h     e2      I2      92      OA 

2~ 

3 

4 

5 

6 

7 

• Option B: 0-21 7^ »22 7^ 0- Because of the extra degree of freedom, for the same stencil as in 

Option A, one degree higher order of accuracy is obtained as shown in Table 2.4. 

In most algorithms, the solution is updated only at interior points i.e., all points excluding 1 and N 

where the values <f>\ and <J>N are determined from the physical constraints of the problem. Thus, the 

slopes at these endpoints are not required and it is possible to decouple them (but not the pointwise 

values <j>\ and pjv) from the rest of the domain by setting »21 = 0. Again, two possibilities exist: 

• Option C: Q21 = 0,022 7^ 0. The coefficients of this implicit formulation are listed in Table 2.5 

• Option D: «21 = #22 = 0. In this case, the slope at point 2 is computed explicitly with the 

coefficients listed in Table 2.6. 

11 



Table 2.6: Boundary Coefficients for Point 2 with Option D: a2i = «22 = 0 

Scheme    »21     «22     ai C-2       h       .72      OA 

DEI 0 0 

DE2 0 0 

DE3 0 0 

DEI, 0 0 

DE5 0 0 

DE6 0 0 

• 1 1 

0 

-1 

— o 
6 

12 
=12     2 

1 
12 0 0 

3 
-] 
20 0 

5 «-1 
A 

1 
30 

2.1.4 Boundary Point M = N - 1 

The difference scheme at the point away from the right boundary is similar to that, derived for point 

2. The formula chosen is: 

OMI^'N-O + 'P'N-I +<*A/2$yv = aM<f>N + bM<t>N-\+CM<f)N-2 + dM<f>N-3 + CM<t>N-4 + fM<f>N-r>+yM(f>N-fi 

(2-5) 

The same options can be proposed as for point 2. Because of the structural relationship between 

Eqs. 2.5 and 2.3, Tables 2.3 through 2.6 are applicable with the modifications that i) ajji = »22. 

ii) QM2 = Q2i, and iii) the signs of each of the coefficients a through g are reversed i.e., UM = —«2> 

bM = -62, .... 

2.1.5 Boundary Point /V 

The formula for the boundary point N is: 

ON^'N-I + ^N = aN<f>N + bw<!>N-l + CN<f>N-2 + d;V^jV-3 + e^^N-A + /AT^N-5 + 9N<i>N-6      (2-6) 

Again, because of the structural similarity between Eqns. 2.6 and 2.3, Table 2.2 is applicable with 

i) ON = Q\ and ii) the signs of each of the coefficients a through g are reversed, i.e., a^ = — a\, 

bN = -&i, .... 

2.2    Interpolation Formulas for Midpoint Values 

The formation of some viscous terms may be greatly facilitated by the use of function and derivative 

values at midpoints. In this section, the function values are obtained at midpoint values with inter- 

polation formulas using the basic procedure of Lele [4]. The notation employed and the schematic of 
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Table 2.7: Coefficients for Interior Interpolation Formula 

Scheme a a 6 C OA 

C2 Free 1 +2» 0 0 2 

Clt- Free 9    ,    5a 
8 "*"   4 

-1+6« 
8 0 4 

06 Free 5(15 + 14«) 
64 

-25 + 126« 
128 

3-10« 
128 6 

C8 5 
14 

25 
Ifi 

5 
32 

-1 
224 8 

the stencil are sketched in Fig. 2.4. We focus again only on tridiagonal schemes with up to 8tli-order 

accuracy i.e., two orders higher than for the derivative schemes in Section 2.1. 

2.2.1 Interior Scheme 

The basic formula for interpolation at interior points is: 

where it is obvious that the coefficients a, a and 6 have no relation to those of Eqn. 2.1. Matching 

of Taylor series terms gives the coefficients listed in Table 2.7. For two reasons, a is retained as a 

free parameter for all but the highest-order scheme for which a is a unique nonzero number. The 

first advantage concerns notational brevity: explicit schemes can be easily derived by setting a = 0 

while the equivalent compact scheme can be obtained by setting the "outermost" coefficient to zero 

- thus reducing the stencil size by 2 points - and solving for a unique a. For example, in Table 2.7, 

an explicit 6th order scheme, E6, can be derived by setting a = 0 in the row labeled C6, thus giving, 

a — 75/64, 6 = —25/128 and c = 3/128. On the other hand, the compact Qth order scheme can be 

obtained by setting c = 0 in the same row i.e., a = 3/10 and thus a = 3/2 and b = 1/10. The second 

reason to retain a as a free parameter is that it may then be potentially employed for optimization 

purposes similar to that discussed for filtering in Section 2.5. 

2.2.2 Points Near Boundaries 

Point | 
Formula 

</>| + Q^s = a<j>i + b<j>2 + C(f>3 + d(f>4 + e<p5 + f<j>6 + g<f>7 (2.8) 

Coefficients: Table 2.8.  Note: for brevity, the subscripts on each coefficient have been omitted in 
this and subsequent formulas. 
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i-1/2        i+1/2 

(c) Point 3/2: 

N-2      M=     N 
N-1 

Implicit stencil 

i-2 i-1 i i+1 i+2 i+3 
A A A A A A         Explicit stencil 

-c -b -a a b c 

1       a 

1 2        3       4       5       6       7 
A     A     A     A     A     A     A 

a        b      c      d      e      f       g 

(d) 

(e) 

(f) 

Point 5/2: 

Point M-1/2: 

Point N-1/2: 

a       1       a 

1 2        3       4       5       6       7 

A     A     A     A     A     A     A 
a        b      c      d      e      f       g 

a     -j       a 

fTTTt 
N-6   N-5   N-4   N-3   N-2   N-1   N 

A     ♦     A     |     A     A     A 
g       f        e      d      c       b       a 

« 1 

N-6   N-5   N-4   N-3   N-2   N-1   N 

♦♦♦♦♦** 
g       f        e      d      c       b       a 

Regular point 

Regular point 

Figure 2.4: (a) Notation for Midpoints in 1-D Discretization, (b) Stencil for First Derivative at 

Interior Midpoints, (c) Through (f) Stencils for First Derivatives at Points f, |, M = N - | and 

N — 4 Respectively 
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Table 2.8: Coefficients for Interpolation Formulas at § i.e., at the Midpoint. Between Nodes 1 and 2 

Scheme a a b C d e / 3 OA 

Cl Free 1 + Q 0 0 0 0 0 0 l 

C2 Free 1 _ « 
2 2 

1 , 3« 
2 2 0 0 0 0 0 2 

C3 Free 3   « 
8   8 

3 , 3« 
4 ~<~   -1 

1 , 3« 
8^8 0 0 0 0 .'{ 

CJ, Free 5    « 
16   16 

15 , 9« 
16 "r 16 

5  , 9« 
Iß T 16 

1 
16 

« 
16 0 0 0 A 

C5 Free 35    5a 
128   128 

35 , 15a 
32 "^ 32 

35 , 45a 
64 "•" 64 

7 
32 

5« 
32 

 §_ + 
128 ' 

3a 
128 0 0 5 

C6 Free 63    7« 
256   256 

315 , 105« 
256 """ 256 

15(-7+7«) 
128 

63-35« 
128 

3(-15 + " 
256 

«) 7—3« 
256 0 6 

C7 Free 21(11-«) 
102-1 

63(11+3«) 
512 

. 105(-ll+9«) 
1024 

21( 11-5«) 
256 

9(-55 + 2 
1024 

1«) 77—27« 
512 

7(-3+«) 7 
102-1 

C8 li 
3 

77 
512 

693 
256 

1155 
512 

— 77 
128 

99 
512 

-11 
256 T536 8 

Point | 

Formula 

a<f>± + <ps + ad>7 = a<fii + 6<p2 + c<j>3 + d<f>A + e<f>5 + f(t>6 + g<t>i (2.9) 

Coefficients: Table 2.9.  Note:  It is evident from Fig. 2.4 that for lower even-order schemes (e.g., 

C4), this is an interior point and the formulas are the same as in Table 2.7. 

Point M -\ 

Formula 

Ol4>M-% + ^M-k + G&M + k — a<^N + b4>N-\ + C(f>N-2 + d<j>r<l-3 + e^jV-4 + f<t>N-5 (2-10) 

Coefficients: Table 2.9. Note: the coefficients are precisely the same as for point |. 

Point M + \ = N - i 

Formula 

a<j>M-\ + ^M+i = a^N + b<f>N-l + C0N-2 + d<f>N-.3 + e<^>/V-4 + f<f>N-5 + 3<pN-6 (2-H) 

Coefficients: Table 2.8. Note: the coefficients are precisely the same as for point §. 

2.3    Derivative Formulas at Midpoints from Known Nodal 

Values 

The formation of the stress tensor at midpoints also requires certain derivative values at midpoints. 

The formulas may be derived in essentially the same manner as for interpolation. Since the node 
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Table 2.9: Coefficients for Interpolation Formula at Midpoint 

Scheme a a b C d r I !l OA 

Cl Free 1 +2n 0 0 0 0 0 0 1 

C2 Free =T-° f + 3o 0 0 0 0 0 2 

C3   ' Free 1    ,    3a 
8 "*"   4 

3 a 
4 2 

3    ,    7a 
8 ""     4 0 0 0 0 3 

C4 Free 1     ,   3a 
16+   8 

9    ,   5a 
16 "1"   8 

9     .    5« 
16    '     8 

1      ,    3a 
16   '     8 0 0 0 A 

05 Free 5      ,    19a 
128 ">     64 

15   ,    15a 
32   '     16 

45    ,    5 a 
64 "f"  32 

5     ,    11a 
32 "'"    16 

3 
128 

5 a 
64 0 0 5 

C6 Free 7      ,   33a 
256 "•"   128 

105 + 290a 
256 

15(7-2«) -35+138a 
128 

21 I-7C 
256 

la -3+10a 
256 0 6 128 

Cl Free 7(-3+34a) 
1024 

7(27+04«) 
512 

315(3-2a) 
1024 

"(-15 + 58«) 18! 1-61 
1024 

"0a -27+98« 
512 

7 — 26« 
1024 7 256 

C8 9 
38 

21 
608 

819 
1216 

945 
1216 

-21 
608 

9 
304 

-9 
1216 

1 
1216 8 

Table 2.10: Coefficients for Interior Midpoint. Differentiation Scheme. OA=Order of accuracy 

Scheme a a b OA 

E2 Free ] 0 2 

C4 Free 9        3« 
8          4 

1,11a 
8 "•"     4 4 

C6 9 
62 

63 
62 

17 
62 6 

derivatives are restricted to 6th order, we seek only up to sixth order accuracy for midpoint deriva- 

tives as well. 

2.3.1    Interior Scheme 

Formula 

at'i-i + <f>'i+i + a<f>'i+i = a (<f>i+i - fa) + - (&+2 - &-i) (2.12) 

Coefficients Table 2.10 Note: Because of the restriction to 6th order, the general formula does not 

require the coefficient c. 
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Table 2.11: Coefficients for Midpoint Differentiation Scheme at Point 3/2. OA=Order of accuracy. 

Scheme a a b C d C / OA 

E2 0 -1 1 0 0 0 0 2 

C3 23 ,    a 
24 "*" 24 

7-9a 
8 

1    ,    9a 
8   '     8 

-1-a 
24 3 

C4 Free -22+a 
24 

17        9a 
2-4         8 

3+9a 
8 

-5-rt 
24 

1 
24 

Co Free -1689+71» 
1920 

67-141 a 
128 

143+207« 
192 

-111+« 
192 

29-3a 
128 

-71 + 9a 
1920 5 

C6 62 
9 

-10799 
17280 

-2713 
384 

523 
64 

-937 
1728 

25 
384 

-3 
640 6 

2.3.2    Points Near Boundaries 

Point | 

Formula 

<t>'i + a<f>'i+s. = n<f>\ + b<j)o + C4-A + d<t>4 + e4>5 + f<p6 (2-13) 

Coefficients: Table 2.11. Note: The scheme designated CJ, is not really compact since a cannot be 

chosen to set e - which is a constant - to zero. 

Points | and M -\ 

For all orders up to sixth, these are interior points. Thus, Eqn. 2.12 and the corresponding coefficients 

of Table 2.10 are applicable and no special treatment is required. Note that this situation differs 

from the case for interpolation where up to 8th order formulas were derived. 

Point M + \ 

Formula 

4'N-I. + Q<f>'N-2. ~ a$N + HN-\ + C&N-2 + d<f)N-3 + e^yv-4 + f<j>N-o (2-14) 

Coefficients: May be derived from Table 2.11 by reversing the signs of each of a through f but not. 

of a. 

2.4    Derivatives Formulas at Nodes from Known Midpoint 

Values 

The midpoint interpolated and derivative values obtained from Sections 2.2 and 2.3 can be employed 

to form composite values, in this case certain components of the stress tensor as outlined later. 

It is necessary to then differentiate these midpoint composite values to obtain essentially second 

derivatives at the nodes. 
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Table 2.12: Coefficients for Differentiation at Point 1 with Known Midpoint Values 

Scheme       a OA 

C2 Free 

C3 Free 

CJ, Free 

C5 Free 

C6 1627 

-3043-563» 
640 

-1104667 
39680 

5353+201 « 
384 

658013 
23808 

-2-a 3 +a -1 

71        23 a 
24          24 

47    |    7 « 
8   ~r    8 

-31+rt 
8 

-93-22a 
24 

229   ,    17c« 
24   "■"    24 

-22 + « 
24 

24 

37 
8 

5a 
24 

■3489 + 143« 
192 

16343 
11 904 

859-37« 
64 

-6941 
3968 

22 + « 
24 

-2041+87« 
384 

15007 
23808 

1689-71« 
1920 

-10799 
119040 

2.4.1    Interior Scheme 

Formula 

a#_i + <P'i + 4>'i+i = « (<M - e.-i) + jj («W§ - <M) (2.15) 

Coefficients: Table 2.10. Note: At interior points, this is the dual of the problem of Section 2.3 and 

thus have the same coefficients. 

2.4.2    Points Near Boundaries 

Point 1 
Formula 

<f>\ + a<j>'2 = a4>i + b<f)s + c<4>z + d<j>s + ecpn + f<fii*. 

Coefficients: Table 2.12 

Point 2 

Formula 

(2.16) 

(2.17) a<j>\ + <f>'2 + a<j>'3 — a<f>$ + b<f>$ + c<f>z + d<f>z + e<£u + f<f>i± 

Coefficients: Table 2.13. 

Point M = N - 1 
Formula 

a4>M+\ +<t>'M +a<t>'M-i = a<f>M+^ + HM-I + c<*M_| + d<t>M_z + e<t>M_z + f<t>M„i        (2.18) 

Coefficients: Obtained from Table 2.13 by reversing the signs of each of a through f but not of a. 

Point AT 

Formula 

tj>'N + Q(f>'N_1 = a<t>N_x. + b(j>N_i + c<j)N_i + d<j)N_z + e<fiN_z + f<f>N_u. (2.19) 
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Table 2.13: Coefficients for Differentiation at Point 2 with Known Midpoint Values 

Scheme a a b C d e / OA 

E2 0 -1 1 0 0 0 0 2 

CS Free 23 35 Q 
24 12 

7 ,    19a 
8 "*"     4 

1         11 a 
8           4 

1     ,11a 
"24 ~r    12 0 0 3 

C4 Free - ll-46o 
12 

17    .    101a 
24    '       12 

3        33 n 
8           4 

5 (-1+22 a) 
24 

1 
24 

11 a 
12 0 A 

C5 Free -1689-9058a 
1920 

201+4930 a 
384 

143-3282« 
192 

-111+2578 a 
192 

87 -2050 a 
384 

-7i+ 1698« 
1920 5 

06 31 
818 

5195 
"4908 

4957 
4908 

119 
1 227 

85 
1 227 

119 
4908 

17 
"4908 (> 

Coefficients: Obtained from Table 2.12 by reversing the signs of each of a through f but not of et. 

2.5    Filter Formulas 

The interior schemes presented in earlier sections address the issue of accuracy. An equally important 

consideration is that of stability. For high-order schemes, theoretical analyses of stability are not. 

straightforward, the principal exceptions being the simplest cases where no boundaries are present, 

the governing equations are linear and the mesh is uniform and further where the time-integration 

methods are explicit. Practical calculations usually do not satisfy these stringent conditions in 

several ways. Truncated boundaries, nonlinearities, curvilinear meshes and, in the case of wall- 

bounded flows, implicit methods of time-integration are the norm. 

As noted earlier, special schemes are necessary at points near the boundaries where the interior 

formulas cannot be applied. The impact of the formulas employed at schemes has been examined in 

Refs. [20, 21, 22] and the citations therein. The approach is typically to choose a well-posed linear 
scalar problem discretized on a uniform discrete mesh. The composite scheme is then subjected to an 

eigenvalue analysis. The algebraic complications are enormous and recourse to theories connecting 

the properties of semidiscrete to fully-discrete schemes are often invoked. The complications are 

more severe for systems of equations, see for example Ref. [6]. 

Far fewer studies address the imposition of the second or physical phase of the boundary condition 

implementation. Typically, these include physical approximations. For example, the condition 

dp/dn = 0, where n refers to the direction normal to the boundary, is imposed at solid walls. 

The condition is derived from boundary layer theory and although it is used extensively, may incur 

sizeable error near points of separation or attachment. Additionally, the actual implementation of 

this condition often approximates dp/dn ~ dp/dn = 0 where 77 is the coordinate line emanating from 

the wall and may not point along the normal. The impact of such approximations on the theoretical 
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stability of a scheme has not been sufficiently addressed in the literature. 

The quality of the mesh employed also plays a crucial role in the performance of the scheme. In 

Ref. [23], it is shown that central-difference based schemes exhibit spurious reflections at. interfaces 

where a step-jump in the spacing is encountered. Indeed, boundary conditions derived for uniform 

meshes are not. necessarily stable on curvilinear meshes: Ref. [24] notes one such instance. 

All the above issues introduce uncertainty into the applicability of tractable theoretical stability anal- 

yses. In practice, stability is usually achieved through the addition of a small amount of damping [13] 

or less commonly through filtering which forms the focus of this study. An extensive discussion of 

the basic ideas behind filtering, which is usually applied after the solution vector is updated, can 

be found in Rcf. [16] and the citations therein. In recent years, the increased use of very high-order 

methods has encouraged the development of correspondingly high-order filters. An extensive devel- 

opment of explicit filters, i.e. those not dependent upon the solution of matrix systems, can be found 

in Refs. [16, 15] while the methodology to derive compact schemes has been outlined by Lele pi]. In 

keeping with the interior algorithm, this work utilizes the latter approach. 

In Ref. [4], a series of optimized tri- and pentadiagonal compact schemes were developed for up to 

sixth-order accuracy. Several were designed to satisfy specific amplification properties. We employ 

the same techniques to develop a different set of filters more consistent, with the interior scheme, 

restricting attention to tridiagonal-based schemes of up to 10//) order. Additionally, the variable 

aj is retained as a free parameter in order to provide some control on the "degree" of filtering. 

With these choices, a 2Arth order filter has a stencil of 2N + 1 points and the stencil is wider than 

that in Ref. [4] and thus require derivation. The bounds of the independent, parameter aj arc 

established and the performance of the filter is characterized for various values within these bounds, 

in effect providing guidelines in the choice of this parameter. At present, the conserved quantities 

are filtered though options exist to apply filtering to the various combinations of conserved and 

primitive variables. 

2.5.1    Interior Scheme 

The filtering procedure replaces the computed (updated) value <f> with phi obtained from the following 

equation. 

Formula 

aj^i-i + fa + aj<f>i+i = S^=0y (ui+n + Ui-n) (2.20) 

Coefficients: Table 2.14. Note: <f> are the filtered values of <fr. The spectral function (or frequency 

response) of the operator is: 

=  y=0«nCOs(™) 
x   '       1 + 2o/cos(w) 

which has A + 2 unknowns, consisting of a/,ao,ai,.. . ctjv. To obtain the coefficients, we first insist 

that the highest frequency mode be eliminated by enforcing the condition SF{K) = 0 (see Refs [4, 

16]). The remaining A -I- 1 required additional equations can be derived by matching Taylor series 

20 



Table 2.14: Coefficients for Filter Formula at Interior Points, aj is a Free Parameter in the range 

0 < a; < 0.5. 

Scheme a0 «1 an 03 GI4 05 OA 

F2 2+Qf 
12+°f 0 0 0 0 2 

F4 
5    ,   3a/ 
8 "•"     4 h + <*j =1 + £LL 

8    ~    4 0 0 0 4 

F6 11    ,    5a/ 
16 T     8 

15   ,    17a/ 
32 "^     16 

_3   ,   3a/ 
16  T     8 

1      al 
32         16 0 0 6. 

F8 93+70a/ 
128 

7+18a/ 
16 

— 7+Ha/ 
32 

1          <*/ 
16         8 128 ~ 64 0 8 

F10 193+126a/ 
256 

105+302a/ 
256 

15(-l+2a/) 
64 

15(1-2«/) 
512 

5(-l+2 
256 

a/) 1-2«/ 
512 10 

coefficients of the left and right sides expanded about i. Because of the symmetric nature of Eqn. 2.20, 

ST is real and the filter only modifies the amplitude of each wave component. Further, only 

even order terms persist and each coefficient match yields two orders of accuracy. The property 

\ST(w)\ < 1 is verified a posteriori. For concrefeness, we choose a maximum stencil of 11 points 

with seven unknowns (TV — 5). While the seven equations arising from the above matching procedure 

can be solved uniquely to obtain a 12th order filter, the formula degenerates to an identity, otj — 

1/2, ao = 1, a\ — 1/2, an = 0 for n > 1 and ST[-K) = jj is indeterminate. One solution is to suppress 

the highest coefficient match (thus restricting to 10th order) and to employ instead a supplemental 

equation by assigning S^w) at some specific.wave number as in Refs. [4, 11]. Another approach, 

as in Table 2.14, is to retain or/ as a free parameter which provides the flexibility of an explicit 

filter subset (obtained by setting aj to zero). Because of the form of the denominator of Eqn. 2.21, 

\Q/\ < 0.5 . The spectral properties of these filters have been examined extensively in Ref. [25] and 

are summarized in Figs. 2.5 and 2.6, respectively. Briefly, the damping effect decreases with increase 
in order of accuracy and aj. 

2.5.2    Points Near Boundary 

For an 11 point stencil, special boundary formulas are required at points 1,..., 5 and correspondingly 
at TV — 4,..., TV where the centered filter stencil protrudes the boundary. Two approaches to treat 
these points are: 

• At any boundary point i, a centered scheme of order 1i — 2 can be easily applied with the 

same formulas as in the interior (and again setting all free parameters with the exception of Qj 

to 0). Thus, approaching the boundary from the interior this strategy systematically reduces 

the order of the filter. In situations where the mesh is refined near the boundary, there is no 

significant loss of accuracy. Further, aj can be considered as an optimization parameter and 

at values close to 0.5 can provide an accurate boundary scheme (see Ref. [9] for details). 
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Figure 2.5: Filtering Effect Variation with aj for Sth-order Filter 

22 



JISPIS 

Figure 2.6: Filtering Effect Variation with Order of Accuracy at aj = 0.25 
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• One-sided filter formulas can be incorporated within the tridiagonal structure of the present 

scheme. In these, for general values of aj (still satisfying \etj\ < 0.5), the spectral function is 

complex - indicating that the filter may introduce artificial dispersion as well - and further, the 

real component is greater than unity over select wave number ranges implying that certain wave 

numbers will be amplified. Both, the imaginary component of the spectral function as well as 

the amount of excess over unity of the real part diminish as aj approaches 0.5 and thus, a value 

of QJ as close to 0.5 as possible from practical stability observation is recommended. However, 

it is also important to note that since these schemes arc applied at only a few points in the 

domain, the inaccuracies introduced at higher wavenumbcrs may be amply compensated by the 

higher accuracy at smaller wavenumbcrs. All formulas presented below guarantee suppression 

of the odd-even mode as for the interior scheme. Kach formula is designated F BTy where x is 

the point where the formula can be applied and y is the order of accuracy. 

Point 5 
Formula 

rtj<j>A +4>5 + aj4>6 = a<j>i + 6<^2 + cd>3 + d<f>A + c<f>5 + f<t>e + g<j>7 + h<ps + i<f>9 + j4>\o + k<j>\ \    (2.22) 

Coefficients Table 2.15. Note: Only two schemes arc listed since those of lower order can be obtained 

from Table 2.14 by considering this to be an interior point. 

Point 4 

Formula 

Qf<f>3 + 04 + o/^5 = a<Pi + ^2 + c(j>3 + d(f>4 + e<f>5 + f<f>6 + gd>7 + /icAg + i<l>9 + j<f>io + kcj>\\   (2.23) 

Coefficients: Table 2.16. 

Point 3 

Formula 

Q/<^2 + 4>3 + ö/^4 = a(j>\ + H2 + c<p3 + d<j>4 + efe + f<j>6 + #7 + hcf>8 4- ifa + j<l>io + k<j>i 1    (2.24) 

Coefficients: Table 2.17. 

Point 2 

Formula 

otf4n + fa + 07^3 = «01 + Hi +c(j>3 + d<j>4 + e05 + /(/>6 +g<t>7 + h<j>8 + i<f>9 + j<t>io + k<j>i\    (2.25) 

with the filter coefficients described in Table 2.18. 

Point 1 
Formula 

4>i +a/</>2 = a<j>i +b<f>2 + c(j>3 + d<j>4 + e<j>5 + f<pe + g<f>7 + h(f)8 + i<f>9 + j(f>io + k<j>n (2.26) 
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Coefficients: Table 2.19. 

The filter formulas for the right boundary may be derived in similar fashion and indeed, the same 

coefficients are obtained. For completeness, these are listed below. 

Point N-4 

Formula 

af(j)N-5 + (pN-A + Qj<pN_3    =    a<t>N + &</>Af-i + c(pN_2 + d<j>N_3 + e<j>N-4 + /^AT_5 + g<j>N-c + 

h<j>N-7 + t<f>N-8+ j4>N-9 + k<l>N-in (2.27) 

Coefficients: Table 2.15. 

Point N-3 

Formula 

<yj(j>N-A + <t>N-3 + Ctj<t>N-2      =      <'4N + b(f>N-\ + C<j>N-2 + d<j)N_3 + C^N-A + f<i>N-T> + {J0N-G + 

ll<pN-7 + i<f>N-X + j<pN-9 + ^/V-10 (2.28) 

Coefficients: Table 2.16. 

Point N-2 
Formula 

Q/0/V-3 + <f>N-2 + aj<t>N-i    =    a<j>N +6^yv-i + c<j>N_2 +d4>N-:) + e<j>N-4 + f<f)N-5 + g<f>Ns + 

h4>N-.7 + i<j>N_s +j<pN_9 + k<pN-i0 (2.29) 

Coefficients: Table 2.17. 

Point N-l 

Formula 

aj<pN-2+ <J>N-i + otj(j>N    =    a<pN +b<j>N-i + c<j)N-.2 + d<j)N„3 + e<j>N-4 + f<j>N-5 + gcl>N-6 + 

h(j>N-.7 + l<j>N-S +j<f>N-9 + k<pN-10 (2.30) 

Coefficients: Table 2.18. 

Point N 
Formula 

<Xj<f>N-l +<f>N = 0.<t>N + b<j>N-l + c4>N-2 + d<f>N_3 + e<f>N-4 + f(f>N-5 + g<f>N-6 + 

h<j>N-7 + i<t>N-& + j<f>N-9 + k<t>N-\0 (2.31) 

Coefficients: Table 2.19. 

2.6    Boundary Formulas for Neumann Conditions 

Dirichlet boundary conditions at the endpoints 1 and TV for the physical (or Phase II) conditions 

are straightforward to implement in the present finite-difference scheme. Neumann conditions, such 
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Table 2.20: Coefficients for Specification of d<j>/dx = 0 

OA a fc c. d p / A 

6 360 -450 400 -225 72 -10 147 

5 300 -300 200 -75 12 0 137 

4 48 -36 16 -3 0 0 25 

3 18 -9 2 0 0 0 11 

2 4 -1 0 0 0 0 3 

1 1 0 0 0 0 0 1 

as the zero pressure gradient condition, require higher order formulas. The following formulas sets 

the value of <j>\ in terms of interior points in order to enforce d<f>/dn = 0. 

Point 1 

Formula , 
a<p2 + opt + c<p4 + dd>5 + r<l>6 + <P~ /0 ,30v 

<ö i =  -.  \l.f>i) 

Coefficients: Table 2.20. 

Point N 

Formula 

<PN =  7  [t.J-i) 

Coefficients: Table 2.20 

28 



Chapter 3 

Implementation for Navier-Stokes 

Equations 

The FDL3DI code was chosen to implement the formulas described in the previous chapters. Several 

versions of this code exist, some including capabilities for turbulent simulations, aeroelastic analysis 

and with overset grid generality. Some of these versions have also been parallelized. To provide 

a test bed to investigate the properties of the previously developed interior differencing and filter 

schemes, an elementary version was chosen with the following properties: 

• Inviscid fluxes:   Second-order explicit centered or Roe's flux-difference split scheme with all 
MUSCL-based options. 

• Implicit time integration through the original Beam-Warming approximately factored algo- 

rithm [26] with or without the more economical diagonal procedure of Pulliam et al. [8]. 

• Subiteration capability to reduce errors introduced by linearization, approximate factorization 
and explicit boundary condition implementation. 

To this were added the above compact differencing and filtering capabilities with the additional 

option of explicit time-integration with the classical Runge-Kutta scheme in the low-storage form 

described in Ref. [27]. The resulting version of the code has been designated FDL3DJCE. 

3.1     Governing Equations 

The code solves the full, unsteady, three-dimensional Navier-Stokes equations [28]. With £,77, £ and 

t representing a general curvilinear transformation, and normalizing with the quantities by p^, Uoo, 

a representative length L, and the free stream molecular viscosity /i, the equations may be written 
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in vector form as: 

where 

d_ 
dt 

OF,     8G i     dfl, 1   8FV     ÖGV     8HV 

Re[ d£        Of} d( J 

u 

p pv />V 

pit 

pv . ft-1 
puU + £Tp 

pi'V + iyP 
■ ^-\ 

PVV   +  T)yP ,      W/ 
1 

pw PWU +£:P pll'V   +  1];P 

. PE>. _ pEtU + pU _ _ pE, V + pV _ 

0 0 0 

1 ixjn i Vr.7-,-1 
] 

Cx.Tj'l 

F'-l Zxjil • *=7 ,   //„ = J 

. z> A _ W'i CrA 

;;u) 

pw 
/wW" + CxP 

pvW + Ct/P 
pwW + Q]> 

pE, W + pW 

U, V and W are contravariant components of velocity, defined by: 

U -Zt+ £r« + f.v" + 6"' = 0 + V 

V = T)t + i]Tu + rjyV + rjzw = 7;, + V 

Q + C.xU + QyV + G"" = 0 + W w 
£, =e+-(u2 + tr + wr) 

Using the compact notation xit i = 1 .. .3 to represent the x, y and z coordinates respectively and 

similarly £,• for £, 77, C, the shear stress tensor, T can be written as 

(<Kk_dui_ ,dik_dvj_       2        dji duk 
Tij ' ^dxj d£k 

+ dXi e&'   ^0ij dxk dh 

while 
bi = UjTij + 

k d£i dT 
(f-ljPrMldxidti 

Note that the pressure is normalized by the quantity Poo^L- Tne equation of state for a perfect 

gas is assumed, the Prandtl number is fixed at 0.72 and the molecular viscosity is obtained from 

Sutherland's law. 

3.2    Implementation 

3.2.1    Metrics and Inviscid Fluxes 

The metrics are evaluated in a straightforward fashion by utilizing the formulas of Chapter 2. 

Following the recommendations of Refs. [29, 25], it is recommended that the same equations be 
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utilized for metrics as for the fluxes, since this results in an error cancelation effect. The derivatives 

of the inviscid fluxes are obtained by first forming these fluxes at the nodes and subsequently 

employing the formulas of Section 2.1. For computational efficiency, the derivatives in an entire 

plane are obtained in a vectorized fashion.  To maintain the overall structure of the original code, 
the dF, ,,  . dH j£ and -Q^- values are obtained in a -q plane by vectorizing in the C and £ directions respectively. 

Similarly, ^f are formed in £ planes by vectorizing in £ . 

3.2.2    Viscous Fluxes 

The formation of the viscous fluxes is more complicated since second derivatives are involved. In 

conservative form, and with x, y and z represented by X{,i = 1,2,3 respectively, these terms have 

the form ^- (fJj^-j where \i is the molecular viscosity and .s denotes one of the primitive variables 

M, v, w, T. At present, these terms are formed by succesive application of the first derivative operators 

of Section 2.1. To avoid repeated computations of derivatives, the various terms arc formed in 

different subroutines which follow, with minor exception, the original layout of the FDL3DI code. 

The specific routines are labeled VCMPXZRHS and VCMPYRHS with some terms being computed 
in the subroutine VCROSX. 

It has been suggested that the successive application of two first derivative operators can lead to 

instabilities since the damping mechanism for odd-even modes may be absent. Of course, filtering 

guarantees that this mode is suppressed and indeed no evidence of such an instability was found 

in the extensive tests reported in Ref. [9]. The suggested alternative to the successive application 

of first difference operators is to write the chain-rule form of the viscous terms which can then be 

directly computed with formulas for second derivatives. We note however that this is an expensive 

approach either in CPU or memory requirement depending upon implementation, particularly in 
curvilinear coordinates. 

An approach of intermediate complexity can be suggested with the use of the midpoint formulas 

presented previously (Sections 2.2 through 2.4). The cross-derivative terms can be computed as 

before. On the other hand, the "straight" derivative terms such as for example, 

d       ds , 

can be discretized by first forming the product of the midpoint values of [i (with the formulas 

of Section 2.2) and s' (formulas of Section 2.3). These terms of the stress tensor can then be 

differentiated to obtain values at the nodes with the dual formulas of Section 2.4. The result 

degenerates to the original second order method with the appropriate choice of coefficients (scheme 
E2 of Table 2.1). 
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3.3    Fourth-order Runge-Kutta Method 

The classical fourth-order four-stage Runge-Kutta method has been incorporated into FDL3DJCE. 

With R denoting the residual, the governing equation is: 

dU      D fd(F, + Fv)  ,  d(G,±Gv)     d(IIi + Hv) 
dt \ d£ drj (X 

The classical four stage method may be written as [17]: 

k2    =    AtR{t;2)      ka = Atli(U3) (3.2) 

k0    =    AtR(Uo)     ki=MR(UXl 

/-/»+'    =    u0 + - (jfc0 + 2ki + 2Jt2 + A.-,) 
0 

where f/0 = U", U\ = U0 + k0/2, U-< = V\ + A-j/2, Un = U-j + h- The scheme is iiupleinented in the 

low storage form described in lief. [27]. The residual R may be computed with any of the schemes 

outlined above. 
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Appendix: Input variables for 
FDL3DJCE 

The specification of input, variables is illustrated with a sample input file. Since the details of 

this file are subject to change on a frequent basis, the description is simply to provide a flavor for 

the required data and various steps necessary to formulate a computation. The input file contains 

comments either as complete lines or as trailing characters which describe the variable name being 

read. In the first case, the line is read by the code i.e., it is a necessary record though its contents are 

unimportant. In the latter case, the data is not read at all and such trailing alphabetical characters 
may be deleted if desired. 

A few routines, such as the one applying boundary conditions, are case-specific and must be modified 

for each configuration. These routines are identified below in the appropriate context. Each input 

noted below must be specified, even if it is not used by the particular scheme selected. For example, 

if one of the variants of the Roe scheme is chosen, the compact, difference stencil is obviously not. 

utilized but must necessarily be included in the input file since it is read (though not utilized). 

In the following, lines in the input file are entered in typewriter font. 

4      TEST_CASE 

Variable TEST-CASE determines the case being computed. This term is only employed in SUB- 

ROUTINE BNDRY, which must be written by the user for each case. 

0.1 XM1 

100.0 RE 

1.002 TW 

0.38 SI 

0.0 ALFA 

A'Ml is the Mach number and RE is the Reynolds number. TW denotes the wall temperature Tw, 

normalized by the free stream temperature, and is employed only in SUBROUTINE BNDRY. The 

convention recommended is that a negative TW signifies an adiabatic wall.   51 is the molecular 
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viscosity coefficient for Sutherlands law (51 = 198.6/Too(Rankine)). ALFA is the angle of attack 

and, like TW, is only employed in the user provided SUBROUTINE BNDRY. 

99999 1.  0  NDTAU CFL IBETA 

NDTAU is the number of steps between update of timestep size (calls to SUBROUTINE TMSTEP) 

and is meaningful only if IBETA ^ 0. CFL is the Courant number. IBETA controls whether the 

time-step size is controlled with the CFL number or if constant time-step size values DTVIS, DTFIX 

(below) are employed. For further details, SUBROUTINE TMSTEP should be consulted. 

0.01 0.01    DTVIS    DTFIX 

DTVIS is the time-step size if IBETA=0 and the minimum time slop size in the entire domain if 

local stepping is chosen. If subitcrations are on, DTFIX becomes the outer time step size while 

DTVIS is the step of the "inner" iterations. 

3    IDMPFIL 

This parameter controls filtering/damping execution and consolidates several coefficients of the pre- 

vious version of the code including ICDAMP and 1SDAMP as follows: 

IDMPFIL     =     1     (formerly ICDAMP=1, constant coefficient damping, now obsolete) 

=     2     (formerly ISDAMP=1), scalar spectral damping controlled by ES4.ES2, 

FES4I, FES2I, OMGAV and SRCONST as before 
= 3 Use filtering after each subiteration(Note implicit damping continues to be 

controlled by ES4,ES2, FES4I, FES2D, OMGAV and SRCONST as before) 
= 4 Use filtering after all subiterations are completed (Note implicit damping 

continues to be controlled by ES4.ES2, FES4I, FES2D, OMGAV and SR- 

CONST as before) 

0.01       0.0    ES4    ES2 

2.0       1.0       1.0        25.     FES4I    FES2I    OMGAV    SRCONST 

These are damping coefficient parameters. These values are always relevant for implicit approximate 

factorization part of the algorithm, provided the time-integration scheme is implicit (controlled by 

IRUNGE below). 

0.     PHI 

PHI controls the order of accuracy of the implicit time integration algorithm. 

1111       IV10N    IV20N    IV30N    IVM0N 

These parameters control the computation of viscous terms as in the previous version of the code: 

IV10N(IV20N,IV30N) = 1 switches on thin layer terms in I(J,K) directions respectively. IVMON=l 

switches on the cross derivative terms as well. For Euler calculations, IVlON=IV2ON=IV3ON=0. 
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0 1 IDIAG    NCONV 

IDIAG=1 invokes the diagonalized option of Ref. [8] while a zero value reverts to the original 

Beam-Warming scheme. NCONV controls the number of steps between runtime output (sec SUB- 

ROUTINE WRTHIST or SUBROUTINE MONITR). 

10 0      400       IRUNGE ISUBON    NSUBMX    INMAX 

IRUNGE controls time integration (0 for Beam-Warming approximate factorization), 1 for RK4. 

Note that if IRUNGE=1 (i.e., an explicit scheme), many other inputs which control the implicit 

algorithm are moot (e.g., IDIAG, ISUBON, NSUBMX). ISUBON=l switches on subiterations whose 

number is controlled by NSUBMX. The parameter is ignored if IRUNGE=1. INMAX is total number 

of iterations for the present run. 

15  15  15  1   1     ISCHME    JSCHME    KSCHME    IVISC  IMETRC 

ISCIIEME, JSCHEME and KSCHEME (previously I HOB, JROE, KROE) control the choice of 

scheme as follows: 
0 Original second-order central scheme 

1 First order Roe 

2 Fully-upwind second order Roe (using MUSCL with K = — 1) 

3 Second order Roe scheme with Fromm reconstruction (K — 0) 

4 Third order upwind-biased Roe scheme (K = 1/3) 

5 Second order central subset of the Roe/MUSCL scheme (K — 1) 

15 Compact schemes as determined with the input variables below 

For the Roe/MUSCL variants, the limiter may be varied by modifying MODULE LIMTRS in the 

Fortran-90 version of the code or in SUBROUTINES XIRECON,ETRECON and ZTRECON of the 

Fortran-77 version. IVISC controls accuracy of evaluation of viscous terms. The value 0 chooses the 

second order central formulation of the original code, while 1 computes the derivatives in a compact 

fashion. Note i) the value of IVISC is ignored for the I(J, K) direction if IVlON(IV2ON,IV3ON)=0. 

Also, ii) different schemes can be employed in different directions, including different variations of the 

compact scheme. However, for any given direction, the viscous and inviscid fluxes are computed with 

the same scheme. Finally, IMETRC determines the difference formula for the metrics. IMETRC=0 

reverts to the original second-order scheme, 1 chooses the compact scheme determined specially for 

the metrics (below), while 2 causes the code to compute the metrics in each direction with the same 

formula as for the inviscid and viscous fluxes in that direction. 

5.0E-2      5.0E-2      5.0E-2    XICUT0FF    ETACUTOFF    ZETACUT0FF 

0  0 0     IXIISO    IETAIS0    IZETAIS0 

000000000 ICUT1  ICUT2 ICUT3 JCUT1 JCUT2 JCUT3 KCUT1 KCUT2 KCUT3 

These parameters control the entropy cutoff for the Roe scheme for each of the three directions. De- 

tailed formulas can be obtained from SUBROUTINE XIROEFLUX. For example, in the I direction, 
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XICUTOFF controls the magnitude of the cutoff, IXIISO, 0 or 1, controls the choice of isotropic 

or anisotropic formulas while ICUT1, ICUT2 and ICUT3 are on/off switches for the linear (w) and 

nonlinear (u + c and u — c) eigenvalues respectively. 

!  THIS LINE BLANK 

FILE NAMES: INPUTD (FOR RECORD ONLY).RESTART,RESTORE,SAVETMP 

'vc3d.dat' 'vc3d.in' 'vc3d.out' 'vc3d.tmp' 

These are names of files: vc3d.dat is the input data file file. The code must be executed for example 

with the command "a.out < vc3d.dat". vc3d.in is the restart file (must exist at the start of the job 

with a flow field - see PROGRAM FDL3DJCE), vc3d.out is the restore file (created at the end of 

the job). vc.3d.tinp is restore file dumped every 50 iterations (sec PROGRAM FDL30JCE). 

!     THIS LINE BLANK 

MOVIE INFO:   IMOVIE,  MODMOVIE IMV(MIN/MAX/INT),JMV(MIN/MAX/INT),KMV(MIN/MAX/INT) 

1    25    4 4 4-1-1-1 -1,-1,-1 

MOVIE FILE:   GRID,  ROOT NAME 

'movie.grid'   'vc3dmv.' 

These parameters control the output of files which can be combined to form a movie. The details 

arc highly case-specific and may be tailored by appropriate modification of SUBROUTINE MOVIE. 

!  THIS LINE BLANK 

INFORMATION ABOUT COMPACT DIFFERENCING SCHEME 

****GRID**** 

C4-AC4-C4-AC4-C4 

****X DIRECTION**** 

C4-AC4-C4-AC4-C4 

****Y DIRECTION**** 

C4-AC4-C4-AC4-C4 

****Z DIRECTION**** 

C4-AC4-C4-AC4-C4 

These inputs select the compact scheme for the grid, /, J and A' direction respectively. The character 

variable consisting of five fields designating the scheme to be employed at points 1, 2, interior, N -I 

and A'', respectively. For example, 

C4-CC4-C6-AC4-C3 

requests the fourth order compact scheme at. point 1 (Table 2.2), the decoupled fourth order com- 

pact scheme at point 2 (Table 2.5), compact sixth-order in the interior, the symmetric compact 

fourth order scheme at point N — 1 (Section 2.1.4) and the third-order compact scheme at point N 
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(Section 2.1.5). Note: For efficiency, if the interior scheme is explicit, the tridiagonal system is not 

solved. Thus, it is not possible to combine explicit interior schemes with implicit boundary schemes. 

!     THIS LINE BLANK 

PERIODIC BC  INFO:   IPERDC,JPERDC,KPERDC 

111 

If 1, IPERDC, JPERDC and KPERDC implement, periodic boundary conditions in the i, j and 

k directions respectively. For compact schemes, this requires the solution of periodic tridiagonal 

systems. Note that a 5 pt overlap is employed such that point 1 and 2 corresponds to I END - 4 

and I END - 3, respectively while points I END - 1 and IEND correspond to A and 5 IPERDC, 

JPERDC and KPERDC only affect the compact, differencing and filtering algorithms. For the orig- 

inal scheme (ISCHME/JSCHME/KSCIIME=0), '!■ is necessary to explicitly set periodic conditions 

in SUBROUTINE BNDRY. 

!     THIS LINE BLANK 

RK4  INFORMATION 

KSTAGES,  COEFFICIENTS as  in CODE 

4  1.   6.   1.   3.   1.   3.   1.   6.   1.   2.   1.   2.   1.   1.   1.   2.   0.   1.   1.   1. 

These inputs are the coefficients of the RK4 scheme and should not be modified. 

The next inputs control the application of the filter. Note that if IDMPFIL=2, the filter is not 

invoked in any direction. 

!     THIS LINE BLANK 

FILTER INFORMATION 

IGFILTER.JGFILTER.KGFILTER 

1   1   1 

INOFIL,JNOFIL,KNOFIL 

1   1   1 

At the highest level, filtering can be switched on every TV iterations in the I(J,K) directions by choos- 

ing IGFILTER(JGFILTER,KGFILTER)=N. If IGFILTER=4 (for example), the filter is executed 

every 4th iteration during which the filter is applied INOFIL number of times in succession. The 

significance of JNOFIL and KNOFIL is similar. 

FOR I DIRECTION:   INTERIOR FILTER ORDER,   ALPHA,  N00PTPARM,  OPTPARM(l),...,0PTPARM(N00PTPARM) 

10 0.4999 0 

These inputs control the filter formulas employed in the I direction for "interior" points. The first 

parameter is the order of accuracy while the second corresponds to aj. The 10th order filter (the 

highest considered here) requires a stencil of 11 points. If a lower order filter is specified, it is possible 
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to provide free parameters e.g., for a stencil of 11 points, an Sth order scheme permits one parameter 

to be free. In Table 2.14, these free variables (NOOPTPARM in number) are assumed to be zero 

since their effect on the filter has not yet been investigated. A nonzero NOOPTPARM requires spec- 

ification of the appropriate number of free parameters (OPTPARM). For details, SUBROUTINES 

FILCOEFS and BCFILCOEFS should be consulted. 

For an 11 point stencil, interior points are those at least 6 points away from the boundary. It is thus 

necessary to specify the formulation at the 5 points near the boundary. As noted earlier, at each 

of these points the specification can proceed in one of two ways. The first, approach takes recourse 

to the fact, that points near the boundary can be considered as interior points for lower orders of 

accuracy. Thus, at a point. N, a centered 2A' order formula is easily constructed from Table 2.7. 

In the second approach, one of the biased formulas presented in Section 2.5.2 may be utilized. To 

allow for each, the code inputs are specified for the /-direction as follows. 

Point  1:     ORDER,  ALPHA\_F,  NOOPT,  OPTPARMS  (IF NOOPT > 0) 

0 0.0 0 

Point 2 

2  0.4999 0 

Point 3 

4 0.499 0 

Point 4 

6 0.49 0 

Point 5 

8 0.49 0 

Only the first two inputs - order of accuracy and aj value - are relevant for the options described 

here. In this example, the order of accuracy is reduced on approaching the boundary so that the 

formulas are always centered. To compensate for the loss of accuracy, aj is successively increased 

to provide a relatively "gentle" filter even near the boundaries. If the order of accuracy is higher 

than achievable with a centered formula, one-sided equations with the coefficients of Tables 2.15 

through 2.19 are employed. As noted earlier, such formulas may amplify and disperse waves and 

should be utilized with some caution. Thus, at present, it is recommended that, the first approach 

be employed. For greater flexibility to implement optimized filters, NOOPT can be set to a nonzero 

value together with additional parameters (OPTPARM(I), 1=1, NOOPT). Since these values are 

not yet standardized, this option is not recommended. 

To permit independent specification of the filter in the different directions, separate inputs similar 

to those for the J direction illustrated above, are employed for the J and A' directions, respectively: 

FOR J DIRECTION:   INTERIOR FILTER ORDER,  ALPHA,  SPECIAL PARAMETERS  (number and values) 

10 0.4999 0 

Point i Order, gamma, noopt, optparms 

0 0. 0 
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Point 2 

6 0.4999 0 

Point 3 

6 0.499 0 

Point 4 

6 0.49 0 

Point 5 

8 0.49 0 

In this case, note that one-sided formulas will be invoked at points 2 and 3. The specification of the 

filter for the A" direction is similar. 

FOR K DIRECTION:   INTERIOR FILTER ORDER,   ALPHA,  SPECIAL PARAMETERS  (number and values) 

10 0.49 0 

Point 1 Order, gamma, noopt, optparms 

0 0. 0 

Point 2 

2 0.4999 0 

Point 3 

4 0.499 0 

Point 4 

6 0.49 0 

Point 5 

8 0.49 0 

The next inputs control the specification of H cuts in the domain. This is a useful option to define 

grid-aligned objects in the field and to blank out their interiors. 

!     THIS LINE BLANK 

MULTIPLE BLOCKS N0BLKS,((IJKBLK(IDMY,JDMY),JDMY=1,6),IDMY=1,N0BLKS) 

1 7 24  1  19  36 37 

NOBLKS refers to the number of such cuts. For each cut, six parameters must be specified denoting 

the lower and upper bounds for /, J and K indices respectively. These parameters are employed to 

automatically blank out interior points for the implicit scheme, as well as for the Phase I specification 

of boundary conditions. Phase II specification is done in the user-written SUBROUTINE BNDRY. 
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