OFFICE OF NAVAL RESEARCH

CONTRACT N00014-99-1-0393

R&T Code 33e 1806

Dr. Judah Goldwasser

Technical Report No. 111

Conformational Dependence of Molecular Surface Electrostatic Potentials

by

Jane S. Murray, Zenaida Peralta-Inga and Peter Politzer

Prepared for Publication

in

International Journal of Quantum Chemistry

Department of Chemistry University of New Orleans New Orleans, LA 70148

June 8, 1999

19990615 105

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

DTIC QUALITY INSPECTED

Address Address <t< th=""><th>REPORT DOCUMENTATION PAGE</th><th>Form Approved OMB No. 0704-0188</th></t<>	REPORT DOCUMENTATION PAGE	Form Approved OMB No. 0704-0188
ALTHE AND REAL REPORT PATE 1. REPORT PATE 1. ALPOAT TYPE AND DATES COVERED ACARY USE ONY (LAW GRAM) 1. REPORT PATE Deportint CONFORMATION ADDRESS 6/9/99 DEPORTINE Conformational Dependence of Molecular Surface NO0014-99-1-0393 Dr. Judah Goldwasser Dr. Judah Goldwasser ALTHORS ALTHORS NO0014-99-1-0393 Jane S. Murray, Zenaida Peralta-Inga and Peter Politzer RAT Code 33e 1806 VERFORMING GRAMIZATION NAMES) AND ADDRESSIES RAT Code 33e 1806 University of New Orleans Department of Chemistry Department of Chemistry 111 New Orleans, Louisiana 70148 10. SPONSORING MONITORING AGENCY NAMESS AND ADDRESSIES Office of Naval Research Code 333 Code 333 SOO N. Quincy Street Arlington, VA 22217 10. SPONSORING MONITORING INCOME Is ASTACT MAXIMUM ACTION AND STREET WORLD ADDRESSIES 10. SPONSORING MONITORING INCOME Approved for public release. 1125. DISTRIBUTION CODE In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on molecular surfaces. Hereverticatic potentials are most likely to be of concern if (a) to applications of the	duc reporting surgen for this collection of information is estimated to average 1 hour ser response, including the time for thereogram maintaining the data needed, and completing and reviewing the collection of information. Send comments reg lection of information, including suggestions for resucing this surgest, of washington meaduarter's services. Directorate f	reviewing instructions, searching existing data sources arcing this burden estimate or any other aspect of this or information Operations and Reports, 1215 Jeffersor operatio704-0188), Washington, GC 20503.
1. U. 9722 1. U. 9722 1. U. 9722 1. U. 10000 1. U. 10000 1. U. 10000	AGENCY USE ONLY (Leave plank) 2. REPORT DATE 3. REPORT TYPE AI	D DATES COVERED
Indianational Dependence Of Molecular Surface Conformational Dependence Of Molecular Surface Electrostatic Potentials N00014-99-1-0393 Dr. Judah Goldwasser ALTACANS: Jane S. Murray, Zenaida Peralta-Inga and Peter Politzer RET Code 33e 1806 PERFORMING CREANIZATION NAME(5) AND ADDRESSIES) RET Code 33e 1806 Department of Chemistry New Orleans, Louisiana 70148 111 EFONSORING/MONITORING AGENCY NAME(5) AND ADDRESSIES) 111 Office of Naval Research Code 333 10. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESSIES) Office of Naval Research Code 333 10. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESSIES) SUON, Quincy Street Arlington, VA 22217 1125-DISTRIBUTION CODE Supprised for public release. Unlimited distribution. 125-DISTRIBUTION CODE S. ASSTRACT Mammum 200 Montol 125-DISTRIBUTION CODE Supprises of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces, and the average deviation we next quantities are to the molecular conformation of the different molecules. Our overall conclusion is that conformational effect pon applications of molecular surface sectorstatic potentials, conformational effect pon applications of surfaces, electrostatic potentials, conformational 113 16, PRICE CODE 14. SUBLECT TEAMS molecular surfaces, electrostatic potentials, conformational dependence, statistical quantities 15, Surfac		5. FUNDING NUMBERS
ALTHCRIST Jame S. Murray, Zenaida Peralta-Inga and Peter Politzer RAT Code 33e 1806 PERFORMING CREANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION University of New Orleans 111 Department of Chemistry 111 New Orleans, Louisiana 70148 SPONSORING/MONITCRING AGENCY NAME(S) AND ADDRESS(ES) 11. Office of Naval Research Code 333 Code 333 800 N. Quincy Street Arlington, VA 22217 125. DISTRIBUTION AVAILABLITY STATEMENT I. SUPPLEMENTARY NOTES 125. DISTRIBUTION CODE I. SUPPLEMENTARY NOTES 125. DISTRIBUTION CODE I. ASSIGNEY AVAILABLITY STATEMENT 125. DISTRIBUTION AVAILABLITY STATEMENT I. ASSIGNEY AVAILABLITY STATEMENT 125. DISTRIBUTION CODE	Conformational Dependence Of Molecular Surface Electrostatic Potentials	N00014-99-1-0393 Dr. Judah Goldwasser
PREFORMING CRGANIZATION NAMELSI ZNO ZOCRESS(ES) A PREFORMING CRGANIZATION REPORT NUMBER III Prestorming of New Orleans Department of Chemistry New Orleans, Louisiana 70143 11 SPONSORING/MONITCRING AGENCY NAMELS AND ADDRESS(ES) 11 Office of Naval Research Code 333 10. SPONSORING/MONITCRING AGENCY NAMELS AND ADDRESS(ES) 10. SPONSORING/MONITCRING AGENCY NAMELS AND ADDRESS(ES) 11. Separce Address and the second address and the second address addresc address address addres address address address address address	Juthor(s) Jane S. Murray, Zenaida Peralta-Inga and Peter Politz	er R&T Code 33e 1806
PERFORMING CRGANIZATION NAME(S) AND ADDRESS(S) 1. APPORTMING CRGANIZATION NAME(S) AND ADDRESS(S) University of New Orleans Department of Chemistry New Orleans, Louisiana 70148 111 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(S) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Office of Naval Research Code 333 10. Quincy Street Arlington, VA 22217 111 I. SUPPLEMENTARY NOTES 1. SUPPLEMENTARY NOTES 1. SUPPLEMENTARY NOTES Data series of earlier studies, we have shown that a variety of solution, liquid and solid phase molecular surfaces. These quantities include the positive and negative extrema, the positive and negative verage values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational is strongly dependent upon the positive variance. 115. NUMBER OF PAGES 1.5 molecular surfaces, electrostatic potentials, conformational is strongly dependent upon the positive variance. 14. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational dependence, statistical quantities 115. NUMBER OF PAGES 1.5 molecular surfaces (loclassified Unclassified 17. SECURITY CLASSIFICATION Series of electrostatic classified 1. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 10. LIMITATION OF AB		
University of New Orleans 111 Department of Chemistry 111 New Orleans, Louisiana 70143 111 SPONSORING/MONITCRING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITCRING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSORING/MONITCRING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Code 333 AGENCY Street AGENCY Street Arlington, VA 22217 125. DISTRIBUTION/AVALABILITY STATEMENT 125. DISTRIBUTION CODE Approved for public release. Unlimited distribution. 125. DISTRIBUTION CODE 1. ASSTRACT Maximum 200 wores: 11. Asstread to the electrostatic potentials on molecular surfaces. These quantities include the positive and negative extrem, the positive and negative extrem is total of 35 conformations of the different molecules. Our overall conclusion is that conformational effect 14. SUBJECT TERMS 113 molecular surfaces, electrostatic potentials, conformational 114. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational 115. NUMBER OF PAGES 14. SUBJECT TERMS 13. SECURITY CLASSIFICATION OF	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(#5) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER Office of Naval Research Code 333 800 N. Quincy Street Arlington, VA 22217 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 24. DISTRIBUTION/AVAILABILITY STATEMENT 125. DISTRIBUTION CCDE Approved for public release. Unlimited distribution. 125. DISTRIBUTION CCDE 1. AdSTRACT MAXIMUM 200 weres: Un a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative inverage values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for i total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect ipon applications of molecular surfaces, electrostatic potentials, ear most likely to be of concern if (a) for mation of the conformer considerably diminishes internal polarity, and/or (b) the application in question s strongly dependent upon the positive variance. 14. SUBJECT TRAMS molecular surfaces, electrostatic potentials, conformational field 15. NUMBER OF PAGES 13. 16. PRICE CODE 17. SECURITY CLASSIFICATION or REPORT inclassified 18. SECURITY CLASSIFICATION (Cr ABSTRGE Unclassified 10. LIMIATION OF ABST Unclassified	University of New Orleans Department of Chemistry New Orleans, Louisiana 70148	111
SPONSORING/MONITERING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITERING AGENCY NAME(S) AND ADDRESS(ES) Office of Naval Research Code 333 SOO N. Quincy Street Arlington, VA 22217 I. SUPPLEMENTARY NOTES 125. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. 115. DISTRIBUTION CODE I. AdSTRACT MAXIMUM 200 weres: 125. DISTRIBUTION CODE In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on molecular surfaces. These quantities include the positive and negative extrema, the positive and negative variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect ipon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) ion application in question is strongly dependent upon the positive variance. 14. SUBJECT TRAMS 15. NUMBER OF PAGES 15. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION		
11. SUBJECT TERMS 125. DISTRIBUTION / AVAILABILITY STATEMENT 12. ADSTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION / CODE 12. ADSTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION / CODE 12. ADSTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION / CODE 12. ADSTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION / CODE 12. ADSTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION / CODE 13. ADSTRACT / Maximum JCO wores: 11. AdSTRACT / Maximum JCO wores: 14. SUBJECT / Maximum JCO wores: 11. AdSTRACT / Maximum JCO wores: 15. AdSTRACT / Maximum JCO wores: 11. AdSTRACT / Maximum JCO wores: 16. AdsTraces. These quantities include the positive and negative extrema, the positive and negative everage values and variances, and the average deviation. We have now investigated how sensitive these puantities are to the molecular conformation. Surface potentials were computed at the HF/G-31GF level for itotal of 35 conformations of the different molecules. Our overall conclusion is that conformational effect upon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS 13. SECURITY CLASSIFICATION OF HIS PAGE 15. PRICE CODE 13. SECURITY CLASSIFICATION OF ADST 16. ADSTRECATION OF THIS PAGE 14. SECUR	SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)	AGENCY REPORT NUMBER
Arlington, VA 22217 I. SUPPLEMENTARY NOTES 2a. DISTRIBUTION AVAILABILITY STATEMENT Approved for public release. Unlimited distribution. 1. AdSTRACT Maximum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative twerage values and variances, and the average deviation. We have now investigated how sensitive these upuntities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for atotal of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect intotal of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect intotal of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect intotal of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect intotal of the conformer considerably diminishes internal polarity, and/or (b) the application in question s strongly dependent upon the positive variance. 14. SUBJECT TEAMS molecular surfaces, electrostatic potentials, conformational 15. FRICE CODE <	Code 333 800 N. Quincy Street	
1. SUPPLEMENTARY NOTES 122. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Unlimited distribution. 12. AdSTRACT : Maximum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative extrema terma,	Arlington, VA 22217	
2a. DISTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION CODE Approved for public release. Unlimited distribution. 125. DISTRIBUTION CODE 3. AdSTRACT ::Maximum 200 wores: 11. a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative everage values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect pon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS 13. NUMBER OF PAGES molecular surfaces, electrostatic potentials, conformational dependence, statistical quantities 13. NUMBER OF PAGES 13. GENERY CLASSIFICATION OF ABSTRACT OF PAGES OF THE STRACT OF THESTRACT OF THESTRACT Unclassified 10. UNITATION OF ABST	1. SUPPLEMENTARY NOTES	
2a. DISTRIBUTION / AVAILABILITY STATEMENT 125. DISTRIBUTION CODE Approved for public release. 1125. DISTRIBUTION CODE Unlimited distribution. 1125. DISTRIBUTION CODE 3. AdSITAACT: Maximum 200 weres: 11. Advinum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative extrema, the positive and negative extrema, the positive these upantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect upon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS 15. NUMBER OF PAGES 15. SECURITY CLASSIFICATION 13. The processification in question of method of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 17. SECURITY CLASSIFICATION of THIS PAGE 19. SECURITY CLASSIFICATION of ABST act the limited 17. SECURITY CLASSIFICATION of THIS PAGE 10. LIMITATION OF ABST Unclassified		a da anti-arte da anti- arte da anti-arte da anti-arte da anti- arte da anti-arte da anti-arte da anti-
Approved for public release. Unlimited distribution. AdSTRACT Maximum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative average values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect apon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABST Unclassified 11. Unlimited	22 DISTRIBUTION / AVAILABILITY STATEMENT	125. DISTRIBUTION CODE
Approved for public release. Unlimited distribution. I. AdSTRACT Maximum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative average values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect atotal of 35 conformations of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question s strongly dependent upon the positive variance. 14. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational dependent upon the positive variance. 15. NUMBER OF PAGES 13. Is PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 17. SECURITY CLASSIFICATION CF REPORT Chclassified 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABST Unclassified 11. Unimited		
1. AdSTRACT ::Maximum 200 weres: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect upon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 13. 15. NUMBER OF PAGES 13. 16. PRICE CODE 13. 17. SECURITY CLASSIFICATION OF ABSTRACT 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF FAGES 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF FAGES 19. SECURITY CLASSIFICATION OF ABSTRACT 17. SECURITY CLASSIFICATION OF ABSTRACT 10. LIMITATIO	Approved for public release. Unlimited distribution.	
1. AASTRACT :Maximum 200 words: In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative extrema to the molecular conformation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect ipon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance. 14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 13 15. NUMBER OF PAGES 13 16. PRICE CODE 13 17. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION 14. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION <td< td=""><td></td><td></td></td<>		
In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on nolecular surfaces. These quantities include the positive and negative extrema, the positive and negative werage values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effect apon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question s strongly dependent upon the positive variance. 14. SUBJECT TERMS molecular surfaces, electrostatic potentials, conformational dependence, statistical quantities 15. NUMBER OF PAGES 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABSTRACT Unlimited		
 14. SUBJECT TERMS MOLECULAR SUFFACES, electrostatic potentials, conformational 13 16. PRICE CODE 17. SECURITY CLASSIFICATION OF THIS PAGE OF REPORT OF THIS PAGE Unclassified Inclassified 15. NUMBER OF PAGES 13 16. PRICE CODE 16. PRICE CODE 	In a series of earlier studies, we have shown that a variety of solut properties can be represented analytically in terms of quantities related to the nolecular surfaces. These quantities include the positive and negative extra average values and variances, and the average deviation. We have now in quantities are to the molecular conformation. Surface potentials were com a total of 35 conformations of ten different molecules. Our overall conclu- upon applications of molecular surface electrostatic potentials are most lik formation of the conformer considerably diminishes internal polarity, and is strongly dependent upon the positive variance.	ion, liquid and solid phase he electrostatic potentials on rema, the positive and negative vestigated how sensitive these uputed at the HF/6-31G* level for sion is that conformational effects ely to be of concern if (a) for (b) the application in question
14. SUBJECT TERMS 15. NUMBER OF PAGES molecular surfaces, electrostatic potentials, conformational 13 dependence, statistical quantities 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 0F REPORT OF THIS PAGE Unclassified Unlimited		
14. SUBJECT TERMS 15. NUMBER OF PAGES 14. SUBJECT TERMS 13 15. NUMBER OF PAGES 13 16. PRICE CODE 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 17. SECURITY CLASSIFICATION 0F THIS PAGE 0F ABSTRACT Unclassified Unlimited		
molecular surfaces, electrostatic potentials, conformational13dependence, statistical quantities16. PRICE CODE17. SECURITY CLASSIFICATION18. SECURITY CLASSIFICATION17. SECURITY CLASSIFICATION18. SECURITY CLASSIFICATION17. SECURITY CLASSIFICATION19. SECURITY CLASSIFICATION17. SECURITY CLASSIFICATION19. SECURITY CLASSIFICATION17. SECURITY CLASSIFICATION0F THIS PAGE0F REPORT0F THIS PAGEUnclassifiedUnclassified	14. SUBJECT TERMS	15. NUMBER OF PAGES
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION OF ABST OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified Unclassified	molecular surfaces, electrostatic potentials, confo dependence, statistical quantities	rmational 13
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified Unclassified		THE LINUTATION OF ABST
		SIFICATION 1 20. LIMITATION OF ADD

CONFORMATIONAL DEPENDENCE OF MOLECULAR SURFACE ELECTROSTATIC POTENTIALS

Jane S. Murray, Zenaida Peralta-Inga and Peter Politzer* Department of Chemistry University of New Orleans New Orleans, LA 70148

Abstract

In a series of earlier studies, we have shown that a variety of solution, liquid and solid phase properties can be represented analytically in terms of quantities related to the electrostatic potentials on molecular surfaces. These quantities include the positive and negative extrema, the positive and negative average values and variances, and the average deviation. We have now investigated how sensitive these quantities are to the molecular conformation. Surface potentials were computed at the HF/6-31G* level for a total of 35 conformations of ten different molecules. Our overall conclusion is that conformational effects upon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon the positive variance.

*Author to whom correspondence should be addressed.

KEYWORDS: molecular surfaces, electrostatic potentials, conformational dependence, statistical quantities

Introduction

The electrostatic potential $V(\mathbf{r})$ created in the space around a molecule by its nuclei and electrons is well established as a guide to molecular reactive behaviour. (For reviews, see refs. [1-6].) It is defined by eq. (1), in which the molecule is treated as a collection of stationary point charges, the nuclei, surrounded by a continuous but static distribution of electrons:

$$\mathbf{V}(\mathbf{r}) = \sum_{\mathbf{A}} \frac{\mathbf{Z}_{\mathbf{A}}}{|\mathbf{R}_{\mathbf{A}} - \mathbf{r}|} - \int \frac{\mathbf{\rho}(\mathbf{r}') \, d\mathbf{r}'}{|\mathbf{r}' - \mathbf{r}|}$$
(1)

 Z_A is the charge on nucleus A, located at \mathbf{R}_A , and $\rho(\mathbf{r})$ is the electronic density function of the molecule. The first term on the right side of eq. (1) is the nuclear contribution to V(r), and is positive; the second term is due to the electrons and is accordingly negative.

Over a period of many years, the electrostatic potential was used extensively as a tool for identifying and ranking the molecular regions most susceptible to electrophilic and/or nucleophilic attack and for determining general patterns of positive and negative potential that promote or inhibit molecular interactions, such as those between drugs and receptors. Bernard and Alberte Pullman and their collaborators were pioneers in applying the electrostatic potential to the analysis of particularly biochemical systems; some of their numerous contributions are discussed in refs. [2-4]. The quantitative analysis of V(r)initially emphasized locating and evaluating the most negative potentials, V_{min} . These are usually associated with (a) the more electronegative atoms, such as N, O, F, Cl, S and Br, and (b) unsaturated, aromatic and strained carbon-carbon bonds. The magnitudes of the V_{min} can often be related to reactive properties, for instance the pK_a values of azine nitrogens [5], and epoxide carcinogenicity [4]. More recently, attention has focused upon the electrostatic potential $V_S(\mathbf{r})$ on the molecular surface. It was shown that both the positive and negative surface extrema, V_{S,max} and V_{S,min}, can be related to reactive behavior. For example, $V_{S,max}$ and $V_{S,min}$ for a large variety of molecules correlate with hydrogen bond acidity and basicity, respectively [7]. (We take the molecular surface to be the 0.001 au contour of the electronic density, as suggested by Bader et al [8]. We have earlier discussed the use of $\rho(\mathbf{r})$ contours to define molecular surfaces [9,10].) This approach was still limited in scope however; V_{min} , $V_{S,min}$ and $V_{S,max}$ are certainly key

2

features of the molecular electrostatic potential, but these site-specific quantities do not convey all the information that is contained in $V(\mathbf{r})$.

Accordingly, in recent years we have sought to develop mechanisms for more adequately describing and quantitatively characterizing the electrostatic potential over an entire molecular surface. We have found that this can be achieved through the introduction of several statistically-defined global quantities that explicitly reflect the magnitude of $V_S(\mathbf{r})$ at each point on the molecular surface [11-14]:

(a) \overline{V}_{S}^{+} , \overline{V}_{S}^{-} and \overline{V}_{S} are the positive, negative and overall average potentials on the surface.

$$\overline{\mathbf{V}}_{\mathbf{S}}^{+} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{V}_{\mathbf{S}}^{+}(\mathbf{r}_{i})$$
⁽²⁾

$$\overline{\mathbf{V}}_{\mathbf{S}}^{-} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_{\mathbf{S}}^{-}(\mathbf{r}_{i})$$
(3)

$$\overline{V}_{S} = \frac{1}{m+n} \left[\sum_{i=1}^{n} V_{S}^{+}(\mathbf{r}_{i}) + \sum_{i=1}^{m} V_{S}^{-}(\mathbf{r}_{i}) \right]$$
(4)

(b) Π is the average deviation of $V_{S}(\mathbf{r})$,

$$\Pi = \frac{1}{m+n} \sum_{i=1}^{m+n} \left| V_{\mathrm{S}}(\mathbf{r}_i) - \overline{V}_{\mathrm{S}} \right|$$
(5)

which we interpret as a measure of the local polarity, or internal charge separation, that is present even in molecules with zero dipole moment.

(c) σ_{+}^2 , σ_{-}^2 and σ_{tot}^2 are the positive, negative and total variances of $V_S(\mathbf{r})$, which reflect the range or variability of $V_S(\mathbf{r})$, emphasizing its extrema,

$$\sigma_{+}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left[V_{S}^{+}(\mathbf{r}_{i}) - \overline{V}_{S}^{+} \right]^{2}$$
(6)

$$\sigma_{-}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left[\mathbf{V}_{\mathbf{S}}^{-}(\mathbf{r}_{i}) - \overline{\mathbf{V}}_{\mathbf{S}}^{-} \right]^{2}$$
(7)

$$\sigma_{\text{tot}}^2 = \sigma_+^2 + \sigma_-^2 \tag{8}$$

(d) v indicates the degree of balance between the positive and negative surface potentials,

3

$$v = \frac{\sigma_+^2 \sigma_-^2}{(\sigma_{tot}^2)^2}$$

When $\sigma_{+}^{2} = \sigma_{-}^{2}$, then v achieves its maximum possible value of 0.25.

In a series of studies, we have demonstrated that it is possible to develop quantitative analytical relationships of good accuracy for a variety of solution, liquid and solid phase properties in terms of some subset of these quantities (plus V_{min} , $V_{S,max}$ and $V_{S,min}$), which are computed for the individual, isolated molecules. These properties include heats of fusion [15], vaporization [11] and sublimation [16], solubilities [17-19], solvation free energies [20,21], boiling points and critical constants [22], partition coefficients [23,24], diffusion coefficients [25], surface tensions [15], lattice energies [26], liquid and solid densities [15], and impact sensitivities [27].

(9)

In calculating the quantities defined by eqs. (1)–(9), our first step is to optimize the molecular geometry, so that we are presumably dealing with the most stable conformation. An important and frequently-posed question concerns the sensitivity of the computed quantities (and subsequent relationships) to the conformation of the molecule. How much is the surface electrostatic potential affected if the molecule is induced to adopt another conformation, perhaps due to thermal or environmental factors? Our objective in the present work has been to address this question.

Procedure and Results

For the molecules 1–10, we have investigated the conformations shown in Figures 1 and 2. Each molecular geometry was first fully optimized in the ground state, and then re-optimized in one or more different conformations (local minima). All calculations were carried out with Gaussian 92 [28] at the HF/6-31G* level. For each conformation, we computed the surface area, $V_{S,max}$ and $V_{S,min}$, and the properties defined by eqs. (2)–(9). The results are listed in Table 1, along with the HF/6-31G* relative energies within each conformer group.

CH ₃ -CH ₃	$CH_3 - CH_2F$	CH ₃ -CH ₂ NO ₂	CH ₃ CH ₂ OH	CH ₂ Cl–CH ₂ F
1	2	3	4	5

Discussion

Ethane and Its Monosubstituted Dervatives

Both the staggered and the eclipsed conformer have been examined for molecules 1-4. The latter is invariably the less stable, by approximately 3 - 4 kcal/mole. (The experimental value for ethane is 3.0 kcal/mole [29].) The computed properties tend to be quite similar for each pair of conformers. In the case of 4, we also considered the structure (4c) resulting from a 64° rotation around the C-O bond of the staggered form. This requires an energy of only 0.1 kcal/mole, but produces a rather large change in the global property $\overline{V_S}$, indicating its sensitivity to the precise juxtaposition of the hydroxyl and neighboring hydrogens.

1,2-Disubstituted Ethanes

Four conformers were investigated for each disubstituted ethane. The least stable structure is usually that in which the two substituents are eclipsed; **8c** is an exception, presumably due to the short distance (1.95 A) between one of the methyl hydrogens and one on the substituted carbon. In terms of our present objective, it is **5d** that is of particular interest, in that it differs significantly from its conformers in terms of nearly *all* of its computed surface properties. This is not observed for any other of the disubstituted ethanes. In **5a**, **5b** and **5c**, the negative halogen potentials evidently overlap and reinforce each other, creating a relatively strong negative region and a corresponding positive one. In **5d**, on the other hand, the negative region are separate and therefore weaker. The magnitudes of Π confirm that **5d** has much less internal polarity than do its conformers. For **6** - **8**, the surface properties generally tend to be fairly similar among the conformers.

Molecules 9 and 10

The four conformers of 9 fall neatly into two groups; 9a and 9c are significantly less stable than 9b and 9d, presumably because of the proximity of the hydrogens in the former, which creates considerable internal polarity. The surface properities are fairly

5

uniform within the two groups. Six different conformers of **10** have been investigated. Overall, they do not vary markedly in their surface properties.

Summary

From the data in Table 1, certain generalizations can be made concerning the effects of conformational changes upon the molecular surface properties of present interest: (a) The surface areas are only slightly affected.

- (b) The two site-specific properties, $V_{S,max}$ and $V_{S,min}$, and the global properties \overline{V}_S^+ and Π usually change relatively little. The only exceptions to this are **5d** and the pair **9a/9c**, which were formed by rotations that either eliminated or produced regions of markedly reinforced negative or positive potential. This is then reflected in all of the properties of $V_S(\mathbf{r})$. However increasing the internal polarity can normally be expected to significantly decrease molecular stability, so that conformers such as **9a** and **9c** are less apt to play important roles.
- (c) σ_{+}^{2} is the most sensitive to conformational variations. It is probable that σ_{tot}^{2} and v will consequently be affected, although perhaps not to the same extent because they also include σ_{-}^{2} .

On the basis of the results in Table 1, therefore, it appears that conformational effects upon applications of molecular surface electrostatic potentials are most likely to be of concern if (a) formation of the conformer considerably diminishes internal polarity, and/or (b) the application in question is strongly dependent upon σ_{+}^{2} .

Acknowledgement

We greatly appreciate the financial support of the Office of Naval Research, through contract N00014–97–1–0066 and Program Officer Dr. Judah Goldwasser.

6

References

[1]	E. Scrocco and J. Tomasi, in <i>Topics in Current Chemistry</i> , Vol. 42, Springer-
	Verlag, Berlin, 1973, p.95.
[2]	P. Politzer and K. C. Daiker, in The Force Concept in Chemistry, B.M. Deb, Ed.,
	Van Nostrand Reinhold, New York, 1981, ch. 6.
[3]	P. Politzer and D. G. Truhlar, Eds., Chemical Applications of Atomic and
	Molecular Electrostatic Potentials, Plenum Press, New York, 1981.
[4]	P. Politzer, P. R. Laurence and K. Jayasuriya, Env. Health Persp. 61, 191
	(1985).
[5]	P. Politzer and J. S. Murray, in Reviews in Computational Chemistry, Vol. 2, K.
	B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1991, ch. 7.
[6]	G. Naray–Szabo and G. G. Ferenczy, Chem. Rev. 95, 829 (1995).
[7]	H. Hagelin, T. Brinck, M. Berthelot, J. S. Murray and P. Politzer, Can. J. Chem.
	73, 483 (1995).
[8]	R. F. W. Bader, M. T. Carroll, J. R. Cheeseman and C. Chang, J. Amer. Chem.
	Soc. 109, 7968 (1987).
[9]	P. Sjoberg and P. Politzer, J. Phys. Chem. 94, 3959 (1990).
[10]	J. S. Murray, T. Brinck, M. E. Grice and P. Politzer, J. Mol. Struct. (Theochem)
	256 , 29 (1992).
[11]	J. S. Murray and P. Politzer, in Quantitative Treatments of Solute/Solvent
	Interactions, J. S. Murray and P. Politzer, Eds., Elsevier, Amsterdam, 1994,
	ch. 8.
[12]	J. S. Murray, T. Brinck, P. Lane, K. Paulsen and P. Politzer, J. Mol. Struct.
	(Theochem) 307 , 55 (1994).
[13]	P. Politzer, J. S. Murray, T. Brinck, and P. Lane, in Immunoanalysis of
	Agrochemicals: Emerging Technologies, J. O. Nelson, A. E. Karn and R. B.
	Wong, Eds. ACS Symp. Ser. 586, American Chemical Society, Washington,
	1995, ch. 8.
[14]	J. S. Murray and P. Politzer, J. Mol. Struct. (Theochem) 425, 107 (1998).
[15]	J. S. Murray, T. Brinck and P. Politzer, Chem. Phys. 204, 289 (1996).
[16]	P. Politzer, J. S. Murray, M. E. Grice, M. DeSalvo and E. Miller, Mol. Phys. 91,
	923 (1997).
[17]	P. Politzer, P. Lane, J. S. Murray and T. Brinck, J. Phys. Chem. 96, 7938
	(1992).
[18]	P. Politzer, J. S. Murray, P. Lane and T. Brinck, J. Phys. Chem. 97, 729 (1993)

7

- [19] J. S. Murray, S. Gagarin and P. Politzer, J Phys. Chem. 99, 12081 (1995).
- [20] J. S. Murray, F. Abu-Awwad and P. Politzer, J. Phys. Chem., submitted.
- [21] P. Politzer, F. Abu-Awwad and J. S. Murray, Inter. J. Quant. Chem., submitted.
- [22] J. Murray, P. Lane, T. Brinck, K. Paulsen, M. E.Grice and P. Politzer, J. Phys. Chem. 97, 9369 (1993).
- [23] T. Brinck, J. S. Murray and P. Politzer, J. Org. Chem. . 58, 7070 (1993).
- [24] J. S. Murray, T. Brinck and P. Politzer, J. Phys. Chem. 97, 13807 (1993).
- [25] P. Politzer, J. S. Murray and P. Flodmark, J. Phys. Chem. 100, 5538 (1996).
- [26] P. Politzer and J. S. Murray, J. Phys. Chem. A 102, 1018 (1998).
- [27] P. Politzer and J. S. Murray, Mol. Phys, 93, 187 (1998).
- [28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92/DFT, Revision G.2, Gaussian, Pittsburgh, PA, 1993.

[29] D. R. Lide, J. Chem. Phys. 29, 1426 (1958).

																			.*						
8b	8 a	7d		J C	7b	7a	6d	6c	66	6a	5d	5 c	5b	5a	4c	4b	4a	3b	3 a	2 b	2a	1 b	1a		Molecule
0.6	0.1	2.1		10	2.9	0.0	1.0	0.1	4.2	0.0	0.0	0.8	7.8	0.8	0.1	3.1	0.0	3.5	0.0	3.6	0.0	3.6	0.0	(kcal/mole)	Relative
110.7	110.8	101.6		101.0	101.0	101.2	124.7	122.1	121.4	122.4	105.2	105.1	104.5	105.1	90.4	92.7	90.4	108.8	108.4	85.3	85.5	81.0	81.5	(Å ²)	Surface
8.88	9.16	17.00	17 00	16.33	17.29	14.86	22.17	21.09	20.27	21.00	14.00	18.31	18.93	18.32	9.54	11.05	9.59	18.27	18.12	9.08	9.26	3.19	2.77		V ⁻ st
-19.81	-11.27	-10.14	10 1/	-19.56	-21.58	-18.61	-20.04	-19.17	-18.95	-19.29	-10.20	-14.12	-15.85	-14.12	-19.37	-14.14	-14.32	-22.52	-22.37	-18.49	-17.93	-1.49	-1.45	(kcal/mole)	VS
10.15 (continued)	9.95		17 22	16.97	18.28	16.06	20.81	19.87	19.32	19.90	12.15	16.23	17.41	16.24	11.55	12.05	11.28	19.47	19.32	10.96	11.08	2.41	2.15		П
b 4.2	90.9		188 5	138.4	114.5	135.5	115.6	91.8	68.4	87.0	30.6	57.3	59.0	57.4	86.6	98.0	100.6	43.6	42.4	22.7	19.6	3.42	3.28		a_+2
0.801	120.1	102 1	134.6	123.0	114.2	131.4	84.6	80.3	78.2	79.1	26.3	42.5	56.0	42.5	172.0	161.9	169.5	82.7	83.6	88.0	90.2	0.59	0.62	(kcal/mole) ²	_α2
232.1	219.U	0100	323.1	261.4	228.7	266.9	200.0	172.1	146.6	166.1	56.9	99.8	115.0	99.9	258.7	259.9	270.1	126.2	126.0	110.7	109.8	4.01	3.88		or de la constante de la const
0.200	0.242	0 240	0.243	0.249	0.250	0.250	0.244	0.249	0.249	0.249	0.249	0.245	0.250	0.244	0.223	0.235	0.234	0.226	0.223	0.163	0.147	0.125	0.135		<
	471	49 0	54.0	55.3	48.6	55.0	43.2	39.5	35.4	38./	21.8	32.6	35.8	32.6	47.1	48.7	47.4	30.7	30.9	20.4	20.0	6.5	6.2	(kcal	۷S,max
	_40.1	-37.6	-37.7	-38.1	-36.4	-39.7	-30.1	-33.4	-33.1	-33.8	-20.1	-27.3	-32.8	-27.3	-40.2	-38.4	-39.6	-36.3	-30.3	-28.5	-28.0	-2.1	-2.7	/mole)	v S,min

۰Ľ

Table 1. C Molecule 8 c 8 d 9 a 9 b 9 b 9 c 9 d	Computed surf Relative Energy (kcal/mole) 13.7 0.0 7.5 0.0 9.0 0.5	face electrostat Surface Area (Å ²) 113.1 111.7 105.2 105.5 105.3	tic potential $\overline{V_S^+}$ 9.42 9.42 8.23 19.54 13.25 19.40 13.39	$\overline{V_S}$ $\overline{V_S}$ -12.91 -15.29 -24.29 -15.94 -27.08	r conforme 10.40 9.90 21.28 14.35 21.56 14.39	s of 1-10 (σ ² 84.9 83.5 212.0 121.1 191.1 125.3	$\frac{\sigma_{-}^{2}}{(\text{kcal/mole})^{2}}$ $\frac{(\text{kcal/mole})^{2}}{166.1}$ 173.1 211.0 143.7 162.1 162.1 167.9	o ² tot 251.0 256.6 423.0 264.8 353.2 293.2		v 0.224 0.220 0.250 0.248 0.248 0.248 0.245	v VS,max (kca 0.224 48.3 0.220 48.6 0.250 70.3 0.248 56.1 0.248 69.3 0.245 56.8 0.247 38.8
1	(kcal/mole)	(Ų)		(kcal/mole)			-	(kcal/mole) ²	(kcal/mole) ²	(kcal/mole) ²	(kcal/mole) ² (kca
	13.7	113.1	9.42	-12.91	10.40	84.9		166.1	166.1 251.0		166.1 251.0 0.224 48.3
	0.0	111.7	8.23	-15.29	9.90	83.5		173.1	173.1 256.6	173.1 256.6 0.220	173.1 256.6 0.220 48.6
-	7.5	105.2	19.54	-24.29	21.28	212.0		211.0	211.0 423.0	211.0 423.0 0.250	211.0 423.0 0.250 70.3
5	0.0	105.5	13.25	-15.94	14.35	121.1		143.7	143.7 264.8	143.7 264.8 0.248	143.7 264.8 0.248 56.1
	9.0	105.3	19.40	-27.08	21.56	191.	_	162.1	162.1 353.2	162.1 353.2 0.248	1 162.1 353.2 0.248 69.3
2. (2 0	105.5	13.39	-16.06	14.39	125	ເມ	.3 167.9	.3 167.9 293.2	.3 167.9 293.2 0.245	.3 167.9 293.2 0.245 56.8
2	0.6	110.7	17.51	-15.11	16.23	83	ω	1.3 <u>66.5</u>	1.3 66.5 149.8	1.3 66.5 149.8 0.247	1.3 66.5 149.8 0.247 38.8
Ť	2.8	110.5	19.34	-15.27	17.28	9	8.3	8.3 82.8	8.3 82.8 181.1	8.3 82.8 181.1 0.248	8.3 82.8 181.1 0.248 42.3
10c	0.0	110.5	17.53	-15.56	16.43	8	1 .	4.1 70.7	4.1 70.7 154.8	4.1 70.7 154.8 0.248	4.1 70.7 154.8 0.248 38.4
10d	2.0	110.3	19.46	-15.44	17.39	97	.4	.4 86.8	.4 86.8 184.2	.4 86.8 184.2 0.249	.4 86.8 184.2 0.249 40.6
10e	0.3	108.8	17.87	-15.31	16.56	73.	òo	8 71.8	8 71.8 145.6	8 71.8 145.6 0.250	8 71.8 145.6 0.250 36.4
10f	2.9	108.9	20.88	-16.26	18.61	104.	0	0 93.8	0 93.8 197.8	0 93.8 197.8 0.249	0 93.8 197.8 0.249 41.4

Figure Captions

Figure 1. Conformers investigated for molecules 1 - 6.

Figure 2. Conformers investigated for molecules 7 - 10.

3a

H H

Н

Η

3 b

H H Η Η 5 b

9a

10d

 H_2 Ĥ

10e