OFFICE OF NAVAL RESEARCH

CONTRACT N00014-99-1-0393

R&T Code 33e 1806

Dr. Judah Goldwasser

Technical Report No. 112

Cyclooligomerizations as Possible Routes to Cubane-Like Systems

by

Peter Politzer, Pat Lane and John J. M. Wiener

Prepared for Publication

in

Carbocyclic and Heterocyclic Cage Compounds and their Building Blocks,

Kenneth Laali, Editor, JAI Press

Department of Chemistry University of New Orleans New Orleans, LA 70148

June 8, 1999

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

19990615 104

DTIC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE	Form Approved OMB No. 0704-0188
volic reporting oursen for this collection of information is estimated to average 1 nour ser response, includin atterning and maintaining the cata network, and completing and reviewing the collection of information. Service ollection of information, including suggestions for resoluting this ourgen, to Washington neadouarters Service avis monimax, Suite 1204, Arlington, 74, 22202-4302, and to the Orlice of Management and Bucget, Asoerwork	Ing the time for reviewing instructions, searching earling data sources, a comments regarding this burgen estimate or any other aspect of this is, Directoristic for information Operations and Reports, 1215 Jefferson rx Acouction Project (2763-2188), Washington, CC 20503. RT TYPE AND DATES COVERED
AGENCY LISE ONLY (Leave plank) 12. REPORT DATE 3. REPOR	print
TITLE AND SUBTITLE	5. FUNDING NUMBERS
Cyclooligomerization As Possible Routes To Cubane- Systems	-Like N00014-99-1-0393 Dr. Judah Goldwasser
Peter Politzer, Pat Lane and John J. M. Wiener	R&T Code 33e 1806
PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)	8. PERFORMING ORGANIZATION
	REPORT NUMBER
University of New Orleans Department of Chemistry New Orleans, Louisiana 70148	112
. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Office of Naval Research Code 333 800 N. Quincy Street Arlington, VA 22217	
11. SUPPLEMENTARY NOTES	1
12a. DISTRIBUTION / AVAILABILITY STATEMENT	125. DISTRIBUTION CODE
Approved for public release. Unlimited distribution.	
Unlimited distribution.	
Unlimited distribution. 13. Additional and 1,3,5,7-tetranitro-2,4,6,8-tetraazacu energetic materials; however neither compound has as yet been prepared by the cyclooligomerizations of dinitroacetylene and n encouraging chemical evidence that this may be feasible. The f conceivably be cyclic dimerizations to form tetranitrocyclo-buta diazacyclobutadiene. We have used a density functional compu- analyze these proposed initial reactions. Optimized geometries dinitroacetylene and nitryl cyanide, the two cyclic dimers, the in desired ultimate products, the two cubanes. The activation barr and nitryl cyanide to the four-membered rings were found to be the overall heats of reaction being -40 and +27 kcal/mole. The starting materials to the final cubanes were -145 and +19 kcal/r changes were obtained, and are also negative for the dinitroacet cyanide. Thermodynamically, the cyclooligomerization of dinit	synthesized. In principle, they could be hitryl cyanide, respectively. There is some first steps in these processes might adiene and 1,3-dinitro-2,4- utational procedure, B3P86/6-31G**, to and energies were calculated for intervening transition states, and also the tiers for the conversions of dinitroacetylene e 47 and 45 kcal/mole, respectively, with heats of reaction for proceeding from the mole. The corresponding free energy tylene processes and positive for the nitryl troacetylene, whether to the dimer or to the itryl cyanide.
Unlimited distribution. 13. AdSTRACT Maximum 200 weres: Octanitrocubane and 1,3,5,7-tetranitro-2,4,6,8-tetraazacu energetic materials; however neither compound has as yet been prepared by the cyclooligomerizations of dinitroacetylene and n encouraging chemical evidence that this may be feasible. The f conceivably be cyclic dimerizations to form tetranitrocyclo-buta diazacyclobutadiene. We have used a density functional compu- analyze these proposed initial reactions. Optimized geometries dinitroacetylene and nitryl cyanide, the two cyclic dimers, the in desired ultimate products, the two cubanes. The activation barr and nitryl cyanide to the four-membered rings were found to be the overall heats of reaction being -40 and +27 kcal/mole. The starting materials to the final cubanes were -145 and +19 kcal/r changes were obtained, and are also negative for the dinitroacet cyanide. Thermodynamically, the cyclooligomerization of dinit cubane system, is predicted to be greatly favored over that of m	synthesized. In principle, they could be hitryl cyanide, respectively. There is some first steps in these processes might adiene and 1,3-dinitro-2,4- utational procedure, B3P86/6-31G**, to and energies were calculated for intervening transition states, and also the riters for the conversions of dinitroacetylene e 47 and 45 kcal/mole, respectively, with heats of reaction for proceeding from the mole. The corresponding free energy tylene processes and positive for the nitryl troacetylene, whether to the dimer or to the itryl cyanide.
Unlimited distribution. 13. Adstract Maximum 200 weres: Octanitrocubane and 1,3,5,7-tetranitro-2,4,6,8-tetraazacu energetic materials; however neither compound has as yet been prepared by the cyclooligomerizations of dinitroacetylene and n encouraging chemical evidence that this may be feasible. The f conceivably be cyclic dimerizations to form tetranitrocyclo-but diazacyclobutadiene. We have used a density functional compu- analyze these proposed initial reactions. Optimized geometries dinitroacetylene and nitryl cyanide, the two cyclic dimers, the in desired ultimate products, the two cubanes. The activation barr and nitryl cyanide to the four-membered rings were found to be the overall heats of reaction being -40 and +27 kcal/mole. The starting materials to the final cubanes were -145 and +19 kcal/n changes were obtained, and are also negative for the dinitroacet cyanide. Thermodynamically, the cyclooligomerization of dinit cubane system, is predicted to be greatly favored over that of n 14. SUBJECT TERMS octanitrocubane, tetranitrotetraazacubane, cycle processes, energetic compounds, dinitroacetylene	synthesized. In principle, they could be hitryl cyanide, respectively. There is some first steps in these processes might adiene and 1,3-dinitro-2,4- utational procedure, B3P86/6-31G**, to and energies were calculated for intervening transition states, and also the riters for the conversions of dinitroacetylene e 47 and 45 kcal/mole, respectively, with heats of reaction for proceeding from the mole. The corresponding free energy tylene processes and positive for the nitryl troacetylene, whether to the dimer or to the itryl cyanide.
Unlimited distribution. 13. AdSTRACT (Maximum 200 weres: Octanitrocubane and 1,3,5,7-tetranitro-2,4,6,8-tetraazacu energetic materials; however neither compound has as yet been prepared by the cyclooligomerizations of dinitroacetylene and n encouraging chemical evidence that this may be feasible. The f conceivably be cyclic dimerizations to form tetranitrocyclo-butz diazacyclobutadiene. We have used a density functional compu- analyze these proposed initial reactions. Optimized geometries dinitroacetylene and nitryl cyanide, the two cyclic dimers, the in desired ultimate products, the two cubanes. The activation barr and nitryl cyanide to the four-membered rings were found to be the overall heats of reaction being -40 and +27 kcal/mole. The starting materials to the final cubanes were -145 and +19 kcal/r changes were obtained, and are also negative for the dinitroacet cyanide. Thermodynamically, the cyclooligomerization of dinit cubane system, is predicted to be greatly favored over that of m 14. SUBJECT TERMS Octanitrocubane, tetranitrotetraazacubane, cycle processes, energetic compounds, dinitroacetylene ide, density functional calculatins, reaction en descrete the overse form the startion of the compounds dinitroacetylene ide, density functional calculatins, reaction en endergenergetic compounds, dinitroacetylene ide, density functional calculatins, reaction endergenergetic action endergenergetic a	synthesized. In principle, they could be hitryl cyanide, respectively. There is some first steps in these processes might adiene and 1,3-dinitro-2,4- utational procedure, B3P86/6-31G**, to and energies were calculated for intervening transition states, and also the riters for the conversions of dinitroacetylene e 47 and 45 kcal/mole, respectively, with heats of reaction for proceeding from the mole. The corresponding free energy tylene processes and positive for the nitryl troacetylene, whether to the dimer or to the itryl cyanide.

NSN 7540-01-280-5500

. بيد . <mark>او</mark>ت

1

•

Prescribed ov ANSI Std. 239-18

CYCLOOLIGOMERIZATIONS AS POSSIBLE ROUTES TO

CUBANE-LIKE SYSTEMS

Peter Politzer, Pat Lane and John J. M. Wiener

Running head: Cyclooligomerizations as Possible Routes to Cubane-Like Systems

Peter Politzer University of New Orleans Department of Chemistry New Orleans, Louisiana 70148 (504) 280-6850 (504) 280-6860 FAX

<u>ين</u> :

Pat Lane University of New Orleans Department of Chemistry New Orleans, Louisiana 70148 (504) 280-7216 (504) 280-6860 FAX

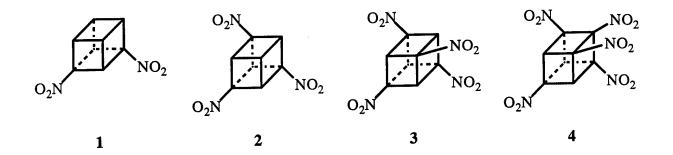
John J. M. Wiener University of New Orleans Department of Chemistry New Orleans, Louisiana 70148 (504) 280-7216 (504) 280-6860 FAX

To appear in: "Carbocychic and Heterocychic Cage Compounds and their Building Blocks" K. Laali, Editor JAI Press

Table of Contents

. .

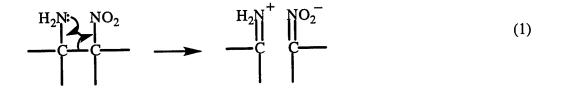
۰.


Introduction 3
Octanitrocubane and 1,3,5,7-Tetranitro-2,4,6,8-Tetraazacubane
Cyclooligomerization Processes6
Background6
Computational Analyses9
Discussion11
Acknowledgment 12
References13

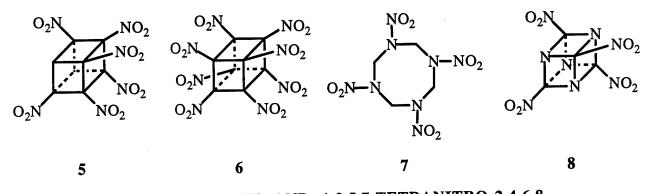
INTRODUCTION

1

Polynitrocubanes continue to be of interest as potentially important high-energy compounds, e.g. explosives and propellants.¹⁻⁷ This is because cubane itself has a notably high crystal density for a hydrocarbon, 1.29 g/cm³,⁸ and also a high heat of formation, 129.5 kcal/mole in the solid phase and 148.7 kcal/mole in the gaseous.⁹ A further attractive feature is the remarkable stability shown by cubane,¹⁰ despite its very strained structure.


The density and the heat of formation are key factors in evaluating potential energetic performance,^{11,12} since they help to determine the rate of propagation of a detonation and the pressure behind the shock wave that is produced. The substitution of nitro groups can be anticipated to increase the density; for example, the experimental values for 1,3-dinitro-, 1,3,5-trinitro- and 1,3,5,7-tetranitrocubane (1-3) are 1.65, 1.74 and 1.81 g/cm³, respectively,¹² while that of the recently-prepared 1,2,3,5,7-pentanitrocubane (4) is 1.96 g/cm³.⁷ The latter is one of the highest densities known for a compound containing only carbons, hydrogens, oxygens

and nitrogens. The effect of nitro substituents upon the heat of formation is less straightforward. As shown in Table I, the molar value may increase, but it is likely to decrease on a gram basis, due to the added mass of the nitro groups. It is the latter value that is important for energetic performance.^{11,12}


INSERT TABLE I ABOUT HERE.

Since approximately 1980, there have been continuing efforts to substitute nitro groups on the cubane framework; this has led successivley to the preparation of 1, 2 and 3. (For reviews of this work, see Spear and Dagley⁶ and Lukin *et al* .⁷) In none of these molecules are there nitro groups on adjacent carbons; attempts to synthesize such analogues led to cleavage of the intervening C–C bond. This has been attributed to a "push-pull" mechanism operating in the course of the oxidation of the polyamine precursors:^{3,7}

(In computational analyses, we have shown that both nitro and amino substituents can *independently* produce a conformation-dependent weakening of neighboring C–C bonds in cubane, 13,14 and that these effects may reinforce each other when the two groups are on adjacent carbons.)

Accordingly the introduction of a fifth NO_2 was achieved through the nitration of the anion of 3.7 The pentanitrocubane 4 is currently the most highly nitrated cubane to have been prepared in pure form. A hexanitrocubane, 5, has been reported,⁷ but has not yet been obtained free of solvent.

OCTANITROCUBANE AND 1,3,5,7-TETRANITRO-2,4,6,8-TETRAAZACUBANE

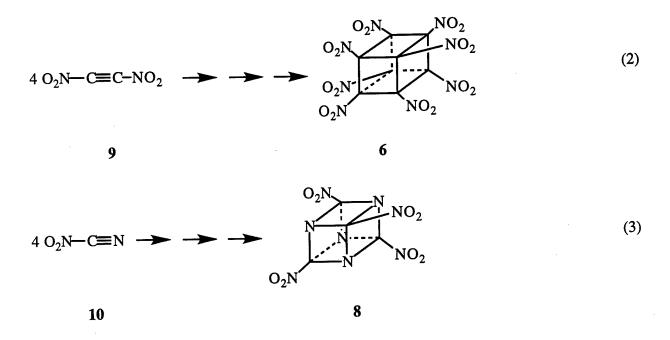
The ultimate objective of these efforts has generally been considered to be octanitrocubane, 6.6.7 Table II shows predictions of its properties relevant to energetic performance. For the most part, these are expected to be considerably superior to those of HMX, 7 (octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine), a very powerful current explosive that has long been taken as the standard against which new energetic materials, existing or proposed, are measured. Only in terms of its specific impulse (an indicator of propellant thrust) is octanitrocubane anticipated to not surpass HMX; this is probably because upon decomposition the former will (ideally) produce only 0.026 moles of gases (N₂ and CO₂) per gram of compound, compared to 0.041 (N₂, CO and H₂O) for HMX. (The primary determinants of propellant thrust are the combustion temperature that is achieved and the moles of gaseous products per gram of propellant.^{15,16})

INSERT TABLE II ABOUT HERE.

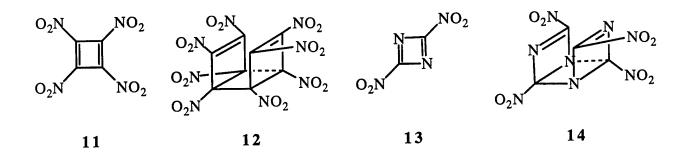
Attention has also been drawn to 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane, **8**, as a potential energetic compound.^{12,13,17} Table II shows its predicted properties to be at least as good as those of octanitrocubane, and perhaps significantly better. The specific impulse of **8** is expected to exceed that of HMX even though the moles of gaseous products per gram (N_2 and CO_2) is still only 0.028, presumably because its large heat of formation would lead to a higher combustion temperature. The tetranitrotetraazacubane should also benefit from the stabilizing effect that we

have found to be associated with the presence of aza nitrogens in both strained and unstrained aliphatic and alicyclic molecules.^{13,18,19} (Alkorta *et al* have independently reached the same conclusion specifically for cubane and azacubanes.²⁰)

· . '

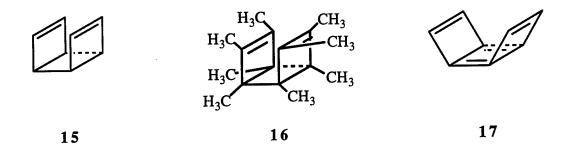

4 ·

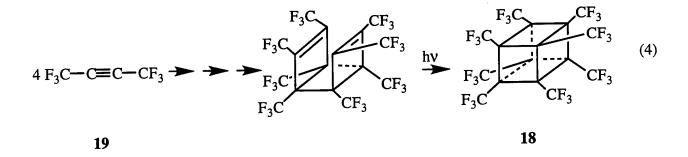
CYCLOOLIGOMERIZATION PROCESSES: POSSIBLE ROUTES TO OCTANITROCUBANE AND 1,3,5,7-TETRANITRO-2,4,6,8-TETRAAZACUBANE.


Background

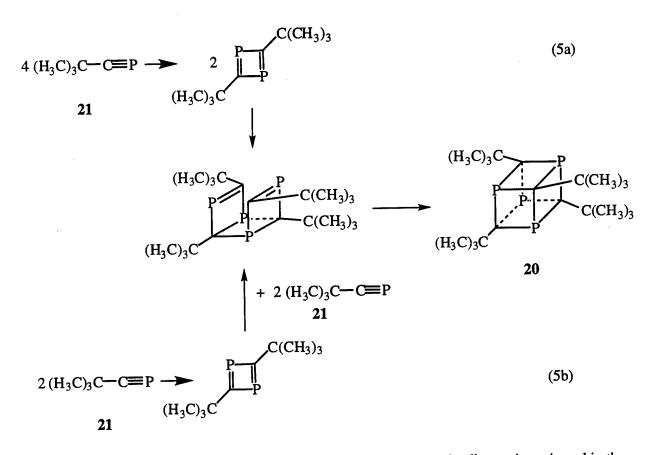
In principle, octanitrocubane and 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane could be formed

by the cyclooligomerizations of dinitroacetylene (9) and nitryl cyanide (10), respectively:²¹


Each of these processes would probably involve several intermediates, perhaps including 11 and /or 12 in the case of eq. (2) and 13 and/or 14 in the case of eq. (3):


٠.

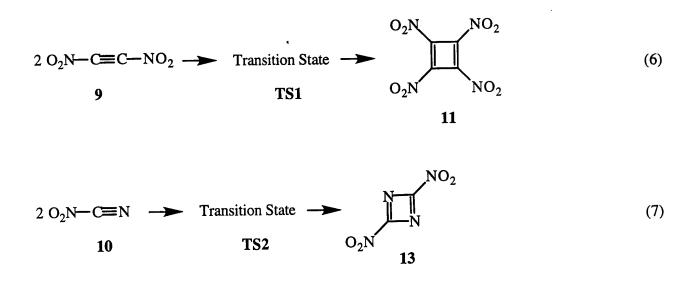
The molecules 11 and 13 can be viewed as cyclic dimers of dinitroacetylene and nitryl cyanide, while 12 and 14 and the desired final products 6 and 8 can be regarded as cyclic tetramers.


Some related efforts have already been made.²² The photolysis of the octadiene **15** or its octamethyl derivative **16** failed to produce cubane or octamethylcubane,²³⁻²⁵ nor did 1,3,5,7-cyclooctatetraene (**17**) yield cubane.²⁶

On the other hand, it has proven possible to prepare perfluorooctamethylcubane, 18, from the acetylene derivative 19,²⁷ by a series of chemical conversions followed by a final irradiation:

The fact that this does occur is particularly encouraging in the present context, since the CF_3 group is similar to the NO₂ in that both are strongly electron-withdrawing, primarily through induction.²⁸ More recently, the phosphacubane **20** has been synthesized by the thermal cyclooligomerization of the phosphaalkyne **21**;²⁹ the mechanism was postulated to be either eq. (5a) or eq. (5b):

(The formation of phosphorous/carbon cage compounds from phosphaalkynes is reviewed in the chapter by Mack and Regitz in this volume.) Finally, it was suggested some time ago,^{30,31} on the basis of infrared and Raman evidence, that a compound obtained^{30,32} by the ultraviolet irradiation of diphenylacetylene, $H_5C_6-C\equiv C-C_6H_5$, is octaphenylcubane.

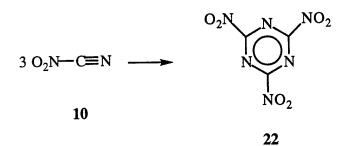

The starting compounds for the preparations of octanitrocubane and 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane by eqs. (2) and (3) are dinitroacetylene, **9**, and nitryl cyanide, **10**. Dinitroacetylene has not yet been synthesized, although there are efforts in that direction;^{33,34} a computational investigation has shown that it does correspond to an energy minimum.³⁵ This has also been demonstrated for nitryl cyanide,³⁶ and it has been reported to have been generated in the laboratory.³⁴

Computational Analyses

We have undertaken a computational investigation of the feasibilities of obtaining octanitrocubane and/or 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane by cyclooligomerization processes such as are depicted by eqs. (2) and (3). We are using a density functional procedure to assess the stabilities of possible intermediates and to seek the transition states leading to these and to the desired final products. Our objective is to determine whether reasonable routes can be established for either or both of these processes, involving attainable activation barriers.

The calculations are being carried out with the Gaussian 94 code,³⁷ using the Becke-3 (B3)³⁸ and Perdew-86 (P86)³⁹ functional combination and the 6-31G** basis set. Energy minima and transition states are confirmed by computing the vibration frequencies and verifying that there are, respectively, zero or one imaginary value.⁴⁰

Our focus has initially been upon the [2+2] cycloadditions shown in eqs. (6) and (7), which are conceivable first steps in the cyclooligomerization processes:



We computed optimized geometries for the reactants **9** and **10**, the possible intermediates **11** and **13**, and the desired final products, octanitrocubane (6) and 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane (8), and verified that these do correspond to energy minima (no imaginary vibration

frequencies). We also determined the structures of the transition states (one imaginary frequency), which can be a particularly time-consuming process since they are quite sensitive to the orientations of the reactants.

Our calculated reaction energetics for eqs. (6) and (7), as well as for the complete cyclooligomerizations represented by eqs. (2) and (3), are given in Table III. The heats of reaction were obtained from heats of formation computed by a modified version of a procedure described earlier.⁴¹

Table III shows the activation barriers for the conversion of dinitroacetylene and nitryl cyanide to the four-membered rings **11** and **13** to differ by only about 2 kcal/mole; by the Arrhenius equation, however, this is enough to make the cyclodimerization of nitryl cyanide at 298 K an order of magnitude faster than that of dinitroacetylene (other factors being equal). In contrast to the activation energies, the heats of reaction for these processes differ considerably, as is also the case for the complete cyclooligomerizations to the final products **6** and **8** (Table III). The dimerization and tetramerization of dinitroacetylene to form **11** and **6** are both exothermic, while the corresponding processes involving nitryl cyanide going to **13** and **8** are both endothermic. The latter results are particularly striking because Korkin and Bartlett, using an MBPT(2) procedure, found the cyclic trimerization of nitryl cyanide, eq. (8), to be distinctly exothermic, $\Delta E(0 \text{ K}) = -70.2 \text{ kcal/mole}$;⁴²

(8)

9

۰.'

The significant energy release that accompanies the formation of 22 (unlike 13 and 8) is presumably due to its aromatic stabilization.

INSERT TABLE III HERE.

The fact that the heats of reaction for the formation of **11** and **6** are so much more negative than for **13** and **8** does not contradict our earlier statement that aza nitrogens have a stabilizing effect. In molecules **13** and **8**, this stabilization is a decrease in the strain energy associated with the molecular framework, when referenced to an equivalent group of unstrained C–N and C–H bonds.¹⁹ The Δ H values in Table III, on the other hand, are referenced to the enthalpies of dinitroacetylene and nitryl cyanide.

Table IV presents some computed structural data for the reactants, products and transition states in eqs. (6) and (7). The most interesting feature of these pertains to the transition state, **TS2**, in which the distance between the carbons is only about 0.05 Å greater than the typical length of a C–C single covalent bond.⁴³ As this transition state rearranges to the product, the dinitrodiazacyclobutadiene **13**, the formation of the new C–N single bonds is accompanied by an increase in the C---C distance to 1.751 Å.

INSERT TABLE IV HERE.

DISCUSSION

The activation barriers for eqs. (6) and (7) are not prohibitively large, so that both reactions should be kinetically feasible. Thermodynamically, however, the ΔG values in Table III show that the cyclooligomerization of dinitroacetylene, whether to the dimer or the tetramer, is greatly favored over that of nitryl cyanide. This suggests that the conversions of dinitroacetylene to 11 and 6 are likely to occur with better yields than those of nitryl cyanide to 13 and 8. This does not of course mean that 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane, 8, is any less promising as an

• . •

energetic target compound, but only that cyclooligomerization as a preparative route may be better suited for octanitrocubane, 6.

A final point of interest is that the presence of the nitro groups has a favorable thermodynamic effect on these cyclooligomerizations. For eqs. (9) and (10),

which are analogues of eqs. (6) and (7), we find $\Delta H(298 \text{ K}) = -6$ and 52 kcal/mole, respectively. For eq. (11),

the measured heats of formation of acetylene⁴⁴ and cubane⁹ give a gas phase experimental value of $\Delta H(298 \text{ K}) = -69.3 \text{ kcal/mole}$. For all three of these reactions, the $\Delta H(298 \text{ K})$ of the fully nitrated version, given in Table III, is considerably more negative.

ACKNOWLEDGMENT

We appreciate discussions with Drs. Jane S. Murray, A. T. Nielsen and H. Shechter, the computational assistance of Ms. M.C. Concha, and the financial support provided by the Office of Naval Research, through contract N00014–97–1–0066 and Program Officer Dr. Judah Goldwasser.

REFERENCES

- Eaton, P. E.; Ravi Shankar, B. K.; Price, G. D.; Pluth, J. J.; Gilbert, E. E.; Alster, J.; Sandus, O. J. Org. Chem. 1984, 49, 185.
- (2) Sollott, G. P.; Alster, J.; Gilbert, E. E. J. Energ. Mat. 1986, 4, 5.
- (3) Marchand, A. P. Tetrahedron 1988, 44, 2377.
- (4) Bottaro, J. C.; Penwell, P. E.; Schmitt, R. J. J. Org. Chem. 1991, 56, 1305.
- (5) Bashir-Hashemi, A.; Li, J.; Gelber, N.; Ammon, H. J. Org. Chem. 1995, 60, 698.
- (6) Spear, R. J.; Dagley, I. J. In Organic Energetic Compounds; Marinkas, P. L., Ed.; Nova: Commack, NY, 1996, ch. 2.
- (7) Lukin, K. A.; Li, J.; Eaton, P. E.; Kanomata, N.; Hain, J.; Punzalan, E.; Gilardi, R. J.
 Am. Chem. Soc. 1997, 119, 9591.
- (8) Fleischer, E. B. J. Am. Chem. Soc. 1964, 86, 3889.
- (9) Kybett, B. D.; Carroll, S.; Natalis, P.; Bonnell, D. W.; Margrave, J. L.; Franklin, J. L.
 J. Am. Chem. Soc. 1966, 88, 626.
- (10) Eaton, P. E. Angew. Chem. Int. Ed. Engl. 1992, 31, 1421.
- (11) Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23.
- (12) Alster, J.; Iyer, S.; Sandus, O. In *Chemistry and Physics of Energetic Materials*; Bulusu, S. N., Ed.; Kluwer: Dordrecht (The Netherlands), 1990, ch. 28.
- (13) Murray, J. S.; Seminario, J. M.; Politzer, P. Struct. Chem. 1991, 2, 153.
- (14) Murray, J. S.; Seminario, J. M.; Politzer, P. Struct. Chem. 1991, 2, 567.
- (15) Politzer, P.; Murray, J. S.; Grice, M. E.; Sjoberg, P. In Chemistry of Energetic Materials; Olah, G. A., Squire, D. R., Eds.; Academic Press: New York, 1991, ch. 4.
- (16) Köhler, J.; Meyer, R. Explosives; 4th ed.; VCH Publishers: New York, 1993.
- (17) Hollins, R. A., private communication.
- (18) Murray, J. S.; Redfern, P. C.; Seminario, J. M.; Politzer, P. J. Phys. Chem. 1990, 94, 2320.

- (19) Murray, J. S.; Seminario, J. M.; Lane, P.; Politzer, P. J. Mol. Struct. (Theochem)
 1990, 207, 193.
- (20) Alkorta, I.; Elguero, J.; Rozas, I.; Balaban, A. T. J. Mol. Struct. (Theochem) 1990, 206, 67.
- (21) We, thank Dr. R. A. Hollins (1990) and Drs. A. T. Nielsen and H. Shechter (1996) for bringing these possibilities to our attention.
- (22) Griffin, G. W.; Marchand, A. P. Chem. Rev. 1989, 89, 997.
- (23) Criegee, R. Angew. Chem. Int. Ed. Engl. 1962, 1, 519; Chem. Abstr. 1964, 61, 4233c.
- (24) Iwamura, H.; Morio, K.; Kihara, H. Chem. Lett. 1973, 457.
- (25) Osawa, E.; Aigami, K.; Inamoto, Y. J. Org. Chem. 1977, 42, 2621.
- (26) Scott, L. T. Chem. Rev. 1972, 72, 181.
- (27) Pelosi, L. F.; Miller, W. T. J. Am. Chem. Soc. 1976, 98, 4311.
- (28) Exner, O. Correlation Analysis of Chemical Data; Plenum Press: New York, 1988.
- (29) Wettling, T.; Schneider, J.; Wagner, O.; Kreiter, C. G.; Regitz, M. Angew. Chem. Int. Ed. Engl. 1989, 28, 1013.
- (30) Slobodin, Y. M.; Khitrov, A. P. Zh. Org. Khim. 1970, 6, 1751; Chem. Abstr. 1970, 73, 98503w.
- (31) Slobodin, Y. M.; Aleksandrov, I. V.; Khitrov, A. P. Zh. Org. Khim. 1977, 13, 1377;
 Chem. Abstr. 1977, 87, 200884z.
- (32) Büchi, G.; Perry, E. W.; Robb, J. J. Org. Chem. 1962, 27, 4106.
- (33) Schmitt, R. J.; Krempp, M.; Bierbaum, V. M. Int. J. Mass. Spectr. Ion Proc. 1992, 117, 621.
- (34) Shechter, H., private communication.
- (35) Politzer, P.; Lane, P.; Sjoberg, P.; Grice, M. E.; Shechter, H. Struct. Chem. 1995, 6, 217.

- (36) Korkin, A. A.; Leszczynski, J.; Bartlett, R. J. J. Phys. Chem. 1996, 100, 19840.
- (37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrezewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1995; Vol. 23, p 1833.
- (38) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (39) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
- (40) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, 1986.
- (41) Politzer, P.; Murray, J. S.; Grice, M. E. In Decomposition, Combustion, and Detonation Chemistry of Energetic Materials; Brill, T. B., Russell, T. P., Tao, W. C., Wardle, R. B., Eds.; Materials Research Society: Pittsburgh, PA, 1996; Vol. 418, pp. 55-66.
- (42) Korkin, A. A.; Bartlett, R. J. J. Am. Chem. Soc. 1996, 118, 12244.
- (43) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin II 1987, S1.
- (44) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, suppl. 1.

Compound	ΔH_{f}^{298K} (kcal/mole)	ΔH_{f}^{298K} (cal/g)
O_2N NO_2 O_2N $N-NO_2$ O_2N $N-NO_2$	62	157
O_2N-N $N-NO_2$ O_2N N NO_2	46	150
$O_2N \xrightarrow{N} NO_2$ $O_2N \xrightarrow{N} NO_2$ $O_2N \xrightarrow{N} NO_2$	141	489
$\langle \bigcup_{NO_2}^{N \cup NO_2} NO_2$	114	573
$ \begin{array}{c} NO_2 & NO_2 \\ \hline O & NO_2 \\ \hline O & NO_2 \\ NO_2 & NO_2 \end{array} $	78	273
	(continued)	

Table I. Calculated solid phase heats of formation.^a

· • •

* •.•

Compound	ΔH_{f}^{298K} (kcal/mole)	ΔH_{f}^{298K} (cal/g)
$ \underbrace{\bigcirc_{NO_2}^{NO_2}}_{NO_2} \underbrace{\bigcirc_{NO_2}^{NO_2}}_{NO_2} $	67	276
	61	402

Table I. Calculated solid phase heats of formation (continued).^a

^aPolitzer, P., Grice, M. E. and Lane, P. unpublished results of density functional calculations. The procedure is described in reference 41.

•.*

...

٠.

Property	Octanitrocubane, 6	1,3,5,7-Tetranitro- 2,4,6,8-tetraazacubane, 8	HMX, 7
Crystal density, g/cm ³	2.09, ^a 2.125, ^b 2.21 ^c	2.19, ^a 2.086, ^b 2.05 ^c	1.902, ^d 1.905, ^d 1.96 ^e
Solid phase heat of formation, kcal/mole	81.0, ^a 144 ^f	158.0, ^a 189 ^f	17.9 ^e
Solid phase heat of formation, cal/g	175, ^a 310 ^f	548,° 655 ^f	60.4 ^e
Detonation velocity, m/sec	9820ª	10,400ª	9110, ^d 9100 ^e
Detonation pressure, kbar	467ª	540ª	395 ^d
Specific impulse (relative to HMX)	0.96 ^g	1.12 ^g	1.00 ^g

Table II. Predicted properties of octanitrocubane, 6, and 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane 8 and experimental values for HMX, 7.

^aReference 12. The results were obtained using the procedure of reference 11.

^bH. L. Ammon, unpublished.

^cCalculated using the procedure of Murray, J. S., Brinck, T. and Politzer, P. Chem. Phys. **1996**, 204, 289.

^dGibbs, T. R. and Popolato, A., Eds., *LASL Explosive Property Data*, University of California Press, Berkeley, 1980. The densities given are for the β-polymorph. The detonation velocity and pressure correspond to densities of 1.89 and 1.900 g/cm³, respectively.

^eReference 16. The detonation velocity corresponds to a density of 1.9 g/cm³. ^fPolitzer, P., Grice, M. E. and Lane, P. unpublished results of density functional calculations. The procedure is described in reference 41. ^gReference 15.

Reaction	ΔH(298 K)	ΔG(298 K)
	kcal/mole	kcal/mole
$2 O_2 N-C \equiv C-NO_2 \longrightarrow TS1$ 9	47	
$2 O_2 N - C \equiv C - NO_2 \longrightarrow O_2 N NO_2$ $9 O_2 N NO_2$ 11	-40	-25
$4 O_2 N-C \equiv C-NO_2 \xrightarrow{0_2 N} O_2 N \xrightarrow{0_2 N} NO_2 \\ 0_2 N \xrightarrow{0_2 N} NO_2 \\ O_2 N \xrightarrow{0_2 N} NO_2 \\ O_2 N \xrightarrow{0_2 N} NO_2 \\ 0_2 N \xrightarrow{0_2 N} \\ 0_2 N $	-145	-99
$2 O_2 N - C \equiv N \longrightarrow TS2$ 10	45	
$2 O_2 N-C \equiv N$ 10 $O_2 N$ NO_2	27	38
$4 O_2 N - C \equiv N$ 10 $O_2 N - N N O_2$ $N = N O_2 N - N O_2$	19	59

Table III. Calculated (B3P86/6-31G**) reaction energetics.

19

-.*

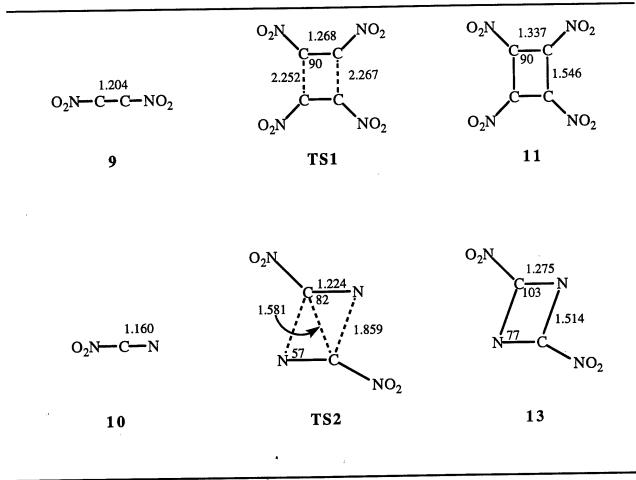


Table IV. Computed (B3P86/6-31G**) structural data.^a

^aDistances are in Angstroms, angles in degrees.

20

د. مراجع

٠.