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PREFACE 

The International Workshop on Coherent Control of Carrier Dynamics in 
Semiconductors was held May 19 to 22, 1998 at the University of Illinois 
at Chicago. Its intent was to bring together an international and 
interdisciplinary group of scientists to discuss recent progress, pertinent 
problems, and open questions in the field of coherent control in atoms, 
molecules, and semiconductors, in particular. Twenty-seven scientists 
from the physical chemistry, quantum optics, semiconductor, electrical 
engineering, and laser communities accepted our invitation and made this 
event a meeting of exciting presentations and vivid discussions. 

This volume contains the proceedings of this workshop. Most speakers 
accepted our invitation to provide a manuscript either on specific aspects 
of their work or a brief review of their area of research. All manuscripts 
were reviewed. It is hoped that they provide not merely an overview of 
most of the issues covered during the workshop, but also represent an 
account of the current state of coherent control in general. Hence, it is 
hoped that they are also of interest to a large number of scientists active 
in one of the areas listed above. 

The organizers of this workshop would like to thank all the participants 
for making this meeting a complete success. We are particularly indebted 
to Dr. Larry R. Cooper at the U.S. Office of Naval Research and Dr. 
Michael A. Stroscio at the U.S. Army Research Office for external 
financial support. We also wish to thank the Vice-Chancellor's Office for 
Research, the College of Liberal Arts and Sciences, the Department of 
Physics at the University of Illinois at Chicago for internal financial 
support. Finally, we wish to thank Dr. Xuedong Hu, Dr. Manjusha 
Mehendale, Tatiana Krivocheeva, and Nathan W. Rimington for help 
with the organization of this workshop. 

Walter Pötz, Chair 
W. Andreas Schroeder, Co-Chair 

October, 1998 
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SCENARIOS IN COHERENT CONTROL 

PAUL BRUMER 
Chemical Physics Theory Group and 
Photonics Research Ontario 
University of Toronto 
Toronto M5S 3H6 Canada 

AND 

MOSHE SHAPIRO 
Chemical Physics Department, 
Weizmann Institute of Science 
Rehovot, Israel 76100 

Abstract. Coherent control of molecular processes provides a means of 
controlling the dynamics of molecules, and of molecular processes, via laser 
induced quantum interference. We briefly review this approach, with a fo- 
cus on scenarios useful for controlled currents in semiconductors and on 
alternate new control scenarios. 

1.   Introduction 

Since 1986, efforts to control molecular motion and molecular processes 
have turned to the use of quantum interference as a means of directing 
molecules towards desired goals. Below we provide a brief sketch of the 
ideas which underlay the coherent control approach and call attention to 
the two scenarios which have either been proposed or utilized to control 
photocurrents in semiconductors. In addition we mention recent new di- 
rections in this area. Both comprehensive (Shapiro & Brumer 1997) and 
elementary reviews (Brumer & Shapiro 1995) are available elsewhere. Al- 
ternate methods of addressing the molecular control problem have also been 
recently reviewed by Gordon and Rice (1997). 

Many of the proposed coherent control scenarios rely upon a simple way 
of achieving active control over the prepared and final state of the system. 
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Specifically, active control over the final state is achieved by driving an ini- 
tially pure molecular state through two or more independent coherent opti- 
cal excitation routes. [Both the requirement for an initially pure molecular 
state and purely coherent excitation sources can be relaxed considerably. 
All that is really required is that some degree of molecular coherence be es- 
tablished in the molecular state prepared by the multiple excitation routes. 
See Shapiro & Brumer (1989); Jiang et al. (1996).] The final state of the 
system displays interference terms between these multiple routes, and its 
magnitude and sign depend upon laboratory parameters. As a consequence, 
final state characteristics can be manipulated directly in the laboratory. 

This approach has a well-known analogy, the interference between paths 
as a beam of either particles or of light passes through a double slit. In that 
instance a source coherence leads to either constructive or destructive in- 
terference, manifest as patterns of enhanced or reduced probabilities on an 
observation screen. In the case of coherent control the overall coherence of a 
pure state plus laser source allows for the constructive or destructive manip- 
ulation of final state properties of molecules. The principles upon which this 
approach rests are similar to those relied upon in recent Quantum Optics 
developments including Electromagnetically Induced Transparency, Lasers 
Without Inversion, population trapping, etc. (Scully & Zubairy 1997). In- 
terest in Chemical Physics, however, often focuses on complex multilevel 
multidimensional systems excited to coupled continua where molecular re- 
arrangement can occur. 

Recognition that the essential feature of coherent control is the gen- 
eration of quantum interference through independent coherent excitation 
pathways allows for the development of numerous control scenarios based 
upon this principle. In the case of the control of photocurrents in semi- 
conductors, an application particularly relevant to this workshop, two of 
these many (Shapiro & Brumer 1997) scenarios have been considered. We 
address these specifically below. 

1.1.  PHOTOIONIZATION OF A SUPERPOSITION STATE 

Properties of a photocurrent generated in a semiconductor are usually con- 
trolled by a bias voltage (Seeger, 1973). The role of this voltage is to give 
thermodynamic preference to the flow of photoelectrons in one direction 
(the forward or backward direction in a p - n junction.) In a p-type or n- 
type semiconductor the probability of carrier photoemission (from a single 
impurity) without an external voltage is anisotropic only inasmuch as the 
crystal possesses mass or dielectric constant anisotropies, but the probabil- 
ities of emission backward and forward along a given crystal axis are equal. 
Although photocurrents are commonly produced by laser illumination, the 
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laser coherence does not affect the process. 
Here we review our coherent control scheme (Kurizki, Shapiro & Brumer), 

proposed originally in 1988, for generating and controlling photocurrents 
without bias voltage, relying instead on the coherence of the illuminating 
source. Specifically, a superposition of two bound donor (or exciton) states 
is photoionized by two mutually phase-locked lasers at slightly different 
frequencies with the same polarization axis. The result is a current along 
the direction of polarization. The realization of the scheme is discussed for 
shallow-level donors in semiconductors. 

Consider a semiconductor doped with shallow-level donors. The bound 
state wavefunction of such a donor is successfully described by the hydro- 
genic effective-mass theory (Pantelides, 1978) with wavefunction: 

X„(r) = (r|n) = V^2 /     BnMuk(v)eikrdk (1) 
J — 00 

Here uk(r) is the conduction band Bloch state correlated to the asymptotic 
free-electron momentum ftk, V is the normalization volume and Bnk is 
the corresponding Fourier component of the hydrogenic wavefunction en- 
velope Xn- For semiconductors with effective-mass anisotropy, the Xn are 
evaluated variationally (Faulkner, 1969; Kasami, 1968; Baldereschi & Diaz, 
1970; Kohn & Luttinger 1955; Ridley. 1980) Although the theory described 
below holds for any superposition of bound donor states, a superposition of 
| Is) and 12p0) states will be considered explicitly. For these cases a sim- 
ple variational procedure (Kohn & Luttinger, 1955), whose results agree 
reasonably well with those of more refined procedures, yields 

Xi,    =   TT^expi-^+yW + zW2} 

X2Po    =   V2^b-'zeM-[(x2+y2)/a2 + *2/b2}1/2}. (2) 

Here the coordinates [normalized to the effective Bohr radius a* = h2/(m±e2)] 
coincide with the main axes of the cubic crystal. Depending on the ratio 
7 = mi/m|| (the parallel direction coinciding with z), the a and b param- 
eters vary between a = b = 1 for nearly isotropic materials with 7 = 1 
(e.g. GaAs, GaSb, InAs) and a « 4/3TT; b « (1/3)(4/TT)

2
/
3
7

1/3
 for highly 

anisotropic materials (e.g. Si or Ge) with 7 << 1. 
Let a superposition of the | Is) and | 2p0) states be prepared by some 

coherent process. As pointed out before, this can be achieved by a short 
coherent laser pulse or various other means. It is possible to discriminate 
against the excitation of the 12p±i) states either by frequency tuning, (e.g., 
the 2p±i — 2p0 splitting is ~ bmeV in Si), or by linearly polarizing the 
laser along the z-axis. Consider now the simultaneous excitation of this 
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superposition state to a kinetic energy level Ek in the conduction band 
continuum by two z-polarized infrared or visible lasers with frequencies 
u>is, o»2Po; the former lifts the | Is) state to Ek and the latter lifts the | 2p0) 
state to Ek. These excitations involve the energy conservation relation: 

Ek = --± + —± = huI1-\En\-y£p^ (3) 2mj_      2m|| *-£ 

Here the n-state energy is measured from the conduction-band edge and 
the last term accounts for the emission (p > 0) or absorption (p < 0) of 
p phonons of frequency u>. For the sake of simplicity, we shall use the zero 
phonon-frequency line; hence, TI<JJ\S = Ek + \Eis\,hu)2Po = Ek + \E2p0\- 

In what follows we consider only electric-dipole induced optical transi- 
tions with the electric field along the z axis. The electric dipole transition 
amplitudes from an impurity state | n) to the asymptotic (far from impu- 
rity) plane wave (r|k) = y_1/2ejkrUk(r) is 

—ipf) 

m||(ük + \En\) 

The last factor is, using Eq. (1), simply given as 

(k| - ihd/dz\ n) = hkz (k| n) = fikzBn^ (5) 

We now consider the photoionization of the superposition state, 

|^) = c1|l) + c2|2> (6) 

where 1 denotes the Is state and 2 the 2p0 state. We let a 2-polarized 
two-color source, whose electric field is given as, 

tz{t) = ei cos(wit + 4>x) + 62 cos(a!2< + </>2) (7) 

act on this superposition state. The rate (probability per unit time and 
unit solid angle) of photoemission to a conduction state with momentum 
Tik resulting from this action is, 

P(cos6) = (2n/h)p(k)\ Y, e-^encn(k|^|n)|2 (8) 
71=1,2 

Here, 
cos# = kz/k;sm0 — k^/^^k, 

k = (2mllEk)
1/2/n, (9) 

p{k) = {m±V/8Tr3h2)k 
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and p(k) is the density of final states. The Pranck-Condon factor for the 
zero phonon line has been set here to unity. 

Denoting cn = \cn\exp(ian) and using Eqs. (4) and (5) in Eq. (8) gives 
the form: 

P{cos9) = [A1\B1Stk\2 + A2\B2potk\2+ 

Al2 cos(«i - a2 - 4>\ + 4>2 + ai2)|£iä,k-B2p0lk|]cos2 e (10) 

where 
A =     2neWP(k)\ecn\*   („ = t  2) 

A 47re2ft^2p(K)|6i62cic2| ^l1' 
12 r^Ek+Ei)iEk+E2) 

Here ax2 is defined by BUMB^po>k =  |51SikS2p0,k|exp(mi2) and Ex  = 
\En\,E2 = |-#2po|- 

The evaluation of P(cos0) requires the Fourier components -Bn,k- For 
the present choice of impurity states and z axis these components are ob- 
tained from Eq. (2) as 

Bls,k       =     87T4/3a2by-l/2/G2 

B2p0M   =   -iv/2(32)a2627T7/4y-1/2a*^/G3 (12) 

with 
G = G(cos2 9) = [1 + j(a*ak)2 + (b2 - a2^){a*kf cos2 9]        (13) 

It is clear from Eq. (12) that ax2 = IT/2. 

Given the above expression, the net current flowing in the z-direction 
is given as 

r2n    rir 
It = {eNVh/m^T x F /   dÜP {cos 6) k cos 9 

Jo      Jo 

= 256{eNVh*k5/m*)r x FaW^2-—^§^—- V '    "' (Ek + Ex){Ek + E2) 

cos(ai - a2 - 4>i + 4>2 + -) I     ds        2  5, (14) 

where r is the free electron collisional relaxation time, N is the donor 
concentration in cm"3, and F is the x-y cross-sectional area of the sample. 

We note that contributions from the diagonal A\ and A2 terms are 
odd in cosö and have vanished, whereas the interference term induces a 
directional current flow! Thus coherent interference contributions result in 
a controlled directional current flow. 

Several additional remarks are in order: First, the phases (f>\ and 4>2 of 
Eq. (7) contain the spatial phase factors exp[ik • R], where k is the light 
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wave vector. The difference in the spatial phases can be exactly offset by 
the phase difference a\ — a<i in the preparation step (e.g., in a Raman 
preparation of \ip)), or eliminated by phase matching. Second, there are 
substantial experimental simplifications associated with applying the pho- 
todissociating lasers at the same time as initiating the preparation of the 
superposition state. Third, two colour light also causes excitation (via u>2Po) 
of the | Is) level to the state at [Ek + \E2Po\ — \Eis\] and of the | 2p0) level 
(via u>\s) to the state at [Ek + \Eis\ — \Epo\], i.e. the uncontrolled satellite 
contributions discussed above. In this case, however, these terms contribute 
to the A\ and A2 terms in Eq. (10) and hence do not contribute to degrade 
the controlled current I+. 

The magnitude and sign of the current is controllable for a given host 
material and superposition state parameters via (a) the optical phase dif- 
ference <pi — 4>ii (b) the donor number N, and/or (c) the ionizing field 
strengths e\ and €2 and their frequencies UJ\ and a>2- To estimate a typical 
current, consider the Iz resulting from the following parameters: ei = e% = 
0.1 Volts/cm, A; = 5 x 107cm_1, \cxc2\= 0.25, and r= 10~14 to 10~13 

sec. The latter corresponds to a mean free path (hkr/m) of 100 to 1000 
Angstroms, a typical value for the ballistic electrons at the cited k value. 
Further N(Si)V = 1018cm~3V where V is the effective interaction volume. 
For a sample of 0.1 micron x 10 micron x 10 micron, V = 10-11cm3. Uti- 
lizing Eq. (14) , and these parameter values, we obtain a current Iz = 10 to 
100 mA. Thus, sizeable currents may be readily produced, due to the high 
quantum efficiency of the silicon photoionization. 

Equations (11)-(14) apply, evidently, to photoionization of other | ns) — 
I n'p0) superpositions, where \n—n'\ = 1, upon substituting the appropriate 
Fourier coefficients Bns^ and Bnipo^. It may turn out to be more practical 
to use other states than those discussed above. 

1.2.  N VS. M PHOTON ABSORPTION 

The above procedure relies upon coherence established in a superposi- 
tion state and interference generated by simultaneous irradiation with two 
sources. In the alternate scenario described below interference is established 
by excitation via two different operators, in particular operators inducing 
N-photon and M-photon absorption. Here we explicitly consider the case of 
M=3, N=l (Shapiro, Hepburn & Brumer, 1988) and describe it in terms of 
molecular excitation, but the generality of the approach, to e.g. the semi- 
conductor case should be clear. Indeed, this approach was subsequently 
applied experimentally, for the case of M=2, N=l to the control of pho- 
tocurrents in semiconductors (Dupont et al. 1995; Hache et al. 1997). 

Consider a molecule which, when excited to total energy E, dissoci- 
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ates to a number of distinct products. The total Hamiltonian is denoted 
H = Hq+Vq, where H® is the Hamiltonian of the separated products in the 
arrangement channel labeled by q, (q = 1,2,...) and Vq is the interaction be- 
tween products in arrangement q. For example, q = 1,2 may be the A+BC 
and AB+C products, respectively, of the photon induced dissociation of a 
molecule denoted ABC: 

A + BC <- ABC ->• AB + C (15) 

We denote eigenvalues of HQ by \E, n, q°), where n denotes the scattering 
angles and all quantum numbers other than E. Eigenfunctions of H, which 
correlate with \E,n,q°) at large product separation, are labeled \E,n,q~). 
By the definition (see, e.g. Taylor 1972) of \E,n,q~), a state prepared ex- 
perimentally as a superposition \*&(t = 0)) = J2n,qcn,q\E,n,q~) has prob- 
ability |cn>g|

2 of forming product in channel q, with quantum numbers n. 
As a consequence, the probability of forming a product in any asymptotic 
state is equal to the probability of initially forming the appropriate minus 
state which correlates with the desired product. The essence of control lies, 
therefore, in forming the desired linear combination at the time of prepa- 
ration. The essence of the coherent control is to utilize phase and intensity 
properties of laser excitation to alter the character of the prepared state so 
as to enhance production of the desired product. 

As a specific example of coherent control, consider unimolecular pho- 
toexcitation (Shapiro, Hepburn & Brumer 1988; Chan, Brumer & Shapiro 
1991) where a system, initially in pure state \Ei), is excited to energy E, 
by simultaneous application of a CW field and its third harmonic: 

e{t) = e3 e3cos[(w3 + ö3)«] + ei |1 cos[(o>i+0i)i], (16) 

(u>3 = 3o>i), providing two independent optically driven routes from \Ei) to 
\E,n, q~). Here £ .{i = 1,3) denotes a unit vector in the \th field direction. 

Straightforward perturbation theory, valid for the weak fields under con- 
sideration, gives the probability P(E,q;Ei) of forming product at energy 
E in arrangement q as: 

P(E, q; Ei) = P3{E, q- Et) + P^E, q; E-) + Piz{E, q; E{) .        (17) 

Here Pz{E,q; Ei) is the probability arising from the one photon route, 

Pz{E,q-,Ei) = C-felY,mn,q-\{ez-£)e,g\Ei)\2. (18) 
n 

where ^ is the electric dipole operator, and ( e • (^)e,g = (e\ £, ■ £ Iff) 
where | g) and | e) are the ground and excited electronic state wavefunc- 
tions, respectively. The second term is the photodissociation contribution 
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from the three photon route given by: 

Pl{E,q-Ei) = {^)\\YJ\(E,n,q-\T\Ei)\2, (19) 
n 

with 

(20) 
The final and most significant term P\z{E,q\Ei) arises from one photon- 
three photon interference: 

Pu(E,q;Ei) = -2(7t/h)2e3elcos(e3 - 36, + 6<$)\F$\ (21) 

with the amplitude \Fyl | and phase 6[q
3' defined by 

\Fil)\exp(i6[ql) = Y,(Ei\T\E,n,q-)(E,n,q- | (£3 ■ g)e,9 W .   (22) 
n 

The branching ratio Rqq> for channels q and q', can then be written as 

P(E,q-Ej) _   F^-2xcos(e3-3el + 6[f)el\F{
1l

)\+x2eiFiq) 

P(E,q'-Ei)      FM _ 2xcos(03 - Wx + S^e^F^l + x^e^ ' 
(23) 

where 

FW    =    (hM*Pl{E^;Ei) , (24) 
ei 

with F39 ' and F^' defined similarly. Here x = e\/l3 with e/ = ejeo; the 
quantity eo essentially carries the unit for the electric field. 

The numerator and denominator of Eq. (23) each display what we regard 
as the canonical form for coherent control: independent contributions from 
more than one route which are modulated by an interference term. Since the 
interference term is controllable through variation of laboratory parameters 
(here the relative intensity and relative phase of the two lasers), so too is 
the product ratio Rqqi. 

This 1-photon vs. 3-photon scenario has been investigated both com- 
putationally (Chan, Brumer & Shapiro 1991) and experimentally (Chen, 
Yin & Elliott 1990; Chen & Elliott 1990; Park, Lu & Gordon 1991; Zhu 
et al. 1995). Both show that extensive control over product probabilities is 
possible. 

Rqq1 
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In most cases, n above denotes a set of quantum numbers, e.g. rota- 
tional, vibrational, electronic as well as scattering angles of the dissociation 
product. By summing only over a subset of the set n one can control the 
probability of forming product in states defined by the remaining quan- 
tum numbers. For example, if the sum over n excludes the scattering angle 
then one can control the probability of scattering into a particular angle 
(Asaro, Brumer & Shapiro 1988) which, for example, allows for control over 
photocurrent directionality. 

One further note is of interest in the context of this workshop. In the 
studies above, N-photon and M-photon excitation both lead to the same 
energy. This is done to ensure that the interference term is time independent 
so that it does not average to zero over a given time interval. However, it 
is worth noting that allowing excitation to two different energies E and 
E', will result in an interference term that oscillates with frequency Q = 
(E — E')/h. In the case of electron excitation, simultaneous excitation to 
E ^ E' may well lead to a useful source of tunable radiation, e.g. in the 
Terahertz domain. That is, by varying either of the frequencies inducing 
the M or N photon absorption one can control fi, and hence the frequency 
of the emitted radiation. 

1.3.  OTHER SCENARIOS 

Once one appreciates the essence of coherent control, i.e. the simultaneous 
coherent excitation of the system by multiple routes, numerous scenarios 
can be devised (Shapiro & Brumer 1997), many of which have been com- 
putationally shown to provide highly successful control schemes. For ex- 
ample, quantum interference may be introduced and manipulated through 
the use of laser pulse sequences. In the simplest such scenario (Seideman, 
Shapiro & Brumer 1989) an initial transform limited laser pulse excites 
a superposition of bound molecular Hamiltonian eigenstates and a subse- 
quent transform-limited pulse carries this superposition to the continuum. 
By varying the characteristics of the pulses, and the time delay between 
them, one introduces and alters the quantum interference between routes 
to the continuum. High quality computations on the two-photon dissocia- 
tion of IBr (Levy et al. 1990) and Li2 (Abrashkevich et al. 1998) show that 
extensive control over the ratio of photodissociation products is possible. 

Controlling molecular dynamics by altering the shape and detailed char- 
acteristics of laser pulses and laser pulse sequences was pioneered by Tannor 
and Rice (1986) and subsequently cast as an optimal control problem by 
Rabitz and coworkers (Shi, Woody & Rabitz 1988). There is sufficient rep- 
resentation at this workshop of this pulsed laser approach to warrant our 
limiting our remarks to three general observations. They are: (a) in each 
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of these approaches the essential effect of varying the characteristics of the 
laser pulses is to control and alter the quantum interferences introduced 
optically into the molecule whose dynamics we wish to control. The ten- 
dency to utilize short pulses implies, however, a large frequency bandwidth 
and hence the participation of many molecular energy levels; (b) our ex- 
perience continues to be that CW excitation, or very simple pulse shapes, 
suffice to give excellent control, at least over product distributions in chem- 
ical reactions. It is unclear to us under what circumstances complicated 
pulse shapes will be required; and (c) optimal control calculations tend to 
yield many different pulse shapes which all reach the desired goal. As a 
consequence it is very difficult to extract the physics of the problem from 
either the optimal control computation or the optimal control result (Pad, 
Shapiro & Brumer 1998). 

Coherent control is a rapidly growing field and there have been numer- 
ous new scenarios proposed in the past five years which are worthy of note. 
We call attention here to two specific advances. First, we note the particu- 
larly exciting prospect (Chen, Shapiro & Brumer 1995) in which a bound 
state of a molecular system is excited to the continuum by a laser of fre- 
quency u) which is, in turn, coupled to another (initially empty) bound state 
by an intense laser of frequency a/. Varying either u or u/ can be shown 
to provide an effective means of controlling the ratio of photodissociation 
products. This approach, which we call Incoherent Interference Control, 
is conceptually related to Laser Induced Continuum Structure (Knight, 
Lauder & Dalton 1990), but the latter has only been used to control the 
total ionization cross sections in atoms. Clearly, the ability to use this sce- 
nario to differentiate between different dissociation products, and to control 
their relative probabilities, constitutes a huge increase in the utility of this 
approach. In addition, the method can be shown to be relatively insensitive 
to both molecular collisions and to the quality of the lasers used. Hence the 
approach is highly resistant to effects which would normally cause loss of 
coherence, and hence loss of quantum-interference based control. 

Both experimental and theoretical studies of Incoherent Interference 
Control (Chen, Shapiro & Brumer 1995; Shnitman et al. 1996) show it 
to be a very effective means of controlling photodissociation dynamics. In 
particular, a recent study of the dissociation of Na2 to produce different 
atomic products showed that one could significantly increase the produc- 
tion of Na(3s) + Na(3p) while simultaneously reducing the production 
of Na(3s) + Na(3d) by varying u/ over 3 cm-1. Experiment and theory 
were found to be in excellent agreement. Most recently we have examined 
the possibility of improving control over cross sections in this scenario by 
varying pulse orderings, intensities and widths in a pulsed laser version of 
incoherent interference control. Our results showed that excellent control 
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over cross sections is possible for a wide range of laser pulse parameters 
(Shapiro, Chen &; Brumer 1997). Further, complementary work on multi- 
level adiabatic passage techniques (Kobrak & Rice 1998) suggests a deeper 
qualitative picture of the origins of quantum interference in this incoherent 
interference control scenario. 

Finally we note that most of the work in coherent control has focused 
on unimolecular processes, i.e., processes involving excitation of a single 
molecule, such as that in Eq. (1). However, the vast majority of chemical 
reactions of interest are bimolecular in nature, i.e., of the type: 

A + B-+C + D (25) 

In a recent series of papers (Shapiro & Brumer 1996; Holmes, Shapiro and 
Brumer 1996; Abrashkevich, Brumer and Shapiro 1998) we showed how 
coherent control could be extended to control such processes. In particu- 
lar, what is required for coherent control of collision processes is that one 
prepares the desired initial superposition of degenerate collisional eigen- 
states. For example, if one prepares an initial state as a superposition of 
asymptotic states \E,n, q°), e.g. as ^2cn\E,n,q°), then the overall scatter- 
ing cross section will display traditional scattering contributions from each 
of the \E,n,q°) states, plus additional interference terms dependent upon 
the amplitude and phases of the cn. Thus, by controlling these coefficients, 
i.e. the constitution of the initial superposition state, one also gains control 
over the outcome of the scattering process. 

In summary, numerous scenarios for achieving control have been studied 
both numerically as well as computationally for simple molecular processes. 
Of these, many would seem applicable to studies of control in device physics. 

Acknowledgment: This work was supported by the US Office of Naval 
Research. 
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Abstract. We review a series of recent experiments demonstrating quantum control of 
atomic processes and products induced by the interaction of the atom with coherent 
bichromatic electromagnetic fields. Since the effects under consideration are 
electromagnetically induced, control is established through the field parameters i.e. 
frequency, amplitude and phase. The controlled processes include resonant and non 
resonant multiphoton ionization, autoionization , radiative decay in multiple continua 
(ionization branching ratios) and third harmonic generation. 

1.   Introduction 

Excitations of atoms via multiple indistinguishable pathways may occur during the 
interaction of an atom with more than one laser field. The existence of multiple coherent 
excitation channels results into intra-atomic quantum interferences that govern excitation 
probabilities and populations. This follows from the nature of the time dependent 
Schrödinger equation that describes the temporal evolution of the interacting system, it 
being an amplitude equation. In a classical picture, constructive or destructive 
interferences can be viewed as the result of the addition of different dipole moments of 
the atomic system as induced by the different field combinations involved in the 
excitation scheme. In the simplest case of two interfering excitation channels the two 
dipole moments may have any amplitude and phase relation and thus result into any 
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degree of constructive or destructive interference. In some cases it proves more 
convenient to adopt an alternative equivalent quantum mechanical picture to that of 
interfering amplitudes. In this picture one of the electromagnetic fields 'dresses' the 
atom while the second field is used to probe the dressed system which now exhibits 
different structure and excitation dynamics than the bare atom does. 

Excitation schemes underlying this type of quantum interferences posses 
properties that depend on, and thus may be controlled by, the interference parameters. 
Some of the latter may be controlled in the laboratory by the field parameters, such as 
wavelength, polarization, intensity and phase. Turning these 'knobs' in the control room 
of the laboratory one can modify excitation and decay rates but also quantities that are 
considered traditionally to be determined only by the atomic parameters, such as 
autoionization profiles and ionization branching ratios. 

In the present work we review selected examples of recent experimental results in 
coherent quantum control of processes and products of laser atom interactions. These 
include control of ionization and autoionization rates and profiles, light induced 
continuum structure, ionization branching ratios and frequency up-conversion. Although 
all schemes investigated are based on quantum interference and thus control is based on 
a coherent process, not all of them are phase-dependent as in some the phase is 
eliminated e.g. through successive absorption and emission of a photon of the same field 
(Raman type processes). For these reason we will classify the experiments into two 
categories: Phase insensitive and phase sensitive. 

2.   Phase insensitive quantum coherent control through laser induced continuum 
structure 

The phase insensitive coherent control examples presented in this section are based on 
what has been now established as laser induced continuum structure (LICS) The basic 
scheme of LICS consists of two discrete states |1) and |2) (of which only |1) is initially 
populated) that are coupled via two electromagnetic fields coh ohto a continuum state |c) 
(Fig. la). Oh, which will be referred to as the coupling laser, is usually strong in order to 
induce the continuum structure (embedding one of the discrete states in the continuum), 
while ft), can be a weak probe of the induced structure. The overall coupling schemes 
leads to quantum mechanical interference of different ionization channels which is 
commonly probed through ionization or polarization rotation as a function of one of the 
laser wavelengths. Whenever the coupling of state |1) with the continuum involves more 
than one photons the effect can be also probed through the non-linear scattering of this 
field. There are several equivalent ways through which LICS can be described: 

On the one hand, it can be described as an interference of different excitation 
channels of the continuum of the bare atom (Fig. la). The two fields also couple the two 
discrete states to each other through two-photon Raman processes, thus opening 
different pathways to the continuum. State |1) can ionize directly absorbing one photon 
of frequency cu,, or via the state |2) due to the two Raman couplings. The process 
involves two discrete states coupled to each other and to the same continuum satisfying 
the energy balance condition Em + hwx = % + tioh and as such is closely related to an 
autoionization process, even if different types of couplings underlie the two processes. 
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(a) (b) 
Figure 1. Three equivalent representations of LICS. 

(C) 

The full analogy between LICS and autoionization has been shown by Dai et al. (1). 
Consequently the interference process manifests itself as an asymmetric autoionizing- 
like resonance, the shape of which is determined, under low intensity and single rate 
approximation conditions by a q parameter equivalent to the Fano parameter in 
autoionization: 

Re£2, 

ImQ, 

M, 

V\cßlc 
■,M, 

ff-co2+cou Jf(02+C02l 
(1) 

where M12 is the two-photon transition moment between states |1) and |2>, pic, p2c are 
the  bound-free  transition   moments,  Q.]2  is  the  two-photon   Rabi   frequency   and 

/ ,   implies summation over the discrete and integration over the continuum part of the 

spectrum. 
Due to incoherent channels involved, such as ionization of the system from state 

|1) via multiphoton absorption of the field 0)i or ionization of state |2) via cou a 
practically constant ionization background will contribute to the ionization spectrum. 
Thus the ionization probability per unit time will be: 

dPmn/dt~[l+kf(q,8)] (2) 

where Pion is the ionization probability, & is a laser intensity dependent contrast 
parameter involving the widths of states |1), |2) and the laser bandwidths and 5 is 
essentially the detuning [E\+hoa{) - (E2+tta>,). If LICS is probed through ionization the 
degree of the asymmetry is given by the q parameter and the observability of the 
structure depends on the contrast parameter k. At higher laser intensities and conditions 
in which the single rate approximation breaks down, the shape of the LICS resonance 
depends on the laser intensity. 
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An equivalent way of describing the same effect is utilizing the dressed atom 
picture (Fig lb). The strong filed (Oi dresses the system. The atom plus field, after 
introduction of the interaction with the field, exhibits a ladder of new 
eigenstates |i, n±m)(|, n being the number of photons of the field oh and m and integer. 
The |2, n±m+l)d discrete states are now embedded in the |c, n±m)(| continua in which 
they can decay radiatively. (0\ couples the |1, n±m\| states with the |2, n±m+l)(| discrete 
and |c, n±m)d continuum state, thus resulting in an autoionization like process. 

Adopting a.c. Stark splitting terminology (Fig. 1c), it is worth noting that the 
dressed atom-photon states that are embedded in the continuum can be understood as the 
sum of the ac Stark split components |s.c.) resulting from the coupling of state |2) with 
all allowed states |i) of the system. This picture may be more convenient in describing 
LICS in structured continua, e.g. in the vicinity of autoionizing states. In the particular 
case in which one of these states is near resonant, its split component dominates and the 
sum may reduce to one term. If the detuning is less than the width of the states involved, 
the a.c. Stark splitting of the dressed autoionizing state may give rise to a window 
resonance in the spectrum due to the destructive interference of the two Autler-Townes 
components. In other words, the coherent superposition of the two states prepared by the 
coupling laser produces a dipole moment that has the same amplitude and is out of phase 
with the dipole moment induced by the probing laser. 

Considering field phase sensitivity, LICS is immune to the relative phases of the 
two electromagnetic fields. The process involves absorption and emission of the 
frequency ft>> the phase of the corresponding wave vanishes in the interaction. 

The first observation of LICS in the smooth (unstructured) continuum of the Na 
atom was reported some years ago (2). The rate of ionization was controlled'through the 
detuning 8, resulting into an asymmetric ionization structure that manifested the 
destructive and constructive interference at different detunings. In these early 
experiments laser intensity effects have also been studied. The interaction of the atom 
with the strong coherent electromagnetic field results into shifting of the energy levels of 
the atom. This a.c. Stark shifting may introduce an extra asymmetry in the profile of a 
spectral feature obtained as we tune the frequency of one field. Thus the overall 
measured profile of LICS will be the convolution of line shape resulting from the 
interference effect and the level shifting. The earlier experiments have been verified in 
an advanced version employing energy resolved photoelectron spectroscopy, and thus 
reducing background contributions from incoherent channels leading to different 
positions in the continuum, that has shown a clean asymmetric Fano type resonance (3). 

Numerous experiments followed these first successful observations. LICS in 
three-photon excited structured continua has resulted into several interesting 
observations in atomic Ca. In these schemes LICS is in the vicinity of an autoionizing 
state (AIS). The virtual state of the Raman process that goes through the continuum is 
now lying near or is replaced by a third discrete state |3), the AIS. This third state adds 
oscillator strength, thus playing a dominating role and controlling the modification 
characteristics. Experiments have been performed in a Ca effusive beam as well as in Ca 
vapor in a heat pipe in a three-photon ionization scheme (4,5). The induced structure in 
the measured ionization rates can then be controlled through the detuning from the AIS 
resonance and the laser intensity. Since these two parameters lead to the same effect on 
the shape of the observed resonance, the intensity dependence of the measured profiles 
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has been interpreted to be due to the a.c. Stark shifting of the states and thus, effectively, 
to detuning. Furthermore the laser polarization proved to be a useful control 'knob' for 
switching 'on' and 'off induced structures, as well as for turning them from peaks to 
dips and vice versa (5). The three-photon excitation of the continuum (or AIS) allowed 
the study of the effect also in third harmonic generation (THG) (6). THG could be 
controlled through the detuning and the dressing laser intensity. Enhancement or 
suppression of the harmonic by a factor of up to three could be observed. These 
experiments have also established the relation of LICS with a.c. Stark splitting (7), 
which due to the dominance of the near resonant AIS provided a convenient way for the 
interpretation of the results. 

Very closely related to the experiments employing A-type coupling schemes of 
LICS are investigations on the resonant mixing of two Mg AIS (3p2 'S and 3p3d 'P) 
probed by a second electromagnetic field from the ground state of the atom. This 
excitation scheme is shown in figure 2(a). The experiments have been performed in a 
Mg effusive beam and have shown strong suppression of autoionization (see figure 2(b)) 
due to coherent population trapping in the ground state (8). Slight detuning of the 
resonant coupling of the two autoionizing states lead to the observation of asymmetric 
ionization profiles showing constructive and destructive interference features. In the 
spectra of the first column of figure 2(b), the probing wavelength is tuned, while in those 
of the second column ionization is shown as a function of the wavelength of the 
coupling laser. 

When detuned far from resonant coupling, an induced structure in the continuum 

, =291.8 nm 

3p3d1P 

Mg3s3s S 

290 292 294 296 

Ä-i (nm) X2 (nm) 
(a) (b) 

Figure 2. Mixing of two autoionizing states in Mg. 
(a) The coupling scheme, (b) Coherent suppression and enhancement of autoionization. 



20 D. Charalambidis et al 

40- 

4  20- 
-2- 
T3 
© 10-1 

>- 
C o 0- 

3s4d 'D, 

3s5s' sn 
Xlt - 540 nm 

/ 

\J ^^^JWvs*- 

288  290 292 294 296 298 

X, (nm) 

Figure 3. 'Above threshold' L1CS. The structure shown with the vertical arrow is due to by the 're- 
embedding' of the 3p3d 'P AIS of Mg at a position in the continuum lower by the photon energy of the 

coupling laser. The other narrow structures are due to accidental one- or two-photon resonances. 

has been observed and interpreted as being due to the 're-embedding' of the 3p3d P 
AIS of Mg at a position in the continuum lower by the photon energy of the coupling 
laser (see fig. 3). High resolution photoelectron spectra have verified (9) that the 
observed structure in the total ionization spectrum is due to an 'above threshold' LICS 
and not to the autoionization decay of the resonant 3p3d 'P state. This result has been 
further verified by theoretical calculations by Bachau et al. (10). In there work they have 
also demonstrated stabilization of ionization in the case of the resonant coupling due to 
the coherent population trapping. (9). 

When the decay of the atomic system is in more that one continua, structure can 
be induced in all by dressing them with a strong laser field, the latter establishing a 
coupling between the continua and an atomic bound state. For the different continua 
there are different interfering channels causing ionization and thus LICS can be 
observed separately for each continuum by employing energy resolved photoelectron 
spectroscopy. Since the coupling of the ground and the excited bound state to each one 
of the continua is in general different, the LICS profiles are expected not to be the same 
for each continuum. Thus the ratio of the ionization products, namely electrons resulting 
from the decay into the different continua is expected to be modified through the LICS 
process and variable in the vicinity of the induced structure. 

Recently (11) we have demonstrated control of ionization product ratios in 
atomic Xe. Ionization of the Xe ground state is in the two electronic continua, that 
correspond to the two fine structure levels of the ground state of the Xe+ ion. Both 
continua are dressed through a second laser that couples the 5p" lOpfVi],) state with each 
of them (see figure 4a). The dressed 2P|/2 continuum, probed from the atomic ground 
state through three-photon absorption, exhibit a clear induced structure (window 
resonance), while the 2Py2 continuum possess no observable structure under the present 
experimental conditions, as manifested through high resolution photoelectron spectra. 
The normalized photoelectron yields for the decay into the two continua versus detuning 

A = E5 is + 3h(Op - J5/;'l0/? 
-hmd are shown in figure 4(b) where  E  ,,  is the ground 
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state energy and E, 5//1 Op is the energy of the 5p~ 10p[Vi]o state. Hence the modified 

ionization ratio is controlled by the wavelength of the dressing field. In a similar 
coupling scheme control of the photofragmentation product ratio has been also 
demonstrated by LICS in dissociative continua (12). It should be noted that control of 
ionization branching ratios has been achieved in atomic Ba through a specific case of 
interference of two (one plus one) photon ionization channels, each of them being near 
resonant with two different excited states of the system. (13) 

3.   Phase sensitive quantum control 

Interaction of an atomic system with a laser field and one of its harmonics may 
lead to the excitation of a bound or continuum state via two different channels with 
different degree of non-linearity, one of which involves a harmonic photon. Since the 
two fields are coherent with correlated phases, the excitation rate will be proportional to 
the square of the modulus of the sum of the two excitation amplitudes. The interference 
cross term and thus the excitation rate will modulate with the relative phase of the two 
fields. 

We have recently demonstrated (14) control of the ionization rate in a four- 
photon resonant (with the 5p[5/2]2 state) five photon ionization of Kr. The 5p[5/2]2 state 
is excited via (i) four-photon absorption of the fundamental laser frequency (4Cü|+ö)| 

ionization) and (ii) one third harmonic and one fundamental frequency photon 
absorption {a^+a^co^ ionization), a particular aspect of the scheme being that 
interference occurs at a virtual level. 

The excitation probability of the 5p[5/2]2 state is: 

,(4)P4,2 ,(2) (4)„(2)r.5 W~lliwE?or +[M^£m£3o]   + V*VZJ£|0%)COs(tf3 -3tf,) (3) 

\z 
M 
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Figure 4. Control of ionization branching, (a) The coupling scheme, (b) normalized photoelectron yields 
versus detuning A = £  , +3fi(0„ - E  ,,„   -hü). 
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where fl is the effective n-photon (4 visible, and 1 visible + 1 VUV photon) 
electric dipole moment of the transition between the ground and the 5p[5/2]2 state, E,0 

electric field amplitude of the fundamental (/=1) and the third harmonic (/=3) and 
At? = t?3 - 3i?[ where $|, #3 the phase of the fundamental and third harmonic waves. 

The excitation probability oscillates, as in the case of three- photon excitation, as 
cos(At?). This is expected since the interference in the present scheme occurs at the 
three-photon level i.e. in the excitation of a virtual state and the absorption of the fourth 
fundamental photon does not affect the interference process as it adds the same phase 
and hence no phase difference in the two interfering channels and correspondingly for 
the harmonic. 

By varying the relative phase of the two electromagnetic fields in a gas phase 
shifter a large modulation has been observed which is due to the chosen non-linear 

excitation scheme. The modulation depth, defined as  — ——, where /milx is 
'' A'max T" ' min / 

the maximum and 7min the minimum ion signal of the modulation, has a maximum value 
close to 1.0 in the present experiment. 

Non-resonant phase control of ionization has also been demonstrated from an 
excited Na state (16). In this experiment the interference process occurred between two 
bound-free atomic transitions with the initial state being the 3P./2 excited state of Na and 
the final state in the continuum. The two bound-free transitions were three- and one- 
photon transitions employing the fundamental and the third harmonic of a Nd:YAG 
laser. The excited state was prepared through resonant absorption from the ground state. 
The observed modulation depth as defined above was 0.84. 

In a similar scheme, phase control of harmonic generation has been demonstrated 
(15). The control of third harmonic generation in a Xe static cell (the ionization cell of 
the conventional phase control experimental set-up) was achieved through the presence 
of an additional, phase-correlated, third harmonic field created by the fundamental in the 
harmonic generation cell of the conventional phase control experimental set-up. The 
modulation of the third harmonic signal as a function of the pressure of the phase 
shifting cell was found to be in phase with the modulation of the ionization. The non- 
linear polarization P^a of the medium at 3co in the second harmonic generating cell 
consists of three interfering terms 

p3co [x™(&>)■ E?0 + XW'(3fl>)•£•30)^'+*(l)(3«) E 30 e e        + c. c.     (4) 

corresponding to the harmonic generation (non-linear scattering of the fundamental), 
while the two other terms are due to the scattering of the two third harmonic fields. All 
three terms are phase correlated and thus lead to a quantum interference in the third 
harmonic generation process. 

Most of the phase sensitive control experiments in laser atom interactions involve 
photons of the fundamental frequency and its third harmonic. This is in most of the cases 
dictated by the selection rules of the excitation process resulting from angular 
momentum and parity conservation considerations, as a consequence of the spherical 
symmetry of the atomic potential. However, excitations involving absorption of an even 
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Figure 5. Phase control in Xe. (a) Excitation scheme, (b) Ionization measured as a function of the relative 
phase of the fields. 

number of photons in all the interfering channels removes the requirement of using third 
harmonic generation. The excited state can be reached via two photons of the second 
harmonic of the laser beam, which is much more intense than the third harmonic, is in 
the UV region and hence more convenient to handle with. 

For example, in the excitation of the 5p[5/2]2 state of Kr discussed above (14), 
the two excitation pathways could be four-photon (at the fundamental frequency) and 
two-photon (at the second harmonic frequency). The excitation probability of the bound 
state then becomes 

W< :[M(4W0J 
,(4)„(2)F4 ]2+[MU)£20  +2M(V2)

E?0E$Ocos[2(t?2 -20,)] (5) 

where the indexes 1, 2 refer to the fundamental and the second harmonic field. Thus the 
probability depends on and is controlled through the phase difference 
A# = 2(i>2-2i>,). 

Employing second instead of third harmonic has strong advantages with respect 
to the production process, the intensity, stability and visibility of the beam, as well as to 
the possibility of its propagation in several media and consequently the retardation of its 
phase relative to the phase of the fundamental. Experimental set-ups for this type of 
phase control experiments set less strict vacuum requirements and become simpler. 

Recently we have performed an experiment in the ionization of Xe involving 
pathways including absorption of photons of the fundamental and the second harmonic. 

The excitation scheme is shown in fig. 5(a). It is a four-photon resonant (with 
the 6p[3/2]2 state) 5-photon ionization of xenon. The 6p[3/2]2 state is excited via 
(i) four-photon absorption of the fundamental frequency and (ii) two-photon absorption 
of the second harmonic. 



24 D. Charalambidis et al 

Figure 6 shows the experimental set-up. The second harmonic is produced in a 
type II BBO crystal. Its polarization is thus perpendicular to that of the fundamental. 
Both beams are propagated through a Soleil-Babinet retarder with its two propagation 
axes set parallel to the respective polarizations of the two fields. The retarder is thus 
used only in order to achieve variable phase relation in the two interfering excitation 
pathways and not in order to vary the ellipticity of the beams. A linear polarizer was 
used after the Soleil-Babinet retarder in order to select the appropriate field amplitudes 
in a common polarization plane, the polarization plane of the polarizer. Both beams 
were focused by means of an achromatic lens into the ionization cell, which was filled 
with the Xe gas and equipped with a charge collector. Similar results have been obtained 
in a Xe atomic beam. 

The two excitation amplitudes can be made equal easily by rotating the 
polarizer so as to transmit the right polarization component of the two beams. Then, by 
tuning the relative phase of the two fields through the translational movement of one of 
the Soleil-Babinet wedges, strong modulation of the ionization signal could be observed 
as shown in the spectrum of figure 5(b). 

The demonstrated interference at a virtual level is of importance for schemes that 
involve excitation of highly excited bound or continuum states, such as excitation of 
multiple continua aiming at the phase control of ionization branching ratios. Currently 
such an experiment is in progress in the above scheme by employing energy resolved 
photoelectron spectroscopy. It should be noted that phase control of molecular 
dissociation branching ratios has been achieved (17). 

Recently we have been able to demonstrate field phase dependent autoionization 
in atomic Ca. Excitation is in the region of the 4p7s['/2]°| doubly excited state 
autoionizing state and occurs from the atomic ground state through a three-photon 
channel (3Äco) and a single photon channel (firo,), o>, being the third harmonic of co (Fig. 
7(a)). 

Due to the given excitation cross sections of the scheme, the energies of the 
fundamental and third harmonic, as well as the atomic number density available, a non 
conventional (14, 18) phase control experimental set-up (shown in fig. 8) had to be used. 
This employed an unfocused beam ionization geometry (by the two diverging fields) and 
an ion counting technique for the data acquisition procedure. The autoionization rate 
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Figure 6. Experimental Set-up for schemes involving fundamental and second harmonic 
excitation channels 
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Figure 7. Phase control of autoionization rate, (a) Coupling scheme, (b) Ion yield vs relative phase 

exhibits a sinusoidal modulation as a function of the relative phase of the two excitation 
fields, shown in figure 7(b). 

This result is the initial step in the achievement of control of an autoionizing 
lineshape, which has been theoretically predicted (19) but has not been experimentally 
demonstrated so far. Furthermore, it demonstrates the feasibility of phase control in 
unfocused geometries with their corresponding advantages for applications of phase 
control in a large interaction volume and hence large number of species, e.g. for the 
control of chemical reactions. 

4.   Conclusions 

Selected examples of recent experimental results in coherent quantum control of 
processes and products of laser atom interactions were reviewed. Control of ionization 

THGCELL PHASE CELL 
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Figure 8. Experimental Set-up in the phase control experiment of autoionization in Ca 
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and autoionization rates, of light induced atomic structure, ionization branching ratios 
and frequency up-conversion were presented. Quantum interference of atomic 
transitions, induced by a bichromatic electromagnetic field, is underlying all the results 
of this work. Since the quantum interference is induced by the field, its parameters 
govern control of products and processes. Thus interaction dynamics and products may 
be controlled in the laboratory. 
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LASER-PHASE-INSENSITIVE COHERENT CONTROL 
OF PHOTOION PRODUCT STATES 
IN  2-PHOTON VS.  2-PHOTON IONIZATION  OF  ATOMIC 
BARIUM 
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1.   Introduction 

The use of coherent control techniques in atomic and molecular processes 
offers new possibilities for controlling the outcome of optical interactions, as 
well as new insights into fundamental interactions between laser fields and 
atomic and molecular systems. These processes are based on the explicit 
exploitation of the coherence properties of laser fields and the atomic and 
molecular interactions they induce. The advances we have witnessed over 
the past several years have been exciting indeed, and have continued the 
hope that laser phase might be the key necessary to open new doors of 
physics, chemistry, and applications based on these principles. Since the 
expertise of the participants of this workshop is so widely varied, we will 
start our discussion of coherent control with a brief review of the field and 
a general introduction to this new class of laser physics. We will include 
in this introduction a discussion of the fundamental principles of coherent 
control, and outline some of the experimental difficulties one might expect 
to encounter when observing coherent control processes in the laboratory. 
We will then describe in detail a series of investigations we have carried 
out in which we have observed the strong capability for controlling the 
photoionization products of atomic barium using the interference between 
two different two-photon ionization processes. The results we will describe 
are insenstive to the phase of the laser fields, and therefore offer a great 
simplification in the experimental techniques required to observe or use this 
interference. 
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Figure 1.    Examples of interfering interactions for two-pathway coherent control. 

2.   Two-Pathway Coherent Control 

Most of the progress which falls under the umbrella known as coherent con- 
trol can be categorized as either two-pathway control or short-pulse control. 
In two-pathway control processes, two (or more) optical interactions, both 
originating at the same initial state and terminating on a common final 
state, are driven concurrently by an optical field consisting of two or more 
discrete frequency components. By judicious choice of field properties and 
experimental geometry, we can adjust the relative phase and amplitude of 
the transition amplitudes of the different interactions in order to modify 
the net outcome of the process. Another form of coherent control involves 
the use of shaped pulses (optical fields in which the amplitude and phase 
are controlled so as to drive the quantum system towards a desired target 
state), or time-delayed short pulses in order to control the dynamics of the 
excitation. All of the work we have carried out in our laboratory, includ- 
ing the control of photoionization products we address in this chapter, are 
based on the two-pathway interference. 

Brumer and Shapiro [1] have long been advocates of using two-pathway 
interference to control the outcome of optical interactions. Many recent ex- 
perimental demonstrations of this type of interference, many of which will 
be mentioned here, have helped pave the way for application to control of 
complex systems. As an example of two-pathway interference, consider the 
two interactions represented schematically in figure la. This figure shows 
a linear interaction driven by a field of a frequency 3w and a three-photon 
interaction using light at a frequency ui, which can each individually drive 
a transition between the ground state and the final (bound) state. These 
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two interactions can interfere, and the probability of inducing the transi- 
tion depends on whether the interference is constructive or destructive, a 
condition which we can control experimentally by varying the phase be- 
tween the field components. (Since the latter is a nonlinear interaction, a 
much higher intensity at the frequency to is, of course, required to keep the 
two transition amplitudes of comparable magnitude.) We can illustrate the 
dependence of the transition rate on the relative phase for this process by 
considering the lowest-order perturbation expansion, of the form 

W oc \n^Euve^uv - pP\Emsel^sf\2 (1) 

In this expression, the first term is the linear transition amplitude driven 
by the field component at the frequency 3u>, whose amplitude and phase are 
Euv and <j>uv, respectively. Similarly, the second term is the three-photon 
moment, proportional to the cube of the complex field component at fre- 
quency w, whose amplitude and phase are Evls and <f>v%s, respectively. When 
we write the transition rate for noninterfering processes, we usually do not 
bother to explicitly include the optical phase of the field components, since 
it disappears upon taking the modulus squared of the transition amplitude. 
In equation 1, however, the cross term between the two amplitudes varies 
as the cos(cj)uv — 3(ßms), as seen when we expand the square, 

W oc l/i^^^^p+l^^^^^^^l/i^^^ll/i^C^^^cosC^-S^'5). (2) 

Phase control allows us an extra knob in the laboratory which we can turn 
to control the outcome of the optical interaction. This interference can be 
thought of in terms of an analogous interference in physical optics known 
as Young's double slit interference. In the latter, light from a point source 
passes through two slits in an otherwise opaque screen. The light transmit- 
ted by the double-slit pattern is observed on a viewing screen, where one 
can observe a set of bright and dark intensity fringes. We understand this 
pattern in terms of the interference between the optical field transmitted by 
each of the individual slits, which add together destructively or construc- 
tively, depending on the relative path length taken by each of the waves as 
they travel from the source, through one of the slits, and on to the viewing 
screen. It is important to remark that the interference leading to control of 
the optical interaction in atoms or molecules is not an interference between 
optical waves, but rather an interference between transition amplitudes. 
This interference on a bound-bound transition has been shown to allow 
control on the net rate of the transition in several atomic and molecular 
systems [2, 3, 4]. 

Interference has also been demonstrated on bound-free transitions, lead- 
ing to control of branching ratios among final state products, as well as to 
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control of directional photo-currents. These interfering processes are illus- 
trated schematically in figures lb and lc. In lb, a three-photon versus 
one-photon scheme is again shown, similar to that shown in la, except that 
the final state is in the continuum. When the interfering processses lead to 
more than one continuum state, the amplitudes and phases of the transition 
amplitudes for the different continua will in general be different, and so the 
interference can be used to control the relative yield of the different prod- 
ucts. Robert Gordon's group has used this scheme to control the relative 
yield of photoioinization and photodissociation of molecular HI [5]. 

In figure lc, the interference shown is between a one-photon and a two- 
photon interaction. Since these interactions lead to final states of different 
parity, an asymmetric continuum state is produced by this interference, 
and the asymmetry can be controlled by varying the phases between the 
amplitudes. This has been demonstrated in the photoionization of rubidium 
[6] and nitrous oxide [7], in HD dissociation products [8], and in control of 
conduction band currents in GaAs structures [9, 10]. 

A number of comments concerning experimental techniques, issues and 
difficulties in observing or exploiting these interferences are now in order. 
The requirement for the optical alignment of the beams can be quite strin- 
gent. For the case of three-photon vs. one-photon interference, for exam- 
ple, the phase difference [<f>uv — 3^"s] must be uniform (i.e. variations in 
[<j>uv — Z<f>ms] <C 2ir) over the entire interaction region. One can easily show 
that the optical beams must propagate parallel to one another within an 
angle 6 <C \uv/w, where w is the radius of the optical beam. Another factor 
which may cause the interference to vary throughout the interaction region 
is a difference in velocity of the optical waves. To avoid this, the refractive 
indices of the medium must be matched to within (nuv — nvts) <C Xuv /Az, 
where Az is the length of the interaction region (defined by the length of 
the absorbing medium or the length of the focal region of the laser beams). 

It is also important to have good spatial overlap of the laser beams. 
In regions where one beam is present but the other beam is not, only one 
optical process can proceed, eliminating the possibility for interference and 
control. As this contributes to the noninterfering background, the depth of 
modulation observed by varying the relative phases of the fields is reduced. 
As we will see in the next section, the interference and control which is the 
main topic of this chapter is not subject to this difficulty. 

Optical diffraction of the laser beams can also play an important role in 
coherent control [11]. This will be present whenever focussed laser beams in 
extended media are used. As a beam approaches the focal region, its inten- 
sity increases and the optical phase changes. Since the amplitude and phase 
of the visible and UV beams each vary through the focal region, and since 
one or both of the transition amplitudes depend on the fields nonlinearly, 
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the interference condition (relative amplitude as well as phase difference) 
will vary throughout the focal region. This effect can also decrease the 
effective depth of modulation of the interference. 

In figure lb we have shown an atomic resonance at the two-photon level 
for the three-photon ionization process. This can be a useful scheme for 
eliminating the AL = 3 noninterfering channel, affording deeper modulation 
of the ion or dissociation products as we vary the phase. Use of intermediate 
resonances may, however, place tighter restrictions on the bandwidth of the 
laser used for these observations. 

Extensive work has gone into determining the factors which have a sig- 
nificant effect on the net phase of the interference in the past few years. 
When using the interference to control the branching ratio into different 
photoionization or photodissociation channels, the ideal case would be that 
in which we could tune the optical phase difference to the value that would 
minimize the transition rate into one channel while simultaneously max- 
imizing the transition rate leading to the other channel. Control is still 
evident under other conditions, even when the transition rates vary ex- 
actly in phase with each other, as long as the amplitudes are not perfectly 
matched to each other. Still, the question of what atomic and molecular 
factors affect the phase of the modulation signal is of great interest. One 
factor will be the detuning of the laser from intermediate resonances, as 
will be explored in detail in this chapter. Lee [12] and Gordon and Seide- 
man, et. al. [13] have investigated a phase contribution which originates 
with coupled continua. 

3.   Laser-Phase Insensitive Coherent Control 

We will now introduce a type of two-pathway coherent control we have 
used to control the branching ratio for different photoionization channels 
in atomic barium [14, 15]. This interference has many features in common 
with what we have already described, but we will also point out some no- 
table differences, the most important of which is that this interference is 
independent of the laser phase. There has, to our knowledge, been only 
one other type of laser-phase-insensitive coherent control demonstrated, 
this based on laser-induced-continuum-structure in diatomic sodium [16] 
and atomic xenon [17]. The interference we use to control the photoioni- 
ization channel for barium was first explored by Pratt in photoionization 
of molecular NO [18], and is based upon two different two-photon ioniza- 
tion processes. Figure 2 shows an energy schematic for this process. Each 
two-photon process is driven by a two-color laser field, with frequency com- 
ponents at <*>i and u>2- Frequency ui\ is tuned near the frequency of the 
transition from the ground state to an intermediate state |i>, while ui2 is 
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Figure 2.      Energy diagram for laser-phase-insensitive two-photon versus two-photon 
interfering interactions. 

nearly resonant with the transition from the ground state to a second inter- 
mediate state |j>. Ionization results when the atom absorbs one photon at 
frequency u\ and one photon at frequency u>2- Since there are two pathways 
leading to the final continuum state, we should expect to observe interfer- 
ence. We can again illustrate this interference by examining the ionization 
rate in lowest-order terms. 

WK\TI+T2\
2
 = 

h2 + 
Ai + iT,-/2     A2 + ITJ/2 

\E\E2 (3) 

In this expression, ezmn is the transition moment for the \n >—> \m > tran- 
sition, Tm is the linewidth of the level m, and Ai(2) is the detuning of the 
optical frequency w1(2) from the corresponding atomic transition frequency. 
Both transition amplitudes in equation 3 depend on the product \EiE2\2, so 
that the transition rate does not depend on the phase of either field. Thus 
we no longer observe the high sensitivity of the interfering interactions to 
wavefront misalignment and minor fluctuations, nor do we require matched 
refractive indices at the two optical frequencies. Of course, we need a new 
means of adjusting the relative phase of the transition amplitudes, but this 
is easily accomplished by tuning the frequency of one of the lasers from one 
side of resonance to the other. We exploit the frequency-dependent phase of 
the two-photon transition amplitude, as expressed in the frequency denom- 
inators given in equation 3. The critical necessity for beam overlap is also 
relaxed. Since both two-photon interactions depend on the local presence 
of both fields, there is no contribution to the background (noninterfering) 
signal at all from regions where the beams do not overlap. We should note 
the limitations of equation 3, which is valid only in the limit of lowest-order 
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Figure 3. Experimental setup showing the two Nd:YAG laser pumped dye lasers, and 
optical components which align the polarizations of the 554 nm and 307 nm beams, and 
direct these beams toward the atomic barium beam. FR is a A/2 Fresnel Rhomb. 

perturbation theory. While we use this expression to illustrate the main idea 
of the interference, we recognize that this expression does not include many 
important features which are readily observed in experiments. For a more 
complete theoretical treatment, we refer the reader to the multi-channel 
density matrix approach of Nakajima, Zhang and Lambropoulos [19]. 

We carry out the measurements in a beam of atomic barium. As shown 
in figure 3, we use two pulsed dye lasers (~ 15 nsec pulse duration) at 
Ai = 554 nm and 2A2 = 614 nm. The former is nearly resonant with the 
6s215o —> 6s6p 1Pi transition. We frequency double the latter in a BBO 
crystal producing A2 = 307 nm, nearly resonant with the 6s2 1S0 —> Qs7p 1Pi 
transition. See figure 4 for an energy level diagram of barium [20]. We orient 
the linear polarization of both beams horizontally before they enter the 
interaction region. The control which we exert is over the branching ratio 
of the photoion core states. The ground state of the Ba+ core is the 6s 2S1i2 

state, but Ba+ also has two low-lying excited states at 0.60 eV (5d 2D3/2) 
and 0.70 eV (5d 2D5/2)- With our choice of laser wavelengths, we ionize 
to a continuum state about 1.06 eV above the ionization threshold, and 
we leave a fraction of the ions in each of these three continuum states. We 
distinguish these by time-of-flight measurements of the kinetic energy of 
the photoelectrons. 

We have constructed a time-of-flight measurement apparatus which col- 
lects all electrons ejected into a 27r solid angle. This is necessary in order 
to decrease the sensitivity of our measurements to variations in the angular 
distribution of the ejected electrons. The time-of-flight collector consists of 
an ellipsoidal electron mirror which reflects the electrons ejected from the 
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Figure 4-    Energy level diagram of atomic barium. 

interaction region at one focus of the ellipsoid toward the detector which is 
placed behind an aperture at the; second focus of the ellipsoid. We shield the 
entire region to reduce electrostatic and magnetostatic fields which would 
otherwise perturb the trajectory of the photoelectrons in their flight. The 
detector is a 2-element microchannel plate multiplier (gain ~ 106) and a 
collection anode which is capacitively coupled to a digitizing oscilloscope. 
The trace of the oscilloscope shows three well-resolved peaks at energies of 
1.06 eV, 0.46 eV and 0.36 eV, corresponding to the three internal states 
of the Ba+ ion. We measure the area under each peak as a function of Ai 
to produce the series of spectra shown in figure 5. The detuning A2 of the 
UV beam from the 6s2 ^So —► 6s7p 1P\ resonance is shown in each panel. 
In figure 5a, A2 is 18.7 cm-1, large enough that the two-photon pathway 
via the 6s7p state is much weaker than that via the 6s6p. As the visible 
laser frequency is tuned through resonance, the spectra corresponding to 
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Figure 5. Asymmetric spectra showing the effect of the interference. The diamonds 
(circles) represent the two-photon ionization spectra where the final Ba+ ionic state is 
the 6s   S-L/2 (5d 2D3/2) state. 

to the fast electrons (o) and the slow electrons (o) are nearly symmetric. 
With the UV beam tuned closer to resonance, however, as in figure 5b 
where A2 = 2.3 cm-1, the spectra recorded as the visible laser is tuned are 
very asymmetric. For A1 < 0, the transition amplitudes add constructively, 
while for Ai > 0, they add destructively. The frequency of the UV laser 
further approaches the resonance frequency in c and d, while in e and f, A2 

has become negative. Notice that the spectra in figures e and f are nearly 
the mirror image of those in figures d and c, a result of detuning the UV 
laser to the opposite side of the resonance. In figures c and f, we see very 
strong suppression of the slow electron peak to one side of resonance, with 
nearly all of the ionization under these conditions leaving the Ba+ core in 
its ground state. 

Over the past two years, we have measured the two-photon interfer- 
ence effects as a function of many experimental parameters, including the 
density of the atomic beam, the intensity of both lasers, the relative polar- 
ization of the lasers, and the choice of intermediate resonant states. In this 
chapter, we will limit our discussion to the dependence of the interference, 
and subsequent control of the photoion branching ratio, on the density of 
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Figure 6. Density dependence of the coherent control process. The top row shows the 
spectra for 2-photon ionization, while the bottom row shows the branching ratios. The 
symbols are defined in the caption to figure 5. The atomic densities are (a) 0.33 xlO8 

cm-3, (b) 1.4 xlO8 cm-3, and (c) 5.8 xlO8 cm-3. 

the atomic beam. In figure 6, we show the spectra (panels al, bl, and cl) 
and corresponding branching ratios (panels a2, b2, and c2) for three differ- 
ent atomic beam densities, 0.33 xlO8 cm-3, 1.4 xlO8 cm-3, and 5.8 xlO8 

cm-3 for figures a, b and c, respectively. We observe asymmetric spectra 
in all three cases, since fast and slow peaks show destructive interference 
between the two ionization pathways for Ai < 0, and constructive interfer- 
ence for Ai > 0. For the lowest density data, shown in figure 6a, we cannot 
see any clear dependence of the branching ratio on Ai. This implies that 
the ionization spectra associated with the different core states are all of 
the same shape, and the only difference is in the overall magnitude. The 
higher density data, however, show a clear control mechanism at work, es- 
pecially in figure c2, where more than 95% of the ions find themselves in 
the 6s 251/2 state for Ai < 0, but only 60% for Ai > 0. We are not able 
at this time to offer any firm explanations for this unusual behavior. In 
our original picture of individual atoms driven by the two-color laser field, 
there is no mechanism available to account for this. It would seem there- 
fore that the atoms are acting back on the laser field in such a way as to 
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affect their relative intensities, allowing for strong cancellation of one of the 
products. This would likely be accompanied by leaving the atoms in one or 
the other of the intermediate states. It would be surprising, however, that 
the atoms could influence the field intensities so strongly at these atomic 
densities, where the atoms in the interaction region number only ~ 105. As 
an illustration of the scales involved here, the linear absorption length of 
the 554 nm line when tuned directly into resonance is 35 cm at the largest 
atomic density we used, yet our atomic beam is only 2 mm in diameter. 
We are working now to set up investigations to probe this paradoxical be- 
havior. We are devising a scheme to monitor the intermediate state (6s6p 
and 6s7p) populations, using photoionization of the barium Qs5d 1D2 and 
6s7s -^So states, populated by spontaneous decay of the 6s6p and 6s7p lev- 
els, respectively. This will help us to look for any redistributions of the 
atomic population as a function of density which may give us insight into 
the control process. We are also looking for redistribution of the energy in 
the laser beams, either among the different frequency components or by 
variation of the spatial and temporal profiles of the beams. With these new 
measurements, we hope to be able to understand this behavior better. Our 
lack of an explanation notwithstanding, our observation that the ability to 
control the photoionization branching ratios improves with increasing den- 
sity is extremely encouraging. Useful application of coherent control to large 
scale photodissociation, for instance, requires a high density (maybe even 
a condensed phase) absorbing medium. With this new type of interference, 
coherent control of a high density medium becomes realizable. 

4.   Conclusion 

We have described our observations of two-photon versus two-photon laser- 
phase-insensitive coherent control, which we have used to control the branch- 
ing ratio for the various photoion states. We have demonstrated the capa- 
bility to change the branching ratio leading to the ground state of the core 
from 60% to 95%, tuning the frequency of one of the lasers to do so. One out- 
standing feature of this interference is its insensitivity to the relative phase 
difference of the lasers. This allows for great experimental simplification 
when compared to most previous demonstrations of two-pathway coherent 
control, as well as the ability to work in high density media for which the 
refractive indices at the different optical wavelengths are not matched. The 
dependence of the control process on the density of the barium is perhaps 
the most intriguing feature of this interference. We have additional experi- 
mental studies underway to try to decipher the mechanism responsible for 
this control at high atomic densities. 

This work was supported by the National Science Foundation under 
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1.   Introduction 

A fundamental principle of quantum mechanics is that if a process can occur 
by more than one independent path, then the probability of that process 
occurring can be calculated by adding the probability amplitudes for each 
path and then squaring the sum. A well known example is the photoion- 
ization of an atom or a molecule. One route connecting the ground state 
\g > with the continuum \Ek[ > is direct ionization, with a probability 
amplitude that is proportional to 

fde
iS*=<g\D\Eki>, (1) 

where D is the dipole operator, E is the total energy, k is the scattering 
angle of the electron, \Ek\ > denotes a scattering state of the field free 
Hamiltonian, the — superscript signifies incoming wave boundary condi- 
tions, and fd and öd are real. A second path consists of excitation to a state 
\i > which is embedded in the continuum. The probability amplitude for 
this resonance-mediated path is given by the product of two functions. The 
first of these is 

fie~iSi = {E-Ei- A,- - iTi/2)-\ (2) 

where E{ is the zero-order energy of the discrete state, Aj is the shift of 
this zero-order energy induced by the continuum, T; is the width of the 
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resonance, and 6{ is the Breit-Wigner phase [1]. Expressing the displacement 
from the center of the resonance in reduced units, 

E — E{- A; , . 
e =    iy2    ' (3) 

we can write 
cottfj — -e (4) 

and 

U = Yi   (l + e2rV2- (5) 

The second function is given (in the limit of a weak field) by 

/re* =< g\DT{E)\i >< i\HM\Ek^ >, (6) 

where T{E) = I + (E~ - PHMP)-lPHM, P projects onto the scatter- 
ing manifold, / is the identity operator, and HM is the (field free) matter 
Hamiltonian [2]. The operator T{E) mixes the zero-order (real) state with 
the continuum, thus broadening and shifting its eigenenergy. It is evident 
from Eq. (6) that the phase 5r is the sum of the phases of the two ma- 
trix elements, Sg-i, which depends only on the resonance properties,1 and 
Sis, which depends on the phase of the continuum wave function in the 
second matrix element. The total transition probability is proportional to 
the square of the sum of these two terms, 

P = \fde
i5d + fifre^-^l2. (7) 

This result is shown in Ref. [2] to be equivalent to the well-known Fano [3] 
profile. 

The above analysis is readily extended to other types of bound-to- 
continuum transitions such as molecular photodissociation [5]. The for- 
malism can also be generalized to include the coupling of one (or more) 
resonant state(s) to several continua, so that photoexcitation can lead to 
different possible reaction products with an energy-dependent branching 
ratio [2]. The product ratio may be changed by varying the excitation en- 
ergy (i.e., by changing fie~tSi). Altering the product distribution in this 
way is a form of passive control. This type of control is passive in the sense 
that for a given energy the amplitudes of the various paths are fixed. 

This analysis raises the interesting possibility that active control of the 
reaction could be achieved by choosing the properties of the electromag- 
netic field in such a way as to manipulate the independent excitation paths 

:As discussed in [4], ($9-i can also depend on the properties of D. For a mvltiphoton 
transition, D will be complex if any of the virtual intermediate states are not discrete. 
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[6, 7]. A simple example of such a manipulation is the altering of the rel- 
ative phases of the independent paths. A decade ago Shapiro, Hepburn, 
and Brumer [8] proposed a scheme in which two phase-locked light sources 
are used, one inducing a three-photon transition to the continuum at a 
frequency2 u\ and a second inducing a one-photon transition at frequency 
UJZ = 3u>i. This method has since been employed in a number of laboratories 
to control the transition rates [9, 10, 11, 12] and branching ratios [13, 14] 
of a variety of atomic and molecular processes. 

The yield of channel S in the presence of a bichromatic field by both 
direct and resonance-mediated paths is given by 

PS = \f(s}ei5^ + fif§;lM^+e»(f!»e<< + /«/ge«"**)!2, (8) 

where <f> is the relative phase of the two laser fields,3 subscript (j) = (1) 
or (3) denotes the number of photons absorbed, and superscript S denotes 
product channels A or B. Expanding the square in this expression and 
integrating over all scattering angles gives the general result 

PS = pf + Pi + 2pf3 cosfa + tffa), (9) 

where p^ is the probability of obtaining product S by excitation path m, 
pf3 is an intensity-dependent quantity, and the constant öf3 is referred to 
as the phase shift for that channel. The difference between the phase shifts 
for the two channels is referred to as the phase lag, 

AS = 6?3-6?3. (10) 

It is clear from eq. (9) that the yield of channel S may be maximized by 
setting the laser phase <j> equal to —Sf3. The objective of this paper is to 
understand the physical origin of the phase shift, and particularly how it 
depends on the Breit-Wigner phase, 5i, and on the the so-called molecular 
phases, 8s,d and Sis. 

2.   Source of the Phase Shift 

Before exploring the origin of the phase shift, it is important to realize that 
it is possible to control the branching ratio even when there is no phase 

2In keeping with the convention used in nonlinear optics, we will use subscripts 1 and 
3 to denote, respectively, the three- and one-photon paths, such that uja = 3wi. But it 
will also be convenient to use the parenthetical superscript (J) to denote a j—photon 
transition; e.g., D^ denotes the three-photon dipole operator. 

3That is, <j> = </>W — </>W = fa — 30i, where 4>i is the phase of the three-photon field 
and <f>3 is the phase of the one-photon field. 



42 ROBERT J. GORDON ET AL. 

lag whatsoever. This fact may be ascertained by examining the structure 
of eq. (9). The intensity-dependence of the coefficients in this expression is 
given by 

pf = I? if, (ID 

P! = h if, (i2) 

and 
pf3 = (/i3/3)1/2 /f8, (13) 

where Im is the intensity of the electromagnetic field used in path m, F^ is 
the angle-averaged matrix element of the transition operator for that path, 
and Ff3 is a cross term. 

We define the following parameters: the ratio of the one- to three-photon 
yields for each channel, 

Rs =  |-|§, (14) 

the Schwartz-inequality parameters, 

Fs 

Xs = ]FfFfyj2> (15) 

and the relative ratios of the one- to three-photon yields for the two chan- 
nels, 

« = §f • (16> 
The significance of these parameters is as follows. The maximum modula- 
tion of the product yield in a particular channel obtainable by varying the 
laser phase (f> occurs when the one- and three-photon yields for that channel 
are equal. We refer to this condition as "doubling the signal." For either of 
the product channels, say channel A, the signal may be doubled by setting 
the values of I\ and h such that RA = 1. Under this condition the value 
of RB is given by g, which is a measure of the feasibility of doubling the 
signals of both channels simultaneously. The amount of modulation that 
can actually be achieved depends on the value of the Schwartz-inequality 
parameters, with 100% modulation achievable for As = 1. This limiting 
condition can be achieved, for instance, for a bound-to-bound transition. 
In general, however, As is less than unity. 

The ratio of the product yields expressed in terms of these parameters 
is given by [15] 

t_ = Et  1 + RA + 2R\/2 XA cos(4> + A8) 
PB if     1  + gRA + 2(gRAy/i XA cos^ ' 
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where 4> = § ~ Sf3. Contour plots of the product branching ratio, pA/(pA + 
pB), are shown in Figure 1 for various values of these parameters. The 
two control parameters are the laser phase, <j>, and the intensity ratio, 
Z = RA/(1 + RA). Throughout we set F^/Ff = 1. In the top panel, 
where AS = 0, significant control of the branching ratio is achieved, with 
the maximum relative yields occurring for the individual channels at 0 = 0 
and IT. The middle and bottom panels show even greater levels of control 
for AS = 7r/2. For g = 1 the maximum relative yields for each channel are 
obtained by setting Z = 1/2 and varying </>, whereas for g ^ 1 the contour 
plot is asymmetric in Z. 

Inasmuch as AS / 0 is a sufficient (but not necessary) condition for 
control, as a practical matter it is much easier to determine experimentally 
the extent of control by measuring the phase lag. Further, as discussed 
later in this paper, the magnitude and wavelength dependence of AÖ yield 
valuable information about the control mechanism as well as about the 
electronic properties of the excited molecule. 

We turn now to the question of the origin of the phase shift, and to the 
role played by the molecular phases. Consider for simplicity the limiting 
case where only a direct path to the continuum exists. In this case the 
angle-averaged cross term in eq. (9) becomes 

pf3 =    /dk  < g\Dw\ESki >< ESki\Dl% > (18) 

where D^ are effective j'-photon dipole operators and D^ = e~^ J D^\ 
One source of the molecular phase derives from the fact that the contin- 
uum wave function, {ESk^ >, is complex. This phase cancels out upon 
integration in certain limits [16] but not in the general case. Specifically, if 
a partial wave decomposition of the scattering state is such that each wave 
is given as the product of a (real) amplitude and a coordinate-independent 
phase that depends only on the partial wave, then pf3 is real. 

In another limiting case only the resonance-mediated path exists. Ref. 
[2] shows that for a single, isolated resonance the cross term is given by 

pf3 =  j dk < g\DM\i >   < i\HM\ESki >   < ESky\HM\i >   < i\D^\g > 
{E-E-Aif + (IV2)2 

(19) 

Because \i > is real,4 we see that Sgr cancels out. In the absence of a 
direct path, J-'(E) = 1, so that Sg-i = 0, and the molecular phase Sis 
cancels identically. Another way of stating this result is that when the 

4The function \i > is an eigenstate of (the Hermitian) QHMQ, Q being a projector 
onto the bound manifold. 
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Figure 1. Contour plots of the product branching ratio for various combinations of the 
parameters described in the text. In the top panel the phase lag is set equal to 0, whereas 
in the bottom two panels it is equal to 7r/2. In the top two panels the doubling parameter 
5 = 1, whereas in the bottom panel it is set equal to 0.5. 
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resonance-mediated path dominates, the atom or molecule "forgets" the 
phase information contributed by the excitation step, which is uncoupled 
from the transition to the continuum. 

The most general case is obtained by retaining all four terms in Eq. (8). 
Expansion of the square of the sum of terms yields a cross term, which, 
before angle-averaging, has a phase shift given by 

to *f. = -[42/13 M$ - © + /?/£/£> sin($ - 43i) (20) 
+ Si f{s}f(s}M^r ~ 4!i - *) + fi /ä/gsin(«g} - $> + Si)] 

f f(1) f(3) ™RM
(1)

 - £(3) ^ 4-   f2 f(1) f(3) rosr^(1) - Ä(3) ^ [JS,dJS,d COS\°S,d      °S,d)+   JiJs,rJS,rCOS\0S,r      °S,r) 

+ fi /iS/13 cos(4!i - C -*) + */£!/$ «»(4Ü - 4?+«or1. 
It is evident that the phase shift arises from three sources: interference be- 
tween the direct one- and three-photon paths with amplitude fs ^fs d, inter- 
ference between the resonance-mediated one- and three-photon paths with 
amplitude fifslfsr* anc^ "double" cross terms with amplitudes fi fglfsd 
and fi fsdfsr- Far from the resonance only the first source contributes, so 

that if we set f\'r = fsl = 0> the phase shift is given by öf3 = öSd — öSd. 

On the other hand, in the absence of a direct path (fSd = fSd" = 0), we 

obtain 8f3 = SSr — 5Sr. If both direct and resonance mediated paths are 
present, but only a single resonance contributes, the absolute value of the 
phase shift will reach a minimum near the center of the resonance, where 
the resonance-mediate path dominates. If however, the molecular phases do 
not contribute to the phase shift (i.e., 6Sd = Ss'd = Ss,d, and Ss,d = fa-s), 
then the double cross terms will dominate, and the absolute value of the 
phase shift will reach a maximum near the center of the resonance. 

What then are the sufficient conditions for the molecular phases to 
contribute to the phase shift of the cross term? This question has been dealt 
with in Ref. [2], and we summarize here the conclusions of that study: 

1. A direct path induces a phase shift unless the scattering Hamiltonian 
gives rise to elastic scattering only (and the scattering angles are integrated 
over). For instance, channel coupling in the continuum is sufficient to pro- 
duce a phase lag in the direct path. 

2. In the absence of a direct path, Sf3 may be nonzero if there are two 
or more coupled resonances present (Ref. [2], eq (25)). If the resonances are 
uncoupled, however, and the product channels are rotational states, S13 

will vanish after integration over scattering angles. 
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3. A complex state at the one- or two-photon level can contribute to 8Sd 

and 5g ■ [4]. If this contribution is the same for both channels, however, 
it will have no effect on AS. 

If the molecular phases cancel out, a phase shift may still arise from the 
Breit-Wigner phase that appears in the double cross terms. A necessary and 
sufficient condition for this effect is that the Fano asymmetry parameters, 
qg , differ for the one- and three-photon paths. 

3.   Experimental Results 

We present in this section experimental data which illustrate some of the 
principles developed above. In these experiments a molecular beam of either 
HI or DI molecules was irradiated simultaneously with an ultraviolet laser 
beam of frequency u)\ and its third harmonic (VUV frequency of u>z = ZUJ\). 

The latter was generated by focusing the UV beam into a cell containing 
Xe gas. The wavelength of the UV laser was tuned over the range 353.4 
to 354.3 nm, which encompasses the 5sa Rydberg state of these molecules. 
This state, which lies just above the lowest ionization threshold of HI, 
autoionizes to produce HI+ (or DI+) and also predissociates to produce 
ground state H (or D) atoms and an electronically excited / atom. Subse- 
quent absorption of one or more UV photons by the I atom yields an J+ ion. 
The ions were produced between the electrodes of a Wiley-McLaren [17] 
time-of-flight mass spectrometer and were detected by a pair of microchan- 
nel plates. The relative phase of the UV and VUV beams was varied by 
passing both laser beams through a cell containing Hi gas, which has a 
different refractive index at a>3 and oj\. Further details of the experiment 
may be found in the literature [10], [13]. 

A typical experimental result is illustrated in Figure 2, which shows 
the modulation of the HI+ and I+ signals that is produced by a variation 
of 4>. In this case there is a phase lag of approx. 150°. Figure 3 shows the 
wavelength dependence of the phase lag. Also shown are the photoionization 
spectra of both molecules, in which the 5sa resonance is clearly visible. 
The fine structure of these spectra is of rotational origin. The most striking 
result of this figure is that AS attains large values far from the resonance 
and has a deep minimum near the center of the resonance. This behavior 
is in accord with our theoretical prediction for an isolated resonance in the 
case that the resonance-mediated path dominates the direct path near the 
center of the resonance. 

Which channel is responsible for the phase lag, or do both contribute? 
Based on the theoretical work of Lefebvre-Brion [18], it appears that the 
phase shift for ionization of HI vanishes, implying that the phase lag is 
caused by the dissociation channel. The large phase lag far from the reso- 
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Figure 2.    Modulation curves for DI+ and 7+ recorded at Ai = 353.69 nm. 

nance implies that the molecular phases in the direct path do not cancel. 
This effect is caused by the coupling of different nuclear channels (so-called 
"exit channel effects" [19]). One way to test this interpretation of the data 
is to measure the phase lag for the ionization of a mixture of HI and some 
other molecule. If the phase shift for the ionization of the other molecule is 
also zero, and if there is no resonance present in the spectrum of the second 
molecule, then the absolute value of the observed phase lag should display 
a maximum near the center of the HI resonance. An experiment to test 
this prediction is under way. 

The large isotope effect displayed in Figure 3 is as yet unexplained. If 
indeed the phase lag is caused by the dissociation channel, the factor of 2 
difference in reduced masses of the two isotopomers could well be involved 
in this effect. A key step for understanding the mechanism is to resolve 
the rotational structure present in the ionization and dissociation spectra 
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Figure 3. Phase lag between the dissociation and ionization channels for HI (open 
symbols) and DI (closed symbols). The one-photon (013) spectra for the ionization of HI 
and DI are shown in the bottom panels. 
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of these molecules. Double-resonance experiments are planned with this 
objective in mind. 

Support by the National Science Foundation is gratefully acknowledged. 
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The control of the products of photoabsorption through the relative phase of 
two fields represents one of the schemes of coherent control which has been under 

continuing study and evolution over the last few years [1-8]. Its general aspects 
as well as a number of specific issues pertaining to small molecules are usefully 
reviewed and summarized in this volume by Gordon et al. With the intention of 
avoiding duplication of discussion and minimizing the overlap with their article, we 
focus our review and remarks on certain aspects of phase control in atoms. There 
are we believe two main motivations for studying phase control in photoabsorption. 
One has to do with the desire to control branching ratios of products, as amply 
illustrated experimentally and theoretically by Gordon et al. The other has to do 
with the possibility of probing atomic and molecular properties and interactions 
with radiation. We emphasize here the second. 

First, recall the fundamental scheme based on the simultaneous action of a 
single- and a three-photon transition induced by fields of respective frequencies 3w 
and ui, under the assumption that the relative phase (phase difference) of the two 
fields can be controlled through well-established techniques. Thus a fundamental 
general equation governing the dependence of the yield, leading to some product 
S, on the relative phase <j> can be written as, 

PS = Vt + PL + 2(1%^^ cos(^ + <£), (1) 

where Ff3 is a third frequency-dependent system-parameter whose magnitude de- 
termines the strength of the interference. The quantity <f> — fa — Zfa is the phase 
difference of the complex fields entering the respective transition amplitudes, while 
6f3 represents whatever phase appears in the amplitudes for product S. As long 
as Ff3 is different from zero, the signal ps will exhibit a modulation as a function 
of <f> even if <5f3 is zero. 

51 
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As has been established some time ago, the product yield will generally oscil- 
late as a function of <f> irrespective of whether this yield represents the population 
of a discrete state or the amount of decay into some continuum, such as ionization. 
It has been pointed out that in the case of transition into a smooth continuum [4], 
phase control can be employed to minimize (and in principle cancel) the contribu- 
tion of one of the two partial waves into which the three-photon transition leads; 
since the single-photon transition leads only to one partial wave whose contribution 
can be interfered with. 
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Figure 1: Two examples of autoionization line-shape in a weak field as a func- 
tion of dimensionless detuning. Relative phase <f> = 0 (solid), TT/3 (dotted), 27r/3 
(dashed), and IT (dot-dashed). In (a) the direct transition to the continuum has 
been cancelled at (f> = %, while in (b) the transition to the discrete state has benn 
cancelled at <j> = x. 

The case of one autoionizing resonance decaying into one continuum represents 
the next level of interesting complication. Through a judicious choice of the single- 
and three-photon coupling to an initial (say the ground) state, in combination with 
controlled variation of the relative phase of the two fields, one can alter the line- 
shape in a rather drastic fashion [5, 6]. An asymmetric line-shape can be changed to 
completely symmetric or to a pure minimum in a smooth background - also known 
as window resonance. Simple analytical expressions provide a physical interpreta- 
tion of this type of effect. Thus the transformation of an asymmetric line-shape to 
symmetric implies that the direct transition into the continuum (whose presence 
made the shape asymmetric) has been cancelled (see Fig.1(a)). The transforma- 
tion to a pure minimum implies that the transition to the discrete state has been 
cancelled (see Fig.1(b)), reducing thus the process to the excitation of a discrete 
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state which decays into a continuum without interference with an other path. We 
know of no other way that the line-shape of an autoionizing state resonance can be 
manipulated in this fashion. Of course, the three-photon transition will as always 
involve an additional incoherent decay into a partial wave of higher angular mo- 
mentum which does not interfere with any other transition. This acts as a smooth 
background on top of which the interference effects are superimposed. Questions 
of the degree of observability of the interferences then have to do with signal to 
noise considerations. 

If we are to consider two different products, say A and B, however, each will 
obey an equation of the form of Eq.(l) and only if 6^3 ^ 8f3 will the modulation of 
these two product signals be out of phase. It should be noted at this point that, 
whether the two product signals are in phase or out of phase, the branching ratio 
can be controlled through the manipulation of <j>. 

The term molecular phase [8] has been employed for the quantity <5f3 ever since 
the first theoretical articulation of the idea. Although never pinpointed, it has 
often appeared in the equations. It is of course well known that transition ampli- 
tudes involving continua do contain the phase shift of the respective continuum. 
In a recent paper [7], based on a simple model for two channels which are not 
directly coupled, we have shown that such phases cancel out, while in a study in- 
volving transitions in a molecule, an identical conclusion has been reached [9]. The 
issue has been revisited and brought to a sharper focus in Refs.[10, 11], where a 
distinction has been made between their conclusions and previous work [7, 9]. 

In order to underscore the common features and similarities between the mod- 
els, we consider the central equation for ps derived in Ref.[10], namely, 

PS = /fVi    + f^feW'+V + e* [f!'de^  + fi'fe
i(s*+s) (2) 

where fx' , fl 
,r, 8X' , and 8^ are the real parts of the direct and resonant tran- 

sition amplitudes by a single-photon absorption and associated phase factors, re- 
spectively. Analogous quantities for a three-photon absorption, namely, /3' , /3'

r, 
83' , and 83'

r also appear in the above equation. As expected, the factor e1* con- 
taining the phase difference between the two fields multiplies one of the terms and 
will be responsible for the interference in the cross term, when the right hand side 
of Eq.(2) is written out explicitly in three terms as in Eq.(l). The corresponding 
equation of Ref.[7] for the photoionization rate into the continuum \c3) (j = 1,2), 
as given in Eq.(31) of that paper, reads, 

dR; (Z?(3) + e*pejg) (A + ,T/2) + yCja fo(3)(i _ tyg(3)) + e.^(1 _ i/q)} 

A + iT/2 

(i = l,2),    (3) 
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where we have used the notation A for the detuning instead of the 6 used in 
Ref.[7]. The quantities D^3

g, VCjg, and VCja represent, respectively, the three- 
photon bound-free dipole matrix element coupling the initial state \g) to the \CJ) 

continuum, the single-photon bound-free dipole matrix element coupling \g) to 
the same continuum, and the matrix element of the configuration interaction V 
coupling the resonant state \a) to the same continuum. The width of the resonance 
is r — 2irJ2j |Kja|2- The initial state is also coupled directly to the resonance 
via single-photon and three-photon amplitudes Q and ft'3', respectively, each of 
which is accompanied by its own asymmetry parameter, i.e., q and q^. It is 
very important to stress that, in the above description, there is no direct coupling 
between |ci) and \c2) continua. Those two contimia communicate only through 
the couplings to the resonant state \a), i.e., via Vcia and VC2a. The way these two 
continua interact with the resonant state \a) can be characterized by introducing 
correlation coefficients p and /a'3' for the single- and the three-photon processes, 
respectively, as 

Ej VacVc]9 
(4) 

P(3) = -1==^=W= = -74==^ (5) 

v/E;IK,a|y£,|X>cjS 

2 n 
•> 

o 

2 n<3> 

where 

1 = 2n^\VcJ\ . (6) 
i 

^^2^\Diff. (7) 
i 

Clearly, the correlation coefficients are equal to unity if a single continuum is 
considered. The deviation of the absolute values of these coefficients from unity 
indicates that the coupling of the two continua \c\) and |c2) to \a) is different. The 
ionization line-shapes from each continuum as a function of laser detuning A are 
quite'different if p and p'3' deviate from unity. 

Since there is no direct coupling between the two continua \c\) and |c2) in our 
mo/del employed in Ref. [7], it has been assumed that the continua can be predi- 
agonalized. Thus the phase factors associated with the continuum wavefunctions 
Ifj) Ü = 1)2), common to all matrix elements D^3

g, T>Cjg, and VCja in the above 
equation, can be factored out, and we obtain, 

dRi -<>« 
~dr~-27r (|Z)<3>| + e^\VCjg\) + _J__|Vej0| {ft<3>(! - i/qV) + e*fi(l - i/q)} 

A + iT/2 

0 = 1,2).       (8) 
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A couple of remarks are relevant here. In the above model, we have assumed 
that the two continua \c3) correlate to the same photoabsorption product, which 
is nothing but an ion in the case of atom or molecule. The above treatment can 
be immediately extended to the case in which the two continua correlate to two 
different photoabsorption products, which may be, for example, two different ionic 
states in the case of an atom, and two different photoionization states or one 
photoionization state and one photodissociation state in the case of a molecule. If 
the two continua correlate to the two different ionic states and they may still be 
assumed to be prediagonalized, the total ionization rate dRjdr is simply given by 

(D% + e'*VCjg) + ^-^VCja {fi<3>(l - i/q&) + e*n(l - i/q)} 
dy    j=u 

.       . (9) 

If the two continua happen to be non-prediagonalized as is often the case in 
molecules [11], i.e., if the eigenstates of the total Hamiltonian are given as a linear 
combination of two continua, the matrix elements D^g and T>Cjg in Eq.(9) must be 

replaced by the corresponding linear combinations of D[3
g and D&', and T>Cig and 

T>C2g with appropriate weighting factors and the difference of phase shifts between 
two continua. It would be too artificial, however, if we attempted to incorporate 
such a possibility in this simple model of one isolated resonance. We prefer instead 
to present in this paper the treatment of an analogous but realistic context for this 
kind of coupling in the atoms of Xe and Ca. 

We now come back to the Eq.(8). In order to compare this equation with that 
derived in Ref. [10], we redefine the following quantities: 

>«" S ÄW (10) 

fi'e'i* = \VCja\£l (l - -J , (11) 

#V*' ss |VCj..|n<»> (l - ^) , (12) 

fi-de's''d=VCig, (13) 

yf e'*- = Z)£>. (14) 

Not surprisingly, our bound-free matrix elements correspond to what Zhu et al. 
have called direct components, while our bound-resonance matrix elements corre- 
spond to what they have called resonant components [10]. Using these quantities, 
Eq.(8) can be recast into the following form: 
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dRj 

~dT 
2TT J,dJS{' + fl'f* JW+s) + ^   fi pJe'Si' is f„<(*i'r+«) + /r/e (15) 

which is identical to Eq.(4) of the paper by Zhu et al. [10]. As long as there is no 
direct coupling between the two continua, the form of our equations makes it clear 
that one can always take S{'d, S3

3
,d = 0, as is evident in going from Eq.(3) to Eq.(8). 

Thus the only phases that survive in the sense that they affect the modulation of 

each product are 63{r and 6$T which are due to the coupling of the resonance to 
the continuum. They in fact vanish in the limit of q, <?'3' —► oo, which corresponds 

to a symmetric resonance. It follows then that a reasonably asymmetric resonance 
is desirable for efficient control through the phase of the field in a scheme such as 
that of Refs.[7, 10, 12]. This is compatible with the finding in Ref.[10] to the effect 
that "in the limit of a single resonance and no direct component the molecular 

phase vanishes". 
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Figure 2: Example of calculated results based on a two-channel model employed 
in Ref.[7]. Ionization spectra of (a) channel 1, (b) channel 2, and (c) a sum of 
both as a function of dimensionless detuning A at relative phase <j> = 0 (solid), 
(f> = x/3 (dashed), and <f> = 2ir/3 (dot-dashed). Modulation of ionization signals 
into channel 1 (solid) and channel 2 (dashed) at (d) A = —5 and (e) A = —1 as a 
function of relative phase, (f) Phase lag plotted as a function of detuning A. 

A couple of further details are relevant here. Consider the phase lag between the 
two channels (products) studied in Ref.[7], shown here in Fig.2. Figs.2(a) and (b) 
show the ionization spectra into channels 1 and 2, respectively. The asymmetries 
in Figs.2(a) and (b) are almost reversed, which is simply due to the choice of the 
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parameters used for this specific calculations in which the correlation coefficients 
p — —0.17 and p^ = —0.1. Both of these values are very different from unity. 
The asymmetry parameters, however, are q — —9.1 and g'3' = —12, respectively, 
which lead to the fairly symmetric total ionization spectra, as shown in Fig.2(c). 
Figs.2(d) and (e) show the modulation of ionization into channels 1 (solid) and 
2 (dashed) at dimensionless detunings A = —5 and A = — 1, respectively. Note 
that the phase lag has an extremum near the resonance, changing sharply away 
from resonance, exhibiting another extremum before approaching its zero value at 
large detuning. The appearance of the double-peak in Fig.2 is due to the deviation 
of the correlation factors, as defined in Eqs.(16)-(17) of Ref.[7], from unity, which 
may take different values case by case. The structure of the phase lag persists 
over a frequency range of about 3 autoionization widths. Needless to say, that, 
as correctly noted in Ref. [10], more than one closely spaced resonances will add 
structure, but that would be a complication to be dealt with if necessary. There is 
however another possible cause of structure in the phase lag, namely the presence of 
real intermediate states near two-photon resonance in the three-photon amplitudes 
whose sign reverses as the laser frequency is varied around such an intermediate 
resonance. A width should also appear in the denominator involving the detuning 
from such a resonance. All this accounts to an additional phase difference as the 
laser frequency crosses the position of the resonance. These details should be 
kept in mind when experimental data are analyzed. But as already noted, and 
appropriately stressed in Ref.[10], in the context of above model, the phase lag 
vanishes in the limit of large detuning, independently of the values of p and p^3h 

The remaining question now is whether a non-vanishing phase lag for large 
detuning obtains only when a dissociation channel is coupled to ionization, or 
the effect is more basic and general. We demonstrate now that it indeed is more 
general, the minimum requirement being the coupling of two continua. As such, 
the effect is also present in atoms, as documented below through two quantitative 
examples, in two quite different atoms. 

The first refers to photoionization in Xe, above the two fine-structure ionic 
thresholds Xe+ 5p5 2P3/2 and 2Pi/2, which represent the two products. This prob- 
lem is handled through multichannel quantum defect theory (MQDT), as we have 
shown in earlier work [6]. In the framework of MQDT, given the quantum defects 
p^s and transformation matrix Uai, we can expand the final state wave function 
in terms of spherical harmonics Yimr Namely, the continuum wavefunction can be 
written as, 

\fm„mJc,jcC
k^)) =   E'V"'^*) £ e-—(a\JcJJMj) 

l,mi j,J,c< 

x(JJJMj\Jcmjcjmj)(JcmjJmj\lmisms)\a),       (16) 

where Si is the Coulomb phase shift, and k = {0,<p) and ms are the direction of the 
photoelectron with respect to the laser polarization axis for linear polarization and 
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Figure 3: Ionization yield and branching ratio of Xe as a function of final state 
energy. I3w = 10 W/cm2 and Iw = 108 W/cm2. (a) Ionization yield into channels 
Xe+ 2P3/2 and 2Pi/2- Relative phase is set to <f> = 0 (solid) or <j> = x (dashed), (b) 
Branching ratio at <f> = 0 (dotted) or <f> = TT (dashed). In (b), the ratio of branching 
ratios at (f> = 0 and <j> = 7r has also been plotted (solid line). 

the projection of the spin onto the quantization axis. The ionic core is described 
by the total angular momentum Jc and its projection mjc. The N-photon partial 
ionization amplitude is now written as 

M^(k)[m„mJc,Jc] 

=     E      i\-iy/2-m>-j+Jc-MjetS>+i^°Ylmj(k){(2j + 1){2.J + l)}1/2 

ltmi,j,J,a 

X 
/        S j 

mi   ms    —rrij 
j       Jc J 
ij   mJc   -Mj 

ZiaDW.      (17) 

The differential ionization rate under the presence of two fields with the intensities 
hu and Iu (both in W/cm2) is given by, 

dR 
— =    £     n,M^(k){ms,mjc,Jc}Jl^ + e^n3M^(k)[ms,m.jc,Jc}yJh 

(18) 
where n\ = 0.767 and n3 = 5.47 x 10 18 are the conversion factors to the appro- 
priate units (sec-1). 

The total ionization rate R is now obtained by integrating the calculated differ- 
ential ionization rate dR/diis over the solid angle Q.s. Obviously, the interference 
due to the two laser fields occurs between the states with the same Yimi for R and 
between any states with any V/m| for dR/dQ..   From the equations given above, 
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it should be clear that this formalism is a generalization of the equation we have 

shown in Eq.(8) 

2it 3n 4it 
relative phase (rad) relative phase (rad) 

Figure 4: Modulation of the photoionization signals for Xe+ 5p5 2Pz/2 (solid) 
and 2P\/2 (dashed) ion at three different final state energies (a) 123000cm-1, (b) 
125100cm-1, and (c) 127100cm-1 above the atomic ground state as a function of 
the relative phase </>. The laser intensities are chosen to be I3u = 10W/cm2 and 
Iu — 1010W/cm2. (d)-(f) Branching ratios as a function of the relative phase <j>. 

Graphs (d)-(f) correspond to graphs (a)-(c), respectively. 

There are no resonances in the energy range 120000-130000 cm-1 above the 
atomic ground state, and there are no near-two-photon resonances with interme- 
diate bound states either. We have thus a clear case of two coupled continua. 
Choosing the intensities I3u = 10 W/cm2 and Iw — 1010 W/cm2, we have calcu- 
lated the product yields as well as the branching ratio as a function of final state 
energy. The result is presented in Fig.3. In Fig.4, we now show the modulation of 
two products Xe+ 5p5 2Pz/2 (solid) and 2P\j2 (dashed) as a function of the relative 
phase <j> at three different final state energies. We have, in addition, plotted in 
Fig.5 the phase lag between the two products as a function of final state energy. 
Clearly, the phase lag varies drastically over the energy range 120000-130000 cm-1, 
which lies in a smooth continuum very far away from resonances of any type. Note, 
however, that in the same figure, we have included the phase lag slightly outside 
the smooth region to illustrate the effect of intermediate two-photon resonances, 
mentioned earlier. 

As a second example, we have calculated and plotted in Fig.6 the variation 
of the branching ratio of the two products Ca+(4s) and Ca+(3d), starting from 
the ground state 4s2 of Ca, as a function of final state energy under the presence 
of two laser fields with frequencies ui and 3w with well-defined relative phase <j>. 
Modulation of each product is plotted in Fig.7 as a function of the relative phase <f> 
at two different final state energies. We have now employed the complete channel 
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Figure 5: Variation of the phase lag of the two products Xe+ 5p5 2P3/2 and 2P1/2 

due to photoionization as a function of final state energy. All parameters are chosen 
to be the same as those for Fig.4. 

functions, as obtained through an L2 basis [13]. The results shown in Fig.7 again 
clearly demonstrate a phase lag between the two products far away from resonance 
(Fig.7(a)), and for comparison near the resonance (Fig.7(b)). Note that Eqs.(3) 
and (8) would have predicted zero phase lag for the case of Fig.7(a). 

64000      66000      68000      70000      72000      74000 
final state energy (cm-1) 

Figure 6: Variation of the branching ratio of Ca+ 4s and 3d ions for four different 
relative phases <f> = 0 (solid), TT/3 (dashed), 2TT/3 (dotted), and ir (dot-dashed). 
Laser intensities are chosen to be I3w — 102W/cm2 and /„ = 108W/cm2. 

In summary and conclusion, formation of products through photoabsorption 
involves continua. Efficient control of branching ratios of products through the 
relative phase of the two fields, irrespective of the presence of resonances, is much 
more flexible if a phase lag in the modulation of the two products, as a function of 
the relative phase of the fields, is non-zero. The general condition for this to occur 
is that the two continua be coupled through some intra-system interaction. The 
coupling between dissociation and ionization, as modeled in Ref.[10, 11], is one case 
in point. As we have shown above, the effect is to be found in atoms as well. We 
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Figure 7: Modulation of the photoionization yield of Ca+ 4s and 3d ions at two 
different final state energies. Laser intensities are the same as those for Fig.6. Final 
state energies are chosen to be (a) 66167cm"1 and (b) 68010cm-1. 

would thus suggest that, in order to emphasize the generality of the effect, it may 
be preferable to use the term channel phase. This also implies that, in addition to 
its relevance to product control, the effect may be a useful tool for the direct study 
of the relative phase of coupled channels, in atoms as well as molecules. Finally, 
in view of recent work on quantum confined Fano interference [14], in quantum 
wells, it may be worthwhile to ponder whether these issues of coherent control can 
be extended to such phenomena; although at first sight, it might seem that the 
necessary wavelength range may for the moment be inconvenient for phase control 
that requires some fundamental in the range of photon energy around 0.5eV and 
its third harmonic. 
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Abstract. Three level systems driven by two coherent fields result in dark 
state (coherent population trapped) resonances. Such states are in many 
instances the basis for electromagnetically induced transparency (EIT) and 
lasing without inversion (LWI). Inhomogeneous broadening due to atomic 
motion in gases, or different effective masses for various levels in quan- 
tum wells presents a minor problem for EIT, but is more serious in the 
case of LWI. However, recent work involving four level systems driven by 
three coherent fields results in certain sharp features (interference between 
double-dark resonances) in the optical response. We here show that such 
double-dark states are interesting and potentially useful in mitigating the 
effects of inhomogeneous broadening in atomic and semiconductor quantum 
well systems. 

1.   Introduction 

Fano interferences [1] between photons spontaneously emitted from the |±) 
dressed states of a A-system is the basis of EIT [2], see Fig. 1. When the 
b —> a and c —>■ a transitions are inhomogeneously broadened, but remain 
in two-photon Raman resonance, EIT persists. Moreover, when atoms are 

63 
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(a) (b) 

Figure 1. The dressed states |±> = (|o) ± \c))/y/2 in (a) are prepared by a coherent 
drive C coupling \c) and \a) as indicated in (b). This results in EIT (c). B(C) is the 
Rabi-frequency for the !i « a (c « «) transition, respectively and v denotes the probe 
frequency. 

r* c r* c 

0 A=0) ,-v 

(a) 

0 A=(0„ .-V 

(b) 

Figure 2. (a) Gain can be produced even when Nb is larger than Na and Nc- When 
level \a) is "detuned", as indicated in (b), a larger Rabi-frequency C is required to obtain 
LWI and gain is reduced due to "Stark broadening" (power broadening) of level \a). 

injected in the upper levels \c) and \a), LWI [3] may occur (c.f. Fig. 2a). 
When level \a) is inhomogeneously broadened, LWI gain can be markedly 
reduced, as suggested in Fig. 2b; the broadening mechanism may be Doppler 
or effective mass broadening, etc., as indicated in Fig. 3. 

2.   Lasing without inversion in quantum well structures 

Consider the situation depicted in Fig. 4. The atomic polarization Pab = 
PPabN governs the gain or loss of the laser field B, where p is the dipole ma- 
trix element, pa\, is the off-diagonal matrix element containing the physics, 
and N is the effective density of atoms or electrons. For the system of Fig. 4 
the driving polarization is given by 

%B 
Pab = ra6rc6 + |C|2 r^E? P2

)
) + ^

) P(0) 
ran. (1) 
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Figure 3. Inhomogeneous broadening due to differing atomic velocities for a gas (a), or 
different band curvatures (b,c). Artistic license has been taken in (b), since the electronic 
motion associated with sub-bands \a) and |6) is perpendicular to the page, (c) depicts 
the case of valence to conduction band transitions in which the curvature has a different 
sign. 

Figure 4-   Quantum well LWI setup. Resonant tunneling with rate C couples states \c, k) 
and \a, k), laser Rabi rate B describes the frequency of the & -<-> a transition 

where the notation is defined in Table 1. 
For EIT, ßaa = PcJ = 0 and when B and C are in two-photon Raman 

resonance (Aa& = Aac) rc(, = 7^ « 0. Thus pab is close to zero, i.e. absorp- 
tion vanishes. We note that the effects of "stark broadening" of level \a) 
are contained in the denominator of Eq.(l). Since the stark denominator is 
multiplying the term in square brackets, which in the ideal case (7^ = 0) 
is zero, it has no effect on pai„ i.e. stark broadening does not weaken EIT. 

The situation is different for LWI. Now, we arrange for the term in 
square brackets to be positive (on resonance) which corresponds to gain. 
This occurs just by making \C\2 large enough, even if the LWI condition, 

Pbb > Pc° > Paa1 ls satisfied. But now the stark denominator is important 
and will lead to a saturation of gain, if \C\2 3> |rc6rah|, as is clear from 
Eq.(l). 

Consider now the case in which the upper \a) sub-band is inhomoge- 
neously broadened as in Fig. 3. The effect of detuning comes into play via 
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Symbol Parameter 

o(0) population in \a) to zeroth order in B 

Tab lab + i Aafc 

■1- ca lea   i  * tAca 

rc& 7c6 + * (Aa6 - Aac) = 7c6 + «(Aa6 + Aca) 

rCd 7cd + i Acd 

laß {la +lß)/2 + 7ph 

la decay rate out of \a) 

7Ph phase decay rate 

Aa6 detuning of the probe B: uab — VQ 

Aac detuning of the drive C: uac — UQ 

Acd detuning of D: u)cd — vp 

<*,ß a, b, c or d 

TABLE 1.   Notation used throughout the text. 

the Tcb, Tca and Tab factors of Eq.(l). In fact, depending on the specific 
model of pumping, the zeroth order populations also depend on the inhomo- 
geneous broadening. However, in order to simplify the following discussion, 
we assume a "clamped", i.e. fixed population. If only the state \a,k) con- 
tributes to inhomogeneous broadening, i.e., only the energy Ea varies as in 
Fig. 3a and 3c, Td, is not affected by the spread. Specifically, 

rc6 = leb + i[[yB ~ Wat) - \yc ~ Mac)] = leb + i[{^B ~ VC) - Ufa],        (2) 

since w0& — uiac = ufcb- In this situation, we see that inhomogeneous broad- 
ening enters only through the Tab and Tca terms in Eq.(l). Thus, we can 
tune the fields such that Tcb = 7cf, (two-photon resonance), and choose 
\C\ > y/icbl^an], where n = b, c to make the LWI term in Eq.(l) dominate. 
However, for sufficiently large values of C the polarization is strongly di- 
minished. Thus, inhomogeneous broadening of the |a)-state frequency leads 
to a reduction of gain just like in a two-level system. Moreover in order to 
fulfill the LWI-gain condition 

\C\ > JlcbFanl (3) 

in the non-ideal case, ja ^ 0, large resonant tunneling rates are required. 
This is where double-dark LWI comes into play. 
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3.   Double-dark LWI 

Usually any perturbation on a dark state results in an undesirable loss of 
coherence. However, as was first shown in the study of short-wavelength 
LWI [4], the introduction of a coherently coupled fourth level can improve 
LWI performance. More recently we have studied the system of Fig. 5a in 
detail and found sharp new features in the resonant optical susceptibility for 
LWI as shown in Fig. 5b [5]. The sharp spike in Fig. 5b can be understood 
by writing the dressed states for Fig. 5a to first order in D (c.f. Fig. 5c), 
namely 

1+) 

I-) 

10) 

-u+\a) + C[\c) + 
D 

w0 -u>+ 

D 

-\d) 

ft2 ft2 

(4) 

(5) 

(6) 

Wo *cd, 

(7) 

(8) 

where fi2 := C2 + (Aac/2 + sjC2 + A2
c/4)2, and we have assumed, that 

|ft2|:=|C2-Acd(Acd + Aac)|»L>2. 
In the limit of D = 0 the states |±) are those defined in Fig. 1 and the 

energies are those given by Eqs. (7) and (8). But for D ^ 0 we now have a 
new sharp state |0) weakly coupled to |&), with a radiative decay rate going 
as |JD|

2
/|C|

2
. Thus, the sharp spike is due to decays from |0) to \b), with a 

width limited by the decoherence of the metastable \d) and |6) states. 
To proceed we need the double-dark extension of Eq.(l). It is given by 

Pab 
iB 
^     Fed 
Lab 

C2 

J- cbi ca 
R(P<$ P{0)) 

A dc1 cb i da>- db^c\ J- ca    / 

where 

R   = 

Fr      = 

i + |C|2/(rdardc) - \D\2/(Tdbrda) 
l + |c|2/(rdardc) + \D\yiTt 
i + |c|2/(rdardc), 

i-t da) 

(9) 

(10) 

(11) 
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Figure 5. The four levels in (a) are coupled by Rabi-frequencies B, C, and D. (b) The 
solid and dotted lines are the imaginary and real part of the susceptibility (as a function 
of A = Aa(, with Aac = Acrf = 0), respectively. The imaginary part shows sharp spikes 
at A = 0. (c) The physics is explained below in terms of the dressed states |±) and |0). 

Fd  =  1 + \D\2/(rcbrdb), 

Fcd   = i + \c\y(rabrcb) + \D\y(Tcbrdby 

(12) 

(13) 

and rah = 7ah + iAa6, Tca = jca + iAca, rc6 = jcb + i(Aab + Aco), Tdb = 
7d6 + i(Aab + Aca — Acd), exactly analogous to the parameters in Table 1. 

4.   Inhomogeneous broadening, the double-dark state, and LWI 

Note that a shift of the \a) state (i.e. inhomogeneous broadening of \a}) 
does not affect OJQ as given by Eq.(8) (valid in the weak D limit), i.e. üJQ is 
independent of the energy of state \a) for weak D. Fig. 6 shows the dressed 
state frequencies as a function of excited state detuning for D = 0.5 and 
C = 1. One can see that the maximum shift of the |0)-state is ±D. 

Guided by the fact that the dressed-state resonance in the double-dark 
system remains narrow in the presence of inhomogeneous broadening, we 
plot pab as given by Eq.(9) for several values of the upper-state detuning. We 
see that indeed the LWI peak remains sharp and strong, even for substantial 
detuning of the \a) level (c.f. Fig. 7). 

In order to convey the potential of the double-dark state system, let 
us conclude this section with a comparison of the effects of inhomogeneous 
broadening on gain in the case of 2-level, dark, and double-dark systems as 
shown in Fig. 8. To this end we consider the case in which we "clamp" the 
populations paa-,Pbb,Pca and pdd. This should be regarded as a "best case" 
limit for the double-dark states. As noted above, in real experiments, the 
populations will be influenced by atomic detuning, which strongly depends 
on the pump mechanisms. This will be discussed in more detail elsewhere. 
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Figure 6. The frequencies of the dressed states |±) and |0) as a function of the detuning 
öiüa of the excited-state. Dotted lines correspond to dressed state frequencies ±D and 
Sua, when C=0. The parameters are C = 1 and D = 0.5, respectively. The frequency 
unit is 7a 6. 

' 

-/           '; ; 4„=I0./!        1 '■-.  A„=-I0  •              \ 

i                          4»=10Ö                     4„=-100                     \ 

A/7 
■0.04        -0.02 

0.75 
A,= 

A,=0 

 A, = 10 10 :-      ;1"    "' 
A,= -100   A„=100 

0.2J 
1     \ 

tt«) 
J     ';/     \, 

Nw« - ■ ■ »i„  
0.02 0.04 

A/7 

Figure 7. The gain as a function of A = Aal) - Aoc for several values of the detuning Aa 

of the upper level (in units of 7 = yab). The right shows an enlargement of the central 
peak in the left figure. 

That double-dark resonances can reduce the influence of inhomogeneous 
broadening of the excited state |o) on the gain is illustrated again in Fig. 
8c where the average gain in the presence of inhomogeneous broadening is 
shown as a function of the normalized width Awa/7a(, for different Rabi- 
frequencies. Fig. 8c is to be compared and contrasted to Figs. 8a and 8b 
and shows the potential advantage of double-dark resonances. 

5.   Inhomogeneous broadening in quantum well LWI 

As noted earlier, different effective masses can result in inhomogeneous 
broadening and reduction of gain in semiconductor quantum well lasers. 
For example, consider a scheme similar to that considered by the Imamoglu 
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Figure 8. (a) The gain in a two-level system as a function of the width Awa of a Gaussian 
distribution of excited state frequencies. The frequency unit is the coherence decay rate 
7a&. (b) The gain in a A-system for C = 1 (solid line ) and C = 5 (dashed line) as a 
function of the inhomogeneous width Awa of a Gaussian distribution of excited state 
frequencies. The frequency unit is jab = 7ac- (c) The gain in the double-dark system for 
C = D = 1 (dotted), C = 1, D = 0.1 (solid) and C = 10 and D = 0.1 (dashed) as 
a function of the inhomogeneous width Awa of a Gaussian distribution of excited state 
frequencies . The frequency is in units of 7 = jab 
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Figure 9.    (a) Tunnel coupled \a) and \c) states with different effective mass for \a). (b) 
The gain for the system in (a) for different energies of the excited state. 
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Figure 10. (a) A four-level tunnel coupled structure analogous to the atomic double-dark 
problem, (b) Gain for a double-dark "quantum well" like system as shown in (a) for 
various detunings. 

group [6] depicted in Fig. 9a. When we carry out calculations for related sys- 
tems (we actually do atoms), we obtain a gain which is strongly dependent 
on the upper level detuning (which is so to say different gain for different 
k values; c.f. Fig. 9b). Similarly, we find for the double-dark semiconduc- 
tor system (again, we carry out appropriate atomic analog calculations) of 
Fig. 10a the gain curve shown in Fig. 10b. 

Comparing Figs. 9 and 10, we see that double-dark states in quantum 
well structures hold promise and merit further study. One example of such 
studies is the interband LWI/Raman system of Fig. 11. 

r^UHJrr 

'T^V 
^ 

(a) (b) 

Figure 11. (a) Quantum well interband laser without inversion based on double-dark 
resonances, (b) The dependence of the gain for A (dashed) and double-dark configurations 
(solid line) on the normalized width Aw of Gaussian inhomogeneous distributions. The 
injection rate is r = 0.001; the radiative decay on the laser transition is 7 = 1; the 
removal rate from the |6)-state is 70 = 0.01; the Rabi-frequencies are C = 5, D = 0.1. 
(Optimized detuning for A) 
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In Fig. 11a we show a quantum well system, where the |a, k) and \c, k) 
states are in the conduction band and have a curvature opposite to that of 
the \b,k) and \d,k) states in the valence band. \c,k) and \a,k) are coupled 
via resonant tunneling and \c, k) and \d,k) by a weak electro-magnetic 
field D. Fig. lib compares the dependence of the gain on inhomogeneous 
broadening for the case of a A system (D = 0 and injection into \c) ) and 
the double-dark system (D ^ 0 and injection into \d)). 
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Abstract. We review our recent experimental and theoretical work on the 
use of optically-induced quantum interference to generate and control 
electrical currents and free carrier populations in bulk, low-temperature- 
grown GaAs at room temperature. Using phase-related nanosecond, 
picosecond or femtosecond pulses at 1550 and 775 nm and the quantum 
interference between single and two photon interband absorption pathways, 
we produce peak current densities of ~ lOAcm"2 for only 1014 cm"3 carriers 
in GaAs (001). Within a nonlinear optics context, the induced coherence 
effect can be understood in terms of a divergent piece of a ^3>. With 150 fs 
optical pulses at wavelengths similar to those used in current control we 
are also able to use quantum interference effects to achieve control of 
electron-hole populations in GaAs (111). The nonlinear susceptibility 
responsible for this type of interference is tf2>

xyz. 

1.   Introduction 

Optical phase is not normally thought of as a control parameter, 
although it is widely recognized that phase manifests itself passively in a 
wide variety of physical experiments, especially those involving light 
interference. Manykin and Afanas'ev [Manykin, 1967] were perhaps the 
first to recognize that optical phase could also be used actively to bring 
about interference between quantum mechanical processes such as 
simultaneous absorption of one and three photons connecting the same 
initial and final states in atoms.   The population of the excited state and 

75 
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hence the absorption is controlled by interference in the quantum mechanical 
amplitudes associated with the two pathways through the relative phase of 
the two optical beams. In the last decade, partly because of advances in 
laser technology, interest in coherence control (CC) of matter has increased 
particularly for atomic and molecular processes and chemical reactions 
[Brumer, 1989; Warren; 1993; Chen, 1992; Zhu, 1995]. Coherence effects 
have also been used to propose spatially asymmetric ejection of 
photoelectrons from impurities in fibers [Dianov, 1989; Anderson, 1991], 
and these effects have also been observed from atoms [Yin, 1992], from 
impurities in semiconductors [Kurizki, 1989] and from semiconductor 
quantum wells [Dupont, 1995]. Coherence control of exciton populations 
in quantum wells has been observed by Heberle et al. [Heberle, 1995] using 
phase related femtosecond pulses of the same frequency and, more recently, 
Pötz [Pötz, 1997] has shown theoretically population control for 
intersubband transitions in quantum wells using visible and microwave 
radiation. 

Nearly all coherence control effects proposed or observed involve 
discrete states. However Entin [Entin, 1989] pointed out that one could 
also use intraband absorption of harmonically related beams in a metal or 
doped semiconductor to coherently control an electrical current. To date, 
these processes have not been observed. A number of years ago we 
proposed [van Driel, 1994; Atanasov, 1996] and later observed [Hache, 
1997; Hache, 1998] coherence generation and control of photocurrents via 
interband transitions in a bulk semiconductor such as GaAs or low- 
temperature-grown GaAs (LT-GaAs). 

We now consider the salient features associated with the generation 
and control of photocurrents in LT-GaAs at room temperature using 
femtosecond, picosecond and nanosecond optical pulses at 1550 and 775 
nm. We also demonstrate partial population control in GaAs using similar 
pulses. Ironically, the use of quantum mechanics and the superposition 
principle allows for the generation of classical-like states that are difficult to 
generate otherwise. However, since the states are generated by 
simultaneous linear and nonlinear optical absorption processes, it should not 
come as a surprise that one can therefore develop a macroscopic description 
of these processes based on nonlinear optics. In the case of current control, 
we can understand the underlying physics in terms of a divergent piece of a 
^process, while population control involving harmonically-related beams 
can be understood in terms of a ^'process. 
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2.   Coherently Controlled Currents in LT-GaAs 

Figure 1 illustrates generation of electron-hole pairs via 
simultaneous single and two photon absorption of coherently related beams 
of frequency co and 2co, for the case where hco<Eg < 2hco with Eg being 
the semiconductor band-gap energy. For single photon absorption of 2co 
photons coupling valence (v) and conduction (c) band states, the transition 
amplitude is a2a> oc < y/v fi

2(0.p fy/c> = pvccosd E0
2(Oexp(i^)2J where E$m is 

the amplitude of the light field, p is the momentum operator and 0 is the 
angle between a linearly polarized field direction and the direction of a Bloch 
A;-vector. (This expression is strictly only true for light hole bands and 
Kane wave functions but related anisotropic state filling effects are also 
obtained for heavy-hole bands). For two photon absorption (of "co" 
photons) from an optical beam polarized along the x-direction, the preferred 
pathway is an interband virtual transition and then a self-transition in the 
conduction band. Neglecting other bands of the semiconductor and other 
possible intermediate states, one then has: 

a°> oc Qco)< y/JET-p /%> < y/JE^ply/, > 

=C(a>)pvccose(E0
caf exp(2i$2J hkx (1) 

where C(o)) is purely imaginary and contains a frequency dependent 
denominator accompanying the virtual transition amplitude. Adding the 
single and two photon transition amplitudes we have 

cP+c?» *Pvccos8 {(E0
2a exp(i<t>2J +C(co) (E0

mf exp(2i$J hkj. (2) 

The transition probability \(f+a2of contains an interference term oc tikx sin 
(20ft) -<h(a) which results in a polar distribution of electrons and holes in 
momentum space. This is synonymous with an electrical current. 

From a macroscopic viewpoint, it was shown [Atanasov, 1996] that 
the interference of quantum mechanical pathways leads to an electron and 

hole (e,h) current injection process whose rate je^ is related to the two 

optical electric fields [25], Ea, E2a by: 

Jl,h = f,e,h .EVE-2"*o.e. (3) 
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Single Photon Absorption 
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h(2co) 
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band 

Valence 
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Figure 1. Schematic illustration of single (top) and two photon processes in 
semiconductors. The right side of the bottom figure illustrates typical states coupled via 
the virtual transitions. 

where r\e ^ is a purely imaginary, fourth-rank tensor. For a semiconductor 
with zinc-blende symmetry, such as GaAs, this tensor has four independent 
components, the largest typically being (nejh)xxxx • 



COHERENCE CONTROL OF FREE CARRIERS...     79 

Equation 3 is based on a Fermi's Golden Rule approach since the 
current relaxation time (typically 100 fs) is long compared to the period of 
the optical beams; decay effects can be treated separately to a first 
approximation. We do so phenomenologically by writing a dynamical 
equation for the evolution of the current density Jeb as 

Je, h= Je,h~ ^e, h /Te, h (4) 

where Te,h is the current relaxation time. For both beams polarized along 
the crystalline x axis, the current can be related to (r]eh)Xxxx and, from Eq. 3, 
also to the phase parameter A(j)= 2tym-<t>2(0. 

The generated current differs from a conventional current which 
occurs in a semiconductor when pre-existing carriers move in response to 
a DC electric field. In the case of a CC current, electrons (we ignore the 
smaller contribution made by holes to the current) are optically injected into 
conduction band states with a speed determined by 2co, Eg and the electron 
and hole effective masses respectively. In GaAs this speed is 850 kms"1 for 
a 150 meV electron-hole excess energy (corresponding to single photon 
absorption at 775 nm). When the single and two photon absorption 
amplitudes are balanced, this speed is associated with electrons which are 
also moving in nearly the same direction. For (ne,h)xxxx = 20 s"2mCV~3,10 

m 

= 100 MWcm"2 and 70
2<o = 15 kWcm"2 (these intensities will balance single 

and two photon absorption process so as to optimize the current per carrier 
generated) with Gaussian pulse widths %<#= %2 = % = 100 fs, one obtains a 
surprisingly large peak current ~1 kAcm"2 for a carrier density of only ~1014 

cm3. Of course, relaxation effects during the optical pulse as well as beam 
phase-mismatch effects upon entering the sample can reduce this [Hache, 
1998]. In the latter case, for GaAs the single photon absorption depth (~1 
|im) is nearly the same as the coherence length. 

The CC currents do not occur as a result of an optical rectification 
field acting on pre-existing or optically generated carriers. Rectification 
effects occur via virtual interband transitions through a 4th rank tensor 
which has symmetry and phase characteristics similar to r\ejl. However the 
r\e /j tensor is related to a divergent piece of %0) (-e; co,co, -2ö>fe), i.e., 

77 oc e2 Um yp'H-e; co, co, -2co + e). (5) 
£->0 
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More importantly, the CC process is fundamentally different from field- 
induced acceleration. For CC currents, the carriers are born at high speed 
and thereafter decelerate. Overall the CC process therefore may offer 
advantages for physical effects involving rapid current generation, such as 
more efficient techniques for THz generation [Khurgin, 1995]. 

We have observed CC currents using harmonically related 
femtosecond, picosecond and nanosecond pulses with the fundamental 
beam having a wavelength near 1550 nm. A typical experimental 
arrangement in shown in Fig. 2. The experimental details are given 
elsewhere [Hache, 1998]. Phase control of the two beams is achieved with 

Parametric Source 
\ 

2 ns (10 Hz), 1ps(80MHz), 
150fs(250kHz);1-2nm 

5-50 urn spaced Au electrodes 
10 

oriented (001) 
GaAs or LT-GaAs 

(readout) 

£ 
Xil plate 

BBO crystal 

2ra 

l-L 

T PZT 

Figure 2. 
GaAs. 

Experimental geometry used to observe steady-state current flow in 

a modified Michelson interferometer. In our experiments we have observed 
the currents by monitoring the steady voltage across a metal-semiconductor- 
metal (MSM) structure as charge accumulates on the metal electrodes. The 
semiconductor of choice is LT-GaAs since the rapid recombination time (~1 
ps) prevents the MSM capacitor from discharging between pulses, whose 
repetition rate was varied from 10 Hz to 80 MHz. CC currents were 
observed with GaAs only with the 250 kHz repetition rate system. In 
principle one could also expect to observe CC current in centrosymmetric 
semiconductors such as Ge or Si as well since rj is a 4th rank tensor. To 
date all experiments have been carried out at room temperature. Figure 3 
illustrates the phase dependence of the modulated current when a GaAs 
(001) sample is illuminated with 150 femtosecond from an 80 MHz optical 
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parametric oscillator system with an average power of 50 mW (1550 nm) 
and 2 uW (775 nm) and an illumination spot size of ~ 50 |im. The pulses 
are linearly co-polarized across the gap of the metal-semiconductor-metal 
structure, along the (100) direction to take advantage of the large r|xxxx 

tensor element. The data of Fig. 3 is obtained after a -25% background 
effect (due to space-charge effects in the vicinity of the electrodes) was 
subtracted. The peak carrier density is estimated at ~1014 cm'3 while the 
peak current density (within the ~ 0.5 (Xm absorption depth of the GaAs) is 
estimated at near lOAcm"2 We have verified the scaling of the CC current 
with MSM gap width, with optical field amplitudes and have observed high 
current generation for carrier density up to 1018 cm'3. The peak currents 
generated are typically less than, but within an order of magnitude of, the 
theoretical predictions. 
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Figure 3.  Phase dependence of steady state current measured via the voltage across 
a metal-semiconductor-metal device employing LT-GaAs. 

3.    Coherence Control of Electron-hole Populations in GaAs 

Coherent control of population has been demonstrated via discrete 
states in both atomic [Chen,   1992] and quantum well semiconductors 
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[Heberle, 1995]. One of the questions we have asked ourselves is to what 
extent similar effects can be observed in bulk semiconductors based on 
band-band transitions, and in particular whether a density modulation is 
simultaneously induced in our current control experiments. Because of the 
rapid carrier dephasing associated with continuum states, it makes little 
sense to attempt to control such population with pulses of the same 
frequency, since for all but the shortest pulses, these pulses would have to 
be overlapped in space and time to overcome dephasing effects and the 
influence of inhomogeneous broadening associated with the bands (the 
macroscopic electron and hole interband polarization will decay on a time 
scale related to the inverse of the optical pulse bandwidth). Coherence 
control is then trivial as the fields themselves constructively or destructively 
interfere as they are delayed relative to each other. Rather we have 
attempted to control a population of carriers, N, using harmonically related 
pulses. Ignoring dephasing effects, the rate of change of the population can 
be understood in terms of the power deposited into the sample: 

IhcoN = I[&°(t) + E2®«)] •-[?*«) + P2co(t)]\ (6) 

where the < > brackets indicate a time average and F° and P2m are the linear 
and nonlinear polarizations induced by the co and 2co beams respectively. 
One then has single photon absorption processes (at 2co), two photon 
absorption processes (at co) and the interference between these process so 
that the power deposited can be represented as: 

IhcoN = Wlapt + Wf_pt + W%2co (7) 

The interference process can be understood within a nonlinear optics 
formalism as: 

Hg}2*    =ax0(Imx$(-2co;co,co)Er2(0EfE?coS(<pf0)-<l>f-<l>?)     (8) 

For a zincblende material such as GaAs, the only nonzero element of 
jt(2> is x(2)

xyz. Therefore, in our current control experiments conducted with 
GaAs (001), there is no density modulation induced by beams which are all 
of the same polarization. For this reason our efforts to observe population 
control have involved a GaAs (111) sample used illuminated by 
perpendicularly polarized beams at normal incidence, although even here the 
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effective x<2) is 0.4x<2)
xyz. Figure 4 illustrates the experimental set-up used to 

measure the CC density changes. 
The experiments were carried out with 150 fs pulses with peak 

irradiance of 800 MWcm2 (1550 nm) and 20 MWcm"2 (775 nm) 
respectively. The peak carrier density generated is ~1018 cm'3. In our 
experiments the density was monitored in two different ways. In the first 
method we simply observed the transmission of the 775 nm beam, whose 
total absorption is dictated by its relative phase with the 1550 nm beam. In 
the second method we used a probe beam at -870 nm, derived from the 
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775 nm pass filter 

wJmmMLmmmmmäJtomJimm 

0. 7 \im thick 
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2(0 

/1 / ' 
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Figure 4.      Schematic illustration of experimental geometry  used to  observe 
coherent control of carrier density in GaAs. 

same optical parametric generator used to generate the 1500 nm beam, to 
probe the near-band-edge transmission (where state filling effects are 
largest) of the GaAs. This was done ~ 5 ps after the two other pulses 
were incident on the samples and the carriers had a chance to cool to the 
band edge. Both methods give similar results. Fig. 5 shows the modulated 
transmission of the 775 nm beam as a function of the CC phase parameter, 
A(|>. 

Note that the phase dependence observed in Fig. 5 can also be induced 
via a cascaded harmonic generation process as well. In such a process one 
has a flow of energy between the 1550 and 775 nm beams via a 
upconversion or  downconversion  within  the  GaAs   sample prior to 
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absorption of the beams. Such a process leads to a similar phase 
dependence of the carrier density as that given by Eq. 8, except for a 
sinusoidal dependence on the phase parameter AcJ). This type of process 
itself is a form of coherence control of carrier generation involving also the 
real part of x<2). We are presently performing careful phase dependent 
studies of the density control experiments, including sample thickness 
dependence to separate these two contributors to coherent control of 
carrier density. 
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Figure 5. Modulated carrier density in GaAs observed via the transmission of the 

775 nm pump beam. 

Unlike the current experiments where, in principle it is possible to 
have all carriers contribute to current flow in a given direction (by 
balancing single and two photon absorption rates), it is not possible to 
achieve 100% modulation of the carrier density via coherent control in 
GaAs(lll). Indeed we estimate our transmission modulation in these 
experiments to be of the order of a few percent. Part of the reason for this 
is simply related to obvious dephasing effects during the pulse which 
compete with coherence control. In addition, it is not possible to make use 
of the full value of x<2)

xyz for GaAs (111). More fundamentally, since the 
microscopic pathways which are embedded in x(2) are based on interference 
between those processes connected with single and two phtoon absorption, 
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the relative phase of the associated matrix elements and the symmetry of the 
crystal will dictate the strength of the interference terms in %(2) relative to 
those in %m and %(3). Note that for centrosymmetric systems such as atoms 
the density control processes discussed here do not occur and %(2) is 
identically zero although %(1) and %(3) are non-zero. For semiconductors one 
could optimize the density control by choosing materials with different 
symmetry classes. In addition density control efficiency may be improved 
by interfering absorption pathways of fundamental and third harmonic 
beams via %(5) and %m processes. 

4. Summary and Conclusions 

In this article we have reviewed our recent efforts to control electrical 
currents and carrier populations in bulk semiconductors. We have shown 
how the coherence control effects can be understood in terms of interference 
of absorption pathways. In addition since the results achieved are based on 
macroscopic fields, carrier currents and carrier densities, a practical way of 
understanding the processes is through conventional nonlinear optics. 
However, even here, the terms we have identified are not typically 
discussed within conventional nonlinear optics. We have also emphasized 
how symmetry properties of the crystals dictate the polarization properties 
of the effects as well as their magnitude. 
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1. Introduction 

The coherent control of a quantum system by light relies on the possibility to control 
both the amplitude and the phase of its photoexcited states. It consists in producing 
interferences between different excitation quantum paths, each one resulting from the 
interaction of the electromagnetic field with the system. Among the different kinds of 
control investigated, the use of a sequence of two time delayed ultrashort optical pulses 
allows to create two temporally separated excitation paths. Temporal coherent control is 
based on the interferences between these two excitation paths. It can be achieved if the 
excited system stays coherent for a time longer than the time delay between the two 
excitation pulses. Coherent control was introduced more than one decade ago in atomic 
and molecular physics [1, 2]. In solids, particularly in semiconductors and their related 
quantum structures, the phase relaxation times are in the picosecond range, so the 
investigation of coherent phenomena requires the use of the stable ultrafast laser 
sources only recently developped. 

The coherence decay of optically excited electronic systems such as excitons in 
semiconductors provides one of the most powerful tools to investigate interaction 
processes of excited states [3]. Two types of coherence can be distinguished. One is 
the optical coherence between the ground and excited states whereby the electronic 
excitations are coupled to the phase of an electromagnetic wave. The other one 
is quantum coherence between the excited electronic states that are closely adjacent in 
energy. The optical coherence phenomena in solids are usually investigated by non- 
linear techniques such as Four Wave Mixing (FWM) [4-6], photon echo [7], and more 
recently reflectivity [8] experiments. Exciton-exciton, exciton-free carriers or exciton- 
phonon scattering have been explored in recent years with these techniques. We 
demonstrate in this communication that the coherent control of electronic excitations in 
semiconductors can also be monitored through the secondary emission following the 
excitation, yielding a direct measurement of the optical dephasing time. We show that 
the populations, alignment and spin orientation of excitons can be coherently 
controlled and directly observed in a Time Resolved Secondary Emission (TRSE) 
experiment. In contrast to recent reflectivity experiments [8] or resonant Rayleigh 
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interferometric experiments [9], which demonstrate the coherent destruction of carriers, 
the present work deals with a pure phase of cold excitons photogenerated under 
resonant excitation. As shown recently this is a condition for the stability of the exciton 
states [10], a decisive point in the present study which deals with the manipulation of 
these states. We demonstrate that the experiment relies on quantum interferences (QI) 
and not on optical interferences (Ol). In dense and polarized exciton systems, this 
technique evidences the spin dependent mutual interactions between excitons. 

2. Experimental set up and conditions 

We present the results on a GaAs I AlGaAs Multiple Quantum Well (MQW) which 
consists of 30 periods of non-intentionally doped 10 nm GaAs wells and 20 nm 
Al06Ga04As barriers grown by molecular beam epitaxy on a (100) substrate. The cw 
photoluminescence linewidth is 0.9 meV at 1.7 K and the shift between the heavy-hole 
exciton (XH) absorption and the luminescence peaks is about 0.1 meV denoting the 
high quality of the sample. Similar observations have been made in other high quality 
GaAs I AlGaAs with sufficiently narrow linewidths. 

A sequence of two optical pulses of opposite helicities <r + and a" split from a 
mode locked Ti: Sapphire laser beam (pulse width 1.6 ps) resonantly excites the heavy 
hole excitons at energy Em. This sequence is produced by a Mach-Zender type 
interferometer [Fig. 1(a)]. The temporal separation between the two pulses is controlled 
on two different time scales : a coarse tuning sets the delay t, between the two pulses on 
a picosecond scale; a fine tuning adds the delay r, on a femtosecond scale, allowing a 
very accurate control of the relative phase. The t, variation is achieved through the 
symmetrical rotation of two glass plates in opposite directions resulting in the variation 
of the optical path of the beam which travels across. The resolution on the optical path 
difference between the two interferometer arms is better than A/20 where X is the 
excitation wavelength. The exact delay between the two pulses is then t, + t2, and it is 
convenient to calibrate the time scale so that t, is an exact multiple of XJc. The TRSE 
kinetics are recorded by up-converting the emission signal in a LiI03 non linear 
crystal with the output from an optical parametric oscillator (OPO) synchronously 
pumped by the same Ti:Sapphire laser which is used for the sample excitation. The 
temporal pulse-width of the OPO measured from a cross-correlation is 1.5 ps. The 
detection direction is set along the normal to the sample surface, 20° from the excitation 
specular reflexion. The acceptance solid angle of our up-conversion system is about 10'3 

steradians. This two colours up-conversion technique is necessary to record the 
dynamics of excitons photocreated resonantly [11]. We used picosecond pulses rather 
than femtosecond ones in order to selectively excite the XH excitons: this is a crucial 
difference with previous experiments in which light-hole excitons and free carriers are 
also excited simultaneously. [8,11,12]. It is now well known that the exciton dephasing 
is strongly modified with the presence of free electrons and holes [6]. All the 
measurements were carried out at a temperature of 10 K and the photogenerated exciton 

density is varied from about 109 cm"2 to 3 x 1010 cm"2. 
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Figure /.(a) Schematic excitation arrangement. In (b) and (c) the sequence configuration is (a', a~) and /, = 
0. (b) The time evolution of f (■) and f (G) for t2 = m/l/c. Inset: dependence of the linear polarization decay 
(characteristic time Ts2) as a function of the photocreated exciton density, N0 * 10' cm'2, (c) Linear 
polarization /* measured 4 ps after the excitation [arrows in (b)], as a function of the fine temporal 
separation t, between the two excitation pulses. 

For a (100)-grown QW, the. relevant symmetry is D2d. The growth direction Oz is 
taken as the quantization axis for the angular momentum. The conduction band is s-like, 
with two spin states sz = ± 1/2. The upper valence band is split into an heavy-hole band 
with the total angular momentum projection jt = ±3/2 and a light-hole band withy'z = ± 
1/2. As the heavy-hole/light-hole splitting in the investigated sample is greater than the 
exciton binding energy, the   exciton states can be described using the heavy-hole 

subspace only. The appropriate basis is then {|^)
S

|ä+^)} i-e. 

|| +1),| - 1), | + 2),| - 2)}. In the time domain investigated in this work (t < 25ps), and 
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at low exciton density, only the optically active subspace (| + l),|-l)} is explored by 

the excitons due to the much longer electron and hole single particle spin-flip times 

[10,13]. A circularly polarized light <r* creates excitons on states |± l) (the "circular 

excitons" in the following), and a linearly cr^or ay polarized light, creates excitons on 

the coherent states | X) = (| l) +1 -1)) / 4l and | Y) = (| l) -1 - l)) / ijl respectively 

(the "linear excitons") [14]. 

3. Coherent control of excitation alignement, spin and population. 

We present in this section coherent control experiments performed at low exciton 
densities, typically about 109 cm"2. First, when the main delay between the two 
excitation pulses is t, = 0 and the intensities are strictly equal, their optical interference 
results in a linearly-polarized light excitation. The polarization direction in the QW 
plane depends on t,. Figure 1(b) shows the time dependence of the two linearly 
polarized luminescence components Ix(t) and Iy(t) and the resulting linear polarization 
P(t) = (Ix - IY)/(IX + f) for /, = mX/c (where m is an integer), i.e. when the interference 
of the two laser pulses in the plane results in a linearly cr*-polarized optical excitation. 
The recorded linear polarization, initially almost equal to 1, decays with a characteristic 
time Ts2 «20 ps, the so-called "transverse spin-relaxation time" [15]. This transverse 
spin relaxation time is the decay time of the quantum spin coherence. It is generally 

longer than "the optical dephasing time" T2° of excitons [5,6]. It is recognized now that, 
at low density, Ts2 is driven by the intra-exciton exchange interaction [15]. It has been 
demonstrated recently that, when the density increases, a much more efficient spin 
relaxation process takes place, driven by the inter-exciton exchange interaction [16]. 
This effect of the density on the linear polarization decay is illustrated in the inset of 
Fig. 1(b). The exciton population lifetime measured in Fig. 1(b) (T, « 15 ps) is 
consistent with other measurements and theoretical calculations of the free exciton 
radiative recombination time on high quality MQWs [17]. 

Figure 1(c) displays the linear polarization dependence versus the fine temporal 
separation between the two pulses PftJ. This recording, as all the similar recordings in 
this section, has been taken 4 ps after the second pulse to avoid any perturbation due to 
back-scattered laser light from the sample surface (as a consequence, a systematic small 
polarization loss occurs). The oscillations of the luminescence polarization observed in 
Fig. 1(c) at the period T = h/EXH merely reflect the rotation of the excitation light 
polarization in the QW plane driven by t2 which results in the photogeneration of linear 
excitons in states: 

| y'(t2)) = cos{wt2 /2)| X) + sin(ü)t2 /2)| Y). (1) 



Coherent Control of 2D Excitions 91 

As a matter of fact, the linear polarization of the exciton luminescence is P1 = cos cot. 
where a = Em I h . 
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Figure 2. The configuration is (<r\ o~~) and (, = 6.6 ps. (a) The time evolution of f (■), f (G) and the linear 
polarization P1 (full line) for (, = mX/c (the back-scattered laser light from the sample surface is negligible), 
(b) The linear polarization P1 measured 4 ps after the second excitation pulse [arrow in (a)], as a function of 
the fine temporal separation (, between the two excitation pulses, (c) The maxima and minima of the linear 
polarization oscillations as a function of t, (the dotted line is a guide for the eyes). 
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Now, the delay between the two excitation pulses is set to 6.6 ps, so that there is no 
temporal overlap between the two pulses. Figure 2(a) presents the secondary emission 
dynamics. The excitation with the second laser pulse results in a sharp rise of the linear 
polarization of the excitonic luminescence which then decays with the characteristic 
time Ts2. We have checked that, as expected, no linear polarization can be detected at 
any time delay when the sample is excited by the first or the second pulse 
independently. Obviously, this linear polarization originates from the interaction of the 
second pulse with the coherent excitonic polarization created in the crystal by the first 
pulse. The linear polarization (measured again 4 ps after the second pulse) is displayed 
as a function of t2 in Fig. 2(b). The clear oscillations which are observed again are 
interpreted as follows. 

The first optical pulse (cr+-polarized) sets up a material polarization in the crystal, 

built with   | + l) excitons, which is coherent with the laser electromagnetic field. The 

interference of the second optical pulse (<?~ -polarized) with this material polarization 

at time t2 results in a coherent polarization of linear excitons on   v'Oj)} states. The 

oscillations as a function of time t, of the linear polarization of the luminescence 
reflects the rotation of the orientation of these linear excitons in the QW plane. The 

emission amplitude arising  from these excitons U^'(f2)/ is a decreasing  function of 

the delay t, between the two pulses, which reflects the decay of the coherent 
polarization of the matter. As a consequence, the amplitude of the oscillations of the 
linear polarization of the luminescence observed in Fig. 2(b), proportional to the 

fraction of excitons promoted   on states   y'(?2))  's directly proportional also to the 

fraction of the excitons created by the first pulse which still oscillate in phase with their 
photogenerating optical field at time /,. Figure 2(c) displays the minima and maxima of 
the linear polarization oscillations as a function of t,. Thus the amplitude decay of these 
oscillations follows the decay of the coherent exciton population created by the first 
pulse ; it directly reflects the optical dephasing of excitons in the time interval [0, t,] 
even in the presence of inhomogeneous broadening, as we shall see hereunder [9, 18]: 

the decay time is the so-called "optical dephasing time" ( r2°). We measure 7^ = 6 ± 1 
ps. The result is in agreement with previous measurements by the Four Wave Mixing 
technique [3]. 

Here the question arises how the inhomogeneous broadening influences the decay 
time of the polarization oscillations when /, increases. Following recent works by 
Zimmerman [19], Citrin [20], and Haacke et al. [21], the secondary emission after the 
coherent excitation of excitons by an ultra-fast optical pulse includes both disorder- 
induced Resonant Rayleigh Scattering (RRS), which is coherent with the resonant 
excitation,   and   incoherent   photoluminescence   (PL)   from   excitons   which   have 

experienced energy or phase relaxation. Actually excitons   y'(f2)) are detected 4 ps 

after their generation at time t„ when a fraction of them has lost the optical phase. 
However, the secondary emission is here still dominated by RRS [21]. If the secondary 
emission was dominated by incoherent luminescence, the inhomogeneous broadening 



Coherent Control of 2D Excitions 93 

would reduce the amplitude of the oscillations when t, increases by a factor of the order 

of exp(-<7^,2 12)   where   ainh =Tinh /(W81n2j   and rinh is the inhomogeneous 

exciton linewidth in a gaussian description. Taking rinh = 0.9 meV leads to a much 
faster amplitude decay than the observed one [22], 
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Figure   5.   The   configuration   is   (<r *    CT  
r)   and   f,   =   6.6   ps.   (a)   The   circular   polarization 

Pc = y   - / j/(/+ + /~l, as a function of the fine temporal separation u between the two pulses (I* ait the 

circularly polarized luminescence components), (b) The maxima and minima of the circular polarization 
oscillations as a function of t, (the dotted line is a guide for the eyes). 
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Consider now a different experimental configuration in which we use a sequence of 
two linearly cross-polarized optical pulses, c? and </ successively. Here, the 
interference of the second pulse with the coherent material polarization created by the 
first one results in a coherent material polarization of "elliptic excitons" which occupy 
the states [14] : 

\y£(t2)) = cos(cot2 -n14)| + l)-isin(fitf2 -K14)|-1) (2) 

These excitons, which are characterized by a circular polarization P° = sin cot,, 
contribute to the circular polarization of the luminescence. This effect can be compared 
to the observation of Faraday rotation of a linearly polarized light probe after the 
excitation by a sequence of two cross-polarized pump pulses [12]. Here, the circular 
polarization rate P° decays in a characteristic time Ts„ the so-called "longitudinal spin 
relaxation time" of excitons [13,15] : we measure Ts, = 30 ps. It is shown in Fig. 3(a) 
that this circular polarization oscillates at the pulsation co as a function of t, when r, = 
6.6 ps. In this configuration also the minima and maxima of the circular polarization 

oscillations decay when t, increases with the characteristic time T2, providing again the 

direct measurement of the optical dephasing time of excitons. We find again T2° =6+1 
ps [Fig. 3(b)]. 
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Finally we consider the experimental configuration in which we use a sequence of 
two linearly co-polarized optical pulses. In contrast to the previous configurations 
which relied on coherent control of the exciton alignement or orientation, it is now the 
exciton density which is coherently controlled, as in Ref. [8]. Constructive and 
destructive interferences between the second optical pulse and the coherent excitons 
surviving from the first pulse modulate the total exciton density, as demonstrated by the 
oscillations of the luminescence intensity as a function of t2 at a fixed delay t,. This is 
illustrated in Fig. 4. The decay of this modulation amplitude as a function of t, reflects 
the decay of the coherent exciton population after its generation by the first optical 

pulse; the decay time is in agreement with the T° measured in the other configurations. 
Similar observations have been done when the sample is excited by a sequence of two 
circularly co-polarized optical pulses. 

4.  Quantum interferences versus optical interferences 

The question addressed here is fundamental : do the observed phenomena result from 
Optical Interferences (01) or Quantum Interferences (QI)? This question arises when 
evaluating the macroscopic polarization of the sample after the excitation sequence. 
This polarization is now evaluated. We write the system hamiltonian as H = H0 + 
Hint(t), where H0 is the unperturbed hamiltonian and H,Jt) the interaction hamiltonian 
with light. Both hamiltonian are restricted to the heavy-hole exciton subspace. For a 

(</, </) excitation sequence, a possible basis is || 0),| X),\ 7)} where 10) is the ground 

state. In the dipolar approximation, Hm(t) = -ju.E(t) where // is the dipolar operator 

for the heavy-hole exciton, and E(t) = Ej(t) + E2(t-r) is the electric field amplidude (r 
= t, + t2). To the first order approximation with respect to the electric field amplitudes, 
and for short pulses, the excited state after the second pulse is given in the QI 
hypothesis by the coherent superposition: 

| |K0) * 10) + 0xe-""" IX) + GYe-ia"{'-^| Y),       t > T (3) 

where 6} = /ii0Ei (<oH) / h (i = X,Y), 0t «1, and E(coH) is the Fourier transform of the 

electric field at the heavy-hole exciton pulsation coH . In the OI hypothesis, the two 
pulses create independent excitonic states, and two types of linear excitons will be 
created, namely: 

|^(O)*l0> + 0,e-to"'|*>, t>0 (4a) 

|^2(O)»l0> + ^e"to"('"r,lK>, t>t (4b) 
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and no microscopic coherence appears between | X) and | Y) states. The experiment 

could be then interpreted in terms of optical interferences of the secondary emission of 
these states. 

In both cases, the first order macroscopic polarization P(l) = P,(1) + P2
0) is given 

(with ex, eY unitary vectors) by: ¥0)(t) = px0(t)p0xex+pY0(t)p0Yey, where 

p( 0 (t) are the coherence terms of the density operator p\t) of the system. Assuming 

WA = WA - H'we obtain: 

T>v\t)^e-ia»'lEx(o>H)ex+ei°1"TEy(a,H)eY],       t>T (5) 

so that the two cases lead a priori to the same polarization. The distinction will come, as 
we shall see in the following, from the different coherence relaxation times of the 
density matrix. 

The density operator of the p\t) satisfies the evolution equation given by : 

dp dp 

?-i["M-f (6) 

dp 
where the phenomenological terms   — describe the relaxation of the  system 

towards the thermodynamical equilibrium. Within the relaxation time approximation, 

the relaxation of population terms writes in the basis ||0),|+l),|-l)J : 

dP±\,±\ 
dt 

dp0,0 

relax 

dt 

1 -U        _        ) 
- ~ T   P±\,t\ IT     \P±\,±1        Al.Tl/ 

= y\Pu +P-I,-I) 

(7a) 

(7b) 
relax 

where T, is the intrinsic radiative exciton lifetime, while Tsl is the longitudinal exciton 
spin relaxation time [15]. The coherences decay is given by the non-diagonal relaxation 
terms: 

dt 
(8a) 
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dPe>,±\ 
dt T 

relax 2 

1 
Pa.±i (8b) 

where T2° is the optical dephasing time of optically active excitons, and Ts2 is the 
exciton transverse spin relaxation time [15]. Corresponding expressions can be obtained 

in the   ||0),|x},|y)j basis.  The  equation  of the  density matrix  can be  solved 

analytically for a (</, c?) excitation sequence in the case where r, T2° « 7], Ts2. 

In the case of QI hypothesis, the circular polarisation detected after the second pulse 

is given by: Pc(t) = (/?,, -p„1H)/(Al + /?_,_,) or 

pC (0 = {Pxj + PY,X)/ {Pxj +Py,x)-We obtain, taking \dx\ = \GY\: 

2e~rlTl sinfi)„r    ,    ,,_ 
f <*>=      e-««+l      e "*>&-*'T«) (9) 

On the other hand, in the 01 hypothesis, the detected circular polarization after the 

second pulse is proportional to: Pc(t)=(px0p0Y + p0xpY0)/(pxx + pYY). We 

obtain here: 

2e-vt-T)/T2° 
P°^= e-m +e-(»-r)/r. &ino}HT   xe*P(-2t/T2°) (10) 

The argument is based now on the experimental results displayed on Fig. 5 and the 
dephasing times of linear excitons measured in the previous section. Here, the time 
delay between the two linearly polarized excitation pulses a" and a7, is t, = 4 ps (there 
is no temporal overlap) and the phase difference is precisely adjusted to a multiple 
integer of 2n. The right / + and left / " circularly polarized secondary emission 
components and the corresponding circular polarization P° are displayed on Fig. 5. We 
observe that the excitation with the second laser pulse results in a sharp rise of the 
circular polarization of the excitonic luminescence. As shown in the previous section, 
the amplitude of these oscillations decays as a function of the time delay t, with the 

optical dephasing time T2° = 6 ± 1 ps. In the 01 hypothesis, the circular polarization 
observed after the second pulse would originate from the interference in the detector of 

the secondary radiations from the | X) and | Y) excitons (created successively by the 

two pulses). In the QI hypothesis, the circular polarization originates from the 

secondary radiation of elliptic excitons (a coherent superposition of | X) and | Y) 

states) resulting from the interference of the second laser pulse with the material 
polarization created by the first one. In the OI hypothesis, the circular polarization P° 

which appears after the second pulse should decay with T2° 12 (plotted in dotted line in 
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Figure 5. The configuration is (er* a •) and t, = 4 ps. The time evolution of right /* (C) and left / (o) 
circularly polarized luminescence components and the corresponding circular polarization F* (full line). 
Dotted line : expected circular polarization decay in the optical interference hypothesis, using the measured 

value T° = 6 ps. The inset displays the circular polarization oscillations (pulsation (o=EXH/ ft ) versus the 
fine temporal separation between the two pulses /: (the recording is taken just after the second pulse). 

fig. 5 for comparison). In the QI hypothesis, the circular polarization should decay with 

the longitudinal exciton spin relaxation time Ts], much longer than T° 12 « 3 ps (a 
simple one pulse experiment yields Tsl « 30 ps in this sample). Fig. 5, which shows that 

the circular polarization decays with T„ and not Tf 12, demonstrates the QI 
hypothesis. This result can be compared to the observation reported in [12] : the 
Faraday rotation of the reflected probe after an excitation sequence (a*, <f) 
demonstrates that a quantum superposition of exciton states is indeed achieved. Time 
resolved four wave mixing experiments allow also in principle to distinguish between 
QI and 01 [23]. They are based on the analysis of the third order non-linear 
polarisability dynamics. We mention also that an experimental proof of QI hypothesis 
in a temporal coherent control expriment was recently obtained in atomic Cs [24]. It 
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relies on a two photon transition process. Here, we have demonstrated that, in 
condensed matter, the distinction betwen QI and 01 can be made from an experiment 
which relies on the first order polarisation. 

5. Spin dependent mutual interactions between excitons 

Mutual interactions in dense exciton gas was first investigated by Four-Wave Mixing 
experiments using linearly polarized pulses [6,25]. In both references, the homogeneous 
exciton broadening was found to increase with the exciton density N, with a law which 

can be linearized in a moderate density range (Af<2xl010cm~2) according to : 

r(N) = r0+rxxN (ii) 

This linear behaviour was predicted in Ref. [26], but a discrepancy remains since the 
theoretical value for Yxx is much lower than the experimentally determined one. In 
addition, we evidenced previously on the basis of photoluminescence experiments 
[16,27], that the mutual exciton interactions were strongly dependent on their 
polarization state, due to the effect of exchange interaction between their constitutive 
elements. We investigate here, as an application of our coherent control technique, the 

influence of the exciton density'on the optical dephasing time T2° =2hlT , taking into 

account the spin state of the excitons. We recall that using a (a+,a ") sequence we 
measure the dephasing time of a circular exciton population, whereas with a (ax,aY) 
sequence we determine the dephasing time of a linear exciton population. At low 

photocreated exciton densities (N < 109 cm'2), we find the same value for T° for both 

sequences (72° = 6 ± 1 ps), i.e. for the two types of exciton populations. However, 
when the total photogenerated density increases, the measured phase coherence decay 
time decreases much faster in the {ax, ay) configuration than in the (cr+, a") one. Fig. 6 

displays the density dependence of 1 / r2° for circular or linear exciton populations. It 
demonstrates the spin dependence of the exciton mutual interactions. 

The density dependence of the homogeneous broadening can be linearized for initial 

densities N < 3 x 1010cm"2 after equation (11). Here, r0 is the non-density dependent 
homogeneous broadening which includes all dephasing mechanisms except the mutual 
exciton scattering, and jxx is the collision broadening parameter resulting from exciton- 
exciton scattering. The fit with the experimental data for linear excitons yields y^ = 
0.15 meVxlO"10 cm"2 and r0 = 0.2 meV. The Yxx value is similar to the collision 
broadening parameters measured in [6,25]. 

In contrast to the case of linear excitons, we see in Fig. 6 that the optical dephasing 
time of circular excitons depends very slightly on the exciton density in the range 109- 
3xl010 cm"2. This behaviour difference between the circular and linear excitons is 
interpreted as a manifestation of the spin dependent mutual exciton interactions [16,27]. 
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Figure 6. Inverse of the optical dephasing times 7f of circular (*) or linear (o) excitons as a function of the 
exciton density. Dashed line : linear fit of the experimental data for linear excitons. Full line : linear fit of the 
experimental data for circular excitons taking the broadening parameter calculated in [25] ; the low density 

value 1/ r2° is the experimental one. 

The stability of the pure circularly polarized exciton phase, with respect to these 
interactions, results in an optical dephasing time quasi-independant of the density. This 
behaviour difference can explain the discrepancy mentionned previously by Honold et 
al. [6] between the broadening parameter measured in FWM experiments (with linearly 
polarized pulses) and the calculated value in a many body approach by Manzke et al. 
[26]. The experimental y^ value for linear excitons is about four times larger than the 
theoretical one. The latter however agrees well with the broadening parameter we 
measure for circular excitons : the full line in Fig. 6 corresponds to the calculated 
broadening parameter by Manzke et al. [26]. The agreement between the theory and the 
experiment is here quite convincing. This is a satisfactory result since Manzke et al. did 
not include in their calculations the spin-dependent mutual exciton exchange 
interactions. In other words, their calculations is appropriate for circular and not for 
linear excitons. 
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6. Conclusion 

In summary, we demonstrate in this work that coherent superposition of exciton states 
can be achieved by using a sequence of two phase-controlled optical excitation pulses. 
We show that the coherent control of excitons in semiconductors can be monitored by 
their secondary emission, yielding direct measurements of the optical dephasing time 

T%. In contrast to Four-Wave-Mixing techniques in which the principle of 

measurement of 72° is based on the third order non-linear polarization effect, the 
present measurements rely on the linear response of the system. We have shown that the 
optical orientation of optically active excitons, their alignment and their populations can 
be coherently controlled on time scales shorter than the optical dephasing time and 
directly observed in a Time Resolved Secondary Emission experiment. The optical 

dephasing time Tj of excitons, their longitudinal and transverse spin relaxation times 
Tsl and Ts2 and their radiative lifetime T, are measured in the same experiment with 
strictly the same experimental conditions. At high density, mutual exciton exchange 
interaction is evidenced, leading to a spin dependent collisionnal broadening parameter. 
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Abstract. The influence of many-body effects due to the Coulomb inter- 
action between charge carriers in semiconductors on the light-induced adi- 
abatic population transfer is investigated. The population transfer under 
consideration involves heavy-hole (hh) and light-hole (Ih) bands in p-doped 
semiconductor quantum wells. The investigation is a theoretical analysis 
and numerical evaluation of appropriate generalized multi-band semicon- 
ductor Bloch equations. Dynamic energy renormalizations due to Coulomb 
exchange interactions as well as quasi-thermalization of charge carriers is 
taken into account. 

1.   INTRODUCTION 

In recent years considerable interest has been devoted to ultrafast adiabatic 
transfer of population between eigenstates of atoms or molecules [1, 2, 3, 
4, 5]. It is possible to completely transfer population between two not- 
optically-coupled states by using a third state which is optically coupled 
to both the initial and the final state. The two states are coupled to the 
third state with two separate Ught pulses, one for each transition. The 
pulses have approximatively equal detunings and the band width of the 
pulse caused by the temporal change of the amplitude is small compared 
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with the detunings. In this way the eigenstates of the 3-level system become 
weakly mixed, except when they happen to cross each other. Consequently, 
the time evolution of the system is, most of the time, adiabatic. With 
suitably chosen parameters the crossing of the adiabatic energy levels leads 
to a Landau-Zener type transition [6, 7, 8]. The transfer seems to work 
best in the so-called counterintuitive pulse delay scheme in which the first 
pulse corresponds to the optical transition that includes the final state and, 
therefore, to a transition between two empty states. The exact resonance 
condition underlying the population trapping state is not necessary for 
the transfer to work. Only the crossing is essential since the population is 
switched at the crossing and it remains in its new state through the rest 
of the adiabatic evolution including the limit of vanishing light amplitudes 
(i.e., after the pulse sequence). If the states would be adiabatic at all times 
the population would remain in one of the adiabatic states and hence, after 
the pulse, would return to where it had started from. 

The physical processes in semiconductor quantum wells, that can be 
characterized in terms of a conduction (c) and two valence (v) bands (i.e., 
one heavy-hole (hh) and one light-hole (Ih) band) are much more com- 
plex than in atomic 3-level systems, because of band structure effects and 
because of the Coulomb interaction which yields excitonic and plasma- 
induced many-body effects. Nevertheless, the existence of non-radiative co- 
herences in semiconductors has been proven experimentally (see [9] and 
references therein). Also, theoretical simulations predict the existence of 
the population-trapped state in semiconductors [10]. In the following, we 
study how many-body effects like band renormalization, renormalization 
of the dipole energy and Coulomb scattering influence the light-induced 
population transfer in semiconductors. This is an extension of our recent 
investigation of population transfer in semiconductors [11]. It includes a 
detailed analysis of the general results presented in Ref. [11] with special 
emphasis on the role of many-body effects. A related investigation of optical 
excitation of spatially indirect excitons in double quantum wells utilizing 
the counterintuitive pulse delay scheme is given in Ref. [12]. 

The system to be considered in the following is a p-doped semiconductor 
quantum well [13]. We assume that the hh-lh splitting is sufficiently large 
so that the p-doping yields only heavy holes. A permanent heavy hole 
population and no light holes forms a A-like band structure analogous to 
the A-level structure in the quantum optics of atoms. 

2.   THEORETICAL BASIS 

In this section we review the theoretical model, which is based on the 
screened HF-theory for optically excited semiconductor systems. For a gen- 
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eral review and more details about the foundation of the screened HF- 
theory of optically excited semiconductors see, for example, [14]. The con- 
tributions to this theory that describe the coherent nonlinear optical re- 
sponse have also been discussed in [10, 15]. The model discussed below is 
also the basis of Ref. [11]. 

The theory is based on equations-of-motion for the time-dependent opti- 
cal polarization functions Psj(k) as well as the electron and hole distribution- 
coherence functions fss'(k) and fjj>(k), respectively. The vector k is the 
two-dimensional in-plane wave vector, the electron quantum numbers s,s' 
denote the spin-degenerate conduction bands with s — ±1/2, and the hole 
quantum numbers j,j' denote the two degenerate heavy-hole (j = ±3/2) 
and light-hole (j = ±1/2) bands. The equations-of-motion comprise the 
coherent Hartree-Fock contributions and incoherent dephasing and scatter- 
ing contributions. If (as assumed in the following) biexcitonic effects are in- 
significant, the Hartree-Fock contributions to the nonlinear optical response 
constitute the ideal limit in the sense that optical pulses can in principle be 
shorter than typical incoherent scattering times, but the many-particle ef- 
fects described by the Coulomb terms in the HF-theory cannot be neglected 
on any time-scale. Since typical femtosecond pulses don't quite reach this 
ideal limit, we have amended the HF-theory with dephasing contributions 
and a self-consistent multiband relaxation rate model. 

The equation for Psj(k) reads (h = 1): 

scatt 

the one for the electron distribution is 

-    fis/j/(A;)[^s/%/ - Sjjifsa>(k) - Sss>fjj>(k)] 

+ [ßjj.SsAk) + sss,i:jj,(-k)]p3,j,(k)} 

+ i±p3JCk) (i) 

ijtfsAk) = J2i^j(k)psj(k) - üsj(k)p:tj(k)} 
j 

+     T,{Zss»(k)fs„s(k) - fss»(k)Xs»s>(k)}, (2) 
s" 

and that for the hole distribution function is 

ijtfii'$)   =   Y,{niAk)fj"Ak)-fiAk)Hj>>Ak) 
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a 

d_ 
+    i-JjAk) (3) 

scatt 

Here, the electron energies are parabolic, es
k = h2k2/2me + ECH + EG, 

where EQ is the bandgap of the undoped quantum well and ECH is the 
Coulomb Hole self-energy (see, e.g., [16]). 

The Luttinger Hamiltonian H for the valence bands in the basis {j} = 
(3/2,-1/2,1/2,-3/2) reads 

n- 
Hhh c* 0 0    \ 

c Hih 0 0 
0 0 Hih c* 
0 0 c Hhh 1 

(4) 

where The Luttinger Hamiltonian H consists of two 2x2 matrices (compare 
with [15]) with elements Hhh = (h2/2m0)(ji +72)^, Hlh = (h2/2m0)(ifi - 
72))fc2 +Ahh-lh, and, within an isotropic approximation, c = -(7L2/2m0)\/3 

(72(^1 - kl) - 2ij3kxky) « -(ft2/4mo) \/3(72 + ls)k2. Here, -yu 72, 72 are 
the Luttinger parameters. The energy renormalizations are given by (with 
a = s or j) 

E««»(*) = -E*W««'(* + $)- (5) 

and the renormalized dipole energy is 

Sl.j(k) = ßaj-E + Y: V(q)P,j(k + q). (6) 

The interaction potential V(q) is the statically screened Coulomb potential 
including the form factor F(q) according to the lowest-subband wavefunc- 
tions in an infinitely deep quantum well: 

v(q)=^n*K1 

with 

Hi) = {qLf + 4TT
2 

3qL + IT' (1 - e-gL)47T4 

8   ^ qL     (qiy [(gl)2 + 4TT
2
] 

(7) 

(8) 
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where L is the thickness of the quantum well. Within a simple time- 
independent screening model, the screened potential is given by the initial 
Ä/i-density. The static screening function is 

where 

and 

u2 

e-1 = 1 - ^pl(q)/u\q) (9) 

(q) = «£(,) (l + £) + elh(q) (10) 

2 / \     2ne2qnhh ,-.-.>. 
W

P/(?) = —  (H) 
mhh 

are the two-dimensional (squared) plasmon dispersion and plasma frequency, 
respectively [16], and e\h{q) is the parabolic energy dispersion of the heavy- 
hole in the vicinity of the T-point and rou/mo = (71+72)-1 (mo= electron 
mass in vacuum). 

The light pulses are denoted by E. The dipole matrix elements fisj 
contain the information of optical selection rules. The dipole matrix ele- 
ments [17] are given by /7i/2,3/2 = V

/
3M-I/2,I/2 = -/*e+ and M-1/2-3/2 = 

V/3/?i/2,-i/2 — —ß£- where fi is the magnitude of the microscopic Cartesian 
dipole element. In the following we will call the transitions from j = 3/2 
and j = —1/2 to s = 1/2 "spin +1 transitions" (and this subset of bands 
"spin +1 subset") and the transitions from j — —3/2 and j = +1/2 to 
s = —1/2 "spin -1 transitions" (and this subset of bands "spin -1 subset"). 

For the scattering contribution to the /-equations we use a relaxation 
time approximation (RTA). For a fermion system the linearization of the 
scattering integral leads to linear decay terms proportional to the differ- 
ence between the individual populations of the states and corresponding 
thermal populations given by a Fermi distributions. The multiplying con- 
stant in the linearized decay term is called \(T\. In general it would be 
temperature and density dependent but, for simplicity, we assume it to 
be a constant. A Fermi distribution is characterized by the single particle 
energy of the state and the global quantities temperature and chemical po- 
tential. Since the Coulomb interaction does not change the total energy or 
the particle numbers of the system involved in the scattering, the global 
quantities, temperature and the chemical potential, are determined by set- 
ting the total energy and the total particle numbers given by the Fermi 
distributions equal to the ones given by the temporal populations. Each 
separately conserved particle number corresponds to a separate chemical 
potential. The total energy and the particle numbers can then be changed 
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by other processes like absorption or recombination. If the other processes 
are not present the populations would be driven to these Fermi distribu- 
tions asymptotically. As discussed above, the Coulomb interaction causes 
a renormalization of the single particle energies. The renormalization de- 
pends on populations and can be viewed as band shifts. We approximate 
the shifts by assuming them to be the same for each state in a given band 
but for them to be different in different bands. These rigid band shifts are 
given by selfenergies at k = 0. The rigid shift is evaluated using the ther- 
mal populations which makes the evaluation self consistent. Technically, 
the self-consistency is obtained by evaluating the zero density bands shifts 
(given constants) as a difference between the finite density band shifts and 
the corresponding rigid renormalizations. The temperature, the chemical 
potentials, and the band-renormalizations (shifts) are computed self consis- 
tently at each point in time since the total energy and the particle numbers 
are changed by the interaction with the optical fields. In the present case 
we assume that the spin +1 and spin -1 subsystems are not coupled by 
scattering processes since the spin flip times are typically in the ps rather 
than the fs regime, (see, for example, [18, 19]. Assuming, furthermore, that 
because of the high carrier density the fs-scattering processes are dominated 
by carrier-carrier scattering, the parameters characterizing the appropriate 
quasi-thermal equilibrium are (for each subsystem): the three band-offsets, 
two chemical potentials (one for the c-band and one for the v-bands), and 
the temperature. These parameters are uniquely and self-consistently de- 
termined by the zero-density band-offsets, the two densities (electron and 
total hole density), and the total electron-hole kinetic energy. Note that the 
renormalization of the bands due to the occupation-dependent screened ex- 
change interaction influences the relative shift of the hh and the Ih band in 
a complicated way. Note also that the off-diagonal elements of the quasi- 
thermal hole distribution (denoted by the superscript "i-1" for Fermi) ffy(k) 
U i1 J') d° n0* vanish. This is because we have written Eq. 3 in a basis 
that does not correspond to the true one-particle eigenstates of the system. 
A simple RTA of the form 

d*   ^        =~ (fe'(*)-««'/f(*)) (12) *'*<*> scatt 

is possible only if the states labelled by j and k are the one-particle eigen- 
states. To indicate this, we use a 'tilde' in Eq. 12, and the relation between / 
and / is given by fjji = J2u> u*ju«'j' /«'«'> wnere uij ls *^e eigenvector matrix 
of H and we have suppressed the common index k. Finally, in the scattering 
contribution to the equation for the optical polarization functions we use 
a simple dephasing constant I/T2 to simulate the effects of carrier-carrier 
scattering. 
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Figure 1.    Sketch of the spectral intensities of the light-pulses and the hh-lh absorption 
spectrum of the undoped semiconductor. 
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Figure 2. Density vs. time for the heavy-hole density (dashed line), light-hole density 
(solid line), and conduction band density (dotted line). The unit length is oo = 135A. In 
(a), s = 1/2 and j = 3/2 and -1/2, respectively, and in (b) s = -1/2 and j = -3/2 and 
+1/2. Ti=T2 = 600/s. 

3.   RESULTS AND DISCUSSION 

For the numerical investigation we use GaAs material parameters: me=0.067mo, 
€6=12.7 (background dielectric function entering the Coulomb potential), 
7i=6.85, 72=2.1, 73=2.9. We use a hh-lh splitting of 40meV and a well 
thickness of 50Ä with infinite potential barriers. Unless otherwise noted, we 
use two 40fs pulses (intensity FWHM), one left-handed circularly polarized 
pulse centered in time at i=0 and in frequency at tkjJo=Ea-lS0meV, and one 
right-handed circularly polarized pulse centered at i=40fs and 1UPI—EG- 

160meV. The peak amplitudes are /i£0=212meV. The doping density is 
chosen to be 3.42xlOn cm-2 at a temperature of 20K. 

In Fig. 1 we show the spectral intensities of the two light pulses and, for 
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Figure 3.     Distribution function before and shortly after the population transfer ac- 
cording to Fig.  2a.  (a) Solid line:  AA-distribution  before the transfer, dashed line: 
^-distribution after the transfer, (b) Electron distribution after the transfer. 
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Figure 4-    Statically screened exchange selfenergy vs. time according to Fig. 2a. (The 
line styles are same as in Fig. 2a) 

reference, the hh and lh-exciton spectrum of the undoped semiconductor. 
Clearly, there is not much spectral overlap between the pulses and the ex- 
citonic absorption. This justifies use of a dephasing time that is larger than 
the inverse exciton width. Such an increase of dephasing time as function of 
increasing detuning models the typical non-Lorentzian lineshape of the op- 
tical transitions. For the numerical evaluations we choose Ti = T-i = 600fs. 

Fig. 2 shows the density responses of all six bands as function of time 
in the presence of non-zero dephasing and relaxation rates. The basic char- 
acteristics during the time of the pulses are similar to those discussed in 
[11] for vanishing dephasing and relaxation rates, i.e., the transfer works 
well for both spin subsystems. For later times, the relaxation causes the 
redistribution of holes toward the original occupation of heavy-holes due to 
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intervalence band scattering. Since, in our analysis, we model on carrier- 
carrier scattering, the original state cannot be reached because the transfer 
is related to an effective heating of the carriers, which can be reversed only 
if the carrier-phonon scattering allows for a reduction of the energy of the 
electronic system (i.e., electrons and holes). Carrier scattering with LO- 
phonons sets in on the time scale shown in Fig. 2 and eventually dominates 
the dynamics on the several-hundred-femtosecond timescale. Finally, on a 
picosecond time-scale, spin-flip processes contribute as well, leading to the 
vanishing of differences in the occupation of the two degenerate electron 
bands and the two hole subsystems. 

Although in the presence of non-zero dephasing the density transfer is 
strongly reduced, and the final density of the conduction bands is signifi- 
cant, the basic transfer mechanism is not significantly altered. This is be- 
cause the charge-carrier distribution due to the dephasing-induced absorp- 
tion is different from the distribution taking part in the transfer. The latter 
is localized in the low-momentum states (because of our specific choice of 
initial conditions), whereas the former spreads of a wide range of momen- 
tum values. The range of this spread is determined by the detuning of the 
pulses, the curvature of the bands, and the dephasing rate (= broadening 
of the transitions), and it increases with increasing detuning and increasing 
dephasing rate. Fig. 3 illustrates this point. Although the comparison of the 
hh-distribution before the transfer and the //i-distribution after the transfer 
reveals that due to non-zero dephasing the transfer is not quite complete, it 
is still essentially intact. In contrast, the conduction band occuption, which 
is due to the dephasing-induced absorption, is generally quite small but 
spreads over a large range of momentum values. 

Finally, we illustrate in Fig. 4 another semiconductor-specific effect: the 
dynamic renormalization of the optical transitions due to the light-induced 
dynamic energy renormalizations. Shown in the figure are the statically 
screened Hartree-Fock exchange energies of the three bands of the spin +1 
subsystem. Due to the transient occupation of the bands, these shifts are 
large for all bands during the presence of the pulses. Before the transfer, 
only the M-band is renormalized, and, ideally, after the transfer only the 
//i-band would be renormalized. However, due to absorption, there remains 
a non-zero renormalization of all the bands after the pulses are gone. Since 
this renormalization depends on the actual distribution of carriers and not 
only on the total density, it continues to change with time after the transfer 
because of the charge-carrier scattering. 
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Abstract. The control of quantum beats by two phase-locked optical pulses 
is analyzed theoretically. We compare the case of heavy-light hole quan- 
tum beats as an example of a purely electronic coherence with the case 
of phonon quantum beats which are a characteristic feature of electron- 
phonon quantum kinetics. The maxima and minima of the beat amplitudes 
can be understood by the same arguments. For the case of phonon quantum 
beats an exacly solvable model is presented which allows us to analyze the 
role of the electron-phonon coupling constant. 

1.   Introduction 

Coherent dynamics in semiconductors relies on the fact that a quantum me- 
chanical system is not completely specified by the amplitude of the wave 
function related to an occupation probability, but also by its phase. In 
atomic physics such coherent experiments have a long tradition, in semi- 
conductors, due to the short dephasing times, they have been possible only 
when sufficiently short laser pulses became available. Among the many 
types of coherent experiments one of the most direct ways to show the 
wave-like behavior are coherent control experiments which are based on 
the phenomenon of constructive or destructive interference. Essentially two 
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different classes of such experiments have been performed: The excitation 
by two simultaneous pulses with different frequencies allows one to control 
the final state of the system which is used, e.g., for the coherent control of 
photocurrent [1] or chemical reactions [2]. The excitation by two tempo- 
rally non-overlapping pulses, on the other hand, gives a direct information 
on the phase memory introduced by the first pulse. Examples of this lat- 
ter case are coherent control of exciton density, spin, and heavy-light hole 
(HL) beats [3, 4, 5], of THz emission due to quantum beats in asymmetric 
double quantum wells [6, 7], and of phonon quantum beats [8, 9]. In this 
contribution we will concentrate on the coherent control of quantum beats 
by comparing the case of HL beats which can be understood on the basis 
of the semiconductor Bloch equations (SBE) with the case of phonon quan- 
tum beats, which require a quantum kinetic treatment of carrier-phonon 
interaction. Besides a full quantum kinetic semiconductor model we inves- 
tigate an analytically solvable model which allows us to study the effects 
of a stronger electron-phonon coupling. 

2.   Heavy-light hole quantum beats 

The theoretical description of coherent dynamics in a semiconductor in- 
cluding heavy holes (HH) and light holes (LH) is based on the multiband 
SBE. The basic variables are the elements of the single particle density ma- 

trix yg = (4ck), /§ik = <4kdi,k>.and PiM= <rf.-,-kck>>where 4and 4k 
(ck and di k) denote the creation (annihilation) of electrons and holes with 
i,j = h, I refering to HH and LH, respectively. The equations of motion for 
these variables are given by 

I 

d 
dtJtJ'-* ih   t 

fh _        ■"•   \^(fh fh ch        fh        \ 
Jij-k     -     JT 2^^J/,-k/«,-k ~ Z-li-kJlj-k) 

col 

+ ^ (UjMPU - KM) + Jtfii,-v |~". (2) 

P«'.k   =    Tfi E(£k<% + £?j,-k)PjM dtrh"       ih 
3 

+ ja £^k(<% - Sufi - fk-y) + l^kf •     (3) 
3 

Here, the Hartree-Fock renormalized energies 

%      =      4-E^/^q- (4) 
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£tj,k     =     ei,kSij - zJ^Vkk+q ' (5} 
q 

e£ and e^k denoting the single particle energies of electrons and holes and 
Vq being the Coulomb matrix element, include the effect of band gap renor- 
malization, and the Hartree-Fock renormalized field 

Ui,k = -M^Eo^e-1^ - £ Vq^k+q , (6) 
q 

M^k being the dipole matrix element and E0(t) [UL) denoting the ampli- 
tude (central frequency) of the driving field, give rise to excitonic effects and 
Coulomb enhancement. In these equations only Coulomb terms conserving 
the number of carriers in each band have been taken into account which 
are the dominant terms due to their small-g behavior. Thus, contributions 
between conduction and valence bands leading, e.g., to Auger recombina- 
tion and impact ionization as well as contributions leading to transitions 
between the valence bands are neglected. The resulting SBE are equivalent 
to the multisubband case given in [10]. 

The last term on the right hand side in each of the Eqs. (l)-(3) denotes 
the collision term. In the present section dephasing is treated in terms 
of simple relaxation time T2 while relaxation processes of the distribution 
function are neglected. A detailed quantum kinetic treatment of the collsion 
terms due to carrier-phonon interaction will be discussed in the following 
sections. 

For the case of excitation mainly in the excitonic region of the spectrum 
the SBE give more insight into the coherent dynamics after transformation 
into the exciton basis.[10, 11] The frequency un and wave function p?k of 
the exciton state \n) in k-space representation are obtained by inserting the 
ansatz 

P.-,k(t)=P"ke--»* (7) 

into the homogeneous part of Eq. (3), i.e., from the eigenvalue problem 

(4 + «U - Ä«») P"k - E ^Ä+q = 0  . (8) 
q 

Then, the polarization can be expanded in the complete and orthogonal 
basis set of exciton states according to 

P.-,k(t) = £^(*Kk (9) 
n 

where Pn denotes the amplitude of the n-th exciton state. After some cal- 
culations the SBE in the exciton basis are obtained: 

d /k     =     -^EfcM^k^oW^^'^-^k^k^oW^^n) 
dt K ih 
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- ^ E E Vic-k» (jftp& ~ Pft'P?i) KP* , (10) 
nn' j,k' 

/A _ Y^fr^        fh ch        fh       \ 
^/ij,-k     -     ^ Z^^J'-kA7,-k - lli,-kJlj,-k) 

- ^ E (p^ktfoWe-^: - jfoM&^W^'Pn) 
n 

- ^EEyw (Ä -p"k'?i,'k) K?n<, (ii) 
nn'   k 

|pn    =    -iu;nPn - l/in^,(0e-'^* - ^ 
di ift T2 

+    ^EPiMM^Eo(t)e-iüJLt (Saft + /ü-,_k) + ^EP«' 
ij,k n' 

X    £ Vk_k< (^/ke + $,-k) (Ä*Ä' - *&*&')  • (12) 
kk' 

The coupling to the light field is now determined by the exciton dipole 
moment 

/*» = E>"k^,k. (13) 
t',k 

The various terms in the equations of motion can be classified according 
to the order of the light field: The dominant contribution to the exciton 
amplitude Pn (first line in Eq. (12)) is of first order in the field. Thus, all 
driving terms in Eqs. (10),(11) are of second order in the field. The Coulomb 
terms cannot be neglected in the calculation of the carrier distribution even 
at low densities. However, these terms cancel in the equation of motion for 
the complete carrier (or exciton) density 

W = ne = nfc = £/k = E/«,k (14) 
k i,k 

which, since Vk-k' = ^k'-ki 1S given by 

iN = -^ E (unEoWe-^n - tim^'Pn) •     (15) 
n 

The second and third line in Eq. (12), which originate from phase space 
filling, band gap and renormalization, involve products of field or exciton 
amplitudes and distribution functions. Therefore they are at least of third 
order in the field. If screening is taken into account additional contributions 
appear due to the density-dependence of the Coulomb matrix elements 
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which, again, are at least of third order in the field. Thus, in the low density 
limit, i.e., up to second order in the field, the SBE in the exciton basis 
(Eqs. (12),(15)) agree with the optical Bloch equations for an ensemble of 
two-level systems with frequencies u>n, N denoting the total occupation of 
the upper states. In this representation the linear response as well as the 
exciton density in second order are exactly determined by optical Bloch 
equations which enables one to interpret the results in terms of rotations of 
a Bloch vector [3, 5]. If higher order terms are included, this analogy does 
not hold anymore since the full k-dependence of the distribution functions 
is required for the third-order contributions. 

In a coherent control experiment, HL beats can be observed in the exci- 
ton density as a function of the pulse delay [4] and in the four wave mixing 
(FWM) signal [3]. They also modulate pump-probe signals like the differ- 
ential transmission and reflection. In a coherent control FWM experiment 
two pulses in the direction ki generate a polarization in the sample. A 
third pulse in the direction k2 interacts with this polarization and is self- 
diffracted in the direction 2k2 - ki where the FWM signal is measured. 
In a first approximation the FWM signal is a measure for the polarization 
induced by the first two pulses and, since the inhomogeneous broaden- 
ing is eliminated by a time-reversal, the incoherently summed polarization 
^2j,k \PJM\ 

1S a g°°d measure for the signal in the sense that it contains 
the essential features. A full calculation of FWM signals is also possible, 
in the present case, however, calculations including three pulses for a large 
number of time delays are required which would be very time consuming. 

Figure 1 shows the incoherently summed polarization for two series of 
time delays between the pulses one and two (150 fs pulses centered at the 
HH exciton), n refering to the number of HH exciton periods Thh = In/uhh 
and ni refering to the respective number of LH periods. For an integer value 
of n the polarization is enhanced by the second pulse (constructive inter- 
ference), for an integer plus one half value it is reduced (destructive inter- 
ference). Due to the dephasing (T2 = 2.5 ps) it is not completely destroyed. 
The quantum beats, on the other hand, are determined by n\ because the 
light holes are excited much weaker. The beats vanish completely if n\ as- 
sumes an integer plus one half value since in this case the LH component 
is essentially destroyed by the second pulse. 

3.   Carrier-phonon quantum kinetics: Phonon quantum beats 

On the semiclassical kinetic level interaction mechanisms lead to transi- 
tions between states, the transtition rates being obtained from Fermi's 
golden rule. On this level, these mechanisms are a source of dephasing 
of coherent variables like interband, intersubband, and intervalence band 
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Figure 1.     Coherent control of HL quantum beats in a single quantum well. The time 
delay between the pulses is given in units of the HH period (n) and the LH period (m). 

polarizations. On a quantum mechanical level, on the other hand, they 
can also be a source of coherence due to the coupling between states. In 
the case of carrier-LO-phonon interaction it has been shown theoretically 
[12, 13, 14, 15] and experimentally [16] that in a quantum kinetic treat- 
ment the decay of the polarization exhibits an oscillatory contribution, the 
phonon quantum beats. Only recently it has been shown experimentally 
that also these beats can be coherently controlled [8, 9]. 

Carrier-phonon quantum kinetics in a two-band model can be described 
on various levels, in particular nonequilibrium Green's functions [12, 13] or 
the density matrix formalism [14, 15], both leading to the same equations of 
motion on certain approximation levels. The carrier-phonon Hamiltonian 
introduces new variables in the eqations of motion of the single particle 
density matrices fi'h, pk and nq = (&!&„), these are the phonon assisted 
density matrices 

Sk+q,k = T<7q(4+qVk>  >       5k+q,k = -4sq<4+qMk> (16) 

2k+U = rSq<d-(k+q)Vk> ,      r^+q = ^q<<2-k&qCk+q> , (17) 
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gq being the coupling matrix elements and 6q (6q) denoting phonon creation 
(annihilation) operators. They constitute the starting point of an infinite 
hierarchy of equations of motion involving higher order density matrices. In 
terms of a correlation expansion, this hierarchy is truncated by factorization 
on a certain level. A discussion of this factorization can be found in [17]. 

The Hamiltonian for a two-band model including carrier-carrier and 
carrier-phonon interaction is given by 

H = E (ek4ck+44rfk) + E huoP &i&q 
k q 

-   £ (MuEoWe-^t ct dt_k + M^E^ty-Lt d_kCkj 
k 

+      E Set (4+qVk - 46qCk+q ~ 4+qMk + 4&q4+q) 
k,q 

V( 
+      E ~2    (44'Ck'+qCk-q + 44'4'+q^k-q ~ 2c£4'dk'+qCk-q) -(18) 

k,k' 
q 

If all four-point correlations are neglected, this Hamiltonian gives rise to 
the equations of motion for the single particle density matrices 

jfi   =   «.{£**} 
+   E[2R*{5k+q,k}-2Re{SJ,k_<1}]  , (19) 

q 
d_ 

~dt 
tk    =    2Rej^4*pk} 

+   E[2Re{S-(k+q),-k}-2Re{5V(k-q)}]   ,        (20) 
q 

jtv, = 4(^ + ^k).k-^k(i-/^-A) 
+     E r k+q,k ~ rk-q,k ~ ^k.k-q + ^k,k+qj   ' (2i) 

q 

|nq    =    E[2Re{5k+q,k} + 2Re{s£+q,k}]   . (22) 
k 

For the phonon assisted density matrix T^ we obtain 

^Tk',k    =    Jf- [£-k> + £k + huop) Tk, k - - (1 - /_k, - f£) Tk,k 

+     ^ (^k'^k'.k _ ^k^-k-k'J - T\Pk'Sk',k ~ Pk^-k-k') 
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Figure 2.    Coherent control of phonon quantum beats in a quantum wire for the case of 
excitation by two 15 fs pulses centered at the exciton frequency. 

+    ^Iffk'-kl2 [(nk,_k + l) (l - ft) + nk/_k/^] Pk, 

-    ^|5k'-k|2[("k'-k + l)(l-/V)+^k'-k/-k']pk    (23) 

with the off-diagonal Hartree-Fock terms 

Sk',k     =     ~Z2 *q"Sk'+q\k+q' + ^k'-k 2s ( -S'k'+q'.k+q' + ^k'+q'.k+q' I (24) 
q' q'   \ / 

rp(±)       _ V^ T/    rp(±) (C)r\ 
Jk',k     -     "Z^V-'k'+q'.k+q" yl0> 

q' 

and similar equations for the other phonon assisted density matrices. 
Figure 2 shows the incoherently summed polarization for the case of a 

quantum wire excited by two 15 fs pulses centered at the exciton frequency. 
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The oscillations, which in the present case are due to a beating between the 
exciton and a phonon sideband above the exciton, can be clearly controlled 
by the relative phase of the second pulse. The beats are essentially absent 
for the lowest and the highest value of the time delay shown in the figure. 
These values correspond to 16.5 and 17.5 times the period of the phonon 
sideband which is determined by the sum of exciton and beat frequency. 
Thus, the behavior is the same as in the case of HL beats shown above. 
It is interesting to notice that the decay of the signal is modified by the 
second pulse, a feature which has been found also in the experiment [8, 9]. 

4.   Non-perturbative treatment of carrier-phonon interaction 

The quantum kinetic theory discussed in the previous section is based on 
a correlation expansion which assumes that correlations between an in- 
creasing number of quasiparticles are of decreasing importance. Since this 
expansion is related to an expansion in the carrier-phonon coupling matrix 
element, the analysis of systems with a stronger phonon coupling requires to 
take into account higher orders in the hierarchy. In this section we discuss 
an alternative method which has been proposed recently [18] and which 
avoids the hierarchy. This method will be applied to a simple model of a 
two-level system interacting with a single phonon mode. This model, which 
has already been shown to explain very well the coherent control of phonon 
quantum beats in the weak coupling limit [8, 9], can be solved exactly by 
the present method. 

The basic idea is to substitute the single particle density matrices by 
generating functions defined according to, e.g., 

/kk'(KMAi})    =    <4ck<exp[X>qö;]exp[;£/yg) ,        (26) 
q q 

Pkk'({«qMAJ)    =   (4ck'exp[^aq&l]exp[^/?q6q]) (27) 
q q 

with complex numbers aq and /3q. All phonon-related higher order density 
matrices can be obtained as partial derivatives with respect to aq and /3q 

taken at aq = /?q = 0. As a result, the hierarchy of equations of motion is 
transformed into a set of partial differential equations. While the treatment 
of a full semiconductor model is too complicated due to the high dimension 
of the equations, the following two-level model interacting with one phonon 
mode, which stands for a coupled exciton-phonon system, can be solved 
analytically. 

The Hamiltonian including the coupling to the light field is given by 

H = KlJc + huLb% + hg {b] + b) c*c - hM0 (E cW + E*dc) .       (28) 
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The dynamical variables in this case are the functions 

p(a,ß,t)    =    (rfcexp(a6t)exp(/?6)) , (29) 

f(a,ß,t)   =   (c^cexp{ab^exp(ßb)) , (30) 

n{a,ß,t)   =    (exp(a6t)exp(/?ft)> , (31) 

which obey the following equations of motion: 

idtp   =   [n + uL(ßdß-adQ)+g(ß + da + dß)]p-M0E(n-2f),(Z2) 

idtf   =   [uL(ßdß-ada) + g(ß-a)]f-M0[EpT-E*p], (33) 
idtn   =   uL(ßdß-ada)n + g(ß-a)f, (34) 

with pT(a,ß) =p*(ß*,a*). By means of the transformations 

p(a,ß,t) = e^+^^piae-^+y^e^-j^), (35) 

/K/M) = e^etWz-<+ae"^()/(ae-^',/3e!^,t), (36) 

n(a,ß,t) = «(ae-^'./Je^'.f), (37) 
E{t) = M0exp[iQt]E(t), (38) 

with Q, = £1 — W£72, and 7 = g/u>L the partial derivatives are eliminated 
resulting in a set of three ordinary differential equations which can be fur- 
ther simplified by setting y(a, t) = y(-a*, a, t) where y stands for p, f, and 
n. The final equations of motion are 

dtp(a) = iE[        e^eiuLt     n(a-7e-'wt*) 

- 2ea'-*e'iuJLt /(a-7e-iü,L*)]> (39) 

dj{a) = ie-~<2[     E e^eiwLt p*(-a +1e~i^t) 

- E* e-9^r'Wt< p(a +7e-!'^() ], (40) 

8tn{a) = -i7Wl2ReKit]e-l2ilmmlae,Wlt] f{a). (41) 

These equations have to be solved with the initial conditions f(a, 0) = 
p(a,0) = 0 and n(a, 0) = exp[-ni,|a|2], n^ being the equilibrium (Bose) 
value of the phonon occupation. From the dynamical variables we obtain 
the polarization P = hMoe'^+^Jp^e~iwLt,t) and the exciton density 
Ne = f(a = 0,t). 

The equations can be solved iteratively for the case of excitation by 
^-pulses E(t) = EoS(t). The linear polarization is given by 

P^it) = ihM*E06(t)e-i*t+*&-i"lt-1-n^-i"Lt-1W . (42) 
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X=0.2 

full model 
1. order 

Figure 3.    Coherent control of carrier density obtained from the two-level model for 15 
fs pulses at T = 10K. 

At zero temperature, where TIL = 0, this result can also be written as 

P]1,(0 = iÄMo
2£?oö(t)Ee" 

V2 7 ~i(n+jujL)t (43) 
3=0 

which shows the well-known result of phonon sidebands at multiples of the 
phonon frequency above the polaron shifted exciton energy. It is interesting 
to compare this exact result with the result obtained from the first order 
correlation expansion: 

fcL(t) = in^X)] ^x + 1)e~ilU~UJLX]t + ze-*1*"-^**}       (44) 

with x = (\/l + 472 - l)/2 w y2. As expected, we find only one phonon 
sideband, the frequency however being shifted by a factor (1 + 2x). 

The exciton density up to 0(E2) generated by two <S-pulses with a time 
delay r is given by 

<?(*,'■) |M0£o|2 {6{t) + d(t-T) 
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Figure 4-   Coherent control of phonon quantum beats obtained from the two-level model 
for delta pulses at T = 10K. 

:[2Re[e-^+^2(e-'U'iT-1-^ le-'^-H2)] + i]}    (45) 

exhibiting the fast coherent control oscillations at the polaron shifted exci- 
ton energy Q as well as additional structures related to the phonon coupling. 
In Fig. 3 the exciton density created by two 15 fs pulses at a temperature 
of 10 K is shown as a function of r for three different values of the phonon 
coupling. For x = 0.2 we find a weak modulation with the phonon fre- 
quency. With increasing coupling the higher order terms do not show up as 
additional frequencies, instead the minima become more pronounced lead- 
ing finally to a behavior similar to a "collapse and revival". In the lowest 
part of the figure we compare the full model with the first order correlation 
expansion result which, of course, are quite different at this high value of 
x. Nevertheless it is interesting to notice that the very initial part below 
20 fs is still in agreement which is consistent with the interpretation that 
the correlations are successively built up. 
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For the case of excitation by three 5-pulses the FWM signal can be 
calculated analytically. The polarization in the FWM direction is given by 

pM_ki = -ihM^Eo |MoEo|2Ö(i)e-ini+2^(cos(^<)-1) 

X{0(-£i)e~l'ß<1 +72(2e-""£*l -ei"L(t-h) -i-nL\2-&-iuLtl _e-«"I*p) 

+ö(_i1/)e-^i'+72(2e-i^'i'-e^(*-ii0_i_nL|2-e-^*i'-e-i^<|2)-,/46s 

where the time of the pulse in direction k2 has been set to zero. The FWM 

signal P^-ki, for different time delays of the pulses in direction kx and 
for two values of the coupling constants are shown in Fig. 4. The results 
for the weak coupling are in agreement with those given in [8] and clearly 
show the coherent control of the quantum beats. By an expansion of the 
exponential (for t = 0,nL = 0, t21 > 0, t2V > 0) the signal can be written 
as 

\ptk\-k, I2 = const {1 + cos(fitn.) + 7
2 h(t2V,tlV)} (47) 

with h(t2V,tn>) = cosioLt2v{cosuLtni + 1 + cos(Q + u>L)tu> +cosÜtlv} 
+ smuLt2v {sin uLtni + sin(fi + u>L)tn>_- sin Qtw} which directly shows 
that the beat amplitude h vanishes for (Q + uL)tnl = (2n + 1)TT or Cltn, = 
(2n + l)7r in agreement with the results of the previous sections. In the case 
of a stronger phonon coupling the FWM signal in Fig. 4(b) exhibits higher 
harmonics of the phonon frequency. Since now more than two transitions 
are beating the oscillations cannot be anymore switched off completely. 

5.   Conclusions 

We have presented a theoretical analysis of the coherent control of heavy- 
light hole and phonon quantum beats. In all cases the quantum beats are 
switched off by the second pulse if there is destructive interference for the 
weaker of the two beating transitions, which in the first case was the light 
hole and in the second case the phonon sideband. We have shown by an 
analytical solution of a two-level model coupled to a single phonon mode 
that for stronger phonon coupling higher harmonics appear in the FWM 
signal and a full control of the beats is not anymore possible. 
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COHERENT CONTROL SCHEMES 
IN SEMICONDUCTOR DOUBLE WELLS 

XUEDONG HU AND WALTER POTZ 

Department of Physics, University of Illinois at Chicago 
845 W. Taylor, Chicago, IL 60607 

Abstract. We present a brief overview of some of our theoretical stud- 
ies of coherent control schemes in semiconductor heterostructures within 
Boltzmann-Bloch equations. The latter are obtained from Dyson's equa- 
tion within the Keldysh nonequilibrium Green's function approach and al- 
low a microscopic analysis of coherent control schemes in semiconductors. 
Feasibility of coherent control of charge oscillations, optical absorption, 
and optical gain is predicted. Most recent studies also indicate that co- 
herent control of longitudinal optical (LO) phonon emission rates can be 
achieved. 

1.   Introduction 

Coherent control is based on quantum interference between competing 
pathways as demonstrated, for example, in Young's multi-slit experiment 
or the Aharonov-Bohm effect [1]. Original experimental work on coherent 
control in atoms, molecules, and solids has been based on variation of the 
relative phase between two coherent light fields, one of which promotes sin- 
gle photon absorption, the other leading to either two- or three-photon ab- 
sorption. Within this scheme, coherent control of photo-ionization, photo- 
dissociation, and the direction of photocurrent has been demonstrated in 
experiments [2, 3, 4]. We proposed that coherent control of THz radia- 
tion from heterostructures can be achieved [5]. The principle of this coher- 
ent control scheme, illustrated in Fig. 1(a), can be explained with Fermi's 
Golden Rule. It states that the probability for going from an initial state 
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(a) (b) 

H, 

lf> 

Ho 

li> 
Figure 1. Schematic representation of two coherent control schemes: (a) the traditional 
scheme using the relative phase between two light fields; (b) a coherent control scheme 
based on a three-level system. Horizontal bars and vertical arrows indicate electronic 
bands and light fields, respectively. 

\i) to a final state |/) is proportional to 

N 

p^fcxm^Hiif)? (1) 
1=1 

when there are N (N=2, in the simplest case of coherent control) ways to 
couple \i) to |/). Adjusting the relative phase between individual Hamilto- 
nians Hi allows manipulation of the magnitude of interference terms and 
hence the transition probability. 

However, the quantum interference principle is much more general and 
is not limited to two-level situations or two perturbations. Consider, for 
example, a bulk semiconductor or a semiconductor nanostructure where 
electronic transitions occur between two or more electronic (sub)bands, i.e. 
between two continua. Such transitions can be promoted by various "built- 
in" many-body interactions, such as electron-electron, electron-phonon, 
and electron-photon interactions, as well as external perturbations. Gener- 
ally, there is little external control over many-body interactions, although 
structural design can be used to suppress certain coupling mechanisms. For 
example, the LO phonon coupling can be suppressed by using minibands 
which are narrower than the LO phonon energy. Similarly, scattering con- 
tributions from the electron-electron Coulomb interaction can be reduced 
by working in the low density regime. Moreover, structural design allows 
tailoring of coupling matrix elements to some degree, which has been ex- 
ploited in the design of quantum cascade lasers and Fano resonances [6]. 
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Note also that recently an optical intracollisional-field effect has been used 
to manipulate the phonon emission rate [7]. This occurs when light pulse 
durations are significantly shorter than optical phonon emission times (« 
200 fs in GaAs) so that collision duration times can be resolved. Here, how- 
ever, we will confine ourselves to situations where pump and probe pulse 
durations are of the same order of magnitude (or larger) than characteristic 
scattering times. In this case, Boltzmann-Bloch equations (BBEs) give a 
good microscopic account of the physical processes that go on in a semi- 
conductor upon subpicosecond (laser) excitation [8]. 

BBEs, or equivalently, density matrix equations can account for both 
coherence in the system, in the form of interband polarizations /Q/?(k) (off- 
diagonal density matrix elements), and phase breaking in the system due to 
many-body interactions. For example, the basic electron-phonon scattering 
contributions are of the form 

e-p, scattering 
dtf<ß(t,k) 

i  E   f df {M^,{k-kv)M^{kv-k) 
n   -yvv'k„J° 

(n<(t',k- k„) e
li¥:i(^(k)-v(k,)-^<r(k-k,)) 

+n>(t,,k,-k)e^^(k)-v(^)+^(k.-k))^/<j/(t'jk|/)/>(t'jk) 

- (n>{t',k - k„) e^T^MkJ-vO^-ftMk-M) 

+n<(t', K - k) e^Mk)-v(M+ftMk,,-k)^ f>v{t,^ K) f<ß{t^ k)" 

+Af$(k-k„) M$(k„-k)   (n<(t', k - k„) e^^M-^M-nMk-k,,)) 

+n>(tf, K - k) e^(ea(k)-e,(k,)+^(k,-k))^ f<^ K) ;> ^ k) 

- (n>(t',k - ki/)e^(^(k)-e,(k,)-^(k-k,)) + 

+n< (f, K - k) e^(ea(k)-e,(k,)+^(k,-k))^ f>^ K) ,< ^ k) 

+2i sin[(f - *K(0)] #„(f, k„) M# (0) 
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x(M5(0)/<7(f',k)e^(^k)-^W) 

-M#(0) f<ß(t',k) e^«-#))j] J (2) 

Here, n< (£, k) is the phonon occupation number for phonon mode (a, k) and 
n>{t,k) = n<(t,k) + 1. Similarly, /<7(*,k) = -/7Q(*,k) and />7(*,k) = 
6ay—fia(t, k), with a, 7, and k denoting subbands and the two-dimensional 
wave vector for in-plane motion, respectively. Here fia are inter(sub)band 
polarizations, while faa are carrier distribution functions in band a. Usu- 
ally, the adiabatic and Markov approximation are also used. Equation (2) 
shows that the phonon-induced transition rates depend on interband po- 
larizations, which in turn can be manipulated externally by suitable light 
fields. Hence, in the present situation the quantum interference principle 
mandates that transition probabilities are influenced by the relative phases 
of interband polarizations. This will be exploited in Sect. 2.4. Equivalently, 
phonon Boltzmann equations show that the net phonon emission rate de- 
pends on interband polarizations, as well as distribution functions. 

Interband polarizations can most effectively be manipulated by external 
light fields and their relative phases. In our theoretical analysis we treat 
light fields classically within the dipole approximation. The light-electron 
coupling has the structure 

#LF = E {aMK t) cos(uLFt + <j)LF)bf {k)%{k) + h.c) ,       (3) 

where ba(k) are the single-electron field operators, WLF and 4>LF are fre- 
quency and phase of the light field. aLF(k,t) is the effective coupling 
strength. Gaussian pulse shapes are used in our calculations. Such an inter- 
action "generates" interband polarization /jy(k), i.e., coherence between 
states \i) and |/). 

However, many-body interactions set a limit to phase control as they 
tend to "break" phase coherence. In other words, particles do not evolve 
according to the single-particle Schrödinger wave equation. They interact 
with each other in a complicated manner, causing the concept of phase 
to break down on a time scale larger than the characteristic scattering 
time. Another way of looking at phase breaking in a control process using 
the relative phase between two perturbations H\ and H2 is to include the 
many-body effects symbolically as a third perturbation in HUB-, SO that 
the net transition probability in Eq. (1) is 

!(;!#! +#2+ #MB|/)|
2
. (4) 
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Hence, when the external perturbations are weak or of the same order 
of magnitude as many-body scattering from \i) to |/), coherent control 
is limited to time scales of the order of the characteristic scattering time 
in the system. Note that the relevant scattering time is the one from \i) 
to |/), i.e., the one in direct competition with the transitions promoted 
by the external perturbations. This explains why coherent control works 
for inter(sub)band excitations even when pump pulse durations far exceed 
intraband scattering times [3, 4]. 

Recent advances in subpicosecond laser spectroscopy and microfabri- 
cation of semiconductor nanostructures provide a fertile ground for the 
study and exploitation of coherent control phenomena. The goal is twofold. 
Firstly, coherent control schemes provide a sensitive tool to explore the dy- 
namics of many-body interactions and their role in "breaking the phase". 
Secondly, coherent control schemes may be used as a tool to perform cer- 
tain tasks, such as controlling the final state population in an interband 
transition [9], the optical gain of a device [10], THz emission [5, 11, 12], or 
photocurrents [3, 4]. 

In what follows we will use the two control schemes shown in Fig. 1. 
Such level schemes (subband structures) can be readily engineered in semi- 
conductor nanostructures using modern growth techniques. Fig. 1 (a) shows 
the traditional control scheme of variation of relative phase between two 
light fields which, respectively, couple the initial and final band by a single- 
and two-(or three-) photon processes. Depending on the nature of the sys- 
tem, the relative phase allows control of the absorption cross section, the 
branching ratio in a photo-chemical reaction, the photocurrent, or charge 
oscillations in a double well. Note that here the horizontal bars represent 
electronic bands rather than sharp electronic levels of an atom. The second 
scheme, Fig. 1 (b), is based on a three-band model consisting of a doublet 
+/— and a singlet of bands. Manipulation of the phase of the interband 
polarization /+-(k) of the doublet allows control of transitions between the 
singlet and the doublet provided that the period of the interband polariza- 
tion /+_(k) is longer than the characteristic time constant of the coupling 
between the singlet and the doublet. The latter can be provided by a light 
pulse or simply by phonons or coupling via a continuum. 

2.   Numerical Results 

2.1.  COHERENT CONTROL OF CHARGE OSCILLATIONS IN 
ASYMMETRIC DOUBLE WELLS 

Scheme Fig. 1(a) has been used to demonstrate feasibility of coherent con- 
trol of charge oscillations in asymmetric double wells [5, 13]. In an asymmet- 
ric AlGaAs/GaAs double well (as sketched in Fig. 2, but without microwave 
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hh 

mw 

Figure 2.     An illustration of a biased semiconductor double well. 

(mw) driving field) the initial state \i) is the top heavy-hole band of the 
wide well. The final state |/) is the doublet of electron subbands which 
are biased into resonance by an external electric field [14]. Interference 
between single- and two-photon absorption between this subband doublet 
and the top heavy-hole band determines both the number of photo-excited 
electron-hole pairs, as well as their rate of generation. The light fields are 
treated classically and their coupling to the carriers is incorporated within 
the dipole approximation using the Hamiltonians 

#lp   =   E{^iP(klt)S[(k)SL(k)-Alp(k,«)6t(k)Sff(k) 
k 

+    [Blp(k,t)b[(k)bH(k) + h.c]} (5) 

and 

H2p   =   E{^P(k,<)^(k)6L(k)-A2p(k,<)Sjf(k)6H(k) 
k 

+    [B2p(k,t)b[(k)bH(k) + h.c]} (6) 

Here Ai(k,t) = 2kP/Ega,i(t) cos(u>it+4>i), i=lp,2p, where Eg, P, and a,i(t), 
respectively, are energy gap, the momentum matrix element [15], and the 
dipole matrix elements (times some constants) between hole (H) and left 
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Figure 3.    Number of electrons in the narrow well of a biased asymmetric 150Ä-20Ä-100Ä 
double well versus time and phase of the light field providing single-photon absorption. 

well (L) subband. -Bjp(k, t) = a,i(t) COS(WJ£ + fc) are the usual light-matter 
couplings, as used in Eq. (3). Note that Eq. (5) and Eq. (6) lead to kinetic 
equations which go beyond the usual semiconductor Bloch equations. They 
account for k-dependent mixing of \s) and \p) states in valence and con- 
duction band Bloch functions [16]. The pulse envelopes are Gaussians in 
time. <pi is the phase of light field i. Within this Hamiltonian, the light fields 
are treated exactly. Standard techniques of harmonics generation using W2P 

as input frequency allow generation of phase-locked second harmonics of 
frequency uip = 2w2p. 

Fig. 3 shows the number of carriers in the narrow well as a function 
of time and phase of the high frequency pump field. The THz signal is 
proportional to the second time-derivative of this quantity [13]. In this 
low carrier density limit of less than 5 x 1010 carriers/cm2, the pump 
pulse duration is limited by the tunneling period (« 400 fs) between left 
and right well. Note that this three-subband situation is distinctly more 
complicated than a(n atomic) three-level system due to the carrier-carrier 
Coulomb interaction which mixes particles in different k states, leading 
to both coherent many-body effects, such as exciton formation, as well 
as incoherent many-body effects in the form of scattering. Similar control 
effects are obtained from interference between single- and three-photon 
absorption [12]. 
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Figure  4- Number  of  electron-hole   pairs   generated   in   a  biased   asymmetric 
150Ä-25Ä-100Ä double well versus time and phase of the mw field. 

2.2.  COHERENT CONTROL OF OPTICAL ABSORPTION 

If the duration of a pump pulse is shorter than the low frequency oscillation 
period of interband polarization /+_(k), the phase of the latter can be used 
to control optical absorption in a scheme sketched in Fig. 1(b) [12, 17]. 
Consider a situation where the pump pulse is in resonance with the direct 
exciton of the wide well in an asymmetric GaAs/AlGaAs double well and 
the lowest electron subband splitting is on the order of 10 meV. If this 
doublet is driven resonantly by a coherent microwave (mw) field, the phase 
of the mw field determines the phase of the /+-(k) interband polarization. 
Hence, for a pump pulse shorter than the doublet Rabi period, its arrival 
time determines the number of electron-hole pairs which are generated by 
the pump pulse. Fig. 4 shows the number of electron-hole pairs as a function 
of time and mw phase for a mw intensity of about 1 MW/cm2 and a 200 fs 
pump pulse. Time "zero" marks the arrival of the peak of the pump pulse, 
whose shape is chosen to be a Gaussian. In the present case we find the 
effect to be periodic with ir, indicating a break-down of the rotating-wave 
approximation for the mw field in contrast to atomic/molecular situations 
where the latter usually is a good approximation. Moreover, here we directly 
probe and control a many-body effect, namely, the Coulomb enhancement 
near the bandgap. 
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Figure 5. Here is an illustration of the asymmetric GaAs-GaAlAs double well we 
studied. The system is biased by a DC electric field so that the splitting of the electron 
subband doublet ("—" and "+") is about 9 meV. The well and barrier widths are shown 
in the figure. The well depth is about 0.5 eV. Within a three-subband model we study 
the doublet ("—", and "+") and the next higher band "H". The three subbands have the 
same parabolicity with carrier effective mass of 0.067me. The dipole coupling between 
the top band "H" and the lowest subband "—" is about 65 percent of the strength of 
that between "H" and "+". 

2.3.  COHERENT CONTROL OF OPTICAL GAIN 

As a second application of scheme (b) in Fig. 1 we explore the possibility 
to coherently control optical gain in semiconductors. Here we consider a 
structure which is similar to the double-well (DW) structure which has 
been used as the building block of the quantum cascade laser [18]. We 
treat it within a three-electronic-subband model, as illustrated in Fig. 5. 
Its lower two subbands form a doublet whose separation is controlled by a 
static external field. Here the splitting is about 9 meV. The two subbands 
are coupled resonantly by a continuous wave (cw) mw field of intensity 
1.5 MW/cm2 (20 kW/cm2 in the long probe pulse cases). A probe pulse 
couples a higher subband (H) to the doublet ("+" and "—"). Both mw 
driving field and the probe field propagate along the planes of the quantum 
wells, with their electric field along the growth direction. All light-field 
couplings are treated within the dipole approximation. For simplicity, we 
treat all three subbands with equal parabolicity, so that energy separations 
are independent of k. 

HF mean field corrections from the electron-electron interaction are 
taken into account. Electron-electron scattering is almost always neglected 
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in these calculations due to the low carrier densities and short time scale 
in the present situation. When we did include carrier-carrier scattering, we 
verified that it merely leads to small quantitative changes in our results for 
optical gain. We do account for the polar optical phonon contribution to 
the electron-phonon scattering. This is important because phonons provide 
an efficient means of transferring electrons between subbands which is in 
direct competition to (stimulated) photon emission (see Eq. (4)). Here, we 
solely consider confined phonon modes because they are the dominant ones 
for current well widths of > 10 nm [19]. 

The initial carrier density in the DW is about 1 x 1010 carriers/cm2 and 
is maintained by either current injection or optical pumping. One way to 
populate the top subband H is through optical pumping. For example, one 
may optically pump carriers from the heavy hole band directly into subband 
H. Here we have made the simplification assuming that such excitation us- 
ing a short optical pulse with appropriate central frequency only populates 
the upper subband. In reality, all the subbands should be affected. The ap- 
proximation of pumping only one subband greatly reduces the complexity 
of the problem, while it does not lead to a neglect of important physical 
processes. 

Another scheme to populate the upper H subband is through current 
injection where the electron population is maintained by coupling to two 
outside reservoirs, as illustrated in Fig. 5. Tunneling is included via a Fermi 
golden rule calculation, with the tunneling matrix elements as adjustable 
constants. The latter are determined by structural design and they de- 
termine how fast the system reaches the steady state. Electron tunneling 
has two major effects on the dynamics of the system. It resupplies carriers 
to the upper subband and removes them from the lower subbands, thus 
maintaining a relatively constant population. It also causes the carriers to 
decoherence because tunneling means coupling the discrete states inside 
the double wells to a continuum of states in the reservoirs. 

We determine the spectral gain by sending a probe pulse into the sam- 
ple which couples the ground state doublet to the upper subband H. The 
detuning of the probe pulse is measured relative to the center of the dou- 
blet with negative detuning referring to smaller photon energy and positive 
detuning referring to larger photon energy of the probe pulse. Due to the 
short probe pulse duration of 200 fs, we calculate the optical gain directly 
from the induced population change in the electronic subbands. For given 
center frequency of the probe pulse, subtracting population changes due 
to tunneling and phonon emission, the remaining population change is due 
to carriers emitting or absorbing photons by jumping between subbands. 
This approach is consistent with the dipole approximation which we make, 
where spatial dispersion is neglected. 
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Figure 6. Optical gain with and without a mw driving field, for a short probe pulse 
(200 fs) in a closed system, (a) shows the optical gain profile's dependence on the mw 
field and its phase, while (b) shows the mw phase dependence of optical gain at a certain 
detuning (0 meV). As shown, the optical absorption is sensitive to the phase of the mw 
field. 

2.3.1.   Closed System 
To demonstrate the coherent effect of a mw driving field, we first consider a 
closed three-subband system. Here we do not turn on any dissipation mech- 
anism, but include Coulomb Hartree-Fock mean field corrections. Going 
from the highest to the lowest subband, the initial subband occupancies 
are, respectively, 0.30, 0.04, and 0.66 x 1010 carriers/cm2. Initial carrier 
distributions are thermal at a temperature of 36 K. When the probe pulse 
is short (200 fs), the closed system's optical absorption and emission prop- 
erties depend sensitively on the mw phase. In particular, Fig. 6(a) shows 
that the mw driving field significantly alters the optical gain and absorption 
of the system; while Fig. 6(b) shows that in a range of mw phases there 
can be net gain for the probe pulse even though the population inversion 
condition 

1-{N+ + N.) < NH 

is not fulfilled. However, because the pulse spectrum is wide (about 10 
meV), we cannot resolve the two lower subbands at this pulse width. 

When the probe pulse is relatively long (1000 fs), the mw phase sen- 
sitivity of the system almost completely vanishes, as shown in Fig. 7(a). 
Furthermore, Fig. 7(a) demonstrates that there can be gain switching be- 
tween the two subbands if the time difference between the initiation of the 
mw field and the arrival of the probe pulse is appropriate. For example, in 
Fig. 7(a) the peak of the probe pulse arrives about 1800 fs after the mw field 
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Figure 7. Optical gain with and without a mw driving field, for a long probe pulse 
(1000 fs), in (a) a closed system; (b) a current injection system. As shown, the optical 
absorption is not sensitive to the phase of the mw field. However, in (a), where there is 
no dissipation, there can be switch of gain peak between the two subbands. On the other 
hand, in (b) where dissipation is strong, there can not be switching of the gain peak. 

is turned on. At this delay, there is optical gain at the spectral location of 
the H/— transition, even though there is no population inversion between 
the H and - subbands initially (with 0.30 and 0.66 xlO10 carriers/cm2, 
respectively). 

2.3.2.   Optical Pumping Scheme 
We have investigated optical pumping for a closed double well of otherwise 
identical subband structure as before. To avoid inversion in the system, dop- 
ing was used to populate the ground state doublet to 0.66 and 0.04 x 1010 

carriers/cm2, which correspond to thermal carrier distributions at a tem- 
perature of 36 K. We use a pump-probe scheme. A pump pulse populates 
the upper electronic band "H" from the (heavy) hole band. Its intensity is 
such that, in the absence of phonon scattering, the final population in "H" 
is 0.574 x 1010 carriers/cm2. A (delayed) probe pulse couples the "H" band 
and the lower electronic subband doublet. Both pump and probe pulses 
have a Gaussian shape with a duration of 200 fs. In all our calculations, 
the probe-pump phase difference is zero. A cw mw driving field of constant 
amplitude resonantly couples the subband doublet. 

Our results within the Boltzmann-Bloch equations, which account for 
electron-phonon scattering, are qualitatively consistent with what we pre- 
sented in the last section for the case of a closed system. First we discuss 
the case of zero time delay between pump and probe. Fig. 8 shows the op- 
tical gain as a function of detuning of the probe pulse. Zero detuning again 
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Figure 8. Optical gain with and without a mw driving field, for zero time delay between 
pump and probe. As shown, the optical absorption is sensitive to the phase of the mw 
field. 

corresponds to resonance between "H" and the energy midpoint between 
the subband doublet. In the absence of the mw field, stimulated emission is 
stronger than absorption near the "H" to "+" transition (detuning « — 5 
meV). This is because most of the electrons reside in the lower subband 
"—" due to the initial thermal population in the doublet. There are almost 
no carriers in the higher subband "+" and there is population inversion 
between subbands "H" and "+". Hence, there is net emission when a probe 
pulse near that energy is used. 

When a mw field is present, coherence (interband polarization /+_(k)) 
between the doublet's subbands "+" and "—" is established. This, combined 
with the probe light electric field, affects the high frequency interband po- 
larization /#+(k) and /#_(k), which, in turn, influence the population in 
all three subbands. Thus it is possible that optical gain can be shifted to 
frequency regimes for which, in the absence of the mw field, no popula- 
tion inversion is present. Furthermore, the interband polarization /+_(k) 
is directly affected by the mw phase. Thus, by adjusting the latter, we can 
manipulate whether there is a net gain or absorption in a particular spec- 
tral regime. This is clearly illustrated in Figs. 8 and 9, where a shift in the 
mw phase by ~ -K (0.47T to 1.57r) leads to significant modifications in the 
gain spectrum and either leads to a suppression or an enhancement of net 
emission relative to the mw-free case. In Fig. 9, showing optical gain versus 
mw phase for a fixed detuning, we clearly demonstrate a strong mw-phase 
dependence of optical gain in a given spectral regime. 

When the probe pulse is delayed by 100 fs relative to the pump pulse, 
the absorption and emission properties are qualitatively similar to the zero 



140 XUEDONG HU AND WALTER POTZ 

E o 

ra 
O 

D. o -40 

-60 
0.0 0.5 1.0 

mw phase (7t) 

Figure 9.     mw phase dependence of optical gain at a detuning of 0 meV. 

delay case. Some quantitative differences arise. Results are shown in Fig. 10. 
Without mw field, overall emission is a little higher because now the pump 
pulse has more time to excite carriers into the upper subband before the 
probe pulse arrives. With the mw field on, spectral absorption and emis- 
sion properties are again significantly different. Again the mw phase has 
a strong effect on whether absorption is suppressed or enhanced, as illus- 
trated in Fig. 10. At longer time delays, absorption generally becomes larger 
because intersubband scattering mediated by phonons de-populates the up- 
per subband "H" and increases the population in the lower subbands. Net 
emission disappears for time delay > 200 fs because of this de-population 
of the "H" subband. 

2.3.3.   Current Injection Scheme 
In a model of an open DW system, we prepare the electron population 
through current injection [10]. In order to maintain a certain steady-state 
subband population, tunneling times must be of the same order of magni- 
tude as the electron interband relaxation time, which is about 400 fs. This 
leads to a reduced overall damping time to only about 200 fs. In the present 
case the tunneling times are 400 fs. This leads to a steady-state popula- 
tion of 0.30, 0.04, and 0.66 x 1010 carriers/cm2 for subbands H, +, and 
—, respectively. Again a probe pulse is sent in and the change in subband 
population is used to determine the optical gain as a function of center 
frequency of the probe pulse. Because of the fast damping, the long pulse 
case changes significantly from that of the closed system, as illustrated in 
Fig. 7(b). It shows that there is no gain switching in the long probe pulse 
case anymore. Merely the heights of the peaks are altered compared to the 
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Figure 10.     Intersubband optical gain with and without mw driving field, for time delay 
of 100 fs between probe and pump pulse. 

mw-free case. Again, the regions of spectral absorption and gain are not 
sensitive to the mw phase. 

For the short pulse case, shown in Fig. 11(a) and Fig. 11(b), the change 
of optical properties due to varying mw phase is still significant but less 
dramatic. The magnitude of net gain decreases significantly, too. However, 
as the total population in the upper subband is less than the average of 
the lower two subbands, the global population inversion condition is not 
satisfied. A more detailed study of the population distribution functions 
shows that there is no local population inversion either. Therefore, gain 
without local or global inversion persists in spite of the strong dissipation 
arising from tunneling and the electron-phonon interaction. 

2.3.4.   Discussion 

In the case of a closed system without dissipation, a coherent mw driving 
field can have two types of effects. It creates a population transfer between 
the two subbands at the Rabi frequency, and it also generates a low fre- 
quency polarization. The time scale of these two effects is the inverse of 
the Rabi frequency and the inverse of the energy difference between the 
lower two levels. Depending on the duration of the probe pulse, one can 
experience either of these two effects, as we have demonstrated in the 200 
fs and 1000 fs cases. In the presence of damping, Rabi oscillations are lim- 
ited to a transient period. The steady state population difference becomes 
smaller than its initial value but maintains the same sign. Hence, no trans- 
fer of gain is possible for cw mw fields and long pulses (which can resolve 
the two subbands in the doublet). The effect of the mw field is reduced to 
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Figure 11. Optical gain with and without a mw driving field, for a short probe pulse 
(200 fs) in a current injected system, (a) shows the optical gain profile's dependence on 
mw and its phase, while (b) shows the mw phase dependence of optical gain at a certain 
detuning (0 meV). As shown, the optical absorption is still sensitive to the phase of the 
mw field. 

a change of height of absorption and emission peaks (see Fig. 7(b)). On 
the other hand, the polarization still oscillates in the presence of damping 
and preserves its mw phase sensitivity, albeit with a frequency determined 
only by the subband splitting rather than the mw field intensity. Damping 
provided by phonon scattering and the openness of the system leads to pro- 
found changes in the carrier dynamics. However, in the short probe pulse 
case, since the low frequency polarization survives, the phase sensitivity of 
the optical properties of the structure also survives in spite of the strong 
dissipation. 

2.4. COHERENT CONTROL OF PHONON EMISSION 

Finally, we would like to report preliminary results regarding the coherent 
control of phonon emission. As is evident from Eq. (2), phonon emission 
rates are determined by electronic structure, electron-phonon coupling ma- 
trix elements, occupancy of states, and electron interband polarization. The 
former two may be engineered by structural design. The latter two depend 
on the (coherent) state of the system which can be manipulated externally. 
Here we will show that manipulation of the latter allows coherent control 
of the phonon-induced transfer between electron subbands. We use the 
scheme of Fig. 1(b) for three electronic subbands, with one ground state 
subband and a higher energy subband doublet. Such a scheme can most 
easily be realized in a semiconductor double well of unequal well depth 
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Figure 12.      This is an illustration of how the intersubband carrier relaxation through 
phonon emission is modulated by a mw driving field. 

and/or widths and can be fine-tuned by doping or external electric fields. 

Here, the energy splitting between doublet and the lowest subband is 
36 meV, close to the LO phonon energy in GaAs. The doublet splitting is 
10 meV. For the present purpose, the ground state subband is populated 
by means of doping to 1010 carriers/cm2 (at a temperature of 36 K). A 
200 fs optical pump pulse is used to excite carriers into the upper two sub- 
bands. Subsequently, these carriers return to the lowest subband via phonon 
emission. The rate of return due to the electron-LO-phonon interaction is 
controlled by the intensity and phase of a mw field which manipulates the 
interband polarization /+_(k). For the present data we take into account 
only confined phonons [19]. Interface phonons and electron-electron scat- 
tering are neglected in this preliminary analysis. Phonon nonequilibrium 
may also be safely neglected here. 

In Fig. 12 we monitor the carrier population of the lowest electron sub- 
band. Without mw driving of the subband doublet, represented by the solid 
line, we observe the expected population depletion when the optical pump 
pulse arrives, then the carrier population gradually returns to its initial 
value within about 2.5 ps due to carrier relaxation through phonon emis- 
sion. On the other hand, when a mw field of 1.5 MW/cm2 resonantly cou- 
ples the subband doublet, the carrier relaxation (i.e., the effective carrier- 
phonon emission) changes significantly as we vary the mw phase. This re- 
sults from the participation of interband polarizations in the carrier relax- 
ation process, as is evident from Eq. (2). Note that this phenomenon is 
distinctly different from previous experimental efforts to optically control 
phonon emission [7]. In these experiments the non-Markovian nature of 



144 XUEDONG HU AND WALTER POTZ 

phonon emission which reveals itself on a time scale of a few 10 fs was 
probed with 15 fs pulses. Here we directly manipulate interband polariza- 
tions. Our pulse duration is more than an order of magnitude longer. Ef- 
fects persist into the ps time regime. For future studies, however, we plan 
to incorporate non-Markovian phonon effects, as well as electron-electron 
scattering. 

3.   Summary and Conclusions 

In summary, our theoretical studies confirm that a variety of coherent con- 
trol phenomena can be studied in semiconductors and nanostructures. In 
particular, we have investigated control schemes based on semiconductor 
double wells which allow coherent control of THz emission, optical absorp- 
tion and gain, as well as phonon-induced interband transitions. We have 
intentionally limited these investigations to simple nanostructures, such 
as semiconductor double wells, where we believe coherent control schemes 
to be most effective. Obviously, this work can be readily extended to more 
complicated subband (level) schemes. Both semiconductor growth and sub- 
picosecond laser spectroscopy have matured to a degree where testing of 
these coherent control schemes is possible. Inevitably, if coherent control 
schemes are to be applied to semiconductor quantum wells or quantum 
dots, sources for suitable high-intensity light fields, such as mw fields, need 
to be developed. Moreover, coherent control is not limited to purely optical 
excitation but may be exercised in conjunction with other coupling mecha- 
nisms which may be built into the structure, such as phonons and coupling 
to continua (Fano resonances). It is hoped that coherent control and the 
quantum interference principle in general can be exploited to provide the 
basis for ultrafast optoelectronic devices of the future. 
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With the advancement of free-electron lasers [FEL's] as well as THz solid-state 
emitters [1], THz physics and related technology is currently coming out of its in- 
fancy. Two-color techniques (optical and THz) applied to mesoscopic semiconduc- 
tors have also been developed [2]. Consequently, the dynamics of charge carriers 
(electrons and holes) after excitation with short light pulses and terahertz fields in 
semiconductor heterostructures has been receiving an upsurge of, attention recently. 
Besides being of fundamental interest, the investigation of interplaying THz and 
optical fields is also relevant in the operation of high-speed electronic and optoelec- 
tronic devices such as photodetectors, modulators, and switches. By application of 
strong THz fields, the effects of electron and hole transport in semiconductor devices 
can be considerable. The field perturbation is very intense but with a photon energy 
small compared to the bandgap energy. In the low density regime, in the presence 
of a broadband pulse, interfering electron-hole relative motion wave packets [WP's] 
are formed. 

There are a number of field-induced physical mechanisms that may contribute to 
the optical response measured in quantum wells (QW's). In the linear regime, when 
a semiconductor is excited by an ultrashort optical pulse at near the bandgap, Egap, 
electron-hole (e-h) pairs are created with excess energy since the pulse bandwidth 
may extend tens of meV above Ega,p. By simultaneously applying a THz field, the 
carriers move in a highly complex manner depending on such effects as the electric 
field, excitonic binding energy, band structure, and the geometry. Initially when the 
optical pulse arrives, an instantaneous polarization is created for the photoexcited 
e-h pairs, and subsequently, the carriers undergo acceleration by the electric field 
for times shorter than the mean scattering times. 

It is well established that when a strong DC field is polarized in the QW plane the 
Franz-Keldysh [3] effect takes place, i.e., induced absorption below and oscillatory 
behavior of the absorption above the bandgap occurs. Recently, for THz-frequency 
driving fields, the dynamical Franz-Keldysh effect (DFKE) has been theoretically 
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predicted [4] and experimentally verified [5]. When investigating the DFKE in the 
optical domain, experiments clearly demonstrated that in the THz regime, harmonic 
sidebands of the driving frequency were detected. With regard to superlattices, var- 
ious effects including Zenner tunneling [6], collapse of the miniband [7], dynamic 
localization [8], and reflection of THz radiation [9] have been investigated. To char- 
acterize accurately and optimize the performance of the DFKE as well as to aid the 
development of related novel semiconductor devices, ultimately one has to under- 
stand the basic physical mechanisms. The investigation of interplaying THz and 
optical fields is also of general interest because it is connected to Coulomb many- 
body processes, such as excitonic effects, carrier transport phenomena, and electron 
correlations. As well as having a wide range of applications, these results are of fun- 
damental interest as they provide a link between transport and optical phenomena. 

The early observations of THz radiation from an oscillating WP in a semicon- 
ductor nanostructure, using an asymmetric double-quantum-well-structure, was re- 
ported in Ref. [10]. Such a structure can behave qualitatively like a three-level 
system by controlling the spacing between various electronic levels via the applica- 
tion of an electric field in the growth direction. Hence, when the system is excited 
with an ultrashort laser-pulse with a spectral width larger than the energy spacing 
between any two electronic levels, a nonstationary WP is created. Thereafter a num- 
ber of schemes have been proposed for creating THz transients in QW's. Amongst 
the most popular methods include optical rectification and quantum beating be- 
tween subbands (charge oscillations) [1]. Essentially these generated transients rely 
upon the application of a DC-bias field in the QW growth direction that drives the 
electrons and holes towards the interfaces of the QW. Consequently for a typical 
well-width of 80 A, peak dipole moments per e-h pair of the order ~80 eA (e is the 
electronic charge) can be achieved. The use of specially shaped optical pulses [11] 
and double-pulse control schemes [12] have also been studied. Ultimately, precise 
control over both the duration and the shape of the generated THz transients is 
desired [13]. 

In this work we introduce results based on the semiconductor-Bloch equations 
(SBE) [14] in the presense of both an intense THz field and a broadband (50 fs) opti- 
cal probe pulse excited at the bandedge; this approach also allows us to analyze the 
creation and evolution of highly anisotropic e-h WP's, and, simultaneously, calculate 
the THz dynamics which are in qualitative agreement with recent experimental mea- 
surements [5]. In the following, we assume a two-band QW where each e-h state with 
relative wavenumber k contributes to the total carrier density N = 2A~l £k fH ■ 
Here, /^' is the electron or hole carrier distribution. The macroscopic polarization 
is P = 2A~1 £k dcvPk, with dcv the interband dipole matrix element. To obtain P^ 
we solve the SBE numerically, treating the influence of a THz field under optical ex- 
citation by an ultrashort optical pulse. The relevant SBE [8] for the slowly-varying 
polarization can be written (h = 1), 
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g-t + FTH,(t, r) •  V k j Pk = -?AkPk - »nk(/j[ + f£-l)+-J^ fl) 

with Ak = Ek — uii — £]q yk-q(/q + /q) the renormalized energy dispersion for a 
parabolic two-band semiconductor with unrenorraalized transition energy Ek, Vq 

the Coulomb potential, and w; = i?gap the carrier frequency of the optical probe 
pulse assumed to be excited resonant with the bandedge. The generalized Rabi 
frequency is fik = dcvF0pt{t) + Eq Vk-q-Pq, with F0pt(t) the slowly-varying optical 
field polarized in the QW plane; FTHZ(^, 

r) is the THz field that is also assumed 
to be polarized in the QW plane. In general, Coulomb correlations (cc) between 
the carriers must be taken into account; in this work we treat the dephasing of 
the optical polarization within the relaxation-time approximation, ^ — — 7^Pk 

where 7P is the total dephasing rate of the optical polarization. 
For our theoretical approach the dynamics including the THz field can be treated 

exactly by introducing a moving coordinate frame i = i,k = k+e /* FxHz(i', r)dt' 
[15]. In mathematical terms this numerical technique is called method of charac- 
teristics and has found a wide variery of applications in physics problems including 
solution of vector-Maxwell equations [16]. Thus our theoretical model arrives at the 
level of the modified, anisotropic two-dimensional SBE that fully incorporate the 
acceleration of the electrons and holes due to an applied field. To this end, we solve 
for the transformed polarization functions Pk: 

apk _ dp^dt dk 

dt dt dt dt 

Pk- (3) — + FTHZ • Vk 
at 

Such transformations are commonly employed for solving carrier transport equations 
and can be used for example in deriving the Chambers equation [17]. In the low 
density regime, the above relation allows us to write 

dP- 
-gf=iAkWPk + zfik(t)-70

P^ (4) 

where k is now a function of t. This apparant elimination of the THz-driving 
term may seem a little confusing at first so it warrants some discussion. Con- 
sider what happens to the transformed variables in the absence of exciton gen- 
eration and scattering. The transform variable Pk is constant in time so that 
[with FTHz(*,r) = nxF0 cos(wTHzO] PW) = pk+A(t)(t0), with At = t - t0, and 
A(i) = nxFo/wTHzSin(wTHzAt). Therefore, the orginal carriers propagate back and 
forth in k-space by virtue of the acceleration theorem, i.e., each polarization compo- 
nent moves through k-space with a rate proportional to the amplitude of the applied 
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electric field. It becomes clear that with the application of a THz field the carrier 
functions becomes anisotropic and one must solve the SBE on a two-dimensional 
grid (circular symmetry can no longer be exploited), where the two dimensions re- 
flect the plane of the quantum well. Let us consider a simple example: After optical 
excitation of a WP, the maximum distance that the carriers can be accelerated in the 
low density regime, is 8k = F0ea0/wTHz {O-Q

1
), which equals 1 inverse-Bohr-radius 

(InGaAs/GaAs) for F0 « 3 kV/cm. This value is still less than 5 % of the Brillouin- 
zone-to-zone-center range. In real space the polarization equation can be visualized 
as the exciton equation in an oscillating frame. Identical equations have been de- 
rived previously in Ref. [18] by choosing an appropriate gauge transformation. We 
make an immediate connection to this work [18] by noting that our detuning and 
excitonic Coloumb Hartree-Fock term can be written identically within the effective 
mass approximation: 

Ak   -*•   ^[if~AW]2' (5) 

£Wq -+ £*WV (6) 
q q 

We will, however, not employ any time-averaging approximations of the kinetic 
energy since our pump fields have much smaller energies that results in a strong 
mixing of the different exciton states. It should be recognized that the relevant 
observables like the polarization or the current (P) are given by the sum over all 
two-dimensional Pk states: P = 2A~1 £kdcvPk = 2/(2TT)

2
 f dkxJ dky dcvP-k -k . 

The THz-induced intraband dipole moment can then be obtained from 

PTH.(*) =ejd2r P*(r,t)rP(T,t) = -^PkWkPk, (7) 
J k 

and subsequently for the THz electric field, assuming a point source (the actual 
spatial dependence will depend on the geometry) F^Hz(i) = -(c2r)_1PTHZ(i)- Fur- 
ther, to depict the e-h WP dynamics, we calculate the polarization density (which 
in the low density limit corresponds to the quantum mechanical probability den- 
sity of finding an electron and hole separated by r at time t) from |P(r, t)\2 = 
|KrPk expHk-r)!2. 

For all following numerical calculations we choose parameters suitable for In- 
GaAs/GaAs QW's: namely reduced mass, ß = 0.035 me; Is (2D) excitonic binding 
energy, Eis ss 11 meV,7P « 500 fs; and Bohr radius, a0 = 150 Ä. InGaAs/GaAs 
QW's are advantageous since with compressive strain one can increase the splitting 
of the heavy- and light-hole exciton. This leads to a particularly simple situation in 
which only the exciton series associated with a single valence conduction subband 
pair is expected. As mentioned above, we have in mind an experiment that employs 
both a strong THz field and an optical pulse simultaneously incident on the QW. For 
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the applied THz field we assume FTHz(i, r) = nxF0 cos S(t) = nxF0cos(2-Kv>Tnzt + <j>), 
with <f> the phase of the driving field at t = 0 (center of the optical probe pulse), F0 

is the magnitude of the THz field (taken to be 3 kV/cm), nx is a unit vector in the 
QW plane, and ^THz = 1 THz. The optical field is taken to be a sech pulse with an 
input unrenormalized Rabi energy of 10~5 eV (irradiance ~ 103 Wem-2) and of 50 
fs full-width half maximum irradiance (FWHM). In Fig. 1 we show a schematic of 
the double-field excitation scheme for studying harmonic generation. 

QW 

Figure 1.   A schematic of the modelled experiment. 

From an atomic viewpoint, the process of high-harmonic generation due to an 
intense atom-field interaction has received a great deal of attention in recent years 
[19], and coherent short-wavelength radiation well into the X-ray region has been 
demonstrated. Moreover, harmonically-generated X-ray transients as short as 100 
attocycles have been predicted [20]. The observed spectrum of harmonics is affected 
by both the single-atom emission and the ensuing collective behavior. Basically, 
the generation of high harmonics of a laser irradiating an ensemble of atoms can 
be viewed as follows: each atom emits radiation that propagates in the remain- 
ing atoms, ions and ionized electrons; consequently, they interfere, scatter, and 
may stimulate further harmonic emission. The theoretical problem of HHG has 
to be treated nonperturbatively in the atom-field interaction and is an intriguing 
problem. For Rydberg atoms [21], higher frequency harmonics are produced from 
continuum-state to bound-state transitions, in which electrons release the energy ab- 
sorbed from the field during its excursion in the continuum. For intense fields, the 
ponderomotive energy of a detached electron can be larger than the bound states' 
energy. The harmonic generation in Rydberg atoms presents extensive plateaus [22] 
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(an extensive region of similar spectral intensity in frequency extending well above 
the fundamental excitonic binding energy). Below we demonstrate that harmonic 
generation for the QW is possible in the THz regime. 

0.4 

20 
Energy (meV) 

Figure 2.   Magnitude of the emitted THz spectra with S(t) = 2nvTl{7t (solid line) and 
S(t) = 2irvTiizt + TT/2 (dashed line). The inset depicts the temporal behavior of the 
emitted THz field with 5(t) = 27ri/THzi (solid line) and 2TrvTHzt +ir/2 (dashed line). 
Note that an energy of 40 meV corresponds to a frequency of approximately 10 THz. 

As an inset to Fig. 2 we show the emitted THz field versus t for the phases (at 
t—0, center of the optical pulse) of (j> = 0 (solid line) and 7r/2 (dashed line). Each 
transient is approximately 1 ps in duration which reflects the combined effect of 
WP spreading and dephasing (see Figs. 3 and 4 below). In the EM spectra (Fig. 
2), a series of harmonics appear in the THz regime. Further, the sidebands are 
obviously dependent on the relative phase of the THz field (at t = 0), with respect 
to the arrival of the optical pulse. The phase cj> can be controlled if both FTHz 

and Fopt are derived from the same initial pulse using solid-state sources; although 
little phase control can be expected from FEL's. At t = 0, both free e-h pairs 
and excitons will be excited optimally from the crystal ground state, and the phase 
of FTHZ(O) will determine the subsequent dynamics of the WP's internal motion. 
For <j> = 0, the THz field is a maximum at the center of the optical pulse and 
the carriers have minimum kinetic energy; at times before and after this instant, 
carriers can propagate through the continuum and harmonics of the driving field 
may be generated when carriers undergo Coulombic rescattering at they travel back 
towards the zero of the relative coordinate (which determines the optical properties). 
It is also noteworthy that the estimated peak dipole moments are 300 ek and 400 eh 
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per e-h pair for (f> = 0 and ir/2, respectively. Moreover, our dipole moments are 
estimated to be substantially larger than those emitted in standard schemes for 
THz generation in QW's (charge oscillations and optical rectification); this stems 
from the fact that the wavefunctions can be displaced by much larger distances in 
the QW plane (see below) in comparison to a displacement in the growth direction. 
Terahertz driving fields have also recently been employed from the FEL to generate 
somewhat similar harmonic-generation from confined magnetoexcitons [2]. 
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Figure 3: Wavepacket at several times (a: t = 100 fs, b: t = 250 fs, c: t = 400 fs, and 
d: t — 640 fs) for the polarization density with 6(t) = 2irvTHzt. The units of the WP 

are scaled by 10"3. 

In Fig. 3 we show examples of the e-h WP (polarization density) at several snap- 
shots in time corresponding to Fig. 2 (<j> = 0); as mentioned above, the driving field 
is linearly polarized in the X-direction which leads to the large asymmetry. Shortly 
after the optical pulse has arrived (t = 100 fs) the probability density is concentrated 
near the center (where there is a high probability of finding the electron and hole 
at the same relative position). Later (t — 250 fs), beating between the excitonic 
and free-carrier WP can be recognized. Because the WP is highly anisotropic, 
there is a net dipole moment which results in the THz transients shown in Fig. 
2(a). At later times (t — 400,640 fs), side lobes can be seen in the WP; these 
are formed by the combination of slow transverse spreading, the relatively fast field 
driven motion in the polarization direction, and the excitonic attraction (Coulombic 
rescattering). As can be seen, for reasonable driving fields of 3 kV/cm, the e-h WP's 
can easily be displaced by 20 nm-which is much greater than displacements that 
can be achieved in the growth direction. In Fig. 4 we also depict the WP dynamics 
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for (j) = 7r/2. Immediately one recognizes that a significant amount of the WP has 
already propagated to the negative X-direction (at t = 100 fs). At the later time 
of t = 250 fs the characteristic sicWe-structure (due to beating) is obtained again, 
but the WP is much less pronounced at around 10 nm and has spread out more 
near the center than in Fig. 3. At later times, one sees spatial interference in the 
relative-coordinate space. 
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Figure 4: As in Fig. 3 but with 5(t) = 27Ti/THzt + n/2- 

In conclusion, we have theoretically investigated the simultaneous exposure of 
an InGaAs QW to a broadband (50 fs) optical pulse — to excite both free e-h pairs 
and excitons from the crystal ground state — and a F0 = 3 kVcm-1, J/THZ ~ 1 THz 
driving field to enable a study of coherently-controlled charge carriers. The scenario 
produces beating, e-h relative motion WP's whose anisotropic structure manifests in 
unique spectral and time-dependent features in the THz regime of the electromag- 
netic spectrum. The technique can also be used to model the optical properties of 
the QW and obtain, for example, the phase-dependent dynamic Franz-Kelydsh effect 
[23]. Our results are in agreement with recent experimental measurements. These 
initial studies have a wide range of applications including the investigation and ap- 
plication of interplaying THz (intraband) and optical (interband) carrier dynamics, 
polarization-sensitive, intraband low-frequency AC Stark effect [24], and the genera- 
tion of upshifted THz transients (coherently controlled) whose peak dipole moments 
are estimated to be about an order of magnitude larger than standard schemes for 
THz generation in QW's. Additionally, beside being of interest on purely funda- 
mental grounds, studies of THz generation and related phenomena have a host of 
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applications including FIR/time-domain spectroscopy, study and control of Rydberg 
atoms, T-ray imaging of optical materials, and mm-wave ultrahigh-speed photonics. 
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Office of Naval Research. 
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Abstract. 
We have studied the exciton-photon coupling in a high-Q semiconductor 

microcavity. Strong coupling of quantum well exciton states to the cavity 
photon state results in the formation of exciton-polariton states. Coherent 
microcavity emission exhibits temporal oscillation due to the beating among 
exciton-polariton states. Our study indicates that a high-Q microcavity can 
strongly modify exciton's spontaneous emission process, leading to coherent 
coupling between excitons and photons. 

1.   Introduction 

In the past few years there has been much interest and study of the coupled 
exciton-photon system in a quantum well (QW) embedded semiconductor 
microcavity [1, 2, 3, 4]. In the weak coupling regime, the radiation pattern 
and the decay rate of excitonic spontaneous emission can be drastically 
modified by a resonant microcavity [5]. In the strong coupling regime, new 
eigenstates of the system, i.e. the exciton-polariton states are formed [6]. 
The normal mode splitting and corresponding temporal oscillation of the 
emission have been observed in the absorption/emission spectra [7, 8, 9] 
and in the temporal measurement [10, 11, 12, 13]. 

Due to the in-plane momentum conservation, a QW exciton state with 
a well defined in-plane momentum Kk\\, couples to a single cavity photon 
mode with the same in-plane wavevector ky [14]. In another word, for each 
kn, there is only one QW exciton state and one cavity photon state coupled 
with each other. For ky = 0, the Hamiltonian of the couple exciton-photon 
system can be written as: 

H = Twjc{a)a + -) + hcoex(tfb + -) + %(af6 + a6f) , (1) 
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where o (b) is the operator for the cavity photon (QW exciton), huc (Tiujex) 
is the energy of the cavity photon (QW exciton), and g is the exciton- 
photon coupling constant. The first two terms represent the Hamiltonian 
of the uncoupled exciton and photon system, and the last term represents 
the exciton-photon coupling. In the weak coupling regime, the exciton- 
photon coupling term is very small and can be treated as a perturbation to 
the eigenstates of the uncoupled exciton-photon system. But in the strong 
coupling regime, the exciton-photon coupling is so strong that it can no 
longer be treated as a perturbation. Instead, the Heisenberg equations of 
motion for a and b are derived after introducing the damping terms rc, and 
Tex for the cavity photon and QW exciton [15]: 

da . Tc — =    -iuca + gb- —a + Fa (2) 

— =    -iuexb - ga - -^-b + Fb (3) 

where Fa and Ff, are the noise terms necessary to preserve the commutator. 
If we do not deal with the noise properties, we could neglect the noise terms. 
The solutions for above coupled equations are: 

a(i)    =    ("c -U-- trc/2)a(0) + igb(0) c_iuJ+t 

(-wc + w+ + iTc/2)a(0) - igb{0)     iLJ_t 

+ A ' { } 

bfQ   =    (uex -U-- iTex/2)b{0) - igajO) c_iuJ+t 

, (-wM + w+ + *rex/2)fr(0) + iga(0)  _iw t 
 e , (5) 

A 

where a(0) and b(0) are the initial values of a and b at t = 0, 

[uex + wc - t(rc + rex)/2] ± x/[wc - uex - i(rc - rex/2)p + ±g 
L0± = 

(6) 
and 

A = w+ - w_ = ^J[uc - uex - i{rc - rex)/2]2 + 45
2 . (7) 

This indicates that the strong coupling of the QW exciton state to the 
cavity photon state results in two new eigenstates with eigen-energies hu±. 
They are called microcavity exciton-polariton states. They are superposi- 
tion states of the uncoupled exciton and photon states. The energy separa- 
tion between the two exciton-polariton states A is called exciton-polariton 
mode splitting. It is the solid state analog to the vacuum Rabi splitting in 
the atom-cavity case. 
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Figure 1.     The measured absorption spectra when the cavity photon frequency is tuned 
to (a) HH exciton emission frequency, (b) LH exciton emission frequency. 

2.   Exciton-Polariton mode splitting and oscillation 

Our microcavity sample grown by molecular beam epitaxy (MBE) consists 
of a 20 nm GaAs QW in the middle of a A/2 DBR cavity. The top (bottom) 
mirror consists of 15.5 (30) pairs of Alo.15Gao.85As and AlAs layers. The 
top Alo.3Gao.7As spacer layer is tapered along one direction of the sample 
so that the cavity resonant photon frequency varies with sample position. 
The sample was cooled down to 4.2 K in a liquid Helium cryostat. The cou- 
pled exciton-polariton modes are probed in the absorption measurement. 
As compared to photoluminescence, absorption is a direct probe of the den- 
sity of states since it is not affected by exciton population [16]. We have 
used both a white light source and a broad-band mode-locked Ti:Sapphire 
laser as the probe beam. The probe beam was focused by a lens to a 30 
ßm spot on the sample at normal incidence. The reflected beam was guided 
to a spectrometer. Near resonance, since the transmissitivity T of the mi- 
crocavity is much less than the reflectivity R (T <C R), the absorption 
A = 1 — R — T ~ 1 — R. By subtracting the spectrum of the reflected 
beam from the spectrum of the incident beam, we obtained the absorption 
spectrum. 

Without cavity, the absorption spectrum of a GaAs quantum well con- 
sists of two peaks, due to the absorption of the QW heavy-hole (HH) exciton 
and QW light-hole (LH) exciton. In a cavity, when the cavity photon en- 
ergy is tuned to be resonant with the QW HH exciton energy, we observed 
two HH exciton-polariton states resulted from the strong coupling of the 
QW HH exciton state to the cavity photon state, as shown in figure 1 (a). 
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The HH exciton-polariton splitting is about 4 meV. The exciton-polariton 
linewidth is about 1 meV. Similarly, as the cavity photon energy comes into 
resonance with the QW LH exciton energy, we observed two LH exciton- 
polariton states resulted from the strong coupling of the QW LH exciton 
state to the cavity photon state, as shown in figure 1 (b). The LH exciton 
polariton splitting is smaller than HH exciton-polariton splitting because 
the oscillator strength of LH exciton is smaller than that of HH-exciton. 

We measured the absorption spectrum as we tuned the cavity photon 
frequency by shifting the excitation position on the sample. Figure 2 shows 
the energies of the exciton-polariton peaks as a function of the cavity bare 
photon energy. The exciton-polariton dispersion curves feature two anti- 
crossing due to the strong coupling of both QW HH exciton and LH exciton 
to the cavity photon. The solid lines in figure 2 are the theoretically fitted 
exciton-polariton dispersion curves using the the Hamiltonian: 

1 11 
H   =   huc(a^a + -) + hujh(b[bh + -) + ?iwl(b}bi + -) 

+hgh(a!bh + ab[) + hgt(a% + ab}) , (8) 

where b^ and 6; (hu>h and hcjh) are the operators (energies) of the QW HH 
exciton and LH exciton, respectively, and g^ (gi) is the coupling constant of 
the HH (LH) exciton to the cavity photon state. We calculated the eigen- 
energies of the system's normal modes by diagonalizing the matrix. After 
choosing appropriate values for the coupling constants gh — 1.6 meV and 
gi ~ 1.3 meV, the calculated exciton-polariton dispersion curves fit the 
experimental data well. 

The temporal evolution of the microcavity emission was measured by a 
AC balanced homodyne detection system. 150 fs pulses from a mode-locked 
Ti:Sapphire laser were split by a beam splitter into two arms of a modified 
Mach-Zehnder interferometer. One beam was used as the local oscillator 
wave, the other was used to resonantly excite the microcavity sample at 
an incident angle of 2.5 degree. The reflected pulses and the microcavity 
emission into the reflection direction were combined with the local oscil- 
lator pulses at a second beam splitter. The two outputs from the second 
beam splitter were detected by two identical photodetectors, whose pho- 
tocurrents were fed into a differential amplifier. The intensity noise of the 
local oscillator were reduced by 35 dB due to the common mode rejection 
of the balanced homodyne detection. To eliminate the instability of the in- 
terferometer, the optical path of the signal arm was modulated with Al at 
a frequency V[ by a mirror mounted on a PZT scanner. This optical path 
length modulation generates a sinusoidal signal in the differential amplifier 
output at a frequency vm = v\ x A£/A, where A is the center wavelength 
of the optical pulses. Since this AC balanced homodyne detection scheme 
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Figure 2. The exciton-polariton dispersion curves deduced from absorption measure- 
ment. The solid lines are the theoretically fitted exciton-polariton dispersion curves. The 
dashed (dotted) lines are the uncoupled exciton (photon) dispersion curves. 

is insensitive to the long-term drift and short-term instability of the Mach- 
Zehnder interferometer, it gives ultra-high sensitivity [17]. The time delay 
r of the local oscillator pulses can be varied by moving a corner mirror 
placed on a translational stage. The time evolution of the amplitude of the 
coherent emission from the microcavity was detected by measuring the si- 
nusoidal output signal at frequency um at different time delay r by a narrow 
bandpass filter and an AC voltage meter . 

The top trace in figure 3 (a) shows the microcavity emission as a function 
of the time delay r at the HH resonance (position A in figure 2). The pump 
power was 0.5 mW. The spot size of the pump beam on the sample was 
about 30/txm in diameter. The spectra of the pump pulses were centered at 
814 nm (1526.26 meV) with a FWHM of 9 nm (17 meV). We observed a 
regular oscillation due to the beating between the two (upper and lower) 
HH exciton-polariton states. The contribution by the third LH exciton- 
polariton is negligible at this point. The first peak in the top trace of figure 
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Figure 3. (a) The measured microcavity emission as a function of the time delay r 
at positions A, B, C, D of the dispersion curves in figure 2. (b) The calculated time 
evolution of the microcavity emission at positions A, B, C, D. 

3 (a) is the reflected pump pulse, which acts as the zero of the time marker. 
Nine subsequent oscillation cycles of the microcavity emission were observed 
due to the high sensitivity of our AC balanced homodyne detection system. 
After the pump pulse creates excitons in the QW, the excitons radiative 
recombine and emit photons into the cavity mode. Some of the photons 
escape from the cavity and gives the first emission peak which corresponds 
to the second peak in the top trace of figure 3 (a). The rest of the photons 
remain inside the cavity and create excitons again in the QW, leading to 
the valley following the first emission peak. Then the excitons emit photons 
again and results in the second emission peak. In this way, the microcavity 
system is oscillating back and forth between the QW exciton state and the 
cavity photon state. This oscillation is called exciton-polariton oscillation. 
The oscillation is damped due to the cavity loss and exciton scattering. 
The oscillation period was measured to be about 1.2 ps, which is in good 
agreement with the spectral splitting of about 2.1 nm (4.1 meV) between 
the two HH exciton-polariton states. 

3.   Collapse and revival of exciton-polariton oscillation 

However, as we tuned the cavity photon energy away from the HH exciton 
energy by shifting the excitation position on the sample, the oscillation 
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became irregular, as shown in figure 3 (a). 

To understand it, we have to take into account the beating among all 
three exciton-polariton states. The time evolution of the microcavity emis- 
sion was calculated by solving the Heisenberg equation of motion for the 
cavity field amplitude a(t), assuming the initial state is the bare photon 
state. As shown in figure 3 (b), our calculation result agrees well with the 
experimental data [figure 3 (a)]. It indicates that the irregular oscillation is 
caused by the beating among the three exciton-polariton modes. The mag- 
nitude of each polariton mode is determined by the projection coefficient of 
the initial state onto each polariton state, and also the spectral density of 
the pump pulse energy at each polariton energy. At HH exciton resonance 
(position A in figure 2), the magnitude of the LH exciton-like polariton (po- 
lariton 3 in figure 2) is much smaller than the magnitudes of the two HH 
exciton-like polaritons (polariton 1 and 2), and thus it can be neglected. 
Therefore the beating between polariton 1 and 2 gives a damped sinusoidal 
oscillation. However at the LH exciton resonance (position C in figure 2), 
the magnitude of HH exciton polariton (polariton 1) is not negligible al- 
though it is smaller than the magnitudes of the two LH exciton-polaritons 
(polariton 2 and 3), since the HH exciton-photon coupling coefficient g^ is 
larger than the LH exciton-photon coupling coefficient gi, and also the cen- 
ter frequency of the pump pulse is near the HH exciton emission frequency. 
Therefore the beating of three polariton modes results in a non-sinusoidal 
oscillation. 

We also measured the microcavity emission at fixed sample position as 
we tuned the pump wavelength. At HH exciton resonance (position A), as 
we increased the center frequency of the pump pulses, the magnitude of 
polariton 3 (the one with Tjhe highest energy) increased. Thus the micro- 
cavity emission showed a transition from two-mode beating to three-mode 
beating. Figure 4 (a) shows the measured microcavity emission at the HH 
exciton resonance when the center wavelengths of the pump pulses are 814 
nm, 811 nm, and 808 nm, respectively. When the center wavelength of the 
pump pulses is 808 nm, we can clearly see the collapse and revival of the 
oscillation. This phenomenon can be well predicted by our model [see figure 
4 (b)]. When the center frequency of the pump pulses is tuned toward LH 
exciton emission frequency, the magnitude of polariton 3 increases, and the 
magnitude of polariton 1 decreases. Eventually, the magnitude of polariton 
3 is almost equal to that of polariton 1, and they are both smaller than the 
magnitudeof polariton 2 (symmetric excitation of three polariton modes). 
The beating between the polaritons 1 and 2 produces an oscillation with 
a frequency u>h = (-E2 — E\)/h, while the beating between the polaritons 
2 and 3 produces another oscillation with a slightly different frequency 
ui = (E3 — E2)/h, where E\,E2,E% are the energies of the three polari- 
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Figure 4- The microcavity emission as a function of the time delay r at HH resonance 
when the center energies (wavelengths) of the pump pulses are 1526.26 meV (814 nm), 
1531.91 meV (811 nm), and 1537.59 meV (808 nm). (a) shows the measurement results, 
(b) corresponds to the theoretical simulation. 

ton states. Since these two oscillations have almost same amplitudes but 
slightly different periods, the beating between them results in a collapse 
of the oscillation at t = 7r/(w; - u)h) — 3.5 ps, and then a revival of the 
oscillation at t = 2TT/(UJ[ — Uh) — 7.0 ps. The experimental data shown in 
figure 4 (a) agrees well with such theoretical prediction. 

4.   Transition From Strong to Weak Coupling Regime 

As the excitation intensity increases, rapid dephasing of excitons and bleach- 
ing of excitonic oscillator strength induces a transition from the strong 
coupling regime to the weak coupling regime [18, 19, 20, 21]. 

Figure 5 (a) shows the temporal evolution of the microcavity emission 
at various pump power. The cavity photon frequency was tuned close to the 
QW heavy-hole (HH) exciton emission frequency Figure 5 (b) shows the 
simultaneous measurement of the reflection spectra of a probe beam. At 
low pump power, the reflection spectrum shows two HH exciton-polariton 
peaks, and the temporal evolution of the microcavity emission exhibits a 
damped oscillation. As the excitation intensity increases, in the frequency 
domain, the exciton-polariton peaks are broadened, and their mode split- 
ting is slightly reduced. In the time domain, the microcavity emission peak 
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Figure 5. (a) The measured temporal evolution of the microcavity emission at dif- 
ferent pump power, (b) Simultaneous measurement of the reflection spectra from the 
microcavity at different pump power. 

intensity decays faster, but the exciton-polariton oscillation becomes slower. 
Eventually the two exciton-polariton peaks in the reflection spectra are re- 
placed by a single cavity photon peak, indicating the transition from strong 
exciton-photon coupling to weak coupling. As the pump power increases fur- 
ther, the cavity photon peak becomes narrower. Meanwhile the temporal 
oscillation of the microcavity emission is replaced by an exponential decay. 
The decay rate decreases as the pump power increases. 

To understand our experimental results, we have set up a simple model 
based on the Hamiltonian: 

1 1 
H   =   Tiuc{a]a+-)-\-Kuh(tfb+-) + hg{a)b + atf) 

Zi Zi 

+ Yl n9k{a]ck + ac\) + J2 %(fet4 + bd{) , (9) 

where a, and b (Tkoc, and hu>h) are the operators (energies) of the cav- 
ity photon, and QW HH-exciton, respectively, g is the coupling constant 
between the HH-exciton and cavity photon. The fourth and fifth term in 
eq(l) represent the reservoir coupling of the cavity photon and HH exciton, 
respectively. We consider the resonant case uc = u>h- Hence the light-hole 
(LH) exciton can be neglected since its emission frequency is far from the 
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Figure 6. (a) Calculated temporal evolution of the microcavity emission at different 
Yh- (b) Calculated absorption spectra at different IV For the curves from the top to the 
bottom, Th are 1, 2, 4, 6, 8, 10, and 12 meV, respectively. 

cavity photon frequency. Heisenberg equations of motion for a and b are 
derived after eliminating the photon and exciton reservoir coordinates and 
introducing the damping terms rc and Th for the cavity photon and HH 
exciton, respectively. When g < Tc/2 or 1^/2, the system is in the weak 
coupling regime, and thus the exciton-photon coupling can be treated as a 
perturbation to the uncoupled exciton-photon system. On the other hand, 
when g > Tc/2 and T^/2, the system is in the strong coupling regime where 
new eigenstates of the syc-tem, i.e. exciton-polariton states, are formed. 
At low excitation intensity where the exciton density is much lower than 
the Mott density, exciton-exciton interaction can be neglected since the 
average distance between excitons is much larger than the exciton Bohr 
radius. However as the exciton density increases, excitons scatter among 
each other and also with free carriers. The corresponding dephasing leads 
to an increase of IV Eventually when I\/2 exceeds g, the system makes 
a transition from strong coupling to weak coupling. As the excitation den- 
sity increases further, phase space filling and screening lead to a reduction 
of the excitonic oscillator strength, and thus a decrease of exciton-photon 
coupling constant g. In our simulation, we consider the excitation intensity 
regime where the reduction of g is negligible. 

Figure 6 (b) shows the calculated absorption spectra as a function of 
r^ [15]. We set g = 4.1 meV, Tc = 1 meV, based on the experimental 
parameters of our samples. As Th increases, the exciton-polariton peaks are 
broadened, because the linewidth of exciton-polariton peaks is proportional 
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to the sum of QW exciton linewidth (Th) and cavity photon linewidth, 
i.e. (rc + r/i)/2. The splitting fü also decreases due to the increase of T^ 
according to 

n = fg2 - ^-^ (io) 

When Th/2 approaches g, the two exciton-polariton peaks merge into a 
single broad peak, indicating the transition from strong coupling to weak 
coupling. As T/t increases further, the linewdith of this single peak decreases, 
eventually approaching the bare photon resonance linewidth rc. This is 
because in the weak coupling regime, when Th » Tc, the linewidth of 
the absorption peak is determined mostly by Tc. Therefore our simulation 
results are consistent with our experimental data. 

The time evolution of the microcavity emission was calculated by solv- 
ing the Heisenberg equation of motion for the cavity field amplitude a(t), 
assuming the initial state is the bare photon state. As shown in figure 6 (a), 
when Th/2 is smaller than g^, the microcavity emission shows a temporal 
oscillation. This indicates that the microcavity system oscillates back and 
forth between QW exciton state and cavity photon state. As Th increases; 
the oscillation decays faster, because the decay rate of exciton-polariton 
emission is proportional to r^+rc. The oscillation period, which is inversely 
proportional to the exciton-polariton mode splitting ti, slightly increase due 
to the slight decrease in Q at larger IV When 1^/2 approaches g, the tem- 
poral oscillation is replaced by an exponential decay. This change in the 
time domain is accompanied with the merge of the two exciton-polariton 
peaks into a single peak in the frequency domain. As I\ increases further, 
the decay rate of the microc avity emission starts decreasing, and eventually 
it approaches Tc in the weak coupling limit. The calculation results agree 
well with the experimental data. 

5.   Conclusion 

We have studied the exciton-photon coupling in a high-Q semiconductor 
microcavity. Strong coupling of quantum well exciton states to the cavity 
photon state results in the formation of exciton-polariton states. Coherent 
microcavity emission exhibits temporal oscillation due to the beating among 
exciton-polariton states. Our study indicates that a high-Q microcavity can 
strongly modify exciton's spontaneous emission process, leading to coherent 
coupling between excitons and photons. 

Acknowledgments: this work has been done in collaboration with Drs. 
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PART III: Coherent Phenomena and Related topics 



COHERENT CONTROL OF QUANTUM LOCALIZATION 

MARTIN HOLTHAUS 
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Renthof 6, D-35032 Marburg, Germany 

1.   Atomic Lande Factors in High-Frequency Magnetic Fields 

Twenty eight years ago, Haroche et al. [1] published measurements of Zee- 
man hyperfine spectra of Hydrogen and Rubidium atoms that were sub- 
jected to not only a static magnetic field B, but also to an additional 
oscillating magnetic field Bicos(ut). The latter was applied perpendicular 
to the static field; the oscillation frequency u was small compared to the 
hyperfine separations, but large compared to the Lamor precession frequen- 
cies. These experiments demonstrated that the Lande factors gp of the bare 
hyperfine levels F are drastically modified by the high-frequency magnetic 
field; they become 

j (9FßBBx\ m 9F=9FJo\n^r)' (1) 

where fiß is the Bohr magneton, and Jo denotes the ordinary Bessel func- 
tion of order zero. 

Thus, varying the amplitude B\ of the oscillating field allows one to 
control the Lande factors; they even vanish when gplJ>BBi/(hu)) equals 
a zero of Jo- This can be exploited, e.g., in alkali metals by cancelling 
g~F simultaneously in two hyperfine levels that are coupled by a further 
weak resonant field. Then all allowed transitions between different hyperfine 
substates contribute to a single line, resulting in substantially increased 
intensity of that line [1]. 

This controllability of the Lande factors had originally been interpreted 
within the "dressed atom"-approach, where the oscillating field is regarded 
as a mode of the quantized electromagnetic radiation field [2]. A compar- 
atively simple and straightforward picture emerges, however, if the field is 
treated classically, since then the Hamiltonian matrix H(t) that describes 
a Zeeman-splitted hyperfine level in the presence of both magnetic fields is 
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periodic in time, 

H(t) = H(t + T)    with   T = 2TT/W . (2) 

Just as a spatially periodic potential in solid state physics gives rise to 
Bloch waves with quasimomenta Tik, such a T-periodic matrix possesses a 
complete set of Floquet states \tpj{t)) with quasienergies £j [3, 4], 

\ipj(t)) = \uj(t))exp(-iejt/h), (3) 

where the functions \uj(t)) inherit the T-periodicity of the external drive, 
\uj(t)) — \uj(t+T)). Inserting such a Floquet state into the time-dependent 
Schrödinger equation, one obtains the identity 

[J3r(<)-i^]|«i(0) = eJ-|«i(*)), (4) 

which plays a conceptually decisive role: This is an eigenvalue equation for 
the quasienergies Sj, just as the stationary Schrödinger equation H\ip) = 
E\4>) is an eigenvalue equation for the energies E. Hence, for periodi- 
cally time-dependent quantum systems the Floquet states take over the 
role of the stationary states. This insight allows one to immediately trans- 
fer a wealth of ideas, concepts, and computational strategies from time- 
independent quantum mechanics to the periodically time-dependent case [5, 
6]. 

In particular, the "renormalization" of atomic Lande factors in crossed 
static and oscillating magnetic fields is explained by a simple generaliza- 
tion of degenerate-state perturbation theory. If one considers, e.g., a total 
angular momentum F = 1, orients the static field along the rr-axis and the 
oscillating field along the z-axis, one obtains the Hamiltonian matrix 

J/OIOX / 1   0      0 \ 
H(t) = gUiBB -=      1   0   1       + gwßBi cosM)     0   0      0      .   (5) 

V2\010/ \ 0   0   -1 / 

Without the static field, i.e., for B = 0, there are three obvious linearly 
independent solutions to the corresponding time-dependent Schrödinger 
equation: 

|Vi(0>    =    ( 0  Jexp(-i^^sinM))  , 

0 

Mt))  =   I i 
o 

\Ut))    =    ( 0 jexp(+t^^8inM)) (6) 
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All three wave functions are T-periodic (including \ip2{t)), of course!), so 
that they represent three Floquet functions \uj(t)) = \ipj{t)) with degener- 
ate quasienergies Ej = 0; j = 1,2,3. (Note that these are still not all the 
solutions to the eigenvalue problem (4): If \uj(t)) is an eigenfunction, so is 
\uj(t)) ex.p(imut), with arbitrary positive or negative integer m.) 

Adding the static field then lifts the degeneracy. This process can be 
computed in the same manner as in analogous examples studied in time- 
independent quantum physics: One simply has to diagonalize the matrix 
of the perturbing operator H^B\ i.e., of the term in eq. (5) that is propor- 
tional to B, in the subspace spanned by the degenerate eigenfunctions. For 
computing the matrix elements, one has to keep in mind that the eigenvalue 
problem (4) lives in an "extended Hilbert space" of T-periodic functions [7]; 
the scalar product in this space, 

{(u\v)) = ^^dt(U(t)\v(t)), (7) 

is obtained from the usual scalar product (• | •) by time-averaging over one 
period. The desired matrix elements then are 

((Uj\H^\uk)) = gißBBJ0(^^j ~SjJt±1 , (8) 

and diagonalizing the resulting 3 x 3-matrix yields the quasienergies 

£m = rn-giHBBJo(-^j^L)=m-g1ßBB       (m = 0,±l)       (9) 

instead of the usual Zeeman energies Em = m ■ gifißB. Thus, the response 
to the static field now looks as if the Lande factor were changed from g\ to 
cji, and there were no oscillating field. However, it should also be noted that 
not only do the quasienergies em differ from the energies Em, but also the 
Floquet functions become linear combinations of the energy eigenfunctions. 

2.   Control of Localization in ac-Driven Tight-Binding Lattices 

The Hamiltonian (5) can be interpreted as representing three quantum 
states located at sites 1, 0, and —1 that are driven by an oscillating field 
and coupled by some nearest-neighbor interaction. A matrix of the same 
type describes the ground states in three adjacent semiconductor quantum 
wells that are exposed to a Terahertz electric field; the nearest-neighbor 
interaction then is provided by the tunneling effect. One might guess that 
the differences between the quasienergy levels now take over the role of the 
tunnel splittings [8], so that making the quasienergies coincide at the zeros 
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of Jo should entail a "coherent destruction of tunneling". This is, in fact, 
actually the case, at least if the driving frequency is sufficiently high [9, 10]. 

The possibility of coherently controlling the tunneling effect in period- 
ically driven quantum systems shows up most clearly if one considers a 
one-dimensional tight-binding lattice 

H0 = -jYl(\t+i)(t\ + m+i\), (io) 
t 

where the Dirac-ket \i) denotes a Wannier state that is centered at the 
^-th lattice site. This system may be regarded as an idealized model for 
an electron in a semiconductor superlattice [11]; the interaction of neigh- 
boring sites (corresponding to the /^-proportional term in the Hamiltonian 
matrix (5)) is furnished by the tunnel contact between adjacent superlattice 
wells. The lattice eigenfunctions are Bloch waves 

|Xfe) = EexP(™)^> (ii) 

with quasimomenta hk (d is the lattice constant); their dispersion relation 

E(k) = -^cos{kd) (12) 

describes an energy band of width A. 
When such a lattice is subjected to a static electric field Fo, Wannier- 

Stark localization sets in [12], so that the eigenfunctions localize around 
the individual lattice sites and the energy band is destroyed. However, if 
one then applies an additional oscillating field Fi cos(wi), such that the 
site-to-site energy difference eFod induced by the static field is precisely 
compensated by the energy of n photons, 

eF0d = nhu)       (n = 0,1,2,...) , (13) 

then band formation becomes possible again. Modeling the interaction with 
the two fields within the dipole approximation by 

ffint(t) = e[F0 + Fl cos{u>t)]d £ \t) i (£\ , (14) 
i 

the system H(t) = H0 + Hint(t) admits the so-called Houston states [13, 14] 
(or "accelerated Bloch states") 

l^*(*)> = E l*> e*p(iQk(t)£d - \ jf'dr 2?(<7fc(r))) (15) 
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with qk(t) = k — eFot/h — eFi/(fiu) sm(ut). Provided the resonance condi- 
tion (13) holds, the factors exp(iqk{t)£d) are T-periodic, so that the Houston 
states can be brought into the Floquet-form (3): 

=    \uk{t))exp(-ie(k)t/h); (16) 

the quasienergy-quasimomentum dispersion relation becomes 

1   rT 

e{k)    =    —      dTE{qk(T)) mod hu> 
1 Jo 

=    {-l)nJn(*^\E{k)     mod no; (17) 

Such Floquet-Bloch states (16), which are simultaneously characterized 
by a quasienergy and a quasimomentum, and thus reflect both the temporal 
periodicity of the driving force and the spatial periodicity of the lattice, are 
useful, among others, for explaining the generation of high harmonics in the 
interaction of laser light with thin crystals [15]. For the single-band model 
considered here, the amplitude-dependent modification of the quasienergy 
band width described by eq. (17) can be considered, mutatis mutandis, as 
a direct generalization of the Lande factor renormalization (1). 

Of particular interest now is the "collapse" of the quasienergy bands [16] 
at the zeros of the Bessel functions Jn, with n being given by eq. (13). Since 
the quasienergies e(k) determine, according to eq. (3), the phases which 
the individual components of an arbitrary Floquet wave packet acquire in 
the course of one driving period, all these phases are exactly equal at the 
collapse points, so that the packet can, on the average, neither move nor 
spread, but has to periodically reproduce itself. This is known as "dynamic 
localization" [17]. The importance of this phenomenon for Terahertz-driven 
semiconductor super lattices [18] rests in the fact that it persists even if 
the Coulomb interaction of the electron gas is taken into account [19, 20]; 
indeed, first experimental evidence for its occurrence has been reported 
recently [21]. 

However, the band collapse must have still further consequences, since 
the band width dictates the sensitivity of the Bloch states with respect 
to deviations from the exact lattice periodicity. If one adds to the tight- 
binding model (10) a single defect ^o|4)(^o| describing a modification of the 
£o-th on-site energy by an amount VQ, one gets an energy eigenstate that is 
exponentially localized around this defect. The localization length L then 
is determined by the ratio of the defect strength UQ and the band width A, 
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such that the larger this ratio, the sharper the state is localized: 

2^o 
d, 

(18) 

This property survives when the system is driven by a high-frequency ac 
force (14) that obeys the resonance condition (13). If hu is at least com- 
parable to A, one finds an exponentially localized Floquet state, with a lo- 
calization length that now is determined by the ratio of the defect strength 
and the quasienergy band width; one merely has to replace A in eq. (18) 
by AJn(eFid/(hu)). This result is crucial; it implies that the spatial ex- 
tension of the defect state is controllable by adjusting the strength of the 
driving amplitude F\. In particular, by tuning eF\d/{huj) to a zero of Jn 

one can confine the defect state to a single site [22, 23]. An example for 
this coherent control of the localization length is depicted in Fig. 1. 

Figure 1. Localization of a defect state in a driven square-well lattice without static field 
Fo; the model parameters correspond to typical values for semiconductor superlattices 
(well width 100 Ä, barrier width 50 Ä, barrier height 0.3 eV; the effective particle mass is 
0.067 me, the defect is introduced by shortening one well by merely 0.5 Ä). The interval 
in space x shown here corresponds to 10 lattice periods, the interval in time t is one 
driving period. The width A = 1.8 meV of the lowest energy band is small compared 
to the photon energy hu> = 5.0 meV. The field strength Fi is 3000 V/cm in (a) and 
8016 V/cm in (b), corresponding to the first Jo-band collapse. 
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The idea of utilizing the dependence of a quasienergy band width for 
manipulating the localization lengths of quantum states in disordered lat- 
tices can be pushed even further. If, instead of embodying merely a single 
defect, the one-dimensional lattice (10) is perturbed everywhere by adding 
site-diagonal disorder 

^random = 5>*|*)<*|, (19) 
e 

with random energies V{ varying between -vm&x and +vmax, then Anderson- 
localization of all states occurs [24, 25]; the typical localization length is 
proportional to the square of the ratio of the band width in the unperturbed 
lattice and the perturbation strength ^max, 

M—)2 <20> d        V^max/ 

Hence, one expects that it is feasible to coherently control the degree of An- 
derson localization by varying the strength of a resonant periodic force [26], 
in close analogy to the case of a single defect. One way to verify this con- 
jecture by numerical means is to expand all the Floquet states of such a 
resonantly driven, randomly perturbed lattice H0 + H-mi(t) + f/random with 
N sites in the Wannier basis, 

K OH £«?(') I^>> (2i) 
i=i 

and to compute the averaged sum 

TJo ^4 E I^WI
4 w 

of the fourth powers of the expansion coefficients' absolute values. This 
so-called inverse participation ratio P is a useful measure for the degree 
of localization, since P —► 1, if all states are completely localized at in- 
dividual sites, and P ~ 1/iV, if all states are uniformly extended. If one 
considers P versus the dimensionless driving amplitude z = eFid/(huj) for 
n = 1,2,3,..., then P(0) will be comparatively large, since the static field 
gives rise to Wannier-Stark localization, even if there is no disorder. With 
increasing amplitude, P(z) will first decrease, since the quasienergy band 
width in the corresponding unperturbed lattice grows according to eq. (17), 
so that the average localization length (20) increases. At a certain charac- 
teristic amplitude zi/2 it reaches half the starting value, P(zi/2) — P(0)/2. 
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If the Floquet states actually exhibit Anderson localization, so that ^(^1/2) 
can depend only on the ratio of quasienergy band width and disorder 
strength, there has to be a relation 

AJn(zi/2) — CTIVTI (23) 

with dimensionless coefficients c„ of order unity. Figure 2 shows that this 
relation describes the numerical data very well [27], and thus confirms the 
basic idea: The ratio of quasienergy band width and disorder strength is the 
decisive parameter that determines the degree of Anderson localization in 
resonantly driven, randomly disordered tight-binding lattices. Whereas the 
disorder strength is a sample-specific property, the width of the quasienergy 
band is, in principle, at one's disposal. Changing the driving amplitude 
means changing this width, and thereby tuning the inverse participation 
ratio P. 

2.0 

N 
$M.O 

0.0 * ■■a 9- 
 B—-a B— 

0.00 0.05 
Vma>/A 
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Figure 2. Characteristic amplitudes 21/2 for resonantly driven tight-binding lattices (10) 
with random on-site disorder (19), versus the perturbation strength tWx- Boxes indi- 
cate numerically computed data for single-photon resonances (n = 1; lowest data set), 
two-photon resonances (n = 2), and three-photon resonances (n = 3); with TIUJ — A in 
all cases. The dashed lines are fits to the relations zx/2 = 2 (n\cn ^max/A)1'" found by 
approximating the Bessel function Jn in eq. (23) by its leading term. For n = 3 this 
approximation is not sufficient; here the full line is obtained from eq. (23) itself. 

It is quite important that the connection between the degree of local- 
ization and the quasienergy band width is not restricted to the single-band 
model, where the quasienergy band (17) is obtained by simple averaging, 
but remains valid also in multiband systems, even though the individual 
quasienergy bands then become mixtures of the original energy bands [28]; 
a typical case is displayed in Fig. 3. 
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Figure 3. An example for the general connection between the degree P of localization 
and the quasienergy band structure. The top panel shows P for a randomly perturbed 
two-band model [28]; the lower panel shows the quasienergy bands for the corresponding 
ideal lattice. The dashed (full) line belongs to the upper (lower) band; even details in the 
behavior of P have their counterpart in the band structure. 

In actual semiconductor superlattices a certain amount of disorder is un- 
avoidable; one may even grow intentionally disordered samples [29]. Since 
such lattices consist of merely a limited number of quantum wells, 20 to 50, 
say, and supposing that the rather high coherence demands can be met, one 
might speculate that transport characteristics in the presence of a Terahertz 
field [21] tend to change in two opposite ways with temperature, depend- 
ing on whether the typical localization length L is substantially longer or 
shorter than the sample size LSampie- In the first case, all states can be 
regarded as effectively extended, and phonon scattering would impede the 
flow of electrons, so that the conductivity should decrease with increasing 
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temperature. On the other hand, if L >C LSampie> phonon scattering would 
help the electrons to hop from one site to another, so that the conductivity 
should increase with increasing temperature. The possibility of tuning L 
via the amplitude of the Terahertz field implies the possibility of switching 
from one case to the other, without exchanging the sample. 

3.   The Next Step: Controlling a Metal-Insulator Transition 

Further exciting prospects emerge if one considers quasiperiodic lattices, 
such as the Harper model 

#Harper = #0 + »0 £ COS(27T^ + 6) \£)(£\ , 
t 

(24) 

where HQ is again given by eq. (10), and the additional piece describes a 
periodic modulation of the on-site energies that is incommensurate with 
the lattice period if the number rj is irrational. This model, which is well 
known from the theory of two-dimensional Bloch electrons in magnetic 
fields, exhibits a metal-insulator transition: For A > 2VQ all eigenstates are 
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Figure 4. Second moments M2{t) = YLt^ l/'(')|2 ^ obtained from solutions 
Wfii) = Ylit fdt) \t) to tne Schrödinger equation for the Harper model (24) with 
forcing (14), for initially sharply localized packets ft(0) = 6t,o- Parameters are 
A/(fiw) = 0.385 and u0/(hu>) = 0.1; the static field is set to zero. The driving am- 
plitudes z = eFid/(huj) vary from 1.3 (upper line) to 1.9 (lower line), in steps of 0.1. 
As long as AJo(z) remains larger than about 2uo, the system remains in the metallic 
phase. The wave packet then exhibits ballistic diffusion, i.e., M^{t) grows by two orders 
of magnitude when t increases by a factor of 10. When AJ0(z) exceeds 2v0 the system 
becomes an insulator, so that M2(t) stays bounded. 
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extended (with positive A and VQ); for A < 2VQ all are localized [30]. Since 
— in precise analogy to the renormalization of Lande factors and to the 
coherent control of Anderson localization — the effective value of A can 
be manipulated by means of an external resonant periodic force, one can 
even switch from the metallic phase to the insulator phase, or the other 
way round, by varying the strength of that force. Figure 4 demonstrates 
how the transition manifests itself in the spreading of a wave packet that 
had originally been localized at an individual site. It has been suggested to 
look for this effect with ultracold atoms in far-detuned (and, hence, almost 
dissipation-free) driven optical lattices [31, 32]. Although it may be too 
early at the moment to speculate about the chances for harnessing this 
effect in, e.g., Terahertz-driven quasiperiodic semiconductor super lattices, 
the mere fact that one can coherently control a metal-insulator transition 
at least in principle appears noteworthy. 

4.   Conclusion 

Whereas for atoms in crossed static and oscillating magnetic fields the 
modification of the Lande factors is itself of primary interest, the coun- 
terpart of this effect in ac-driven tight-binding lattices, the tunability of 
quasienergy band widths, brings about further phenomena if the lattice is 
not strictly periodic: One can coherently control the localization length of 
Floquet states tied to isolated defects, manipulate the degree of Anderson 
localization in randomly disordered lattices, and even switch between the 
metallic and the insulator regime of a quasiperiodic lattice by adjusting the 
strength of a coherent periodic driving force. For clarifying to what extent 
these effects can be exploited in real driven semiconductor devices, we need 
to understand precisely just how they are affected by a noisy environment 
and many-body interactions. 
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TUNNELING OF LOW-ENERGETIC ELECTRONS IN THE 
PRESENCE OF INTENSE LASER FIELDS: 
THE FORMATION OF DYNAMICAL BARRIER STATES 
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Abstract. An analysis is presented on the stability of dynamical barrier 
states that exist underneath driven barriers against imperfections of the 
barrier or the driving potential that spoil the symmetry of the system. It is 
shown that asymmetric barriers as well as non-uniform driving amplitudes 
are not detrimental to observing these states. On the other hand, an asym- 
metry in the band profile to the left and right of the barrier exceeding a 
few photon quanta does seem to destroy the dynamical barrier states. 

1.   Introduction 

The archetype of a quantum-mechanical state is that of a standing wave in 
a static square quantum well, and calculating its wave function using the 
time-independent Schrödinger equation is one of the very first textbook 
examples one encounters. Adding a periodic driving force to the quantum 
well introduces a new, enriched dynamics, which can be studied with the 
help of the Floquet formalism. And again, this dynamics is fairly well un- 
derstood by now [1, 2, 3]. One of the more surprising recent results of driven 
systems is, however, that under certain circumstances dynamical quantum- 
mechanical states with highly unusual properties may be formed in the 
continuum spectrum that, in the limit of vanishing driving force, do not re- 
duce to a "matching state" of the static system (as in a quantum well, for 
instance), but instead simply cease to exist without any apparent trace in 
the energy spectrum. These states are challenging in that they often seem 
to defy a simple explanation in terms of a "quasi-static" picture, which is 
so vital for our intuitive understanding. 
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One such example of a dynamically created state is that formed in a 
single barrier periodically driven by a uniform electric ac field Faccosut, 
where the time-averaging over the oscillating barrier potential leads to an 
effective double-barrier potential, in which "normal" resonances can build 
up [4]. In this paper I want to concentrate on a quite similar system where 
the barrier height is harmonically modulated as Vb(t) = Vo + Vaccosu>t, 
whilst either side of the barrier remain static [5, 6]. For such a system 
Kazanskii et al. predicted a huge variation in the transparency of the driven 
barrier for low-energetic electrons as a function of the driving amplitude Vac. 
With low-energetic I mean in this context electrons incident on the barrier 
having kinetic energies of the order of or less than one photon quantum 
huj. This variation in transparency with Vac has been attributed to the 
creation of dynamical barrier states localised to the barrier region, which 
do not exist in the absence of the ac driving force. Similar results were 
found independently by Bagwell and Lake [7]. Both groups focused on the 
special case of a driven ^-function barrier. 

In a recent work I have extended these studies to finite-width barri- 
ers [8, 9], thereby demonstrating that a ^-function barrier is actually the 
worst-case scenario as far as the relative ac driving strength is concerned 
before the dynamical barrier states become apparent in the transmission 
probability. This is very plausible considering that in our simple model the 
region of ac driving is restricted to the barrier only. Thus, the larger this 
region is, the better will be the coupling between the ac driving force and 
the electronic wave function. The aim of the present work is to furnish 
an analysis of the stability of these dynamical barrier states against some 
unavoidable imperfections in a potential experimental realisation, such as 
(I) non-square barriers, (II) non-uniform ac driving, and (III) differences in 
the conduction-band edges on either side of the barrier. The main results 
are that whilst the dynamical barrier states are very stable against (I) and 
(II), a conduction-band offset between the left- and right-hand side of more 
than a few photon quanta hu is highly detrimental. 

2.   Model 

The model system I study is very simple, with a Hamiltonian of the form 

where the idealised barrier potential is given by 

0, z < -d/2, 
V(? t\ - JVb + V*ect»u>t,     -d/2 < z < 0, m 
V {Z, l) -\yr + y^coswf,     0 < Z < d/2, ^' 

Vr, z> d/2. 
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Figure 1. Contour plot of constant total transmission probability for a fully symmetric 
barrier (see inset), as a function of the kinetic energy of the incident electron and the 
driving amplitude Vac- (Note that with hw = 0.1 meV, the kinetic energy displayed ranges 
from 0 to 4hu/). 

A symmetric barrier is obtained for Vr = 0 and Vj = Vj", Vac = Va
r
c. Based 

on this Hamiltonian, I calculate the Floquet scattering states relevant to 
transport which have the proper boundary conditions for incident and out- 
going waves [10,11]. From these states the time-averaged total transmission 
probability is then obtained by employing the standard formula T = J2n Tn, 
where n runs over all contributing (discrete) transport channels, and Tn are 
the corresponding partial transmission probabilities. 

3.   Results 

In the following I will systematically vary the parameters of the barrier 
potential (2) to study the effect that asymmetries may have. For all of the 
subsequent calculations I have used Tiu = 0.1 meV corresponding to 24 
GHz, a barrier width of d = 20 nm, and an electronic mass m = 0.067 mo, 
appropriate for GaAs. This is basically the same structural data as used 
in Refs. [8, 9]. For ease of reference, I have reproduced the transmission 
probability plot of the fully symmetric case in Fig. 1. 
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Vac [meV\ 

Figure 2. Contour plot of constant total transmission probability for an asymmetric 
static barrier (see inset), as a function of the kinetic energy of the incident electron and 
the driving amplitude Vac- 

3.1.  ASYMMETRIC STATIC BARRIER 

In the first study, I set Vr = 0 and Va'c = Va
r
c = Vac, which leaves me with 

an asymmetric static barrier driven by an ac potential which is uniform 
across the entire barrier. In the particular case of Fig. 2 I chose V1 = 0.75 
meV and V = 1.25 meV — a choice which leaves the total area under the 
barrier unchanged compared to the symmetric case of Fig. 1. 

Figure 2 shows a contour plot of constant total transmission proba- 
bility through the driven barrier for incident electrons having kinetic en- 
ergies ranging from 0 to 4 hu, as a function of the driving ac potential 
Vac. The contour lines show more or less pronounced kinks at kinetic en- 
ergies equalling a multiple of the photon quantum hu, which can be easily 
understood as the effect of additional transport channels opening at these 
threshold energies. Secondly, the contour plot reveals a characteristic strong 
modulation of the transmission probability for electrons having kinetic en- 
ergies less than one or two photon quanta. These valleys in the transmission 
probability are the fingerprint of dynamical barrier states that live under 
the barrier for certain driving conditions. They can be characterised by an 
almost perfect reflection of the incident electron. A more detailed analysis 
of these states in the symmetric case can be found in Refs. [8, 9]. 

A comparison of Fig. 2 with the symmetric case shown in Fig. 1 reveals 
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Figure 3. Time-averaged probability function |0(z)|2 of the / -)■ r scattering state for 
various driving amplitudes Vac at almost zero incident energy. At Vac = 2.727 meV the 
dynamical barrier state is seen as a pronounced local maximum in |T/>(2T)|

2
 in the barrier 

region. 

that the valley structure (and in fact the entire plot) is virtually identical 
in both cases, suggesting that an asymmetric static barrier is not harmful 
to the development of dynamical barrier states underneath the barrier. 

In Fig. 3 I have plotted the time-averaged squared wavefunction of the 
scattering state corresponding to an electron incident from the left at al- 
most zero kinetic energy (10~7 meV). In the absence of any driving the 
wave function decays exponentially across the barrier, but for strong driv- 
ing a local maximum is seen in the barrier region, which is caused by the 
dynamical barrier state. The localisation is optimal for Vac «* 2.727 meV, 
which according to Fig. 2 corresponds to a local minimum in the transmis- 
sion probability. This change in transmission probability is also reflected 
in the huge variation of the value of |V>(2)|2 for z -» oo in the three cases 
shown in Fig. 3. The increase of |^(^)|2 for negative z is simply due to 
the standing wave pattern generated by the interference of the incident 
and reflected wave, which completely mask the localisation of the dynam- 
ical barrier state on this side. A quantitative measure for the localisation 
length is the inverse of the k vector one photon quantum below the band 
edge, y/K/2rnüJ, which is « 75 nm in the present case. 
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Figure 4.   Contour plot of constant total transmission probability for a symmetric barrier 
with a band offset in the far contact of VT = -0.5 fiw (see inset). 

3.2.  ASYMMETRIC DRIVING 

Asymmetric driving is realised by setting Vr = 0 and, say, Vfc' = V6
r = 1 

meV, whilst maintaining Va'c ^ Va
r
c. As in the case of an asymmetric static 

barrier with homogeneous driving discussed in the previous Subsection, one 
finds that qualitatively the dynamical barrier states are little if anything 
affected by the degree of asymmetry in the driving ac potential. (For this 
reason I do not present a Figure here.) 

3.3.  ASYMMETRIC CONDUCTION-BAND EDGE 

To test for stability against imperfections in the symmetry between the left- 
and right-hand contact regions, I finally studied the case of a symmetric 
barrier (Vfc' = V6

r = 1 meV) with symmetric driving (Vjc = Va
r
c = Vac), but 

different conduction-band edges on either side of the barrier, as schemati- 
cally depicted in the inset of Fig. 4. For Fig. 4 the potential offset on the 
right-hand side was chosen to be Vr = -0.5 ftw, and already at such a small 
built-in potential difference an appreciable adverse effect on the dynami- 
cal barrier states can be noticed in the form of a somewhat reduced valley 
structure at the bottom of the Figure. When doubling the band offset to Vr 

= —hu as done for Fig. 5, the dynamical barrier states become even weaker 
and, eventually, for band offsets much larger than the photon energy hu, 
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Vac [meV\ 

Figure 5. Contour plot of constant total transmission probability for a symmetric barrier 
with a band offset in the far contact of Vr = — hu. Note the considerably reduced valley 
structure at the bottom of the Figure compared to Figs. 2 and 4. 

they completely disappear. 
This result suggests that ideally the static potential on either side of the 

barrier should be the same — and flat — for best observation of the dy- 
namical barrier states. Of course, this is in practice not possible to achieve, 
at least in semiconductor heterostructures, and the question is what band 
bending one can tolerate. A reasonable criterium — which at the moment is 
only a conjecture, though, based on the localisation length of the dynamical 
barrier states — is that the potential must be flat over a distance larger 
than the inverse of the k vector at one photon quantum hoj below the band 
edge, i.e., over a distance dj > \fh/2ujm. This criterium effectively serves 
as a lower cutoff for choosing the driving frequency. It goes without saying 
that the wave function must also be coherent over a similar distance, and 
that the electronic mass on either side of the barrier must be the same. 

4.   Conclusions 

I have studied tunneling through a harmonically driven barrier for electrons 
having kinetic energies of the order of or less than the photon quantum hw 
associated with the driving. In this regime the tunneling electrons probe 
dynamical barrier states that form underneath the barrier for certain driv- 
ing conditions, leading to large characteristic variations in the transmission 
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probability as a function of the driving amplitude. 
The dynamical barrier states show a surprising resistance against a 

breaking of the symmetry of the structure. In particular, an asymmetric 
static barrier, or a driving amplitude which is not homogeneous across the 
barrier, does not seem to do any harm at all. On the other hand, lowering 
the static potential on one side of the structure only, whilst keeping the 
other side fixed, does have a strong effect on the dynamical barrier states, 
resulting in their complete destruction for band offsets between the left- 
arid right-hand side potentials exceeding a few photon quanta. 

This work has been supported by the EU via TMR contract FMRX- 
CT98-0180. 
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Abstract. The appearance of DC in a glass acted by two intercoherent 
electromagnetic waves with the main and doubled frequency is studied. The 
light causes the transitions between the localized states. The interference of 
action of two coherent sources leads to the polar asymmetry of transitions. 
The asymmetric part of the transition probability is obtained in the third 
order of electric field. It depends on the phase shift between two waves. 

The transitions inside pairs of close states produce a slow establishing 
static polarization of a glass. In the absence of transitions between different 
pairs, the polarization does not saturate , while the establishment current 
relaxes to zero. 

In the stationary regime the DC is found, determined by a balance 
of phototransitions and intersite relaxation. The macroscopic current is 
studied having regards to geminate recombination. 

1.   Introduction 

The new photoelectric effect has been studied during recent years, called 
coherent phototovoltaic effect (CPVE) [1, 2, 3, 4, 5, 6, 7, 8]. We consider 
CPVE as a stationary current, caused by simultaneous action of two or 
more intercoherent light beams. 

This current is possible in a medium with any symmetry, in particular in 
a homogeneous isotropic one. In the case of two light beams with the prin- 
cipal frequency w and double frequency 2w: E(t) = Re{Eweiwt + E2ct,e

2"J*) 
the current in the lowest order of the electric field E(t) is determined by 
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an expression 

3i = 2(aW'iEto>jK,kK,i + c-c-)- (1) 

Unlike other photoelectric effects, the CPVE depends on the relative 
phase of fields. It is not proportional to the light intensity and vanishes for 
incoherent illumination. 

In the macroscopic sample the current CPVE is usually inhomogeneous 
due to phase oscillations, caused by the difference of light beams velocities 
or their noncollinearity. 

The different mechanisms of CPVE were studied earlier, impurity-band 
transitions [3, 7], intra- [2] and interband [6] transitions, and current, caused 
by quantum corrections to the conductivity [2]. 

The interest to the CPVE was heated by the circumstance that it hy- 
pothetically is responsible for the 2nd harmonic generation (SHG) in glass 
fibers [9]. The low value of glass conductivity leads to the electric fields 
104 — 105V/cm, sufficient to reduce the medium symmetry, which is neces- 
sary for SHG. 

The scenarios of appearance of the second order permeability in glasses 
are carefully enough developed [9, 10, 11, 12]. The mechanism of current 
generation in glasses is much less clear. 

In [7, 9] it was supposed, that CPVE in glasses is caused by the photoion- 
ization of impurity states. This mechanism needs the presence of relatively 
shallow filled impurity states with the depth less than 2 eV. In equilib- 
rium such states, evidently will lead to the essential absorption of light in a 
glass. At the same time the fibers are remarkably transparent solid media. 
This returns us to the known question of N. Mott about the source of high 
transparency of oxide glasses. 

The generally accepted explanation is that despite the large density 
of states in glass all of them are localized and the transition probabili- 
ties between them are suppressed due to tunnel factors. Nevertheless, just 
these transitions determine the photoelectric properties. Hence the change 
of properties of glasses is observable after very large expositions only. 

Our purpose is the study of CPVE in glasses and in the disordered sys- 
tem of localized states (LS) generally. We shall consider a glass as a system 
of single level centers. The electron states of these centers are localized in 
the space and randomly and homogeneously distributed within the forbid- 
den energy band. The large enough density of these states fixes the Fermi 
level in a forbidden band. The optical transitions are permitted between 
the states on the different sides from the Fermi energy. 

The first part of the work considers the elementary act of transition. 
The transition probability is found in the tunnel Hamiltonian model. The 
electromagnetic field is taken into account in the shift of energy levels only. 
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Then we found the dynamic current of establishment of stationary polariza- 
tion. The stationary current is limited by the geminate recombination, the 
probability of which is found in the third section. The resulting macroscopic 
current is determined by the photoexcitation together with the probability 
of surviving during electron relaxation. 

2.   Phenomenology of CPVE 

The CPVE originates from the third order current response to the electric 
field 

/•oo 

ji(t) = /    dtldt2dhaijkl{tut2,t3)Ej{t - h)Ek{t - t2)Ei(t - t3).      (2) 
Jo 

Let the illumination to be stationary. This means that products of fields 
have translational invariance in time Ei{t\)...Ej{tn) = Ei{t\ + tp)...Ej(tn + 
tp), where tp is some period. In this case the response contains the stationary 
part. For the illumination by two light beams u and 2w (2) leads to (1). 

Using the complex form of field, EitU = £itU ex-p(itpijüJ), the formula (1) 
can be written as 

ji = (aijkl cos (<Pj,2u - <Pk,w - <Pl,w) + (3) 
aijkl sin (Vj,2w - <Pk,w ~ W,u))£j,2u£k,u£l,w, 

where as = l/2(a + a*),aa = l/2(d - a*). 
In an isotropic medium the tensor Oijki is determined by 4 real con- 

stants: 

j = a{ Re(E2UK K)) + aS2Re(K(V2uK)) + (4) 
allm^UKK)) + aa

1Im(E*UJ(E2u,E*J). 

The symmetrical constants aj describe the current, caused by linearly 
polarized light and asymmetric components af correspond to the current 
caused by partially or fully circular polarized waves. 

The CPVE needs the very high level of coherence of different beams. The 
phase fluctuations can cause the breaking of this coherence and vanishing 
of CPVE. We should emphasize that CPVE, determined by the relative 
phase of beams can exist even for incoherent light, if beams are mutually 
coherent. For example, two coaxial light beams w and 2w, reflected from a 
normally vibrating mirror are not coherent but mutually coherent. 

This reflects more general situation. If the field is not absolutely co- 
herent, the conditions of stationarity mean that the field is determined 
by a stationary random process and hence mean powers of field are time 
independent: < E{(ti + tp)...Ej(tn + tp) >=< Ei(t{)...Ej{tn) > for any tp. 
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The stationary current, determined by the third order correlator of elec- 
tric field is 

<ji(t) >= dt1dt2dt3aijki{t1,t2,t3)x 

1   /' 
lim - /  dt'Ejit' - h)Ek{t' - t2)Ei{t' - t3). t-»oo t Jo (5) 

Beyond the third order, the stationary current is possible if any correlator 
of fields is non-vanishing. 

3.   Transition probability. 

We shall consider a glass as a system of LS, between which the tunnel tran- 
sition occur induced by light or phonons (but not both in the same time). 
We neglect phonons in optical transitions while the thermal relaxation nec- 
essarily includes the emission or absorption of phonons. 

Let us consider two states with energies £\ e2 and vector distance 
1 between which the tunnel transition is possible with amplitude T = 
Tbexp(—l/a), where a is a localization length (Figure 1). The difference 
of the localization lengths of states is neglected. 

The system is illuminated by two linearly-polarized coherent light sources. 
The field amplitudes Ew and E2W are real, the phases of different spatial 
components of field are the same. Hence it is convenient to introduce the 
relative phase <p = 2cpw — (f2u- 

£2^=200 

^2(r) 

Figure 1.    Phototransitions between localized states in glass caused by two beams with 
frequencies w and 2u> 
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In general, the action of field leads to the alternating in time shift of 
energy levels 

±U{t) = 2{UW coswi 4- U2u cos(2wi + (p)). (6) 

Here UW}2w = 1/2(EW)2W1). Here and below we use atomic units e = h = 
m = 1. 

The system of equations for probability amplitudes for being in the first 
or in the second states is 

mi    =    (ei+W)ai+To2, 

%a2   =   (e2-U)a2 + T*ai. (7) 

The equations (7) are valid, if the inequalities {u>, | £12 |} <SC (£1,^2) are 
fulfilled , where £12 = £1 — £2- 

The transition probability should be found in the first non-vanishing 
approximation, leading to the direct current. This current appears, if the 
transition probability becomes asymmetric relative to the coordinate in- 
version, which means the difference of the transition probabilities between 
the equivalent pairs of states distanced by 1 and —1. The symmetry argu- 
ments demand that the expression for field should contain at least 3 fields 
(formula (4)). 

The current is determined by the second order in field w and first order 
in field 2u- In accordance with the general theory of CPVE we should find 
the interference of transition amplitudes caused by Ew and EI2UJ. 

As a result the asymmetric part has form: 

W12 = 2TT I T |2 /u3(E2wl)(EJ)2 cos <p [5{e2i - 2w) + 6(en - u)].      (8) 

In (8) the processes of excitation of electrons are taken into account 
only. We should underline, that in the interference part of the transition 
probability the number of photons, taking part in transition, can not be sep- 
arated. The first term in (8) corresponds to the interference of two-photon 
amplitude with participation of photons OJ and one-photon amplitude with 
frequency 2u, with resulting change of electron energy 2w, the second one 
does to the one-photon amplitude with absorption of u> and mixed ampli- 
tude with absorption of quantum 2w and emission w. 

It should be emphasized, that the CPVE is non-vanishing just because 
the states of system between which the transition occur have no definite 
parity. The situation is similar to the impurity-band transition when the fi- 
nite state has definite translational momentum but not angular momentum 
(and has no definite parity). 

In the present case the absence of parity is connected with the fact that 
the initial and final states have different localization centers. 
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4.   The initial current. 

First we shall find the current in the sample, which have been previously in 
equilibrium and then suddenly illuminated. In the initial stage of relaxation 
one can neglect for the relaxation of electrons. Hence photoproduction rate 
of the dipole momentum density P is determined by the probability of 
asymmetric excitation (8), integrated with the vector e(rj — r^) over all 
pairs of states. It is true if all relaxation processes have no time to pass of 
and the excited states have no time to saturate. 

The final formula for the density of current in initial stage can be found 
averaging the formula (8). The result is 

37r2a7 

j(0) = —3-T0
2 [E2<X + 2Ew(E2a,Ea))] cos</> x 

(/      deg{e)g(e + 2w) + /     deg(e)g{e + w)). (9) 

ß is the equilibrial value of chemical potential, g(e) is the density of states. 
The main contributions to the initial current results from close pairs with 
distance I ~ 3a connected with random approaching of impurities. 

5.   The dynamic current. 

First we shall neglect relaxation of electrons through the extrinsic states 
and consider the glass as a system of independent pairs of states. The kinetic 
equation for the number of exited pairs with the distance 1 can be written 
as 

ni(t) = Wl2{l)-nl(t)/T(l), (10) 

where the recombination time is T(1) = Toexp(2l/a). The preexponential 
factor ro depends on recombination mechanism. For radiative processes in 
optical range To ~ 10_8s. If the recombination is determined by one or 
many-phonon emission in nonadiabatic regime [14], 

r0~w£)exp( ). (11) 

Here LUD is the Debye frequency, 7 is the logarithm of dimensionless electron- 
phonon interaction constant. For e\ — e2 ~ 00 with UJ in the optical range the 
radiative relaxation prevails, while if the energy distance between states is 
small, the non-radiative relaxation becomes the main mechanism of relax- 
ation. The dynamic current is determined by the radiative relaxation. 

The solution of (10) with the initial condition nj(0) = 0 is 

m(t) = T(0W12(1)(1 - exp(-t/T(J)). (12) 
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The density of current is 

Mt) = J(0)ro r l0g6{TJTo)drexp(-t/T). (13) 
JTQ T 

In the limit t —> oo the current is not really stationary, but is slowly relaxing: 

jw -1/6! j<o)„is^a. (i4) 

The relaxation is close to the power-like law l/£1_a, typical for dielectric 
response. The large power of logarithm is determined by the growth of the 
number of accessible states together with the growth of preexponent in 
optical transition with the distance I. The corresponding polarization does 
not establishing for infinitely long time: P(t) ~ log7 t/tQ. 

The model, we considered here, does not take into account the relaxation 
of electrons on the extrinsic states and the charge relaxation, caused by 
conductivity. These factors limit the decay of the current by the Maxwell 
time (47Tcre/)

_1. The stationary current, determined by the full relaxation 
of carriers, is considered below. Intermediate asymptotics will be discussed 
elsewhere. 

6.   The geminate recombination. 

The relaxation of photoexcited electron and hole may be finished by the 
recombination on the same site (geminate recombination), or by the current 
through the external circuit. We shall find here the portion of electrons 
which don't subject the geminate recombination and achieve the external 
circuit. In analogy with the physics of photodetectors, this portion can be 
considered as "external quantum efficiency" of relaxation process. As the 
process can be separated on two phases, thermal relaxation and charge 
spreading off they leads to 2 independent multipliers, Pi and Pi- 

We shall base on the theories of hopping transport [13] and geminate 
recombination [14]. 

The relaxation through the extrinsic states is determined by non-radiative 
processes. The probability of transition between two states ej and ej on the 
distance r-j — rj with many-phonon emission in nonadiabatic regime is 

2\ri-Tj\      7h-ejl\ at:\ 
u)D exp(—! J- - — J-). (15) 

a U)D 

Below we neglect the dependence of density of states «7(e) on energy. In 
this case the relaxation process of photoexcited pair has two scenarios, in 
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dependence on the ratio of the energy of photoexcited electron e ~ ui and 
the characteristic energy, 

s=^m\ii\ as) 
where0o = /?/^a3,/?w2O. 

If e 3> 6, an electron jumps to the site with lower-lying level for which 
the probability of hop is maximal, losing the small portion of energy S in 
any hop with the typical length 

The geminate recombination during each step has exponentially low prob- 
ability. After achieving the energy S, the relaxation continues according to 
the second scenario which corresponds to the small ratio e/S. 

If e <§; S, an electron prefers to jump to the nearest neighbor with the 
energy below initial but does not take into account the difference of energy 
levels |e; — ej\. In this case the energy loss in a hop has the same order 
of magnitude as an initial energy. The length of subsequent jump grows 
exponentially with the number of jump. 

If the mean squared distance between an electron and initial site after 
the first stage is larger than the distance between lower-lying states, the 
geminate recombination remains negligible. Otherwise in the second stage 
the probability to hop in any step to another empty state has the same 
order as the probability of geminate recombination on the initial site. This 
situation corresponds to the theory [14]. 

The last stage of relaxation is the motion in the energy band A, decisive 
for equilibrial conductivity. In our model of glass A = 93/40o' , and the 
conductivity follows the known Mott law [13]: aef ~ exp— (Öo/Q)1/4 (here 
6 is the temperature). In the energy band A both processes with excitation 
and absorption of phonons occur and an electron moves like thermalized 
one. So the number of steps, which are necessary to get to the band A, is 
determined by the ratio min{w, 6}/A. 

The resulting integral probability Pi to survive before the stage of 
charge spreading depends on the temperature. If the temperature 6 is low 
enough, 9 <C x©o> and w » 6 

F' = ^)   ■ (18) 

Here 
_( "h 

U4e0 

e0c_ 

1/2 V «1, 
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temperature is measured in energetical units. The value a = 0.8 — 1.15, 
according to calculations of [14]. 

If the temperature exceeds x©0) the geminate recombination is unim- 
portant, and Pi = 1. 

Let us discuss the case of small co/S, where the value Pi depends on 
the distance between the photoexcited electron and hole /. In this case the 
spatial dependence of exponent in (15) for typical distances between states 
is more strong than the energy dependence. As a result an electron prefers 
to hop to the nearest neighbor with the energy, which is lower, than in the 
previous state. More ofthat, firstly one can neglect the energetic exponents 
in the hopping probability. 

In the limit of low density of states, ga3u> <§C 1 the sequence of visited 
states i is determined by conditions: 

€i>ei+i,       \ri - ri+i\ < u. (19) 

We chose the start site ro = 0. The site i + 1 gives the minimal possible 
|rj—rj+i | for fixed r, and t{. These conditions determine the unique path and 
guarantee the optimization of probability in the case, when the probabilities 
of jumps are widely distributed. 

The hops may continue infinitely if don't take into account the phonon 
absorption processes. If at some definite step the nearest neighbor is 0 site, 
the process stops, the geminate recombination occurs. 

The result of sequence of hops depends on the distance between the 
initial and photoexcited sites. If they are closer than the mean distance 
between sites (go;)-1/3, the probability to find next suitable site other than 
0 has the order of gul3 <C 1. The repetition of process leads to multiplication 
of probabilities and, hence, tends to zero. If gwl3 » 1, the probability of 
each successive step, not returning to origin, is not small and the resulting 
probability of non-returning on the initial site goes to 1. Hence the threshold 
value of I, rc should exist, separating runaway paths and returning paths. 
The threshold rc has the order of the unique scale parameter with the 
dimension of length (gu)-1'3. 

The threshold rc separates small sizes of photoexcited pair for which 
the geminate recombination dominates and the large sizes, for which the 
survival probability does not vanish. The integration over the pair size in 
the expression for current, hence, should be limited from below by the 
value rc. Hence the pairs, important for photocurrent have mean distance 
between LS, (go;)-1/3. For such pairs, the probability to survive is 

Mm •M^n 
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Integrating over I limited by rc we find the exponentially small resulting 
quantum efficiency: 

^{—r)       }exp(-2rc/a). (20) 

7.   Stationary current. 

The last stage of relaxation can be considered as a charge spreading off. If 
two sites, where the thermalization finished are situated outside the path 
of best conductivity, the conductance between these sites will be short- 
circuited the charge and the charge hardly reach the external circuit. 

If the distance between hole and electron after thermalization into the 
band A is larger than correlation length Lc , the medium may be con- 
sidered as uniform from the point of view of spreading. Using value Lc = 
a/4(6o/Ö)1+I/ (u is a critical index [13]), we find, that 6 > e0x

1/{1+u) » 
©OX- This means that random currents eWij are connected between the 
start point i and the point of relaxation finish j in the uniform medium. 
One can easy to show that the part of mean current density due to optical 
transitions has form 

jopt = 2e/Vy£(rj-ri)Wij. (21) 

Here V is the system volume, the summing is done with respect to all states 
i,j, for which E{ < n and ej > /i. 

To prove this we cut the sample with cross section 5 and length L by a 
plane x = const. Than the current density across this section in x direction 
is determined by all transitions between LS from the right to the left of 
section: 

joPt,x = e/S[    £     Wij-      £     Wij]. 
X i ^. X j X j ^ X X% ^ X ■, Xj \ x 

So far as in large sample all possible configurations of resonant pairs are 
realized the sums in the formula does not depend on x and the current can 
be averaged with respect to x: 

1/L   /  dx joptiX = 2e/V Y^(xj ~ xi)wij 
J i,j 

The repetition of that procedure for all components of current gives (21). 
During the thermal relaxation without recombination the mean vector dis- 
tance between electron and hole does not change. As a result the number 
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j can be changed to the number of final state for excitation /. From this 
one can conclude that in the case 6 » ©ox1^1"*""^ ^ ©OXJ Pi — 1- 

Let us consider the case ©ox1^1"1"^ S> @ 3> ©oX- In this case the 
distance between electron and hole is less than Lc. The resistivity Rij be- 
tween the sites, where they are situated, has a exponentially wide distri- 
bution function. It is important, that just half of resistors are larger than 
the resistivity Rc of cell with size Lc. If Rif is less than Rc, the sites are 
short-circuited and quickly discharging, not contributing to the macroscopic 
current. Otherwise some part of the current say, 1/2, flows through the in- 
finite cluster with the less resistivity, than the quasi-insulating phase. As a 
result P% ~ 1 in that case too. Hence the stationary current is determined 
by expression 

j(oo)=P1j(0). 

The value of Pi is determined by formulae (18, 20). The stationary current 
has no exponential smallness in the case of large frequency of light w ^> S 
and is exponentially small in the opposite case. 

8.   Discussion 

In the present study we gave the answer on the question, how the steady 
current can be generated in the dielectric without the excitation of electrons 
into the delocalized states. 

Let us estimate the CPVE in the case of undoped oxide glasses. The 
typical band gap has value 5-9 eV, so direct transitions of electrons from 
the middle of forbidden gap to the permitted band are impossible. The 
absorption coefficient changes from 10_2cm_1 to 10_4cm_1. In the case of 
transitions from one local state to another the cross-section of light ab- 
sorption has the order aa2exp(—21/a), where a is the constant of fine 
structure. The density of close pairs is 4?r/3 ghcjl3. So the reasonable ab- 
sorption coefficient ~ 10_3cm_1 corresponds to the density of states g ~ 
2 x 1019cm_3eV_1. The estimation for PVGE current according to (9) for 
a = 0.2nm, T0 = lOeF gives j(0)  [A/cm2] ~2x lO"17 E2wE

2  [V3/cm3]. 
The stationary value of current in the case should be decreased by the 

factor Pi ~ 10~6, according to (20). Using experimental data of [11],[12] for 
the field Ew ~ 106 V/cm E2w ~ 3x 105 V/cm we find the stationary current 
j ~ 10~5 A/cm2. This value satisfactorily corresponds to the experimental 
data [11],[12]. 

The obtained value is comparable with the current, caused by impurity- 
band transitions [7]. The difference is that the current due to intersite tran- 
sitions, unlike the impurity-band transitions, do not need the preliminary 
excitation of electrons to the local states with depths less than 2eV, which, 
in turn, can be caused by the interimpurity transitions only. 
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We propose a fundamentally new method of heterodyne detection of 
FIR signals using quantum interference between one- and two-photon ab- 
sorption. We suggest different implementations of the scheme using multi- 
ple QW detectors and evaluate its sensitivity. 

Far-infrared range of electromagnetic radiation, extending roughly from 
10 to 100 fim is of great interest for applications in the remote sensing, 
communications, and others. There are, however, formidable obstacles on 
the road to development of both sources and detectors of this radiation. 
While quantum-cascade lasers have been successful in operating at mid - 
IR, only incoherent emission has been achieved so far in injection-pumped 
intersubband schemes [1], and, so far, the most promising sources of THz 
radiation have been those obtained by beating two optical rays [2], [3]. 

As for the detection, the main problem is associated with large dark 
current and associated thermal noise in the detectors which significantly 
reduces detectivity of the system. It is well known, that the detectivity can 
be improved substantially in the coherent, or heterodyne schemes where 
the sensitivity can be pushed to its quantum limit, hvAu/n whereAz/ is a 
signal bandwidth and n is quantum efficiency. This limit is achieved when 
shot (or generation-recombination) noise < is >2 produced by the local 
oscillator surpasses the shot noise due to the dark current and the Johnson 
noise. Heterodyne detection in the 10.6/um range, had been successfully 
implemented in Quantum Well Intersubband Detectors (QWIP's) [4],[5] 

That is why a substantial effort had been directed towards development 
of the efficient local oscillators in the FIR range. But to this day, despite 
a substantial progress, no efficient and compact local oscillator technology 
had emerged, which, in our opinion, can be traced to the fact that the 
frequency of the FIR radiation is too low for the efficient emission of the 
radiation to take place that is, while the nonlinear polarization or current 
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at the frequency in the l-10THz range is achievable, the extraction of power 
is difficult. Indeed, if the extraction of power is to be achieved by means 
of an antenna [3], the coupling efficiency is proportions to v^. If, on the 
other hand one uses nonlinear optical means of power extraction, then, 
assuming perfect phasematching, the output efficiency is proportional to 
L/X requiring for long FIR A's long propagation distances - which, given 
strong absorption of FIR in many materials is unrealistic. 

It is therefore only natural to propose a different heterodyning scheme 
where local oscillator current (or polarization) is first generated intrinsically 
by mixing two local oscillators at near-IR frequencies E{ui\) and E(VL2) 

within the photodetector itself and is immediately mixed there with the 
FIR signal E(I>FIR) without emitting FIR radiation . Such approach of 
mixing three waves has been first implemented by Liu et al in [5] in a 
QWIP, where two COi lasers with frequencies VL\ and z/^2 have used to 
produce a difference frequency photovoltage of about 40 GHz frequency, 
which subsequently have been mixed with an incoming microwave signal 
at vßw ~ 20GHz to produce an intermediate frequency GHz signal. The 
second mixing process essentially relied upon nonlinearity of the I—V curve 
of the QWIP. The bandwidth of it is limited by the transit time of QWIP 
and, according to [5] cannot be extended beyond 100 GHz. 

If one wants to extend the applicability of three-wave heterodyning 
to the THz domain, one should take advantage of faster nonlinearities, 
typically associated with bound, rather than with free charges and currents. 
From the nonlinear optical point of view this process is nothing but the 
third-order interference of one-photon absorption at vi,i and two-photon 
absorption of i/n and VFIR resulting in a nonlinear photocurrent 

Jnonl{viF) ~ Ö [x^K^IF = VL2 ~ VLX - UFIR)   S(VL2Y'S{VL\)S{VFIR)   (1) 

The fact that in multi-photon processes, the interference of different quantum- 
mechanical pathways results in a dependence of the medium response on 
the relative phases of the participating photons has been noticed as early as 
1967 [6]. Experimentally, the effect of quantum-pathways interference was 
first demonstrated in Xe [[7]] photoionization experiments, with concept 
later extended to the photoionization of donor levels in semiconductors [8] 
and later.to inter-band transitions in semiconductors. [9], [10]. We propose 
here to use this quantum interference process to generate a signal at in- 
termediate frequency in the quantum well photoconductors or photodiodes 
and evaluate the potential performance of the proposed scheme. 



Heterodyning Scheme 205 

Figure 1: Quantum Interference Heterodyning Photodiode Scheme, h' is a 
virtual (dressed) level. 

The first photodiode scheme is shown in Fig.l and it consist of basi- 
cally a "p-i-n" structure incorporating asymmetric QW's (although built-in 
asymmetry is not necessary since the wells are biased - our calculations have 
shown that one gains flexibility by using asymmetric QW's. The asymme- 
try results in a non-zero electric dipole matrix element 

&ßcv = -e|(|Vel(z)|2 - \i>hl(z)\2)dz (2) 

where i/)ei(z) and iphi(z) are the envelope wavefunctions of electron and 
heavy hole respectively. The transition energy between the two states is in 
resonance with the photon energy of the TE - polarized "local oscillator" 
hvL2, 

£el(k|| = 0)-.EW(k|| = 0)«/M/L2, (3) 

where kj| is the in-plane wavevector. The second TE -polarized "local 
oscillator" has a lower frequency VL\ chosen in such a way that with the 
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TM - polarized signal at the FIR frequency VFIR the two-photon transition 
between the same states el and hi is also nearly resonant 

£el(k|, = 0) - £A1(k|| = 0) « hvLl + hvF1R (4) 

One can evaluate the rate of the photo-excitation per well of an electron- 
hole pairs via single-photon excitation process 

dNlp       _   ^ /4|£L2|
2 

dt [z)  ~  f-     2h 

 r  >.I{VL2){z)(rS 
X      [£el(k|,) - £W(k||) - A!/L2]2 + P  - Q1P^L2)      ÄI/L2     (5; 

where T is a broadening, QJP is the absorption coefficient per well, and 
J-iyh'i) is a power-density. Integrating over the distance z and assuming the 
quantum efficiency rj we obtain the familiar equation for the DC photo- 
current density. 

JDC = r)eI{vL2)lhvL2 (6) 

Let us now evaluate the rate of the photo-excitation per well of an electron- 
hole pairs via the interference of one- and two-photon processes 

dNip-2p( ,   _   y-       IJ?CV&-HCVSL2£L\£FIR 

dt     [Z)   -   ^4ft[i;ei(k||)-£Al(k||)-/w/Li] 

r cos(2wviFt) 

[^el(k,|) - ^fciCk,,) - ^i2]2 + r2] 

W    2aip(^2) h^2 
X-^^COS(27r^)(7) 

Once again, integrating over the distance z we obtain the current density 
at the intermediate frequency 

T , VI(l/Ll)I(^L2)n^FIR)'2.T]FIR ^y   Apcv 
JIUIF)   =   Ve r x 

hvL2 hvpiR 

- ,DC^/7SÄ^ (s, 

where TJFIR = 377Q/n(vFm)is the medium admittance at the FIR fre- 
quency. 
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We can now evaluate the signal-to-noise ratio of the proposed scheme 
under the assumption that Jpc > Jdark to obtain. 

S < "vjpA -^ 

N < 2eJDCAAu > 

2VFIRP{VL\)^
2

CVVFIR r)P(vFm) 
~ A{hvFm)2        uLx  2hvFIRAv 

P{VL\)VFIR yPjVFIR) ,y. 

Psat       VIA   2hvpIRAv 

where A is the detector area, and Psat = {hvpm)2 Al2rjpiRApL2
cv. For the 

minimum detectable signal one obtains 

P{vFIR)min = P{VFIR)QL ~ p/°* , (10) 
VFIRP\VLX) 

where P{VFIR)QL — 2hvpiRAv is the quantum limit of direct detection, 
Let us assume that we are interested in the detection of radiation in the 

100 p,m range (hi/piR ~ lOmeV). With quantum wells of about 200Ä the 
separation of the wavefunction of electron and a hole can be of the order of 
150Ä, resulting in saturation intensities of 200MW/cm2. Considering the 
smallest detector area to be of the order of A2, we obtain the saturation 
power of the order of 10W. Thus using a 1W semiconductor laser the min- 
imum detectable power becomes about three orders of magnitude above 
the quantum limit. In any other type of detector, this performance can be 
approached only by cooling the detector below 4K. 

In order to better understand the physical origin of the effect discussed 
here, one can introduce the Rabi frequency of the detuned local oscillator 
field as Q?L1 = 2ß2

cvr}L\P{vLi)lh2 and re-write (10) as 

P(VFm)m = _£3L. x ™L X P{mR)QL     (u> 
The first term in (11) indicates that a Rabi splitting and mixing occurs 
with a new dressed state hi' having a fraction of the the upper state el 
mixed into it - 

\hl')*\hl,NLl + l)+ .  "L1.2lel,iVL1) (12) 

where NLI is the number of photons of frequency VL\. Due to non-zero 
A^c„, the transition from these state to the state |el, iVü) can take place 
and the heterodyning takes place by mixing the transition from the lower 
state with transition from the dressed state. 
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Figure 2: Intersubband Quantum Interference Heterodyning Scheme. 

One can also consider a photoconductive scheme, using, for example in- 
tersubband transitions with confined [11] or unconfined [12] states. Such 
scheme is shown in Fig.2 and it holds two-fold advantage over the band- 
to-band photodiode described above: photoconductive gain and the lower 
requirement for the local oscillator power (which is proportional to its pho- 
ton energy hun. On the other hand, lowering hvn would also result in 
the increase in dark current, so, for a given temperature and signal levels 
there must exist some optimal wavelength for the local oscillator. 

It is important to establish the limits of the applicability of the scheme. 
The minimum FIR frequency is limited by the broadening of the transitions, 
i.e realistically lies near ITHz. The maximum FIR frequency is determined 
by the decrease in output level in (8) with the increase in detuning, and it 
probably extends to the 10-30 THz, where conventional IR detectors can 
operate. 

The schemes described above have a problem with large dark current. 
This problem can be circumvented by using the coherent photo-voltaic ef- 
fect [9],[10],[13]). From the nonlinear optical point of view this process 
can be described by the presence of nonlinear conductivity resulting in a 
nonlinear photocurrent 

Jnonl(viF) ~ Ö   0"(  '{"if VL2 ~ VL\ ~ VFIR)\ £(vL2)*£(vL\)£{vFm) 
(13) 

The proposed scheme consists simply of an unbiased bulk neutral semi- 
conductor or a quantum well (single or multiple) with ohmic contacts. Since 
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Figure 3:  Heterodyning using coherent photovoltaic effect a.)   Geometry 
b.) Band Diagram 

the excitation takes place above the band gap it is desirable to avoid the 
surface effects and it is a quantum well scheme that is considered here and 
shown in Fig.3. The two near-IR or visible local oscillators are both TE 
polarized and have above-the-gap photon energies v^i and un. We ana- 
lyze this scheme following earlier for [9]. The carriers of a given in-plane 
wavevector k; can be generated by either a single-photon absorption 

dNlp(k) 
dt (*) E 

t=l,2 

e2P2 l£ Li\ 

2h,Tn\ußLi [Eel(k) - Ehl(k) - hutf + T* 
(14) 

where Eei(k) and £'/li(k)is the energy of the state lowest conduction or 
heavy-hole band with the in-plane wave-vector k, Pcv is the matrix element 
of the inter-band transition and T is a broadening, or by a combination of 
a single and two-photon absorption 

dN- lp-2p (k) 
dt E 

=l,2y!=t 

e^P^v£LiSLj{k. • £fir)(uLlUL2Ufir)~ 
4m2,mr[£el(k) - Ehl(k) - UUJ] 

r cos(2irviFt) 
[Eel(k) - Ehl(k) - hutf + T2 

(15) 
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where mT is the in-plane reduced effective mass. Performing the summation 
over the wavevectors we find out the density of the photo-carriers 

where a is the absorption coefficient (per well), In is local oscillator power 
density, and rr is recombination time. At the same time, there will be 
directional photocurrent density along the polarization direction of the FIR 
field, say a;. 

eh T-,     diVlp_2p(k) 

mr ■— dt 

e     [I(VLI)I{VL2  ^       T,        7 
~oa\\tf " ^r,jirI{vFIR) 

2    y    UlULx^L2    v mTufir    A,   ,     2^2 V1 + ^MF 

«    2Nlpy/2VfirI(uFIR)—^—^ (17) 

where ?//,> = 377ft/n(z/F7#)is the medium impedance at the FIR fre- 
quency, TS is the momentum relaxation time, determined by combination 
of electron-electron and phonon smatterings and we assume U>IF <C T"

1
. 

We shall now determine the noise in the detector There will be two sources 
of noise: a) thermalized photo-excited carriers giving the Johnson noise 

>= 4kBTA„ =    Ppj + PM2A;/ X T^ 

R hvLx hvL2 T{ 

where Tt = L\frn^fk^T is a time that it would take a thermalized carrier 
to transit the length L of the detector in the absence of scattering, b) 
generation-thermalization noise associated with the ballistic photo-excited 
carriers. This noise arises because when the carrier is photo-excited by 
the above-the-gap radiation via the single photon absorption,, it has a 
randomly directed ballistic velocity. Although the average current carried 
by all those carriers is obviously zero, their random generation and random 
thermalization in the band result in the noise 

where rj = Ly/mr/kBTe is a transit time of the average ballistic carrier, 
and Te = (huLi/2 + hv^ll - Egap)/kB) is the average ballistic electron 
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temperature. The ratio of two types of noise is then can be written as 

■2      = "V (20) 

t is clear that in pure intrinsic semiconductors at room temperature rr ~ 
10"105, TS ~ 10-135, T ~ 300-K", Te ~ 102 - 104ii', the thermal noise domi- 
nates. On the other hand, if one can significantly reduce the recombination 
time using either low-temperature grown semiconductors [3] or heavily- 
doped material and cool the detector, the generation-thermalization noise 
will dominate. To calculate total current at ujF we sum over all the quan- 
tum wells to obtain and multiply by the width of the detector W to obtain, 
assuming that P{VL\) = P{1/L2), 

S_,    _ (a-Ux(viF)W)2 = 1   P(uFIR)   hvFIRP{vL1) e2nfir 

NlB <i%> 42hvFinAv kBTe AhvLl mrwjir       l    ' 

where A is the detector area, for the case when generation-thermalization 
noise dominates, and 

S_    = (a-lJx(i>IF)W)2 = 1   P{uFIR)  hvpiR       P[yLi) e%ir 

NlT <i2
B> 42hvFIRAv kBT TSTT

 AhvLl mru
2

fir    
[    > 

for the case of the Johnson noise dominance. For the minimum detectable 
signal one obtains 

P(fFIR)min = PiVFIRJQL-J^T (23) 

where 

'    \Ahvj-i mruA.      ,    _ Ijl fir    knT    TT TU-  zrz ■*—h"Tr,z?- —Johnson noise 
J^sat-S       4Ah»Llmruj2       ,T _ _ 

 p—:—*—hv" e —generation — thermalization noise 

(24) 
Let us assume that we are interested in the detection of radiation in the 
100 \im range (hvpiR ~ lOmeV). Considering the smallest detector area 
to be of the order of A2, temperature of 77 K, and ratio of TT/TS ~ 10 for 
low temperature grown GaAs, we can see that the detectivity is limited by 
the Johnson noise and Psat ~ 104W. On the other hand cooling to \K 
would produce the detector limited by the generation-thermalization noise 
with Psat ~ 103W 
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With 1W semiconductor laser we may just achieve the detectivity three- 
to-four orders of magnitude worse than quantum limit. This is not bad con- 
sidering the fact that the speed of the detector is limited by the momentum 
relaxation time, i.e. it is essentially sub-picosecond. 

In conclusion, we have proposed two fundamentally new techniques for 
detection of FIR signals using quantum interference and estimated its sen- 
sitivity and limits in various implementations. 

This work is supported by AFOSR and NASA 
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GENERATION OF WIDELY TUNABLE THz-WAVE 
USING NONLINEAR OPTICS 
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Abstract. We had recently demonstrated a room temperature operated widely tunable 
THz-wave generation (frequency : 0.9-2. ITHz, wavelength : 140-310um) introducing a 
Si prism coupler onto a LiNb03 crystal which was pumped by a Q-switched Nd:YAG 
laser. The process involved is an optical parametric oscillation (OPO) utilizing the 
polariton mode scattering of LiNb03. This tunable THz-wave source was applied to 
the problem of differential imaging. In a proof-of-concept experiment, we optically 
tagged objects embedded in a shade and measured the difference between transmittance 
at two wavelengths. The image of a tagged object was emphasized in comparison with 
that of an untagged objects. Differential THz imaging has not been reported previously, 
to our knowledge, mainly because of the lack of convenient tunable THz-wave sources. 
It seems possible to use dual-wavelength differential transmittance spectroscopy in the 
THz-wave region to monitor the gases in the industry. 

1.    Introduction 

The development of coherent and tunable THz-wave radiation is one of the great 
interest, because of an abundance of excitations in molecular systems and condensed 
media, as well as the future ultra-high frequency communication studies which bridge the 
gap between the optical waves and microwaves. Soon after the invention of the laser, 
many pioneering works have been carried out on nonlinear optics, which includes the 
tunable submillimeter wave generation using nonlinear difference frequency mixing 
between two laser sources, though the conversion efficiency observed was poor[l,2]. 
Higher conversion efficiency was obtained by simultaneous Raman and parametric 
oscillation, utilizing the polariton mode scattering of LiNb03 [3-5]. However, these 
efforts ended in the mid 1970's, mainly due to the invention of molecular gas 
submillimeter lasers. During the past several years, THz-wave generation and detection 
have attracted much attention from both the fundamental and applied points of view. 
Most studies have utilized ultrabroad bandwidth characteristics of the mode-locked 
subpicosecond laser pulses with the sacrifice of their temporal coherence[6-9]. In 
contrast, we have demonstrated a coherent and widely tunable THz-wave generation by 
LiNb03 OPO, introducing a new coupling method for the THz-wave into the system to 
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drastically improve the efficiency [10-12]. Further, we have recently obtained more 
than one hundred times higher efficiency by cryogenic cooling! 13]. In this paper, 
characteristics of this THz-wave source are reviewed as well as reporting the result of 
differential imaging. 

2.    Principle of operation 

This scheme is based on an optical parametric oscillation (OPO) utilizing the lowest 
A!-symmetry polariton mode of LiNb03 and the contribution of both sencond and third 
order nonlinearities[5]. The stimulated radiation results from a parametric process to 
create a photon at THz frequency (o>r) and a near infrared photon (cOj; idler), where the 
input pump photon of frequency COj, with the energy conservation of Cfy = cor + CO;. In this 
parametric process, coherent excitation of the polariton mode is essential, where the 
momentum of the interacting waves are conserved noncollinearly ( kp = kT + k -, ) as 
shown in the inset of Fig. (1). Wide tunability is obtained by slightly changing the 
angle <|> between the pump and the idler. At the same time the angle 8 of the generated 
THz-wave inside the crystal changes. In order to get the oscillation, the feedback at the 
idler wavelength (~1.07 urn) is necessary as shown in Fig. (1). Although the interaction 
between waves occurred by the stimulated oscillation, most of the generated THz-wave 
is absorbed or totally reflected inside the crystal due to the material's large absorption 
coefficient and its large refractive index (5.2 at the THz range). We have recently 
reported the uni-directional THz-wave radiation using a prism coupling method as 
shown in Fig. (1). The phase matching angle 5 changes inside the crystal, though the 
radiation angle 6 inside the prism is almost constant due to the ultra low dispersion 
characteristics of Si at THz range, as well as the relation between the refraction at the 
interface and phase matching relation. Therefore the direction of emitted THz-wave 
outside the prism is almost fixed for the entire tuning range. 

The experimental setup is shown in Fig. (1). A 5mm-thick LiNb03 z-plate was cut 
to a dimension of 70(x)xl0(y)x5(z) (mm3). Two end-surfaces in the x-plane were cut 
parallel, polished and anti-reflection (AR) coated for operation at 1.07urn. The y- 
surface was also polished flat in order to minimize the coupling gap between the prism 
base and the crystal surface. High resistivity Si (p>1000Q-cm, a = 0.6cm"1) was 
chosen for fabricating the prism. The Si-prism was prepared with a length of 10mm 
along the base, and a prism angle of 39deg. so that the THz-wave would emerge normal 
to the prism exit surface. The prism base was slightly pressed with an adjustable spring 
against the LiNb03 crystal to maximize the coupling efficiency. The crystal with the 
prism was placed inside the cavity which was resonated at an idler wave using two high- 
reflection mirrors, Ml and M2. Both mirrors were half-area coated, so that only the 
idler wave could resonate and the pump beam propagate through the uncoated area 
without scattering or reflection. The pump source used was a Q-switched Nd:YAG 
laser whose electric field was along the z-axis of the LiNb03 crystal. The pump power, 
pulse width, and repetition rate were 13mJ/pulse, lOnsec, 16.7Hz, respectively.    The 
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pump beam entered the x-surface of the crystal and traversed the LiNb03 crystal in 
proximity to the y-surface. 

Nd:YAG JOULE 
METER 

kj     S 

STAGE 
CONTROLLER 

;LA8 

BOXCAR 
INTEGRATOR 

COMPUTER 

A-D 
CONVERTER 

Figure 1.    Experimental cavity arrangement for the THz-wave radiation utilizing a Si-prism coupler on the 
LiNb03 crystal. 

3.    Characteristics of THz-wave Generation 

By varying the incident angle of the pump beam from 1 to 2 deg., the angle § 
between the pump and idler inside the crystal was changed from approximately 0.5 to 1 
deg. as shown in Fig. (2). As the phase matching angle was tuned, the idler and the 
THz wavelengths varied from 1.068-1.072um and 310-140(j.m, respectively. The angle 
8 between the idler and THz-wave inside the crystal changed from 64.9 to 65.8 deg. 
The observed THz-wave beam was directed to 9 = 51deg., and had an approximately 
Gaussian cross section with an e"2 power radius of 5mm at the distance of 50cm away 
from the prism. An aperture was placed at this position as a spatial filter, and a 4.2K 
Si-bolometer was placed behind the aperture to detect the transmitted THz-wave. The 
measured direction angle 9 agreed with the theoretical value. 

The signal wavelength and its linewidth were measured by a scanning Fabry-Perot 
etalon consisting of two metal mesh plates. Fig. (3) shows an example of the 
measurement. The displacement of one of the metal mesh plates corresponds directly 
to a half of the wavelength. The free spectral range (FSR) of the etalon was about 
83GHz, and the linewidth was measured to be > 15GHz. It is expected that the 
linewidth will be dramatically narrowed by introducing the quasi-phase-matching 
method using a domain inverted structure[14].   The polarization characteristics of the 
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THz-wave was analyzed by a wire grid polarizer, and it was linearly polarized along the 
z-axis of the crystal. 

The signal output from the Si prism coupler was measured to be about 3mW with a 
pump power of 14mJ/pulse. This is almost three orders more efficient than the angled 
surface coupling. The input-output characteristics are shown in Fig. (4). We further 
investigated the cryogenic characteristics of THz output. With the same experimental 
setup as shown in Fig. (1), the LiNb03 crystal was placed inside a cooling dewar which 
can cool the crystal down to liquid N2 temperature. We achieved 125 times higher THz 
output at 78K, compared to that obtained at roonftemperature, and the threshold pump 
power decreased 32%. These results were due to the increase of the gain coefficient as 
well as the decrease of the absorption coefficient of the THz wave in the crystal, and a 
small change of these coefficients leads to a hundred time enhancement of the THz 
output. 
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Figure 2.   The tuning characteristic between the incident angle of ihe pump to the x-surface of the crystal 
normal and THz wavelength.    Solid curve indicates the calculated tuning curve. 
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50        100        150 200 
Shift of mesh etalon (urn) 

Figure 3.    Example of the wavelength and linewidth measurement using the scanning Fabry-Perot etalon 
consisting of metal mesh plates. 

10 11 12 13 14 
Pump power (ml/pulse) 

Figure 4.    The input-output characteristic of the oscillator. 
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4.    Differential Imaging 

In Fig. (5), the THz-wave was focused with a TPX lens (f=30mm) on the imaging 
target, and the transmitted intensity was measured by a Si-bolometer. The imaging 
target was scanned by a x-z stage up to 20x20mm. The rotating stage, x-z stage, and 
data acquisition were controlled by a Labview system. The spatial resolution of our 
imaging system was measured as almost 500(im by imaging an Al-grid deposited on a 
GaAs wafer. We then demonstrated that differential imaging between two wavelengths 
emphasized the image of a tagged object with an absorption coefficient dependent on 
wavelength. In Fig. (6), the transmittance spectra for a metal mesh (Ni, 65u.m grid) and 
for copy paper are shown. The wavelength dependence of transmittance is large for the 
metal mesh, and less for the copy paper. We cut out "L" shapes from the metal mesh 
and the copy paper, and hide them in an envelope. Their images were measured with 
one wavelength (^=180|xm) as shown in Fig. (7a), and both "L" shapes were clearly 
imaged. On the other hand, the differential image between two wavelength (X=180um, 
and 220u,m) was obtained as shown in Fig. (7b), and only the left "L" (metal mesh) was 
emphasized. Next, we had demonstrated that the difference in thickness of the shades 
can be eliminated by differential imaging. In Fig. (8a), both "L" shapes were cut out 
from the metal mesh. The left "L" was covered by two sheets of papers though the 
right "L" was covered by one sheet of paper. The difference in thickness of the paper is 
obviously shown in Fig. (8a) using one wavelength (A^180nm). On the other hand, the 
difference was clearly eliminated by differential imaging using two wavelengths 
(A^180|im, and 220(xm) as shown in Fig. (8b). These results mean that the image of a 
tagged object embedded in an inhomogeneous medium can be extracted by this method. 

Pump 

Idler 
Rotating stage 

LiNb03 

Si-prism n   /Sample 
coupler 

White Polyethylene 
lens f=60mm 

V V 
Si-bolometer 

TPX lens      v „ Cf 

f=30mm       X-ZSta§e 

Figure 5.   Experimental setup for differential THz imaging. 
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Figure 6.    The transmittance spectra for a metal mesh (Ni, 65nm grid) and for copy paper. The wavelength 
dependence of transmittance is large for the metal mesh, and less for the copy paper. 

(a) (b) 

Figure 7.    (a) THz imaging of metal mesh (left L) and copy paper (right L) with one wavelength (X= 180jim). 
(b) Differential THz imaging between two wavelengths (X=180|im, and 220|im). 

(a) (b) 

Figure 8. Both "L" shapes were cut out from the metal mesh. The left "L" was covered by two sheets of 
papers though the right "L" was covered by one sheet of paper, (a) THz imaging using one wavelength 
(X=180nm).    (b) Differential imaging between two wavelengths (X=180|im, and 220nm). 
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5.    Conclusion 
We have demonstrated efficient THz-wave generation from LiNb03 OPO using a Si- 

prism coupler. Measurements on its radiation characteristics and cryogenic cooling 
have been accomplished, proving this method to be suitable for various application fields. 
These include spectroscopy, THz imaging, gas monitoring, biological applications, and 
so forth. For tunable THz-wave applications, the simplicity of the wave source is an 
essential requirement since cumbersome systems do not encourage new experimental 
thoughts and ideas. Compared with the available sources, the present parametric 
method has significant advantages in compactness, tunability, and ease of handling. 

The author is greatly indebted to C. Takyu for his excellent coating on the crystal 
surfaces and mirrors, and T. Shoji for his excellent polishing of nonlinear crystals. This 
work was partly supported by the Research Foundation for Opt-science and Technology. 
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