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Chapter 1

1.1 Project Overview

This section provides an overview of the objectives and major results from the first year of the
project and provides an introduction to the .ntire report. The DARPA Image Understanding
Environment (IUE) is a common software environment for image understanding research which
will support the transfer of technology and research from the DARPA Image Understanding
community. The major objectives of this project are to support the design and development of the
IUE; to prototype the IUE user interface and data exploration tools; and to develop tools for
documentation, tutorials, and publication which will facilitate the impact and the widespread
adoption of the DARPA IUE.

The primary concerns of the work on this project are:

* The overall design of the TUE through activities of the [UE Technical Committee (“The Gang
of Ten”), - _

» Prototyping the IUE user interface and data exploration tools,

+ Developing tools for documentation, tutorials, and publication which will facilitate the impact
and the widespread adoption of the DARPA IUE,

» Basic Vision research by students supported by the contract.

The first two sections of this report present the design and initial prototyping of the user interface
of the DARPA IUE and the tools being developed for documentation, tutorials, and publication that
will facilitate the use and adoption of the IUE. The following chapters contain presentations of
motion processing and visual navigation algorithms. These include generalizing earlier work for
processing translational image sequences to less restricted motions; extensions to factorization
methods to allow for linear features which are less dependent on precise feature-point matching; the
incorporation of models in processing dynamic images; and algorithms for range-free qualitative
navigation which enable mobile robots with limited recognition capabilities to form effective spatial
maps for navigation and exploration.

1.1.1 First Year Accomplishments

* Completed the design of the IUE user interface.

* Prototyped essential parfs of the IUE interface for testing and evaluation.

» Explored potential target interfaces and graphics packages for implementing the IUE.

» Developed authoring tools for on-line documentation of the IUE and the presentation of
tutorials.

» Researched areas such as dynamic image processing, robot navigation, and interactive model
based vision systems.




1.1.2 ~ Objectives for Second Year

Next year, 1994, is a critical time for the overall success of the IUE project. This project is
expected to have initial versions of the object hierarchy and an implementation of the data exchange
format to begin working with. The objectives are: ‘

» Complete all interface prototyping activities and make the implementation publicly available.

+ Complete development of prototype hypermedia annotation tools for on-line IUE
documentation and tutorials.

+ Complete evaluation of publicly available hypertext systems for on-line IUE documentation and
tutorials. : :

« Develop prototype tutorials using hypermedia annotation tools or publicly available hypertext
systems.

+ CD-ROM version of DARPA TU Workshop Proceedings.
* Organize IUE Tutorial Materials for different books and on-line resources.

» Continue research in motion processing and interactive model-based vision systems.

1.1.3 Plans for Final Year

The primary objective of the final year of the contract will be to produce an on-line tutorial
introduction to the IUE and machine vision, and to integrate these tools with existing publishing
mechanisms for the ITU Workshop. Research in terrestrial motion processing and interactive model
based vision systems will also continue.

1.2 IUE Interface Design and Prototyping

The intent of the TUE user interface is to provide exploration tools and to interact with IUE objects.
Therefore, it is being developed in three levels: the graphics level to tell the screen what to do, the
interface support level to create and prototype interfaces and related tools built on top of the
graphics level software, and the image understanding environment user interface (IUEUI) level
which is a specialized interface for image understanding. Chapter 2 will discuss these interfaces in

more detail.

1.2.1 Object Displays k

Object Displays are used for viewing and interacting with objects by mapping them onto a two-
dimensional display window. This involves nearly all IUE objects: images, curves, regions,
object models, surfaces, vector fields, etc. Object displays support several types of operations for
controlling the mapping of an object onto a window, such as the viewing transformation, mapping
values through pixel-mapping functions and color look-up tables, the specification of overlay
planes, transparency effects, interacting with displayed objects through selection operations, and
interactive function application.




There are different types of object displays:
* The image display is for viewing‘ images and image-registered features.

o The local graphics display is for displaying objects by mapping their values onto
parameterized graphic objects such as lines and cubes. Examples are displaying vector fields
and edges. '

e The surface display is for displaying objects that get mapped onto mesh or rendered surfaces.

 The plot display is for displaying functional relations between objects. Examples are one-
dimensional, two-dimensional, and three-dimensional graphs, histograms, scattergrams, and
views of functions and tables.

These different types are distinguished by specific methods but all inherit a large number of similar
methods from the general display class. For example, overlay operations are similar for a surface
display and for an image display, although they can look quite different. (In one case it appears as
a drawing in solid colors in image-registered coordinates on top of a displayed image, and in the
other it renders the colors onto a displayed surface.) Plot displays have many similarities with
object displays in terms of such things as overlays and interaction methods.

Chapter 2 will also discuss browsers, which interact with text-based or symbolic descriptions of
objects. Field Browsers consist of a regular array of fields. Fields can be filled with text, icons,
colors, colored text, or text in particular fonts. Fields can have actions associated with them when
they are selected or a user changes the values in them. Chapter 2 also includes information on
command buffers and command languages; contextual descriptions of the state of the interface and
the status of displayed IUE objects; and prototyping the many different parts of the user interface to
complete the functional specification and to answer basic implementation questions.

1.3 IUE Documentation and Tutorials

The IUE will be supported by on-line documentation and tutorials which will facilitate the impact
and the widespread adoption of the DARPA IUE. The tools for implementing these will also be
available for enhanced communication and publication by scientists and developers who use the
IUE. While there is significant activity in developing documentation and hypermedia toolkits, they
remain largely machine dependent with no clear standardization.

Work on this project during the first year went through three distinct phases. First Lucid Emacs
19, was adapted to have some hypertext features. Then annotation capabilities were implemented
using a Tk/Tcl. Finally, MOSAIC and HTML became useful documentation and tutorial delivery
mechanisms because of their widespread and growing use throughout the educational and scientific
community.

- The work described in Chapter 3 concerns the prototype hypermedia annotation system currently
being developed is called “Knowledge Weasel” (KW). It is a presentation and authoring system
designed to support annotation using several different types of media. A simple analogy for KW is -
reading a book or attending a lecture and being able to make diverse types of comments and
annotations on the material. In reality, such unrestricted annotations and comments made with
respect to real books and lectures could create a significant mess (especially if made by several
different people), so in developing KW this simple metaphor was extended in several ways. The
first provides a general format for annotations that can include several different types of media. An
annotation is a common record structure wrapped around instances of different types of media such




as text files, sound, drawings, postscript files, GNU-plots, code running in the GDB debugger,
and others. Annotations are implemented in the same way as property lists in Lisp, with attributes
and values, and are displayed as buttons with an associated region of support. When an annotation
is selected, it performs an operation specific to the type of annotation selected. Annotations are
created using existing media editing tools for operations such as recording a sound, drawing
packages, calls to other branched processes, and grabbing a portion of the screen. The second
extension, has been to develop, different types of navigation, organization and presentation tools to
keep users from being overwhelmed with a great deal of possibly irrelevant information. Users
can prune the set of annotations that they want to deal with and also how these annotations are
displayed. Annotations are structured to moke possible intelligent processing, perhaps eventually
including rule-based processing, for automatic presentation and “ferreting” of information (hence
the name). An important commercial use of computer vision technology in the near future will be
adapting model-based vision technology so users can interactively annotate images with models.

Implementation of KW on top of Lucid Emacs 19, which is in turn based on the X window
system, began. Lucid’s implementation of Emacs Lisp provided primitives for handling display
attributes such as windows, fonts, and colors, and has a built-in Lisp interpreter for Emacs Lisp.
This Lisp variant provides a wide variety of primitives that are useful for manipulating text,
processes, and/or files. Current implementation is in Tcl/Tk.

1.3.1 CD-ROM version of DARPA IU Workshop Proceedings

A significant instance of technology transfer is the DARPA IU Proceedings and Workshop. For
the next meeting, plans are to enhance this transfer by having the workshop proceedings available
on CD-ROM and integrated with the Data Exchange Format, a documentation and browsing tool
such as Knowledge Weasel, and, possibly, the IUE itself. This will enable an extraordinary type
of paper which includes data, code, additional references, animations, extensive annotations and

cross-references.

The second major part of this project is to develop authoring tools for producing documentation,
demonstrations, and tutorials. These will be used for on-line documentation of the IUE and to
support publication of research. The authoring tools being developed are based upon existing
hypermedia and interface construction kits. The authoring tools and data exploration tools will be
used to develop an interactive, on-line tutorial for learning how to use parts of the IUE.

Currently, the yearly proceedings from the DARPA IU Workshop are a major source of technical
output from the IU community. The IUE and the modules developed in this project will extend
this significantly. People will have access to a much wider range of information than is currently
contained in published proceedings. This will include such things as code, data, slides,
viewgraphs, and tutorials developed by the authors themselves available on-line and through CD-

ROM.

1.4 Translational Decomposition of Flow Fields

Chapter 4 presents a set of algorithms for processing optic flow fields by approximating them as
local translations of the corresponding portions of the environment. This is theoretically interesting
since it dramatically simplifies the equations for inferring motion parameters from optic flow and
also supplies a low level representation of image motion that might be useful for inferring motion
properties from non-rigid motions. Its practical use involves its robust nature for motion
constrained to an unknown plane which characterizes much of terrestrial robotics. It can also use a
small number of points for inferring motion parameters from an optic flow field.




Once the directions of motion have been established, they can then be used as constraints to
determine the actual parameters of motion and to recover the structure and layout of environmental
surfaces. Motion direction is broken into four different cases: (1) motion constrained to a known
plane (the normal to the plane is known); (2) motion constrained to an unknown plane (the normal
is not known); (3) motion constrained to surfaces which are locally planar; and (4) arbitrary motion
with no assumptions. ‘

1.5 Interactive Model Based Vehicle Tracking

While most work in motion processing has involved very minimal assumptions about objects such
as rigidity, a very important area for future work is motion processing which incorporates object
models. Investigation has been started in the restricted domain of tracking vehicles from a
stationary camera in outdoor road scenes. The key idea is that motion is a critical source of
information for instantiating object models and that motion processing is in turn simplified by the
constraints supplied by object models.

Processing begins with a human forming a rough interpretation of a scene by interactively
manipulating models of objects such as terrain surface patches, roads, gravity, and vehicles. This
initial, human-directed interpretation consists of incompletely specified two dimensional drawings
of expected image features and associated three-dimensional object models which are also initially
incompletely specified. Once an interpretation is in place, tracking algorithms then autonomously
refine and extend the interpretation. For example, a human will indicate that a particular area is a
road by a two-dimensional drawing. The system will then track movement along the road and fit a
constraint-based description of a vehicle to this movement. As vehicles are tracked, the three-
dimensional shape of the road can be recovered. The system can determine that a vehicle has just
gone off the road (or that it is behaving inconsistently with respect to the model of a vehicle) and
report back to'a human about unusual occurrences or behavior for which it cannot account.

Object models are related by constraints specifying necessary geometrical properties and
relationships between objects. The use of constraints allows for flexible object instantiation. A
user can indicate a vehicle and direct perceptual processing routines to determine the corresponding
local surface orientation and roads, or he can instantiate a road segment to direct the extraction and
tracking of vehicles.

The work with the local translational approximation described above has been found to be useful
for tracking vehicles and determining three-dimensional information. Moving vehicles can often be
treated as rigid objects which are translating over short periods of time. For example, as a vehicle
goes around a curve, because of turning radii constraints, the axis of rotation is often far away
from the vehicle itself and the vehicle motion can be treated as a sequence of small translations
corresponding to tangents of the curve of motion. The local translation-based tracker determines
the direction of motion of a set of extracted image points over time, and fits their motion to an
estimate of the current direction of motion of the corresponding vehicle in three dimensions. The
effect of this tracker can be visualized as a unit sphere with an axis corresponding to the current
direction of motion. As the vehicle and the corresponding set of points move, the position of the
axis changes with respect to the sphere. This processing is expected to work well with temporal
filters since there are constraints on how quickly a vehicle can change its direction of motion.
Vehicle rotation is indicated by areas of the image which show differences over time, but for which
no clear axis of translation can be determined. Conversely, if there is an instantiated three-
dimensional road model and a rough estimate of the position of the vehicle along the road has been
established, the tangent information associated with the road model can be used to initialize the
search for the axis of translation. If there is an instantiated vehicle model, it restricts the features
that the local translational tracker uses.




This work will be useful for applications such as telerobotic monitoring systems where low
bandwidth communication is critical. The human would produce a rough scene interpretation from
sensory information from a telerobot. The resulting interpretation is a model of the world that the
telerobot would refine, use to control its behavior, or report back to a human. In this way, the
human directs the telerobot by initializing and constraining its processing. Communication
between the robot and the human takes place in the context of a shared model of the world which
makes possible infrequent, semantically meaningful, and very low bandwidth communication.

1.6 Shape and Moticn from Linear Features

The extraction of environmental structure and motion from a sequence of two-dimensional images

is a common problem in computer vision. Research is attempting to overcome the disadvantages
associated with a camera-centered representation using a world-centered coordinate system to
compute shape and motion without the intermediate calculation of depth. This work is discussed in

chapter 6.

1.7 Range-Free Qualitative Navigation

Qualitative Navigation [13, 20] concerns spatial learning and path planning in the absence of a
single global coordinate system for describing locations and positions of landmarks. It is based on
a multi-level representation of space which, at its most abstract level, is based on topological
properties which allow a robot to describe a location using the directions of visually salient patterns
(with no associated range measurements) and then navigating using the occlusions that occur
among them as a basic cue to control movement through the environment. This work [17,16] in
qualitative navigation was developed while trying to produce basic navigation and recognition
capabilities in an autonomous land vehicle. Chapter 7 describes qualitative navigation algorithms
which work completely at the topological level, dealing with landmarks for which there are no

range estimates.




Chapter 2

Prototyping the IUE User Interface

2.1 .Introduction

The user interface of the IUE is intended to provide flexible, simple, and powerful tools for
exploring data, algorithms, and systems. The general principles of object-oriented design used in
developing the IUE object hierarchy and programming constructs have also been applied to the
interface: abstraction over common operations to provide a small number of interface objects that
can be freely combined by a user. The interface has been designed to have a consistent interaction
with [UE objects and their semantics, especially the abstraction in the IUE object hierarchy. Thus,
the display and browsing operations are sensitive to the class similarities for objects such as
images, image-registered features, and spatial objects. Using and becoming comfortable with the
interface should not involve understanding a large number of unrelated things.

An equally important part of the user interface is what it does not develop. The TUE user interface
must leverage extensively off of existing (and emerging) interface and graphics packages and
standards. The interface must be supported by ongoing and future developments in software
environments and graphical user interfaces. This is critical for the long term use of the IUE
because of continuous advances in these areas which would be advantageous in terms of
~ capabilities and cost.

To realize this, the interface is being developed in terms of three levels (figure 2.1). The
Graphics Level is the underlying “machine independent” package for display and graphic
operations which tell the screen what to do. Examples would be X, GL, OpenGL, and Phigs.
The Interface Support Level involves packages to create and provide rapid prototyping user
interfaces and related tools, which are built on top of graphics level software. This also includes
the tools found in the selected software development environment, such as editors and debuggers.
The Image Understanding Environment User Interface (IUEUI) Level consists of the
interface objects specialized for image understanding. This includes such things as object displays,
plotting displays, several types of browsers, and structures for describing the interface context.
The IUEUI consists of a small set of objects that can be freely combined for very powerful results.
The specifications of these objects are relatively independent of the other two levels, although
much of the current prototyping and design activities are directed towards understanding how to
best realize the functionality of the IUEUI objects with respect to these two levels, especially for
accessibility and limiting the eventual cost of the IUE for users.

The basic functional components of the IUE interface, as depicted in figure 2.2, are:

» Displays: These deal with mapping spatial objects and images (or sets of spatial objects and
images) onto two-dimensional display windows. There are several types of displays for
displaying images and image-registered features, for plotting functional relations between
attributes and components of spatial objects, and for displaying surfaces.
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s Browsers: These deal with presenting textual and symbolic information about objects. There
are different types of browsers for performing operations, such as inspecting the values in a
spatial object, for performing interactive queries with respect to databases and sets of objects,
and for inspecting relational graphs and networks.

o Interface Context Descriptors: These are for describing the state of the interface and
interface objects. Examples are such things as the current color-look-up table for a given
display, the current display window or browser, and links between interface objects which
describe related views. This information supports intelligent default behaviors.

e« Command Language and Command Buffer: Users can control their interaction with
objects by using an interactive command language. The commands can be used in code and to
create scripts. This also provides a complete description of the functionality of the user

interface.

» Simplified, programmable access to Graphical User Interface (GUI) objects:
This is intended to provide programmer access to several of the objects commonly found in
GUI Construction Kits, such as knobs, sliders, text buffers, and menus. These can then be
used in applications and to extend the interface.

2.11 Prototyping

Prototyping many different parts of the user interface to complete the functional specification and to
answer basic implementation questions about choices regarding GUIs and user interface toolkits
began. Prototyping of the interface went through three distinct phases. First, mock-ups of the
different interface objects were developed using the Interface Builder on the NeXT machine. This
allowed for rapid prototyping of the objects for look-and-feel. For reasons of rapid development,
the next step began implementation in C on Silicon Graphics (SGI) machines using the GL
graphics library, Motif, and the FORMS user interface toolkit. Using these interfaces, the general
display object and the different browsers were put up very quickly. As part of this, extensions to
GNUPIlot are currently being explored to make sure it is compatible with methods associated with
the general display class and so it can provide an inexpensive plotting package. OPENGL is also
being evaluated as a possible machine-independent graphics package to provide the powerful
functionality of the SGI graphics library and FORMS. In the third stage of prototyping,
implementation on the IUE objects in Tk/Tcl in C++ has begun. This is a very rich machine-
independent, toolkit for developing interactive user interfaces using an object-oriented language.
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An example of an early mock-up done on the NeXT machine is shown in figure 2.3.
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Figure 2.3. NeXT Mock-Up of IUE User Interface.
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For comparison, the initial form of the graph browser using the NeXT Interface Builder is shown
in figure 2.4.

Figure 2.4. NeXT Mock-Up of Graph Browser.
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The implementation of the graph browser, using the FORMS interface kit on SGI machines is

shown in figure 2.5.
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Figure 2.5. SGI FORMS Implementatidn of Graph Browser.
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The current implementation, using Tcl/Tk is shown in figure 2.6.

Figure 2.6. Tcl/ Tk Implementation of Graph Browser.
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With the exception of GUI objects, we can review each of these in more detail. Our focus here is
on the functional components of the user interface and its attributes. The examples are from
prototyping on the SGISs using the FORMS Interface Construction Kit.

2.2 Object Displays

Object Displays are used for viewing, and interacting with objects by mapping them onto a two-
dimensional display window. This involves nearly all IUE objects: images, curves, regions,
object models, surfaces, vector fields, etc. Object displays involve a wide range of actions, such
as displaying an image and image-registered features; displaying networks of objects, such as
stereo images, multi-resolution pyramids, image sequences (and this can involve having several
linked windows for the different images, cycling through displays of the different components, or
mapping the different components onto different planes of the display buffer and combining the
images through transparency or color addition); displaying models and predicted segmentations as
overlays; and interactively inspecting and manipulating displayed objects and applying operations
to them.

There is a strong relationship between spatial objects and displays. Most IUE objects are
expressed as relations between sets. In displaying an object, values from one set are used to
specify a position in a display window and the corresponding values from another set are used to
specify an attribute such as intensity, color, overlay, transparency effect, etc., that is displayed at
the position. A basic example is an image where one set is described by the indices of the
coordinate system of the image, and the other set is described by the color or intensity values
associated with the particular image coordinate. A discrete curve is a mapping from integer indices
onto two-dimensional positions with respect to an image coordinate system. Displaying a curve as
an overlay on top of an image involves mapping two-dimensional positions along the curve onto
window positions using the same transformation that was used for the display of the image. The
color/intensity of the display at these points can be based upon registered values associated with the
curve (such as an approximated curvature). For example, a user might want to display an intensity
image in 8-bits of grey-level intensity, and then display overlay-extracted curves on top of this
while displaying curvature values along the curve mapped on to 8-bits of red intensity.

Operations that are involved with specifying the mapping onto a screen position are referred to as
position methods. These methods involve panning, zooming, perspective transformations, and
warping operations. The miachinery for this comes directly from  the coordinate system
transformation methods. The operations that involve mapping onto a particular window value are
called the value methods, which involve such things as setting up the Color Look-Up Table
(CLUT), the point-mapping functions (functions applied to the value at an object position prior to
display), the transparency effects, etc.

The basic processing flow for displays is shown in figure 2.7. Displays that take place with
respect to a context involve such things as the current object, the current description of the
transformation from an object to the display window, the current CLUT, links between IUE
objects, and several other attributes. Several display operations involve setting up these contextual
attributes. Displaying an object, such as an image or image-registered features, involves iterating
over the object and applying the specified position methods to determining the position in a
window at which to generate a display and applying the specified value methods. In interactive
processing, a selection operation is performed with respect to the display context to return a value
at a selected location. Graphics are also done with respect to the display context (the processing
flow in figure 2.7 is idealized in several respects). Many display operations don’t involve iterating
over an object, but manipulate the CLUT and display the buffer directly. Rendered objects, or
displays that involve warping or interpolation, are more naturally expressed as iterating over the
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display window itself. Displays can also involve a discrete sampling of other objects using square
pixel neighborhoods.

The object display methods are organized into the following classes:

Value Methods: These are methods that control how values in the specified object(s) are
mapped onto screen attributes, such as color and intensity; how to configure planes in the
screen buffer for the display of color images; how many panes to use for overlays; and how to
apply particular functions and conditis ns to object values prior to display. This includes
operations such as overlays, mapping onto different color bands, transparencies, and others.

Position Methods: These are methods that control how positions in specified object(s) are
mapped onto a display window. This includes operations such as panning, zooming,
perspective views, and some types of warping.

Display Window Attributes: These involve controlling attributes of the display window,
such as position, size, attributes of the title bar, event handling for the mouse, and re-sizing
operations.

Link Methods: These methods are for linking different displays (and browsers and GUI
widgets). Examples are window-to-window zooming and displaying stereo and pyramidal
images in multiple images. This involves creating links and specifying the operations and
transformations associated with links between interface objects.

Interaction Methods: These methods involve interaction and manipulation of displayed
object(s) in a display. Operations include selecting objects, recovering object positions and
values from a mouse click, and applying functions to selected objects.

Graphics Methods: These are methods to display registered graphics for drawing lines,
text, three-dimensional objects, etc.

History Methods: Many objects can be mapped to the same display window. History
methods coordinate displays over time, such as cycling through an image sequence or playing
- an animation of displays.

Archiving Methods: Archiving methods involve printing an object display, writing an
object display to file, or writing an object display to video tape.

2.2.1 Value Methods and the CLUT

Value methods are used to specify how values in an object are mapped onto display window
attributes such as color and intensity. There are several types of methods for this. CLUT-
segment methods involve setting up a color look-up table (CLUT) which involves creating
named segments and associating some number of bits with each segment, such as specifying 8 bits
for red, 8 bits for green, and 8 bits for blue. CLUT-value methods involve associating color
and intensity values with CLUT indices. These operations can be applied to CLUT segments. For
example, the red component of the CLUT can be mapped onto red values in several different ways:
by linear interpolation between specified shades of red, or by a spline through specified color
values. Overlay methods involve setting up overlay planes. Overlay planes can be displayed
and cleared separately of underlying intensity displays. Object-mapping methods deal with
taking object values and mapping them onto color table indices. For example, the CLUT-segment
for red intensity could be set for a linearly interpolated 255 shades of red, but the actual object

17




values in an object could range from values such as -1000 to 2000. The Linear object-mapping.

method specifies to linearly interpolate from this range of object values to the available shades of
red. There can be a linear mapping from the object onto color table indices, but the color table may
be set up for a non-linear mapping onto actual intensities displayed on the screen. Value-
function methods are user-specified functions that are applied to specified object values to map
them onto CLUT indices. Examples are conditional expressions that determine what value to map
a particular object value onto. In Lisp this is straightforward. In C and C++, it involves a run-
time interpreter which should be of as minimal complexity as possible. Other value methods deal
with transparency, blinking, and logical operations on bit-planes.

2.2.2 Position Methods

Position methods are used to specify mappings from spatial objects and images onto two-
dimensional display windows. They specify where to display something in a display window.
For example, position methods are used to specify pan, zoom, and scaling parameters to relate an
image to a display window.

The position methods and transformation networks used by the interface are defined by the
coordinate transforms used in the IUE. The interface generally requires transforms of images and
image-registered objects onto display windows and simple types of interpolation and sampling.
More complicated mappings, such as image warping and generating rendered objects for a specific
sensor, use methods from the sensor and scene classes and image packages for warping. These
are used either to generate an image that is then displayed or to invoke the object specific display
methods through the interface.

The coordinate transformations and networks are very important for the interaction methods. In
this case, the user indicates some position in the display window, and then the mapping from the
object to the display window is inverted so that the corresponding values and position in the object
can be determined and accessed. The object display is able to do this for images and invertible
geometric transformations. For others, such as interacting with a potentially complex, rendered
solid, methods from the other classes, such as the sensor and scene classes, are needed. Possibly
there are other representations of a rendered scene, such as an image-registered depth map, that
contain pointers to all the surfaces that project to a given pixel, ordered by depth that can be
generated to simplify the interactive processing. ' :

There is often hardware-supported pan and zoom images that should be accessible through the
position methods, even though this is machine dependent.

223 Interaction Methods

The Interaction Methods are for interacting with and inspecting objects through the context
associated with a display, such as the current object-to-display transformation. The methods
associated with this are built on top of the event-handling mechanisms of the supporting
environment. Interacting with an object through a display involves using the position mapping
from the object to the window. This is straightforward if the mapping is invertible and there is no
interpolation or warping, which is usually the case for images and image-registered objects. It can
also involve geometric intersection using the ray of projection corresponding to a selected window
position. For other objects, such as closed analytical surfaces, the reverse mapping is more
complicated and involves general spatial-object methods that need to be accessed by the interaction

methods.
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The current object to be interacted with can be explicitly specified or selected. Selection can require
disambiguation if there are multiple overlapping objects or complex spatial objects. The user may
be required to use a spatial index image (an image of pointers to objects which occupy a given
position) or use geometrical data base operations in the IUE. Both are potentially expensive and
don’t reflect operations specific to the interface. They are general IUE spatial data base operations
that need to be invoked through the interface to return the selected object(s) and object position
from the object to display mapping. '

There can be a variety of interaction devices (minimally it should spécify a screen location), but we
are assuming a mouse with at least two dis‘inguished buttons and text-input from the keyboard. In
the interactive mode:

o The current position of the mouse is stored in variables for the (mouse-x,mouse-y) of the
current display window. Associated with this is the corresponding positions (current-position)
and values (current-values) in the specified objects. The default involves only geometry to
inverting coordinate system transforms and not sampling or interpolation relative to the objects.
Since several objects can be interacted with at the same time, these lists will consists of lists of
positions and values.

»  When the mouse is clicked, the values for the window position, and the corresponding object
positions and values, are stored in separate lists. Interactively selected Functions can then use
items in these lists as parameters.

e Because a user can associate functions and command-sequences with keys and mouse-states,
the functions can be called interactively. The functions are stored in a table index by mouse-
state or keyboard-event. The functions can be a sequence of specified interface commands and
can be interactively applied to the values in the different lists. Functions are selected using

_ either the keyboard input (numbers) or mouse-state (mouse-down, mouse-up, mouse-drag for
the left, right, and, if it is available, the middle mouse button). Function selection may also be
based upon a count of the number of mouse-clicks for a specified mouse button.

e There may be a default spatial index associated with a display window. This is memory
intensive but can help with a lot of the interactive operations, especially the selection
operations.

2.24 Graphics

Often a user will want to perform graphic displays of text, two-dimensional graphics, and three-
dimensional graphics. Examples are annotating a display, indicating where some action is
occurring (the position of an epipolar line, translational flow paths, etc.), projecting a wire-frame
of a model onto an image. Much of this functionality will come directly from an existing graphics
package that the IUE will utilize. The graphic displays need to take place in three different modes.

They can occur: :

 in the coordinate system of the display window. In this case, displays only occur with respect
to the window coordinate system

* in the coordinate system of a displayed object, such as drawing a line with respect to the
inverse mapping from window-to-object coordinates :

* in the corresponding IUE objects. Thus, in drawing a line in image coordinates, a

corresponding instance of an IUE line object would be produced. When the wire-frame model
is displayed, each line-segment and junction would be created as an object in the IUE. This is
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very useful for producing data for testing routines. This mode can be coupled with the
interactive processing mode to create data. This may be restricted to relatively simple objects,

such as polygons, curves, etc.

225 Types of Object Displays
Four types of object displays stand out:
» The image or pixel display is for viev'ing images and image-registered features.

» The local graphics display is for displaying objects by mapping their values onto
parameterized graphic objects, such as lines and cubes. Examples are displaying vector fields
and edges.

» The surface display is for displaying objects that get mapped onto mesh or rendered surfaces.

» The plot display is for displaying functional relations between objects. Examples are one-
dimensional, two-dimensional, three-dimensional graphs, histograms, scatter grams, and
views of functions and tables.’ '

Although, these different types are distinguished by specific methods, all inherit a large number of
similar methods from the general display class. For example, overlay operations are similar for a
surface display and for an image display, although they can look quite different. (In one case it
appears like drawing in solid colors in image-registered coordinates on top of a displayed image,
and in the other it would be rendering the colors onto a displayed surface.)

Local Graphics

Local Graphic Displays are a subclass of object displays that map object values onto parameterized
graphics, such as a line, a square, a perspective view of a cube, Chernoff faces, or a user-specified
function. A common example is a vector display that will map each component from a pair of
images onto the x and y components of a vector. Using the general display methods, the vectors
can be displayed as an overlay on top of an image or through indices in a CLUT. For visualizing
three-dimensional attributes registered across an image, the user can display unit cubes with their
orientation computed from the specified components of the display object. The graphic display can
be a piece of graphics code, which will be positioned to the projected location of the pixel.

There will be specialized local graphic displays for vectors and different types of edges because of
their heavy usage. It will be possible to display the horizontal and vertical edges in the cracks
between pixels or to place a single edge at the center of a pixel with it’s orientation determined by
the specified components objects.

Plot Displays

There are several different types of plot displays: one-dimensional, two-dimensional, three-
dimensional graphs, histograms, scattergrams, perspective views of functions and others.
Examples of plot displays can be found in several data visualization packages and mathematics
packages, such as Mathematica and GNUPIot. In using such packages in the IUE, remember the
cost limitations on bundled software and the potential problems with data compatibility and speed.
Also, plots need to be compatible with the general display methods for such things as the
following:
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 Mouse interaction methods: for selecting a position in a graph and then having access to the
domain point and the range point. An example is interactive segmentation from a histogram
displayed as a plot.

» Links between plot displays and other types of displays.
»  Most of the view transformations for such things as scaling and zooming.

* Overlaying plots in different colors.

The plotting capabilities in GNUPIot is curréhtly being explored to determine its use in the [UE. It
is essentially free and all the source code is available.

2.3 Browsers

Browsers are used for interacting with text-based or symbolic descriptions of objects. They are
used for actions such as querying sets of objects, determining and inspecting relationships between
objects, process monitoring, and inspecting values in an object. The browser and browser-related
classes are bemg designed so they can readily be built on top of existing interface construction kits.

There are two general types of browsers: Field-Browsers and Displayed-Graph-Browsers
of which only field browsers are currently being implemented. Field browsers are built from
component objects which are found in several GUIs.

A field appears as a rectangular box which can be filled with text, icons, colors, colored text,
text in particular fonts, or user-specified graphics. Fields can have actions associated with
them when they are selected or when a user changes the values in them.

» Fields can be organized into connected horizontal or vertical field groups, where each
field is a unique index in the field group. The fields in field groups will generally have
different objects displayed in them. An example comes from the object-registered browser
where a field group can correspond to a display of registered values from different objects. For
better visualization, these can be displayed in different colors, fonts, etc., in addition to their
position in the field group. A field group can also have a distinct boundary.

* Field Groups can be organized into field matrices where each group is a unique index set in the
field matrix. Objects and sets of objects can be mapped onto the matrix.

 Field Matrices can be scrollable as a way to control the mapping of an object (or object set)
onto the field matrix.

There is a distinction between four types of field browsers, which are inherited from the general
Field browser class.

* Object-Registered Browser: This contains values extracted from a spatial object, such as

the intensity values in some square neighborhood of an image. Depending on the

- dimensionality of the object (or relationships between component objects), this can be

presented as a one-dimensional array, a two-dimensional array, or multiple two-dimensional
arrays, and can be used to describe curves, images, image sequences, and pyramids.

o Set / Database Browser: This is presented as an array of fields. Each row of fields
. corresponds to selected attributes of a particular object, and each column corresponds to
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common attributes over the set (or database) of objects. An example would be browsing the
database that describes the current active objects in the IUE to find the most recently created

image from some operations.

* Object Attribute Browser: Each row correspohds to the value of an attribute for an object.
This would be used for inspecting a single object. :

e Graph Browser: This browser is useful for text-based inspection of graph structures and
trees. When an item is selected, the related items (along some relational dimension) are
displayed in the next column.

The methods associated with browsers are very similar to those with displays, suggesting a more
general UE interface object class. The position methods for browsers involve how an object (or
set of objects) gets mapped onto the fields of a browser. Mapping object-registered browsers, is
essentially the same as displays (see below). The fields are analogous to pixels in a display
window, although they can be filled with textual information. For DataBase browsers, the
position methods specify how objects are mapped onto rows of the browser and how attributes are
mapped onto columns (see below). The position methods for mapping from graphs and networks
onto a Graph browser involve keeping track of different paths through networks and nodes and
arcs that have been traversed. Browsers can also be linked to browsers, displays, and user
specified interface widgets.

The following examples have been implemented using the FORMS GUI kit on SGs.

2.3.1 Object-Registered Browser

The Object-Registered Browser is used to inspect the values in a neighborhood of a spatial object.
A common example is inspecting the image values about a selected point. It is similar to displaying
a spatial object in a display window, but instead of the values being mapped onto window
positions and screen intensities and colors, values are mapped onto field locations and general field
attributes, such as colored text in specified fonts, colors, and icons. The attributes and the
specification of the mapping from an object onto an Object-Registered Browser is shown in Figure
2.8. A set of spatial objects are mapped onto a matrix of fields in the Object-Registered Browser.
This mapping involves several parts: a coordinate transform from the N-dimensional spatial
objects to the two-dimensional Object-Registered Browser; the type of interpolation to be
performed if this mapping doesn’t involve discrete values; what to do when browsing beyond the
boundaries of the spatial object. Also shown is a navigation tool to interactively access position
methods to position the Object-Registered Browser with respect to a set of spatial objects. The
browser is linked to a display window that shows the position of the browser with respect to the
bounding rectangular prism of the spatial object. This display would be updated when the browser
is moved with respect to the spatial objects.
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Figure 2.8. Object-Registered Browser.
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Figures 2.9 and 2.10 show an implemented two-dimensional Object-Registered Browser. In
Figure 2.9, a single image is displayed with values mapped onto intensities, text, and an icon.

Figure 2.9. Object-Registered Browser applied to an image.
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Figure 2.10 shows two images and the computed difference of the two images, each in separate
_ fields. Each image is displayed in a different color, and the field containing the difference image
uses the background color to encode the magnitude of the difference.

Options § Exit

Figure 2.10. Object-Registered Browser applied to an image.
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2.3.2 Set/Database Browser

The Set/Database Browser is for inspecting the attributes of a set of objects, which enables
interactive queries to be performed via the browser. This is especially useful for keeping track of
instances of objects (an object selected in a Set/Database Browser should probably default to the
current-object so it could be displayed immediately). There are two structures used for describing
the mapping from a database onto the browser. One is the set of selected attributes which
correspond to the columns. The other is the current set of items which satisfy a query and the
indices into the first and last element of this set, which are displayed in the corresponding rows of

the browser (see Figure 2.11).
Attributes

Items

A_ Database Browser
Figure 2.11. Set/Database browser.
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Figure 2.12, shows an example using the Set/Database browser to inspect a set of line segments
and then to sort them by slope

2dline.db

line13
Hne24.
line34

line47
line8
line91
line10
line11

Figure 2.12. Set/DataBase browser applied to a set of line segments from Data Exchange Format.

27




233 Object Attribute Browser

An Object Attribute Browser is for inspecting the attributes of an object or several objects with
the same types of attributes. It uses an ordered list of object attributes to determine which attributes
of the object to display. Figure 2.13 shows an example of a Object Attribute Browser applied to
the attributes of an image object.

Options

imageﬂ |

912319

S TR ST

{istereo-camera

1002952 L.

imagé12

Figure 2. 13. Object Attribute Browser applied to an image.
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234 Graph Browser

A Graph browser is for inspecting graphs and network objects. Instead of one large field
matrix, it consists of linked Nxt field matrices. Each column corresponds to a set of nodes.
When a node is selected, the types of relations (arcs) are displayed in the current - arc - browser.
When a type of arc is selected, the nodes with that type of relation are displayed in the adjacent
(right) column. Several structures are used to describe (and update) the mapping from the graph
onto the successive browser columns. The current node is the most recently selected node. The
current path is stored, as well as the nodes that have been visited. Figure 2.14 shows how a
network is mapped onto the ‘graph browses Figure 2.15 shows a Graph browser applied to a
polyhedral mesh.

.
N
-

_'
-
5, :

Figure 2P. 14. Mapping a network onto a graph browser.
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Figure 2.15. Graph Browser applied to a description of a polyhedral mesh from the Data
Exchange Format.
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2.4 Interface Context

There are several data structures for describing the context of the interface. These are used for
intelligent defaulting and for saving the state of the interface. They include:

* Object-Display Mapping: Structures that describe the mapping from an object onto a
display. This includes viewing the transformation between an object and a display window,
the value-mapping of how the object is displayed, and a referenc;e to a particular CLUT.

« Object-Browsing Mapping: Struciures that describe the mapping from an object(s) or
database onto a browser.

» Display Context: Structures that describe the current context for a display for such things as
the current window, the current object, the current object display mapping, the current display
command, the current mouse-selected object position and value, and the lists of interactively
selected object values and positions. For example, if neither a display nor an object is
specified, it will default to the most recently used.

¢ Browse Context: Related structures for browsers. Such things as the current browser, the
current data base, query history, and others.

» History: The sequence of display or browsing actions for a particular window or browser are
saved and can be re-accessed and used for creating animations. In addition, objects that have
been displayed or browsers are also stored.

* Default layouts for windows and browsers: The desired layout of windows and
browsers can be saved and can be available to a user when starting the [UE. Users may prefer
different interfaces (arrangement and instantiation of the basic interface objects) depending on
the task or level of sophistication.

* Object Display Links: A structure that describes the concatenation of a display or browsing
operation between IUE interface objects.

The context description is an extension to the underlying context usually provided by the graphics
level. It'should be possible to read and save context descriptions.

241  Links

Links support operations such as window to window zooming, displaying the same object from
different views or using different value-mappings and controlling displays using interactive
widgets like sliders and knobs. Linked displays are useful for displaying composite data such as
stereo image pairs or pyramids. When something happens in a parent display (or browser),
another display will perform an action using information from the parent display. The action can
be a display operation or a sequence of commands associated with the link, such as a set of
commands from the interactive command language.

The mapping between a spatial object and a display in one window can be concatenated with the
display specification in another. A common example is using one window to zoom onto the
display in another, or using one window to display a selected portion of another (panning and
zooming are so common they will be directly supported via an interactive tool).
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There are specified constraints on links to avoid many complex and events. Linked displays and
browsers are only updated when a display action is performed, not when changes are made to the
displayed object. Individual links are bi-directional, but no cycles are allowed in the graph formed
from all of the links between IUE interface objects.

2.5 Command Language

Users will be able to specify all interface actions through an interactive command language and will
be able to access all the functionality of ‘he interface. Display operations can be performed
interactively through the command buffer. The command language will have intelligent defaults
and abbreviations (such as displaying to the current window if none is specified). In addition, the
commands will be used in non-interactive code for creating scripts and general display routines.
All of the functionality of the interface is accessible through an interactive command language,
which encompasses the overall functionality of the interface.

A concern with the interface command language is that it becomes another language that people will
need to memorize. This is not an issue for development in Lisp since the display operations can be
called interactively like any other function, but it is a significant issue with C++. The command
language is intended to be as simple as possible, with a limited syntax. Most arguments are
specified via keywords and correspond directly to interface object methods. There are also defaults
for command specification. The IUE will eventually support intelligent prompting to complete the
commands. ' _

The general syntax is

IUE-interface-object object-set [keyword arguments]®*
For example,
[*wl* imagel :p]

means to display imagel using a pixel-type display in window *w1* using the current display
context associated with the display in window *w1*. The brackets are used to indicate separate -
commands. If the last display operation was of type :p in *w1*, then only:

[imagel]
needs to be specified. More detailed examples are presented below.

An important operation for displaying spatial objects is the ability to apply functions to objects
prior to displaying or interacting with them. These operations almost always don’t involve creating
a new object. An example is manipulating the underlying CLUT to perform a thresholding
operation. In this case, no thresholded image object is produced, only what is displayed in a
window is produced. This goes by many names in different systems, such as Pixel Mapping
Functions, Dynamic Color, Generalized Color Look-Up Tables.

There are two aspects to such functions. First, there are limitations on the types of functions that
should be specified for application to an object when it is displayed. Operations, such as zooming,
panning, manipulating the CLUT, specifying which planes in the display buffer are used, and
using simple point-wise algebra with limited conditional evaluation, are very useful and will be
supported. But, it doesn’t make sense for operations, such as generalized warping or detailed
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processing over a neighborhood or generalized intersection, to be done by via interface commands.
Second, there are also language specific aspects for specifying function application to objects prior
to display. In Lisp, it is straightforward to pass lambda expression or closures which are applied
to each position or value prior to display. In C, this requires a library of standard functions and an
interpreter. '

In the actual operation of the IUE, it is not necessary that all interactions take place through this
command language: some will be invoked by menus and special keys, and refer to the current
display context. An important part of the design of the IUE interface entails how commands (and
which commands) are mapped onto meius and other interactive devices. This is especially
important since the interface will support a wide community ranging from naive users, who are
interacting with hardened applications, to developers. Naive users may want many interactive .
devices such as specialized menus, while experienced users will want more powerful, abbreviated
commands. Advanced users will become very adept at the shortcuts that should be provided.

2.5.1 Examples

The following presents some examples of specified display operations using the command
language.

[*wl* imagel :p :linear 0 128 *screen-min* *screen-max*]

This would display to window *w1* using the current defaults. The range of object values from 0
to 128 are linearly mapped onto the range of values *screen-min* and *screen-max*.

[image :p]
[edge-image :overlay red]

An image is displayed in the current window using a pixel-type display. The edge image is then
overlayed on top of this. Wherever the edge-image is equal to O nothing is displayed in the red
overlay plane, and wherever the edge-image is equal to 1, the corresponding pixel is set in the red
overlay plane.

[:overlay-colors (red, green, blue, violet)]
[image :p :value-function
(if (image.value > 10) red blue)]

The first command tells the current display to use the specified overlay colors. The second will
display red in the overlay plane at a screen pixel corresponding to an image pixel if the image value
is greater than 10, otherwise it will display blue.

[spatialIndexImage
P
:value-function
(if (label-image.value = NULL)
0
(length (spatialIndexImage.value)))
t:linear 0 20 0 *screen-max*]
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This function displays a spatial index image (an image where each pixel contains a list of all the
objects which occupy that pixel). The value function determines the number of objects in this list
and the linear function maps this onto available screen intensities.

(imagel image2
o
:value-function
(imagel.val - image2.val)
:linear -20 20 *min* *max*]
The above code will display the difference. between two images. Other common value functions

would be for type conversion and display” histogram transforms. The user can also specify
functions in the interactive mode to be applied to the values in the different queues. For example:

fimage
:i
:1 [p :overlay-plane clear]
{p image :value-function
(if (image.value >
object-values[1l])
red blue)]

The user has selected an image location with a mouse click and the corresponding queues have
been filled with the window and object positions and values. Thereafter, when the user hits the
terminal key 1, the overlay planes will be cleared and all image locations with a value greater than
the value at the selected image location will be displayed in red, otherwise blue, in the overlay
planes. Image.value is a dummy variable that refers to the current value in the image that is being
displayed. Object-values[1] refers to the value selected using a mouse click in the display window
and stored in the object-value queue. Red blue refers to globally defined overlay colors. Recall
that the :value function specifies the operation to be applied to an object value to map it onto a
screen intensity or color.

[:link *wl* :zoom 2 2 :pan 50 50]
This links *w1* to the current window and concatenates a zoom and a pan transformation.

[RegionDB
P
:positions RegionDB.locations
:values RegionDB.textureMeasure
:linear 0 100 *min* *max*
:red-8]

This says to display the RegionDB in the current display window with the positions coming from
the locations attribute of the regions in the RegionDB and the values by taking the RegionDB
texture mappings and using a linear mapping from these onto screen intensities in 8 bits of red.

[*W1* histogram :plotld ]
[*W2* image :p]
[*W1* histogram
i .
:1 [min = object-valuesl].x]
[max = object-values[2].:x]
[*W2* image
P
:value-function
(if ((image.value > min) &&
(image.value < max))
blue red)]
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This is an example of plotting used for interactive histogram segmentation in which the interaction
methods let us click on the axis of a plotted function to return the x coordinate and the y-value of
the displayed object and then use these values to specify peaks in a histogram. Here the user has
plotted a histogram in *W1*, and then selects the range of values by clicking on the displayed
histogram. The current-object-value contains the x and y value from the displayed histogram.
These are stored in the local values min and max. When the user hits the key 1, the selected range
of values are displayed in the blue overlay plane in *W2*,

2.6 Additional Featﬁi‘es

Even though the focus has been on developing the core functionality of the user interface, there are
several other features that have been considered for use with the interface. Some of these can be
built on top of the interface objects and operations described previously. These are important
candidates as packages and libraries to augment the core IUE. ' :

One important area involves interactive task management tools. Examples can be found in the data-
flow editor in the Cantata portion of Khoros and the Task editor in KBVision. Another area that is
important in developing graph browsers for the display of graphs and networks is to represent
objects or values as nodes and to use links to describe relations. Graph browsers can have
difficulties when trying to display several nodes with arbitrary relations between them in that the
connections between the nodes can begin to obscure the overall display. A typical use would be to
display a constraint or coordinate transform network.

There are probably hundreds of nice interactive controls for displays and visualizations that exist in
different environments, such as interactively manipulating the object-value to screen-intensity
function by shaping a function; selecting CLUT; modifying CLUT; interactively building display
commands using templates or command browsers; floating tool palettes of interactive drawing
tools; etc. In general, such tools can be very useful, but it is extremely important that there be a
consistent look and feel with different applications that are based on the IUE. This will be partially
achieved by depending on the underlying graphical user interface to supply the basic interface
objects.

Other useful interface tools are:

» Interactive Selection and Modification of CLUTs and display mapping functions; cycling
through different CLUTSs.

» A dialog box for setting up system defaults and initializing characteristics of the IUE: initial
layout, font selected, level of expertise, etc.

e Access to an integrated use of Established Visualization Packages: There are several data
visualization products and it would be nice to have a modular interface to these.

» Mensuration tools: Such things as rulers, grid overlays, and the use of multiple cursors as a
mark of distances and points of reference. These probably can be built on top of basic interface
capabilities, displaying IUE objects (in particular, the display interaction methods and IUE
objects, such as bit-mapped regions and line-objects).

 Interactive Object Creation (Draw Objects): It should be possible to create objects interactively.
This is useful for creating idealized data for testing and development. It should be supported
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by the display interaction methods and by access to the instantiation methods associated with
spatial objects.

Incorporating Hardware Accelerators: So the interface and the IUE in general can modularly
incorporate different hardware accelerators.

Display Buffer Optimization: The display buffer itself is a short-term memory for manipulating
the view of a displayed object. A useful feature would be routines to directly access the display
buffer or perform specific display operations in ways optimized for particular types of
displays. .
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Chapter 3

Hypermedia Annotation for Tutorials

3.1 Introduction

The IUE will be supported by on-line documentation and tutorials. The tools for implementing
these will also be available for enhanced communication and publication by scientists and
developers who use the IUE. While there is significant activity in developing documentation and
hypermedia toolkits, they remain largely machine dependent with no clear standardization. A
simple documentation tool called Knowledge Weasel (KW) is being developed. KW is based on
Lucid Emacs 19 and existing media editing tools.

The organization and implementation of the Knowledge Weasel (KW) Hypermedia Annotation
System, which is currently being used to explore knowledge structuring by collaborative
annotation, such as a large group of people reading a book together and engaging in prolonged,
asynchronous conversations is described in this chapter. KW incorporates many useful features: a
common record format for representing annotations in different media that allows uniform access
to them; dynamic user control of the presentation of annotations as a navigational aid; global
navigation using queries and local navigation using link following; and support for collecting
related sets of annotations into groups for contextual reference and communication. KW purposely
leverages off of free, publicly available software so it doesn’t require building specialized tools and
can be freely available. Some issues discussed involve annotating non-textual material, such as
images and sound, and conclude with a brief discussion of ongoing and future work.

Knowledge Weasel (KW) is a hypermedia presentation and authoring system designed to support
collaborative annotation using several types of media. A simple analogy for KW is a group of
people reading a book or attending a lecture and being able to make diverse types of comments and
annotations on the material to supplement the material and make it easier to understand. Or
consider the knowledge that is created during a course, in terms of understanding what develops in
the minds of individual students that is usually discarded and not accessible to future students.
KW is intended to extend the static information found in existing courses and books by developing
a rich infrastructure to increase accessibility and different organization of material. It should be
easier (or more rewarding) for the 5000th person who has worked through a textbook to read the
textbook than the first person, in the same way that paths through forests become clearer over time.

In reality, such unrestricted annotations and comments, made with respect to real books and
lectures by hundreds or even thousands of people, would create a significant mess. Therefore, in
developing KW, tools were created to extend this simple metaphor in several ways:

* Using multiple types of media. There is support for several types of annotation, distinguished
by media type (such as images, text, sound, drawings, and eventually including video and
gestures) and their functional role as an annotation (a comment, a counter-example, a question,
an analogy, etc.). For annotating non-textual media, such as images and sounds, a distinction
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between two different types of annotation is introduced -- superficial annotation and deep
annotation, each requiring different types of tools.

* Developing a general format for annotations. A common annotation record that is wrapped
around different types of media for uniform accessibility is used. The annotation records are
structured to make possible intelligent and automatic processing, eventually including rule-
based processing for automatic presentation and “ferreting” of information (hence the name).

« The need for different types of navigation, organization and presentation tools to keep users
from being overwhelmed with a great »'zal of possibly irrelevant information. KW supports
two basic types of navigation. One type of navigation is done via queries over a database of
annotations (global navigation). Another type is done by following local links between
annotations (local navigation). The query-based navigation is generally used to search globally
over a set of annotations to set up a context for more local link following. The sequence of
queries, and the displayed sets of annotations to define a collection of related annotations, can
be manipulated as a whole for reference or contextual communication.

+ User control of annotation and button presentation. This is critical for users to perform
navigation without getting lost, especially in the case of a heavily annotated document. The
materials being annotated can be completely covered by the indicators (buttons) corresponding
to the annotations. The display of links and buttons can be suggested by an author but is not
fixed by him. Whether they are displayed, and their visual attributes, are dynamically
controlled by a user.

« Supporting concurrency of access so multiple users can synchronously annotate a document.
This has also involved experimenting with protocols for who can change what in annotated
documents, and how to update documents based upon these changes.

« To avoid duplication and to be aligned with ongoing developments with the software world as
a whole, KW is based on existing (and essentially free) file, database, and media editing tools.
This includes operating systems and file management facilities, text editors, and X-based tools
for dealing with different types of media, such as sound, images, and graphical user interface
construction kits. Significant leveraging occurs because of this. For example, because of the
integration with GNU tools, running programs can be annotated while they are being executed
in a debugger without requiring the introduction of additional capabilities. It is suspected that
the distinction between hypermedia and general operating system software and file systems will
lessen in the future and hypermedia will become more and more a conventional part of
computer system software.

KW has been influenced by, and shares attributes with, many major hypermedia systems,
especially Notecards [10] and Intermedia [29]. Intermedia has been a major influence in terms of
the use of hypermedia in instruction and InterNote [5], the extension to Intermedia for collaborative
annotation, which stresses the importance of a common annotation format and the metaphor of
making annotations on “layers of acetate” over different media.

Figures 3.1 through 3.4 are brief segments from sessions by different people using KW. The
processing in Figure 3.1 involves an author who wrote a research paper and is using it as the basis
of a tutorial for a class on computer vision. The author is going through his paper and annotating it
with examples and with detailed descriptions of how concepts in the paper are reflected in the -
corresponding code. The author first selects various files of text, results, and code and then
specifies that these are files to be annotated in KW. In Figure 3.1, the author is creating an
annotation between a selected portion of the paper and the corresponding code. Shown is the
annotation with the textually displayed buttons (they are actually in large blue text) and the
corresponding areas of the text and code.
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Figure 3.3. Questions expressed as annotation.
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In section 3.2, the basic architecture of KW is described and other parts are discussed in more
detail. Section 3.3 looks at the representation of annotations and issues in treating annotations
involving different types of media in a uniform manner. The database aspects of KW and how
queries can be used as a type of global navigation are explained in section 3.4. Section 3.5
discusses how the presentation of annotations is controlled by users. A description of how KW
was implemented is presented in section 3.6. The conclusion in section 3.7 will discuss ongoing

and future work.

User
View 1 View 2 View 3
. Mary, mary quite contrary, how This porridge is too hot! This Little miss muffet sat on her
D Lsp lay does your garden [herbs] grow? porridge [soup] is too cold! tuffet eating her curds [lactose]
Y
Presentation
Prerentatzon o Manager
uery
Currently
Selected .
Annotations O“"OO/' .
Database
Information Manager
Query
Annotation
Space

Figure 3.5. Knowledge Weasel Architecture.
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3.2 KW Architecture

The logical architecture of KW is shown in figure 3.5. KW consists of different levels of data
representation related by user-directed processing facilitated by different “managers.” The lowest
level is the annotation space that consists of all annotations. Users can query the annotation
manager to select a set of annotations to interact with. Selected annotations are displayed by the
presentation manager. This involves how to visually present the indicators (buttons), which
correspond to annotations on a displayed document and also determines which button is selected
using a mouse. The display of selected annotation is highly contextual and under user control.
The presentation manager consists of sever i “annotation renderers,” which display the selected
annotation buttons in a manner appropriate for the different types of media. Selected and displayed
annotations can be grouped together to form “views.” Views supply a way of organizing and
referring to different contexts for storage and communication. A user can have multiple
simultaneous views that he is interacting with.

There is no real distinction between authoring and navigation in KW. It is important to navigate to
the information that one wants to annotate, and it is important to take any type of material as
something that can be annotated. Given a context or a selected document, a user can annotate it
directly. The user can use available system media editing tools to create new data files that can be

annotated.

A central idea in KW is that of an annotation (see Section 3.3). Logically, an annotation consists
of two files (see Figure 3.6). One file, the data file, contains the actual data in the annotation. This
can be any type of media: ASCII text file, a sound file, a postscript file, images stored in a
particular format, or several other formats. These files are created using existing media editing
tools for operations such as recording a sound, drawing pictures, grabbing a portion of the screen,
text editing, and so forth. KW associates a link file with each data file. The link file contains
descriptions of the annotations that are made with respect to the data file. For example, if the data
file is an image, then the link file consists of records describing all the annotations that were made
relative to that file. The records in the link file are described as a set of fields and field-values that
include information such as: where the annotations occur, constraints on how the annotation is
displayed, time of creation, the author, textual keywords, and several others. The data file is
considered a node and the link file specifies links relative to that node and to other annotations (this
is only a logical description -- the link files and the corresponding records they contain are not
~stored in a distributed set of files, but in a small number of large files which are organized for
effective database operations).

This simple representation supports the hierarchical grouping of annotations. A link file can
contain several annotations, which it serves to group together in the context of the file being
annotated. These annotations can involve files, which in turn contain other annotations, providing
recursive, hierarchical structures for organizing annotations. This is useful for describing complex
relations among several annotations. It is also useful for making templates to direct responses
from people. For example, a text data file can have annotations that correspond to where people
are requested to input some type of data.

The annotation space consists of all the annotations and files that have been developed. The entire
space of annotations can be very large so that it can be partitioned into different subspaces
organized in terms of files and directories. Users can select a given directory of annotations or
particular annotation files to interact with. This is done via database queries and local link
following.

An example query could be to select all annotations authored by Ian, produced after a certain date,
which contain the word “convolution.” Because KW is based on top of existing facilities, such
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queries can involve grep-like pattern matching. Queries are processed by the “‘Annotation
Manager.” Associated with a user is a mode description, which is a set of queries that he wants to
always be performed either at start-up or at all times. The use of queries to select a relevant set of
annotations corresponds to a basic type of navigation. Because queries are done so often, they are
supported by an interactive tool, the annotation browser, so they can be performed with limited
user activity. The query language is described in section 3.4.

The display of buttons that indicate the location of annotations in a document is handled by the
presentation manager. For example, a document may be very heavily annotated, and if all the
corresponding buttons were presented to th~user, he would be overloaded. The user can select the
portion of a given annotation subspace that he wishes to be displayed in a particular way. For
example, in viewing a text file, a user can specify that he wants all the annotations of a certain type,
made after a certain date, and containing a particular phrase, to be displayed in flashing red in a

particular font.

The annotations that are made on a particular file (such as text in an editor or a displayed image) are
displayed as mouse-sensitive regions. The display of annotation buttons occurs as an overlay on
top of the particular type of media. Buttons are displayed in two different forms: as text in
brackets or as a bitmap which can be displayed in an overlay plane. A user can decide to map a
selected set of annotations onto several different visual attributes. This is done so frequently that
there is an interactive tool to support the selection of display attributes and to keep track of them.

To display an annotation button, the presentation manager uses the record for a given annotation in
the context supplied by the annotation-link file. For each of the different types of media that can be
annotated, there is an “annotation renderer” that will display the annotation buttons correctly for
that type of media. A renderer basically interacts only with the annotation record description (other
types of interactions are mentioned in section 3.3.3).

In KW, an annotation which is in a set that satisfies a query is said to be “selected.” An annotation
whose corresponding data file is displayed in a window is said to be “activated.” And an
annotation whose button is displayed with respect to a window is said to be “indicated.” A “view”
is defined as the sets of selected, active, and indicated annotations. The current view is formed by
a sequence of queries and can be used to narrow a set of annotations to form a small set of selected
annotations. A view is stored as a DBM database of records indexed by the IDs of the annotation
records. (IDs are generated for every annotation in KW and are guaranteed to be unique.) Views
are stored in a file (DBM format). The browser can store and reload these entities.

Authoring in KW can be generally thought of as the process of adding new text or annotations to
an annotation space. There are several ways that one can use KW’s already discussed authoring
tools.

One way to do authoring (and the way many KW documents get created) is by an author having an
idea for a hypermedia document and creating it from scratch. Generally, this type of authoring
yields a single document with supporting information as annotations, which are frequently
multimedia annotations such as figures, images, and extra references. These types of documents
are designed to be read within the context of KW.

A second way to do authoring is to take an already existing document and put it in KW so that it
may be annotated by a community of users. An example of this type of document might be a
strategic plan for a company, a set of course notes for a college course, or a scanned-in text.
Documents can benefit from the collection of knowledge that builds up about the content of the
document. This type of annotation usually is a discussion of the document itself.

46




A third type of authoring that can occur with KW is “guided.” In this type of annotation, the
author constructs the document in such a way that the reader should respond to questions with
annotations of some type (generally textual or programs) which are reviewed later by the author.

Some of the components of KW will now be discussed in more detail.

3.3 Annotations

In this section, the properties and issues involved with annotations are described: the structure and
use of the annotation record; some of the d:ferent types of annotations currently supported in KW,

and issues involved with annotating non-textual media.

3.3.1 Annotation Record

KW annotations are described using a common record format. This is associated with annotations
in different media to allow uniform access via database queries and to supply a minimal amount of
information for the different annotation renderers to successfully display the annotation buttons.
The records have several fields which are described below. It should be noted that the first two
fields of this record structure imply the link-structure of the KW document. The value of those
two fields are filenames; when KW creates a target file for data (such as when a textual annotation
is created), it must be careful to avoid potential concurrence hazards that could arise in naming the
file. To solve this problem, mutual exclusion is enforced on the namespace between KW
processes running in a network.

Annotation Field Value In Field

Source File Annotated Document

Target File : Annotation Document

Media Type of Target File Media Type

Button Location ~ Source file location of annotation button

Time Date and Time of the creation of the annotation
Annotation Name User supplied name of the annotation

Author Name User who created the annotation

Functional Role Classification of the purpose of the annotation
Source File Support Area in the Annotated Document

Target File Support Area in the Annotation Document
Media-Defined Button display attributes (such as bitmap)
Source-Changed Flag Whether the source has been altered
Target-Changed Flag Whether the target has been altered
User-Defined Keywords Keywords associated with the annotation

The “functional role” is picked from a defined set of choices; some examples are “todo,”
“supporting argument,” “correction,” and “generalization” (these can be extended by users). For
now, these classifications allow a browsing program to have some simple ideas about the content
of an annotation without resorting to expensive natural language understanding techniques.
Eventually, it is hoped that they can be used by the presentation manager for intelligent presentation
of a sequence of annotations. .

The user-defined keyword list allows users to display and modify a property list on each
annotation record. This can be used to store “extra” information that may become necessary to the
user at run-time. The use of this feature can be combined with lisp hooks in the implementation of
KW to provide easy user customization of KW’s behavior.
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332  Types of Annotations

A basic dimension for distinguishing annotation types in KW is the type of media. Several
different ones are currently supported: images (in different formats), sound files, text, postscript,
programs, and others. A few things are required for a media type to be used. One is that there
should be existing media editing and creation tools to create documents. The other is that an
annotation renderer has to be developed for the particular media. The renderer understands how to
interpret the annotation record to overlay an annotation on top of the particular type of media when
it is displayed and can deal with effects such as window resizing and movement.

One type of annotation that was found useful is reactive annotations. Using these, a user can
interactively grab a portion of a document and make a reactive comment like “good,”
“unsupported,” “confusing,” and “add example.” Comments are chosen from a user-definable
palette of choices, and are intended to allow a reader of a document to quickly make comments to
the author of the document. Links that would point to these reactive annotations are not normally
displayed by KW when a document is displayed; however, these links are stored in a database. In
reading a document, a user can indicate an area of the document and do a query to find other people
who commented on the document — perhaps people who DIDN’T indicate they found the section
confusing. Authors can use reactive annotations to get feedback. They can interactively select a
portion of the document and get a count of the number of different types of reactive comments
made on the corresponding portion of the document.

A program annotation in KW is an annotation that is really an executable program. When the link
to the annotation is traversed, instead of the annotation being displayed (as it would with a textual
or multimedia annotation), the program that is the annotation is started, running in a debugger
gdb). The user may then use normal debugging facilities on this program and may annotate the
source code of the program itself. When the source code of the program is displayed (which
happens frequently during normal execution of the program in the debugger), the display includes
previous annotations made by other users. In some sense, one can think of the entire source code
of the program annotation as the “textual part” of the program, since any part of the source code
may be annotated as if it were a textual annotation.

KW supports some more convenient interfaces to create certain multimedia annotations. It
supports ‘a voice annotation capability so that users who prefer voice input over keyboard can
easily do so. Such an annotation is created with a special command in KW, but is displayed in the
same manner as any other multimedia annotation. Also, KW supports a “link to screen” capability,
which allows the creation of image annotations that are screen dumps. The user invokes a special
command in KW to create such an annotation, uses the mouse to select a region of the screen, and
an annotation is created that is an image of the region of the screen the user indicated. At display-
time, the annotation is displayed the same way as any other image (multimedia) annotation.

3.33 Multimedia Annotations

Annotating non-textual media presents a fundamental problem which can be understood by contrast
with annotations of ASCII text files. Annotations made with respect to ASCII text files have
access to significant semantic information based upon the surrounding text in the source document.
For example, words in the area surrounding the annotation can be used in queries and textual
searches. Compare this to an annotation of imagery or sound: the semantics is essentially
inaccessible. How does the button know that it is laid on top of a picture of a person’s face or the
corresponding portion of a displayed sound file for the word “peachy”?

To reflect this, KW distinguishes between two different types of annotation: surface annotation
and deep annotation. Surface annotations are essentially done by the annotation renderers. They
use information in the annotation record to display the annotation as an overlay on top of the
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display of the document being annotated. It is sensitive to information contained in the annotation
record regarding the position of the annotation, a minimum bounding rectangle as its area of
support, and can deal with operations such as when the corresponding window is re-scaled or
moved. But it can’t access the underlying semantics of the data being annotated.

In deep annotation, the annotation can refer to the semantic content surrounding it. This is directly -
supported for ASCII text files given the location and area of support of an annotation. For other
types of textual displays, such as displayed equations or displays in Rich Text Format, it is
necessary to map back to the underlying text. For non-textual media, such as imagery and sounds,
this content needs to be explicitly associated. with the display of the particular type of media. This
involves interactively associating a spatially registered interpretation with displays of different
media. Generally, tools for this do not exist. An approach to build them is to take automatic
recognition systems for speech and images and produce versions that can be interactively
controlled. v

‘KW incorporates a basic capability for deep annotation on spatial data such as, imagery. This is
called “spatial index” and is a basic representation used in computer vision (which is concerned
with automatic image understanding). A fundamental idea in computer vision is that processing
associates a spatially tagged symbolic description with images. The spatial index is a map of
pointers to the objects which occupy a given pixel in an image. In this way, when a position is
selected, access is given to the actual objects used in the interpretation of the image. This is a
memory intensive representation, but it gives us access to the types of representations and
geometric database operations used in computer vision applications.

3.4 Queries and Global Navigation

The KW query language is based on a C-like syntax, which is then translated into a format suitable
for a TCL interpreter [24, 23] and then applied. The KW database browser contains a TCL
interpreter internally, and the interpreter is used for the actual evaluation of the queries.

The simplest form of a query is:

operand comparison Operator operand

The operands in such a query can be constants or functions. The query can be “passed through”
the database of annotations (or currently selected set of annotations) by applying the query to every
record of the database, and storing those records for which the query is true. Consider creating a
query which would result in selecting all annotations made by a user named “Daryl.” Such a query
would look like:

authorName=="''Daryl'"’

In this example, the comparison operator is equality (“=="). The left hand operand is
“authorName,” a function that computes the author’s name from an annotation record. The right
hand operand is the constant “Daryl.” As each record of the database is evaluated,:the authorName
function returns the author’s name associated with that record and it is compared to the given
constant. :

Boolean combinations of these queries are also permitted using the normal C operators. For
example, if your goal was, “I'd like to see all the questions about our strategic plan which were
asked after January 1st,” a possible query in the query language would be:

mediaType==''asgcii''&&sourceFile==''gtrategic~-plan’'’
&&date>=''01 01 1993'’
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Functions in the query language can also refer to the underlying graph of nodes and links formed
in the annotation space. Such a function is “distanceFrom,” which computes the distance from a
node (in hops). Given a set of annotations, a query of the following form computes all the
annotations reachable in 2 link traversals from the current set: distanceFrom=="2". Finally, some
query language functions exist to modify the display of the results of other queries. Sorting
functions are examples of this type of query. '

Although this query language is relatively straightforward (and quite familiar for C programmers),
it was decided early on that a graphical interface to query creation would be necessary for KW to
be broadly used. To support this, a p:lette of commonly used comparison operators (such
equality, inequality, less than, etc.), Boolean operators, and sorting operators in the user interface
of the KW database browser is provided. . Further, all the cells in the KW database browser
respond to mouse clicks by inserting their value as a constant into the current query. Also, the
names of all the fields in the browser are mouse-sensitive and if clicked on, respond by inserting a
function into the current query which does a selection on that field.

3.5 Presentation Manager

The presentation manager has two parts, the database mapper and the document renderers. The
database mapper is part of the database browser and controls display attributes of link presentation.
The document renderers are small applications (generally written in TCL) that know how to display
documents of a particular media type and annotation markers on these documents. Further, these
document renderers understand a simple protocol in which they exchange information with the
database browser about the documents and their annotations.

KW has commands to direct the presentation manager to display the annotation buttons. These
commands are generally not visible (in the textual form) to the user since he interacts with them via
the KW database mapper. These commands provide a way to map a selected set of links onto
particular display attributes. Presentation commands can control the color, font family, point size,
window location, and font modifiers (such as italics, boldface, flashing, etc.).

Most of these attributes are selected via the database mapper once the user has created an interesting
set of links to view via database queries. When the user presses the “Apply Mapping” button on
the browser, a protocol message is sent to each document renderer, informing it that the display
mapping has changed. At this point the document renderers update relevant portions of their
display to reflect the new display attributes of links they are currently displaying.

These display attributes permit the user to garner information about the annotation that can be
reached via the button displayed without actually traversing the link (or having the link traversed
immediately for the user). Further, it provides the user with contextual information about an
annotation with minimal effort. Let us consider again our example of the strategic plan that the
user annotated: If the author of the document returns to it later and says, “I’d to see all questions
about this document made after January 1 1993. I'd like to see the ones after March 1 in red, those
by the user in italics, and the rest in blue.” To accomplish such a task requires interactions with the
database browser and mapper. A database query could be formed interactively to view all
annotations made after January 1, and then the database mapper would be used to map these links
onto the color blue. A second query could constrain the selected set to those links made by the
user and then these would be mapped (with the database mapper) onto italics. Finally a query
could be formed to select those annotations that were made after March 1, and these would be

mapped onto the red display attribute.
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Conflicts in the display attribute mappings are resolved by giving priority to the last presentation:
mapping applied; conflicts are only possible within colors or fonts as it is easily possible to make
text be both “italic” and “red” simultaneously.

Display attributes are also stored as part of a view. A view contains the dxsplay attributes that are
tied to a selected set of annotations in the database browser. These attributes are not only the
information about link display (such as color, font, etc.) but also information about window
displays. ‘

Document renderers communicate with t-e database browser using a simple protocol. This
protocol is built on top of the TK tool kit primitive “send,” which implements inter-process
communication via the X window property mechanism.

The protocol messages from the database browser to the renderers and their meanings are:

Protocol Message meaning

add document: add a document to the currently available documents of this
media type

render document: display a document with its annotations marked

mapping notify: the current display mapping has changed

The protocol messages from the renderers to the database browser and their meanings are:

Protocol Message meaning

new annotation: a new-annotation has been created on a document managed
by the transmitting renderer. '

applicable annotations: query for the annotations that are currently valid for a
particular document and their display attribute values.

link traversed: this informs the browser that a link managed by the renderer

_ has been traversed.
renderDocument: this message instructs the browser to attempt (if possible) to

render a different document (potentially not on the sending
renderer). This is useful for renderers whose “document”
may have supporting documents that need to be rendered at
the time the original is rendered.

It is the responsibility of the database browser to be aware of the media types involved and to
insure that only documents of the proper media type get sent to the appropriate renderer.

3.6 Implementation Issues

3.6.1 Motivation for using existing tools

One of the main goals of KW was to build on already existing software systems to allow for
maximum portability and rapid development, and to allow as broad a user base as possible for
KW. Many users will simply not use new systems that require large amounts of new support
infrastructure to operate properly.
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3.6.2 Tecl and Tk

Tcl (Tool Command Language) is a small, embeddable command interpreter, and Tk is an X
Windows toolkit built on top of Tcl. Both of the systems are freely available for a wide variety of
platforms. Tcl, by default, understands a variety of programming constructs and simple
commands, and it is easily extensible by the programmer to perform application specific
commands. By extending the Tcl interpreter, applications can “hook together” the application-
specific code with a fully functional command interpreter. Tk is a set of such extensions to Tcl
which permits X windows-based user-interfaces to be constructed with Tcl codes.

3.6.3 Knowledge Weasel ﬁnplementation parts

Knowledge Weasel's (KW) implementation can be broken into two large pieces, the browser and
the renderers. The KW browser includes both the database renderer and mapper and is written in
about 1500 lines of C++ code and 3500 lines of Tcl. The Tcl code, however, is generated
primarily by an interface builder application (XF). The C++ code is used for performance reasons
when interfacing the Tk-based user-interface to the KW database, which is built on the standard

UNIX database library dbm.

The document renderers are written almost entirely in Tcl and Tk. The applications generally are
built on already existing Tk-based document display objects(called “widgets”), such as the text
widget for ASCII text and the photo widget for images. These basic widgets are extended so that
they can respond to the protocol described in section 3.5. Renderers can also be built around
already existing applications. An example of this is a program renderer currently under
development that is based on the gnu debugger. This renderer starts up the debugger on a
“program document,” when given the protocol message “render document,” and then uses the
message “renderDocument” to display the supporting source files as ASCII text on the ASCII text

document renderer.

3.6.4 Interaction with the lock daemon/Concurrency in KW

What is the lock daemon?

The lock daemon runs on a file server, which exports file system to clients in a network. At this
point in time, most vendors provide a “lockd” in their NFS implementation that ships with the
workstations. When a client application wishes to have exclusive access to a file that actually
resides on a remote server, a “lock” must be requested from the lock daemon for that remote
server. After receiving the request, the lock daemon for that machine grants requests for locks in
first-come-first-served order. When a client finishes with a lock, it informs the lock' daemon and
the next client is notified that it has been granted the lock. The granted locks are not preemptable,
so clients that die while holding locks are a problem (unbounded wait). The use of "lockd" is not
required by NFS, or any other operating system file management facility, so all clients wishing
correct access to shared files must participate voluntarily.

The lock daemon and KW

Many instances of KW may run concurrently in a network. To insure correct access to the files
used (written) by all instances, KW contacts the lock daemon. KW uses the lock daemon to
serialize access to the namespace of annotations (e.g. guarantee that all generated names are
unique) and to serialize access to the shared databases of annotations. At the present time, KW
locks the entire database whenever a database write is needed, and this could be a performance
bottleneck -if enough instances of KW were competing for the lock simultaneously. The lock
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daemon provides an interface to locking parts of a file, and that should be used in the future to
, z&low some degree of concurrency. Figure 3.7 shows the implementation layers of the Knowledge
easel.

GDB XV MixView

Knowledge Weasel

TK Lock

Daemon
X Window System | TCL

Network

Local File System Network File System

Operating System

Figure 3.7. Knowledge Weasel Implementation Layers.
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3.7 Future Work

« Comprehension experiments and use of KW in large courses: An interesting
feature of hypermedia is that authoring is still critical. It’s clear that books are not going to be
replaced any time soon. There is too much value in a coherent linear narrative (in fact it is
important to have facilities that will generate these narratives automatically). For example, it is
difficult to imagine someone doing a better job of introducing people to quantum
electrodynamics than Feynman’s QED ,7]. A key emphasis for KW is to take advantage of the
extraordinary amount of structured knowledge in books and films by using such presentations
as a backbone and then to build a society of annotations around it. Studies are being planned
on the use of KW with respect to a textbook in a moderate-sized college course. Student
comprehension will be compared by using the on-line annotated version of a textbook as
opposed to a regular textbook.

« Deep annotation tools: Functionally, separating superficial from deep annotation, and
providing uniform support for superficial annotation for different types of media, cleaned up
the design and development of KW. But many of the interesting issues in hypermedia concern
how to effectively annotate non-textual and dynamic media. Currently, a tool for imagery
annotation is being developed, based on making the underlying components of computer vision
systems interactively controllable by a human so the human can associate an interpretation with
images.

« Incorporation of rule-based and agent-based processing: There are many places
where autonomous processes could help in KW: searching for related annotations, intelligent
defaults for the display of annotations, automatically forming views. And as important as
annotation is, equally important is anti-annotation for pruning of unused or wrong annotations. .
An evolutionary incorporation of such capabilities as the processing of the query languages will
be extended to autonomous agents. Hopefully a C-based expert system shell (CLIPS) can be -
incorporated with KW to perform user-directed inferencing over the common annotation

records.
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Chapter 4

‘Translational ‘Decomposition of Flow

Fields

4.1 Introduction

Chapter 4 introduces a low-level description of image motion called local translational
decomposition (LTD). This description associates with image features, or small image areas, a
three-dimensional unit vector describing the direction of motion of the corresponding
environmental feature or small surface area. The local translational decomposition is derived by
applying a procedure for processing purely translational motion to small overlapping image areas.
This intermediate representation of motion considerably simplifies the inference of motion
parameters for ego-motion and can support qualitative inferences for non-rigid motions. First
shown is how to compute the LTD from optic flow fields and then how the LTD is used to recover
the parameters of rigid body motions.

In previous work [15], a technique was developed to process relative translational motion of a
sensor with respect to a stationary environment or independently translating objects. This and
related algorithms {4, 11] are based on the strong geometric constraints on image motion in the
case of translation — radial motion of image features from a focus of expansion (or contraction)
determined by the intersection of the axis of translation with an imaging surface [9, 18]. The
technique [15] was based on optimizing a measure that described the quality of feature matches
restricted to lie along the radial flow paths associated with a potential axis of translation. The
optimization process involved searching over the surface of a unit sphere where each point
corresponded directly to a possible direction of translation. The optimization combined the
determination of the direction of translation and the corresponding image displacements into a

single, mutually constraining computation. It was possible to determine the direction of translation

to within a few degrees in small image areas with a few distinctive features.

The translational processing algorithm is extended to work with a general rigid body and other
cases of motion by applying the translational procedure to local portions of a flow field. This
processing associates a direction of relative environmental motion with the corresponding local
portion of a flow field and also with an error measure reflecting the validity of the translational
approximation.  This description of image motion is called the local translational
decomposition (LTD). Computing the LTD begins by decomposing a flow field into small
overlapping neighborhoods and then approximating the motion for each neighborhood as being
produced by translational motion of the corresponding portion of the environment. This
approximation associates a unit vector describing the direction of environmental motion with local
portions of a flow field. Each unit vector has an associated fit-value reflecting the validity of the
translational approximation.

The LTD is a low-level representation of environmental motion, which considerably simplifies the

recovery of the sensor motion parameters. The local directions of motion and the corresponding
error measures are used as constraints to determine the actual parameters of motion and to recover
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the structure and layout of environmental surfaces. This is broken into four cases. For motion
constrained to a plane of a known orientation (see Section 4.2.1), the local translational
approximation is recovered directly from the intersection of flow vectors, with the horizon line
determined by the plane of motion. For motion constrained to a plane of unknown orientation (see
Section 4.2.2), all of the computed LTD vectors must be perpendicular to the normal of the
unknown plane. This constraint leads to a direct fitting procedure to recover the plane of motion.
For motion relative to locally planar surfaces (see Section 4.2.3), the combination of local planarity
and ridigity is used. For arbitrary motion, rigidity between environmental points is used to recover
motion parameters from a small number of image locations (see Section 4.2 and 4.3.1).

The remainder of this section introduces the notation used throughout this chapter. Section 2
describes how the local direction of translation is estimated from a flow field and cases of motion
for which this is particularly robust. Section 3 describes how the parameters of relative sensor
motion can be recovered from the estimated local directions of translation. Section 4 discusses
computing the local translational decomposition directly from real image sequences without the
initial extraction of optic flow and discusses areas for future work.

4.1.1 Notation

The coordinate system used in this report is shown in figure 4.1. The origin of this right-handed
coordinate system lies at the focal point of the camera. The image plane is parallel to the xy-plane
and is centered on the point (0,0, f), where f is the focal length of the camera. A three-
dimensional environmental point will be referred to as pi.j = (xij,yi.j,zi.j). The corresponding
image pointis p,; =(X,;,;;). The first subscript £ is used to differentiate between points. The
second subscript denotes the time interval. Thus, pi.; refers to the Zth point at time j. A three-
dimensional displacement which transforms pi.; into pi.j+1 forms a vector. This vector will be
referred to as vi.;. The corresponding optic flow vector on the image plane is V, ;. In section 4.2,

a method for estimating vi.; is presented. This estimated vector will be referred to as ¥, ;. If ¥, ; is
correct, it will be parallel to vij, but its depth will be unknown. 7, can be positioned anywhere
along the rays of projection which pass through p,; and p,;,,. Unless specified otherwise, Vi
will be positioned at the image plane.

The motion of the camera can be described by six parameters. Let r=(rx,r,r:) denote the axis of
rotation, and ¢ = (f, &, ) the direction of translation. It is assumed that the axis of rotation passes
through the origin of the camera coordinate system. The magnitude of r is equal to the angle of
rotation, and #is a unit vector.
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Figure 4.1. Camera coordinate system.

4.2 Estimating Local Translation

This section shows how to determine an axis of translation consistent with a local portion of a
computed flow field. Section 4.4 briefly discusdes how to compute this directly from textured
images without the initial extraction of a flow field.

Figure 4.1 shows that the plane formed by a flow vector and the focal point of the camera must
include the estimated local translation vector (this is referred to as the flow-vector plane for a given
flow vector). In the case of purely translational motion, the estimated local translation vector will
be the same for all flow vectors in the neighborhood. Therefore, the estimated local translation
vector is the vector that is parallel to all of the flow vector planes in the neighborhood. This
observation leads directly.to a method of solving for the estimated local translation.

“The plane formed by ¥,; and the focal point'of the camera must include ;. Let this plane be
designated by its normal #i ;..

ni.j=1~7i.jx1~7i.j+1 o 4.1)
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Since n..; is perpendicular to \3,,'/. .
nij-vij=0 (4.2)

In the case of purely translational motion, the direction of ¥, ; is constant for all Z. Therefore,

Equation 4.2 can be rewritten as ‘
n. v, =0 ' - (4.3)

) /

where ¥, =0, forall Z. This equation is linear with three unknowns, and can be solved using a
least squares technique. ‘

An error measure is used to evaluate the validity of the local translation approximation. The error
measure used is the average, taken over the local neighborhood, of the angle between each flow
vector plane and the local translation. Using the normals #i,; from Equation 4.1, the error measure

is defined as

R P ni,j'ﬁj

— sin” | T 4.4)
2R |

i=l

where mis the number of flow vectors in the local neighborhood. Alternatively (and with greater
expense), this measure could be optimized directly by a search procedure to determine an axis of

translation. .

“In general, ¥, is not constant for all Z. However, in local areas V,; is approximately constant.

For example, in Figure 4.2, points that are nearby on a line segment are shown to have
approximately the same local translations when the line is rotated about its midpoint. Points near
the axis of rotation would not have a good translational approximation as would be reflected in the
corresponding error measure. Note that if the motion is composed of both a rotation and
translation, the approximation will also be effected by environmental points at different depths,
especially at occlusion boundaries. Since the flow vectors in the area of an occlusion boundary
will not consistently emanate from a focus of expansion, the error measure given in Equation 4.4
returns a high value in these areas. Using the error measure, the unreliable occlusion areas can be

avoided when computing the parameters of motion.

Axis of rotation j

Figure 4.2. Local translation associated with a rotating line.
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Figure 4.3 shows the flow field for a scene contaihing multiple depths and undergoing an arbitrary

motion.

Figure 4.3. Flow field for an image containing occlusion.

The error function derived from this flow field is shown in Figure 4.4. The scene contains two

ect to the image plane (i.e. the planes are receding in depth).

P ! ;
The locations of the occlusion boundaries are obvious from the figure.

ground, are skewed with res

lanes that occlude a planar background, as well as each other. The planes, as well as the

p
back

Figure 4.4. "Error function for an image-containing occlusion.
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The method of LTD estimation discussed above was tested on several synthetic optic flow fields
like the one shown in Figure 4.5. This flow field is the result of a rotation of 5.73° about the axis
(5, 4, 1), followed by a translation of (100, 25, -75). All units are given in pixels. The field of
view of the camera is 90° in both the X and Y directions. The image is 63 x 63, and the focal

length is 31. The rectangle overlayed on the flow field represents the neighborhood over which the
translational approximation is performed.

Sah

D
\\\\

Figure 4.5. Optic flow field for a rotation of 5.73° about the axis (5,4,1) translation o
(100,25,-75). :

The actual anglés between the correct local translational vectors and the approximated local
translational vectors at each position in the flow field is shown in Figure 4.6.

Error (degrees)

“0
4.\,'.

- Figure 4.6. Actual errors for flow.
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The computed error measure, based upon Equation 4.4, is shown as a surface plot in Figure 4.7.
Notice that the computed error measure in Figure 4.7 reflects a strong correspondence between the
approximated translational vectors with the least error and the correct translational axes. This
correspondence has been found to be typical.

Error (degreess)

. 40
4*’.

ss °

Figure 4.7. Evaluated error measure for flow.

Figure 4.8 (a)-(c) shows the correct local directions of translation with the values of each
component displayed as separate intensity plots. Since the translational vectors are represented as
three-dimensional unit vectors with each component in the range of -1.0 to 1.0, Figure 4.8
displays the x, y, and z components of the local translation vectors with pure white corresponding
to the value of 1.0 and pure black corresponding to -1.0. Figure 4.8 (d)-(f) shows the local
translational values that were derived from the optic flow field using the approximation procedure.
The derived LTD vector components have been thresholded using the error measure given . in
Equation 4.4, so that only the best values are shown. These are then used for inferring the overall
parameters of motion. The corresponding areas removed by the thresholding are shown by the
enclosed white regions which contain a T. ’

© ® |
Figure 4.8. LTD vector components of an arbitrary rigid body motion (a) x-component
(b) y-component (c) z-component (d) derived x-component (e) derived y-component
(f) derived z-component. :
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4.2.1 Motion Constrained to a Determined Plane

It is particularly simple to recover the local translation from flow fields produced by environmental
motion constrained to a determined plane (the normal to the plane is known). In this case, the
environmental displacement vector vi,; must be perpendicular to the normal of the plane of motion.
We know from section 4.2 that vi.; also lies in the plane determined by its corresponding flow
vector V,; and by the focal point of the camera. The estimated direction of motion lies along the

intersection of these planes. The estimated direction of motion ¥, can be determined by

intersecting these planes. Figure 4.9 shows the geometry, where the plane of motion is positioned
so that it intersects the image plane at the base of the flow vector V, ;.

Focal point

Flow vector plane

Image Plane

Plane of Motion

Figure 4.9. Motion constrained to a plane.

In terms of image geometry, this corresponds to intersecting the horizon line, determined by the
plane of motion through the focal point, with a flow vector. The point of intersection is a Focus of
Expansion for the local axis of translation (or a Focus of Contraction: which depends on the
direction of the flow vector relative to the point of intersection). Computing the LTD in this case
has been found to give extremely low errors (small fractions of a degree) in the estimated local

translations.

Motion constrained to a plane is typical in terrestrial circumstances. Several indoor robotic
environments involve robot motion constrained to a plane. In vehicular environments, the
translational approximation is usually valid due to limitations in vehicle-turning radii, meaning that
the overall motion of a vehicle can be locally approximated as a translation.
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422  Motion Constrained to an Undetermined Plane

Processing in the case of motion constrained to an undetermined plane is similar to that of motion
constrained to a determined plane. The only difference is that an estimate of the plane of motion
must first be recovered. Using the technique described in Section 4.2, the local translation is

computed at each flow vector. Since the motion that produced these local translations is

constrained to a plane, each of the local translations must be parallel to this plane. This constraint
can be written as ’

ij

v.on=0 , (4.5)

where n is a vector normal to the plane of motion. Using this equation, »n can be computed by a |
linear least squares technique. ’

An example of processing in this case is shown in Figure 4.10 to Figure 4.12. Figure 4.10 shows

the flow field produced by a rotation of 4.58° about the axis (-1,1,2), followed by a translation of
(120,20,50). Units are given in pixels. This motion is constrained to lie in the plane perpendicular
to the normal (-1,1,2). However, the plane is unknown, so initially the local translation vectors
must be computed by the method used for cases of arbitrary motion.

e ety /
%%::: - ::5.4:2//5//
S e /
R A e
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Figure 4.10. Optic flow field for a planaf motion.

The angles between the correct local translational values and the derived local translational values
shown are plotted in Figure 4.11.
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Figure 4.11. Actual errors for an unknown planar motion.

The error measure is shown in Figure 4.12. Since an error measure is associated with each point
describing the error of the translational approximation, several positions of minimal error can be
selected for use in Equation 4.5. Using the error measure from Equation 4.4, the 15 best local
translations were selected for the least squares fit. The recovered plane normal is then
(-0.4107,0.4129,0.8129), which is off by an angle of 0.37° from the correct value. This estimate
can then be used to evaluate the directions of motion using the technique for motion constrained to
a determined plane from the previous section.

Error (degrees)

“o
4,‘.’.
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Figure 4.12. Evaluated error measure for unknown planar motion.

.
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The cor_nputed directions of motion are then shown in Figure 4.13 (d)-(f). Like the case of motion
constrained to a known plane, there is very little error in the derived LTD vectors. The mean angle

between derived and actual LTD vectors was 0.176° and the maximum angle was 1.274°,

(©) )
Figure 4.13. LTD vector components of an undetermined planar motion (LTD estimated

using the determined planar motion technique) (a) x-component (b) y-component
(c) z-component (d) derived x-component (e) derived y-component (f) derived z-component

4.2.3 Local Planarity and Rigidity-based LTD Estimation

Another algorithm for computing the LTD is based on the constraints provided by assuming
motion relative to locally planar, rigid environmental surfaces. The algorithm begins by searching
over the half-plane defined by a flow vector and the focal point of the camera as shown in Figure

4.1 (this plane is designated a half-plane because only a 180° search is needed). Each candidate
LTD vector is used to solve for other LTD vectors in a local neighborhood by making an
assumption of surface planarity within the neighborhood. The consistency of this local
neighborhood of LTD vectors is then evaluated by calculating the relative depths of the LTD
vectors. This results in an error measure that is associated with each candidate LTD vector. The
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candidate LTD vector with the lowest associated error is selected as the correct LTD vector. The
remainder of this section describes this algorithm in greater detail.

Local Planarity Assumption

Given a candidate LTD vector, the other nearby LTD vectors can be solved. In order to derive a
relationship between LTD vectors within a neighborhood, it is assumed that these surfaces are
locally planar. In this case, directional derivatives of the LTD vectors along the image plane are
constant. Let p,_,,, p,, and p,,,, be three collinear points on the image plane.- Under the planar

surface assumption, the following constraint is:

A A A

Vierk ~Vik _ Ve “Vicx ‘ (4.6)
Pink ~ pi.k” Hpi.k - pi—l,k"

Letting ,, be the current candidate LTD vector, Equation 4.6 consists of two independent

equations and six unknowns. The remaining equations needed to solve for these six unknowns
can be provided by the LTD vectors’ corresponding optic flow vectors. Figure 4.1 shows that the
plane formed by a flow vector and the focal point of the camera must include the LTD vector. This

constraint can be written as

(ﬁi-—],k + Gi—l,k )X ﬁi-l.kﬂ =0 : . (4:7)
(ﬁm,k + Gi+l‘k) X ﬁi+!,k+l =0 ‘ ' (4.8)

This provides four additional independent equations. Therefore, using the system defined by
Equations 4.6, 4.7 and 4.8, one can solve for the neighborhood LTD vectors ¥,_,, and ¥, ,.

Error Measure

The final step in evaluating a candidate LTD vector is to construct an error measure from the
neighborhood of derived LTD vectors. The relative depth of all the LTD vectors in a 3x3
neighborhood is calculated by positioning the candidate vector at the image plane. Using the dept
values, a plane is fit to the neighborhood points. The error measure is defined as :

L&y . : -
poY LEIL A | | @9

where o, is the depth scale factor and g, , is the point of intersection of the fitted plane and the ray
of projection defined by p,,. Section 4.3.1 shows how to solve for the depth scale factor «;.

An example of prbcessing an arbitrary motion using the rigidity-based method is shown in Figure

4.5 and Figure 4.14. Figure 4.5 shows the flow field produced by a rotation of 5.73° about the
axis (5,4,1), followed by a translation of (100,25,-75). Units are given in pixels. Figure 4.14
(a)-(c) shows the correct local translational values as intensity plots of the vector components.
Figure 4.14(d)-(f) shows the local translational values that were derived from the optic flow field.
Like the case of motion constrained to a known plane, there is very little error in the derived LTD

vectors. The mean angle between derived and actual LTD vectors was 0.425% and the maximum
angle was 2.647°. | '
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Figure 4.14. LTD vector components of an arbitrary rigid body motion (LTD vectors were
_derived using the local planar method) (a) x-component (b) y-component (c) z-component
(d) derived x-component (e) derived y-component (f) derived z-component

4.3  Inferring Parameters of Motion from the LTD

In this section, a technique is developed to recover the parameters of motion given a flow field and
the LTD. The method presented in this section is based upon using rigidity to solve for the relative
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depth of environmental points associated with LTD vectors. The key result is that it is possible to
infer the parameters of motion using only three determined LTD vectors computed from locations
anywhere within the flow field. Thus, the inferencing can be done with a sparse LTD field which
may have been strongly filtered by the validity of the measures reflecting the translational fit. Once
the relative depth has been determined, the solution for the parameters of motion becomes

straightforward.

4.3.1 General Rigidity Constraint

In order to find the parameters of motion, one must first solve the relative depth of the LTD vectors
using the rigidity. Once the relative depth has been determined, the solution for the parameters of

motion becomes trivial.

Image plane

Focal Point

Figure 4.15. Relative depth of two LTD vectors.

Two LTD vectors V,, and 7, , are assumed to have undergone identical rigid body motions. One

wishes to find the relative depth of these two vectors. Figure 4.15 shows the relationship between
the two vectors. One of the vectors, ¥,,, is fixed in depth so that it emanates from the image plane

at the point p,,. The unknown depth of the other vector can be expressed as op;, where « is
some unknown scale factor. Since both of the LTD vectors are the result of the same rigid body
motion, it results in the following constraint

“ aﬁj.kp— ‘Ei'k”:“ a(b,‘,k +9j,k)_(ﬁi,k +{;,k)" ) . (410)
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Squaring both sides and solving for ¢, Equation 4.10 can be reduced to

~ A A .A 2
(2Pj,k'Vj,k+Vj,k Vot —
2(pj‘k~vi'k +DixVix +vi‘,"vjvk)a+

(2ﬁi.k.§i.k + {;i.k.{;i,k) =0 | - (4.11)

‘This equation is quadratic in & and results in two feasible solutions for the relative depth between

two LTD vectors.

4._3.2 B Inferring the Parameters of Motion

Once the relative depth between LTD vectors has been determined, the estimation of the parameters
of motion is trivial. The problem is equivalent to that of estimating the motion parameters from
actual three-dimensional environmental surface positions. A rigid body motion can be expressed
as '

&, 5 = rXa, B+ | (4.12)

- where r is the axis of rotation and # is the direction of translation. This expression is linear and
"can be solved using a least squares technique. The expression consists of six parameters and two

independent equations. Therefore, it can be solved using a minimum of three (non-collinear) LTD
vectors.

433 Motion Parameter Inference Results

The rigidity constraints were used to compute the parameters of motion from the derived LTDs

presented in Section 4.2, The results are shown for the case of arbitrary motion, motion
constrained to a determined plane, motion constrained to an undetermined plane, and the rigidity-
based method applied to arbitrary motion. In the previous section, it was noted that the parameters
of motion can actually be estimated using only three LTD vectors. The feasibility of estimating the
parameters of motion from a minimal set of data is demonstrated in the results presented below.

Motion Constrained to a Determined Plane

In the case of motion constrained to a determined plane, the LTD vector estimates tend to be highly
accurate over an entire flow field. Typically, when using three LTD vectors selected at random
from the derived local translations, the estimate of the axis of rotation and translation almost always
are within a degree of the correct axes, and the angle of rotation is determined to within a

“hundredth of a degree. , :

Motion Constrained to an Undetermined Plane

The case of motion constrained to an undetermined plane is similar to the case of motion
constrained to a determined plane in that the LTD vector estimates are very good over the entire
image. Three LTD vectors were selected at random from the derived local translations shown in
Figure 4.13. The estimate of the axis of rotation was off by 0.99°, the angle of rotation was off by

0.04°, and the direction of translation was off by 0.83°.
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Local Planar Method

The rigidity-based method presented in section 4.3.1 is also capable of accurate LTD estimates
over the entire flow field. Three LTD vectors were selected at random from the derived local |

translations shown in Figure 4.14. The estimate of the axis of rotation was off by 2.26°, the angle
of rotation was off by 0.18°, and the direction of translation was off by 2.84°.
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Figure 4.16. Optic flow field for motion relative to a curved surface.

]

Figure 4.17. (a) Curved surface ‘(b) Reconstructed surface (c) Error.

The camera was moved about a randomly curved surface. The optic flow field produced by this
surface is shown in Figure 4.16. The three-dimensional environmental surface was reconstructed
from this flow field. Figure 4.17 (a) shows a plot of the original surface. Figure 4.17 (b) shows
the results of the surface reconstruction and Figure 4.17 (c) shows the resulting error in the
reconstruction. The surface sHown in this example is not planar. However, the reconstruction is
fairly accurate, despite the violation of the planarity assumption. Experiments indicated that
surfaces which are approximately planar in a local neighborhood can be successfully reconstructed.
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Therefore, any continuous surface can be reconstructed, given an appropriate density of optic flow
vectors. : "

Arbitrary Motion

Using the error measure shown in Figure 4.7 and the derived LTD vectors shown in Figure 4.8,
the three best LTD vectors were selected and used to compute the parameters of motion. The

estimate of the axis of rotation was off by 8.13°, the angle of rotation was off by 1.09°, and the

direction of translation was off by 12.02°. In the previous section, it was shown that the minimum
number of LTD vectors that can be used to estimate the parameters of motion is three. However,
by using a larger set of LTD vectors in a least squares procedure the results were more accurate.

For example, when the ten best LTD vectors were used, the axis of rotation was off by 3.65°, the
angle of rotation was off by 0.44°, and the direction of translation was off by 9.32°.

4.4 Future Work

LTD has been introduced as a low-level representation of environmental motion, which can

simplify the inference of motion parameters from optic flow fields. It has been found that this is
particularly robust and simple for cases of motion constrained to a determined or undetermined
plane, and motion relative to locally planar surfaces. In addition, it is possible to infer motion
‘parameters from sparse LTDs.

Areas for furthér work include:

. Developvcriteria to determine the best set of estimated local translation vectors to estimate
motion parameters in order to take advantage of the limited number of points for which the
local translation needs to be determined to infer motion parameters.

 Investigate local translational analysis by using multiple cameras and longer image sequences.

e Use LTD, which is similar to an array of localized looming detectors, to determine whether
things are coming towards or away from an observer at a particular image position. It may be
possible to use such a distributed representation of motion relative to environmental surfaces to
control navigation and other behaviors directly, without the inference of motion parameters
from the LTD. ’ .

» Use local translation approximation as a criteria for computing flow to determine the LTD
directly without the initial computation of a flow field. In the experiments presented above, a
uniformly dense flow field of high resolution was assumed. The translation procedure
developed in [15] was not applied to computed flow fields, but to successive images for which
interesting points had been extracted from the initial image. Given distinctive features (at least
two), it was possible to compute the direction of translation in a small image area. This use of
the translational procedure can be seen as a local constraint to determine image displacements,
such that the corresponding environmental motion can be interpreted as being translational.
For ego-motion, this wouldn’t require computation over the entire flow field since only three
LTD vectors are needed. Where the translational approximation is poor, there will be a large
value in the error measure reflecting weaker confidence in the validity of the approximation.
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Chapter 5

An Interactive Model-Based Vision
System for Vehicle Tracking

5.1 Introduction

Chapter 5 describes a general architecture for an interactive model-based vision system and its
application for vehicle tracking. A human specifies a limited amount of information, which
establishes a context for autonomous interpretation of images obtained by a telerobot. Object
models are described by constraints specifying necessary geometrical properties and relationships
between objects. The use of constraints allows for flexible object instantiation. A user can indicate
a vehicle , and this directs perceptual processing routines to determine the corresponding local
surface orientation and roads, or the user can instantiate a road segment to direct the extraction and
tracking of vehicles.

Efforts to develop intelligent and autonomous systems for operation in complex, natural domains
have been largely unsuccessful to date, in spite of continued advances in the underlying
technologies. There remain unresolved and fundamental difficulties in terms of the necessary
computational power, the required complexity of perceptual systems that can operate in outdoor
environments, and the corresponding complexity of planning and reasoning systems. A recent
framework addresses many of these problems by stressing the importance of telerobotic and
interactive systems [25, 26]. This is a realistic approach to fielding advanced technology in the
short term. Also, it provides a long-term framework for developing autonomous systems. An
interactive, semi-autonomous system can significantly amplify the capabilities of a human, and can
yield an evolutionary approach as autonomous system capabilities are developed and begin to
replace human-controlled functions.

The approach described here is to develop a model-based vision system that a human can
interactively control. The human uses this to rapidly interpret sensory information from a
potentially distributed team of telerobots. The resulting interpretation is a model of the world that
the telerobots can refine, use to control their behavior, or report back to a human. In this way, the
human directs the telerobots by initializing and constraining their processing. Communication
between the robot and the human can then take place in the context of a shared model of the world,
which makes possible infrequent, semantically meaningful, and low bandwidth, communication.

The particular system presented is for tracking vehicles in outdoor scenes. A human can
manipulate models of objects, such as terrain surface patches, roads, and different type of vehicles,
to interpret imagery from a telerobot. Once an interpretation is in place, the telerobot can
autonomously refine and extend the interpretations, detect and track vehicles, and report back to a
human about unusual occurrences or behavior that cannot be accounted for. For example, a human
will indicate that a particular area is a road. The vision system will then track movement along the
road and fit a constraint-based description of a vehicle to this movement. The system can
determine that a vehicle has just gone off the road (or that it is behaving inconsistently with respect
to the model of a vehicle). .
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We begin by reviewing the basic architecture of the interactive model-based vision system, and
then detail some of its critical components involving object models and perceptual processing.

Objects Database _ World Database Long-Term Database

Graphics | Constraint| Perceptual
. o Controller | Controller | Processing

Terrestrial Controller

- Roads

- Terrain patches ' _

- Vehicles Maps

Previous Interpretations

Current Scene Model o

Primitives . .
- Constraints Landmarks .
- Materials
- Shapes

User Interface

Figure 5.1. System architecture.

5.2 System Architecture

The underlying architecture is shown in Figure 5.1. It is built around thrée major databases that a
human can access and manipulate through a user interface. The basic task of the human is to
access models of the various types of objects stored in the Object Model DataBase, along with
information describing maps, landmarks, and previous interpretations in the Long-Term
DataBase, to build an interpretation of the current scene which is stored in the World Model
DataBase. For example, the human is presented with images from cameras on the telerobot. He
can use priori maps to align landmarks and terrain features from these maps with the images. He
can also access the three-dimensional and physically based models of objects and position them
with respect to the world model. As he does this, the models are projected back against the images
obtained from the telerobots for interactive control and to initiate processing.

The Object Model DataBase contains generic models of objects, relationships, and events for
terrestrial scenes. This involves objects such as terrain patches, roads, vehicles, and gravity. Two
different types of objects are distinguished: Primitives, which correspond to basic entities and
relationships used to describe and represent, and Terrestrial Objects, which correspond to the
conventional objects found in the world such as roads and cars. Primitive Objects describe
characteristics such as shape constraints, material composition, and relationships between parts.
The representation of objects for an interactive vision system is more complex, though related in
' many ways, to those used in CAD/CAM and geometric modeling packages, because they will be
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manipulated for autonomous processing and reasoning. Thus, in addition to describing its shape,
the model of a car needs to include that a car is acted on by gravity and will have a preferred type of
orientation and attachment with respect to the ground surface. Object models are described by sets
of constraints [2, 14, 19, 22] that must be satisfied. A simple constraint is that the value of some
parameter associated with an object model is bounded. More complicated constraints deal with
relations between objects. The human will, in general, specify a limited amount of information for
an object, and the system will use the constraints and associated processing actions to refine the
instantiation of an object.

The World Model DataBase describes the three-dimensional world of objects and situations
surrounding the telerobots. It is initially formed by the human-accessing models in the object
database and instantiating them. There are three types of controllers associated with the World
Model DataBase. The Constraint Controller checks for consistency in the world model. The
constraint controller uses the constraints that define an object or relationship to refine an
instantiation or to find a violation or inconsistency and ask the human for help. The Perceptual
Processing Controller extracts information from images and sensors on the telerobot. The
constraints in an object model specify the types of processing that are necessary to obtain this
information. When the human indicates that a road is located somewhere, this constrains the type
- of tracking and feature extraction processes that are used. The corresponding image areas are
isolated, and the type of segmentation or tracking procedure corresponding to the material class and
distance of the object is applied. The Graphics Controller deals with interactive scene
measurements and the presentation of the world model to the user. Thus, when he accesses a
model of a vehicle, he is presented with a cartoonish 3D vehicle template which is back-projected
onto the image being interpreted. -

The user interface is currently based upon windows for displaying imagery and graphical overlays
and upon text-based browsers for inspecting entities in the database in detail. This basic level of
interface can be quite tedious to work with and its future role will be to serve as a debugging tool.
An intermediate, near-term system interface will use a more natural set of tools, such as 3D
hand/finger position sensors and voice input. Using these, the human will actually have a sense of
reaching into the database of models, grabbing something, and then placing it into the world -
model. In the eventual system, the world model and the sensor input from the different telerobots
could be presented to the human as a virtual reality in which the human can be embedded in the
- world model itself. : ’

5.3 Object Models

Models have been developed for objects corresponding to gravity, the immediate ground plane
surrounding the camera from which an image is obtained, terrain patches, and a generic vehicle
along with constraints describing relations for attachment, alignment, and coincidence. There is a
constraint propagation mechanism to determine consistency of relationships between these types of
objects in the world model database. : :

Different types of road models for two and three dimensions are used. The two-dimensional road
model is a sequence of connected parallel line segments for the road boundaries and/or the center-
~ line of the road. This is used to indicate and mask images areas that are adjacent to the road. The
three-dimensional road model is a connected sequence of segments with 3D coordinates and
associated road width information with constraints on allowable orientations with respect to gravity
and adjacent terrain patches. Different material properties can be associated with the roads, but this
~ currently isn’t used by the segmentation and feature extraction procedure. '
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The generic vehicle model is an oriented box with an indication of where the track/wheel area of the
vehicle is, where the engine is positioned, and where the cab area is. . The scale and relative
position of these is parameterized and can be specialized for different types of vehicles. There are
scale and orientation constraints on all of these components, as well as for relative position-to-
ground surfaces and gravity (see Figure 5.2).

Figure 5.2. Perspective view of the 3D vehicle model.

5.4 Perceptual Processing

Image processing and tracking procedures are organized in terms of the type of information they
depend on and can extract. One type of tracker depends on a two- or three-dimensional road model
and can yield information to instantiate a vehicle model. An instantiated vehicle model constrains
the extraction of features. These features satisfy the requirements of another type of tracker that
can determine a scaled three-dimensional trajectory for extracted image points. The information
determined by this tracker can in turn be used to determine a three-dimensional road model, and
also to refine the attributes of an instantiated vehicle model. As a result, the flow of information
and processing varies based upon the state of the current interpretation. The current processing
routine consists of three types of trackers, along with restricted segmentations and interest
operators, that are applied when a vehicle model is instantiated. '

54.1 Difference Tracker

The difference tracker operates with respect to an instantiated two- or three-dimensional road
model. It determines regions above: the indicated road areas that are changing over time and also
are moving in a consistent direction (not necessarily along the road). It determines information to
instantiate a vehicle model by finding the front and back (or only the back or the front) of a vehicle.
If a three-dimensional road model has been instantiated, it can further constrain the dimensions of
the generic vehicle model instantiation. It also restricts the extraction of features for the local
translational tracker (Section 5.4.2), which can in turn recover the direction of motion of the
vehicle, whether it is turning, and the corresponding direction of motion relative to the road.
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The first step in the difference tracker is to reduce the image noise by convolving consecutive
images in a motion sequence with a low-pass filter. The images shown in this chapter were
smoothed using a Gaussian filter.  If no models are present, the entire image must be convolved
with this filter. However, given a 2D road model, the filter is only convolved with pixels that are
above the road. The road model shown in Figure 5.3 is used to constrain the smoothing process.

X N

Figure 5.3. Interactively driving the vehicle to form the road model.

Once the images have been smoothed, the algorithm begins to search for areas of motion that lie
near the road. This is accomplished through image subtraction. Pixels from temporally
consecutive images that are situated near the road model are subtracted. If the result of this
subtraction is greater than a threshold, the environmental object corresponding to this pixel position.
is assumed to have undergone motion. This pixel is marked as a motion pixel, and a region
growing process begins. ’ : o

RS

Figure 5.4. Areas of motion and vehicle position found through differencing.

An object traveling along the road may extend some distance from the road (i.e. the object could be
very close to the camera, in which case it would appear to be quite large). The search for all areas
of motion associated with an object is accomplished through region growing. Once a pixel near the
road has been identified as a motion pixel, its neighbors are also examined by using the subtraction -
technique discussed above. If any of the neighboring pixels contain motion, their neighbors are
also examined. This recursive procedure continues until no more motion pixels can be found. An
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example of this extraction of the areas of motion is shown in Figure 5.4. Once the areas containing
motion have been identified, the centroid of these areas is located. Over time a two-dimensional
trajectory can be constructed.

542 Local Translation Tracker

Moving vehicles can often be treated as rigid objects that are translating over short periods of time.

For example, as a vehicle goes around a curve, because of turning radii constraints, the axis of

rotation is often far away from the vehicle itself, and the vehicle motion can be treated as a
sequence of small translations corresponding to tangents of the curve of motion. The local
translation-based tracker determines the direction of motion of a set of extracted image points over
time, and fits their motion to an estimate of the current direction of motion of the corresponding
vehicle in three dimensions. Essentially, it determines the direction of motion of a set of
environmental points over time. The effect of this tracker can be visualized as a unit sphere with an
axis corresponding to the current direction of motion. As the vehicle and the corresponding set of
points move, the position of the axis changes with respect to the sphere. This processing works
well with temporal filters since there are constraints on how quickly a vehicle can change its
direction of motion. This can also be used to determine if a vehicle is rotating with respect to an
axis contained within the vehicle. This is indicated by areas of the image which show differences
over time, but for which no clear axis of translation can be determined.

This tracking algorithm is based on the strong geometric constraints on image motion in the case of
translational motion (radial motion of image features from a focus of expansion, determined by the
intersection of the direction of translation with the imaging surface) [15]. The algorithm evaluates
an error measure, which associates with a potential axis of translation the quality of feature
displacements along the corresponding radial flow paths. This error measure is evaluated by
searching over a unit sphere that describes all potential directions of translation. It is possible to
determine the direction of translation to within a few degrees in small image areas, using only a

few features.

If there is an instantiated 3D road model, and a rough estimate of the position of the vehicle along
the road has been established, the tangent information associated with the road model can be used
to initialize the search for the axis of translation. If there is an instantiated vehicle model, it restricts

the features that the local translational tracker uses.

Feature Extraction

Figure 5.5. Extracted features with é superimposed 3D vehicle model.
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The local translation-based tracker requires features that can be matched in successive images. The
types of features used are conventional masks of image pixels, extracted from distinct areas of the .
image. In the examples shown in this chapter, the masks are 5x5 pixel arrays. Normalized
correlation is used to determine the similarity of extracted features. This is used in measuring
feature distinctiveness and in evaluating the matches of extracted features along the radial flow
determined by a possible axis of translation. Since the radial flow lines do not necessarily pass
through the center of the image pixel arrays, bilinear interpolation is used for matching features
(see Figure 5.3). This allows the extraction of masks and performs correlation at a continuous
range of locations, rather than just at the discrete pixel positions, and results in more accurate
correlation values. : .

The distinctiveness of a feature is 1-minus the best correlation value obtained when the feature is
correlated with its immediately neighboring areas. Good features are selected by finding the local
maxima in the values of the distinctiveness measure over an image. We constrain the
neighborhoods over which the features are selected to areas that contain large intensity
discontinuities, determined by extracting zero-crossings. The area of feature extraction is further
constrained by the output of the difference tracker or an instantiated vehicle and road model. The
distinctiveness measure is then applied only to these restricted areas in an image. This generally
results in the extraction of areas of high curvature along the zero-crossing contours. In addition, as
a vehicle is tracked over a sequence of images, this processing is continually re-applied to find
features in addition to those that have matched successfully. These can correspond to new features
due to occlusions or changes in observable detail as a vehicle moves in depth. ~

Determining the Direction of Translation

Features in image sequences will move along radial lines defined by the focus of expansion (FOE)
during translational motion. The FOE is determined by intersecting the direction of translation with
the imaging surface (where the direction of translation emanates from the focal point of the
camera). Using this geometric relationship, the displacement paths of all image features can be
determined for a potential direction of translation. To evaluate a potential direction of translation,
one searches for each feature along the appropriate image displacement paths. The error measure
used to evaluate this potential direction of translation is determined by summing the best matches
for each of the features. ' : ‘

To search for the direction of translation, a unit sphere centered at the focal point of the camera is
used. Any vector that has its initial point at the camera’s focal point and its terminal point resting
on the surface of the sphere is a potential direction of translation. The search procedure is defined
with respect to this sphere instead of the potential positions of the FOE in the image plane. This is
because the sphere is a bounded surface, which makes uniform global sampling of the error
measure feasible. When the image plane is used directly, the resolution in the position of the
translational direction varies.

The initial search process consists of two phases: an initial global sampling of the sphere,
followed by a local search for the maximum value. The local search begins at the position of the
maximum value as determined by the global sampling. The local search process recursively
searches the area of the current maximum. The step size of the local search processes is reduced
until it is at the desired resolution to determine the direction of translation. Figure 5.6 shows a
sequence of tessellated spheres, along with their potential directions of translation. - Once a
direction of motion has been established, it will tend to change smoothly and gradient-based
techniques to track the axis of translation for successive images can then be used. In addition, if
there is an oriented vehicle model or a road model segment, the search for the translational axis is
constrained to limited areas of the sphere. ’ o
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Figure 5.6. Translational motion spheres corresponding to the image sequence.

543 Planar Tracker |

Often the motion of a vehicle is restricted to a plane determined by the local road or surface
orientation. In this case, the geometry of planar perspective makes it possible to associate three-
dimensional information with extracted image features if they are contained in the area of the planar
patch. In addition, the directions of motion are constrained to be parallel to this plane, so the
possible directions of motion for the local translation-based tracker are restricted to a circle on the
unit sphere whose orientation is parallel to the plane-of motion. This simplifies initialization and

also tracking of the axis of translation over time.

There is another useful constraint associated with planar motion that may not be immediately
apparent. In this case, an environmental displacement vector v must be perpendicular to the normal
of the plane of motion. v also lies in the plane determined by its corresponding image
displacement and the focal point of the camera. The direction of environmental motion can be
determined by intersecting these planes. This is useful for tracking planar motion without the

constraints supplied by a road model.

544 Feature Extraction from a Mod_el

When the vehicle model is instantiated, it constrains segmentation and feature extraction procedures
to a limited image area. In addition to the feature and zero-crossing extraction described above, a
histogram-based segmentation is used to determine potential vehicle features. :

An instantiated vehicle model can also constrain the places to search for detailed features
corresponding to portions of the vehicle, which can be tracked. A particular problem we have
found is that it is necessary to have a large image area to get clear views of the features to be
matched to the model. Images of the vehicle will need to be larger to begin finding detailed
features, such as headlights, bumpers, and so forth. Such images could perhaps be obtained by
using one of the trackers to direct a zoom camera to follow a moving vehicle. Currently, we use
the interest operator described for the translational tracker to match extracted features to a vehicle
model for each successive image. If extracted features are near-previously extracted features that
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have successfully matched, they are discarded. Otherwise, they are associated with the instantiated
vehlcle model. .

5.5 User Interface and Model Instantiation

An important facility in the user interface is a conventional depth buffer used for hidden surface
removal, which has been modified to have pointers, ordered by depth, to all the objects in the
world that project onto a given pixel in the i ‘image. Thus, when the human “touches” a pixel in the
image from the telerobot, all the objects in the world model that pI‘OJCCt onto that pixel can be
accessed This is called an augmented depth buffer.

The user interface enables the human to place objects into the world model in several ways. The
objects can be accessed and manipulated via their three-dimensional attributes with respect to a
coordinate system linked to the world model. This looks like back projecting a 3D cartoon of the

- object onto the image. When it has been positioned as desired, the different components of the

object can be placed in the augmented depth buffer associated with the image. In this way, the
projected attributes of the instantiated object can access the actual image or the results of image-
processing routines. The user can burn-in attributes when he instantiates an object. Burning-in
means that the attributes can not be changed. This often involves constraining a particular feature
to li¢ along a given ray of projection. Another technique is for the user to draw the specified object
directly on the sensory input and then indicate its attributes. An example of this is interactively
segmenting an image into different types of terrain patches and pomtmg out that different edges
correspond to terrain feature discontinuity.

5.6 Processing Example

An example of this processing is shown in Figures 5.3 - 5.6. Figure 5.4 shows a sequence of
images obtained with a video camera viewing a road scene. In Figure 5.3, a human has
interactively positioned a generic vehicle model with respect to the road and has begun to “drive”
the model vehicle through three-dimensions while using the back-projection of the vehicle as a
three-dimensional cursor. Note the center segments of the road being laid down behind the
vehicle. This establishes a 2D road mask and also an initial set of connected 3D road segments to
constrain later processing. Figure 5.4 shows connected regions of image differences moving in a
consistent direction with respect to the user instantiated road model. These correspond to the front
and back of a vehicle. Since orientation is known along the road and the road model has been
scaled relative to the generic road model, it is possible to use these areas to instantiate a three-
dimensional vehicle model. Figure 5.5 shows interesting points which have been extracted in the
corresponding areas determined by the vehicle model. These features are then used by the
translation tracker to refine the estimate of vehicle and road orientation. The determined successive
directions of translation are shown in Figure 5.6.

5.7 Future work

Current work involves extending many of the components described here. In particular: -

* Extending the number and cofnplexity of the models that are used. This includes developing an -
explicit mherltance hierarchy of models for different types of vehicles and terrain patches.

. Extendmg the user interface to use a w1de range of i mteractwe devices, such as a data glove and
other three-dimensional positioning devices.



Using more involved perceptual processing, especially for the segmentation that is sensitive to
the material properties of objects and for the extraction of features to match directly to models. -

Using multiple cameras from different points of view with respect to the same scene. This will -
especially stress the importance of sensor calibration.
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Chapter 6

Shape and Motion from Linear Features

6.1 Introduction

Chapter 6 introduces a technique for extracting structure and motion using directionally selective
matches between linear features. A world-centered coordinate system is used to make these
computations without the intermediate calculation of depth. In order to constrain the possible
structure and motion configurations, we assume that the three-dimensional direction of gravity
relative to each image frame is known. The direction of gravity, along with the directionally
selective linear feature matches, forms a set of quadratic equations that can be used to determine
structure and motion. -

The extraction of environmental structure and motion from a sequence of two-dimensional images
is a common problem in computer vision. Typically solutions to this problem are expressed in
camera-centered coordinate systems where environmental geometry is specified by the depth along
an image feature’s ray of projection. Unfortunately, parameters computed from this camera-
centered representation are dependent upon the depth of environmental features. This leads to
erroneous results for objects located far from the camera.

The recently introduced factorization method [27, 28, 3] has attempted to overcome the
disadvantages associated with a camera-centered representation. This method uses a world-
centered coordinate system, along with an orthogonal projection assumption, in order to compute
shape and motion without the intermediate calculation of depth. A matrix of image measurements
is constructed by making point correspondences between image frames. The matrix is then
factored into a shape matrix and a motion matrix using Singular Value Decomposition.

One problem with the factorization method is that it relies upon accurate point correspondences
between image frames. This chapter introduces a method of extracting shape and motion from
directionally selective linear feature correspondences. = This line-based algorithm is capable of
" reconstructing shape and motion without computing depth as an intermediate step. In addition to
the orthogonality assumption, it is assumed that the three-dimensional direction of gravity is
known relative to each image in a motion sequence.

The algorithm begins by searching for the orientation of one of the lines in the environment. This
is a one-dimensional search over 180°, constrained by the projection of the line on one of the image
planes. Each candidate line orientation, along with the position of gravity, forms a set of quadratic
equations, which constrain all the other lines as well as the rotation between image frames. An
error measure is computed from the derived line orientations and is used to evaluate each shape and
motion configuration. Once the line orientations and parameters of rotation have been derived, the
relative positions of the lines can also be computed from simple linear equations.

The remainder of this section introduces the notation used throughout this chapter. Section 6.2
shows how to derive line orientation and camera rotation from a sequence of two-dimensional
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images. Section 6.3 presents a set of linear equations that can be used to solve for the relative line
positions. The algorithms presented in the paper are applied to synthetic data, and the results are
presented in Section 6.4. Finally, concluding remarks are given in Section 6.5.

6.1.1 Notation

Figure 6.1. Coordinate systems. -

The notation used throughout this paper is shown in Figure 6.1. An image frame at time f is
delineated by unit vectors i,, j,, and k.. A three-dimensional environmental line is represented

by a unit vector d, specifying the line direction, and a point on the line p,. Line (d, p,) is
projected orthographically onto image frame f. The direction of the projected line is represented
by its unit normal 7. p, refers to the projection of p,. The direction of gravity will be referred

to as g,. The two-dimensional parameters 7, and Py as well as the three-dimensional parameter
g, are all expressed in the coordinate system of image frame f. All other parameters are specified
relative to the world coordinate system. When 7, is specified in the world coordinate system, it

will be referred to as n .

In the following section, a method of solving for the line orientations d,, as well as the parameters
of rotation i, j,, and k; is presented. Section 6.3 shows how these initial quantities can be used
to fix the relative positions of the lines within the world coordinate system by solving for a point
p, on each line.

6.2 Line Orientation and Camera Rotation

In this section, a method of solving for the three-dimensional line orientations and parameters of
rotation from a sequence of two-dimensional images is presented. The algorithm begins by
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searching for the orientation of one of the lines. This is a one-dimensional search over 180°,
constrained by the projection of the line on one of the image planes. Each candidate line
orientation, along with the position of gravity, forms a set of quadratic equations that constrain all
the other lines, as well as the rotation between image frames. An error measure is computed from
the derived line orientations and used to evaluate each shape and motion configuration. Section
6.2.1 shows how to solve for the position within the world coordinate system of the line normals
(n,) associated with the candidate line. Section 6.2.2 shows how the candidate normals can be
used to solve for the normals to all the other visible lines. These line normals are then used in
Section 6.2.3 to estimate the line orientations and camera rotations. ’

6.2.1  Candidate Line Normals

The algorithm begins by searching for the orientation of one of the lines. A candidate line is used
to constrain the position of all the other three-dimensional lines so that a particular shape and
motion arrangement can be evaluated. The first step in this process is to solve for the position in
the world coordinate system of the candidate line’s normals. Let d, be the candidate line. Since
the line normals 7, were formed by orthographic projection, they must be perpendicular to the line
d,. Therefore, one constraint is that the vectors n,, must lie within the plane perpendicular to d,.
An additional constraint is provided by the gravity vector g,. The angle between 7, and g, must
be the same as the angle between n,, and the direction of gravity in the world coordinate system
(g,). These two constraints can be used to solve for n 1+ Figure 6.2 shows the geometry of these
two constraints. Each normal (n,,) is determined by intersecting a plane with a circular cone. The
plane is defined by d,. The cone is constructed by rotating a vector about the direction of gravity

at the appropriate angle. Since the origin of the cone lies within the plane, the intersection of the
plane with the cone results in two lines. There are only two possible solutions since the normals

are known to be unit vectors.

Figure 6.2. Normals are determined by intersecting a plane with a circular cone.

The constraints described above will now be examined in more detail. As stated earlier, the
direction of gravity g, relative to the line normals 7, is known. This results in the following

relationship

Ry 8w =fp 8y | - (6.1
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where g is the direction of gravity in the world coordinate system. Letting g, = (0, -1, 0), we
can simplify Equation 6.1

np, =-n, g (6.2)

In addition to the angle constraint, we know that n,, lies within the plane defined by d,. This
constraint is expressed as ‘

nyd =0 (6.3)
Finally, we know that the magnitude of each normal vector (n,,) equals one
b= 9

Equations 6.2, 6.3 and 6.4 can be combined into a single quadratic equation, resulting in two
feasible solutions for each normal vector. ’

6.2.2 Additional Line Normals

Figure 6.3. Normals are determined by intersecting two circular cones.

The next step in the extraction of line orientation and rotation is to solve for the position within the
world coordinate system of the rest of the line normals. This is accomplished by using the
candidate line normals. The idea is essentially the same as in the previous section. Two
constraints can be formulated from the given geometry. The first constraint is given by the gravity
vector g, and is identical to the constraint presented in the previous section. The angle between

fi, and g, must be the same as the angle between nfs'and the direction of gravity in the world
coordinate system. The second constraint is that the angle between an image normal vector n, and
the candidate image normal vector 7, must be the same as the angle between the associated world
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coordinate normal vectors n, and n;. These two constraints can be used to solve for all the

additional normal vectors n,. The constraints are shown geometrically in Figure 6.3. The

‘solution for a normal vector n, is essentially the result of intersecting two circular cones. One

cone is the result of rotating a vector about the direction of gravity. The other cone results from
rotating a vector about the candidate normal vector n,. The intersection of two circular cones

which share the same origin is two lines. 'Once again, the normals are known to be unit vectors,
resulting in two solutions.

The following equations result from the above analysis. The constraint resulting from the gravity
vector g, is identical to the one presented in Section 6.2. Therefore, from Equation 6.2 we can

write
nj:“. =_nfs gf : (6.5)

The second constraint relates the line normals 7, to the candidate line normals n,, as follows

Ny n, =i | (6.6)

Finally, we know that the magnitude of each normal vector (n,,) equals one

=1 | (6.7)

||”fs

| Equations 6.5, 6.6 and 6.7 can be combined into a single quadratlc equation, resulting in two

feasible solutlons for each normal vector.

- 6.23 Parameter Estimation

Once the normal vectors () have been derived, the process of estimating the line orientations and
rotational parameters is trivial. The line orientations (d;) are easily estlmated from their associated
normals (n,) usmg the following equation: _ :

' dong=0 (6.8)

d, can be estimated with a minimum of two non-collinear normal vectors. When more vectors are
available, d, can be solved for by using a linear least-squares technique. The rotational parameters
are also easily obtained from the normal vectors n,. Three linear equations can be formulated for

the three rotational parameters i, j,, and k;

Iy R =Ng
]f ’ nfs = nf:_\,
k -nfs =0

There are also additional constramts available. One of these constraints is that the vectors must be
orthonormal

i<t
]f=kf><zf
ky =1 X j;

lid=lid =] =1
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Additional constraints can be derived from the relationship between the rotational vectors and
gravity as was done in Sections 6.2.1 and 6.2.2. These constraints are ‘

lfgw =gfx
jf'gw =gf‘
kf'gw =gf;

Of course, all of the equations presented above are not independent, and all are not necessary.
Currently, the following subset of equations is used. Initially k, is determined using a least

squares formulation of

kyn, =0 (6.9)

The technique presented in Section 6.2.1 is then used to solve for i, with the following equations

ik, =0 , (6.10)
'8, =8 (6.11)

X

Finally i, and k, are used to solve for j,
Jp=kyxip (6.12)

Equation 6.8 is used to solve for the line orientations d,. Equations 6.9, 6.10, 6.11 and 6.12 are
used to solve for the rotational parameters i;, j;, and k.. The following section shows how to

use these derived parameters to solve for the relative positions of the line segments, thus
completing the spatial reconstruction.

6.3 Line Position

The final step in the line segment reconstruction is to solve for the line segment positions relative to
the world coordinate system. Initial assumptions about the position of the image frames relative to
the world coordinate system are made, allowing a simple linear solution to the problem. The
position of each line is represented by a point p, which is chosen arbitrarily. The world coordinate

system will be positioned at the center of image frame 1. The points p,; are then chosen arbitrarily
P, =(x,,y,). We assume that all the image planes intersect along line ;. This means that the
position of each image plane is given by p, + a,d, where «; is a parametric scale factor.

Each line position p, =(x,,y,,z,) consists of one unknown z,. The solution for z is trivial. Each
point p, is constrained to lie within the planes perpendicular to n,. These planes are positioned

by choosing some arbitrary point on the projection of each line, and then determining the position
of that point within the world coordinate system. Let g be the point in world coordinates

| 9= p ;[ifjf]'(ﬁfs_ﬁfx) ' “ (6.13)
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The equation of the plane is then written as
nf-‘x (xs - qx - a/djx ) +

n/s,.(ys-q\-—afd:).)—i- . . )
nfs,(zs —qz—afds,)=0 ) (614)

The two unknowns in this equation are z, and «,. 0, can be removed from the equation, and a
least squares solution can be found for z,. |

6.4  Results

The algorithm presented in this chapter was implemented and tested on several sequences of
synthetic data. The first and last frames from a 20-image sequence are shown in Figure 6.4. '

i N
560!

DHD'D

Fi gure 6.4. The first and last frames from a 20-image sequence.

Figure 6.5 shows 10 frames from the sequence (every other frame is displayed). This data was
produced by random rotations and translations.

3

Figure 6.5. Ten image frames from a 20-image sequence.
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The rotational parameters i, and j ; associated with this sequence of motion are shown in Figures

6.6 and 6.7. The correct rotational values are displayed as solid lines, and the derived values are
displayed as dotted lines. All errors are the result of perspective projection. Notice that the Y-
component of i, is errorless. This is because this component is derived from the relationship

between the image frames and the gravity vector (g,), as shown in Equation 6.11. Thus, the Y-
component is unaffected by the perspective projection errors.

X-component

]
.8
I

o

0.6

0.4

Z-component

0.2

Y -¢component

Rotational parameter

0.0
]

2

I I ]
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Frame number (f)

Figure 6.6. The components of i, for a 20-frame sequence. The correct values are
shown with solid lines, and the derived values are shown with dotted lines.
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Figure 6.7. The components of j, for a 20-frame sequence. The correct values are
shown with solid lines, and the derived values are shown with dotted lines.

90




The derived line orien_tations.and parameters of rotation were then used to reconstruct the line
positions as discussed in Section 6.3. A top view of the original data is shown in Figure 6.8.

[°3
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Figure 6.8. Top view of the house data.

The reconstructed data is shown in Figure 6.9. Once again the errors are the result of perspective
projection. ‘ _
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Figure 6.9. Top view of the reconstructed house.

6.5 Future Work

The technique presented in this chapter is an early attempt at constructing linear feature-based,
depth-independent motion algorithms. The work has only been tested on synthetic data, and it is
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not clear what effect perspective projection and other forms of noise will have. However, since the
formulation involves linear least squares estimation, it appears that it will be robust. The ability to
deal with occlusion is also straight-forward in this over-constrained system. Occluded line
normals (n) are null vectors and therefore have no effect on the least squares solution. Notice

that the first frame shown in Figure 6.4 contains occluded lines.

One drawback of this method is that the three-dimensional direction of gravity is required. This
measurement can be provided by a gravity sensor, but we would like to relax this restriction. One
way to remove the gravity vector from the algorithm is to replace the direction of gravity with
another consistent direction. For example, for an object that consistently moves in one direction
(such as a vehicle), the gravity vector can be replaced by a vector specifying this direction (the
forward vehicle direction). _ :

- There are several areas for future work:

» Test this algorithm on noisy data and, if necessary, develop a more robust formulation that will
work well in the presence of errors, including the errors introduced from perspective

projection.

e Test the algorithm on real image sequences.

» Integrate this rotation-based method with the translation-based method discussed in [15]. In
this case, the gravity vector is replaced by a direction of translation vector. The integration of

these two methods will probably be accomplished through temporal filtering using the Kalman
Filter. _ - ‘
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Chapter 7

Range Free ‘Robot Navigation

7.1 Introduction

This chapter will summarize some recent algorithms developed for qualitative navigation, which
are completely independent of range estimates to landmarks. Several distinctions that reflect more -
realistic application of qualitative navigation algorithms to real robots are introduced. These
involve the extent to which landmarks can be identified from very different points of view (called
the distinctiveness of landmarks); whether or not a compass is allowed; and distinctions between
~ different types of compasses. :

Qualitative Navigation [13, 12, 21] concerns spatial learning and path planning in the absence of a
single global coordinate system for describing locations and the positions of landmarks. It is based
on a multi-level representation of space, which, at its most abstract level, is based on topological
properties that allow a robot to describe a location using the directions of visually salient patterns
(with no associated range measurements) and then navigating using the occlusions that occur
among them as a basic cue to control movement through the environment. An advantage is that the
robot can use landmarks for which exact positions cannot be determined. Thus, if a robot sees a
building in the distance, it may not know or be able to recognize the structure as a building or
determine its exact position in space, but it can still incorporate this to form an effective spatial
memory. This is actually quite intuitive. It is doubtful that animals navigate by detecting
landmarks, determining ranges to them, and then storing everything in a single frame of reference
[8]. The robot also removes the effects of incremental errors due to drift.

This work [21] in qualitative navigation developed while trying to produce basic navigation and
recognition capabilities in an autonomous land vehicle. Initially, the project worked with a terrain
representation based upon an a priori terrain grid, which describes terrain in terms of a regular

“square grid of features referenced with respect to a single global coordinate system. Several
problems were discovered with such spatial representations. The grids would describe large
patches of terrain by a set of numbers that corresponded to terrain features such as elevation and
vegetation type. Unfortunately, the world consists of objects that are difficult to summarize by a
single set of numbers. It is difficult to establish the exact three-dimensional position of a distant
landmark, especially when using passive sensing. Thus, it is difficult to know where to attach
landmarks to the underlying terrain representation when it uses a single, global coordinate system.
Robots also have limited recognition capabilities in complex outdoor environments. They can see
distinctive things in the world, and yet not know what or where they were. In fact, there are no
assurances that robots can see the same object as being the same object from very different points
of view.

Qualitative Navigation deals with these problems via a multi-level representation of spatial

memory. The different levels are distinguished by what constitutes a landmark and by the
connectedness of spatial memory, which refers to how, given one location, it is possible to
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determine the position of another location. At the simplest level of spatial representation (the
Sensorimotor level), a landmark consists of a perceptual event that can be used for sensory
feedback to control guidance. The next level (the Topological level) is based upon noting and
tracking stable perceptual events around the robot, but without associating any range information to
‘these. This level is topological in the sense that there is no metric information associated with
landmarks. A place is described by the set of visual patterns surrounding the robot. This
description of a place is called a viewframe. Movement from place to place is determined when
there is some change in the order of these patterns. The next level allows the association of
potentially inexact range information with the visual patterns (Local Coordinate systems). At
this level, viewframes can have associated range estimates with the detected visual patterns and the
localization of one place to another was inexact. The final level (Global Coordinate System)
assumes that we have exact three-dimensional information for all landmarks. In [21], it was found
that by working at the level of a viewframe-based representation, the problems faced when
working with a single global coordinate system were drastically simplified. ‘

This chapter describes qualitative navigation algorithms that work completely at the topological
level, dealing with landmarks for which there are no range estimates. In addition, several
distinctions for qualitative navigation algorithms are introduced. One type of distinction concerns
landmarks. This research considers two basic types: distinct landmarks that can always be
recognized as the same from wherever they are seen and non-distinct landmarks that may not
be recognized as being the same when seen from different points of view. One can assume that
once landmarks are seen, they can be tracked over time until they disappear. The other distinction
involves whether or not the navigation algorithms use a compass to yield a fixed direction.  Two
different types of compasses were distinguished. The direction associated with a local compass
can change from place to place but, at a given place, it will always point in the same direction. An
example is a compass that is effected by fixed magnetic influences at different locations. The local
compass can also be a very strong landmark that is visible from a wide set of views. A global
compass will always point in the same direction regardless of where the robot is located. These
distinctions can be expressed as a table corresponding to the different types of topological
navigation algorithms we have developed: ' .

Topological Qualitative Navigation Algorithms

Compass No Compass
distinct landmarks Very Good | Good
non-distinct landmarks | Good Difficult!

For example, consider qualitative navigation without a compass and identical, non-distinct
landmarks. As one might expect, this is very difficult and depends critically on matching
viewframes based exclusively upon the angular orientations of landmarks. More practical
algorithms are those that are based upon using a local compass and a limited number of distinct
landmarks. This corresponds to a freely navigating robot that can build maps and navigate using
simple visual features, such as colored regions and edges aligned with gravity, as landmarks.

The remainder of this chapter will describe the basic memory organization used for qualitative
navigation, and then present different navigation algorithms.

94




7.2 ‘Organization of Spatial Memory and
Navigation Behaviors

7.2.1 Landmarks

This research distinguishs between types of landmarks to reflect different recognition capabilities in
robots. A distinct landmark is one that can be recognized as being the same from all points of
view. Distinct landmarks require considerable recognition capabilities for a robot owing to the
variable appearance of landmarks from different points of view. A nondistinct landmark is one that
may not be recognized as being the same from different points of view. The assumption is made
that once a nondistinct landmark is seen, it can be tracked over time until it disappears. A
nondistinct landmark is not necessarily described as a particular object in the world, but can be
described as a simple visual pattern, such as a colored region of a particular shape or a set of edges
aligned with gravity. Such descriptions of landmarks will tend not to be unique. -

A general finding of the algorithms described here is that the more distinct landmarks there are, the
more easily a robot can find shortcuts and novel paths between locations. The more indistinct
landmarks there are, determining position depends on recognizing the distribution of landmarks
surrounding a robot. In this case, the robot will tend to stay close to established paths that it
determines during explorations. It is possible for a robot to determine novel paths between
locations with nondistinct landmarks, but it requires significant exploration to determine that a
landmark is the same from many different points of view.

7.2.2 Viewframes

A viewframe contains the set of visible landmarks surrounding a robot at a given location with
their corresponding orientations and other attributes describing the individual landmarks (such as
color, visible height, contrast, etc.). Viewframes are a one-dimensional sequence of landmarks
- (the direction of gravity is used to reduce the two-dimensional images surrounding the robot to a
‘one-dimensional sequence). An example viewframe V' is shown in Figure 7.1. This viewframe
uses compass information and is then represented as
: [Viewframe Identifier: V
Landmarks:
([lid,; AttributesAl, a,]
([lidy; AttributesBl, 0ig]
[Ulid.; AttributesC], o]

Robot’s heading: ,]
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When a viewframe is extracted without a compass, there is no associated 0-axis to describe a fixed
direction. The relative orientation of landmarks is then represented by the angle difference between
successive landmarks. The same viewframe in Figure 7.1 is represented (shown in figure 7.2) as

[Viewframe Identifier: & V
Landmarks:
([lid,;AttributesA],6,]

[[lidy; AttributesB), 8,]

[{lid.; AttributesC], 6]
Robot’s heading: =~ (6,,B)]

Figure 7.2. Viewframe Without a Compass.

For the viewframe in Figure 7.1 and Figure 7.2, lid,, lid,, lid. are the local identifiers for
visible landmarks A, B, C. The local identifier is a name or abstraction of the attributes of a
landmark that is tied to a specific viewframe. Note that a landmark with the same local identifier in
different viewframes can have different image. attributes depending upon the viewframe it is
contained in. A distinct landmark that can be recognized as being the same from very different
points of view has a unique local identifier with respect to all viewframes and is called a global
identifier. When a robot is exploring the environment, distinct landmarks will always be
associated with a unique local identifier in all the viewframes that contain it. Nondistinct
landmarks will have the same local identifiers in connected viewframes as long as the landmark is
visible (or after landmark-unification — see below). When a landmark reappears or is disoccluded,
it will have a new associated local identifier. This is similar to what can happen when an animal
walks on two different paths without realizing that there is a common landmark between them. For
each nondistinct landmark, there can be more than one local identifier for it in different

viewframes.

When viewframes consist largely or totally of nondistinct landmarks, being able to access or
recognize a particular viewframe is difficult (for example, a large red region can be a landmark in
several different viewframes). For this reason, keys are also associated with viewframes that are
used for recognizing viewframes by a hashing operation. There are a large number of different
keys, such as the average height of landmarks, the average angle between landmarks, the number
of landmarks, number of highest landmarks, number of landmarks for particular colors, variance
of contrasts, variance of heights, variance of angles between landmarks, ratios of landmarks
having different attributes, etc. These keys help to distinguish and match viewframes. If there is a
local compass, many more types of keys are possible because it is possible to order the landmarks
in the viewframe and compute keys based upon position in the viewframe. Each key has a limited
number of values. Two viewframes are said to be hash-matched if they have the same key value

for each key.
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Keys are also useful for the efficiency of accessing viewframes. Suppose there are 10 keys, each

key has 10 different values; therefore, there are 10" equivalence classes. We build a hash table,
making an entry for each possible value combination of all keys. To find a viewframe to match V,
we first compute key values of V for all keys, then use the combination of those values as an index
to the hash table to find the viewframe in the database. Since we have O(1) number of keys, time
to compute the key value is O(1), time to search in the hash table is O(1); therefore, the time
complexity to find a viewframe to match V is reduced to O(1).

7.23 Viewframe Extraction and Filtering

The extraction of a viewframe involves identifying landmarks surrounding the robot. These are
then stored in different types of viewframes depending upon whether or not there is a compass and
on the distinctiveness of the landmarks. It has also been found useful to compare a newly
extracted viewframe to the previously extracted viewframe to determine if the newly extracted
viewframe is different or novel enough to merit storing it in spatial memory. This process is called
- viewframe-filtering and has the effect of reducing the number of very similar or redundant
viewframes that are stored in memory. Filtering is done by keeping track of changes in the values
" associated with the different keys. There is a threshold associated with allowable changes in the
value for each key. If this is exceeded, then the viewframe is stored in spatial memory. For
example, if the number of landmarks changes drastically, it is necessary to then extract a
viewframe in spatial memory. It may also be useful to have a function that weighs the changes in
the different keys to determine whether a viewframe is novel enough to be extracted.

724  ViewFrame Matching

Viewframe matching is the process that determines the similarity of two viewframes. A two-
level matching processing is used. The first level finds similar viewframes by hashing and then
uses the number of landmarks with common local identifiers in both viewframes as a measure of
similarity called connectivity. First-level connectivity between two viewframes is defined as:

_|Local_ids(v)(Local _ids(V,)]
 |Local_ids(v)|J Local__ids(V,)|

con(V,,V,) (7',1) '

Second-level viewframe matching compares the orientation (angle) difference between landmarks.
For this level of matching, different thresholds for the maximum orientation difference for
corresponding local identifiers in the viewframes are used. :

7.2.5 " Navigation Behaviors

The navigation algorithms are based on a set of simple, visual tracking behaviors. Viewframe
crossing is when the robot is positioned at a landmark and walks in the direction of the center of a
viewframe which contain that landmark. Viewframe crossing will generally depend on a local
compass, which is valid within the extracted viewframe. Viewframe back-matching (also
called landmark unification) involves recognizing that landmarks in different viewframes are
the same and their local identifiers are unified. This happens when a robot visits the same place
along separate paths. Landmark circling is when a robot circles around a known landmark. It
is a way of searching for surrounding landmarks when no nearby landmarks are distinguished or
~ visible. The robot can spiral towards or away from the landmark (until the landmark is no longer
visible). Landmark targeting is for walking towards a visible landmark. LBP crossing is
when a robot crosses a Linear Pair Boundary defined by two landmarks. The crossing can occur
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on either side or through the center of the LPB between the two landmarks. LBP alignment is
when the robot travels along the LPB boundary defined by two landmarks. Random walking
randomly selects a visible landmark, walks to it, and then repeats. An alternative version walks
straight for some distance, changes direction, and then repeats. In Novelty walking, a robot
walks to optimize the changes in the keys used for viewframe filtering. The effect is to go
someplace where it is as different as possible from where you currently are.

7.2.6 Spatial Memory

Spatial memory consists of three inter-related databases: the viewframe database (V-DB), the
path database (P-DB), and the landmark database (L-DB) (see Figure 7.3). The landmark
database contains descriptions of landmarks that a robot has seen. It is possible for the same
physical landmark to occur several different times in the landmark database, because it may not
have been identified as being the same from different views. The viewframe database contains
viewframes that describe the visible landmarks surrounding a robot at a given location (this is
described in more detail shortly). The path database consists of connected sequences of
viewframes that a robot determines while exploring the environment. Database Storage algorithm:

Step 1  Extract VF and filter against previously extracted VF.

Step 2 Compare VF with other viewframe in VF-DB by some viewframe matching
mechanism.

Step 3 If NOT matched for VF, add VF to V-DB, add pointer to VF into each landmark entry
with the same local identifier in L-DB; or return the pointer to VF in V-DB.

Step 4  Add pointers to VF into current path’s viewframe sequence in P-DB. |

L-DB V-DB P-DB
Vi
£, _@ ®A v Pamk;
0 0 Q )
O o = et
S et
el Vo PRy

Figure 7.3. Memory Architecture.

7.2.7 ~ Qualitative Navigation Simulator

Different qualitative navigation schemes using the simulators shown in Figure 7.4 and Figure 7.5
(for exploring indoor navigation) have been explored. Each contains four subwindows. The
upper-left subwindow is a Unix shell. The lower-left subwindow has controls for setting such-
things as the density of landmarks, the range of visibility, the number of globally distinct
landmarks, and for selecting different navigation modes. The upper-right subwindow shows the
360 degrees of view from the robot at a given location. The lower-right subwindow shows a top-
down view of the navigation world. In Figure 7.4, the circle shows current viewframes containing
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landmarks displayed in the upper-right subwindow. The line in the circle shows the robot's
heading. Distinct landmarks are numbered and nondistinct landmarks are not numbered, but can
appear as having different colors and intensities. '

[dxg@moraiforce (27

I[simulator Control:

C Start )

( Quit
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Figure 7.4. Qualitative Navigation Simulator.

In the simulator in Figure 7.5, the assumption is made that limitations on sight are only caused by
occlusion. The current viewframe is shown as the set of radiating lines from the robot’s current
position to each of the visible landmarks. The current viewframe is displayed as a sequence of
landmarks in the upper right-hand window. :

r':'muw Contret:
Sy P

~ Figure 7.5. Simulator for Indoor Robot with displayed viewframe.



7.3 Navigation Using A Local Compass With A
Variable Percentage Of Distinct Landmarks

This algorithm is intended to work with a variable number of distinct landmarks, ranging from
completely nondistinct landmarks to completely distinct landmarks. The nondistinct case would
correspond to walking through a world full of identical landmarks with a compass. When the
number of distinct landmarks increases, the efficiency of the path planning improves.

Navigation using this algorithm is shown in Figures 7.6 through 7.8. The robot initially walks
along two separate paths which, form a ‘P-like shape shown by the solid thin lines. The robot is

first at the upper-middle part of the V' and walks to the middle-lower part. It is then relocated to
the upper-left corner and walks to the upper-right corner along a curved path. As it walks along
these paths, it keeps track of landmarks and stores extracted viewframes in the different system

databases. It then has the task of going from the upper-right corner of ‘¥’ to the upper-left corner of

W. To do this, the robot can either follow the long curved path that it originally followed, or it can
find a short-cut directly between them. The key result is that as the number of distinct landmarks
increases, the robot is able to find increasingly more direct paths between locations. With more
nondistinct landmarks, navigation involves staying close to paths that have been previously
followed. Shortcuts are possible when common landmarks between paths are found.

e

Figure 7.6. 100% Nondistinct Landmarks. Path Planning (Solid Thick Path) from
Upper-Right Corner to Upper-Left Corner of the '¥'. '
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Figure 7.7. 75% Nondistinct Landmarks. Path Planning (Solid Thick Path) from
Upper-Right Comner to Upper-Left Corner of the V.
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Figure 7.8. 50% to 0% Nondistinct Landmarks. Path Planning (Solid Thick Path) from
Upper-Right Corner to Upper-Left Corner of the ‘Y.

The algorithm utilizes viewframe crossing and viewframe back-matching. In Viewframe
crossing, a robot walks from a landmark towards the center of a viewframe that contains that
landmark. If the robot is at a landmark with local identifier L and orientation angle o in V,
viewframe crossing is to walk in orientation angle o+ 7 towards the center of V. Two
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viewframes are said to be connected or adjacent if they have at least one local identifier in common.
Navigation then involves finding a sequence of connected viewframes (V,, ..., V,, ..., V) with

. ) 3 . . j
overlapping landmarks that are traversed by successive viewframe crossing.

Viewframe back-matching is used to determine that landmarks having different local
identifiers in different viewframes actually are the same physical landmark. They can then be used
to navigate from one viewframe to another and to form the basis of finding shortcuts when such
common landmarks are recognized. During viewframe crossing to V,, if the robot cannot find a
distinct landmark in common between V/ and V (m>j and m<n), it attempts viewframe back-

matching to update local identifiers in the viewframe database. This is illustrated in Figure 7.9.

Figure 7.9. Viewframe Back-Matching with a Compass.

The robot is currently at V, and has previously extracted V, with local identifiers L,, L,, L;
associated with the nondistinct landmarks. V, and V, have local identifier L, in common. The
robot first goes to landmark L, then walks towards the center of V,. While it is walking towards
the center of V,, it continues to extract viewframes and perform second-level viewframe matching
(based upon angle and orientations of landmarks) with respect to V,. When it extracts a
viewframe at C (which is nearby A) with new local identifiers L, for L,, Ls for L;, the robot
matches V. to V,, updating the viewframe database by substituting L, into Ly, L, into L,.

The algorithm has the following steps:
Goal: A landmark with local identifier Icid (tied to a specific viewframe) to go to.
Step 0 _ If lcid is in current viewframe, go directly to it and the algorithm terminates.

Step 1 Create a virtual viewframe V, containing only the goal lcid with an unspecified
orientation. Construct an N by N weight matrix W (N is current total number of
viewframes plus one). For each pair of viewframes (V;,V;), including the virtual
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viewframe V, and current starting viewframe Vj, compute con (V,,V,) by equation
(1), if it is greater than a certain threshold (select 0), assign the weight matrix entry
W(i,j)=1; otherwise W(i,j)=o. With the weight matrix, we find a least sequence of
connected viewframes V,, V,, ..., V, by applying a shortest path algorithm [6].
’Altematlvely, if the total number of v1ewframes N is too great, a breadth-first tree
search [6] is used from V,, to find adjacent viewframes, such that a viewframe cannot
appear twice in a path of the tree. :

Step 2 If a sequence of connected viewframes are not found, stop. Otherwise the robot
performs viewframe crossing and viewframe back-matching through V,, V|, ..., V

n

It walks to the landmark with common local identifier in both V, and V;, where choice
of distinct landmark has priority.

Step 2.1 If the robot is currently at landmark P of viewframe V(7 is max), it
viewframe-crosses towards the center of V,, testing if current viewframe V, is adjacent
to V,,i.e. mel[i+1,n] and m is max such that con(V,,V,)>0;if m is found, which
means a distinct landmark is found, then it changes the direction and walks to the
landmark in both V, and V,. Otherwise, it performs back-matching to V; if no

ambiguity occurs and the best match is found, the robot updates the local identifiers,
i.e. it uses local identifiers in V, to replace corresponding local identifiers with the same

orientations in V, as well as those local identifiers in V-DB; and then walks to a
landmark with a common local identifier both in V, and V,

i+l
Step 2.2 Repeat Step 2.1 until the goal is achieved, or failure due to ambiguity.

When all the landmarks are distinct, viewframe back-matching is unnecessary.

7.4  Navigation Without a Compass for Distinct
Landmarks (No LPBs) -

This algorithm assumes dxstmct landmarks, no compass and no LPBs (Landmark- Palr-Boundary)
which is described in the next section.

The algorithm relies on viewframe circling to compensate for the lack of a compass. Figure |
7.10 shows an example of navigation using this algorithm with the viewframes and paths from the

previous figures. The exploration paths ‘¥ (solid thin lines) are generated in the same manner as in
Figures 7.7, 7.8 and 7.9. The path determined by the robot is shown as a solid thick line from the

upper-right corner of the ¥ to the upper-left corner of the ¥. The result shows that the path is
shghtly longer than that with a compass (in Flgure 7.9).

103



Figure 7.10. Path Planning from landmark 68 to 28 (thick path).

The processing example in Figures 7.11, 7.12, 7.13 and 7.14 shows some of the interesting
characteristics of this algorithm. In Figure 7.11, the robot moves to Landmark 89 by an
exploratory behavior to generate a path. One then wants the robot to walk between Landmark 89
and 64, so it essentially walks back to where it had been.

‘l

YR R

Figure 7.11. Exploration Path Generated by Basic Behaviors to landmark 89.

104




. P
"
& “ ¢ ¥
‘ : [}
‘1 '1
'y @ ¥
t
i F [ F ]
i
i pt] H‘o
e i!
)
i ¥
o ¥
‘l
o
: ¥
@
Iy 3¢ { i ¥ & @ 3¢ 2

Figure 7.12. 3rd Time from landmark 89 to 64 (thick path).

Initially, the robot cannot find, due to limitations on its range of vision, most of the visible
landmarks along its path (Figure 7.12). So it begins to circle around the current landmark to
search for landmarks from the path it traversed. This continues until it returns to its origin. The
circling behavior for finding landmarks is responsible for the indirect looking paths.

i #
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Figure 7.13. Stable Path (thick path) from landmark 64 to 89 after 2nd time.

‘When the robot traverses back from landmark 64 to 89, it is able to use the viewframes it stored
from its previous trip from landmark 89 to 64 to determine a more direct path (Figure 7.13). The
robot will determine different paths between the two landmarks, depending upon the direction in
which it travels. This is because the robot can not see the same landmarks when traveling in the
different directions due to limitations on allowable viewing distance. The further the robot can see,
the more direct and similar the paths found under this algorithm become igure 7.14).
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Figure 7.14. Stable Path (thick péth) from landmark 89 to 64 after 4th time.

The algorithm has the following steps:

Goal:
Step 0
Step 1

Step 2

A landmark with identifier id to go to.
If id is in current viewframe, go directly to it and the algorithm terminates.

Create a virtual viewframe V,_ containing only the goal id with arbitrary orientation.
Construct an N by N weight matrix W (N is current total number of viewframes plus
one). For each pair of viewframes (V, V,), including the virtual viewframe V_ and

current starting viewframe V,,, compute con (V,, V;) by equation (1). If it is greater

than a certain threshold (select 0), assign the weight matrix entry W(i, j) =1; otherwise
W(i,j)=o. With the weight matrix, one finds a least sequence of connected
viewframes V,, V,, ..., V, by applying a shortest path algorithm [6]. Alternatively, if

“the total number of viewframes N is too great, use a breadth-first tree search [6] from

V, to find adjacent viewframes, such that a viewframe cannot appear twice in a path of
the tree. ‘ :

If a sequence of connected viewframes are not found, stop. Otherwise the robot
performs viewframe crossing and viewframe back-matching through V,, V, ..., V..

It walks to the common distinct landmark in both V, and V.

Step 2.1 If the robot is currently at landmark P of viewframe V(i is max), it

viewframe-circles V,, i.e. it walks away from P until P is at its visual range-limit,
then it circles around P. During the walk, it tests if current viewframe V, is adjacent
to V_,ie mel[i+1,n] and m is max such that con(V,,V,)>0; if m is found, which
means a distinct landmark is found, then'it changes the direction and walks to the
landmark in both V_ and V,,. '

Sfep 2.2 Repeat Step 2.1 until the goal is achieved.
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7.5 LPB-Based Navigation Without A Compass For
Distinct Landmarks .

This navigation algorithm assumes distinct landmarks, no compass and use of LPBs. In [21], the
robot uses a global map in its spatial memory to indicate each landmark’s estimated direction and
distance for path planning. Instead of assuming that the robot knows the estimated direction and
distance of each landmark in spatial memory, one assumes that the robot only knows the directions
of a few selected landmarks called known landmarks.

Each pair of the known landmarks forms an LPB (Landmark-Pair-Boundary) vector or an
LPB. LPBs are used to demark visually distinct areas by noting which sides of the LPBs
surrounding a region the robot is in. This algorithm uses LPB regions instead of viewframes as

the basic descriptions of locations. For an LPB vector [ and a location A, we use [ (A) 10
indicate which side of [ that A is on. Z(A) has 0, 1, 2 values to distinguish different sides. In
Figure 7.15, known landmarks K,, K, form LPB kakz' At A, a,>r (from K| to K,
counterclockwise), [, ,, (A)=1;At B, &, <} ,, (B)=0. At C, it’s on the LPB, i, (O)=2.
The two landmarks that define an LPB break the LPB into three distinct LPB segments.

- Figure 7.15. LPB (Landmark-Pair-Boundary) Representation.

~

Suppose there are n known landmarks forming a total of (N =(})) LPB vectors i,, L ..., I
For a set of LPB vectors I, ) l~,(2, ey Z,(M, we define the LPB projection for a location A as
LPB_prj(A)=1, (A) L, (A)..., (4) a2

where ... correspond to string concatenation of the values 0,1, or 2. An LPB region string is
the LPB projection using the whole set of LPB vectors determined by all the known landmarks.
This creates a net of distinct LPB regions.
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Figure 7.16. LPB Distinct Section Partitions through One Known Landmark.

Path planning involves finding a sequence of LPB segments from the graph created by all the LPB
segments formed by known landmarks. The robot walks along each LPB and tests both sides of it
to see if it is adjacent to the goal region. This requires, at most, O(n') LPB vectors to be visited.

However, this can be improved. There are a total of (n—1) LPB vectors crossing one known
landmark, which will partition the area into, at most, 2(n—1) distinct sections. Each section is
- expressed in terms of the LPB projection(onto those LPB vectors) of any location from that

section. The basic idea is that the robot goes to the known landmark, walks along parts of two
LPB segments, which are borders of the section having the same LPB projection (onto those

vectors) as that of goal LPB region. The robot then has at most O(n) LPB vectors to visit. In
Figure 7.16, values in parentheses show distinct LPBs projections (onto Z“, l~,c2, Zk3) for sections [

through VI. To visit region A (section I), the robot only needs to visit parts KL, Kl;2 of 2 LPB

vectors Z,d and sz.
The algorithm has the following steps:

Goal: A given LPB region and corresponding an LPB region string L, to go to.

Step 0  If any components of ’Lg is equal to 2 (it is on an LPB vector), the robot first goes to

any known landmark on that LPB. It then walks along it in one direction until the goal
region is achieved; if so, the algorithm is finished.

Step 1 Initialize segments of each LPB vector as un-visited. Perform masking on each

) known landmark K visited before, i.e., mark the segments of LPB vectors crossing K -
as visited if they are not borders of the section having the same LPB projection (onto
these LPB vectors) as that of L. Also initialize the stack SP for the known landmarks

-as empty.
Step 2  Test the stack SP.

If SP is empty, B
select any known landmark K which is one end
of an unvisited LPB segment, push(K) into SP,
go to step 2; if K is not found, stop.
Else : o
K = pop(SP); if K is not one end of any
non-visited LPB segment, go to Step 2.
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Step 3  The robot walks to known landmark X , tésting whether the goal region is achieved; if
so, the algorithm is finished. ' '

Step 4  If K has not been visited before, the robot performs masking on K.

Step 5 If K is one end of non-visited LPB segment §, mark § as visited, push(K) into SP.
Else go to Step 2. : ‘

Step 6  The robot walks along segment S, testing whether the goal region L, is found, until
one of the following conditions is satisfied:

» If the goal is found, the robot achieves the goal and the algorithrh is finished.

« If contradiction to the goal region happens, i.e. , originally the robot is on the same
side of one LPB as that of the goal, later different; mark visited for the segment
which the robot is heading towards, go to Step 2.

o If the robot arrives at another known landmark K,, push(K,) into SP, go to Step
2. -

Figure 7.17. Example of Navigation Using LPBs.

Figure 7.17 shows an example of navigation using this algorithm with the viewframes and paths
from the previous figures. The known landmarks are circled; the LPB vectors are in a dash-dotted

line, and the exploration paths ¥’ ( solid thin lines) are generated in the same manner as in Figures
7.7, 7.8 and 7.9. The path determined by the robot is shown as a solid thick line from the LPB

region near the upper-right corner of the ¥ to the goal region near the upper-left corner of the Y.
The processing time of this algorithm is O(n), where n is the number of known landmarks. In
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addition, experiments have shown the algorithm gracefully degrades as the number of known
landmarks is decreased.
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Figure 7.18. LPBs Partitions the Area into Small Regions.

An interesting finding is that if masking is applied on all known landmarks as stated in step / of the
algorithm, the LPB candidates (i.e. LPB vectors of which LPB masks are not 111) form a flow
towards the destination region. Figure 7.18 shows LPBs that partition the area into small regions.

Figure 7.19 shows the flow towards the goal region near the upper-left corner of the ¥ of Figure
7.17.

&
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Figure 7.19. LPB Flow Towards the Goal Region Near the Upper-Left Corner
of the ¥ of Figure 7.17.
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7.6 NavigationNot Using a Compass with a
Variable Percentage of Distinct Landmarks

Different alternatives for this case are currently being explored. The characteristic behavior appears
similar to navigation using a compass with nondistinct landmarks (hugging to previously explored
paths without taking shortcuts), except it is much more sensitive to the allowable viewing distance.
One approach for this case is to perform navigation using LPBs defined by landmarks with local-
ids. A difficulty is that one or both of the landmarks defining an LPB can disappear as the robot
walks away from it. So the LPBs connecting viewframes may not be stable. It may be possible to
use a measure of reliability of LPBs between viewframes as a criteria for extracting viewframes.

Figure 7.20. Viewframe Back-Matching Without a Compass.

Another approach being investigated when there is a low percentage of distinct landmarks involves
modlfymg viewframe back-matching in the algonthm from section 3 to satisfy the constraint of not
using a compass. In Figure 7.20, the robot is at A, seeing nondistinct landmarks L, L, L
which are also in vf,,. In order to go near the center O of vf, to back-match vf,, the robot first

comes to one of L, L,, L;, say L,, then it walks along arc L,BO by maintaining angle

=/£L,0L, walk and tests if angle £ L BL, equals o, if so, we conclude the robot is close to

O The robot must always see all three landmarks before it comes nearby O (note angles a, o,
are calculated counter-clockwise, so there is only one center) This type of walking is used for
viewframe back- matchzng without a compass.

The following algorithm is intended when there is a higher pereentage of nondistinct landmarks
without a compass. It has the following steps:

 Goal: A landmark with local identifier Icid (tied to a specific viewframe) to go to.
Step 0 If lcid is in current viewframe, go directly to it and the algorithm terminates.

Step 1  Create a virtual viewframe V, containing only the goal Icid with arbitrary orientation.
Construct an N by N weight matrix W (N is current total number of viewframes plus
one). For each pair of viewframes (V,V;), including the virtual viewframe V, and
current starting viewframe V,, if they are at least 3(for i #n and j#n) or I(for i=n
or j=n) landmarks with common local ids in both viewframes, one assigns the weight
matrix entry W(i,j)=1; otherwise W(i, ) =eo. With the weight matrix, one finds a
least sequence of connected viewframes V,, V,, ..., V, by applying a shortest path
algorithm [6]. Alternatively, if the total number of viewframes N is too great, a
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breadth-first tree search [6] from V is used to find adjacent viewframes, such that a
viewframe cannot appear twice in a path of the tree.

Step 2 If a sequence of connected viewframes are not found, stop. Otherwise the robot
performs viewframe crossing and viewframe back-matching through V,, V|, ..., V..
It walks to the landmark with common local identifier in both V,; and V|, where the
choice of distinct landmark has priority.

Step 2.1 If the robot is currently at landmark P of viewframe V. (i is max), it finds
two other landmarks with common local identifiers both in current viewframe V. and

vfi, and walks towards the center of vf; by using viewframe back-matching without
compass, as explained in Figure 7.20. During the walk, it tests if current viewframe
V. has at least 3 (1 for m = n) landmarks with common local identifiers with vf,, i.e.

meli+1,n] and m is max; if m is found, which means three distinct landmarks are
found, then it changes the direction to walk to the landmark in both V. and V.

Otherwise, it performs back-matching to V,; if no ambiguity occurs and the best match
is found, the robot updates the local identifiers, i.e. it uses local identifiers in V. to
replace corresponding local identifiers with the same orientations in V. as well as those
local identifiers in V-DB; and then walks to a landmark with common local identifier
bothin V,and V,,. '

Step 2.2 Repeat Step 2.1 until the goal is achieved, or failure due to ambiguity.

7.7 Future Work

We have described different range-free qualitative navigation algorithms. The data structures used,
especially for the case of nondistinct landmarks, are compatible with the types of features that
could be extracted as landmarks with basic image-processing techniques on a robot with a 360
degree field of view. We also have performed experiments to understand path-planning feasibility
and efficiency for these algorithms. One measure of path planning efficiency is the ratio of the
straight-line distance between two locations compared to the actual distance walked by a robot to
go from between the two locations. This measure of efficiency of the compass-based algorithms
improves if the number of viewframes, visual range, and distinct landmarks increases. The
efficiency of the LPB, non-compass-based algorithm increases as the number of known landmarks

increases.

Current work is focusing on navigation using LPBs formed from nondistinct landmarks,
viewframe filtering techniques, and different approaches to organizing spatial memory, such as a
hierarchical representation of viewframes, along the lines discussed in [12].
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