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PREFACE 

This research is sponsored by the Defense Advanced Research Projects Agency 
(DARPA), and monitored by the U.S. Army Topographic Engineering Center (TEC) under 
contract DACA76-92-C-0008, titled "Representation, Modeling, and Recognition of 
Outdoor Scenes." The DARPA Program Manager is Mr. George Lukes, and the TEC 
Contracting Officer's Representative is Ms. Lauretta Williams. 



1.0 OBJECTIVE 

The primary goal of this project is to advance the state-of-the-art in scene interpretation for 
autonomous systems that operate in natural terrain. In particular, techniques are being 
developed for representing knowledge about complex cultural and natural environments so 
a computer vision system can successfully plan, navigate, recognize, manipulate objects, 
answer questions, or make decisions relevant to this knowledge. 

2.0 APPROACH 

This work integrates our continuing advances in four separate technologies to achieve the 
goal of providing a foundation for the design of highly competent machine vision systems 
capable of autonomous operation in the outdoor world: 

• First, stored knowledge (such as geospatial data and object models, as well as 
contextual dependencies and inter-relationships) is used to overcome inherent 
weaknesses in the best "self-contained" image-analysis algorithms. This approach is 
reflected in the prior SRI development of the CONDOR1 and HUB2 systems, and the 
current APGD3/BOS4 architecture that relies on context, function, and purpose, as well 
as visually observed geometric shape, to recognize scene objects. 

• Second, significant progress has been made in developing compact and expressive 
representations for modeling, and ultimately recognizing, objects encountered in the 
natural world. Computational efficiency, thus real time performance, is critically 
dependent on using effective representations for both reference models and sensed data. 

• Third, global optimization techniques are being developed that require reasonable 
amounts of computation but produce results not obtainable by local analysis methods. 
This work has been applied to building volumetric models of objects detected in range 
data and stereo pairs, as well as for delineation, partitioning, and feature extraction in 
single images. 

• Fourth, techniques are being developed that are able to simultaneously, or 
incrementally, exploit multiple views of a scene in compiling a complete scene model. 
The SRI's previously developed Epi-polar plane image analysis technique and the 
current work on deformable mesh representations are examples of how multi-image 
collections can be used to construct a geometric scene model that is superior to a 
sequence of independent stereo reconstructions. 

3.0 PROGRESS 

Theoretical and practical progress has been made in recovering scene models from physical 
constraints, stored knowledge, multiple views, and image sequencesor collections. The 

1 CONDOR: Proper -name (see Glossary of Acronyms page IV, for a definition). 
: HUB: Proper name. 
3 APGD: Automatic Population of Geospatial Databases. 
4 BOS: Proper name (derived from: Battlefield Observer System). 



results in the area of geometric recovery are centered on novel deformable mesh and particle 
representations for describing scene surfaces at a level of organization higher than that of 
the conventional dense array of depths, and on an associated continuation-type optimization 
method for rapidly modeling terrain geometry in terms of these mesh representations. The 
deformable mesh also serves as a substrate for consistent integration of terrain and surface 
features (e.g., rivers, drainage, and roads); we are able to refine several models 
simultaneously and enforce geometric and semantic constraints between the objects and the 
terrain. In tests using this new technique, we have repeatedly been able to significantly 
improve the accuracy of recovered terrain and object models beyond that of the best 
available stereo methods (e.g., P. Fua "Fast, Accurate and Consistent Modeling of 
Drainage and Surrounding Terrain," IJCV 26(3): 215-234, March 1998). 

Methods were also developed to build simplified geometric descriptions of the terrain, 
using the triangulated meshes. A mesh is first overlaid on a stereo disparity image such 
that no facets cross discontinuities, then it is reduced in complexity to minimize the number 
of triangles in the mesh. The technique developed for this is similar to "mesh decimation" 
used in graphics, however, constant reference is made to the initial disparity image, thus 
ensuring that the final mesh is still an accurate representation of the disparity image. Data 
reductions of over 98 percent of the data in the original mesh has been achieved. When this 
mesh is transformed into real-world coordinates we have a simplified yet accurate 
triangulated description of the visible surfaces. A detailed discussion of the earlier work on 
geometric recovery can be found in the third yearly report (April 1995) for this project. 

Earlier in this project, a significant new advance in the long-standing problem of 
duplicating human performance in recovering 3-D models of terrain and man-made objects 
from qualitative and imprecise line drawings (e.g., of terrain elevations presented in an 
approximate and uncalibrated contour map, or building edges as in a single approximate 
projection of the corresponding wire-frame) was made. This work can greatly simplify 
communication problems between man and machine in such applications as robotic mission 
planning and construction of databases for use in robotic navigation. A paper describing 
this work has been published ("An optimization based approach to the interpretation of 
single line drawings as 3-D wire frames," IJCV 9(2): 113-136, Nov 1992). On-going 
related work in "sketching" the geometry of natural scenes has led to (new) additional 
results of both theoretical and practical importance; some of these new results, still being 
further developed and evaluated, are presented in an appendix to this report (T. Luong 
"Sketching Natural Terrain from Uncalibrated Imagery"). 

The problem of automatically recognizing objects appearing in images of the outdoor world 
has proven to be extremely difficult because of the lack of explicit shape models. Most 
computer-based recognition techniques rely on explicit knowledge of shape, but rocks, 
trees, and other natural objects cannot be successfully described in this way; even such 
generic man-made objects as roads, bridges, and buildings are more likely to satisfy 
functional constraints rather than being exemplars of some generic geometric blueprint. It 
is necessary to replace explicit shape with a more general way of describing natural objects 
and complex man-made structures. The proposed approach is based on employing a small 
set of techniques that can very reliably organize the "pixel-level" image data as a basis for 
higher level analysis. Finding the appropriate combination of low-level data-description 
and associated extraction techniques is a key problem and a primary concern in this project. 

Two of the techniques that have emerged from the work in this area meet the criterion of 
generality and robustness. The first is a generic way to find candidate line structure in an 
image (see following discussion). The second is a way to organize such data into 
perceptually coherent and semantically meaningful units. In a recent paper (BEEE-PAMI 
1994) we described our progress in the design of a partitioning technique that is extremely 



robust in accomplishing the perceptual organization task and also describe how these two 
techniques can be applied to the problem of road delineation in aerial images. 

In papers presented at the 1994 and 1996 Image Understanding Workshops, we described 
our work on the detection and extraction of linear features in imaged data — one of the most 
useful and effective of our core scene-analysis techniques: We use the minimum spanning 
tree and a new "network" structure we devised as the primary representations. Semantic 
constraints control the tree/network construction thus establish the universe of possible 
paths (both in our data structures and in the image being analyzed). We define the 
characteristics of the linear structures we are looking for as attributes of the branches in the 
tree/network and provide computationally effective methods for finding paths that maximize 
scores for the desired attributes. Filtering techniques, parameterized by context evaluation 
procedures (or externally provided information) operate at a number of decision points in 
the optimization process and in final acceptance of the selected path(s). We have 
implemented specialized experimental versions of the generic delineation technique to 
recognize various types of extended terrain features and navigation obstacles including the 
skyline, ridgelines, trees, roads, and paths. The problem of finding linear features in aerial 
images has been of special interest, and as discussed later, has resulted in a major advance 
in automating the task of modeling roads in the compilation of geospatial databases. 

We recently assembled a system, based on the above two scene analysis techniques, 
delineation and partitioning, to demonstrate the feasibility of automatically modeling an 
urban building complex from Interferometric Synthetic Aperture Radar (IFSAR) data. The 
approach was to first smooth and partition the DFSAR data using minimal description length 
encoding and generalized connected-components analysis. The "footprints" of the 
individual buildings were then found by using the curve partitioning algorithm (IEEE- 
PAMI1994) to decompose the boundary of each isolated object (connected component) 
into a rectilinear set of edges. Finally, a containing 3-D shell for each building using the 
extracted footprint and the building height as measured in the original IFSAR data was 
constructed. This work demonstrates the utility and generality of the scene analysis tools 
we have devised. 

More than 15 papers have been published describing the above work. Algorithmic 
techniques developed in this program have been integrated into a commercial cartographic 
modeling system, and used in the RADIUS5, RCVW6, UGV7 and APGD programs. 

After the completion of the base funding and development period of this contract, our 
efforts focused on improving the performance and scope of our natural/outdoor object 
recognition techniques. Work on recognizing complex natural and man-made objects (e.g. 
roads, trees, rocks, and terrain features) is based on a set of ideas and techniques we are 
developing for recognizing complete scene contexts, rather than instances of independent 
object models. We have been able to experimentally demonstrate the validity of the 
approach by recognizing and delineating scene objects that cannot be dealt with by 
conventional methods and are currently integrating the component technology into a 
complete testable demonstration system; this work is described in greater detail below and 
in three appendices. 

5 RADIUS: Proper name (derived from: Research and Development for Image Understanding Systems). 
6 RCVW: Rapid Construction of Virtual Worlds. 
7 UGV: Unmanned Ground Vehicle (DARPA) Program. 



4.0 SUMMARY OF RECENT ACCOMPLISHMENTS AND 
ACTIVITY 

The contribution of our current work concerned with natural scene description and 
recognition is a set of computer algorithms capable of using one or more images of an 
outdoor scene to create a labeled scene sketch that makes explicit the qualitative geometry 
and identifies the major visible natural and man-made objects. A key problem (noted 
earlier) is the necessity to replace reliance on a generally unavailable explicit shape with 
more general ways of recognizing and describing natural objects and complex man-made 
structures. 

The approach is to first select (or define) a smaller set of primitive yet pervasive features 
that can reliably be extracted from most images of natural scenes. This set of primitives 
(currently consisting of: color, texture, shadows, depth, surface orientation, and linear 
structures) are combined to identify clear instances of the natural objects of interest using a 
"production rule" type paradigm [ref: Strat and Fischler, "Context-based vision," IEEE 
PAMI, Oct 91]. By using these recognized objects as exemplars, we can invoke a nearest- 
neighbor statistical classifier to label other, possibly less obvious, instances of the objects 
we are looking for. Objects of interest (the semantic vocabulary) include rocks, trees, 
brush, grass, water, snow, ground, sky, ridgelines, holes/ditches, roads, paths, fences, 
poles, cliffs, ground-plane, and shadows. 

The key ideas underlying this work are: 

1. Models are described by objective functions referenced to some appropriate 
representation; feature extraction is accomplished by finding image structures for which 
the relevant objective function is optimized. We generally require that the 
representations we construct be suitable directly viewable replacements (with respect to 
the given interpretation task) for the original image but require only a small fraction of 
the original data storage; finding such "reduced representations" is a an important step in 
the solution process. 

2. Recognition-technique selection and corresponding parameter settings are based on 
context and confirmed by "built-in" self-evaluation functions. 

3. Selection and intense development to produce a few highly refined and reliable "core" 
techniques as the base for implementing a much broader class of feature 
recognition/extraction methods. 

Much of this work is now focused on the development of algorithms for the recognition of 
a wide range of natural/outdoor objects of importance to APGD, robotic navigation, and 
outdoor scene modeling. We have devised a way to quickly convert a color image into a 
labeled Scene Sketch that can be directly used for these purposes. The Scene Sketch 
(described in more detail in an Appendix to this report) is currently a composition of the 
four implemented components: color-sketch, shadow-sketch, line-sketch, and texture- 
sketch. An additional component being developed is a depth/terrain-profile sketch (this 
work is described in more detail in an enclosed appendix). 

The Color Sketch. We have implemented a set of color-based classification algorithms, 
using classical feature-space partitioning techniques and decision rules based on the physics 
of outdoor-scene color-image formation to produce a semantic description of a scene in 
terms of the categories: sky/clouds/snow, live vegetation, earth/ground/rocks, water/rocks, 
and shadows/unknown. This list, which can obviously be expanded, appears to be within 



the competence of the very fast and simple pixel-level color-image processing algorithm we 
employ given that we allow the somewhat intermixed categories; e.g., a volcanic rock can 
look quite dark or "ground-like," while under suitable lighting and view conditions, (some 
portion of) a rock composed of granite will reflect light just like the surface of a body of 
water — and is indistinguishable from water just using local color. 

The Shadow Sketch is primarily used as an indicator of raised objects — the ground surface 
does not cast a shadow nor is it typically self-occluding. The algorithm we use exploits the 
nominal intensity ordering (from dark to light): shadows, raised vegetation, ground-level 
vegetation, ground/earth, water, sky. The critical observation (regularity) we exploit is that 
almost any black and white image can be reduced to a one-bit depiction of a scene, by 
almost any reasonably low threshold, and still allow a human observer to correctly interpret 
the qualitative scene geometry. A smaller threshold will cause some potential obstacles to 
be missed; a higher threshold will mark some darker, but unraised regions as obstacles. 

The Texture Sketch attempts to use the shading and texture variations in a black and white 
image to infer the orientation of the visible scene surfaces. The algorithm exploits two 
regularities: raised (relatively isolated) objects have significant vertical edge content; and 
because of "foreshortening," most of the projectively imaged edges on a relatively 
horizontal plane in a typical outdoor scene will appear to be horizontal in the image. Rather 
than explicitly extracting edges and attempting to analyze them, we are currently attempting 
to identify isolated raised objects and horizontal (support) surfaces by finding coherent 
regions where the local intensity gradient is predominantly vertical or horizontal. 

The Line-Sketch makes explicit physical and geometric discontinuities in material-type, 
illumination, depth (i.e., occlusion boundaries), and surface orientation. In spite of the 
seeming simplicity of the task, fully automated robust methods for constructing a Line- 
Sketch do not (yet) exist. Our work on constructing a Line-Sketch as a component of the 
Scene Sketch is currently focused on finding roads, paths, skylines, and ridge-lines. We 
have a simple but effective algorithm for finding individual skyline points given the 
availability of the Color-Sketch. After first removing small isolated clusters of "sky- 
points," we mark the location of the lowest (smallest y-coordinate) sky-point in each 
column of the image array. While explicit linking is not necessary for the Line-Sketch, it is 
needed to properly extend the skyline through occlusions (which, in turn, is necessary for a 
simple technique to detect raised vegetation). We invoke the linking techniques presented 
in [Fischler94, Fischler96] for this purpose. Work on extending the Line-Sketch to include 
ridgelines is nearing completion. 

An important application of the work on generic linear delineation has been its extension to 
the problem of fully automating the task of finding roads in aerial imagery — a key 
component of our DARPA-sponsored work concerned with the APGD. The linear 
delineation algorithms developed in this project formed the core of a fully automated system 
for road extraction in aerial imagery of rural scenes and has resulted in what we believe is 
the most competent facility available for this purpose. 

The Depth/Terrain-Profile Sketch has recently been implemented, but we have not yet fully 
evaluated its performance (see enclosed appendix). The approach selected requires only a 
pair of uncalibrated images, but it produces a sketch where the order with respect to the 
dimensions of height above the ground plane and depth are correct. In addition, a dense 
representation is generated as a set of profile lines. One key idea in this work is to be able 
to use multiple images taken from arbitrary locations, or even from unknown sources, in 
constructing this 3-D sketch. The stereo approach to 3-D recovery requires two images 
taken close together in both space and time and involves determining the disparity for each 
point along an epipolar line. The epi-polar line is determined only by the geometry of the 



cameras, and within this line, each point corresponds to a different depth. By contrast, 
given a fixed depth, we propose to find all the points that lie at this depth. This is based on 
the idea that for the points that lies at a fixed depth; there is an analytical relation between 
their projections in multiple images. These points form a curve, called profile line, which 
is the trace of the terrain surface on a plane in 3-D at the given depth. By sweeping the 3-D 
space with a set of different depths, a representation of the terrain is obtained. Our work 
provides a new approach to qualitative terrain modeling; it show that in order to generate a 
qualitatively useful elevation map, full calibration of the cameras is not necessary; instead, 
the only new requirement is the identification of correspondences on the horizon line. 

While there are important reasons to look beyond conventional stereo as a way of modeling 
the geometry of natural terrain, stereo-based geometric recovery is still the most direct 
approach to dealing with this problem. Never the less, stereo matching often fails in 
ground-level vegetated environments: occlusions, discontinuous surfaces, uncertain 
lighting, non-Lambertian reflection, extreme disparity ranges, homogeneous surfaces and 
regions (e.g., snow, water, sky) are some of the problems that must be addressed. Recent 
progress has been made in attempting to construct an algorithm capable of human-level 
stereo-matching performance for the natural/outdoor world. The approach is based on the 
requirement for explicitly categorizing and searching for a set of 5-10 known error sources, 
and for exploiting independent information sources in judging correspondence correctness.' 
In particular, image photometry, imaging geometry, and scene semantics are able to 
provide three independent "opinions" on the validity of a proposed correspondence. A 
report describing our work in this area is in preparation. 

Integration. Techniques based on the Scene Sketch and associated algorithmic techniques 
being developed to explicitly recognize the more important and prominent terrain features 
and navigation obstacles. For example, by first solving the simpler problem of delineating 
the skyline in a color image, we are then able to choose a region above the skyline as an 
exemplar of "sky" for use by the color classifier. Texture, shadows, and shape will allow 
us to find a few obvious instances of vegetation and rocks as additional exemplars for the 
color classifier. We can now label most of the scene using the color classifier, and then, (at 
least partially) check the result for semantic consistency: The pixels labeled sky by the 
color classifier should all exist above the skyline found by the linear delineation process; if 
the skyline is interrupted by a nearby (as measured by our depth measuring techniques) thin 
raised object, the object should be labeled as a tree or a pole. A relatively horizontal/flat 
region, depending on its color, should be grass, dirt, water, or rock etc. 

We have crossed a threshold in the development and integration of the scene sketching 
algorithms where there is sufficient content to permit meaningful test and evaluation. We 
have assembled a database of approximately 50 images (150 color-component images); 
these pictures come from a variety of sources, but primarily the foothills near Stanford' 
University, California deserts, and the California Sierra's at high elevations (above 8,000 
feet). The algorithms that produce the Color-Sketch, the Shadow-Sketch, and the Line- 
Sketch provide good results although they can be improved.   The texture sketch we 
currently compute is more problematic; it often provides good results that are valuable and 
not easily obtained from other sources, but it not as reliable as we would desire. We are 
working on an improved algorithm for constructing this component of the scene sketch. 

The Color Sketch, because it semantically labels the scene content, is the most important 
and useful component of the complete Scene Sketch. In our experiments, we have found 
that when we can reliably locate the sky-regions and skyline (in the imagery being 
processed), we can use the implied constraints to both extend, and more reliably detect, the 
semantic categories depicted in the Color Sketch. Therefore, the algorithms that are 
employed to find the sky and skyline have been improved, and are being further refined, as 



they appear to be a key to any further advance in improving and extending the Scene 
Sketch. 

Additional aspects of the above work are described in three appendices to this report; (a) 
M.A. Fischler, "Finding the Perceptually Obvious Path," (b) M.A. Fischler, "Robotic 
Vision: Sketching Natural Scenes, (c) Q.T. Luong, "Sketching Natural Terrain from 
Uncalibrated Imagery. Two papers currently being prepared for the 19981U Workshop 
will describe work on Road and Street delineation in aerial imagery (based on our 
fundamental work on generic linear delineation), and in automated highly robust 
correspondence/matching of point features in multiple images (with application to stereo 
depth recovery). 

In summary, the major recent accomplishments for this effort are: 

1. Work on fully automated linear-delineation in aerial imagery has resulted in what we 
believe is the most competent algorithm available for this purpose. This algorithm has 
been transferred to and installed in the RCDE8 for testing and use in our Defense 
Advanced Research Projects Agency (DÄRPA)/NIMA9 APGD program. 

2. A set of algorithms for recognizing objects appearing in color photographs of natural 
outdoor scenes and for recovering scene geometry without requiring camera calibration 
or stereo correspondence has been developed. This on-going work can already deal with 
recognition problems beyond the competence of any other known technique. 

3. An approach for achieving human-level accuracy in establishing stereo correspondences 
has been developed. The method still remains to be tested, but we have demonstrated 
error-free performance in our most recent experiments. 

The current goals are: 

1. Complete the work in automated delineation of linear structures by devising adaptive 
self-tuning and self-evaluation procedures. 

2. Complete the work on recognition of objects in color images of natural outdoor scenes 
and evaluate the performance of the algorithms. 

3. Complete the development and evaluate our algorithm for (essentially) error free stereo 
matching. 

8 RCDE: Radius Common Development Environment. 
* NIMA: National Imagery and Mapping Agency. 
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Abstract 

This paper is primarily concerned with the 
problem of finding a single perceptually obvi- 
ous path (POP) in an image; e.g., an isolated 
road in an overhead view of a desert scene, or 
a particular line, drawn on a piece of paper, 
that a person points at. We briefly describe 
those relevant parts of a system designed to ad- 
dress the general problem of automatically de- 
lineating line-like structures, but focus on the 
perceptual, semantic, and computational issues 
relevant to this particular problem. 

1    Introduction 

This paper is primarily concerned with the 
problem of finding a single perceptually obvious 
path (POP) in an image (or selected image win- 
dow); e.g., an isolated road in an overhead view 
of a desert scene, or a particular line, drawn on 
a piece of paper, that a person points at. 

In reference [5] we described an architecture 
(Figure 1: LD block diagram) that we have 
found to be both general and effective for ad- 

*This work was sponsored by the Defense Advanced 
Research Projects Agency under contract DACA76-92- 
C-0008 monitored by the U.S. Army Topographic En- 
gineering Center, Alexandria, VA. The author also ac- 
knowledges the many contributions made by Helen Wolf 
to the work presented in this paper. The views and 
conclusions contained in this document are those of the 
author and should not be interpreted as representing 
the official policies, either expressed or implied, of the 
Advanced Research Projects Agency, the United States 
Government, or SRI International. 

dressing the delineation problem; it involves the 
following subsystems and processes: 

(a) Detector/Binarizer Subsystem. Binariza- 
tion of the gray-level image retaining the per- 
ceptual saliency of the linear structures (e.g., 
Figure 2b or 3b); 

(b) Generic Linear Delineation Subsystem. Par- 
titioning and linking the binary markers into a 
collection of independent (perceptually obvious) 
generic open paths (e.g., Figure 1c, 2c). 

(c) Semantic Linear Delineation Subsystem. 
Splitting, semantic filtering, and relinking the 
generic (perceptually salient) paths to obtain 
semantically significant delineations. Our goal 
here could be to find a collection of independent 
paths (open, closed, or both), a linked network 
(with or without explicit path extraction), or to 
find a single "best" path. 

We briefly describe relevant parts of the above 
system, but focus on the perceptual, semantic, 
and computational issues relevant to this par- 
ticular problem, especially the Semantic Delin- 
eation Subsystem and our proposed solution for 
the final process - relinking a subset of the fil- 
tered line segments into a single POP. 

2    Overall Rational and Main 
Problems to be Solved 

Given two curves, we typically have no precise 
quantitative procedure for determining which 
of the two would be more perceptually salient 
to a normal human observer. By perceptually 



salient we mean that, after a very brief inspec- 
tion, one alternative would be chosen over the 
other as depicting the presence of some inter- 
esting/important natural or man-made feature, 
or coherent structure, in an image of a natural 
scene; or likely to be found first if both were 
judged to be coherent; or judged to be a bet- 
ter exemplar of some semantic category. The 
available ranking criterion for generic curves is 
largely limited to the qualitative Gestalt laws 
of perceptual organization [l] - proximity, clo- 
sure, simplicity, similarity, good continuation 
(smoothness), and symmetry. In addition we 
might have some semantic or physical con- 
straints that could be used to disqualify a curve 
from being a member of a target semantic cate- 
gory. For example, a curve that "doubled-back" 
on itself (i.e., was multi-valued for azimuth) 
would typically not be a valid skyline for an im- 
age taken with a horizontally held camera; or, 
an isolated closed curve in an aerial image would 
be unlikely to depict an interstate freeway. In 
general, at this time, we can only be expected 
to make gross judgments in our ranking - e.g., 
to find a best (perceptually salient) curve when 
there is really only one viable candidate in the 
search area. 

Because of occlusions and background struc- 
ture, there generally is no simple way to parti- 
tion the image into curves, associated with co- 
herent objects, that are complete and have no 
contamination by extraneous background con- 
tent. If we tried to list or assemble all pos- 
sible curves prior to ranking them, an image 
with as few as 20-40 curve-points would be com- 
putationally impractical to process because of 
the factorial growth in the possible number of 
curves. What is implied by the above consider- 
ations is that a single step solution to the prob- 
lem of selecting a single most salient curve is 
probably not attainable; we must perform a se- 
quence of grouping, filtering, and information- 
reduction steps to eliminate unlikely candidates 
as early in the selection process as possible, and 
then make our final selection on a greatly simpli- 
fied reduction of the originally presented data. 

We have examined two distinct approaches to 
the delineation problem in general, and to find- 
ing the POP in particular:   (a) Dynamic Pro- 

gramming (DP) [2] which is capable of finding a 
least-cost path in a real-valued 2-D array (which 
could be the original picture, or some derived 
overlay called a "cost" image), and (b) a number 
of graph-theoretic techniques-which, in practice, 
require an early binarization of the input image. 

DP, or any other global optimization technique 
that can operate on the actual input data be- 
comes computationally infeasible for anything 
other than cost/objective functions that are 
very "local" in nature. I.E., the cost of a path 
going through a particular pixel in an image 
should only be a function of an attribute list 
attached to that pixel and (say) the cost of ap- 
pending the given pixel to a path that passes 
through an adjacent pixel - rather than being 
dependent on (say) the specific positioning of 
the previous five pixels in the curve segment to 
which attachment is being considered. Thus, 
the nominal generality of full global optimiza- 
tion is not really attainable because of compu- 
tational considerations. Even if we could con- 
tend with the computational difficulties, there 
is the further problem of actually specifying 
the global cost/objective function that approx- 
imately models human perceptual behavior in 
interpreting graylevel images - this is an even 
more difficult unsolved problem. 

In the approach we will now discuss, we have 
found (through a combination of theory and 
experiment - but this is primarily an empir- 
ical result) that it is possible to automati- 
cally construct a binary overlay, of almost any 
non-contrived graylevel image, that will retain 
the perceptual saliency of the linear structures 
(paths). It is further the case that it is now (in 
a binary image) possible to define the primary 
cues that underlie our perception of a line or 
path: relative proximity and smoothness of the 
binary (1 or 0) pixels defining the line/path. Al- 
though not a traditional Gestalt property, per- 
sistence (e.g., coherent path length) is also cue 
of major importance; the other Gestalt cues 
play a (sometimes dominant) role only when 
there is ambiguity due to contending interpreta- 
tions, or when we recognize some known shape 
or repeated structure. 

Generic (perceptual rather than application de- 



pendent) clustering and linking are effectively 
(but not perfectly) achieved by employing a 
modified Minimum Spanning Tree (MST) al- 
gorithm with a bound on inter-point distance. 
The MST algorithm we devised for this purpose 
can be made to run in time proportional to the 
number of points being processed (because the 
points are represented by bounded integer coor- 
dinates, their density is not arbitrary). 

The result of the above steps is a collection of 
disjoint MST's which can be separately parsed 
to to provide a collection of line-segments 
(RPATHS) as the final output of the generic 
linking component of our system. This pars- 
ing process involves (1) finding a primary path 
through the tree (typically a diameter path), 
(2) trimming-back branches with ragged ends, 
(3) pruning short branches, (4) partitioning the 
remaining collection of branches into disjoint 
paths which are pair-wise linked at the MST 
nodes according to geometric and (original- 
image) intensity smoothness criterion. An ex- 
ample showing the result of this process is pre- 
sented in Figures 2c and 3c. 

2.1    On the Combinatorics of Finding 
A Perceptually Obvious Path 

Assume that we start with a binarized image 
depicting a single POP. If we had a criterion 
function (CF) that allowed us to rank alterna- 
tive POP candidates, we observe that the naive 
solution of generating and ranking all possible 
paths is computationally infeasible for any real- 
istic problem. Since there are n! possible paths 
on n points, and 20! > 1018, a problem with as 
few as 20 points would be impossible to solve 
this way. 

In general, we must address two sub-problems: 
(1) selecting/partitioning the actual path- 
points from the set of potential path-points, and 
(2) sequencing the selected path-points. Let us 
assume that we are given the points that ac- 
tually constitute the solution (POP). A very 
reasonable CF, based on the primary Gestalt 
property of proximity, is density (number- 
of-path-points/path-length); i.e., we want to 
find  the shortest path that contains all the 

given/selected points. What we have just es- 
tablished is that a simplification (sub-problem) 
of our original problem is the Traveling Sales- 
man Problem (TSP) if the POP is closed, or 
the problem of finding a "Messenger" (open) 
path. Both the TSP and the "Messenger" path 
problem are known to be computationally in- 
tractable for large values of n (NP-hard). For 
example, (at least) until recently, the largest 
value of n for which there is a known solution to 
a non-contrived TSP was 318 cities [7][6]. While 
there are fast methods for finding an approxi- 
mation to the solution of a Eucledian TSP prob- 
lem, the perceptual character of such a solution 
is uncertain. 

It is clear that in order to solve the POP prob- 
lem we must strictly limit the the number of 
points that can be arbitrarily sequenced, or we 
must limit the number of choices that are the 
possible successors of any given point, or use 
some combination of the two preceding con- 
straints. In a variety of problems domains 
that we have been concerned with (e.g., find- 
ing roads in aerial images, recognizing trees 
and/or finding the skyline in natural ground- 
level scenes), we have observed that we can 
usually find very dense path segments that are 
longer than some minimal length (related to vi- 
sual detection criterion), and place perceptual 
and/or application-domain-related constraints 
on linking possibilities for these dense segments. 
To the extent that most of the path-points are 
already sequenced as members of the detected 
segments, and it is only the segments that must 
be sequenced, and even here there are only a few 
linking alternatives for each of the segments, we 
can solve the POP problem even though it is 
formally intractable. 

Our overall-approach then is [3][5]: 

(1) assemble the potential path-points into 
dense segments by using a fast MST algorithm 
(although the MST does not actually assure the 
densest connectivity, it usually provides a very 
good approximation to this condition). The in- 
put to this step is a binarized image; the output 
is a forest of (collection of disjoint) MST's. 

(2) recover the longest segments - consistent 
with generic perceptual connectivity criterion - 



that can be extracted from the forest of trees 
generated in step (1). (The list containing these 
segments is called RPATHS). 

(3) repartition and semantically filter the col- 
lection of RPATHS to eliminate perceptual and 
semantic linking mistakes and irrelevant paths 
introduced or retained by the limited flexibility 
of the MST algorithm/representation and the 
generic parsing process. 

(4) Use a very general linking technique and rep- 
resentation schema, capable of expressing arbi- 
trary perceptual and semantic constraints, to 
imply a network of paths that is very likely to 
include the POP. 

(5) Parse the network produced in (4) to extract 
a relatively small collection of prominent paths 
that includes the POP. 

(6) Rank the paths extracted in (5), using an 
objective function based on the primary Gestalt 
criterion, and return the highest ranked path as 
the POP. 

In the next section, we discuss some of the de- 
tails of how the Semantic Delineation Subsys- 
tem (Figure 1) accomplishes steps 3 through 6. 

3    The Semantic Delineation 
Subsystem 

The Semantic Delineation Subsystem is com- 
posed of two major components; the Semantic 
Filter and the Semantic Linker. The Semantic 
Linker, in turn, has three main functional ele- 
ments: (a) the SL-Segment-Linker, (b) the SL- 
Path-Generator, and (c) the POP-Generator. 

3.1    The Semantic Filter (SF) 

The purpose of the semantic filter is to extract, 
from a collection of perceptually salient paths, 
those sub-paths that are compatible with the 
constraints of some specified application or pur- 
pose (e.g., sub-paths that could be road seg- 
ments in an aerial image). 

This system component takes as its input a list 
of generic perceptually-salient paths (RPATHS) 
and produces,  as its output,  a list of path- 

segments (RPATHS-F). Each item (called a 
seg) in RPATHS-F, is a coherent sub-path of 
some path in RPATHS; the segs returned in 
RPATHS-F are open and non-self-intersecting, 
and any pair of segs are disjoint with the pos- 
sible exception of a single intersection-point (as 
are the paths in RPATHS). 

The SF processes each path in RPATHS inde- 
pendently. It first partitions the path into ad- 
jacent segs at it's salient points using the algo- 
rithm described in [4]. This partitioning step is 
necessary to recover components of the appli- 
cation relevant paths that were combined with 
other (incidental) adjacent paths in the original 
image. Each seg is evaluated for compatibility 
with the constraints of the intended application 
on an accept or reject basis. The accepted segs 
are appended to the output-list RPATHS-F. In 
addition, if two accepted segs were part of the 
same input (RPATHS) path, but are now sepa- 
rated in the sense that some portion of the in- 
put path between them was deleted by the filter, 
then an entry recording this fact is made on a 
link-list (see discussion of the Semantic Linker). 

While the SF might have to be completely 
redesigned for each new application, we have 
found that the same set attributes (properly pa- 
rameterized for the different applications) ap- 
pears adequate for such diverse tasks as finding 
roads or rivers in aerial images, and for find- 
ing man-made objects (e.g., building edges) or 
natural objects (e.g., the skyline, tree-trunks) 
in ground-level images. 

The attributes we currently evaluate (to be de- 
scribed in detail in a later version of this pa- 
per) are concerned with length, directionality, 
smoothness, and degree of randomness: 

(1) Length. Very short segs are typically re- 
jected as being "noise*' or unimportant (they 
can be recovered later if necessary); very long 
segments are typically accepted since they are 
too important to discard without the further 
analysis to be performed later. 

(2) Consistency of global direction based on a 
histogram of the directions between adjacent 
seg pixels obtained from a chain-coded repre- 
sentation of the seg. 



(3) Smoothness. This property is measured in 
two ways. First, each seg is inherently smooth 
to some degree because its parent in RPATHS 
was partitioned into segments at salient (or high 
curvature) points. Thus, the length of the seg 
is an indirect measure of its smoothness (the 
longer the seg, the smoother it is). Second, we 
measure the seg's deviation from a best fitting 
circular-arc to look for a smoothness property 
that is especially important for some applica- 
tions (e.g., finding man-made objects). 

(4) Randomness. We have devised a weak mea- 
sure of symmetry, or of repeated structure, in 
a path; this measure together with the evalu- 
ation of coherent length, consistent direction, 
and smoothness, provide a basis for judging 
whether a seg is a "purposeful" or an appar- 
ently random structure. 

An example of the performance of a semantic 
filter we designed for delineating roads in aerial 
images is shown in figures 2d and 3d. Tables 
1 and 2, in the section on experimental evalua- 
tion, presents quantitative results of the filtering 
operation in terms of a relevant set of semantic 
categories. 

3.2    The Semantic Linker (SL) 

The purpose of the semantic linker is to combine 
all the segs in the list RPATHS-F (produced by 
the Semantic Filter) into either a network of 
partitioned or unpartitioned paths, or to select 
and sequence a subset of the segs in RPATHS- 
F into a single POP; the problem of producing 
an unpartitioned network (generally, the more 
useful of the available types of output since a 
distinguished POP might not even exist) is a 
very simple sub-problem of producing a POP. 

The SL has three components, (a) the SL- 
Segment-Linker, (b) the SL-Path-Generator, 
and (c) the POP-Generator. 

3.2.1    The SL-Segment-Linker 
(SLSL) 

The input to SLSL is RPATHS-F, and its out- 
put is the "link-pair-list." The SLSL examines 
every pair of segs in RPATHS-F and determines 

if they can be adjacent components of an ex- 
tended path compatible with the constraints of 
the specified application. If so, it generates 
a "link-pair" entry which is appended to the 
"link-pair-list." 

The SLSL typically uses three types of criteria 
to make a link decision for a pair of segs: 

(1) The relative geometric positioning and sep- 
aration of the segs. For example, in the case 
of road delineation, the criterion is typically a 
bound on the separation-distance between nom- 
inally corresponding endpoints (one on each 
seg). In the case of skyline delineation, the segs 
might be further constrained not to have any 
overlap in their horizontal (x) coordinates. 

(2) Global attributes of the segs. For example, 
in the case of road delineation we might require 
that the spectral distribution, or image inten- 
sity, or mean width of the two candidate segs 
be identical to within some specified tolerance. 

(3) Acceptance by the semantic filter. If the 
two candidate segs are linked as proposed and 
treated as a single seg, a sufficient condition for 
linking is that the combination is accepted by 
the semantic filter. 

3.2.2    The SL-Path-Generator 
(SLPG) 

The input to the SLPG is the "link-pair-list" 
produced by the SLSL and augmented by addi- 
tional link-pairs supplied by the Semantic Fil- 
ter; the output is either an unsegmented net- 
work (actually, a disjoint collection of such net- 
works) or a pair of lists containing all possible 
maximal open-paths and loops implied by the 
link-pairs. The POP is assumed to be one of 
these (explicit) paths, and a simple test is pro- 
posed as a way of selecting it. 

The function of the SLPG is purely syntac- 
tic/algorithmic - to expand the path informa- 
tion implicit in the augmented link-pair-list. 
The link-pairs are a compact encoding, actu- 
ally generators, of the network or collection of 
paths to be produced by the SLPG. 

We can easily partition a collection of link- 



pairs into disjoint subsets so that every pair 
of link-pairs referring to a common seg are in 
the same subset called a "link-pairs-association- 
set." The collection segs corresponding to such 
a subset is called a "seg-association-set." Each 
seg-association-set implies a disjoint network of 
paths (e.g., roads); networks consisting of a few 
short isolated paths can often be discarded as 
noise. The larger networks are typically re- 
turned as one of the major end-products of the 
system described here when used to find all the 
salient paths (e.g., roads or rivers) in an image. 
In this paper we are primarily concerned with a 
second type of output: explicitly extracting the 
single most salient path (the POP). 

The SLPG operates as follows: The link-pairs 
are first partitioned into disjoint subsets (link- 
pairs-association-sets); these subsets are then 
processed independently to extract their im- 
plied paths using a collection of algorithms. 
For the purposes of this paper we describe the 
LP-Basic-Path-Extension-Algorithm (BEA) in 
some detail, but only indicate the basis for the 
remainder of the full extraction process (see Ap- 
pendix) . 

A maximal-path through an LP-network is one 
that cannot be a proper continuous subsequence 
of some longer path; we will call the endpoints 
of a maximal-path terminal-nodes. A loop is a 
maximal-path that begins and ends on the same 
terminal-node. One requirement of the SLPG is 
to explicitly list all maximal-paths. 

If the BEA is given a terminal-node as a seed, it 
will iteratively generate all the maximal-paths 
that have the given terminal-node as (at least) 
one of their endpoints. It is both fast and sim- 
ple to find all the free endpoints (nodes of de- 
gree one) of an LP-network given its associated 
list of link-pairs; each such free endpoint (called 
an ept) is a terminal-node of one or more of 
the maximal-paths. In an LP-network without 
loops, we can generate all the maximal-paths 
using the set of epts as seeds. Each maximal- 
path will be found twice, but this redundancy 
does not cause any problems. The redundant 
paths can be avoided at considerable additional 
complexity in the BEA algorithm, but it is sim- 
pler to just detect and delete them should this 

be necessary. 

If the network contains loops, except for some 
unusual situations, the above procedure will still 
return all the maximal paths (including the 
loops). Each loop could be generated many 
times (an upper bound is the product of the 
number of epts and "entry-points" to the given 
loop). If we wish to be assured that all the 
maximal-paths are found, and also reduce the 
redundant discovery of the same loop, then we 
can proceed as above (if there are any epts, oth- 
erwise, pick any node as the first seed and later 
discard the initial set of non-maximal-paths). 
All terminal-nodes which are not already mem- 
bers of the list of seeds are added to that list 
whenever they are found. When a loop is re- 
turned by the BEA, we have to modify all the 
link-pairs that point to segs that are compo- 
nents of the loop. We inactivate all link-pairs 
that point to two loop-segs, and replace each 
link-pair that points to exactly one loop-seg 
with two new link-pairs; in one case the orig- 
inal loop-seg-link-atom is replaced by a link- 
atom that will insert into a non-terminating 
path that originally included one or more loop- 
segs a dummy-seg identifying the loop; in the 
second case the original loop-seg-link-atom is re- 
placed by a link-atom that identifies itself as a 
terminal-node associated with the given loop. 
In a sense, we collapse the loops in the origi- 
nal LP-network and create a modified loop-free 
network in which the BEA (algorithm) is as- 
sured to return all the maximal-paths. Those 
returned maximal-paths that contain dummy- 
segs are easily rectified. 

In summary, there are some interesting theoreti- 
cal issues that must be addressed in order to un- 
derstand how to make the SLPG more efficient, 
but the algorithm we have described is com- 
putationally acceptable, and it returns all the 
maximal-paths as required to allow the SLPG 
to correctly perform its function. 

3.2.3    The POP-Generator 

The list of maximal-paths (both open-paths and 
loops) returned by SLSL is assumed to con- 
tain the POP. The segments comprising these 



paths have been previously filtered to assure 
compatibility with the semantic constraints of 
the specified problem domain, and are percep- 
tually salient with respect to (at least some of) 
the Gestalt laws of perceptual organization. In 
the present algorithm, the POP-generator does 
not alter any of the maximal paths but simply 
selects the one that maximizes a combination 
of both path-density and path-length. Actually, 
the product of path-length and (path-density)2 

where path-density is measured by (number-of- 
path-points)/(path-length). 

4    Experimental Evaluation 

In addition to a significant amount of previ- 
ous informal testing and evaluation (some parts 
of the Linear Delineation System were applied 
to well over 1.000 images of different types 
and with different delineation goals), we are 
now engaged in developing a formal evaluation 
methodology, especially in regard to road delin- 
eation. 

In a typical road delineation problem (Figure 
2) the Delineation System was invoked with- 
out any manual intervention or parameter tun- 
ing. We started with a 768X638 pixel image 
(489,984 points) that resulted in a binarized ver- 
sion (step 1) with 55,480 potential road points 
(Fig 2b). As a result of the generic delin- 
eation process (step 2), we extracted 340 seg- 
ments (RPATHS) containing 21,255 points (Fig 
2c). We defined six semantic categories of in- 
terest (Narrow Road, Wide Road, Proto Road, 
Ambiguous, Background, River) and manually 
classified the pixels along the paths into these 
six categories. If the labeling of a given Rpath 
was mixed, we counted the contiguous segments 
with the same label as being distinct - thus we 
judged that there really were 375 semantically 
distinct segments containing 21170 points com- 
prising the 340 actual RPATHS with an asso- 
ciated count of 21,255 pixels. (Because of dou- 
ble counting of segment and path intersection- 
points, there is a small discrepancy in the num- 
ber of points in the actual Rpaths and in the 
semantically labeled segments). 

Table   1  and  Fig 2d show  the effectiveness 

of the Semantic Road Filter in retaining 
road points/segments while eliminating the un- 
wanted background and river points/segments. 
Since the Road Filter was designed to retain 
narrow road segments, other-structures (wide- 
roads, proto-roads, ambiguous) that could pos- 
sibly be roads were considered to have a "don't- 
care" status in our evaluation. 

A "window" (Figure 3) was manually selected 
and extracted from Figure 2 to test the POP- 
delineation algorithm. Here we started with 
a 475X149 pixel image (70775 points) that re- 
sulted in a binarized version (step 1) with 7214 
potential road points (Fig 3c). The extracted 
set of 23 RPATHS contained 3696 points (Fig 
3d). Table 2 and Fig 3e show the result of ap- 
plying the Semantic Road Filter; it returned 37 
segments containing 3117 points in RPATHS-F 
and 22 link-pairs (in *aux-link-pair-list*). The 
SL-Segment-Linker produced 19 additional link- 
pairs, and thus a total of 41 distinct link-pairs 
were supplied to the SL-Path-Generator; these 
were classified as consisting of 6 ept-pairs, 34 
interior pairs, and 1 closed pair. The SLPG re- 
turned 43 open paths and 115 paths containing 
loops; a total of 158 maximal-paths. This set 
of paths contained redundant entries; actually, 
there were 8 distinct open-paths and 4 distinct 
closed-paths (loops). Each path was assigned 
a ranking using the the product of path-length 
and (path-density)2 metric presented in the pre- 
ceeding section. The POP-generator then se- 
lected the highest ranking path (it happend to 
be one of the closed-paths) as the POP (Fig 3f). 
This was the desired delineation. 

5    Discussion 

The work described in this paper is part of 
an on-going effort to fully automate the pro- 
cess of delineating perceptually and/or seman- 
tically meaningful line-like structures appearing 
in both aerial and ground-level images of scenes 
consisting mostly of natural features (e.g., trees, 
vegetation, drainage, and terrain) as well as 
some man made objects (especially roads). Our 
intent in preparing this paper was, in addition 
to its nominal subject matter, to describe rele- 
vant components of the system being assembled 



RPATHS RPATHS-F2 

Category # points % points # paths # points % points # paths 

Narrow Road 5843 28 45 5322 46 40 
Wide Road 2102 10 12 2082 18 12 
Proto Road 2941 14 62 1671 15 46 
Ambiguous 1579 7 37 425 4 19 
Background 8192 39 210 1720 15 87 
River 513 2 9 294 3 5 
Total 21170 100 375 11514 100 209 

Table 1: Categorized Delineations for FT-HOOD1 image. Total pixels = 768 x 638 = 489984 

Wl-RPATHS W1-RPATHS-F2 

Category # points % points # paths # points % points # paths 

Narrow Road 3060 85 8 2935 94 7 
Wide Road 0 0 0 0 0 0 
Proto Road 63 2 1 46 1 1 
Ambiguous 146 4 3 46 1 3 
Background 319 9 10 88 3 6 
River 0 0 0 0 0 0 
Total 3588 100 22 3115 100 17 

Table 2: Categorized Delineations for FT-HOOD1-W1 image. Total pixels = 475 x 149 = 70775 

for this purpose, illustrate and quantify some of 
its current performance, and discuss some as- 
pects of the conceptual basis for its design. 

The problem of finding the POP in (some des- 
ignated portion of) an image is a basic require- 
ment for effective man-machine communication 
about images, as well as a challenging problem 
whose solution is required to accomplish some 
of the more general delineation tasks. In this 
paper, we provide an approach to the solution 
of this problem, and an algorithm that is appli- 
cable to a limited class of scene domains. The 
algorithm has performed well on a small set of 
test cases but a significant amount of additional 
testing will be required before be can be sure of 
its utility and robustness. 

An important contribution of this paper is 
the introduction of the LP-representation (link- 
pair/LP-network) and associated machinery as 
a generalization of the conventional graph. The 
LP-network provides a very powerful way of 
dealing with linear structures; it provides al- 

most complete generality in specifying connec- 
tivity (more than is possible with a graph), it 
provides a very compact description of the (im- 
plied) connected structures, and it admits rea- 
sonable algorithms for the common (relatively 
simple) situations to be expected in images of 
real scenes. On the other hand, because there 
are specializations of the linking problem that 
are NP-hard, there are no generally efficient al- 
gorithms for this purpose. 

There are many open problems and obvious ex- 
tensions of the work discussed in this paper. 
However, one of the more interesting extensions 
would be to find a way to duplicate human per- 
formance in the following type of situation: 

Consider an image composed of a sequence 
of 50 equal signs typed in a row (i.e., 
======================        „.). 

Also assume there is a solid horizontal line 
positioned just below the equal signs that has 
the same horizontal extent. If we assume that 
there are four links possible between each pair 



of successive equal signs (two straight links and 
two cross-over links; we ignore the vertical links 
which lead to short closed paths), then there 
are on the order of 250 paths that potentially 
would have to be generated before we could 
decide - by applying some objective function to 
an explicit descriptions of the competing paths 
- if some path through the equal signs, or the 
solid line, or neither, was the POP. Obviously, 
the human doesn't do this; he picks the solid 
line almost immediately; how is he able to 
avoid the combinatorial explosion?? 

One of our main points in this paper, and the 
basis of our approach, was that much of the as- 
sembly of the ultimately to be selected POP 
had to take place in the generic perception 
phase which sacrifices flexibility and generality 
for simplicity and speed. The Semantic Linker 
is computationally limited and can't be handed 
a problem with too many choices. Thus, the 
overall delineation system must include mech- 
anisms that enforce complexity constraints on 
the output of each of the its subsystems - this 
type of control could be accomplished by itera- 
tively adjusting algorithm parameters. It thus 
appears that a vision system must be fully cog- 
nizant of its computational limitations if it is to 
operate effectively. Understanding how to ac- 
complish this type of control is one of our more 
immediate goals. 

A    Appendix 

A.l    Definitions 

EPT: a "free endpoint" designates the end of 
a seg which is not referenced by any currently 
active link-pair; e.g., a path containing an ept 
cannot be further extended at that end. 

LINK-ATOM: a list of two items, the first is an 
index number into RPATHS-F; i.e., it points to 
a seg in RPATHS-F. The second item is a logical 
variable (T or NIL) which specifies whether the 
seg is to be used as stored (NIL) or reversed 
(T). 

LINK-LIST: a list of two or more link-atoms. It 
specifies how to assemble a path from a subset 
of the segs stored in RPATHS-F. 

LINK-PAIR: a list of two link-atoms. It spec- 
ifies a path consisting of the concatenation of 
the two segs in the order listed, with the points 
in each seg taken as stored in RPATHS-F, or 
reversed, as specified by the logical variables. 

LINK-PAIR-LIST: nominally, the list of link- 
pairs produced by the SL-Segment-Linker and 
the Semantic Filter. 

LOOP: a subsequence of a path that begins and 
ends with an identical link atom, or, a subse- 
quence of a path that begins and ends with a 
link atoms pointing to the same seg, but having 
reversed directions. 

LP-NETWORK: the collection of paths implied 
by a collection of link pairs. 

CONNECTED-LP-NETWORK (CLPN): a col- 
lection of link-pairs can be partitioned into dis- 
joint subsets so that every pair of link-pairs re- 
ferring to a common seg are in the same subset 
called a "LINK-PAIRS-ASSOCIATION-SET." 
The collection segs corresponding to such a 
subset is called a "SEG-ASSOCIATION-SET." 
Each seg-association-set implies a disjoint net- 
work of paths called a CLPN. 

PATH: a concatenation segs (segments) as spec- 
ified by a link-list. No seg can appear more than 
once - with the exception of the seg specified 
by the head link-atom in the case of a loop or 
semi-loop. The HEAD of the path is intended 
to refer to the end at which the path is being 
extended; the TAIL of the path is intended to 
refer to the end of the path containing the seed 
link-atom, and we arbitrarily assume that the 
path is, or was, constructed by a sequential ac- 
cumulation of segs starting at the tail-end. For 
most purposes, we further restrict this defini- 
tion to prohibit the path from visiting a vertex 
more than once. 

OPEN-PATH: a path that does not contain a 
(complete) loop. 

MAXIMAL-PATH: A maximal-path through 
an LP-network is one that cannot be a proper 
continuous subsequence of some longer path; 
we will call the endpoints of a maximal-path 
TERMINAL-NODES. A LOOP is a maximal- 
path that begins and ends on the same terminal- 



node. 

A.2 Some Attributes of an 
LP-network 

1. If an LP-network has no loops, then the 
terminal-nodes of every maximal-path are 
epts; i.e., every fully extended path will be- 
gin and end at an endpoint of a seg which 
is not connected (by an active link-pair) 
to any other seg. If the LP-network does 
contain loops, then the "entry-points" to 
the loops will also be terminal-nodes of 
maximal-paths. 

2. There might not be any single path con- 
necting two given epts, even in a connected- 
component of the network. For example, 
consider a network consisting of three segs 
connected as a Y. If the two upper arms 
of the Y both connect to the lower vertical 
stem, but not to each other, then there is 
no direct path linking the two free ends of 
the upper segs of the Y. 

3. An LP-network can always be converted 
into a conventional graph by adding addi- 
tional link-pairs so as to make every vertex 
'fully-connected." 

A.3    Basic Algorithms 

Key algorithms include: 

• lp-basic-path-extension-algorithm 

• partition-lp-network-into-connected- 
subnetworks 

• identify-ept-lp-algorithm 

represented by a link-list (a list of link-atoms); 
all the partial paths we are currently extending 
have one endpoint defined by the initial seed si. 
Consider a particular path (say p7) which has 
as its current terminal link-atom the list (seg24 
t). If some link-pair in q has the form ((seg24 
t) (segX t/nil)), then p7 can be extended by 
appending link-atom (segX t/nil) to its current 
link-list. There may be more than one link- 
pair in q capable of extending the current ver- 
sion of p7. Further, if some link-pair in q has 
the form ((segZ nil/t) (seg24 nil)), this link-pair 
representing the concatenation of segs segZ and 
seg24, is equivalent (in that the two segs are 
joined in the same way) to the link-pair rep- 
resented by ((seg24 t) (segZ t/nil)), and thus 
p7 could be extended by appending link-atom 
(segZ t/nil). 

At each iteration we start with a list of partial 
paths, and for each such path there are three 
possibilities: (a) there are no further extensions, 
in which case the path is placed on the out- 
put open-path-list; (b) there is an extension, 
but the extending seg (or the unattached ver- 
tex of the seg) already appears in the partial 
path, in which case the extended path is placed 
on the output closed-path-list: (c) there are one 
or more (single seg) extensions with new segs, 
in this case, all such extensions are placed on 
a new partial-path-list and the above process 
is repeated. The process terminates when the 
partial-path-list has no entries at the start of a 
new iteration. 

A.3.1      LP-B ASIC-PATH-EXTENSION- 
ALGORITHM 

For a given subset of link-pairs (say set q), a 
link-atom (say si) is selected from one of the 
link-pairs in q as a seed, and a collection of 
paths are iteratively constructed from this seed 
by successively scanning all the link-pairs (in q) 
for additional segs to append to the set of paths 
still being extended.   We note that a path is 
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Figure 2: Extracting Roads from an Aerial Image 
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Abstract 

The goal of the work described here is to ad- 
vance the state of the art in scene interpretation 
for autonomous systems that operate in natural 
terrain. The primary contribution of this paper 
is the presentation of a few key ideas and corre- 
sponding computer algorithms that can create 
a primitive labeled scene sketch (from images of 
an outdoor scene) that makes explicit the quali- 
tative geometry and identifies the major visible 
natural objects and terrain features. A central 
problem is the necessity to replace reliance on 
generally unavailable explicit shape with more 
general ways of recognizing and describing nat- 
ural objects. Our approach is to first select, 
or define, a small set of primitive (but per- 
vasive) features that can be reliably extracted 
from most images of natural scenes. This pa- 
per is primarily concerned with the extraction 
and immediate utility (e.g., for reactive robotic 
vision) of these features currently consisting of: 
color, texture, shadows, depth, surface orienta- 
tion, and linear structures 

1    INTRODUCTION 

The ultimate goal of the work described here is 
to advance the state of the art in scene interpre- 
tation for autonomous systems that operate in 
natural terrain. Such systems are currently un- 
able to model (understand) their surroundings 
much beyond the direct use of information avail- 
able from local geometric shape recovery meth- 
ods (e.g., stereo, sonar). There is currently no 
reliable technology that can be used to recog- 

nize and semantically label natural objects and 
terrain features appearing in images of outdoor 
scenes. 

The problem of automatically recognizing ob- 
jects appearing in images of the outdoor world 
has proven to be extremely difficult, at least 
in part, because of the lack of explicit shape 
models for such objects. Most computer-based 
recognition techniques rely on explicit knowl- 
edge of shape, but rocks, trees, and other nat- 
ural objects cannot be successfully described in 
this way; even such generic man-made objects 
as roads, bridges, and buildings are more likely 
to satisfy functional constraints rather than be- 
ing exemplars of some geometric blueprint. It is 
necessary to replace explicit shape with a more 
general way of describing natural objects and 
complex man-made structures. 

The primary contribution of this paper is the 
presentation of a few key ideas and correspond- 
ing computer algorithms that can create a prim- 
itive labeled scene sketch (from images of an 
outdoor scene) that makes explicit the qualita- 
tive geometry and identifies the major visible 
natural objects and terrain features. As noted 
above, a central problem is the necessity to re- 
place reliance on generally unavailable explicit 
shape with more general ways of recognizing 
and describing natural objects. Our approach 
is to first select, or define, a small set of primi- 
tive (but pervasive) features that can be reliably 
extracted from most images of natural scenes. 
This paper is primarily concerned with the ex- 
traction and immediate utility (e.g., for reactive 
robotic vision) of these features currently con- 
sisting of: color, texture, shadows, depth, sur- 
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face orientation, and linear structures. In previ- 
ous publications, we described how such primi- 
tive features can be combined to identify clear 
instances of the natural objects of interest using 
a "production rule" type paradigm [Strat91], 
and then, using these recognized objects as ex- 
emplars, we can invoke (say) a nearest-neighbor 
statistical classifier to label other, possibly less 
obvious, instances of the objects we are look- 
ing for. Objects of interest (the semantic vo- 
cabulary) include rocks, trees, brush, grass, wa- 
ter, snow, ground, sky, ridgelines, holes/ditches, 
roads, paths, fences, poles, cliffs, ground-plane, 
and shadows. 

2    KEY IDEAS 

2.1    Reduced Representations 

The information we wish to extract from an 
image must be assumed to be encoded in the 
color/intensity arrays that define the image. 
The problem is that each image represents a 
collection of unique instances of the set of the 
much more general categorical labels we wish 
to assign to the image and its components. The 
value of categorical labels is that they provide a 
compact set of keys for indexing into a knowl- 
edge data base, or a decision table (say for re- 
active behavior). Thus, the problem of image 
interpretation can be viewed as computing a Re- 
duced (generalized) Representation of the given 
image. We exploit this view in two ways: (a) 
we construct Reduced Representations of the 
original modalities (color and intensity) as in- 
termediate abstractions which retain sufficient 
information content to retrieve the ultimately 
desired labels; and (b) the labels for the inter- 
mediate abstractions are a subset of the original 
colors/intensities themselves, and the semantic 
categories they imply are those entities with the 
given colors/intensities as attributes. We re- 
quire that the Reduced Representations we con- 
struct be suitable directly viewable replacements 
for the original image, and we accept the fact 
that semantically distinct objects can be iden- 
tically encoded (as can be the case even in the 

original image) and that objects in the same se- 
mantic category can be differently encoded (as 
can also be the case in the original image). 

The line-sketch, the texture-overlay (texture- 
sketch), and the thresholded-image (shadow- 
sketch) are representational forms that could be 
Reduced Representations of a graylevel image 
(according to our above definition) if the ap- 
propriate semantic rules and constraints are em- 
ployed in their construction and interpretation; 
we provide such rules and introduce the "Color- 
Sketch" as a Reduced Representation for color 
images. 

The requirement that the Reduced Representa- 
tion be a directly viewable replacement for the 
original image distinguishes it from the more 
conventional "feature array." It assures us that 
in spite of the greatly simplified description prcn 
vided by the Reduced Representation (six or- 
ders of magnitude, from 24 bit original color 
to 4 bits of false-color for the color-sketch) we 
have retained the intrinsic relationships and 
constraints that the human visual system uses 
to recognize a picture as depicting a natural 
scene. The person viewing the color-sketch does 
not need to know that we have assigned specific 
semantic categories to the individual colors; the 
sketch can still be properly interpreted. With- 
out the directly viewable requirement, the con- 
ventional feature array is an arbitrary symbolic 
encoding that has no intrinsic content; it can't 
be interpreted without knowing what the pixel 
values are supposed to represent. It is very diffi- 
cult to determine (either by a external observer 
or an internal critic) when the encoding algo- 
rithm has made a mistake. 

2.2    Regularities Rather Than Invari- 
ants 

The value of the Reduced Representation, con- 
strained to be a directly viewable replacement 
for the original image (at least for some particu- 
lar purpose), is that it must capture and reflect 
some important physical regularity - not neces- 
sarily a physical law that can't be violated, but 



correct often enough to give the right gestalt to 
a human observer. As we show below, such reg- 
ularities allow us to (a) provide a raised-object 
overly from intensity thresholding (the shadow- 
sketch); (b) to provide a surface-orientation 
overly from texture (the texture-sketch; (c) to 
provide a delineation of the skyline-ridgelines 
from line and edge operations (the line-sketch); 
and a false-color-image encoding of semantic la- 
bels by "collapsing" the true colors in a color 
image (the color-sketch). These four sketches 
(and a few others not yet implemented) com- 
prise what we call the "Scene Sketch." The 
(viewer-centered) Scene Sketch can be used di- 
rectly to control the immediate behavior of a 
robotic device, or it can provide the primitive 
information needed by a CONDOR-type system 
[Strat91] to derive an objective high-level de- 
scription needed for longer-range planning and 
decision making. 

3    The Scene Sketch 

The Scene Sketch is currently a composition 
of the four implemented components described 
below (color-sketch, shadow-sketch, line-sketch, 
texture-sketch). Additional components could 
include a depth/terrain-profile sketch and a 
polarization-sketch. 

3.1    The Color-Sketch and "Recolor- 
ing" Algorithms 

A very useful semantic description of a scene can 
be based on the categories: sky/clouds/snow, 
live-vegetation, earth/ground/rocks, wa- 
ter/rocks, shadows/unknown. This list, which 
can obviously be refined and expanded, appears 
to be within the competence of pixel-level color- 
image processing given that we allow the some- 
what intermixed categories; e.g., a volcanic rock 
can look quite dark or "ground-like," while un- 
der suitable lighting and view conditions, (some 
portion of) a rock composed of granite will re- 
flect light just like the surface of a body of water 
- and is indistinguishable from water just using 

local color. 

3.1.1    Regularities 

It is almost axiomatic that, at least to the hu- 
man visual system (usually) the sky is blue, veg- 
etation green, the earth gray/red/brown, water 
blue/green, etc.; what actually appears in an 
image is somewhat different. We have devised a 
recoloring algorithm that exploits color and in- 
tensity regularities present in most normal out- 
door scenes. In particular, the relative blue con- 
tent and brightness of a pixel both vary accord- 
ing to the high-to-low scale: cloud/snow/sky; 
water/rock; ground; live-vegetation; shadows. 

Recoloring is not an attempt at color constancy 
or color partitioning!! The different semantic 
categories are each composed of many different 
shades of the nominal color we assign, and the 
Color-Sketch is a pixel-level description - we do 
not explicitly delineate closed regions of con- 
stant color/material type. 

The semantic considerations underlying the 
rules invoked by the automatic recoloring algo- 
rithms are discussed below. 

• Sky 

The blue appearance of the sky in a color 
image is the result of human physiology 
and psychology, as well as physics - the 
red or green component at a blue appear- 
ing image-pixel can often be more intense 
(but only by a small percentage) than the 
blue component. The unclouded sky, with 
the exception of the sun itself, can usu- 
ally be assumed to be the brightest ob- 
ject in the image (illuminated clouds and 
snow can be much brighter than blue sky, 
but clouds and snow are included in our 
"sky" semantic category. The sun radiates 
most brightly in the orange-yellow wave- 
lengths, and the wavelength selective scat- 
tering of the air molecules disperses the 
blue light component of the suns ray's 
much more strongly than the longer wave- 



lengths (Rayleigh's law: scattering is in- 
versely proportional to the fourth power of 
the wavelength). If we look at the clear 
sky directly overhead (top of the image), 
with the sun off to the side, the scat- 
tered blue light dominates. As we shift 
our gaze in the direction of the sun (to- 
ward one of the sides of the image), the 
relative strength of the longer wavelengths 
increases; for more complex reasons [Min- 
naert], as we lower our gaze toward a dis- 
tant horizon (a longer path in the atmo- 
sphere than looking straight up) the var- 
ious selective factors tend to equalize and 
the light appears white (unsaturated rather 
than colored). There are may complicating 
factors (e.g., large dust or water particles 
in the air, reflections from clouds, snow, 
or the earths surface, polarization effects) 
that a sophisticated system might want to 
consider, but the nominal conditions dis- 
cussed above seem to be an adequate base 
for constructing the sky coloring rules used 
by our color sketching algorithm. 

• Water 

The appearance of water depends critically 
on whether the observer/camera is seeing a 
reflection or viewing the scene content be- 
low the water's surface. For a ground-based 
observer in open terrain, it is reasonable to 
assume that much of the light coming from 
a body of water is reflected sun or skylight. 
Thus, we expect water to be bright with a 
significant blue spectral content. To distin- 
guish sky from water, we can take advan- 
tage of the fact that both the unclouded sky 
and clear water are highly polarized, but in 
different directions. Further, we would ex- 
pect that water would have a larger green 
spectral component than direct skylight. 

• Rocks 

Rocks and soils are aggregates of minerals. 
A mineral has a regular atomic arrange- 
ment and it has a narrow range of chemical 
and physical properties. Rocks are gener- 
ally classified as either sedimentary (e.g., 
limestone, shale), igneous (e.g., basalt, plu- 
tonic), or metamorphic (e.g., slate, schist). 

Granite, the most common type of rock ap- 
pearing in our small image collection, is 
a coarse-grained rock composed chiefly of 
feldspar and quartz - its origin could be 
either igneous or metamorphic [Gilluly59]. 
For a simple visual system, rocks pose quite 
a challenge - just recognizing their pres- 
ence, let alone their .type. It appears that 
the most effective way of detecting rocks 
is either by the shadows they cast, or by 
the fact that they (at least the granites) 
are good reflectors of the suns light. In 
our experiments, we found that there was 
very little difference in the spectral com- 
position of light reflected from granite or 
from water, so we lumped them into a sin- 
gle semantic category (i.e., they receive the 
same color in our false-color reduced rep- 
resentation image). It is relatively easy to 
separate them (rocks and water) in a sub- 
sequent analysis step; e.g., water generally 
does not cast a shadow and is not a raised 
object. 

• Live-Vegetation 

Almost all live vegetation possesses chloro- 
phyll; chlorophyll has a sharp reflectance 
peak (relatively low absorption) for green 
light (510-580 nm). The various shades of 
green we see in different types of vegetation 
is due to additional reflectors (pigments) 
which largely affect the longer wavelengths. 
When the chlorophyll dies, we see the ef- 
fects of these other reflectors: yellows, reds, 
but not blue. Almost all green leaves are 
uniformly good absorbers of wavelengths 
shorter than 500 nm [Lythgoe79]. Thus, 
a relatively low blue spectral component 
(especially compared to green) at an im- 
age location is a strong cue for the pres- 
ence of vegetation. Live-vegetation absorbs 
most of the light that strikes it; e.g., tim- 
berland reflects 3 percent and open grass- 
land 6 percent, compared to concrete at 
36 percent and snow at 80 percent [Re- 
mote Sensing70]. Thus a second cue for the 
presence of live-vegetation is low intensity; 
the fact that vegetation is frequently self- 
shadowing further enhances the probability 
that a dark region contains vegetation. 



• Ground 

Ground is currently a "catch-all" category 
that includes soil, low-lying rock, dead veg- 
etative ground cover, etc. In a sense, if a 
pixel is not identified as belonging to one of 
our other semantic categories, and it falls 
between water/rock and live-vegetation in 
both the blue spectral intensity and abso- 
lute intensity ranges, we currently label it 
as ground. 

3.1.2    Algorithm 

Appendix A presents the completely automatic 
recoloring algorithm we have devised, and Fig- 
ure 1 shows an example of its performance. 
We have also constructed a "nearest neighbor" 
learning-type pixel-level classifier that works 
very well, and can recognize a much larger set 
of semantic categories than the automatic re- 
coloring algorithm - but it is dependent on an 
external source of labeled training samples, and 
is likely to be sensitive to the peculiarities of 
the specific scene/images from which the train- 
ing samples were derived. 

3.2    The Shadow-Sketch 

Shadows appear to be critical to the human 
visual system (HVS), at a primitive level, for 
the purposes of perceptual organization and 
geometric scene understanding. It is easy to 
demonstrate that the HVS becomes confused 
when the shadows in an image are disguised by 
making them brighter (rather than darker) than 
the surfaces they project to [Cavanagh89]. 

As long as there is any light in the sky, we can 
usually discern (at least) the local scene geome- 
try. In art there is a style called "Chiaroscuro*' 
which uses just two graylevels (uniformly black 
marks on a white background) to depict scenes, 
and a "four value" style which appears quite 
adequate to produce very clear renderings of 
natural outdoor scenes [Johnson90]. Figure 2 
shows some examples of the adequacy of prop- 

erly thresholded (two-level) images. 

A primary use of shadows is as an indicator 
of raised objects - the ground surface does not 
cast a shadow nor is it typically self occluding. 
Shadows, in an outdoor scene, can be defined 
as being present at those locations that are not 
directly illuminated by the sun. Because of il- 
lumination by reflected light, by diffuse light, 
and the presence of darkly colored objects, it is 
not always obvious by direct inspection where 
shadows actually occur. The critical observa- 
tion (regularity) we exploit is that almost any 
grayscale image can be reduced to a one bit de- 
piction of a scene, by almost any reasonably low 
threshold, and still alow a human observer to 
correctly interpret the qualitative scene geome- 
try. A smaller threshold will cause some poten- 
tial obstacles to be missed, a higher threshold 
will mark some darker, but un-raised regions as 
obstacles. 

The algorithm we employ to set the thresh- 
old for computing the Shadow-Sketch first scans 
the image looking for pixels with a large lo- 
cal intensiv gradient (in the top 20 percent of 
the gradient values found in the image): it as- 
sumes that these pixels lie on the boundary of 
a shadow and identifies the darkest pixel in a 
5X5 square about boundary pixel as a shadow- 
pixel. The algorithm then histograms the in- 
tensity values of these detected shadow-pixels 
and sets the shadow-threshold at the mode of 
the collection if the mode falls within one stan- 
dard deviation of the mean; otherwise, it sets 
the shadow-threshold at one standard deviation 
above the mean. 

3.3    The Line-Sketch 

The Line-Sketch is the most obvious and well 
known form of Reduced (visual) Representa- 
tion. Human-produced artistic renderings pro- 
vide an existence proof that a Line-Sketch can 
usually be constructed as a directly viewable re- 
placement for an image of a scene. It appears 
that good line sketch makes explicit physical 
and geometric discontinuities in material-type, 



illumination, depth (i.e., occlusion boundaries), 
and surface orientation. In spite of the seeming 
simplicity of the task, fully automated methods 
for constructing a Line-Sketch do not (yet) ex- 
ist. 

Our work on constructing a Line-Sketch as a 
component of the Scene Sketch is currently lim- 
ited to finding sky-lines (see Figure 2) and ridge- 
lines. We have a simple but effective algorithm 
for finding individual skyline points given the 
availability of the Color-Sketch: after first re- 
moving small isolated clusters of "sky-points," 
we mark the location of the lowest (smallest 
y-coordinate) sky-point in each column of the 
image array. While explicit linking is not neces- 
sary for the Line-Sketch, it is needed to properly 
extend the skyline through occlusions (which, 
in turn, is necessary for a simple technique to 
detect raised vegetation). We invoke the link- 
ing techniques presented in [Fischler94] for this 
purpose. Work on extending the Line-Sketch to 
include ridgelines is nearing completion. 

3.4    The Texture-Sketch 

The shading and texture variations in a 
graylevel image frequently allow a human ob- 
server to correctly infer the orientation of the 
visible scene surfaces. There currently is no 
computational theory that can explain or du- 
plicate this human ability in the case of natural 
outdoor scenes. Further, there is no assurance 
that a Reduced Representation can be strictly 
based on the depiction of texture or shading in- 
formation. Nevertheless, because of its utility 
(should we be successful), we are attempting to 
construct a Reduced Representation, based on 
texture, which exploits two regularities: 

• raised (relatively isolated) objects have sig- 
nificant vertical edge content 

• because of foreshortening," most of the 
projectively imaged edges on a relatively 
horizontal plane in a typical outdoor scene 
will appear to be horizontal in the image 

Rather than explicitly extracting edges and at- 
tempting to analyze them, we are currently at- 
tempting to identify isolated raised objects and 
horizontal (support) surfaces by finding coher- 
ent regions where the local intensity gradient is 
predominantly vertical or horizontal (see Figure 
3). 

ASSUMPTIONS, VISUAL 
CONTEXTS, AND EX- 
PERIMENTAL RESULTS 

This paper primarily focuses on a visual en- 
vironment consisting of open "rolling" terrain 
with (possibly) water bodies, distant moun- 
tains, scattered trees or clumps of trees, and 
brush - there can also be nearby cliffs and 
ravines. Other natural environments (which we 
do not address) could include operating in deep 
forests, under-water, or surrounded by extreme 
relief (as in mountain climbing). 

It is nominally assumed that the camera is ap- 
proximately 4-6 feet above the ground with its 
principal axis horizontal (i.e., normal to the di- 
rection of gravity). 

While not because of any actual constraints, 
most of the pictures used in this study were 
taken while the sun was illuminating the scene 
from a point at least 30 degrees above the 
horizon, and some portion of the sky (possibly 
clouded) was visible in the image. 

Most of this work is based on analyzing sin- 
gle color images with generally unknown camera 
parameters, from a database of approximately 
30 images (90 color-component images). The 
pictures come from a variety of sources, but 
primarily the foothills near Stanford University, 
California deserts, and the California Sierra's at 
high elevations (above 8,000 feet). 

All the experiments performed to-date were in- 
formal, but since the primary criterion for suc- 
cess is that the computed Reduced Representa- 
tion be perceived by a human observer as being 



qualitatively equivalent to the original image, it 
will be difficult to devise a useful scoring proce- 
dure that is more precise than success/failure. 
We intend to tabulate this type of result on a 
larger data-set once the current collection of al- 
gorithms is deemed to be stable. 

The algorithms that produce the Color-Sketch, 
the Shadow-Sketch, and the Line-Sketch, gener- 
ally seem to provide very good results although 
they can be improved. The Color-Sketch has 
too small a vocabulary for some scenes; it espe- 
cially needs a separate label for (distant/haze- 
shrouded) mountains - at present, they are of- 
ten included in the sky region. The line sketch is 
far from complete since, at present, it only con- 
sists of the skyline; however, a ridgeline detector 
is nearing completion. The texture sketch we 
currently compute is more problematic, it often 
provides good results that are valuable and not 
easily obtained from other sources, but it not as 
reliable as we would desire (its performance de- 
grades with distance), and the "image-overly7 

it provides cannot generally be recognized as a 
replacement for the original image: thus, it is 
not yet a Reduced Representation, but rather a 
more conventional feature array. 

5    DISCUSSION 

To the naive eye, usually, the sky is blue, veg- 
etation green, the earth gray/red/brown, water 
blue/green, etc. Is it possible to take a real color 
image, and on a local (or even pixel level) basis, 
produce a "false" color image with a few colors 
(say 4-16), each color corresponding to a speci- 
fied semantic category, and the false-color image 
itself a recognizable replacement for the origi- 
nal - not only with respect to semantic labels, 
but also allows recovery of gross terrain geom- 
etry?? If such recoloring is indeed possible, as 
our initial experiments seem to imply, the impli- 
cations are quite profound. Such an easily de- 
rived explicit representation (the Color-Sketch) 
could provide a way for a simple organism (ani- 
mal or animate - without conventional language 
machinery, higher level reasoning, or sophisti- 

cated mathematical manipulation), to base im- 
mediate (visually-guided) behavior on semantic 
considerations. 

We have extended the above idea, that of 
the Reduced Representation, to extract iconic 
overlays identifying raised objects (from the 
graylevel image, identifying horizontal and ver- 
tical structures (from the texture overlay), and 
the skyline, as a second order simplification, 
from the color sketch. 

In attempting to design a vision system for a 
robotic device (even a vision system limited to 
supporting the task of outdoor navigation) and 
encountering a host of refractory problems, one 
can't help wondering how simple biological or- 
ganisms can, seemingly, perform this task so 
well. Are we missing something very obvious? 
While our nominal concern is ultimately to sup- 
port a full range of interactions of the robot 
with its environment, a more achievable initial 
objective is to consider only those aspects of 
visual interpretation required for local naviga- 
tion. The semantic vocabulary could be as sim- 
ple as go/no-go directions open to the robot. It 
is more important to recognize such functionally 
meaningful image-point-attribute distinctions 
as solid/deformable, flat/raised, close/distant, 
than specifically recognizing that something is 
a tree rather than a rock. Nearby objects should 
be given more attention (with respect to posi- 
tional accuracy and semantic resolution) than 
distant ones which can be dealt with again at 
a latter time if necessary. A subjective (viewer- 
centered) model, e.g. an iconic overlay of the 
image, that can be used for reactive behavior (as 
noted above) turns out to be relatively easy to 
derive (a major point of this paper) as compared 
to an objective model, e.g., a symbolic labeling 
of the partitioned scene, that is required for long 
range planning. To the extent that the sens- 
ing modalities are available, e.g., stereo, motion, 
color, and polarization, they can pay very high 
dividends in the simplification of the interpre- 
tation task over what can be accomplished with 
single graylevel images. 

The Scene Sketch has direct utility for reactive 
robotic navigation since its overlays of the scene 



allows the robot to quickly determine the likely 
presence of raised objects, flat navigable areas, 
and surface material type in any view direction. 
This information is available in qualitative form 
even without the availability of explicit depth 
overlays (say, from stereo) or the need for ex- 
plicit partitioning. A significant number of pix- 
els with the same semantic or geometric label in 
a particular view direction tells the robot what 
it is likely to encounter if it moves in that direc- 
tion. The vertical position (y-coordinate) of the 
first (smallest y-coordinate) pixel in a coherent 
sequence of identically labeled pixels provides 
an estimate of the distance to the correspond- 
ing object/region. 

Since the Scene-Sketch is qualitative, and its vo- 
cabulary is limited, its appropriate use beyond 
reactive navigation is as input to higher level 
analysis processes. For example (see Figures 
1 and 2), since any non-sky pixel in the color 
sketch located above the skyline (in the line- 
sketch) can be assumed to be a pole or raised 
vegetation (a tree or a large bush). we can eas- 
ily extend the semantic vocabulary of the primi- 
tive scene sketch to include these additional ob- 
jects and detect them with relatively simple al- 
gorithmic techniques. We can also invoke sim- 
ple rules to check physical consistency; e.g., a 
pixel labeled water cannot (correctly) lie verti- 
cally above a pixel labeled sky. 
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8    APPENDIX: A Recoloring Algorithm 

The algorithm presented below accepts individual pixels from a color image of an outdoor landscape 
scene; each such pixel is described by an 8-bit each red, green, blue triple called c-list. The algorithm 
returns a corresponding 4-bit pixel which can be used to assemble a "false-color" image which has 
the qualitative appearance of the original color image, but in which the 16 distinct values of the four 
bits represent specific semantic categories. At present, only five semantic categories are used in the 
false-color rendering. The algorithm is representative; it has not been optimized for its intended 
purpose and the numerical constants embedded in the algorithm are also representative rather than 
definitive. 
This algorithm exploits color and intensity regularities present in most normal outdoor scenes. In 
particular, the relative blue content and brightness of a pixel both vary according to the high-to-low 
scale: (cloud/snow/sky) (water/rock) (ground) (live-vegetation) (shadow). 

(defun mf-nor (c-list) 
"color based natural object recognition: 

ID codes: 
(shadows/unknown 0) (water/rock 3) (cloud/snow/sky 7) (ground 14) (live-veg 15)" 

(prog (r g b bright dark) 
(setq bright 240) 
(setq dark   30) ;; should use shadow-threshold here when scene has shadows 
(setq r (max 1 (float (first c-list))) 

g (max 1 (float (second c-list))) 
b (max 1 (float (third c-list)))) 

;; the following classifications are sequence dependent 
(when (and (> dark r) (> dark g) (> dark b) 

(return 0)))  ;; shadow or unknown 
(when (or (> b bright) 

(and (< 60 b) (< r b) (< g b)) 
(and « 100       b) 

(> (* 1.20 r) g) 
(> (* 1.10 b) g) 
(> (* 1.20 b) r))) 

(return 7))   ;; sky or haze or cloud or snow 
(when (or (and (> 80 b) (< 2 (/ r b)) (> (* 1.2 g) r)) 

(and (> 80 b) (< 2 (/ g b))) 
(and « b dark) (>= (* 1.2 g) r))) 

(return 15))        ;; veg 
(when (and (> r g) (> g b) (>= .27 (/ b (+ r g b))) ) 

(return 14))  ;; ground 
(when (and (> (* 1.2 g) r) (> g b) (< .27 (/ b (+ r g b)))) 

(return 3))   ;; water/rock 
(return 0) ;; unknown or shadow 

)) 
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Figure 1: The Color Sketch 
(a.b) Stanford Hill Scenes 
(c,d) The Color Sketch (Semantic Labeling) 



Figure 2: Components of the Scene Sketch 
(a.b) Stanford Hill Scenes 
(c.d) Shadow Sketch (raised objects) 
(e,f) Line Sketch (skyline) 



■"igure 3: The Texture Sketch: detecting raised objects (vertical striations) 
and horizontal surfaces • horizontal striations i 

(a.b) sky. mountains, trees, meadow 
(c.d) sky. hill. road, grass 
(e.f) trees, grass 
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Sketching natural terrain from uncalibrated imagery 

Quang-Tuan Luong 

1 Introduction 
We have proposed a methodology to build a 3D sketch for an outdoor scene consisting of natural terrain from 

a pair of uncalibrated images. 
There has been an extensive amount of work done in terrain reconstruction with calibrated cameras. The 

most successful approaches use stereo rigs or multiple views. However, there are many situations where the 
calibration data (camera parameters and relative position and orientation of the cameras) is not available. 
Although the investigation of the capacities of uncalibrated systems has become a popular research topic over 
the past few years there are no systems which have demonstrated the capacity to perform a usable three- 
dimensional reconstruction of natural terrain. 

It is generally believed that the area-based approaches to stereo are the most adequate for natural terrain, 
since well-defined geometric features are generally lacking. These approaches produce a depth map from which 
further processing is necessary in order to extract higher level information about the terrain. By contrast, we 
propose to represent the terrain by a set of profile lines, which is the trace of the terrain surface on a plane in 
3D at the given depth. This representation has a direct meaningful interpretation. 

The classical approach to stereo consists in determining the disparity for each point along an epipolar 
line. The epipolar line is determined only by the geometry of the cameras, and within this line, each point 
corresponds to a different depth. By contrast, given a fixed depth, we propose to find all the points which lie 
at this depth. This is based on the idea that for the points which lie at a fixed depth, there is an analytical 
relation between their projections in multiple images. By sweeping 3D space with planes at a set of different 
depths, a representation of the terrain is obtained. We show that in order to generate a qualitatively useful 
elevation map, full calibration of the cameras is not necessary. Instead, the only requirement, in addition to the 
epipolar geometry, is the identification of correspondences on the horizon, a technique well adapted to the type 
of scenes°we consider. This makes it possible to apply our technique with as few as two uncalibrated views. 
Second, we propose a method based on curve evolution to generate the profile lines. This makes it possible to 
enforce continuity, smoothness, and uniqueness constraints in space 

2 The principle of the approach 
In this section, we explain the theory behind our approach, which was established during the first phase of this 

project. This appeared in [2]. 

2.1    Affine calibration 
Affine calibration of a pair of views consists in determining enough geometric parameters for this pair of views 
so that the ambiguity in reconstruction will be at most an affine transformation of space. 

We use the pinhole model: the relationship between 2-D pixel coordinates and any 3-D world coordinates can 
be linearly described by a 3 x 4 matrix P. which maps points from V3 to V2. Under this model, the relationship 
between the projective retinal coordinates of a point m and the projective coordinates of the corresponding 
epipolar line 1^ is linear. The fundamental matrix [3j describes this correspondence. 

The Fundamental matrix has 7 independent parameters which represent the only generic information relating 
two uncalibrated views. It can be computed using only point correspondences, and this is now a classical 
problem. Although methods have been developed to automatically generate point correspondences, this remains 
a most difficult problem in computer vision. 

Knowing onlv the fundamental matrix makes it possible to perform a 3D reconstruction up to a general 
projective transformation of space. Such a representation is not very useful for sketching purposes, because the 
degree of deformation can be very large. A way to avoid these problems is to perform an affine calibration of the 
pair of cameras. This means that in addition to the fundamental matrix, we need to identify the homography 



Hcc of the plane at infinity, defined as follows: the projective coordinates of two points m and m', projections 
in the first and second image of a point at infinity, are related by: 

m'~HÄm (1) 

2.2    The profile lines 

We describe how. given a pair of affinely calibrated cameras, we can represent the profile lines. 
Having performed affine calibration, if we know the vanishing line r of a plane in the first view, we can 

define a set of planes Uz which are parallel to this plane. No 3-D reconstruction is needed for that. Instead, 
the plane Uz is defined by its homography Kz, such that the projective coordinates of two points m and m', 
projections in the first and second image of a point of U.z- are related by: 

m' ~ Hzm 

Let us consider the family of homographies: 

Hz ^ H» + |e'rT 

where e' is the epipole in the second image (projection of the optical center of the first camera). The direction 
of the plane Uz is given by its intersection L with the plane at infinity IL^, a line at infinity in 3D whose 
projection in the first image is the vanishing line of Uz in this image. Since the projections m of points of L 
satisfy Hzm. ~ H^m, the projective equation of the vanishing line is rTm = 0. All the planes obtained by 
varying Z have the same vanishing line, therefore they are parallel. 

Strictly speaking, a profile line is the trace in a vertical plane of the surface which represent the terrain. We 
can define a family of parallel vertical planes if the vertical vanishing point can be identified in the images. If 
the vertical direction cannot be identified reliably, then we can still apply these ideas using the family of planes 
which are parallel to one of the camera's retinal plane fie fronto-parallel with respect to this camera), and obtain 
a reasonable approximation if this camera is about level. These planes are obtained with r = [0,0,1]T. which 
means that their vanishing line is the line at infinity in the image plane, ensuring that the image plane and the 
planes Uz are parallel. Each of these planes Uz is therefore denned by its homography matrix: 

r   tr..      v..      rr..  !   J 

Hz~H^-e'[0,0,i; = 

Although the calibration is only affine, the parameter Z has a metric interpretation. It represents the perpen- 
dicular distance of the plane to the origin, up to an unknown scale factor. 

Knowing the homography Hz makes it possible to determine whether a point m in the first image is the 
projection of a 3D point which belongs to the plane II^: if it is the case, its correspondent in the second image 
should be Hzm. The profile line in the first image corresponding to the relative depth Z is the set of points m 
in the first image, such that their correspondant in the second image is the point H^m. 

3    Algorithmic developments 

There are two distinct algorithmic issues. The first one is concerned with affine calibration of the pair of images. 
The second one is the localization of the profile lines. We detail the progress made on each part. 

3.1    Affine calibration 

Determining points at infinity In a natural scene of the type we are interested in, an appropriate method 
is to identify corresponding points at the horizon. 

This can be done using a set of simple, but efficient heuristics, as shown by Fischler in [1], where a method 
to extract the skyline was described. 

Robust computation of the infinity homography Once the Fundamental matrix is determined, there are 
only three degrees of freedom for the infinity homography. These three degrees of freedom can be represented 
by the vector r such that: 

H^ = [e']xF + e'rT (2) 

%vhere the symbol [.] x designates the skew-symmetric matrix associated to the cross-product: for a given vector 
x the matrix [x]x is such that for any vector y, x x y = [x]xy. 

Hn H\2 H13 + ie; ■ 

#33 + Je3 . 
H21 H22 
Hzi H32 



Reciprocally, once the infinity homography is determined, there are two degrees of freedom for the Funda- 
mental matrix, which are the two coordinates of one epipole, since the Fundamental matrix is obtained from 
the infinity homography by: 

F = [e']yHX3 (3) 

We have developed three different approaches to affine calibration. Each of these approaches consist in first 
solving a linear least-squares system, and then using this result for a final non-linear minimization, in which 
the vector relevant parameters are determined by minimizing the least-squares sum of some image error terms. 

1. First compute the Fundamental matrix (from all points), then the vector r (using the points of the horizon) 
thanks to Eq. (2). This was the method presented in [2]. Subsequently, we developed two other methods: 

2. First compute the infinity homography (using the points of the horizon), and then the epipole e' (from 
all points) thanks to Eq. (3). 

3. Simultaneous computation of the Fundamental matrix and of the three affine parameters. This is done 
by minimization of the geometric error function: 

J2 W(m'„ e' x HmO2 + d^nn, HT(e' x m))2} + £ {d^m'j, Hm;)
: -5- d^m;, H-1m$)2} 

t J 

over the 8 parameters of H. the homography of the plane at infinity, and e', the epipole in the second 
image, di being the Euclidean distance between a point and a line, and dp the Euclidean distance between 
two points. The correspondences (rn,,rrij) are points on the horizon, the other correspondences being 
general. 

We conducted many simulations and determined that the third method gives the most consistent results. 

3.2    Generation of the profile lines 

The idea is to compute a correlation score between the point m in the first image and the point Hzm in the 
second image. If m is a projection of a point which lies on the plane Uz, then this correlation score should be 
high. 

Computation of an absolute correlation score By computing such a score for each point of the first 
image, we create a correlation image, in which we expect the high values to correspond to points of the profile 
line. This approach was presented in [2], where a few correlation images were presented. From there the profile 
lines would be obtained by linking the maxima, but instead we chose to pursue the implementation differently. 

Most of the problems that we encountered with this approach was due to the difficulty of obtaining reliable 
correlation measures. We have tried several classical scoring schemes. Experiments with several sets of images 
showed that these correlation measures were not adequate to match two views which are widely spaced. We 
began to study alternative correlation measures, but this turned out to be a difficult problem with a larger 
scope than this project. 

Computation of a relative correlation score A subsequent improvement has been to detect a change of 
disparity sign rather than a local maximum, by performing a local search along the epipolar line^ resulting in a 
local disparity map between the first image, and the second image warped by the homography H^ • The profile 
line is then obtained by linking the zero-crossings. 

We also tried a one-step approach consisting to warp the second image by the homography H^, and then 
compute explicitly the whole disparity map, which in theory gives the all the profile lines. However, in practice 
we have found this approach to yield inferior results compared the previous one, because of the larger projective 
deformation induced on most of the image. 

Profile line linking We have developed a snake-based approach to link the profile lines. Two sets of equidis- 
tant profile lines are shown in the same image in Fig. 1. The first set of lines is obtained with the relative 
depths Z = 40,60,80,100,120, whereas the second set is obtained with the relative depths Z = 240,340,440. 
The results look qualitatively correct for the first set. In particular the structure of the depression and the slope 
on the right is captured. For the second set, because we have not enforced ordering, in the portion of the image 
corresponding to the horizontal ground, the profile lines are somewhat tangled. However, it can be noticed that 
the profile of the tree has been captured, even though it is quite far. 



Taking into account domain constraints In the general case, the cross-sections by a plane are sets of 
closed curves, rather than a single curve. However, in our case there is a simplification, which makes it possible 
to consider a profile line as a function v = f(u), where u is the horizontal axis of the image and v the vertical 
axis: we assume that to each point (X,Y) is associated a single elevation h(X,Y). This hypothesis is verified 
if we consider that everything which is under an overhanging object is actually part of this object. Under this 
hypothesis, the profile lines cannot cross. We have not yet taken advantage of this observation. 

Figure 1: Two sets of profile lines superimposed on the first image. The first 5 profile lines are equidistant, and 
so are the last 3 profile lines in a distance. 

4    Summary 

We have proposed a scheme for sketching natural terrain. This scheme takes advantage of general domain-specific 
constraints: the availability of an horizon line, and the 2^ nature of the natural terrain. By taking advantage of 
these constraints, we are able to propose a method which has the potential to produce a useful representation 
from minimal data (two uncalibrated images, one of which is approximatively level) in a domain which has been 
traditionally considered to be difficult. We believe that because no three dimensional reconstruction is involved, 
our scheme could be more stable than traditional approaches in the case these approaches would be applicable. 

Our method produces a dense sketch consisting of a set of profile lines where the order with respect to 
the dimensions of height above the ground plane and depth are correct. These profile lines are a semantically 
meaningful representation of natural terrain. 

The limits of applicability of the method are those of the correlation-based approaches to image-matchinge, 
a problem of wider scope. 
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