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1. INTRODUCTION 

The goal of this study is to establish approximate equilibrium relationships that govern a 

material's plastic deformation. The approach is to first model, on the micro-scale, the process 

that produces dislocations and plastic deformation and then bring the results to the macro-scale 

using the averaging process of homogenization (Christensen, 1979; Mura, 1987; Nemat-Nassar, 

1993).   The results are analytical expressions for the material's threshold flow stress and the 

spatial periodicity of its dislocation microstructure. 

This study focuses on the fairly broad class of polycrystalline face-centered-cubic (FCC) 

metals. The dominant micro-mechanism of plastic deformation in these materials is dislocation 

slip.  Experimental observations indicate that FCC materials develop a common mode of 

dislocation slip called cross-slip (Sestak, 1971).  In these materials, cross-slip produces regularly 

spaced regions of densely packed dislocations where the spacing is observed to depend on the 

applied stress (Raj, 1996). This spacing in the material's dislocation microstructure is taken to 

be the characteristic length used in the homogenization process. 

Homogenization formally relates the effects of the micro-scale heterogeneity in the 

microstructure to the material properties observed on the macro-scale, Figure 1. Specifically, the 

homogenization process incorporates the effects of localized elastic strain relief due to 

dislocation slip into the material's strain energy density. This density and the energy density for 

the extension of dislocations are folded into a virtual work formulation that produces the 

threshold flow stress and active slip-plane spacing relationships. 

This study is based on the hypothesis that plastic deformation is a process that enables a 

loaded structural component to minimize its internal energy. Because the process of plastic 
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deformation is non-conservative, virtual work is employed rather that the principle of minimum 

potential energy used in the analysis of conservative elastic deformation. 

There are a handful of articles in the literature applying variational techniques to the 

plastic deformation of solids (Gurtin,1963; Hodge, 1962; Kachanov, 1959; Pian, 1957; Pian, 

1958; Sanders, 1958).   However, none of these applications attempt to describe the energies of 

dislocation extension and motion during plastic deformation. The principle of virtual work can 

be applied here as long as the non-conservative aspects of the process are adequately 

characterized. 

A simplistic view is taken that the energy lost moving a dislocation, to be characterized 

through the introduction of a "friction stress," is the only non-conservative aspect of slip- 

generated plastic deformation. One might object to this approach because it does not account for 

the apparently non-conservative extension of dislocations during the process of plastic 

deformation. On the contrary, the extension of dislocations is viewed as the reversible 

(conservative) localization of strain energy in the distorted lattices surrounding their extended 

cores. 

Treating dislocation extension as a reversible process is one of the cornerstones of this 

energy-based approach to plastic deformation. It is accepted that work done by the macro-scale 

external forces introduces elastic strain energy into the material. On the micro-scale, this strain 

energy partially manifests itself as shear stresses that perform work on internal slip-planes 

producing dislocation motion and extension. A fraction of the work done on the slip-planes is 

lost through the friction stress of dislocation motion, but the remaining fraction of this work 



extends the length of dislocations. These processes are related quantitatively in the virtual work 

formulation. 

The ability to employ energy methods that link deformation induced microstructure to 

parameters governing plastic deformation depends on the ability to model the process by which 

dislocation line length is extended to produce plastic deformation. This process is cross-slip. 



2. THE PROCESS OF PLASTIC DEFORMATION 

2.1.  Observed Cross-Slip 

In this study, plastic deformation produced in an initially elastically distorted material is 

based on the notion that planes of atoms slide over one another through the motion of 

dislocations through the crystal lattice. Dislocations have two components: edge and screw 

dislocations. An edge dislocation is an extra half plane of atoms that terminates on and that is 

perpendicular to the plane along which it moves called the slip-plane. A screw dislocation is a 

hollow core surrounded by a helical pattern of atoms reminiscent of the thread on a screw. 

Screw dislocations, unlike edge dislocations, are capable of changing slip-planes during their 

motion. This process is called cross-slip. 

Sestak and Seeger (Sestak, 1971) have pointed out that both FCC and BCC (body- 

centered cubic) metals exhibit cross-slip as the primary mechanism of plastic deformation in 

Stage III strain hardening. Stage I is the relatively uninhibited motion of dislocations called 

dislocation glide. Stage II strain hardening is the progressive formation of barriers that inhibit 

dislocation motion. Stage III is the cross-slipping of screw dislocations to get around these 

barriers, thus enabling dislocation motion, Figure 2. In polycrystalline materials, Stage III strain 

hardening and cross-slip start at plastic strain levels of at most a few percent. Hence, cross-slip 

is the primary mode of large plastic deformations in polycrystalline cubic materials. 

Mughrabi's experimental observations (Mughrabi, 1987) are particularly valuable in 

characterizing the results of cross-slip. Mughrabi has observed the formation of the barriers 

depicted in Figures 2 and 3 for FCC materials. Furthermore, Mughrabi has observed that the 

barriers are made up of edge dislocations deposited by screw dislocations moving along the 
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Channels, shown schematically in Figures 2 and 3. In addition Mughrabi has measured the shear 

stress distribution that develops across dislocation pile-ups in the channels during plastic 

deformation, see Figures 4 and 6. 

2.2 Idealized Cross-Slip 

The model is based on Sestak's (Sestak, 1971) andMughrabi's (Mughrabi, 1987) 

experimental observations. In particular, the model describes the motion of screw dislocations 

down channels formed by barriers. As each screw dislocation moves, it generates and deposits a 

dipole pair of edge dislocations on the surrounding barriers. When more screw dislocations 

move down the channel, more edge dislocations are extended and form pile-ups on the barriers. 

Eventually, the screw dislocations encounter obstacles and they cross-slip onto another slip- 

plane and circumvent these obstacles. The new extended edge components on the new slip- 

plane are now free to move. These edge components stop when they reach a barrier on the new 

slip-plane and the formation of new mobile screw components begins. As more barriers are 

formed, the screw dislocations are forced to move along progressively narrower channels. 

As this process continues, a slip-plane segregates itself into three functionally distinct 

types of regions: the channels, the pile-ups, and the tangles, shown in Figure 3. The channels 

are the central gaps between the parallel pile-ups. The pile-ups are the edge dislocations pressed 

up against the tangles. The tangles are formed around the original barriers and are made up of 

edge dislocations forced to merge by the relatively high shear stress at the head of the pile-up 

shown in Figure 4. 
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The shear stress varies across these three regions. In the channels, the shear stress 

decreases because the screw dislocations moving down the channels produce slip that relieves 

the local elastic shear strain. Local equilibrium redistributes the load onto the barriers (tangles) 

where there is no slip. The pile-ups are the transition regions from the low shear stress in the 

channels to the high shear stress in the tangles. In fact, Mughrabi has measured the shear stress 

variation across such a pile-up in copper (Mughrabi, 1987a). 

As this pattern of channels, pile-ups and tangles continues to form, the dominant source 

of slip and plastic deformation is the screw dislocations moving along the channels. The cross- 

slip of the screw dislocations to circumvent any obstacles is the phenomenon that sustains this 

process. 

12 



3.   HOMOGENIZATION 

3.1 The Scales 

To describe quantitatively the results of cross-slip, two sets of coordinates for two 

different scales are established: the macro-scale's global coordinates, Xm, and the micro-scale's 

local coordinates, x„. The global coordinates are those traditionally used to perform structural 

analyses at the component level. 

At any point in the material defined by the global coordinates, Xm, the local coordinates 

are defined by the local maximum shear stresses, Ta(Xm). The directions of the first two local 

coordinates, e^X,,) and e2(Xn), are the directions of the maximum shear stress, ta(Xn). The 

third local coordinate direction, e3(Xn), is defined as a cross product of the first two and points 

in the direction of the intermediate valued principal normal stress. The domain for a local 

coordinate system is bounded by the active slip-planes assumed to be spaced ^(Xn) apart and 

aligned with the directions of xa(Xn), as shown in Figure 5. 

The active slip-plane spacing, ^(Xm), is experimentally observed to be inversely 

dependent on the local average maximum shear stress xa(Xm). For values of xa(Xm)/G equal 

to 10" the slip-plane spacing is at most a few microns. (Raj, 1996a) Because this spacing is so 

small, it is assumed that the principal stresses, c^, and the unit vectors, 8;, change very little 

between two adjacent parallel slip-planes. In other words, it is assumed that the global gradients 

of G; and q times the slip-plane spacing ^(Xm) is small compared to their respective values of 

or; and one. 

13 



AcJi=|7MXm)«  °i (1) dXm 

Aej = 
öej 

sxm 
4*m)   «   l (2) 

These assumptions enable the local coordinates, xn, to be taken as Cartesian within any 

cube having dimension ^(Xm), as shown in Figure 5. The four slip-planes, two parallel to 

6] and e2 respectively, are taken to be four faces of the cube. The remaining two faces are 

assumed for convenience to have spacing ^(Xn) in the e3 direction. The origin of the local 

coordinate system is placed at the cube's center. All functions, that depend only on the global 

coordinates, Xm , are assumed to have a constant value within any cube. A primary reason for 

constructing the local coordinates and the cube is to define the volume over which the 

homogenization process is applied. 

3.2 Volume Averaging 

Homogenization is the formal process of volume averaging the effects of material 

heterogeneity at the micro-scale into a macro-scale formulation. In particular, the process 

averages the micro-scale effects of a composite material's fibers to produce an equivalent 

homogenous anisotropic material model on the macro-scale. 

In this study, homogenization is used to incorporate the slip-induced micro-scale changes 

in the shear strain component of the strain energy density, while preserving the traditional elastic 

relationships between the average stresses on the macro-scale, äy(Xm), and the average strains 

on the macro-scale, Sij(Xm). 

14 



These average stresses and strains are defined by volume averaging and are called the 

equivalent homogenized stresses and strains. 

^(Xj^ljci/X^xJdV 
vv 

Sij(Xm) = -Jsij(Xm,xn)dV 
V v 

(3) 

(4) 

Here the volume V is the cube and the integration is performed using the local coordinates, xn. 

Furthermore, the elastic displacement fields within any cube are defined in terms of the 

equivalent homogenized strains Sij(Xm) and a locally varying displacement field Ui(Xm, xn). 

ui(Xm, xn) = Sij(Xm) • Xj + Bi(Xm, xn) (5) 

Here the locally varying components of displacement, üi5 are used to describe the local elastic 

distortion of the cube due to slip on the four slip-planes on its faces. 

The resulting expression for the cube's strain fields is 

sijV^m' xnj — —L +—L 
~ 8ij(Xm) + Sjj(Xm, xn) (6) 

Substituting this expression for the strains into equation 4, the definition of the equivalent 

homogenized strains, produces the following constraints on the locally varying strains, 

Sy(Xm, xn), and the displacement fields, Uj(Xm, xn). 

l^(Xn.x.)dV.I/lfa; + SL]dv.o 
Vv Vv2 l^dxj    dxj (7) 

Hence, the cube's locally varying displacement fields must be constructed with these constraints 

in mind. 

15 



With these constraints satisfied, the resulting expression for the strain energy density in 

the cube is 

Ue(Xm) = T7Jrsij(Xm>xn)Eijqp sqp\Xm,XapV 

= T 6ij(Xm) Eijqp E^X») + AUe(Xm) (8) 

Note that the strain energy density has two components. The first is the strain energy associated 

with the cube's equivalent homogenized strains. The second is the change in the cube's strain 

energy density resulting from the local distortion of the cube due to slip. 

As a direct consequence of the constraints given in equation 7, this second component is 

not a function of the equivalent homogenized strains, Sy(Xm). Hence the traditional energy 

relationship relating stress to strain is preserved 

"^=7 = Eijqp £qp = aij (9) 

for the equivalent homogenized stresses and strains. 

Recall that the orientation of the cube is based on the directions of the local average 

maximum shear stresses, Ta(Xm). Stated differently, the orientation of the cube at any point 

Xm is based on the directions of the maximum equivalent homogenized shear stresses. Also 

recall that the size of the cube is based on the spacing of the active slip-planes, t(Xm). This 

spacing is experimentally observed to be stress dependent. 

Consequently, the size and orientation of the cube are taken to be independent of the 

crystal lattice's orientation and anisotropy at the point Xm. For simplicity, the material is 

16 



assumed isotropic. Furthermore, all the distortions within the cube are taken to be linear and 

elastic: linear by choice and elastic because in this model, the plastic deformation is confined to 

the slip-planes on the boundaries of the cube. 

17 



4. THE CUBE'S STRAIN ENERGY DENSITY 

The goal here is to construct the cube's strain energy density in the form of equation 8. 

The approach is to first construct approximate displacement functions in the form of equation 5. 

ui(Xm> *n) = £ij(Xm)' *j + Uj(Xm, Xn) (5) 

Here, the equivalent homogenized strains are assumed to be the known solutions of the macro- 

scale elasticity problem, posed in terms of the global coordinates, Xm. The locally varying, slip- 

generated displacement functions, Uj(Xm, xn), need be constructed to complete the expression 

for the cube's displacements, Uj(Xm, xn). 

Approximations of the slip-generated displacements are based on the spatial dependence 

of the slip-generated shear stress and shear strain distributions across the pile-ups on the slip- 

planes, Figures 4 and 5. This spatial dependence is then used to construct shape functions that 

approximate the slip-generated elastic displacements in the cube, Uj(Xm, xn), and that satisfy 

the constraints in equation 7. The result is the displacement fields needed to construct the strain 

energy density for the cube, equation 5. 

4.1 The Shear Stress Distribution Across The Pile-Up 

The development begins with Eshelby's equation governing the equilibrium spacing of 

edge dislocations in a pile-up on the slip-plane. (Eshelby, 1951) 

I + T21(X,.J) = 0 j = 1,2,3,... ,n (10) 
i=i Xjj -xi; 

Gb 
2TI(1-V) V

   ' 
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Here G is the shear modulus, v is Poisson's ratio, and b is the magnitude of the lattice's Burgers 

vector.   Also xy is the micro-scale coordinate value of Xj for the location of the f dislocation 

(shown in Figure 6), X is the coefficient that describes the repulsive shear stress between two 

identical, parallel edge dislocations on the same slip-plane, and T21(X1J) is the shear stress 

acting on the j* dislocation. 

Note that this slip-plane is defined by a constant value of the local coordinate of 

x2 = 4Xm)/2 • Because this coordinate value is constant, its presence is dropped from the 

notation for simplicity. In addition, the shear stress is taken to be independent of x3. 

This development is further simplified by assuming that dislocations are only repelled 

through their nearest neighbors. This reduces equation 10 to 

+ " " + *2i(xiFJ) = 0 J = 2,3,... ,n 
xi,j - xi,j+i      xij ~xi,j-i 

 + x21 
XI,2 ~ xl,l 

(xu) = ° j = l (12) 

In equation 12, all terms in the summation in equation 10 are dropped except the j + 1 term and 

the j -1 term which describe the interaction of the j* dislocation with its nearest neighbors. 

This nearest neighbor model accommodates Eshelby's observation that the local shear 

stress distribution increases one increment, AT , as one passes each dislocation moving toward 

the head of the pile-up as portrayed in Figure 6. (Eshelby, 1951a) 

^2i(xi,j) = xc+ (j-l)Ax j = l,2,3,...,n (13) 

Here xc is the shear stress in the center of the channel to the left of the dislocation at xu, shown 

in Figure 6. The n* dislocation in the pile-up is adjacent to the tangle. 

19 



Noting the recursive nature of equation 12, take the equation, starting with j = 1, and 

sequentially substitute it into the next higher indexed equation to replace the spacing terms. The 

result is an expression for the spacing between the j* and j+1 * dislocations 

a J 
+     I     T2l(Xl,m)=   ° (14) 

X1J~X1J + 1 m = l 

The relationship indicates that this spacing is in fact affected by the stresses acting on all the j 

dislocations pressing on the j+1th. However this cumulative stress effect is transmitted to the 

j+1   only through its nearest neighbor, the jth dislocation. Using equation 13 to substitute for 

T2i(xi,m) anc^ performing the summation leads to 

X f. j(i-l)Az) 
—— = ~   J-Cc + JU     ' (15) xi,j    xy + i       V 2.      J 

Here, the first term describes the spacing between the j* and the j + 1th dislocations in the pile-up 

and the second term is the cumulative stress acting on all dislocations up to the j* that produce 

this dislocation spacing. 

This discrete algebraic relationship is approximated as a differential equation to derive a 

continuous function representing the spatial pattern of the dislocations and the resulting shear 

stress and shear strain distributions on the slip-plane. To this end, first replace the index j with 

the discrete valued function, n(xy+1). This function is the number of dislocations in the pile-up 

between the center of the channel, x, = 0, and the location of the j +1* dislocation, Xj = Xj +I, 

shown in Figure 6. Next, replace n(xg+1) with its continuous representation, n(xj), expressed 

as a function of the local coordinate Xj. 

j -> n(x1J+1) -> n(x,) (16) 

20 



-1 Now, observe that the inverse dislocation spacing (xy - Xj;+1)    may be viewed as the 

approximate spatial gradient of n(xjj+1) or equivalently the spatial derivative of n(x{), 

(17) 

when Xjj+1 is replaced by the local continuous variable X]. Substituting these changes into 

equation 15 leads to the following non-linear differential equation for n(xj). 

-X dn(xi) 
dxi 

+  n(xi)tc + 
njx.Xnjx,)-!) 

Ax = 0 (18) 

Using partial fractions, equation 18 can be rewritten as 

dn(X]) dn(xj)        _ (2ß-l)At 
n(x!)        n(xj) + 2ß-l 2X 

dxi 

where ß = xc / AT .   Integrating equation 19 yields 

N(Xm)(2ß-l)exp 
n(Xm,X!) = 

a x, <xmr 

(2ß-l) + N(Xm) 1-exp Xi - 
<xmy 

2 ; 

T\ 

where a = 
(2ß-l)Ax 

Here n(Xm,X]) satisfies the boundary condition 

Xn 
<xmr 

= N(Xm) 

(19) 

(20) 

(21) 

(22) 
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where N(Xm) is the total number of dislocations in the pile-up. The important result here is 

equation 20, the spatial distribution of dislocations in the pile-up expressed as a function of the 

local coordinate X[. 

This spatial distribution leads to the expression for the shear stress as it varies across the 

pile-up. The continuous analogue of equation 13 expressed here 

*2l(Xm*Xl) = *c + n(Xm,*i) • At (23) 

produces the expression for the shear stress on the slip-plane. 

x2i(Xm,xl) = xc + n(Xm,X!) AT = TC + ■ 
N(Xm)(2ß-l)exp x, - <(x»r Ax 

(2ß-l) + N(Xm) 1-exp *i 
<*my 

T\ 

(24) 

To complete this expression for the shear stress, two issues need to be resolved. The first is 

whether or not ß (the ratio of xc to AT ) is a function of the total number of dislocations in the 

pile-up, N(Xm). The second is to express TC and AT in terms of Ta(Xm), the equivalent 

homogenized shear stress on the slip-plane. 

The first issue is addressed by observing that the shear stress expression, equation 24, has 

a characteristic exponential length, a-1.   This characteristic length is used to estimate the 

increment of slip-induced shear strain relief produced in the channel. Recall that as each screw 

dislocation moves down a channel, Figure 3, the material above the dislocation's path moves the 

magnitude of one Burgers vector, b, relative to the material under the dislocation's path. 

Assume that half of this relative motion, b/2 , contributes to strain relief above the slip-plane 
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and that the other half contributes to strain relief below the slip-plane. Hence, the increment of 

shear strain relief is estimated to be half the slip distance b divided by the characteristic length, 

a'1. 

The shear strain drop in the channel due to the passage of a screw dislocation is 

A      b     1 AY = y--r (25) 
*■   a 

This increment of shear strain drop in the channel produces the increment of shear stress drop 

across the newly formed edge dislocation deposited on the pile-up by the passing screw 

dislocation, Figure 6. From equations 11 and 21, see that 

Gb          (2ß-l)AtJt(l-v) 
= IT* =     ~2        (26) 

and Ax divides out of this relationship leaving ß as a constant. 

The choice of a"1 as the normalizing length for the increment of elastic strain relief is somewhat 

arbitrary. 

Using energy arguments, Eshelby determined that the shear stresses in a pile-up are 

multiples of TC. (Honeycombe, 1984) Taking ß, the ratio XC/AT to be one and subsequently 

replacing Ax in equation 13 with xc produces a quantitative expression of Eshelby's conclusion. 

T2i(xij) = xc+(J-0Tc j = 1,2,3,...,n (28) 

Note that the expression for ß, equation 27, yields values very close to one. 
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The remaining issue is to determine the relationship between the shear stress in the 

channel, xc, and the equivalent homogenized maximum shear stress, Ta(Xm). To develop this 

relationship, the definition of equivalent homogenized stress, equation 3, is used. 

äij(Xm)^ljaij(Xra,xn)dV (3) 
v v 

Throughout this study, this relationship is enforced by insisting that the stress, acting on any 

plane within the cube that is parallel to a face and integrated over the area of the plane, be equal 

to the corresponding equivalent homogenized stress multiplied by the area of the plane. Stated 

mathematically this condition is 

ÖÖ(XB) • Ai = JAi <TS(Xn, xn) dAi (29) 

Note that multiplying this relationship by the cube's dimension, ^(Xm), and dividing by the 

cube's volume produces equation 3, the definition of equivalent homogenized stress. 

Applying equation 29 to the shear stress distribution on the slip-plane takes the form 

xa(Xm)^2(Xm)=      J jT21(Xm,x1)dx1dx3 (30) 
-£{Xm)/2 -e{xm)/2 

Substituting the expression for the shear stress, equation 24, into this equation and evaluating the 

integrals results in 

4*    ■/N(Xm)| Ta(Xm)sTc +-, rln        V    m; + l aV   m)     c    *(Xm)    \ 2J3-1       ; 
(31) 

subject to the condition that 

Tc-^(Xm)»2X (32) 
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Representative values (Shankaranarayan, 1995) of these parameters are given in Table 1 and for 

these values equation 32 holds. 

Solving for the shear stress in the channel, xc, in terms of the equivalent homogenized 

maximum shear stress, xa(Xm), produces 

*'=*)-^)ta(|r+1) (33> 
and the shear stress jump at each dislocation in the pile-up is 

A<X„) = Ä (34) 

At this point, the expression for the approximate shear stress distribution on the slip-plane, 

equation 24, is complete. 

4.2 The Shape Function 

Based on equation 24, the shear stress distribution on the slip-plane can be expressed as 

^2i(Xm5x1) = tc(Xm) + n(Xm,x1)-Ax(Xm) (35) 

where n(Xm, Xj)is defined in equation 20. Dividing this expression by 2G produces the shear 

strain distribution on the slip-plane. 

««(X-.Xi)-^gs) + ^X..x,).^si (36) 

Note that the function n(Xm, Xj) describes the local (micro-scale) variation in the strain. 

Consequently, n(Xm, x^ would be an excellent candidate function to approximate the 

slip-induced elastic distortion in the cube, except for one major drawback. The square of this 
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TABLE 1. REPRESENTATIVE VALUES OF THE PARAMETERS 

ß=l 

G = 42GPa. N(Xm)=15 

b = 2.56 * 10-10m. £(XJ = 10"6 m. 

v= 0.33 AT = T =30MPa. 
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function has no known closed-form expression for its integral. This integral is needed to sum 

the strain energy over the cube. As a result, n(Xm, Xj) will be approximated by a simple 

exponential function <fr(Xm, x{) • N(Xm). 

<KXm>xi) = exP B 

<Xm) 
(37) 

Here the parameter B is chosen to satisfy the homogenization constraint expressed in equation 

30. 

The resulting approximation of the shear stress distribution on the slip-plane is 

^2i(Xm,x1) = tc(Xm) + ^(Xm,x1)-N(Xm)-AT(Xm) (38) 

Substituting this expression into equation 30 and choosing B such that equation 31 is satisfied 

produces the following expression for B. 

N(Xm)Ax(Xm) 
B = 

4X 

<Xm) 
In 

N(Xm) 
2ß-l 

+ 1 
(39) 

In effect, ^(X^Xj) • N(Xm) is an exponential function of x, that replaces ^X^xj), a ratio of 

exponential functions of Xj, and that produces the same equivalent homogenized shear stress 

when integrated over the slip-plane. A comparison of these two functions is shown in Figure 7, 

for N(Xm) = 15. The agreement between these functions steadily improves as N(Xm) 

decreases in value to one. 
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FIGURE 7. A COMPARISON OF THE TWO SHAPE FUNCTIONS 
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For simplicity of notation ^(XJJJ.XJ) will be expressed as ^(xj). 

^(xjjsexp B 
<(X»)     J 

(40) 

The square of this function has a known expression for its integral and (^(xj) will be used to 

approximate the elastic distortion of the cube due to slip on its bounding slip-planes. 

Before proceeding, it is important to note that ^(x^, evaluated at xY = 0, is much less 

than one, or else x2i(Xm,0) will not be approximately equal to xc(Xm) in the center of the 

channel (equation 38). Using the representative values in Table 1, B has a value of 8 and 

<j>(0) = exp[-B] is very small compared to one. 

4.3 The Assumed Elastic Displacement Fields 

The following assumed displacement functions are constructed in the form prescribed by 

equation 5 and in compliance with the homogenization requirements expressed in equations 3 & 

4. 

u1(Xm,x1,x2) = s11(Xm)x1+£12(Xm)x2+ —In 
N(Xm) 
2ß-l 

+ 1 ♦ (xO/J^Wdn 

4X 
2G(B-1)      J°  l        V ,;;    U     n u;      2G   *(Xm) 

In 
N(Xm) 
2p-l 

+ 1 

u2(Xm,x,,x2) = s22(Xm) x2 + e21(Xm) Xl + — In 
N(Xm)     ' 
2ß-l 

/*' ♦ft)d^*(x2) 

+ %H^(l-*(x2))^(l-*(4))^ 4X N(Xm) 

2G7(Xn)"'L2p-l 
In 

U3(Xm,X3)=S33(Xm)x3 

+ 1 

(41) 
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The equivalent homogenized strains appear explicitly in the displacement functions. Recall that 

the local coordinate directions were chosen such that S3i(Xm),s13(Xm), £32(Xm) and £2s(Xm) 

are zero. The terms in u1(Xm,x1,x2) and U2(Xm,x1,x2) not containing the homogenized 

strains are chosen such that the shear stresses on the 1 and 2 faces of the cube match the shear 

stress distribution, equation 38, on the slip-planes. In addition, these terms are chosen such that 

the equivalent homogenized stress and strain relationships, equations 3 and 4, are satisfied 

throughout the cube. 

The method used to construct these displacement functions is based on the observation 

that <j>(x) is an even function of x, and its integral and derivative are odd functions of x. The 

displacements are constructed such that the slip-induced shear strains (shear stresses) are even 

functions on their respective planes. When this is the case, the slip-induced extensional strains 

(normal stresses) are odd functions on their respective planes. Hence, the slip-induced normal 

stresses integrate to zero on their respective planes and the slip-induced shear stresses integrate 

to zero when the channel shear stress, TC (Xm), is adjusted using equation 33. When the slip- 

induced stresses integrate to zero over their respective planes, the integrals of the total stresses 

over their respective planes yield the equivalent homogenized stresses, equation 3. 

4.4 Elastic Strain Energy Density 

The cube's strains are determined from the displacement fields, equation 41, and are then 

substituted into equation 8 
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£ijV^m>xnJ  - 
aUi(Xm,xn) + _5uj(Xm,xn) 

3x; 3X; 

to determine the cube's strain energy density. 

Ue   =yl2£ü(Xm'Xn)Eijqp£qp(Xm]Xn)dV 

The resulting expression for the density is 

U, = U(X  )E~    s   (X  )    N2(Xm)A^(Xm)   (1-v)   (B3
-3B

2
+6) 

2   yl   m)   Ijqp eqp[Am) 12G (1 - 2v)    B2 (B - l)2 

where 

HXm) = 
eii(Xm)   8i2(Xm)        0 

S2i(Xa)   s22(Xm)        0 

0 0 M*«) 

(8) 

(42) 

(43) 

(44) 

As expected, the strain energy density has two components: the first expressed in terms 

of the equivalent homogenized strains; and the second is the strain energy released by the cube 

due to slip. Note that the anticipated elastic relationship between the homogenized stresses and 

strains, equation 9, follows directly from equation 43. 



5. THE VIRTUAL WORK FORMULATION 

The equilibrium relationships governing the slip-induced plastic deformation are 

determined using the principle of virtual work. Here, the principle of virtual work is employed 

such that at equilibrium, the virtual work, 8W, equals the virtual increase in the materials 

internal energy, 8U. 

5W=5U (45) 

Here W and U are respectively the work done and internal energy per unit mass of the material. 

It is assumed that the elastic and thermal strains are sufficiently small to make the material's 

mass density essentially constant. Under these circumstances, energy per unit mass and energy 

per unit volume differ only by a constant scaling factor of mass density. Hence, energy per unit 

mass is replaced by energy per unit volume throughout this study. 

The internal energy is taken to have three components. 

U = Q + Ue+Ud (46) 

Q is the specific internal energy based on the temperature of the cube.  Ue is the strain energy 

density for the elastic distortion within the cube.  Ud is the strain energy density for the lattice 

distortions surrounding the dislocations in the pile-ups and tangles on the surface of the cube. 

The specific work, W, is taken to have two components. 

W=We+Ws (47) 

Wc is the work per unit volume performed through virtual elastic displacements.  Ws is the 

work per unit volume performed through virtual slip displacements. 

Substituting equations 46 and 47 into equation 45 yields the variational relationship that 

produces the equilibrium relationships. 
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5We + 5WS = 8Q + 8Ue + 8Ud (48) 

Here, it is assumed that at equilibrium, there is no heat flux across the surfaces of the cube. 

Thus, 5Q arises only through dissipative work done on the surfaces of the cube. 

To this point, only one of the five terms in equation 48 (the cube's strain energy density, 

Ue) has been constructed. Three of the four remaining terms will be constructed based on the 

notion of an equilibrium configuration in the pile-ups. 

5.1 The Equilibrium Configuration in the Pile-up 

To facilitate the development of the remaining work and energy expressions, it is 

valuable to first address the concept of an "equilibrium" configuration for the dislocation pile- 

ups on the slip-planes. "Equilibrium" first occurs when the number of edge dislocations in the 

pile-up, N(Xm), becomes sufficiently large to force the edge dislocation in the pile-up nearest 

the tangle to merge into the tangle. At the onset of equilibrium, the shear stress at the head of 

the pile-up is just below the critical value needed to force the leading dislocation into the tangle. 

As each new edge dislocation, generated in the channel and deposited in the pile-up, raises the 

shear stress at the head of the pile-up to this critical value, the leading dislocation merges into 

the tangle. After this merging has taken place, the shear stress at the head of the pile-up drops 

back just below the critical value. The result is that for every edge dislocation that moves into 

the pile-up, there is another edge dislocation forced out of the pile-up and into the tangle keeping 

N(Xm) constant. When N(Xm) reaches this steady value, the pile-up is said to be in 

"equilibrium." 
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As this process continues, the net number of dislocations in the pile-up, N(Xm), remains 

unchanged, while each edge dislocation in the pile-up moves, in sequence, closer to the head of 

the pile-up and eventually merges into the tangle. The number of edge dislocations forced to 

merge into the tangles during equilibrium is labeled S(Xm). 

Davidson has observed that edge dislocations imbed themselves in tangles when forced 

within a distance of approximately four Burgers vectors, 4b (Davidson, 1997). Using equation 

15 to determine the number of dislocations in a pile-up required to produce this spacing yields 

4b 
Vc(xj+i(hi>ife] (49) 

Replacing j with N(Xm) produces the expression for the spacing at the head of a pile-up. 

N(Xm)(N(Xm)-l)Ax(Xm)     x 
N(Xm)tc(Xm) + 

4b 
(50) 

Recall that 

X = 
Gb 

2TT(1-V) (11) 

Taking ßto be one simplifies solving the quadratic expression, equation 50, forN(Xm). 

N(Xm)4 (     21     ^ 
bAx(Xm) (51) 

Using the appropriate data given in Table 1, the resulting value of N(Xm) is 13. 
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5.2 The Work Densities 

There are two sources of virtual work performed on the cube: the work done through 

elastic displacements, 5We, and the work done through virtual slip displacements, 5WS. The 

work done through virtual elastic displacements is that work done by the component's surface 

tractions elastically distorting the body. Applying the divergence theorem to the global elasticity 

problem, it can be shown that the work density of the surface tractions can be expressed in terms 

of the equivalent homogenized stresses and strains. (Fung, 1965) 

8We=äij(Xm)5sij(Xm) (52) 

However, the surface tractions also perform work that permanently changes the shape of 

the body through slip displacements on the internal slip-planes. Because the cube's shear stress 

distribution and the pattern of slip on its slip-plane are known, the expression for the work 

density due to slip can be constructed directly on the micro-scale. 

2Ws=ljS2   jCi(Xm,xI)-b-ds{Xm,x1)dA2 (53) 
VA2s,(Xm)x1) 

The integral term is equivalent to the work done on the four faces of the cube that are slip- 

planes. Because the cube shares each of these four faces with one of four other cubes, the work 

done on the four slip-planes is twice the work done on the cube,  b • ds(Xm^i) is the differential 

of the relative slip motion through which the shear stress performs work. 

If it is assumed that the pile-up is in an "equilibrium" state, as previously discussed, the 

work integral over the slip-plane can be straightforwardly evaluated. During equilibrium, a 

screw dislocation moving down the channel deposits an edge dislocation on each pile-up and one 



dislocation moves out of each pile-up and into a tangle. During this process, the screw 

dislocation causes slip of one Burgers vector in the channel. In addition, each edge dislocation 

in the pile-up advances one position toward the tangle as the closest edge dislocation merges into 

the tangle. This produces slip of one Burgers vector throughout the pile-up. The result is that 

there is a slip of one Burgers vector over channel and the two pile-ups. Hence, the differential 

slip ds(Xm,x1) is independent of Xi during equilibrium. Furthermore, the amount of slip that 

occurs during equilibrium is the number of dislocations pushed from the head of the pile-up into 

the tangle, S(Xm). 

With these observations, one can reduce the work density integral to 

WS=^E1 JX21(Xm,x1)dA2 (54) 
V        A2 

Recall that any locally varying stress, like x2i(Xm, x2), integrates over the area on which it acts 

to the area times the equivalent homogenized stress, equation 30. Hence the expression for the 

work density for slip becomes 

2bS(Xm) x.(Xm) (2(Xm)    2T,(X„) S(Xm)b 

«3(xm) "       4xm) <55) 

Identifying S(Xm) • b/^(Xm) as the plastic shear strain, the variation of the work density due to 

slip is seen to be 

5Ws=2xa(Xm)5f^4] <56> 
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5.3 The Internal Heat Density 

The internal heat density of the cube is raised by the energy dissipated by the friction 

stress, Tf, that resists the motion of a dislocation across the slip-plane. Using the arguments 

presented in the previous section and the observation that the friction stress is uniform over the 

slip-planes produces the following expression for the change in the cube's internal heat density. 

2AQ = 1 /Tf-S(Xm)-bdA2 (57) 
V A2 

Upon evaluation, this integral reduces to 

2xfS(Xm)b g    w (58) 

Again, identifying the plastic shear strain as S(Xm) • b/i(Xm), the variation of Q is seen to be 

f 
SQ = 2xf 6 

stxjb' 

It should be pointed out that the uniform slip on the slip-plane is produced by screw 

dislocations moving down the channel and edge dislocations advancing toward the head of the 

pile-up. Edge and screw dislocations have slightly different friction stresses. The friction stress 

used here, xf, should be viewed as an average friction stress. 

5.4 The Dislocation Energy Density 

All dislocations deposited in the pile-ups on the slip-plane occur in dipole pairs (opposite 

types on the same plane). As a screw dislocation moves down the channel, the two deposited 

edge dislocations (one onto each pile-up) are each of the opposite type. This deposited dipole 
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pair forces the lead dislocation in each pile-up into their respective tangle. The two dislocations 

forced into the tangles are also a dipole pair. 

During equilibrium, the increase in the dislocation energy on a slip-plane is the number 

of dipole pairs forced into their tangles, S(Xm), times the energy of each pair. The energy of 

each pair has two parts: the strain energies of the pair plus the energy required to push each 

dislocation up against its nearest neighbor. 

2 f       nlv   V\ OAU2 
OTT       4S(XmH(Xm) ZU(j 57  

^3(xm) 
Gb^ 

2JI(1-V) 
In 

b   j 

       1 + &J 
2n(l-v)"\       4b , 

2Gb     . 
+ ; rln (60) 

The first term in the brackets is the energy per unit dislocation length for a dipole-pair separated 

a distance, t(Xm). (McClintock, 1966) The second term is the energy per unit dislocation 

length required to push the dipole pair against their respective nearest neighbors a distance of 4b 

away. Recall that 4b was the critical dislocation spacing at the head of the pile-up at 

equilibrium. 

Note that as the distance separating the elements of the dipole pair, t(Xm), tends to zero, 

the energy of the dislocation dipole pair tends to zero as well. In other words, if the dipole pair 

were to recombine in the absence of the friction stress, all its energy would be fully released. 

Consequently, this expression for the strain energy around the dipole pairs indicates that the 

energy is recoverable, hence conservative. 

The dislocation energy density can be accurately approximated by 

U, 
Gb2S(Xm)     ln[l

3(Xm) 

it(\-v)£2(Xm) 16bJ b 
(61) 
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5.5 The Results of Virtual Work 

Having expressions for all the components of the virtual work formulation, the 

representative values of the parameters in Table 1 can be used to check the relative values of the 

energy densities. This process reveals that the change in the cube's elastic strain energy density 

due to slip is roughly comparable to the dislocation energy density for plastic strains, 

s(xm) • bA(Xm)'. of one percent. For much larger plastic strains, the dislocation energy density 

is much larger than the slip-induced change in the cube's strain energy density. The slip-induced 

strains apparently remove strain energy from the interior of the cube and transfer the energy to 

the regions near the four tangles. Hence, the slip-induced change in the cube's strain energy 

density is relatively small for plastic strains over five percent and it is dropped from 

consideration. 

Substituting equations 52, 56, 59,61 and 43 (without the term for the strain energy drop 

due to slip) into equation 48 yields 

äij(Xm)8sij(Xm) + 2xa(Xm)5[^J) = 

2xf 5 ̂ 1 + E..    e   (X  )5s-(X  ),sf   Gb2S(Xm)    lnf^(X-) 
(62) 

JJ 

The plastic shear strain, S(Xm) • b/t(Xm), contains two parameters that are free to vary: the 

number of dislocations pushed from a pile-up into a tangle, S(Xm), and the edge length of the 

cube, <Xm). 
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Letting these two parameters vary independently, along with the elastic strains £jj(Xm), 

produces the following results. 

[^ij(Xm) - EijqpäqpfXj] Ss^Xj 

2xa(Xm)-2xf- 
Gb f/3 

-2ta(Xm) + 2xf + 

n(\-v)£(Xm) 

Gb-2 

In n*m) 

7r(l-v)<Xm) 
In 

16b3 j 

(?(^ 

b5S(Xm) 

<Xm) 

16bJ 

3Gb 
a(l-v)<(Xm) 

S(Xm)b 

*2(xm) 
«(xn) = o 

(63) 

Setting the coefficient of the variation of the elastic strains to zero yields the traditional linear 

elastic constitutive law posed in terms of the equivalent homogenized stresses and strains. 

^y(Xm) = EjjqpSqpfXj (64) 

Setting the coefficient of the variation 5S(Xm) to zero yields an expression for the threshold 

flow stress of the material. 

^^ä^wK^H^ (65) 

Close examination of the energies (from which this expression follows) indicates that this is the 

threshold value of ta(Xm) for which sufficient work is performed on the slip-plane to extend 

the edge dislocations through the motion of the screw dislocations down the channels. When 

■ca(Xm) drops below this critical value, dislocation motion and extension stops and plastic 

deformation due to cross-slip ceases. Note that the expression for the threshold flow stress, 

Tth(Xm)> depends on the slip-plane spacing, f(Xm). 
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Setting the coefficient of 5^(Xm) in equation 63 to zero produces an expression for the 

equilibrium spacing of the active slip-planes. 

^ = Xf%(l-v)'(Xm)'ln 

^(X3)^     3 
16b- 2 

(66) 

Given the maximum equivalent homogenized shear stress, xa(Xm), the only remaining 

unknown in this equation is the slip-plane spacing. 

In summary, the virtual work has produced both the elastic and plastic equilibrium 

conditions for the material. The elastic equilibrium conditions are the traditional stress-strain 

relationships from which the maximum equivalent homogenized shear stress follows, 

Ta(xm) = ^2i(xm)- Using xa(Xm)and equation 66, the equilibrium slip-plane spacing, 

£(Xm), is determined. Using £(Xm) and equation 65, the threshold flow stress, xth(Xm),is 

determined. Using Ta(Xm)and i(Xm) in equations 33,34 and 51 produces the values for the 

equilibrium number of dislocations in a pile-up N(Xm), the channel stress xc(Xm), and the 

shear stress jump Ax(Xm). Introducing these results into equations 24 and 41 produces the 

shear stress distribution on the slip-planes and the elastic displacement fields for the cube. 

Hence, the equilibrium problem for plastic response is solved. 

Note that the plastic equilibrium conditions, equations 65 and 66, appear in the form of 

stress-strain relationships when the dimensionless ratio, b/i(Xm), is interpreted as an increment 

of plastic shear strain. Both equations relate an increment of plastic shear strain to a shear stress 

using the shear modulus and Poisson's ratio. 
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6. RESULTS 

The virtual work formulation has produced theoretical expressions for the equilibrium 

spacing of the active slip-planes, £(Xm), and the threshold flow stress, tth(Xm). The applied 

stress xa(Xm) determines the equilibrium active slip-plane spacing. The actual slip-plane 

spacing determines the threshold flow stress. 

In this study, the slip-plane spacing, t(Xm), is advanced as the parameter that governs 

the formation of an FCC material's heterogeneous subgrain microstructure. In particular, the 

active slip-plane spacing is taken to be the diameter of subgrains that are observed to form 

during plastic deformation in FCC materials. A subgrain is a region of relatively few 

dislocations surrounded by a shell of highly concentrated dislocations. It is hypothesized that the 

cube (bounded by four slip-planes containing dislocation pile-ups and tangles) is a representative 

model of the subgrain. 

If this hypothesis holds, considerable data in the literature can be used to test the 

theoretical expressions for the active slip-plane spacing and the threshold flow stress. 

Specifically, Raj, et al, have collected data on subgrain diameter versus applied stress for many 

materials including aluminum and copper. Based on this data, Raj has constructed an empirical 

relationship between applied stress and subgrain diameter (Raj, 1996b). In addition, Varma 

along with three of his students have measured flow stresses and the corresponding subgrain 

diameters in three FCC metals: aluminum (Sil, 1993), copper (Shankaranarayan, 1995), and 

nickel (Rao, 1993). 

These measured data will be used to test both theoretical relationships. First, Raj's curve 

fit for subgrain diameter versus applied stress will be compared to the theoretical expression for 
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active slip-plane spacing versus applied stress, equation 66. Second, subgrain diameter will be 

used in place of active slip-plane spacing in the theoretical expression for the threshold flow 

stress, equation 65. The resulting predicted threshold flow stresses will be compared with 

Varma's measured flow stresses. 

Raj's expression relating applied stress to subgrain diameter is posed in terms of a 

unaxial tensile stress, a; the subgrain diameter, ds; and an empirical parameter K chosen to 

produce the best curve-fit for the measured data. The relationship is 

Mtr 
where K = 23 and m = 1.0. Converting the tensile stress to the shear stress on the active slip- 

planes, xa(Xm) = a/2, produces 

^=11.5 
b 

<    G    ^ 
(68) 

VTa(Xm)> 

Plotting this experimentally based empirical relationship, Figure 8, against the theoretical 

. relationship, equation 66, demonstrates the excellent agreement. The friction stress, xf in 

equation 66, in FCC metals is relatively small compared to the applied stress and is taken to be 

zero in this comparison. The shear stress/shear modulus ratio varies from creep response loading 

(10"5) up to yield strengths (10"3) and finally up to flow stress (10'2). The excellent agreement 

seen here is advanced as strong evidence supporting the hypothesis that the active slip-plane 

spacing is the progenitor of the observed heterogeneous distribution of dislocations in the 

subgrain microstructures of FCC materials. 
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Using this hypothesis, one can predict a threshold flow stress when subgrain diameter is 

used in place of active slip-plane spacing, equation 65 . A summary of the results are shown in 

Figure 9 for aluminum, Figure 10 for copper, and Figure 11 for nickel. The values of the 

material parameters used to predict the threshold flow stress are given in Table 2. Each 

material's reported Peierls stress (Honeycombe, 1984a) is used for its friction stress, xf. 

In Figures 9,10 and 11, the measured flow stresses have been adjusted. Varma and his 

students reported the measured flow stresses as nominal tensile stresses. The constant volume 

assumption for large plastic deformation in thin tensile specimens of original length, L0 , and 

cross sectional area, A0, 

V0 = A0L0 = A(L0 + AL) (69) 

has been employed here to estimate true tensile stress from nominal tensile stress. This 

relationship enables one to estimate the reduced cross sectional area, A, 

A=A°(1+irJ =Ao(1+£p)_1 (7°) 

based on Varma's measured plastic tensile strain, sp. Subsequently, the true tensile flow stress 

is estimated from the measured nominal flow stress, based on the level of plastic strain. 

c = Co(l + ep) (71) 

All of the flow stresses shown in Figures 9, 10 and 11 are the estimated true stresses based on 

Varma's measured nominal flow stresses and measured plastic strains. 

The theoretical tensile threshold flow stresses shown in Figures 9, 10 and 11 are twice 

the theoretical shear threshold flow stresses predicted using equation 65. For the most part, the 

theoretical thresholds are right where they should be. For copper and nickel the thresholds are 
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TABLE 2. MATERIAL PARAMETERS 

G          v b              Tf 

Aluminum   25 GPa 0.33 0.286 nm 1.0 MPa 

Copper        46 GPa 0.34 0.256 nm 1.0 MPa 

Nickel          76 GPa 0.31 0.250 nm 5.0 MPa 

J 
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below the adjusted measured flow stresses. For aluminum, the theoretical threshold is higher 

than it should be. Recall that the threshold stress is the stress below which all plastic 

deformation due to dislocation slip ceases. For all three metals, the theoretical threshold stress 

tracks the apparent trend of the increasing measured flow stress with the decreasing measured 

subgrain diameter. 

In addition, we have shown only those flow stresses measured at the slowest strain rate 

reported by Varma, 0.01/minute. If Varma's data had been measured at a slower strain rate, one 

would expect the measured flow stresses to be closer the threshold flow stress of the material. 
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7. DISCUSSION 

The theoretical predictions for active slip-plane spacing and flow stress are consistent 

with the experimental observations. This agreement between theory and experiment indicates 

that the theory accurately approximates the dislocation slip and extension that produces plastic 

deformation in FCC metals. 

Consequently, it appears that many factors governing plastic deformation are 

significantly less important than the friction stress and the extension of dislocations. For 

instance, slip-plane misalignment with the maximum shear stress is not addressed. The 

anisotropic stiffness of the crystal lattice is not addressed. The complicated attractive and 

repulsive interactions of dislocations is not addressed except in the pile-ups. The dissociation of 

dislocations into partial dislocations in the low stress regions of the channels is not addressed. 

The random nature of barrier formation is not addressed. The effects of grain boundaries on 

stress fields are not addressed. Finally, subgrain formation is a multidimensional process, not 

limited to the simple geometry described here. 

In spite of all these potential deficiencies, the approximate theoretical relationships 

developed here are apparently representative of the process. Moreover, these relationships are 

posed in terms of known or measurable fundamental parameters of the material. As such, these 

approximate relationships are advanced as completely theoretical expressions, based on first 

principles, for the equilibrium spacing of dislocation microstructure in a material and its 

threshold flow stress. 

However, because of their approximate nature, these relationships must be employed 

with care. The active slip-plane spacing relationship is valid only when the shear stress is large 
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enough to produce spacing less than the initial grain size. In addition, the flow stress 

relationship is not applicable to plastic deformation governed by diffusion-driven vacancy 

motion. Moreover, these theoretical relationships are applicable only when the friction stress 

and dislocation extension are the dominant energies in the process of plastic deformation. 

It is reassuring to note that this study's threshold flow stress relationship is based on 

dislocation extension. It is widely accepted that many materials exhibit a flow stress that 

evolves proportionally to the square root of dislocation density.(Hertzberg, 1976) This 

observation may be helpful in developing the rate equations governing the evolution of slip- 

plane spacing, dislocation density and flow stress. Because the flow relationship developed here 

is an equilibrium relationship, it is inappropriate to advance any conclusions about observed 

evolving dislocation densities that are in part driven by kinetics. 

However, these equilibrium relationships should be viewed as approximate expressions 

for the combination of parameters that arrest plastic deformation. Said differently, these 

relationships should be used to construct the zero rate conditions in the state equations governing 

the kinetics of plastic deformation. 

Because of the approximate nature of these equilibrium plasticity relationships, their 

ultimate value may not lie in their precise prediction of active slip-plane spacing and flow stress. 

Rather, the mathematical form of these relationships might be very valuable in constructing 

empirical engineering approximations that are representative of the plastic response of rather 

complicated alloys. 

More specifically, it is possible that these equilibrium relationships may be applied to 

paniculate second phase and solid solution FCC alloys. Generalizing the notion of the friction 
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stress, to describe the total energy expended to move a dislocation through a lattice containing 

impurities and/or small second phase particles, extends the applicability of these relationships to 

some alloys. The flow stress data for nickel in the previous section was measured on Nickel 

200, a mild alloy. 

In conclusion, approximate relationships describing the equilibrium conditions for plastic 

deformation through cross-slip in FCC metals have been developed. These results appear in the 

form of stress-strain relationships, where the strain appears as increments of plastic shear strain. 

Because the virtual work approach that produced these equilibrium plasticity relationships also 

reproduced the classical elastic equilibrium stress-strain relationships, these plasticity 

relationships are viewed as fundamental relationships governing plastic deformation in FCC 

materials. 



8. REFERENCES 

Christensen, R.M., Mechanics of Composite Materials, Wiley and Sons, New York, 1979, pp. 
32-37. 

Davidson, D., Private communication, September 1997. 

Eshelby, J.D., Frank, F.C., and Nabarro, F.R.N., "The Equilibrium of Linear Arrays of 
Dislocations," Phil. Mag.. Vol. 42, 1951, p. 352. 

Eshelby, J.D., Frank, F.C., and Nabarro, F.R.N., "The Equilibrium of Linear Arrays of 
Dislocations," Phil. Mag.. Vol. 42, 1951a, p. 357. 

Fung, Y.C., Foundations of Solid Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1965, p. 285. 

Gurtin, M.E., "Variational Principles in the Linear Theory of Viscoelasticity," Archive Rational 
Mechanics and Analysis. Vol. 13,1963, pp. 179-191. 

Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, Wiley and 
Sons, New York, 1976, p. 94. 

Hodge, P., "A New Interpretation of the Plastic Minimum Principles," Quarterly of Applied 
Mathematics. Vol. 19, 1962, pp. 143-144. 

Honeycombe, R.W.K., The Plastic Deformation of Metals, 2nd Edition, Edward Arnold Ltd., 
London, 1984, p. 45. 

Honeycombe, R.W.K., The Plastic Deformation of Metals, 2nd Edition, Edward Arnold Ltd., 
London, 1984a, p. 12. 

Kachanov, L.M. "Variational Methods of Solution of Plasticity Problems," PPM - Journal of 
Applied Mathematical Mechanics. Vol. 3,1959, pp. 880-883. 

McClintock, F.A. and Argon, A.S., Mechanical Behavior of Materials. Addison-Wesley, Reading 
Massachusetts, 1966, p. 149. 

Mugrahbi, H, "The Long-Range Internal Stress Field in the Dislocation Wall Structure of 
Persistent Slip Bands," Phvs., Stat. Sol, (a). Vol. 104,1987, pp. 107-120. 

Mugrahbi, H, "The Long-Range Internal Stress Field in the Dislocation Wall Structure of 
Persistent Slip Bands," Phvs., Stat, Sol, (a). Vol. 104,1987a, p. 117. 

Mura, T., Micromechanics of Defects in Solids, Kluwer Academic, Boston, 1987, p. 199. 

54 



Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous 
Materials. North-Holland, Amsterdam, 1993, pp. 27-33. 

Pian, T.H.H.," On the Variational Theorem for Creep," Journal of Aeronautical Science, Vol. 
24, 1957, pp. 846-847. 

Pian, T.H.H., "Creep Buckling of Curved Beams Under Lateral Loading," Proceedings 3rd U.S. 
National Congress on Applied Mechanics, 1958, pp. 649-654. 

Raj, S.V., Iskovitz, I.S., and Freed, A.D., Unified Constitutive Laws of Plastic Deformation. Eds. 
A.S Krausz and K. Krausz, Academic Press, San Diego, 1996, pp. 344-439. 

Raj, S.V., Iskovitz, IS., and Freed, A.D., Unified Constitutive Laws of Plastic Deformation. Eds. 
A.S Krausz and K. Krausz, Academic Press, San Diego, 1996a, p. 383. 

Raj, S.V., Iskovitz, IS., and Freed, A.D., Unified Constitutive Laws of Plastic Deformation. Eds. 
AS Krausz and K. Krausz, Academic Press, San Diego, 1996b, p. 384. 

Rao, J.G. and Varma, S.K., "The Effect of Grain Size and Strain Rate on the Substructures and 
Mechanical Properties in Nickel 200," Metallurgical Transactions. Vol. 24A, November 1993, 
pp. 2559-2568. 

Sanders, J.L., Jr., McComb, H.G., Jr., and Schelchte, F.R, "A Variational Theorem for Creep 
with Applications to Plates and Columns," NACA Report 1342.1958. 

Sestak, B. and Seeger, A., "The Relationships Between the Work-Hardening of B.C.C. and 
F.C.C. Metals," Phvs. Slat Sol, fb). Vol. 43,1971, pp. 433-444. 

Shankaranarayan, H., and Varma, S.K., "Strain-Rate and Grain-Size Effect on Substructures and 
Mechanical Properties in OFHC Copper During Tension," Journal of Material Science. Vol. 30, 
1995, pp. 3576-3586. 

Sil, D. and Varma, S.K., "The Combined Effect of Grain Size and Strain Rate on the Dislocation 
of Substructures and Mechanical Properties in Pure Aluminum," Metallurgical Transactions. 
Vol. 24A, May 1993, pp. 1153-1161. 

55 


