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1 Introduction 

This document constitutes the final progress report on "Formal Methods for Integrat- 
ing Knowledge Bases", Contract No. F30602-95-C-0122 to Rome Laboratory. Tech- 
nical work performed under this contract from 17 April 1995 to 31 December 1998 is 
summarized in this report. 

1.1     Outline 

Section 2 provides some background on the problem of mediation and describes our 
approach to solving this problem, a formal specification and refinement process for 
mediator generation. Section 3 describes SPECWARE, a formal software development 
tool being built at Kestrel. In this project, SPECWARE is being extended with a 
mediator generation capability. Section 4 describes the process of translating speci- 
fications to code in Lisp or C++. This facility is used both for describing wrappers 
and generating mediation code. Section 5 discusses how formal wrappers are built in 
SPECWARE. Section 6 describes the theoretical notion of "patching", which provides 
a systematic way of handling multiple representations of the same concept, a basic 
problem in mediation. Patching, and its implementation in SPECWARE, are the ma- 
jor contributions of this project to mediation technology. Section 7 describes three 
demonstrations of the work done under this project. Section 8 summarizes the results 
so far and outlines future work. 

2 Background and Project Overview 

2.1     The Mediation Problem 

The proliferation of computers and the phenomenal advances in interconnectivity via 
high speed networks have resulted in easy access to a large number of information 
sources. Consequently, modern applications, both military (e.g., battlefield manage- 
ment) and commercial (e.g., airline scheduling), depend on pulling together informa- 
tion from several different sources. The heterogeneity of the information sources, and 
the applications using them, is a significant hurdle to the effective use of the informa- 
tion. Heterogeneity arises in several ways: different computing platforms, different 
representation and programming languages, and different semantic assumptions. 

Mediation is the problem of providing a coherent information conduit between a 
collection of heterogeneous sources and applications. This entails translation between 
different representations as well as the reconciliation of the same information repre- 
sented differently by several sources. Such translation and reconciliation can range 
from syntactic (e.g., conversion between different data formats) to semantic (e.g., 
relating different kinds of 'altitude'). 
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A mediator is an (extra) application which mediates all transactions between the 
information sources and applications to which it is connected. It presents a single, 
semantically coherent view of the information sources to the applications; in other 
words, it hides the heterogeneity of the information sources from the applications by 
performing all the necessary translation and reconciliation. 

Project Overview 

2.2 Objective 

The objective of our project is to demonstrate the effectiveness of formal specification 
and refinement techniques for constructing realistic mediators. Such techniques will 
enable the rapid and reliable construction of mediators in fast-breaking situations. 

2.3 Focus 

Within the larger problem of mediation, our project focusses on the aspect of seman- 
tic interoperation, i.e., relating information from heterogeneous sources at a semantic 
level. We further focus on articulating paradigmatic methods of semantic interoper- 
ation, so as to enable the generation of mediators. 

2.4 Approach 

Our approach is to apply a formal specification and refinement process to the devel- 
opment of mediators. To this end, information sources are first wrapped in formal 
interface specifications; the application(s) are also similarly wrapped. We assume 
the availability of libraries of specifications (ontologies) suitable for this purpose. 
Next, the interface specifications are composed, with conversion functions inserted 
for shared parts; the composition represents the global interface specification for the 
information sources. Finally, the operations in the application interface are realized 
in terms of (or, refined into) the global interface specification. Figure 1 renders this 
process pictorially, and highlights features of this approach. 

The implementation task of this project is being carried out using SPECWARE, a 
tool that supports the modular construction of formal specifications and their refine- 
ment to code (in Lisp or C++). 
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3    Specware Overview 

3.1    Specware, a Formal Software Development Environment 

SPECWARE [Srinivas and Jüllig 95] is a tool that supports the modular construction 
of formal specifications (in higher order logic) and the stepwise and componentwise 
refinement of such specifications into executable code (in Lisp and C++). Software 
development in SPECWARE is characterized by two tenets: 

Description: We always deal with descriptions, i.e., a collection of properties, of the 
artifact that we ultimately wish to build. These descriptions are progressively 
refined by adding more properties, until we can exhibit a model or witness 
(usually a program) which satisfies these properties. Descriptions in SPECWARE 
are written in one of several logics. 

Composition: We handle complexity and scale by providing composition operators 
which allow bigger descriptions to be put together from smaller ones. The 
colimit operation from category theory is pervasively used for composing struc- 
tures of various kinds in SPECWARE. Besides composition operators, one needs 
bookkeeping facilities and information presentation at various abstraction lev- 
els. SPEC WARE uses category theory for bookkeeping and abstraction. 

SPECWARE maintains a design history which indicates how the final code is de- 
rived from the original specification. In this manner, the advantage of a declarative, 
knowledge-based approach is combined with the efficiency of optimized code. 

SPECWARE is a shift from formality in-the-small to formality in-the-large. This 
shift has necessitated a new conceptual basis in category theory, topology, and sheaf 
theory, abstract mathematical theories that were originally invented for dealing with 
complex structures. On top of this mathematical kernel, SPECWARE uses algebraic 
specification and general logics, formalisms which have resulted from decades of re- 
search in formal specification. These formalisms are based on category theory and 
provide abstract composition operators which are independent of the specification 
language. The language of category theory results in a highly parameterized, robust, 
and extensible architecture that can scale to system development. 

History. Kestrel has been pursuing a knowledge-based approach to software de- 
velopment for over a decade using KIDS, an algorithm design system [Smith 90], 
DTRE, a data type refinement system [Blaine and Goldberg 91], and REACTO, a 
state-machine design system [Gilham et al. 89]. The common thread in these tools 
is the explicit representation of knowledge: foundation knowledge (data types, arith- 
metic, etc.), domain-specific knowledge (transportation resource models, scheduling 



constraints, etc.), and problem-solving knowledge (divide-and-conquer, global search, 
incremental computation, etc.) SPECWARE is an attempt to integrate the capabili- 
ties of these tools on the common conceptual foundation of structured theories, and 
moreover, provide much more functionality in a scalable and extensible way. 

3.2 Current Capabilities of Specware 

Specifications in SPEC WARE are written in a variant of higher order logic called SLANG 
[Srinivas and Jüllig 95, Lambek and Scott 86]. Specifications can be built modularly 
via specification-building operations such as import, translate and colimit. One spec- 
ification can be refined into another (the latter being less abstract or more concrete) 
via an interpretation [Lambek and Scott 86, Turski and Maibaum 87]. An interpreta- 
tion formally indicates how the types and operations of one specification are realized 
in terms of the types and operations of another specification. 

Interpretations can be cascaded, thus resulting in stepwise refinement. Moreover, 
interpretations interact gracefully with the specification-building operations: a speci- 
fication built from parts can be refined by refining its parts in a compatible way. There 
is thus a two-dimensional space of specifications related by the "part-of" relation in 
one dimension and the refinement relation in the other dimension. 

A sufficiently refined specification can be transformed into executable code in pro- 
gramming languages such as Lisp and C++. This process is represented in SPEC WARE 
as refinement into a different logic, i.e., programs are specifications too! Again, such 
inter-logic refinements can be composed. 

Figure 2 shows the graphical interface of SPECWARE and highlights various ca- 
pabilities. A resolution prover provides inference services. A library of foundation 
theories, e.g., containers, algebraic structures (monoids, groups, partial orders, etc.), 
numbers, etc., is preloaded into SPECWARE. Domain-specific libraries for transporta- 
tion scheduling (e.g., tasks, resources) and problem-solving libraries (e.g., divide-and- 
conquer, global search) are also being added. 

3.3 Composition with Overlaps 

Interesting interconnections of parts have overlaps. In SPECWARE, interconnections 
of components are represented by diagrams (a formal notion in category theory) of 
objects related by arrows which indicate the overlaps. The colimit operation produces 
a single object from the diagram by "gluing" the parts together along the indicated 
overlaps. Conversely, the diagram may be construed as a "covering" (a formal notion 
in topology) of the colimit object by parts. This kind of composition is abstractly 
illustrated in Figure 3. 

Composition using diagrams and colimits is more general than the commonly used 
mechanisms of import and inheritance. Morphisms provide precise control over how 
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the parts are related and indicate which parts are to identified and which are to be 
copied. Import and inheritance, on the other hand, rely on implicit rules to determine 
sharing and ancestry, a reliance which is not conducive to scaling. 

Example (specification composition). Figure 4 shows a simple example of a 
specification composed from smaller specifications via a colimit operation (following 
the abstract pattern in Figure 3). The specifications describe 1-degree digital ele- 
vation models (DEMI), which are regularly spaced grids of elevations on the earth's 
surface. DEMI-COLUMN is the specification for a column of elevations (i.e., in the North- 
South direction). DEMI-RECTANGLE specifies grids of elevations, as arrays of columns. 
DEMI-WRAPPER is the specification of functions which retrieve single columns from 
a file containing elevation data. As a step towards providing a higher-level inter- 
face for elevation models, DEMI-RECTANGLE and DEMI-WRAPPER are composed, with 
DEMI-COLUMN being the part shared between them. 

3.3.1    Structured Refinement 

SPECWARE provides composition operators not only for specifications, but also for 
refinements. This is done by lifting the structure of specifications to refinements: a 
composed object can be transformed or refined using transformations of the parts, 
provided these are "compatible" (a formal notion in sheaf theory), i.e., the sub- 
transformations agree where the parts overlap. Refinement with overlaps is abstractly 
illustrated in Figure 5. 

Structured refinement is realized in SPECWARE via the notion of diagram refine- 
ment, which is a diagram of refinements and refinement morphisms connecting two 
specification diagrams. A diagram refinement can be parallely composed to obtain a 
refinement from the colimit of the source diagram to the colimit of the target diagram. 
Diagram refinements are thus a structuring mechanism for refinements. This structur- 
ing mechanism is mostly independent of the particular notion of "refinement"; hence, 
it applies not only to refinements between specifications, but also to refinements from 
specifications to code. 
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Figure 3: Composition with Overlaps 

spec DEMl-INTERFACE-base is 
colimit of diagram 

nodes DEMI-COLUMN,  DEMI-RECTANGLE,  DEMI-WRAPPER 
arcs    DEMI-COLUMN -> DEMI-RECTANGLE  :   {}, 

DEMI-COLUMN -> DEMI-WRAPPER       :   {} 
end-diagram 

DEMI-COLUMN 

DEMI-RECTANGLE DEMI-WRAPPER 

DEMl-INTERFACE-base 

Figure 4: An example of specification composition 
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4    Code Generation 

Code generation is the process of translating a specification into a code module in a 
programming language while preserving semantics. In the mediation context, code 
generation makes the integrated interface specification executable. 

Code generation in SPECWARE is represented as a logic morphism from the logic 
of the specification language SLANG to the logic of a target language such as Lisp or 
C++. A logic morphism translates the syntax of one logic into the syntax of another, 
while preserving the semantics [Meseguer 89]. 

In general, there may be several logic morphisms between any two logics or lan- 
guages. On a given language fragment, the different logic morphisms typically yield 
translations with different performance characteristics. It is desirable to translate one 
part of a language via one logic morphism and another part via another morphism. 
Sheaves and diagram refinements provide a systematic way of combining logic mor- 
phisms. In other words, code generation is just another kind of refinement; so, the 
generic machinery for structured refinement is applicable. 

We describe below the theoretical underpinnings of code generation in SPECWARE 
because logic morphisms are the basis for establishing the correctness of a wrapper. 
Once all the information sources relevant to a problem are wrapped, then we can 
work entirely within the logic of SPECWARE and reason about properties of interest. 
Consistency of the integrated interface specification will then imply the correctness 
of the generated mediator. 

4.1    Entailment Systems and their Morphisms 

A logic consists of an entailment system (syntax and provability) and an institution 
(semantics) suitably related. We will not need institutions for code generation in 
SPECWARE. The definitions below are from [Meseguer 89]. 

An entailment system consists of signatures, sentences and an entailment (or de- 
duction) relation. Signatures typically consist of types and operations, which provide 
the vocabulary for describing a domain of interest. Each logic also defines what its 
well-formed sentences (or formulas) are; these are used to describe the properties of 
the types and operations in a domain. The deduction relation allows us to reason 
about these properties. 

10 



DEFINITION 4.1: Entailment System. An entailment system is a 3-tuple (Sig, sen, h) 
consisting of 

1. a category Sig of signatures and signature morphisms, 

2. a functor sen: Sig —> Set (where Set is the category of sets and functions) 
which assigns to each signature E the set of E-sentences, and to each signature 
morphism a: S —> E', the function which translates E-sentences to E'-sentences 
(this function will also be denoted by a), and 

3. a function h which associates to each signature E a binary relation between sets 
of sentences and sentences h^C P(sen(E)) x sen(E), called S-entailment, 

such that the following properties are satisfied: 

1. reflexivity: for any ip £ sen(E), {</?} h^ <p; 

2. monotonicity: if T f-£ </? and F' D T, then F' hE <*p 

3. transitivity: if T HE V
7
«) f°r ? £ !•> and r U {</?,■ | i G / } h^ -0, then T \~Y, ^; 

4. \~-translation: if T HE y», then for any signature morphism cr: E —> E', c(r) h^' 
cr(<p). 

D 

To map one entailment system into another, we map the syntax while preserving 
entailment. A simple way to map syntax is to map signatures to signatures, and 
sentences over a signature to sentences over the translated signature. If the former is 
a functor, the latter becomes a natural transformation. 

DEFINITION 4.2: Entailment system morphism (plain version), A morphism be- 
tween entailment systems ($, a): (Sig, sen, h) —> (Sig', sen', H) is a pair consisting of 
a functor $: Sig —> Sig' which maps signatures to signatures and a natural transfor- 
mation a: sen -4 sen' o $ which maps sentences to sentences such that entailment is 
preserved: 

r hE <p => aE(r) h'4(E) <*£(¥>). 

D 

Morphisms which map signatures to signatures are not flexible enough, especially 
for code generation. In general, it may be necessary to map built-in elements of 
one logic into defined elements of another, and vice versa. This can be realized by 
mapping signatures to specifications, and vice versa, or, in general, specifications to 

11 



specifications. However, morphisms which map specifications to specifications are 
too unconstrained, so we impose the restriction that there be an underlying map of 
signatures. This gives the right amount of flexibility in mapping sentences. We will 
omit the general definition of entailment system morphism (see [Meseguer 89] for 
details). 

4.2    Localizing Logic Morphisms 

Logic morphisms (and entailment system morphisms) map entire categories of speci- 
fications at once. In the SPEC WARE context, we want to be able to translate different 
specifications via different morphisms. In other words, we want to build a logic 
morphism from pieces of other logic morphisms. This is achieved in SPECWARE by 
defining a new kind of arrow, inter-logic specification morphism, which localizes the 
action of a logic morphism to a single specification. These arrows then participate in 
the normal SPECWARE modularization mechanisms of sequential and parallel com- 
position. 

4.2.1 Inter-Logic Specification Morphism 

An inter-logic specification morphism connects specifications in different logics. It 
is similar to a specification morphism in that it maps the source signature to the 
target signature such that source axioms translate to target theorems. The difference 
is that the structure of the source and target signatures may be different (e.g., Lisp 
specifications do not have sorts), and built-in entities in the source may map to 
defined entities in the target (e.g., the SLANG built-in "implies" is not part of Lisp). 
Similarly the structure of source and target axioms (sentences) may be different (e.g., 
SLANG operations always take a single argument and return a single result, whereas 
Lisp and C++ operations are n-ary and generally return only one result). Polymorphic 
operations in one logic may translate to families in another logic, and vice versa. For 
example, SLANG equality (which is polymorphic) translates to a family of equalities in 
Lisp, while families of List operations translate to the "polymorphic" List operations 
of Lisp. 

4.2.2 Inter-Logic Interpretation 

An inter-logic interpretation is similar to an interpretation except that the source 
and target specifications are in different logics. An inter-logic interpretation is a pair 
consisting of an inter-logic specification morphism and a definitional extension in the 
target specification category, such that the codomains of the two arrows match. 

12 



4.3     C++ Code Generation 

To generate C++ code, we must view C++ as a logic (described below) and specify how 
SLANG concepts translate to C++ concepts. Sorts in SLANG map to types or classes 
in C++. Sort constructors, e.g., subsort, quotient, etc., map to templates. SLANG 
operations map to C++ operations of corresponding type. Definitions maps to defini- 
tions. The translation of a structured specification is obtained from the translations 
of its components via the refinement composition operators of SPECWARE. 

4.3.1 C++ Specifications 

C++ specifications consist of types, constants, operations and definitions. In addition, 
a set of files containing C++ code may be associated with a C++ specification. The 
types, constants, operations and definitions in these files are considered to be part of 
the C++ specification although not explicitly represented. 

4.3.2 C++ Specification Morphisms 

C++ specification morphisms are similar to SLANG specification morphisms in that 
they map types to types, constants to constants, operations to operations and defi- 
nitions to definitions. We distinguish three kinds of morphisms: 

import morphisms, which include one specification into another, 

parameter morphisms, which exhibit the parameter to a parameterized specifica- 
tion, and 

instantiation morphisms, which bind a parameter specification to an actual spec- 
ification. 

All morphisms, except instantiation morphisms, are injective. 

4.3.3 Implicit Sharing 

Import morphisms are construed as inclusions in C++. Thus, when C++ specifications 
are combined via colimits, the common imports are automatically identified. 

4.3.4 Names in C++ Specifications 

The type and constant names in a C++ specification are required to be unique. Op- 
eration names may be overloaded (in the C++ sense). When generating C++ code, 
the system tries to preserve type and operation names used in the source (SLANG) 

specification, unless there is a name clash, in which case the system chooses a unique 
name. 

13 



4.3.5 Slang to C++ Morphisms and Interpretations 

A SLANG-to-C++ (inter-logic) morphism consists of two maps: one which maps SLANG 
sorts to C++ types, and one which maps SLANG operations to C++ operations. 

A SLANG-to-C++ (inter-logic) interpretation is a pair consisting of a SLANG-to-C++ 
morphism and a C++ import morphism. 

4.3.6 Adding a New Basic Translation 

The system provides syntax for adding primitive SLANG-to-C++ interpretations. The 
user has to provide a target specification which imports SLANG-BASE (the transla- 
tion of SLANG built-ins), and two maps, one which translates sorts and one which 
translates operations. 

This is how external information sources, together with code which accesses them, 
are made visible to SPECWARE. Details are provided in Section 5. 

14 



5    Formal Wrappers 

In SPECWARE, a wrapper is simply an interpretation that implements a high-level 
interface in terms of a low-level interface. The wrapper takes an application described 
by the low-level interface and re-presents it via the high-level interface. Wrappers are 
typically used to: 

• add functionality, 

• simplify semantics, 

• translate between representations, and 

• change languages. 

The full SPECWARE functionality for constructing interpretations is available for 
building wrappers. That is, interpretations may be constructed via sequential and 
parallel composition of other interpretations, as described in Section 3. 

In this section, we discuss the wrapping of two databases available from the US 
Geological Survey (USGS): 

• Geographic Name Information System (GNIS), a tabular database describing 
named geological features throughout the US, and 

• Digital Elevation Model (DEM), a custom format database providing elevation 
data in one-degree squares, also throughout the US. 

5.1    Wrapping the GNIS database 

The GNIS database can be obtained in two formats, a concise format containing basic 
information about larger geographic features all over the US, and a detailed format 
containing much more data, available per state. In the GIS demo, we work with 
concise data for California only (250 kb), extracted from the US concise file (5 mb). 
For comparison, the detailed California data occupies 18 mb. 

Figure 6 shows an excerpt from the GNIS concise database. The USGS data 
arrives in ASCII format with fixed size records, redundantly delimited by carriage 
returns. The fields in order are name, type, county, location, and elevation. For 
variety, the figure shows many of the different types of places that may occur; in 
actuality, most of the file describes populated places (type ppl). 

The GNIS wrapper is extremely simple. It changes language (from C++ to SLANG) 
and representation (from natural numbers to representation independent global lo- 
cations, as discussed in Section 6), but it does not add functionality or simplify the 
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Acton ppl Los Angeles 
Agassiz, Mount summit Fresno 
Agua Caliente Reservation . reserve Riverside 
Agua Hedionda bay San Diego 
Alameda County civil Alameda 
Alamo River stream Imperial 
Alcatraz Island island San Francisco 
All American Canal canal Imperial 
Almanor, Lake reservoir Plumas 
Amargosa Range range Inyo 

Anacapa Passage channel Ventura 

Angeles National Forest forest Los Angeles 

Ano Nuevo, Point cape San Mateo 
Antelope Valley valley Los Angeles 
Arrowhead, Lake lake San Bernardino 
Badwater Basin basin Inyo 

342812N1181145W 2688 

370642N1183148W 13891 

334600N1163400W 

330833N1171936W 

373600N1215300W 

331244N1153715W 

374936N1222520W 

324219N1150328W 

401023N1210515W 4500 

363000N1164200W 

340058N1192747W 

341800N1180800W 

370647N1221945W 

344500N1181500W 

341552N1171104W 5114 

361500N1164930W 

Figure 6: Sample GNIS data 

semantics, since all needed functionality is already available in a simple form in the 
low-level interface. 

The GNIS wrapper is formed by the parallel composition of three parts: 

• an interface for GNIS records, 

• an interface for searching GNIS files, and 

• extra operations needed from the ontology library. 

We will discuss these in turn. 

5.1.1    GNIS records 

Since the GNIS record interface is just a simple record type, it is actually generated 
mechanically from a description of the record fields, shown in Figure 7. The numbers 
in the figure are the locations and lengths of the fields within the ASCII record. It 
is basically unimportant that the interface is mechanically generated; we would have 
written exactly the same specifications by hand. We describe each of the components 
of the interface, starting from the actual C++ code. 

GNIS records are represented by the C++ code shown in Figure 8.   The figure 
shows only the representation type, omitting the code for the actual operations. This 
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code is connected to the C++ specification GNIS, shown in Figure 9, via a reference to 
the code file gnis . cc. 

The next level of wrapping is the SLANG specification GNIS, shown in Figure 10. 
This specification is essentially identical to the C++ GNIS specification and serves only 
to change languages from C++ to SLANG. Although the SLANG specification does not 
include axioms (they are not needed for the demo), we could add axioms such as: 

• Names are less than 51 characters long. 

• Type is one of the following: ppl, summit, reserve, ... 

The SLANG and C++ GNIS specifications are connected by the SLANG-to-C++ mor- 
phism shown in Figure 11. 

The final, highest level of wrapping is the SLANG specification EXT-GNIS, shown in 
Figure 12, which imports GNIS and GEOGRAPHIC-COORDINATES, an ontology describ- 
ing representation-independent global locations. EXT-GNIS extends GNIS by defining 
gnis-geoloc, an operation to access the location of a GNIS record abstractly (as 
a GeoLoc), rather than concretely (as latitude and longitude represented by natural 
numbers). 

5.1.2 Searching GNIS files 

This part of the wrapper simply exports functionality from the low-level interface to 
the high-level interface, shown in Figure 13, changing languages from C++ to SLANG. 
It does less than the GNIS record interface, because it neither adds functionality 
nor changes representation. It exports the operations f ind-f irst-gnis, which finds 
the first GNIS record satisfying a predicate, and f ind-all-gnis, which finds all 
GNIS records satisfying a predicate. These operations retrieve records from the GNIS 
database. 

5.1.3 Ontology operations 

As noted above, the high-level interface includes GEOGRAPHIC-COORDINATES, an on- 
tology describing locations on the globe. The wrapper must interpret the operations 
of this ontology if they are to be used in computation. Fortunately, an interpretation 
is available from the ontology library. Wrappers typically include part of the ontology 
library in order to describe the high-level interface in abstract terms. For example, 
the high-level interface to GNIS records uses abstract locations, while the low-level 
interface uses natural numbers. 
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(defun generate-gnis-db i 0 
(gdbi-packed-text 

"gnis" 
'((name string 0 51) 

(type string 51 10) 

(county string 61 32) 

(state string 93 17) 

(latitude-degrees nat 110 2) 

(latitude-minutes nat 112 2) 

(latitude-seconds nat 114 2) 

(latitude-ns character 116 1) 
(longitude-degrees nat 117 3) 
(longitude-minutes nat 120 2) 
(longitude-seconds nat 122 2) 
(longitude-ew character 124 1) 
(elevation nat 125 6) 

))) 

Figure 7: GNIS record description 

class gnis 
{ public: 

string name; 
string type; 

string county; 
string state; 
nat latitude_degrees; 

nat latitude_minutes; 
nat latitude_seconds; 

character latitude_ns; 
nat longitude_degrees; 

nat longitude_minutes; 

nat longitude_seconds; 

character longitude_ew; 
nat elevation; 

>; 

Figure 8: Fragment of GNIS C++ wrapper code 
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c-spec GNIS is 
import SLANG-BASE 

fi] .e "./gnis.cc" 

sort gnis 

op gnis-name gnis -> string 

op gnis-type gnis -> string 

op gnis-county gnis -> string 

op gnis-state gnis -> string 

op gnis-latitude-degrees : gnis -> nat 
op gnis-latitude-minutes : gnis -> nat 
op gnis-latitude-seconds : gnis -> nat 

op gnis-latitude-ns : gnis -> character 

op gnis-longitude- -degrees : gnis -> nat 
op gnis-longitude- -minutes : gnis -> nat 

op gnis-longitude- -seconds : gnis -> nat 
op gnis-longitude- -ew : gnis -> character 

op gnis-elevation : gnis -> nat 

end-c-specification 

Figure 9: GNIS C++ specification 
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spec GNIS is 

sort gnis 

op gnis-name : gnis -> string 
op gnis-type : gnis -> string 
op gnis-county • gnis -> string 
op gnis-state gnis -> string 
op gnis-latitude-degrees gnis -> nat 
op gnis-latitude-minutes gnis -> nat 
op gnis-latitude-seconds gnis -> nat 
op gnis-latitude-ns gnis -> char 
op gnis-longitude-degrees gnis -> nat 
op gnis-longitude-minutes gnis -> nat 
op gnis-longitude-seconds gnis -> nat 
op gnis-longitude-ew gnis -> char 
op gnis-elevation gnis -> nat 

end-spec 

Figure 10: GNIS SLANG specification 
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spec-to-c-interpretation 

GNIS-to-GNIS : GNIS => GNIS is 
mediator GNIS 
dom-to-med 

sort-rules { gnis -> gnis } 
op-rules 

{ gnis-name -> gnis- 

gnis-type -> gnis- 
gnis-county -> gnis- 

gnis-state -> gnis- 

gnis-latitude-degrees -> gnis- 
gnis-latitude-minutes -> gnis- 

gnis-latitude-seconds -> gnis- 
gnis-latitude-ns -> gnis- 

gnis-longitude-degrees -> gnis- 
gnis-longitude-minutes -> gnis- 

gnis-longitude-seconds -> gnis- 

gnis-longitude-ew -> gnis- 
gnis-elevation       -> gnis- 

cod-to-med identity-morphism 

-name, 

■type, 
•county, 
state, 

latitude-degrees, 
latitude-minutes, 

latitude-seconds, 
latitude-ns, 

longitude-degrees, 
longitude-minutes, 
longitude-seconds, 

longitude-ew, 
elevation } 

Figure 11: GNIS SLANG-to-C++ interpretation 
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spec EXT-GNIS is 
import GNIS, GEOGRAPHIC-COORDINATES 

op gnis-latitude : Gnis -> Angle 

definition of gnis-latitude is 

axiom (equal (gnis-latitude g) 

(dms-dir-to-lat 

(gnis-latitude-degrees g) 

(gnis-latitude-minutes g) 

(gnis-latitude-seconds g) 

(gnis-latitude-ns g))) 

end-definition 

op gnis-longitude : Gnis -> Angle 
definition of gnis-longitude is 

axiom (equal (gnis-longitude g) 

(dms-dir-to-lng 
(gnis-longitude-degrees g) 

(gnis-longitude-minutes g) 

(gnis-longitude-seconds g) 

(gnis-longitude-ew g))) 

end-definition 

op gnis-geo-loc : Gnis -> Geo-Loc 

definition of gnis-geo-loc is 
axiom (equal (gnis-geo-loc g) 

(geo-loc 
(gnis-latitude g) 

(gnis-longitude g))) 

end-definition 

end-spec 

Figure 12: Top-level SLANG interface specification for GNIS 
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spec SCAN-GNIS-FILE is 
import LIST-of-GNIS 

sort Gnis-Predicate 

sort-axiom Gnis-Predicate = Gnis -> Boolean 

sort Gnis? 
sort-axiom Gnis? = Gnis + () 

op find-first-gnis : String, Gnis-Predicate -> Gnis? 

op find-all-gnis  : String, Gnis-Predicate -> List-of-Gnis 

end-spec 

Figure 13: A SLANG interface specification with operations for accessing records from 
a GNIS file 
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5.2    Wrapping the DEM database 

The DEM database contains elevation data, stored in a collection of files, one per 
one-degree by one-degree region. Naturally, each region begins and ends on a degree 
boundary, and its sides are parallel to the equator and the meridians. Our convention 
is to name each file by the latitude and longitude of its southwest corner, for example 
38N-122W. 

For the US (except Alaska), each file contains elevations at a regular spacing of 
three arc seconds. That is, each file contains a 1201 x 1201 matrix of elevations. This 
matrix is stored as a sequence of columns from west to east; elevations within each 
column are stored from south to north. Elevations are represented in meters above 
mean sea level. 

Each DEM file is stored in text format (rather than binary) and occupies about 
9 mb; however gzip compresses it to about 1 mb. The continental US is tiled by 
approximately 1000 one-degree blocks; thus, the entire DEM database occupies about 
1 gb when compressed. 

The DEM wrapper is far more complex than the GNIS wrapper because it adds 
significant functionality. Its low-level interface centers on the operation 

op deml-column-in-file  :   String, Nat -> Demi-Column 

which retrieves from the file named by the first argument, the column of elevations 
at the position specified by the second argument. 

The DEM wrapper's high-level interface centers on 

op deml-rectangle  :   Geo-Rect -> Demi-Rectangle 

which maps a geographic region, specified by a rectangle, to the matrix of elevation 
data for the region. Thus, the wrapper must patch together data from several one- 
degree rectangles to return a result. 

The wrapper changes languages from C++ to SLANG and also changes the repre- 
sentation of regions and elevation matrices: 

Data type Low-level representation High-level representation 

Region File name, column number Abstract region 
Elevations Fixed-size column Variable-size rectangle 
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6    Patching Multiple Representations 

An important part of mediation is the reconciliation of different representations of 
the same information, an operation called "patching" in mathematics. The idea 
is to go from local descriptions and transition functions on overlapping parts to a 
global description, a recurring theme in the study of manifolds, bundles and sheaves 
[Mac Lane and Moerdijk 92, Steenrod 51]. 

6.1 An Analogy between Information Integration and Manifolds 

Manifolds are generally constructed by patching or sewing together smaller parts. 
For an n-dimensional manifold, each part is characterized by an isomorphism (home- 
omorphism) into an open subset of Rn, the n-dimensional real vector space. Such an 
isomorphism is called a chart, or a local coordinate system. The entire manifold is 
covered by a collection—called an atlas—of (possibly overlapping) charts. Wherever 
the charts overlap, there are transition functions which map one local coordinate sys- 
tem into another. In fact, a manifold is completely determined by the given subsets 
of Rn and the transition functions: it is obtained as the union of the subsets with 
points related by transition functions identified. The process is abstractly depicted 
in Figure 14. A global description may not exist for a manifold; it is generally unnec- 
essary because operations on manifolds can be reduced to operations using the local 
coordinate systems and transition functions. 

The situation is similar with information integration. We are given a collection of 
information sources. These may overlap in the sense that two sources may represent 
the same information differently: we thus need representation conversion functions. 
If we treat the individual information sources as local coordinate systems and the 
representation conversions as transition functions, then we can patch the sources 
together to obtain an integrated information source, the manifold. 

6.2 An Example of Patching: Multiple Representations of Angles 

We will illustrate patching using the example of angles (e.g., latitudes and longitudes) 
which generally have different representations in different databases. For example, 
in the GIS mediator (see Section 7.3, also Section 5), latitudes and longitudes are 
represented as arc seconds in the DEM (elevation grids) database, as degrees, min- 
utes and seconds in the GNIS (geographic names) database, and as decimal degrees 
in Arc View (a map display application). Note that we can convert between these 
representations only if they represent the same abstract concept, in this case, angles. 
Thus, two databases can interoperate only if they have a shared ontology. This shared 
ontology resides in the mediator. 
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interconnection 
with conversions 

composition with patching 

exploded view: 
multiple representations 

become 
equivalence classes 

Figure 14: Abstract view of patching 
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Such a situation is depicted in Figure 15. ANGLE is an abstract theory of angles. 
The outer two morphisms from ANGLE are two representations of angles, as arc sec- 
onds and as degrees, minutes and seconds. The middle morphism from ANGLE is a 
dual representation obtained by combining the two representations using conversion 
functions. 

A simplified specification for angles is shown in Figure 16 (a real specification 
would include many more operations). The specification states that angles form an 
abelian (i.e., commutative) group under the operation of addition. 

Next, Figures 17 and 18 show two representations of angles. Each of these speci- 
fications provides a concrete representation of angles together with definitions of the 
required operations on angles. 

Figures 19 and 20 show a specification which combines the two representations. 
First, conversion functions are defined between the two representations (sec-to-dms, 
dms-to-sec). These form an isomorphism between the representations. Next, a 
new type is constructed as the quotient under this isomorphism of the disjoint union 
of the two representations. In other words, elements of this new type are tagged 
versions of elements from either representation, and two elements are equal if they 
are either isomorphic or are equal in one of the two representations. Finally, all 
the required operations on angles are defined on this new type by a case analysis 
which dispatches to the corresponding operations on one of the two representations, 
inserting conversions where necessary. 

A simpler (but less general) construction is possible if we choose one of the repre- 
sentations to be primary and convert all other representations into the primary one. 
This is the method we adopted in the GIS mediator. 

6.3    Patching as a Composition Operator 

In the example of Section 6.2 above, it is clear that the process of creating a specifica- 
tion for the dual representation is fairly canonical, with the only creative part being 
the definition of the isomorphism between the two representations. We are planning 
to add a new composition operator to SPECWARE to handle some of the details of 
the construction described above. 
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spec ANGLE 
sort Angle 

end-spec 

Angle \-+ Sec 

spec SEC 
sort Sec 

end-spec 

Angle H-» 

spec SEC-DMS 
sort Sec-Dms 

= (Sec + Dms) / same-angle 
op sec-to-dms: Sec —> Dms 
op dms-to-sec: Dms —> Sec 

end-spec 

spec SEC+DMS 
import sorts Sec, Dms        import 

Angle i->- Dms 

end-spec 

spec DMS 
sort Dms 

end-spec 

Figure 15: An example of patching: multiple representations of angles 
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spec ANGLE is 
sort Angle 

const zero : Angle 

op plus : Angle, Angle -> Angle 

op neg : Angle -> Angle 

% Abelian group axioms 

axiom associativity is 
(fa (x : Angle y : Angle z : Angle) 

(equal (plus x (plus y z)) (plus (plus x y) z))) 
axiom additive-identity is 

(fa (x : Angle) 
(equal (plus x zero) x)) 

axiom additive-inverse is 
(fa (x : Angle) 

(equal (plus x (neg x)) zero)) 
axiom commutativity is 

(fa (x : Angle y : Angle) 
(equal (plus x y) (plus y x))) 

end-spec 

Figure 16: A specification of some properties of angles (e.g., for use as latitudes or 
longitudes) 
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spec SEC is 

sort Sec 

sort-axiom Sec = (Nat, Boolean) 

const zero : Sec 

definition of zero is 

axiom (equal zero <0 true>) 

end-definition 

op plus : Sec, Sec -> Sec 

definition of plus is 
axiom (implies 

(equal si s2) 

(equal  (plus <x sl> <y s2>)  <(plus x y)   sl>)) 
axiom (implies 

(and  (geq x y)   (not   (equal si  s2))) 
(equal  (plus <x sl> <y s2>)  <(minus x y)   sl>)) 

axiom (implies 
(and  (It x y)   (not   (equal si  s2))) 
(equal  (plus <x sl> <y s2>)  <(minus y x)   s2>)) 

end-definition 

op neg   :   Sec -> Sec 
definition of neg is 

axiom (equal   (neg <x sign>)  <x  (not sign)>) 
end-definition 

end-spec 

Figure 17: A representation of angles as signed natural numbers (intended to be arc 
seconds) 
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spec DMS is 
sort Dms 
sort-axiom Dms = (Nat, Nat, Nat, Boolean) 

const zero : Dms 

definition of zero is 

axiom (equal zero <0 0 0 true>) 

end-definition 

op plus : Dms, Dms -> Dms 
definition of plus is 

% omitted 
end-definition 

op neg   :   Dms -> Dms 
definition of neg is 

axiom (equal  (neg <d m s sign>)  <d m s  (not sign)>) 
end-definition 

end-spec 

Figure 18: A representation of angles as signed triples of natural numbers (intended 
to be degrees, minutes and seconds) 
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spec SEC-DMS is 

import SEC, DMS 

op sec-to-dms : Sec -> Dms 

definition of sec-to-dms is 
axiom (equal (sec-to-dms <x sign>) 

((lambda (mins sees) 

<(div mins 60) (rem mins 60) sees sign>) 

(div x 60) (rem x 60))) 

end-definition 

op dms-to-sec : Dms -> Sec 

definition of dms-to-sec is 

axiom (equal (dms-to-sec <degs mins sees sign>) 

(<(plus (times 60 (plus (times 60 degs) mins)) sees) sign>)) 
end-definition 

°/o sec-to-dms and dms-to-sec are inverses, i.e., an isomorphism 
theorem (equal (sec-to-dms (dms-to-sec x)) x) 

theorem (equal (dms-to-sec (sec-to-dms x)) x) 

sort Sec-Dms 

sort-axiom Sec-Dms = (Sec + Dms) / same-angle 

op same-angle : (Sec + Dms), (Sec + Dms) -> Boolean 

definition of same-angle is 
axiom (implies 

(equal x y) 
(same-angle x y)) 

axiom (iff 

(same-angle ((embed 1) x) ((embed 2) y)) 
(equal (sec-to-dms x) y)) 

axiom (iff 

(same-angle ((embed 2) y) ((embed 1) x)) 
(equal (dms-to-sec y) x)) 

end-definition 

Figure 19: Patching of two representations of angles (part 1) 
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const zero   :   Sec-Dms 
definition of zero   :   Sec-Dms is 

axiom (equal zero   ((quotient same-angle)   ((embed 1)  zero))) 
end-definition 

op neg   :   Sec-Dms -> Sec-Dms 
definition of neg  :  Sec-Dms -> Sec-Dms is 

axiom (equal 
(neg ((quotient same-angle)   ((embed 1)  x))) 
((quotient same-angle)   ((embed 1)   (neg x)))) 

axiom (equal 
(neg  ((quotient same-angle)   ((embed 2)  y))) 
((quotient same-angle)   ((embed 2)   (neg y)))) 

end-definition 

op plus   :   Sec-Dms, Sec-Dms -> Sec-Dms 
definition of plus   :   Sec-Dms, Sec-Dms -> Sec-Dms is 

axiom  (equal 
(plus  ((quotient same-angle)   ((embed 1)  xl)) 

((quotient same-angle)   ((embed 1)  x2))) 
((quotient same-angle)   ((embed 1)   (plus xl x2)))) 

axiom  (equal 
(plus  ((quotient same-angle)   ((embed 1)  x)) 

((quotient same-angle)   ((embed 2)  y))) 
((quotient same-angle)   ((embed 1)   (plus x  (dms-to-sec y))))) 

axiom  (equal 
(plus  ((quotient same-angle)   ((embed 2)  y)) 

((quotient same-angle)   ((embed 1)  x))) 
((quotient same-angle)   ((embed 1)   (plus   (dms-to-sec y)  x)))) 

axiom  (equal 
(plus  ((quotient same-angle)   ((embed 2)  yl)) 

((quotient same-angle)   ((embed 2)  y2))) 
((quotient same-angle) 
((embed 1)   (plus  (dms-to-sec yl)   (dms-to-sec y2))))) 

end-definition 
end-spec 

Figure 20: Patching of two representations of angles (part 2) 
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7    Demonstrations 

This section describes three simple demonstrations of Kestrel's technology for media- 
tor construction. These demonstrations are the first in a sequence of prototypes that 
we expect will lead to the rapid construction of realistic mediators. The demonstra- 
tions are: 

Scheduling: We combine a database of movements in TPFDD format (personnel and 
material to be transported between ports) and the GEOLOC database (port 
locations). We select movements based on distance and type. This demonstra- 
tion outlines our basic technology for building mediators and was written for 
use with schedulers developed using the KIDS algorithm synthesis system. 

SQL: We show how to model the SQL query language in SPECWARE, interface to an 
external SQL server, and reason about SQL queries. This demonstration shows 
techniques useful for wrapping and reasoning about external, language-based 
servers. 

GIS: We combine the GNIS database (names and places in the US), the DEM 
database (digital elevation data), and ArcView (a COTS tool for displaying 
GIS data). Given the name of a place in the US, we find its location, extract 
a rectangular region of elevation data around it, select the names and locations 
of all places within the region, and send all data to ArcView for display. In 
essence, GIS is a more complex version of Scheduling. 
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7.1    Scheduling demonstration 

Figure 21 shows the overall architecture of the scheduling mediator. This mediator 
extracts transportation domain data for use in the schedulers developed using KIDS, 
Kestrel's algorithm synthesis system [Smith 90]. 

First, each database is wrapped by a specification describing its interface. The 
movement database is read via an operation select that returns all the movements 
satisfying a predicate, while the the GEOLOC database is read via an operation 
port-location that maps ports to locations. The two database specifications import 
fragments of a global ontology describing ports, locations, movements, and other 
concepts associated with them, such as distance and time. 

Second, the two interface specifications are glued together, sharing whatever parts 
of the ontology they have in common. This ontological commonality allows us to relate 
the two databases; without it, we could not. The result is a combined database. 

Finally, we refine the application interface into the interface of the combined 
database. Here, we specify an operation that returns all the movements that must 
travel at least a certain distance. This function reads movement records from the first 
database and computes how far they must travel via the second. It uses operations 
for computing distance from the common ontology, refinements of which are available 
from the library. 

Figure 22 shows a more detailed view of the scheduling mediator, indicating the 
components of the common ontology and database interfaces. The two database 
interfaces share Basics, a domain-independent ontology about mathematical and 
physical concepts, and Port, a domain-specific ontology about ports. Ports are the 
single domain-specific link between the two databases: each movement specifies its 
source and destination ports, and the GEOLOC database maps ports to locations. 
The GeoLoc specification describes single records, while GeoLoc DB describes the en- 
tire database, and similarly for Movement and Movement DB. 

Figure 23 shows a sample interaction with the scheduling mediator, which has 
been refined to Common Lisp code. In it, we ask for all movements that require 
travel of at least 7000 miles. This query requires access to both databases. 

Although the mediator performs a trivial task, we believe that the architecture 
we have developed will allow us to scale to much larger examples in a disciplined way. 
Specifically, an ontology library, refined to executable code, provides the necessary 
leverage to connect multiple databases and pose queries over the result. Adding 
new queries is easy because the ontologies are rich and already contain the necessary 
concepts. Adding new databases is also easy, because the ontology library is rich 
and already contains the necessary ontologies. The real work lies in extending the 
ontology library when a new domain is encountered. 
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Application interface 
far-movements-ln-mi: Real -> List(Movement) 

I 
Composite database 

select: Pred -> List(Movement) 
port-location : Port -> Location 

y 
Movement database 

select: Pred -> List(Movement) 
GeoLoc database 

port-location : Port -> Location 

/ 

Shared structure 
Ports, Distance, Time 

Figure 21: Scheduling mediator overall architecture 
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Figure 22: Scheduling mediator detailed architecture 

.>  (far-movements-in-mi 7000) 

((OVR-MOVEMENT 6  86400  172799 PQWY FTZH 0 SEA) 
(PAX 29  0 86399 SCEY XBGX 0 AIR) 
(0UT-M0VEMENT 13 0 86399 SCEY XBGX 0 SEA)) 

.>   (distance-in-mi  '(0VR-M0VEMENT 6 86400 172799 PQWY FTZH 0 SEA)) 

7853.369779442932 

Figure 23: Interacting with the scheduling mediator 
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7.2    SQL demonstration 

Suppose we want to specify a formal semantics for an external SQL server with which 
we communicate using text strings. How can we specify that the server is actually 
answering the queries we have in mind, and not some other queries chosen at random? 

This problem requires some thought to appreciate, so let's consider first a simple 
server for addition and multiplication. This example is nonsensical because these op- 
erations can be computed quickly locally, but the problem of communicating with the 
server via text remains. Suppose we send the server the string (+ 3 5). How can we 
reason formally that we will receive 8 as an answer? After all, we can't add numbers 
in textual form, and parsing is inconvenient. Still, we need a connection between 
the textual representation and the abstract, numerical representation. Without this 
connection, the server could return 9 instead of 8 and we wouldn't be any wiser. 

7.2.1    Denotational semantics 

The theory of denotational semantics provides a simple answer. Let's consider several 
models of the specification 

spec ARITHMETIC 
sort Num 

op num : Nat ■ -> Num 
op +  : Num, Num -> Num 
op *   : Num, Num -> Num 

end-! spec 

which describes simple arithmetic expressions. We can represent models as refine- 
ments to other specifications. Figure 24 shows a model in which the arithmetic oper- 
ators build text strings. For instance, (+ (* (num 3) (num 8)) (num 2)) evaluates 
to "(+ (* 3 8) 2)". Figure 25 shows a model in which the operators actually per- 
form arithmetic, so that the same expression evaluates to 26. Figure 26 shows a 
model in which the operators construct abstract syntax trees, so that we obtain a 
tree with two nodes, for * and +, and three leaves, for 3, 8, and 2. We call these three 
models concrete, semantic, and abstract, respectively. 

In general, the semantic model is used for reasoning and actually performing 
arithmetic, while the concrete model is used for communication with the external 
server. The abstract model is used to connect the other two, our primary goal. 

Each of these refinements is called an algebra over the signature given by the 
above specification. An algebra homomorphism over the same signature is an opera- 
tion satisfying the laws shown in Figure 27. The algebras over a fixed signature form 
a category, with homomorphisms as arrows, since the composition of two homomor- 
phisms is a homomorphism. 
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spec CONCRETE is 
import ARITHMETIC 
sort-axiom Num = String 

axiom (equal  (num n) (nat-to-string n)) 
axiom (equal  (+ a b) (string-append "(+ "  a "  " b ")")) 
axiom (equal  (* a b) (string-append "(* " a "  " b ")")) 

end-spec 

Figure 24: Concrete syntax 

spec SEMANTIC is 
import ARITHMETIC 
sort-axiom Num = Nat 

axiom  (equal (num n)  n) 
axiom (equal (+ a b)   (plus ab)) 
axiom (equal (* a b)   (times ab)) 

end-spec 

Figure 25: Semantics 

spec ABSTRACT is 
import ARITHMETIC 
sort-axiom Num = Nat +  (Num, Num)  +  (Num, Num) 

axiom (equal  (num n) ((embed 1)  n)) 
axiom  (equal  (+ a b) ((embed 2)  ab)) 
axiom (equal  (* a b) ((embed 3)  ab)) 

end-spec 

Figure 26: Abstract syntax 
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spec ARITHMETIC-HOMOMORPHISM is 
import 

translate ARITHMETIC by 

Num -> Numl, num -> numl, +->+!, * -> *1 , 
translate ARITHMETIC by 

Num -> Num2, num -> num2, + -> +2, * -> *2 

op h : Numl -> Num2 

axiom (equal  (h  (numl n))   (num2 n)) 
axiom (equal (h (+1 a b))   (+2 (h a)   (h b))) 
axiom (equal  (h  (*i a b))   (*2  (h a)   (h b))) 

end-spec 

Figure 27: Arithmetic homomorphism 

An object of a category is called initial if there is a unique arrow from it to 
any other object. In fact, the abstract model is an initial algebra for the arithmetic 
signature, and the unique homomorphism is given by evaluating expressions, repre- 
sented as abstract syntax trees, over the target algebra. Thus, the homomorphism 
to the concrete algebra produces concrete syntax from abstract, while the homomor- 
phism to the semantic algebra produces actual numbers. We call the former rep, for 
representation, and the latter den, for denotation. 

We interact with the external server by extending the CONCRETE specification with 
an operation 

concrete-value  :   Num -> Nat 

which we implement by sending the text string to the arithmetic server and returning 
the result as a number. 

Similarly, we extend the SEMANTIC specification with an operation 

semantic-value  :   Num -> Nat 

which is actually the identity, since Num and Nat are identical. 
Finally, it remains to be seen how the abstract model allows us to connect the 

concrete and semantic models. We extend a specification containing all of the above 
with the single axiom 

(concrete-value (rep as))  =  (semantic-value (den as))) 
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This axiom states that the values produced by the server are the same as those 
produced by the semantic "reference" implementation. For example, we can reason 

as follows: 

(concrete-value     (c+ (c-num 3) (c-num 5))) 

= (concrete-value (rep (a+ (a-num 3) (a-num 5)))) 
= (semantic-value (den (a+ (a-num 3) (a-num 5)))) 
= (semantic-value     (s+ (s-num 3) (s-num 5))) 
= 8 

We write a-, c- and s- to distinguish the three algebras. The first and last steps are 
justified because rep and den are homomorphisms. The middle step is justified by 

the axiom. 
The axiom also allows us to transfer algebraic laws to the external server.   For 

example, we can show commutativity of addition: 

(concrete-value (c+ (rep al)   (rep a2))) 
= (concrete-value (rep (a+ al a2))) 
= (semantic-value (den (a+ al a2))) 
= (semantic-value (s+ (den al)   (den a2))) 
= (semantic-value (s+ (den a2)   (den al))) 
= (semantic-value (den (a+ a2 al))) 
= (concrete-value (rep (a+ a2 al))) 
= (concrete-value (c+ (rep a2)   (rep al))) 

The reasoning steps are essentially the same as before. We rewrite from concrete to 
semantic, apply the relevant law, and reverse our steps. The explicit use of abstract 
syntax allows us to quantify over all arithmetic expressions al and a2. 

Of course, we could begin with the axiom 

(concrete-value (c+ (rep al) (rep a2))) = 
(concrete-value (c+ (rep a2) (rep al))) 

and spare ourselves the intermediate reasoning, but the point is that the machinery 
we have constructed immediately transfers all axioms from semantic to concrete in a 
single step. Without it, we would need to transfer each axiom individually. 

Note that the simplified axiom 

(c+  (rep al)   (rep a2))  =   (c+  (rep a2)   (rep al)) 

is simply not true, since the two sides are different arithmetic expressions, even though 

their values are the same. 

41 



7.2.2   Semantics of SQL 

Now that we have understood the general approach, let's see how it applies to SQL. 
First we need to specify the SQL language itself. Leaving out some details, the usual 
syntax for the SQL select statement is roughly: 

SELECT  [DISTINCT]  field+ 
[INTO table] 
[FROM table+] 
[WHERE condition+] 
[GROUP BY   [ALL]   column+] 

.     [HAVING condition+] 
[ORDER BY column  [DESC]+] 

Depending on which options are specified, select can perform rather complex com- 
binations of joining, filtering, grouping, accumulating, sorting, and projecting. We 
have chosen to decompose select into five simpler operations: 

basic-select 
:  Distinct?, Projection, Tables, Where?,  Order? -> Table 

aggregate-select 
:  Aggregate, Tables, Where? -> Element 

group-select 

:  Projection, Tables, Where?, Same?, Having?, Order? -> Table 
group-summary-select 

:   Summary,  Tables, Where?, Same?,  Having?,  Order? -> Table 
group-aggregate-select 

:  Aggregate, Tables, Where?,  Same?, Having? -> Element 

These functions differ subtly according to what kind of data is returned and what 
operations are applied to it: 

basic-select joins several tables, filters rows according to a predicate, projects onto 
several fields, sorts the result, and possibly eliminates duplicate rows. 

aggregate-select joins several tables, filters rows according to a predicate, and ap- 
plies an aggregation function to the resulting table such as counting, summing, 
or averaging, 

group-select joins tables, filters rows, groups rows into equivalence classes, filters 
equivalence classes, picks a representative from each class, applies a projection 
function, and sorts the result. 

42 



group-summary-select is like group-select but instead of choosing arbitrarily 
from each equivalence class, it applies a more given summary function. 

group-aggregate-select joins tables, niters rows, groups rows into equivalence 
classes, filters equivalence classes, picks a representative from each class, and 
applies an aggregation function to the resulting table. 

Even given a general understanding of these operations, there are several choices 
for their exact semantics. For example, should we project before or after we sort? 
Should we project before or after we group into equivalence classes? 

To specify the semantics of these operations, we proceed as in the last section. 
We will skip over the details of SQL algebras, but, as before, we have three algebras, 
concrete syntax, abstract syntax, and semantics, and two homomorphisms rep and 
den. The concrete algebra allows interaction with the SQL server, while the semantic 
algebra provides actual semantic content. 

Figure 28 shows the definition of the SQL semantic algebra. Each operation 
is specified as a specific combination of joining, filtering, grouping, accumulating, 
sorting, and projecting. Each of these mathematical operations is easily specified via 
the appropriate laws. Thus, the semantics of SQL is given by reduction to these more 
basic operations, and, as before, the homomorphisms rep and den allow us to reason 
about the behavior of the server. 

Figures 30 through 34 show several English language queries and their formula- 
tions using the SQL operators. These examples refer to a sample publishing database 
of books, authors, and publishers, whose schema is shown in Figure 29. Each Figure 
shows the query, the columns of the joined tables used to answer it, and the query 
formulation. For simplicity, columns are referenced by number. 

The relationship between the query and the operator chosen to answer it is not 
always obvious, because the database is organized around different concepts than 
the query. A theorem prover may be used to search for a low-level formulation of a 
high-level query, assuming that the database is wrapped in a formal theory. 
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(equal  (basic-select 
distinct-f projection table where? order?) 

(distinct-f 
(sort-table 
(map-table projection 
(filter-table table where?)) 

order?))) 

(equal  (aggregate-select aggregate table where?) 
(aggregate (filter-table table where?))) 

(equal  (group-select 
projection table where? same? having? order?) 

(group-summary-select 
(lambda (neT)   (projection (first-row neT))) 
table where? same? having? order?)) 

(equal  (group-summary-select 
summary table where? same? having? order?) 

(sort-table 
(summarize-partition summary 
(filter-partition 
(partition-table (filter-table table where?)  same?) 
having?)) 

order?)) 

(equal  (group-aggregate-select 
aggregate table where? same? having?) 

(aggregate 
(summarize-partition first-row 
(filter-partition 
(partition-table (filter-table table where?)  same?) 
having?)))) 

Figure 28: SQL semantics 
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Table Field 0 Field 1 Field 2 Field 3 

Authors Author Id Name Address 
Books Book Id Title Pub Id Price 
Authors-Books Author Id Book Id 
Publishers Pub Id Name Location 

Figure 29: Sample publishing database 

11 What are the titles and price's of Sue's books, sorted by title? 

11    0     1    2       3     4     5     6     7      8 
Au-Id, Name, Address, Au-Id, Bk-Id, Bk-Id, Title, Pub-Id, Price 11 

1  Distinct? 
1  Projection 

1  Tables 
1  Where? 

(basic-select 
not-distinct 
(lambda (r) 

(make-row2 (column r 6) (column r 8))) 
(join authors (join authors-books books)) 
(lambda (r) 

(and 
(equal "sue" (column r 1)) 
(and (equal (column r 0) (column r 3)) 

(equal (column r 4) (column r 5))))) 
(lambda (rl r2) 1  Order? 

(elt-le? (column rl 0) (column r2 0)))) 

Figure 30: Query using basic-select 
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°/,°/, If I buy one of each of Bob's books, how much do I have to spend? 

IX    0     1    2      3     4     5     6     7      8 
%%    Au-Id, Name, Address, Au-Id, Bk-Id, Bk-Id, Title, Pub-Id, Price 

(aggregate-select 

(lambda (table) •/„ Aggregate 

(sum-table (lambda (r) (column r 8)) table)) 

(join authors (join authors-books books))     '/, Tables 

(lambda (r) °/0 Where? 
(and 

(equal "bob" (column r 1)) 

(and (equal (column r 0) (column r 3)) 

(equal (column r 4) (column r 5)))))) 

Figure 31: Query using aggregate-select 

'/,'/, Which books have more than one author? 

H    0 12 3 4 5 
{%    Bk-Id, Title, Pub-Id, Price, Au-Id, Bk-Id 0/0, 

(group-select 

(lambda (r) •/, Projection 
(make-rowl (column r 1))) 

(join books authors-books) •/, Tables 
(lambda (r) •/„ Where? 

(equal (column r 0) (column r 5))) 
(lambda (rl r2) •/„ Same? 

(equal (column rl 0) (column r2 0))) 

(lambda (table) */, Having? 
(not (elt-le? (count-table table) elt-1))) 

(lambda (rl r2) true)) •/, Order? 

Figure 32: Query using group-select 
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n 
n 

What is each publisher's average book price, 
sorted by publisher's name? 

%%    0     12      3     4      5    6 
•/.•/. Bk-Id, Title, Pub-Id, Price, Pub-Id, Name, Location 

(group-summary-select 
(lambda (table) %  Summary 

(make-row2 
(column (first-row table) 5) 
(avg-table (lambda (r) (column r 3)) table)) 

(join books publishers) %  Tables 
(lambda (r) %  Where? 

(equal (column r 2) (column r 4))) 
(lambda (rl r2) %  Same? 

(equal (column rl 2) (column r2 2))) 
(lambda (table) true) '/. Having? 
(lambda (rl r2) % Order? 

(elt-le? (column rl 0) (column r2 0))))) 

Figure 33: Query using group-summary-select 

How many books have at least one author living in Palo Alto? n 
n    0 12 3 4 
0/o°/o    Au-Id,  Name,  Address, Au-Id,  Bk-Id 

(group-aggregate-select 
count-table °/0 Aggregate 
(join authors authors-books) '/, Tables 
(lambda (r) '/. Where? 

(and  (equal  (column r 0)   (column r 3)) 
(equal  (column r 2)   "Palo Alto"))) 

(lambda (rl r2) '/, Same? 
(equal  (column rl 4)   (column r2 4))) 

(lambda (table)  true)) °/0 Having? 

Figure 34: Query using group-aggregate-select 
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7.3    GIS demonstration 

The GIS mediator displays elevation data for a rectangular region around a given 
location. Figure 35 shows the results produced by the GIS mediator. After starting 
the ArcView tool, we execute a query script, which brings up a dialog box asking 
for the name of a place and the size of a rectangle around it, in arc seconds. The 
mediator then produces a display like the one shown in the figure. The mediator 
performs the following actions: 

• It obtains the location of the place from the GNIS database. 

• It obtains the elevation data from the DEM database. 

• It obtains the names and locations of places within the rectangle from the GNIS 
database. 

• It sends all this data to ArcView. 

The GNIS and DEM formats were already described in Chapter 5 on wrappers. We 
first describe the ArcView interface, then the mediator itself. 

7.3.1    ArcView 

ArcView is a widely used visualization tool in the commercial GIS field. It is pro- 
duced by Environmental Systems Research Institute (ESRI) of Redlands, CA, which 
also produces Arclnfo, the standard system for GIS computation. ArcView can dis- 
play and query GIS data in both vector and raster formats and includes a scripting 
language called Avenue. 

ArcView accepts data from the the mediator in two formats: 

• a .txt file containing the names of places and their locations, shown in Fig- 
ure 36, and 

• a .tiff file containing the elevation data image in a standard format, together 
with a .tiffw file ("w" for "world"), shown in Figure 37, describing the size 
and geographic location of the .tiff file. 

The .txt file format is straightforward, except that locations are represented 
in signed decimal degrees, while locations in the GNIS database are represented in 
degrees, minutes, seconds, and direction. The mediator converts between the two 
representations; for example, 372631N becomes 37.441944. 

The mediator writes elevation data in .raw-pgm format; elevations are represented 
as decimal numbers, one per line in text format. To create a .tiff image, we run the 
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shell script shown in Figure 38, which also colors the data according to a standard 
elevation color map. The mediator writes .txt and .tiffw files directly. 

The .tiffw file informs ArcView where the .tiff image is located on the earth, 
what size it is, and how it oriented, so that ArcView can display it properly. The 
file gives an affine transformation from the image grid (with indices 0, 1, 2, ...) to 
the world coordinate system (in decimal degrees). Since DEM image data is parallel 
to the equator and meridians, no rotation or shear is necessary, so the second and 
third numbers are always zero. The first and fourth numbers then give the degrees 
per pixel in the horizontal and vertical directions; for 1-degree DEM files, they are 
always positive and negative three arc seconds, the standard DEM spacing. The final 
two numbers specify the location of the image's southwest corner. 

7.3.2    GIS mediator structure 

Figure 40 shows the top level specification of the GIS mediator. It imports the colimit 
of the diagram shown in Figure 39. The diagram indicates the overall structure of 
the mediator, while the final specification shows how the different elements are used 
in the mediation process. 

The operation gnis-dem-main takes two strings and two numbers and produces 
an action, which is to write several files. Actions are discussed in the next section. 
The strings represent the name of a place to locate and a file name prefix for the files 
to be written. The numbers represent the height and width of the rectangle in arc 
seconds. The function finds the place, complains if it doesn't exist, and writes the 
relevant image, world, and text files. 

The mediator is composed of three wrappers, glued together via a shared on- 
tology, which ties them together conceptually. Without the shared ontology, the 
databases could not exchange data. The shared ontology is composed of three spec- 
ifications, Geographic-Rectangle, which describes rectangular geographic regions, 
List-of-Gnis, which describes lists of GNIS records, and Demi-Rectangle, which 
describes grids of elevation data. The morphisms in the diagram show which ontology 
components are required by which wrappers; careful consideration shows that these 
are the necessary and sufficient relationships between the wrappers. 
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Location, Latitude, Longitude 

Woodside, 37.43, -122.253 

Upper Crystal Springs Reservoir, 37.5094, -122.35 

Union City, 37.5958, -122.018 
Tunitas, 37.3817, -122.388 

Sunnyvale, 37.3689, -122.035 

Figure 36: ArcView .txt file 

0.000833333 

0 
0 
-0.000833333 
-122.503 

37.7197 

Figure 37: ArcView .tiffwfile 

#!/bin/sh 

main "$1" $2 $3 $4 
scale < $4.raw-pgm > $4.pgmr 
pnmflip -rotate90 $4.pgmr > $4.pgm 
pgmtoppm -map   ../utilities/256b.ppm $4.pgm > $4.ppm 
pnmtotiff -none $4.ppm > $4.tiff 
rm $4.pgmr $4.pgm $4.ppm 

Figure 38: GIS mediator shell script 

LIST-0F-GNIS GEOGRAPHIC-RECTANGLE DEMI-RECTANGLE 

DEMI-WRAPPER GNIS-WRAPPER ARCVIEW-WRAPPER 

Figure 39: GIS mediator architecture 
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spec GNIS-DEMl-MAIN is 

import GNIS-DEMl-MAIN-import 

op gnis-dem-main : String, String, Distance, Distance -> Action 
definition of gnis-dem-main is 

axiom (equal (gnis-dem-main place file w h) 
(gnis-dem-auxl 

(find-first-gnis "ca-concise" < name-equal? place >) 
file v h)) 

end-definition 

op gnis-dem-auxl : Gnis?, String, Distance, Distance -> Action 

definition of gnis-dem-auxl is 

axiom (equal (gnis-dem-auxl ((embed 2) x) file w h) 
(write-string "Can't find place!\\n")) 

axiom (equal (gnis-dem-auxl ((embed 1) g) file w h) 

(gnis-dem-aux2 file (geo-rect (gnis-geo-loc g) w h))) 
end-definition 

op gnis-dem-aux2 : String, Geo-Rect -> Action 

definition of gnis-dem-aux2 is 
axiom (equal (gnis-dem-aux2 file r) 

(seq-actions 
(write-pgm-file 

(concat-string file ".raw-pgm") 

(deml-rectangle r)) 
(seq-actions 

(write-world-file 
(concat-string file ".tiffw") 

r) 

(write-gnis-table 
(concat-string file ".txt") 

(find-all-gnis "ca-concise" < gnis-in? r >))))) 
end-definition 

end-spec 

Figure 40: Top level GIS mediator specification 
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7.3.3   Actions 

As part of the GIS mediator, we have included a theory of actions. This theory 
allows us to mix imperative and functional programming styles. Normally, in a purely 
functional language such as SLANG or Haskell, computations can only return values; 
they cannot perform I/O operations, such as writing files. Needless to say, it is useful 
for mediators to write files! There are two solutions to this problem: 

• Abandon purely functional languages. 

• Treat I/O-performing computations as values. 

In the former, we program in a mixed functional / imperative language such as Lisp 
or C, in which we can execute printf ("xyz") or (format t "xyz"). In the latter, 
we use a purely functional language to construct actions. Actions are values that 
represent I/O-performing computations. For example, (write-string "xyz") is an 
action that, when executed, writes "xyz". 

Figure 41 shows the ACTION specification, which states that actions form a monoid 
under null-action and seq-actions; in other words, actions are sequences of more 
basic actions. The basic actions are writing natural numbers, characters, strings, and 
newlines. In addition, actions can be directed to files using with-output-to-f ile. 
For example, the action 

(with-output-to-file "foo" 
(seq-actions 
(write-nat 43) 
(seq-actions 
(write-string "hello") 
write-newline))) 

writes "43hello", followed by a newline, to the file foo. 

Functional programs can return actions, but they cannot execute them. Once 
returned, actions are executed by an external agency (the surrounding system), so 
that the functional computation remains free of side-effect. Actions are not executed 
unless they are sequenced into the final action returned at the end. In particular, an 
action that is constructed and then "thrown away" is never executed. 

In our current implementation, all actions are executed at the end; however, we 
could alternatively interleave the execution of the functional program and the actions 
it returns. That is, we could run the functional program to produce an action, execute 
the action, then continue the program to produce more actions. This strategy would 
allow us to reclaim some of the space used to produce the initial actions, reducing 
the storage requirements of the program. 

53 



spec ACTION is 

sort Action 

op write-nat 

op write-char 
op write-string 

op write-newline 

Nat -> Action 

Char -> Action 
String -> Action 
Action 

const null-action : Action 
op   seq-actions : Action, Action -> Action 

'/o'/o Actions form a monoid: 

axiom (equal (seq-actions a null-action) a) 

axiom (equal (seq-actions null-action b) b) 
axiom (equal (seq-actions a (seq-actions be)) 

(seq-actions (seq-actions ab) c)) 

op with-output-to-file 
end-spec 

String, Action -> Action 

Figure 41: Action specification 

54 



Compared to Lisp or C, actions in functional language are easier to reason about 
but less modular. For example, in SLANG it is always true that 

(+  (f x)   (f x))  =  (* 2  (f x)) 

but, in a mixed language, f may print "hello", in which case we obtain two hellos 
from the left side and only one from the right. Thus, in order to reason effectively, we 
need knowledge of which operations perform side-effects. In the functional language, 
there is only one kind of computation; side-effects are not allowed. 

On the other hand, a mixed language is very convenient, because actions are 
implicit and implicitly sequenced. If we change a low-level function to print a message 
for debugging, we don't need to change every function that calls it to return an action. 
In other words, small conceptual changes require only small textual changes. 

The long-standing debate between the functional and imperative schools is not yet 
over, although the issues involved are understood fairly well. It is clear that both sides 
have significant advantages and disadvantages; what remains is to find an acceptable 
synthesis between the two. One possibility is a type system that keeps track of which 
computations are imperative, yet allows them to be implicitly sequenced. 

The basic idea behind actions was invented independently by several researchers: 

• by the Algol 60 commitee, as pointed out later by John Reynolds, while design- 
ing a programming language, 

• by John McCarthy, while reasoning about actions in planning, 

• by Peter Henderson, while drawing graphical pictures in a functional language, 

• by Eugenio Moggi, while structuring the denotational semantics of mixed lan- 
guages. 

Reynolds emphasized Algol's subtle distinction between values and phrases (i.e. 
computations or actions) [Reynolds 81]. For example, 5 is a value, while 2+3 and 1+4 
are phrases. Both of these can be passed to and returned from functions. As above, 
this distinction allows Algol programs to be conceptually evaluated in two phases, a 
functional phase that yields an imperative program (an action), and an imperative 
phase that executes it. 

McCarthy invented the situation calculus for reasoning about actions in blocks- 
world planning [McCarthy and Hayes 69]. The calculus includes expressions such as 
puton(A, B), the action of putting block A on block B, and result (a, s), the state 
obtained by performing action a in state s. McCarthy was probably the first author 
to represent actions as values. 
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Henderson invented a way to express graphical pictures in a functional language 
[Henderson 80]. He used combinators, such as horizontal and vertical juxtaposition, 
rotation, and reflection, to build complex pictures from simpler parts. None of the 
operators actually cause pictures to appear on the screen; they simply construct 
pictures from other pictures, as though pictures were values. When a picture is 
finally returned by a program, it is "magically" displayed on the screen. 

Eugenio Moggi generalized actions using the category-theoretic concept of monad 
[Moggi 89]. Moggi showed how monads can represent many different types of im- 
perative computation (state, I/O, nondeterminism, continuations, parallelism, excep- 
tions, etcetera). Moggi's ideas were popularized by Philip Wadler [Wadler 92], and 
numerous papers have since been written on this topic in the functional programming 
community. 

The GIS mediator uses actions to write the .tiff, .tiffw, and .txt files. Us- 
ing actions, the handwritten main program for the mediator is very simple: extract 
the command line arguments, pass them to the SPECWARE-generated mediator, and 
perform the action that it returns. This action writes the files needed by ArcView, 
which displays the appropriate images. 
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8    Results and Future Plans 

The results of our project so far indicate progress on all aspects of our approach: a 
formal specification and refinement process applied to the development of mediators. 

Formal wrappers: A formal wrapper is a logical specification of the relevant func- 
tionality (interface) of an information source, together with a formal connection 
to the code which realizes it. In SPECWARE, a wrapper specification is a theory 
in higher-order logic, while the code realizing it can be in Lisp or C++. 

We have constructed such wrappers for the GNIS (Geographic Name Informa- 
tion System) and DEM (Digital Elevation Model) databases from the US Ge- 
ological Survey, and for simplified versions of the TPFDD (movement require- 
ments) and GEOLOC (port locations) databases from the DARPA Planning 
Initiative. In addition, we have shown how to wrap an external SQL server. 

Composition and patching: The wrapper (or interface) specifications mentioned 
above are structured, i.e., composed from smaller specifications. SPECWARE 
provides flexible ways of interconnecting and composing specifications, enabling 
rapid construction of interfaces using pre-existing libraries.1 

Patching is the composition of specifications which represent a shared concept 
differently. Patching also applies to refinements: it is the composition of refine- 
ments which refine a shared concept differently. A simple version of patching is 
used in combining the GNIS and DEM databases to handle different represen- 
tations of geographic coordinates. 

Mediator generation: In the SPECWARE framework, mediator generation is the 
refinement/realization of the application interface in terms of the interfaces of 
the information sources. As already mentioned, SPECWARE supports the com- 
position and patching of the interface specifications; this composition structure 
can be exploited to build a refinement from the application interface into the 
code connected to the wrappers. 

The GIS demonstration (Section 7.3), which combines the GNIS and DEM 
databases, is an example. The application interface consists of a single kind 
of query: retrieve elevation and location information in a rectangular region 
around a given place. This function, after several steps of refinement, is finally 
realized by the basic functionality provided by the GNIS and DEM databases. 
Currently, this refinement process is manual. 

1Of course, the building of useful libraries is a hard problem. 
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Future Plans 

In subsequent work, we plan to automate the mediator development process and 
exploit this automation to construct larger examples. 

System support for patching: The goal here is to provide a new composition op- 
erator, patching, in SPECWARE. Such an operator, in the basic case, would take 
two different refinements (representations) of a concept, together with conver- 
sion functions relating the two representations, and combine them into a single 
refinement (i.e., a dual representation). In other words, an implementation of 
patching will transparently handle multiple representations of concepts. 

Mediator development automation: The process of refinement in SPECWARE is 
mostly manual because of its generality. Mediator development is more specific 
and stylized, so it is possible to automate some parts, e.g., the refinement to 
code of an interface specification built by composing and patching together 
wrapper specifications which have direct realizations as code. 

We will also leverage any progress on SPECWARE which helps us to tackle larger 
mediation problems. 
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