
AFRL-IF-RS-TR-1999-61
Final Technical Report
April 1999

FORMAL METHODS FOR INTEGRATING
KNOWLEDGE BASES

Kestrel Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C322

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19990607 093
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY INSPECTED 4'

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-61 has been reviewed and is approved for publication.

APPROVED: /fezy/rv»/ "■ '^^fY-—
RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: (Tf £X«<
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

FORMAL METHODS FOR INTEGRATING KNOWLEDGE BASES

David Espinosa

Contractor: Kestrel Institute
Contract Number: F30602-95-C-0122
Effective Date of Contract: 17 April 1995
Contract Expiration Date: 30 December 1998
Short Title of Work: Formal Methods for Integrating Knowledge Bases

Period of Work Covered: Apr 95 - Dec 98

Principal Investigator: David Espinosa
Phone: (650)493-6871

AFRL Project Engineer: Raymond A. Liuzzi
Phone: (315)330-7796

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored by
Raymond A. Liuzzi, AFRL/IFTB, 525 Brooks Road, Rome, NY
13441-4505.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

l^S^^I"' ,0J 'hiS Z°*f°" " i",ormi"i;n is.e
1f.

ti™,e
J
d ,0 a,era'e' h°"r Por/esponse, ™W"1<"«<i™ for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

n„.I t ,.H . „ 7 S, r, Pl?d "™=nts regarding this burden estimate or any other aspect of this collection ol information, including suggestions fo, reducing this burden, to Washington Headquarters Services, DtaSTÄZ
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, «A 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 1070401881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank}

4. TITLE AND SUBTITLE

2. REPORT DATE

 April 1999
3. REPORT TYPE AND DATES COVERED

Final Apr 95 - Dec 98

FORMAL METHODS FOR INTEGRATING KNOWLEDGE BASES

6. AUTHOR(S)

David Espinosa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Kestrel Institute
3260 Hillview Avenue
Palo Alto CA 94304

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ~

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

C - F30602-95-C-0122
PE - 62301E
PR - C322
TA - 00
WU - 01

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-61

Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT Maximum 200 words) ~ ——
The object of this effort is to demonstrate the effectiveness of formal specification and refinement techniques for constructing
realistic mediators. Such techniques will enable the rapid and reliable construction of mediators in fast-breading situations.
This report describes the problem of mediation and an approach to solving this problem, that includes a formal specification
and refinement process for mediator generation. SPECWARE is a formal software development tool that is extended with a
mediator generation capability. This effort describes the process of translating specifications to code in Lisp or C + +. The
facility described is used both for describing wrappers and generating mediation code. Formal wrappers were built in
SPECWARE. The theoretical notion of "patching" provides a systematic way of handling multiple representations of the
same concept which is a basic problem in mediation. Patching, and its implementation in SPEC WARE, are the major
contributions of this project to mediation technology. This report also describes three demonstrations and summarizes the
results, and outlines future work.

14. SUBJECT TERMS

Data Base, Knowledge Base, Software, Artificial Intelligence, Computers

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

80
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std.23B.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

1 Introduction
1.1 Outline 1

2 Background and Project Overview ■,
2.1 The Mediation Problem ,
2.2 Objective 9

2.3 Focus 0

2.4 Approach

3 Specware Overview
3.1 Specware, a Formal Software Development Environment 4
3.2 Current Capabilities of Specware 5

3.3 Composition with Overlaps 5

4 Code Generation 10

4.1 Entailment Systems and their Morphisms 10
4.2 Localizing Logic Morphisms 12

4.3 C++ Code Generation ,0

5 Formal Wrappers 15

5.1 Wrapping the GNIS database 15

5.2 Wrapping the DEM database 24

6 Patching Multiple Representations 25
6.1 An Analogy between Information Integration and Manifolds 25
6.2 An Example of Patching: Multiple Representations of Angles 25
6.3 Patching as a Composition Operator 27

7 Demonstrations 34

7.1 Scheduling demonstration 35
7.2 SQL demonstration 00
7.3 GIS demonstration 40

8 Results and Future Plans 57

References _g

1 Introduction

This document constitutes the final progress report on "Formal Methods for Integrat-
ing Knowledge Bases", Contract No. F30602-95-C-0122 to Rome Laboratory. Tech-
nical work performed under this contract from 17 April 1995 to 31 December 1998 is
summarized in this report.

1.1 Outline

Section 2 provides some background on the problem of mediation and describes our
approach to solving this problem, a formal specification and refinement process for
mediator generation. Section 3 describes SPECWARE, a formal software development
tool being built at Kestrel. In this project, SPECWARE is being extended with a
mediator generation capability. Section 4 describes the process of translating speci-
fications to code in Lisp or C++. This facility is used both for describing wrappers
and generating mediation code. Section 5 discusses how formal wrappers are built in
SPECWARE. Section 6 describes the theoretical notion of "patching", which provides
a systematic way of handling multiple representations of the same concept, a basic
problem in mediation. Patching, and its implementation in SPECWARE, are the ma-
jor contributions of this project to mediation technology. Section 7 describes three
demonstrations of the work done under this project. Section 8 summarizes the results
so far and outlines future work.

2 Background and Project Overview

2.1 The Mediation Problem

The proliferation of computers and the phenomenal advances in interconnectivity via
high speed networks have resulted in easy access to a large number of information
sources. Consequently, modern applications, both military (e.g., battlefield manage-
ment) and commercial (e.g., airline scheduling), depend on pulling together informa-
tion from several different sources. The heterogeneity of the information sources, and
the applications using them, is a significant hurdle to the effective use of the informa-
tion. Heterogeneity arises in several ways: different computing platforms, different
representation and programming languages, and different semantic assumptions.

Mediation is the problem of providing a coherent information conduit between a
collection of heterogeneous sources and applications. This entails translation between
different representations as well as the reconciliation of the same information repre-
sented differently by several sources. Such translation and reconciliation can range
from syntactic (e.g., conversion between different data formats) to semantic (e.g.,
relating different kinds of 'altitude').

1

A mediator is an (extra) application which mediates all transactions between the
information sources and applications to which it is connected. It presents a single,
semantically coherent view of the information sources to the applications; in other
words, it hides the heterogeneity of the information sources from the applications by
performing all the necessary translation and reconciliation.

Project Overview

2.2 Objective

The objective of our project is to demonstrate the effectiveness of formal specification
and refinement techniques for constructing realistic mediators. Such techniques will
enable the rapid and reliable construction of mediators in fast-breaking situations.

2.3 Focus

Within the larger problem of mediation, our project focusses on the aspect of seman-
tic interoperation, i.e., relating information from heterogeneous sources at a semantic
level. We further focus on articulating paradigmatic methods of semantic interoper-
ation, so as to enable the generation of mediators.

2.4 Approach

Our approach is to apply a formal specification and refinement process to the devel-
opment of mediators. To this end, information sources are first wrapped in formal
interface specifications; the application(s) are also similarly wrapped. We assume
the availability of libraries of specifications (ontologies) suitable for this purpose.
Next, the interface specifications are composed, with conversion functions inserted
for shared parts; the composition represents the global interface specification for the
information sources. Finally, the operations in the application interface are realized
in terms of (or, refined into) the global interface specification. Figure 1 renders this
process pictorially, and highlights features of this approach.

The implementation task of this project is being carried out using SPECWARE, a
tool that supports the modular construction of formal specifications and their refine-
ment to code (in Lisp or C++).

o

o
• 1-1
«M

Cß 1+-»

O

S
s

• 1-1

"o O u
<J

!—H V) s u
MH O

>H *J
CD rs
£ 01
O a,

fe o

O
u
5H ^

w 00
gi

ue

th
eo

ry

0)
.C K>

S 45

m
o "}
5 CD

c vi_J

o

CO

o
«3
O
(-1

ex

S-l

0)

Cü

f-H

3 Specware Overview

3.1 Specware, a Formal Software Development Environment

SPECWARE [Srinivas and Jüllig 95] is a tool that supports the modular construction
of formal specifications (in higher order logic) and the stepwise and componentwise
refinement of such specifications into executable code (in Lisp and C++). Software
development in SPECWARE is characterized by two tenets:

Description: We always deal with descriptions, i.e., a collection of properties, of the
artifact that we ultimately wish to build. These descriptions are progressively
refined by adding more properties, until we can exhibit a model or witness
(usually a program) which satisfies these properties. Descriptions in SPECWARE
are written in one of several logics.

Composition: We handle complexity and scale by providing composition operators
which allow bigger descriptions to be put together from smaller ones. The
colimit operation from category theory is pervasively used for composing struc-
tures of various kinds in SPECWARE. Besides composition operators, one needs
bookkeeping facilities and information presentation at various abstraction lev-
els. SPEC WARE uses category theory for bookkeeping and abstraction.

SPECWARE maintains a design history which indicates how the final code is de-
rived from the original specification. In this manner, the advantage of a declarative,
knowledge-based approach is combined with the efficiency of optimized code.

SPECWARE is a shift from formality in-the-small to formality in-the-large. This
shift has necessitated a new conceptual basis in category theory, topology, and sheaf
theory, abstract mathematical theories that were originally invented for dealing with
complex structures. On top of this mathematical kernel, SPECWARE uses algebraic
specification and general logics, formalisms which have resulted from decades of re-
search in formal specification. These formalisms are based on category theory and
provide abstract composition operators which are independent of the specification
language. The language of category theory results in a highly parameterized, robust,
and extensible architecture that can scale to system development.

History. Kestrel has been pursuing a knowledge-based approach to software de-
velopment for over a decade using KIDS, an algorithm design system [Smith 90],
DTRE, a data type refinement system [Blaine and Goldberg 91], and REACTO, a
state-machine design system [Gilham et al. 89]. The common thread in these tools
is the explicit representation of knowledge: foundation knowledge (data types, arith-
metic, etc.), domain-specific knowledge (transportation resource models, scheduling

constraints, etc.), and problem-solving knowledge (divide-and-conquer, global search,
incremental computation, etc.) SPECWARE is an attempt to integrate the capabili-
ties of these tools on the common conceptual foundation of structured theories, and
moreover, provide much more functionality in a scalable and extensible way.

3.2 Current Capabilities of Specware

Specifications in SPEC WARE are written in a variant of higher order logic called SLANG
[Srinivas and Jüllig 95, Lambek and Scott 86]. Specifications can be built modularly
via specification-building operations such as import, translate and colimit. One spec-
ification can be refined into another (the latter being less abstract or more concrete)
via an interpretation [Lambek and Scott 86, Turski and Maibaum 87]. An interpreta-
tion formally indicates how the types and operations of one specification are realized
in terms of the types and operations of another specification.

Interpretations can be cascaded, thus resulting in stepwise refinement. Moreover,
interpretations interact gracefully with the specification-building operations: a speci-
fication built from parts can be refined by refining its parts in a compatible way. There
is thus a two-dimensional space of specifications related by the "part-of" relation in
one dimension and the refinement relation in the other dimension.

A sufficiently refined specification can be transformed into executable code in pro-
gramming languages such as Lisp and C++. This process is represented in SPEC WARE
as refinement into a different logic, i.e., programs are specifications too! Again, such
inter-logic refinements can be composed.

Figure 2 shows the graphical interface of SPECWARE and highlights various ca-
pabilities. A resolution prover provides inference services. A library of foundation
theories, e.g., containers, algebraic structures (monoids, groups, partial orders, etc.),
numbers, etc., is preloaded into SPECWARE. Domain-specific libraries for transporta-
tion scheduling (e.g., tasks, resources) and problem-solving libraries (e.g., divide-and-
conquer, global search) are also being added.

3.3 Composition with Overlaps

Interesting interconnections of parts have overlaps. In SPECWARE, interconnections
of components are represented by diagrams (a formal notion in category theory) of
objects related by arrows which indicate the overlaps. The colimit operation produces
a single object from the diagram by "gluing" the parts together along the indicated
overlaps. Conversely, the diagram may be construed as a "covering" (a formal notion
in topology) of the colimit object by parts. This kind of composition is abstractly
illustrated in Figure 3.

Composition using diagrams and colimits is more general than the commonly used
mechanisms of import and inheritance. Morphisms provide precise control over how

(-1

o
ft

CO

•s ft
CO

the parts are related and indicate which parts are to identified and which are to be
copied. Import and inheritance, on the other hand, rely on implicit rules to determine
sharing and ancestry, a reliance which is not conducive to scaling.

Example (specification composition). Figure 4 shows a simple example of a
specification composed from smaller specifications via a colimit operation (following
the abstract pattern in Figure 3). The specifications describe 1-degree digital ele-
vation models (DEMI), which are regularly spaced grids of elevations on the earth's
surface. DEMI-COLUMN is the specification for a column of elevations (i.e., in the North-
South direction). DEMI-RECTANGLE specifies grids of elevations, as arrays of columns.
DEMI-WRAPPER is the specification of functions which retrieve single columns from
a file containing elevation data. As a step towards providing a higher-level inter-
face for elevation models, DEMI-RECTANGLE and DEMI-WRAPPER are composed, with
DEMI-COLUMN being the part shared between them.

3.3.1 Structured Refinement

SPECWARE provides composition operators not only for specifications, but also for
refinements. This is done by lifting the structure of specifications to refinements: a
composed object can be transformed or refined using transformations of the parts,
provided these are "compatible" (a formal notion in sheaf theory), i.e., the sub-
transformations agree where the parts overlap. Refinement with overlaps is abstractly
illustrated in Figure 5.

Structured refinement is realized in SPECWARE via the notion of diagram refine-
ment, which is a diagram of refinements and refinement morphisms connecting two
specification diagrams. A diagram refinement can be parallely composed to obtain a
refinement from the colimit of the source diagram to the colimit of the target diagram.
Diagram refinements are thus a structuring mechanism for refinements. This structur-
ing mechanism is mostly independent of the particular notion of "refinement"; hence,
it applies not only to refinements between specifications, but also to refinements from
specifications to code.

interconnection

^ ^

composition/gluing

Figure 3: Composition with Overlaps

spec DEMl-INTERFACE-base is
colimit of diagram

nodes DEMI-COLUMN, DEMI-RECTANGLE, DEMI-WRAPPER
arcs DEMI-COLUMN -> DEMI-RECTANGLE : {},

DEMI-COLUMN -> DEMI-WRAPPER : {}
end-diagram

DEMI-COLUMN

DEMI-RECTANGLE DEMI-WRAPPER

DEMl-INTERFACE-base

Figure 4: An example of specification composition

o
V

component
refinement

<3

composition/
gluing

Figure 5: Refinement with Overlaps

4 Code Generation

Code generation is the process of translating a specification into a code module in a
programming language while preserving semantics. In the mediation context, code
generation makes the integrated interface specification executable.

Code generation in SPECWARE is represented as a logic morphism from the logic
of the specification language SLANG to the logic of a target language such as Lisp or
C++. A logic morphism translates the syntax of one logic into the syntax of another,
while preserving the semantics [Meseguer 89].

In general, there may be several logic morphisms between any two logics or lan-
guages. On a given language fragment, the different logic morphisms typically yield
translations with different performance characteristics. It is desirable to translate one
part of a language via one logic morphism and another part via another morphism.
Sheaves and diagram refinements provide a systematic way of combining logic mor-
phisms. In other words, code generation is just another kind of refinement; so, the
generic machinery for structured refinement is applicable.

We describe below the theoretical underpinnings of code generation in SPECWARE
because logic morphisms are the basis for establishing the correctness of a wrapper.
Once all the information sources relevant to a problem are wrapped, then we can
work entirely within the logic of SPECWARE and reason about properties of interest.
Consistency of the integrated interface specification will then imply the correctness
of the generated mediator.

4.1 Entailment Systems and their Morphisms

A logic consists of an entailment system (syntax and provability) and an institution
(semantics) suitably related. We will not need institutions for code generation in
SPECWARE. The definitions below are from [Meseguer 89].

An entailment system consists of signatures, sentences and an entailment (or de-
duction) relation. Signatures typically consist of types and operations, which provide
the vocabulary for describing a domain of interest. Each logic also defines what its
well-formed sentences (or formulas) are; these are used to describe the properties of
the types and operations in a domain. The deduction relation allows us to reason
about these properties.

10

DEFINITION 4.1: Entailment System. An entailment system is a 3-tuple (Sig, sen, h)
consisting of

1. a category Sig of signatures and signature morphisms,

2. a functor sen: Sig —> Set (where Set is the category of sets and functions)
which assigns to each signature E the set of E-sentences, and to each signature
morphism a: S —> E', the function which translates E-sentences to E'-sentences
(this function will also be denoted by a), and

3. a function h which associates to each signature E a binary relation between sets
of sentences and sentences h^C P(sen(E)) x sen(E), called S-entailment,

such that the following properties are satisfied:

1. reflexivity: for any ip £ sen(E), {</?} h^ <p;

2. monotonicity: if T f-£ </? and F' D T, then F' hE <*p

3. transitivity: if T HE V
7
«) f°r ? £ !•> and r U {</?,■ | i G / } h^ -0, then T \~Y, ^;

4. \~-translation: if T HE y», then for any signature morphism cr: E —> E', c(r) h^'
cr(<p).

D

To map one entailment system into another, we map the syntax while preserving
entailment. A simple way to map syntax is to map signatures to signatures, and
sentences over a signature to sentences over the translated signature. If the former is
a functor, the latter becomes a natural transformation.

DEFINITION 4.2: Entailment system morphism (plain version), A morphism be-
tween entailment systems ($, a): (Sig, sen, h) —> (Sig', sen', H) is a pair consisting of
a functor $: Sig —> Sig' which maps signatures to signatures and a natural transfor-
mation a: sen -4 sen' o $ which maps sentences to sentences such that entailment is
preserved:

r hE <p => aE(r) h'4(E) <*£(¥>).

D

Morphisms which map signatures to signatures are not flexible enough, especially
for code generation. In general, it may be necessary to map built-in elements of
one logic into defined elements of another, and vice versa. This can be realized by
mapping signatures to specifications, and vice versa, or, in general, specifications to

11

specifications. However, morphisms which map specifications to specifications are
too unconstrained, so we impose the restriction that there be an underlying map of
signatures. This gives the right amount of flexibility in mapping sentences. We will
omit the general definition of entailment system morphism (see [Meseguer 89] for
details).

4.2 Localizing Logic Morphisms

Logic morphisms (and entailment system morphisms) map entire categories of speci-
fications at once. In the SPEC WARE context, we want to be able to translate different
specifications via different morphisms. In other words, we want to build a logic
morphism from pieces of other logic morphisms. This is achieved in SPECWARE by
defining a new kind of arrow, inter-logic specification morphism, which localizes the
action of a logic morphism to a single specification. These arrows then participate in
the normal SPECWARE modularization mechanisms of sequential and parallel com-
position.

4.2.1 Inter-Logic Specification Morphism

An inter-logic specification morphism connects specifications in different logics. It
is similar to a specification morphism in that it maps the source signature to the
target signature such that source axioms translate to target theorems. The difference
is that the structure of the source and target signatures may be different (e.g., Lisp
specifications do not have sorts), and built-in entities in the source may map to
defined entities in the target (e.g., the SLANG built-in "implies" is not part of Lisp).
Similarly the structure of source and target axioms (sentences) may be different (e.g.,
SLANG operations always take a single argument and return a single result, whereas
Lisp and C++ operations are n-ary and generally return only one result). Polymorphic
operations in one logic may translate to families in another logic, and vice versa. For
example, SLANG equality (which is polymorphic) translates to a family of equalities in
Lisp, while families of List operations translate to the "polymorphic" List operations
of Lisp.

4.2.2 Inter-Logic Interpretation

An inter-logic interpretation is similar to an interpretation except that the source
and target specifications are in different logics. An inter-logic interpretation is a pair
consisting of an inter-logic specification morphism and a definitional extension in the
target specification category, such that the codomains of the two arrows match.

12

4.3 C++ Code Generation

To generate C++ code, we must view C++ as a logic (described below) and specify how
SLANG concepts translate to C++ concepts. Sorts in SLANG map to types or classes
in C++. Sort constructors, e.g., subsort, quotient, etc., map to templates. SLANG
operations map to C++ operations of corresponding type. Definitions maps to defini-
tions. The translation of a structured specification is obtained from the translations
of its components via the refinement composition operators of SPECWARE.

4.3.1 C++ Specifications

C++ specifications consist of types, constants, operations and definitions. In addition,
a set of files containing C++ code may be associated with a C++ specification. The
types, constants, operations and definitions in these files are considered to be part of
the C++ specification although not explicitly represented.

4.3.2 C++ Specification Morphisms

C++ specification morphisms are similar to SLANG specification morphisms in that
they map types to types, constants to constants, operations to operations and defi-
nitions to definitions. We distinguish three kinds of morphisms:

import morphisms, which include one specification into another,

parameter morphisms, which exhibit the parameter to a parameterized specifica-
tion, and

instantiation morphisms, which bind a parameter specification to an actual spec-
ification.

All morphisms, except instantiation morphisms, are injective.

4.3.3 Implicit Sharing

Import morphisms are construed as inclusions in C++. Thus, when C++ specifications
are combined via colimits, the common imports are automatically identified.

4.3.4 Names in C++ Specifications

The type and constant names in a C++ specification are required to be unique. Op-
eration names may be overloaded (in the C++ sense). When generating C++ code,
the system tries to preserve type and operation names used in the source (SLANG)

specification, unless there is a name clash, in which case the system chooses a unique
name.

13

4.3.5 Slang to C++ Morphisms and Interpretations

A SLANG-to-C++ (inter-logic) morphism consists of two maps: one which maps SLANG
sorts to C++ types, and one which maps SLANG operations to C++ operations.

A SLANG-to-C++ (inter-logic) interpretation is a pair consisting of a SLANG-to-C++
morphism and a C++ import morphism.

4.3.6 Adding a New Basic Translation

The system provides syntax for adding primitive SLANG-to-C++ interpretations. The
user has to provide a target specification which imports SLANG-BASE (the transla-
tion of SLANG built-ins), and two maps, one which translates sorts and one which
translates operations.

This is how external information sources, together with code which accesses them,
are made visible to SPECWARE. Details are provided in Section 5.

14

5 Formal Wrappers

In SPECWARE, a wrapper is simply an interpretation that implements a high-level
interface in terms of a low-level interface. The wrapper takes an application described
by the low-level interface and re-presents it via the high-level interface. Wrappers are
typically used to:

• add functionality,

• simplify semantics,

• translate between representations, and

• change languages.

The full SPECWARE functionality for constructing interpretations is available for
building wrappers. That is, interpretations may be constructed via sequential and
parallel composition of other interpretations, as described in Section 3.

In this section, we discuss the wrapping of two databases available from the US
Geological Survey (USGS):

• Geographic Name Information System (GNIS), a tabular database describing
named geological features throughout the US, and

• Digital Elevation Model (DEM), a custom format database providing elevation
data in one-degree squares, also throughout the US.

5.1 Wrapping the GNIS database

The GNIS database can be obtained in two formats, a concise format containing basic
information about larger geographic features all over the US, and a detailed format
containing much more data, available per state. In the GIS demo, we work with
concise data for California only (250 kb), extracted from the US concise file (5 mb).
For comparison, the detailed California data occupies 18 mb.

Figure 6 shows an excerpt from the GNIS concise database. The USGS data
arrives in ASCII format with fixed size records, redundantly delimited by carriage
returns. The fields in order are name, type, county, location, and elevation. For
variety, the figure shows many of the different types of places that may occur; in
actuality, most of the file describes populated places (type ppl).

The GNIS wrapper is extremely simple. It changes language (from C++ to SLANG)
and representation (from natural numbers to representation independent global lo-
cations, as discussed in Section 6), but it does not add functionality or simplify the

15

Acton ppl Los Angeles
Agassiz, Mount summit Fresno
Agua Caliente Reservation . reserve Riverside
Agua Hedionda bay San Diego
Alameda County civil Alameda
Alamo River stream Imperial
Alcatraz Island island San Francisco
All American Canal canal Imperial
Almanor, Lake reservoir Plumas
Amargosa Range range Inyo

Anacapa Passage channel Ventura

Angeles National Forest forest Los Angeles

Ano Nuevo, Point cape San Mateo
Antelope Valley valley Los Angeles
Arrowhead, Lake lake San Bernardino
Badwater Basin basin Inyo

342812N1181145W 2688

370642N1183148W 13891

334600N1163400W

330833N1171936W

373600N1215300W

331244N1153715W

374936N1222520W

324219N1150328W

401023N1210515W 4500

363000N1164200W

340058N1192747W

341800N1180800W

370647N1221945W

344500N1181500W

341552N1171104W 5114

361500N1164930W

Figure 6: Sample GNIS data

semantics, since all needed functionality is already available in a simple form in the
low-level interface.

The GNIS wrapper is formed by the parallel composition of three parts:

• an interface for GNIS records,

• an interface for searching GNIS files, and

• extra operations needed from the ontology library.

We will discuss these in turn.

5.1.1 GNIS records

Since the GNIS record interface is just a simple record type, it is actually generated
mechanically from a description of the record fields, shown in Figure 7. The numbers
in the figure are the locations and lengths of the fields within the ASCII record. It
is basically unimportant that the interface is mechanically generated; we would have
written exactly the same specifications by hand. We describe each of the components
of the interface, starting from the actual C++ code.

GNIS records are represented by the C++ code shown in Figure 8. The figure
shows only the representation type, omitting the code for the actual operations. This

16

code is connected to the C++ specification GNIS, shown in Figure 9, via a reference to
the code file gnis . cc.

The next level of wrapping is the SLANG specification GNIS, shown in Figure 10.
This specification is essentially identical to the C++ GNIS specification and serves only
to change languages from C++ to SLANG. Although the SLANG specification does not
include axioms (they are not needed for the demo), we could add axioms such as:

• Names are less than 51 characters long.

• Type is one of the following: ppl, summit, reserve, ...

The SLANG and C++ GNIS specifications are connected by the SLANG-to-C++ mor-
phism shown in Figure 11.

The final, highest level of wrapping is the SLANG specification EXT-GNIS, shown in
Figure 12, which imports GNIS and GEOGRAPHIC-COORDINATES, an ontology describ-
ing representation-independent global locations. EXT-GNIS extends GNIS by defining
gnis-geoloc, an operation to access the location of a GNIS record abstractly (as
a GeoLoc), rather than concretely (as latitude and longitude represented by natural
numbers).

5.1.2 Searching GNIS files

This part of the wrapper simply exports functionality from the low-level interface to
the high-level interface, shown in Figure 13, changing languages from C++ to SLANG.
It does less than the GNIS record interface, because it neither adds functionality
nor changes representation. It exports the operations f ind-f irst-gnis, which finds
the first GNIS record satisfying a predicate, and f ind-all-gnis, which finds all
GNIS records satisfying a predicate. These operations retrieve records from the GNIS
database.

5.1.3 Ontology operations

As noted above, the high-level interface includes GEOGRAPHIC-COORDINATES, an on-
tology describing locations on the globe. The wrapper must interpret the operations
of this ontology if they are to be used in computation. Fortunately, an interpretation
is available from the ontology library. Wrappers typically include part of the ontology
library in order to describe the high-level interface in abstract terms. For example,
the high-level interface to GNIS records uses abstract locations, while the low-level
interface uses natural numbers.

17

(defun generate-gnis-db i 0
(gdbi-packed-text

"gnis"
'((name string 0 51)

(type string 51 10)

(county string 61 32)

(state string 93 17)

(latitude-degrees nat 110 2)

(latitude-minutes nat 112 2)

(latitude-seconds nat 114 2)

(latitude-ns character 116 1)
(longitude-degrees nat 117 3)
(longitude-minutes nat 120 2)
(longitude-seconds nat 122 2)
(longitude-ew character 124 1)
(elevation nat 125 6)

)))

Figure 7: GNIS record description

class gnis
{ public:

string name;
string type;

string county;
string state;
nat latitude_degrees;

nat latitude_minutes;
nat latitude_seconds;

character latitude_ns;
nat longitude_degrees;

nat longitude_minutes;

nat longitude_seconds;

character longitude_ew;
nat elevation;

>;

Figure 8: Fragment of GNIS C++ wrapper code

18

c-spec GNIS is
import SLANG-BASE

fi] .e "./gnis.cc"

sort gnis

op gnis-name gnis -> string

op gnis-type gnis -> string

op gnis-county gnis -> string

op gnis-state gnis -> string

op gnis-latitude-degrees : gnis -> nat
op gnis-latitude-minutes : gnis -> nat
op gnis-latitude-seconds : gnis -> nat

op gnis-latitude-ns : gnis -> character

op gnis-longitude- -degrees : gnis -> nat
op gnis-longitude- -minutes : gnis -> nat

op gnis-longitude- -seconds : gnis -> nat
op gnis-longitude- -ew : gnis -> character

op gnis-elevation : gnis -> nat

end-c-specification

Figure 9: GNIS C++ specification

19

spec GNIS is

sort gnis

op gnis-name : gnis -> string
op gnis-type : gnis -> string
op gnis-county • gnis -> string
op gnis-state gnis -> string
op gnis-latitude-degrees gnis -> nat
op gnis-latitude-minutes gnis -> nat
op gnis-latitude-seconds gnis -> nat
op gnis-latitude-ns gnis -> char
op gnis-longitude-degrees gnis -> nat
op gnis-longitude-minutes gnis -> nat
op gnis-longitude-seconds gnis -> nat
op gnis-longitude-ew gnis -> char
op gnis-elevation gnis -> nat

end-spec

Figure 10: GNIS SLANG specification

20

spec-to-c-interpretation

GNIS-to-GNIS : GNIS => GNIS is
mediator GNIS
dom-to-med

sort-rules { gnis -> gnis }
op-rules

{ gnis-name -> gnis-

gnis-type -> gnis-
gnis-county -> gnis-

gnis-state -> gnis-

gnis-latitude-degrees -> gnis-
gnis-latitude-minutes -> gnis-

gnis-latitude-seconds -> gnis-
gnis-latitude-ns -> gnis-

gnis-longitude-degrees -> gnis-
gnis-longitude-minutes -> gnis-

gnis-longitude-seconds -> gnis-

gnis-longitude-ew -> gnis-
gnis-elevation -> gnis-

cod-to-med identity-morphism

-name,

■type,
•county,
state,

latitude-degrees,
latitude-minutes,

latitude-seconds,
latitude-ns,

longitude-degrees,
longitude-minutes,
longitude-seconds,

longitude-ew,
elevation }

Figure 11: GNIS SLANG-to-C++ interpretation

21

spec EXT-GNIS is
import GNIS, GEOGRAPHIC-COORDINATES

op gnis-latitude : Gnis -> Angle

definition of gnis-latitude is

axiom (equal (gnis-latitude g)

(dms-dir-to-lat

(gnis-latitude-degrees g)

(gnis-latitude-minutes g)

(gnis-latitude-seconds g)

(gnis-latitude-ns g)))

end-definition

op gnis-longitude : Gnis -> Angle
definition of gnis-longitude is

axiom (equal (gnis-longitude g)

(dms-dir-to-lng
(gnis-longitude-degrees g)

(gnis-longitude-minutes g)

(gnis-longitude-seconds g)

(gnis-longitude-ew g)))

end-definition

op gnis-geo-loc : Gnis -> Geo-Loc

definition of gnis-geo-loc is
axiom (equal (gnis-geo-loc g)

(geo-loc
(gnis-latitude g)

(gnis-longitude g)))

end-definition

end-spec

Figure 12: Top-level SLANG interface specification for GNIS

22

spec SCAN-GNIS-FILE is
import LIST-of-GNIS

sort Gnis-Predicate

sort-axiom Gnis-Predicate = Gnis -> Boolean

sort Gnis?
sort-axiom Gnis? = Gnis + ()

op find-first-gnis : String, Gnis-Predicate -> Gnis?

op find-all-gnis : String, Gnis-Predicate -> List-of-Gnis

end-spec

Figure 13: A SLANG interface specification with operations for accessing records from
a GNIS file

23

5.2 Wrapping the DEM database

The DEM database contains elevation data, stored in a collection of files, one per
one-degree by one-degree region. Naturally, each region begins and ends on a degree
boundary, and its sides are parallel to the equator and the meridians. Our convention
is to name each file by the latitude and longitude of its southwest corner, for example
38N-122W.

For the US (except Alaska), each file contains elevations at a regular spacing of
three arc seconds. That is, each file contains a 1201 x 1201 matrix of elevations. This
matrix is stored as a sequence of columns from west to east; elevations within each
column are stored from south to north. Elevations are represented in meters above
mean sea level.

Each DEM file is stored in text format (rather than binary) and occupies about
9 mb; however gzip compresses it to about 1 mb. The continental US is tiled by
approximately 1000 one-degree blocks; thus, the entire DEM database occupies about
1 gb when compressed.

The DEM wrapper is far more complex than the GNIS wrapper because it adds
significant functionality. Its low-level interface centers on the operation

op deml-column-in-file : String, Nat -> Demi-Column

which retrieves from the file named by the first argument, the column of elevations
at the position specified by the second argument.

The DEM wrapper's high-level interface centers on

op deml-rectangle : Geo-Rect -> Demi-Rectangle

which maps a geographic region, specified by a rectangle, to the matrix of elevation
data for the region. Thus, the wrapper must patch together data from several one-
degree rectangles to return a result.

The wrapper changes languages from C++ to SLANG and also changes the repre-
sentation of regions and elevation matrices:

Data type Low-level representation High-level representation

Region File name, column number Abstract region
Elevations Fixed-size column Variable-size rectangle

24

6 Patching Multiple Representations

An important part of mediation is the reconciliation of different representations of
the same information, an operation called "patching" in mathematics. The idea
is to go from local descriptions and transition functions on overlapping parts to a
global description, a recurring theme in the study of manifolds, bundles and sheaves
[Mac Lane and Moerdijk 92, Steenrod 51].

6.1 An Analogy between Information Integration and Manifolds

Manifolds are generally constructed by patching or sewing together smaller parts.
For an n-dimensional manifold, each part is characterized by an isomorphism (home-
omorphism) into an open subset of Rn, the n-dimensional real vector space. Such an
isomorphism is called a chart, or a local coordinate system. The entire manifold is
covered by a collection—called an atlas—of (possibly overlapping) charts. Wherever
the charts overlap, there are transition functions which map one local coordinate sys-
tem into another. In fact, a manifold is completely determined by the given subsets
of Rn and the transition functions: it is obtained as the union of the subsets with
points related by transition functions identified. The process is abstractly depicted
in Figure 14. A global description may not exist for a manifold; it is generally unnec-
essary because operations on manifolds can be reduced to operations using the local
coordinate systems and transition functions.

The situation is similar with information integration. We are given a collection of
information sources. These may overlap in the sense that two sources may represent
the same information differently: we thus need representation conversion functions.
If we treat the individual information sources as local coordinate systems and the
representation conversions as transition functions, then we can patch the sources
together to obtain an integrated information source, the manifold.

6.2 An Example of Patching: Multiple Representations of Angles

We will illustrate patching using the example of angles (e.g., latitudes and longitudes)
which generally have different representations in different databases. For example,
in the GIS mediator (see Section 7.3, also Section 5), latitudes and longitudes are
represented as arc seconds in the DEM (elevation grids) database, as degrees, min-
utes and seconds in the GNIS (geographic names) database, and as decimal degrees
in Arc View (a map display application). Note that we can convert between these
representations only if they represent the same abstract concept, in this case, angles.
Thus, two databases can interoperate only if they have a shared ontology. This shared
ontology resides in the mediator.

25

interconnection
with conversions

composition with patching

exploded view:
multiple representations

become
equivalence classes

Figure 14: Abstract view of patching

26

Such a situation is depicted in Figure 15. ANGLE is an abstract theory of angles.
The outer two morphisms from ANGLE are two representations of angles, as arc sec-
onds and as degrees, minutes and seconds. The middle morphism from ANGLE is a
dual representation obtained by combining the two representations using conversion
functions.

A simplified specification for angles is shown in Figure 16 (a real specification
would include many more operations). The specification states that angles form an
abelian (i.e., commutative) group under the operation of addition.

Next, Figures 17 and 18 show two representations of angles. Each of these speci-
fications provides a concrete representation of angles together with definitions of the
required operations on angles.

Figures 19 and 20 show a specification which combines the two representations.
First, conversion functions are defined between the two representations (sec-to-dms,
dms-to-sec). These form an isomorphism between the representations. Next, a
new type is constructed as the quotient under this isomorphism of the disjoint union
of the two representations. In other words, elements of this new type are tagged
versions of elements from either representation, and two elements are equal if they
are either isomorphic or are equal in one of the two representations. Finally, all
the required operations on angles are defined on this new type by a case analysis
which dispatches to the corresponding operations on one of the two representations,
inserting conversions where necessary.

A simpler (but less general) construction is possible if we choose one of the repre-
sentations to be primary and convert all other representations into the primary one.
This is the method we adopted in the GIS mediator.

6.3 Patching as a Composition Operator

In the example of Section 6.2 above, it is clear that the process of creating a specifica-
tion for the dual representation is fairly canonical, with the only creative part being
the definition of the isomorphism between the two representations. We are planning
to add a new composition operator to SPECWARE to handle some of the details of
the construction described above.

27

spec ANGLE
sort Angle

end-spec

Angle \-+ Sec

spec SEC
sort Sec

end-spec

Angle H-»

spec SEC-DMS
sort Sec-Dms

= (Sec + Dms) / same-angle
op sec-to-dms: Sec —> Dms
op dms-to-sec: Dms —> Sec

end-spec

spec SEC+DMS
import sorts Sec, Dms import

Angle i->- Dms

end-spec

spec DMS
sort Dms

end-spec

Figure 15: An example of patching: multiple representations of angles

28

spec ANGLE is
sort Angle

const zero : Angle

op plus : Angle, Angle -> Angle

op neg : Angle -> Angle

% Abelian group axioms

axiom associativity is
(fa (x : Angle y : Angle z : Angle)

(equal (plus x (plus y z)) (plus (plus x y) z)))
axiom additive-identity is

(fa (x : Angle)
(equal (plus x zero) x))

axiom additive-inverse is
(fa (x : Angle)

(equal (plus x (neg x)) zero))
axiom commutativity is

(fa (x : Angle y : Angle)
(equal (plus x y) (plus y x)))

end-spec

Figure 16: A specification of some properties of angles (e.g., for use as latitudes or
longitudes)

29

spec SEC is

sort Sec

sort-axiom Sec = (Nat, Boolean)

const zero : Sec

definition of zero is

axiom (equal zero <0 true>)

end-definition

op plus : Sec, Sec -> Sec

definition of plus is
axiom (implies

(equal si s2)

(equal (plus <x sl> <y s2>) <(plus x y) sl>))
axiom (implies

(and (geq x y) (not (equal si s2)))
(equal (plus <x sl> <y s2>) <(minus x y) sl>))

axiom (implies
(and (It x y) (not (equal si s2)))
(equal (plus <x sl> <y s2>) <(minus y x) s2>))

end-definition

op neg : Sec -> Sec
definition of neg is

axiom (equal (neg <x sign>) <x (not sign)>)
end-definition

end-spec

Figure 17: A representation of angles as signed natural numbers (intended to be arc
seconds)

30

spec DMS is
sort Dms
sort-axiom Dms = (Nat, Nat, Nat, Boolean)

const zero : Dms

definition of zero is

axiom (equal zero <0 0 0 true>)

end-definition

op plus : Dms, Dms -> Dms
definition of plus is

% omitted
end-definition

op neg : Dms -> Dms
definition of neg is

axiom (equal (neg <d m s sign>) <d m s (not sign)>)
end-definition

end-spec

Figure 18: A representation of angles as signed triples of natural numbers (intended
to be degrees, minutes and seconds)

31

spec SEC-DMS is

import SEC, DMS

op sec-to-dms : Sec -> Dms

definition of sec-to-dms is
axiom (equal (sec-to-dms <x sign>)

((lambda (mins sees)

<(div mins 60) (rem mins 60) sees sign>)

(div x 60) (rem x 60)))

end-definition

op dms-to-sec : Dms -> Sec

definition of dms-to-sec is

axiom (equal (dms-to-sec <degs mins sees sign>)

(<(plus (times 60 (plus (times 60 degs) mins)) sees) sign>))
end-definition

°/o sec-to-dms and dms-to-sec are inverses, i.e., an isomorphism
theorem (equal (sec-to-dms (dms-to-sec x)) x)

theorem (equal (dms-to-sec (sec-to-dms x)) x)

sort Sec-Dms

sort-axiom Sec-Dms = (Sec + Dms) / same-angle

op same-angle : (Sec + Dms), (Sec + Dms) -> Boolean

definition of same-angle is
axiom (implies

(equal x y)
(same-angle x y))

axiom (iff

(same-angle ((embed 1) x) ((embed 2) y))
(equal (sec-to-dms x) y))

axiom (iff

(same-angle ((embed 2) y) ((embed 1) x))
(equal (dms-to-sec y) x))

end-definition

Figure 19: Patching of two representations of angles (part 1)

32

const zero : Sec-Dms
definition of zero : Sec-Dms is

axiom (equal zero ((quotient same-angle) ((embed 1) zero)))
end-definition

op neg : Sec-Dms -> Sec-Dms
definition of neg : Sec-Dms -> Sec-Dms is

axiom (equal
(neg ((quotient same-angle) ((embed 1) x)))
((quotient same-angle) ((embed 1) (neg x))))

axiom (equal
(neg ((quotient same-angle) ((embed 2) y)))
((quotient same-angle) ((embed 2) (neg y))))

end-definition

op plus : Sec-Dms, Sec-Dms -> Sec-Dms
definition of plus : Sec-Dms, Sec-Dms -> Sec-Dms is

axiom (equal
(plus ((quotient same-angle) ((embed 1) xl))

((quotient same-angle) ((embed 1) x2)))
((quotient same-angle) ((embed 1) (plus xl x2))))

axiom (equal
(plus ((quotient same-angle) ((embed 1) x))

((quotient same-angle) ((embed 2) y)))
((quotient same-angle) ((embed 1) (plus x (dms-to-sec y)))))

axiom (equal
(plus ((quotient same-angle) ((embed 2) y))

((quotient same-angle) ((embed 1) x)))
((quotient same-angle) ((embed 1) (plus (dms-to-sec y) x))))

axiom (equal
(plus ((quotient same-angle) ((embed 2) yl))

((quotient same-angle) ((embed 2) y2)))
((quotient same-angle)
((embed 1) (plus (dms-to-sec yl) (dms-to-sec y2)))))

end-definition
end-spec

Figure 20: Patching of two representations of angles (part 2)

33

7 Demonstrations

This section describes three simple demonstrations of Kestrel's technology for media-
tor construction. These demonstrations are the first in a sequence of prototypes that
we expect will lead to the rapid construction of realistic mediators. The demonstra-
tions are:

Scheduling: We combine a database of movements in TPFDD format (personnel and
material to be transported between ports) and the GEOLOC database (port
locations). We select movements based on distance and type. This demonstra-
tion outlines our basic technology for building mediators and was written for
use with schedulers developed using the KIDS algorithm synthesis system.

SQL: We show how to model the SQL query language in SPECWARE, interface to an
external SQL server, and reason about SQL queries. This demonstration shows
techniques useful for wrapping and reasoning about external, language-based
servers.

GIS: We combine the GNIS database (names and places in the US), the DEM
database (digital elevation data), and ArcView (a COTS tool for displaying
GIS data). Given the name of a place in the US, we find its location, extract
a rectangular region of elevation data around it, select the names and locations
of all places within the region, and send all data to ArcView for display. In
essence, GIS is a more complex version of Scheduling.

34

7.1 Scheduling demonstration

Figure 21 shows the overall architecture of the scheduling mediator. This mediator
extracts transportation domain data for use in the schedulers developed using KIDS,
Kestrel's algorithm synthesis system [Smith 90].

First, each database is wrapped by a specification describing its interface. The
movement database is read via an operation select that returns all the movements
satisfying a predicate, while the the GEOLOC database is read via an operation
port-location that maps ports to locations. The two database specifications import
fragments of a global ontology describing ports, locations, movements, and other
concepts associated with them, such as distance and time.

Second, the two interface specifications are glued together, sharing whatever parts
of the ontology they have in common. This ontological commonality allows us to relate
the two databases; without it, we could not. The result is a combined database.

Finally, we refine the application interface into the interface of the combined
database. Here, we specify an operation that returns all the movements that must
travel at least a certain distance. This function reads movement records from the first
database and computes how far they must travel via the second. It uses operations
for computing distance from the common ontology, refinements of which are available
from the library.

Figure 22 shows a more detailed view of the scheduling mediator, indicating the
components of the common ontology and database interfaces. The two database
interfaces share Basics, a domain-independent ontology about mathematical and
physical concepts, and Port, a domain-specific ontology about ports. Ports are the
single domain-specific link between the two databases: each movement specifies its
source and destination ports, and the GEOLOC database maps ports to locations.
The GeoLoc specification describes single records, while GeoLoc DB describes the en-
tire database, and similarly for Movement and Movement DB.

Figure 23 shows a sample interaction with the scheduling mediator, which has
been refined to Common Lisp code. In it, we ask for all movements that require
travel of at least 7000 miles. This query requires access to both databases.

Although the mediator performs a trivial task, we believe that the architecture
we have developed will allow us to scale to much larger examples in a disciplined way.
Specifically, an ontology library, refined to executable code, provides the necessary
leverage to connect multiple databases and pose queries over the result. Adding
new queries is easy because the ontologies are rich and already contain the necessary
concepts. Adding new databases is also easy, because the ontology library is rich
and already contains the necessary ontologies. The real work lies in extending the
ontology library when a new domain is encountered.

35

Application interface
far-movements-ln-mi: Real -> List(Movement)

I
Composite database

select: Pred -> List(Movement)
port-location : Port -> Location

y
Movement database

select: Pred -> List(Movement)
GeoLoc database

port-location : Port -> Location

/

Shared structure
Ports, Distance, Time

Figure 21: Scheduling mediator overall architecture

36

Complication interface^

<CÜompositeBB>

CtfeoLoc D§

((Location^)

(Basics) (PorT)

(Units; "~"^

jjumber) (TJme) (Weight) (gistance) A

f _(Trig
(ReaT)

(jVlovement DB,

s
Movement)

(Mode) (Type)

Figure 22: Scheduling mediator detailed architecture

.> (far-movements-in-mi 7000)

((OVR-MOVEMENT 6 86400 172799 PQWY FTZH 0 SEA)
(PAX 29 0 86399 SCEY XBGX 0 AIR)
(0UT-M0VEMENT 13 0 86399 SCEY XBGX 0 SEA))

.> (distance-in-mi '(0VR-M0VEMENT 6 86400 172799 PQWY FTZH 0 SEA))

7853.369779442932

Figure 23: Interacting with the scheduling mediator

37

7.2 SQL demonstration

Suppose we want to specify a formal semantics for an external SQL server with which
we communicate using text strings. How can we specify that the server is actually
answering the queries we have in mind, and not some other queries chosen at random?

This problem requires some thought to appreciate, so let's consider first a simple
server for addition and multiplication. This example is nonsensical because these op-
erations can be computed quickly locally, but the problem of communicating with the
server via text remains. Suppose we send the server the string (+ 3 5). How can we
reason formally that we will receive 8 as an answer? After all, we can't add numbers
in textual form, and parsing is inconvenient. Still, we need a connection between
the textual representation and the abstract, numerical representation. Without this
connection, the server could return 9 instead of 8 and we wouldn't be any wiser.

7.2.1 Denotational semantics

The theory of denotational semantics provides a simple answer. Let's consider several
models of the specification

spec ARITHMETIC
sort Num

op num : Nat ■ -> Num
op + : Num, Num -> Num
op * : Num, Num -> Num

end-! spec

which describes simple arithmetic expressions. We can represent models as refine-
ments to other specifications. Figure 24 shows a model in which the arithmetic oper-
ators build text strings. For instance, (+ (* (num 3) (num 8)) (num 2)) evaluates
to "(+ (* 3 8) 2)". Figure 25 shows a model in which the operators actually per-
form arithmetic, so that the same expression evaluates to 26. Figure 26 shows a
model in which the operators construct abstract syntax trees, so that we obtain a
tree with two nodes, for * and +, and three leaves, for 3, 8, and 2. We call these three
models concrete, semantic, and abstract, respectively.

In general, the semantic model is used for reasoning and actually performing
arithmetic, while the concrete model is used for communication with the external
server. The abstract model is used to connect the other two, our primary goal.

Each of these refinements is called an algebra over the signature given by the
above specification. An algebra homomorphism over the same signature is an opera-
tion satisfying the laws shown in Figure 27. The algebras over a fixed signature form
a category, with homomorphisms as arrows, since the composition of two homomor-
phisms is a homomorphism.

38

spec CONCRETE is
import ARITHMETIC
sort-axiom Num = String

axiom (equal (num n) (nat-to-string n))
axiom (equal (+ a b) (string-append "(+ " a " " b ")"))
axiom (equal (* a b) (string-append "(* " a " " b ")"))

end-spec

Figure 24: Concrete syntax

spec SEMANTIC is
import ARITHMETIC
sort-axiom Num = Nat

axiom (equal (num n) n)
axiom (equal (+ a b) (plus ab))
axiom (equal (* a b) (times ab))

end-spec

Figure 25: Semantics

spec ABSTRACT is
import ARITHMETIC
sort-axiom Num = Nat + (Num, Num) + (Num, Num)

axiom (equal (num n) ((embed 1) n))
axiom (equal (+ a b) ((embed 2) ab))
axiom (equal (* a b) ((embed 3) ab))

end-spec

Figure 26: Abstract syntax

39

spec ARITHMETIC-HOMOMORPHISM is
import

translate ARITHMETIC by

Num -> Numl, num -> numl, +->+!, * -> *1 ,
translate ARITHMETIC by

Num -> Num2, num -> num2, + -> +2, * -> *2

op h : Numl -> Num2

axiom (equal (h (numl n)) (num2 n))
axiom (equal (h (+1 a b)) (+2 (h a) (h b)))
axiom (equal (h (*i a b)) (*2 (h a) (h b)))

end-spec

Figure 27: Arithmetic homomorphism

An object of a category is called initial if there is a unique arrow from it to
any other object. In fact, the abstract model is an initial algebra for the arithmetic
signature, and the unique homomorphism is given by evaluating expressions, repre-
sented as abstract syntax trees, over the target algebra. Thus, the homomorphism
to the concrete algebra produces concrete syntax from abstract, while the homomor-
phism to the semantic algebra produces actual numbers. We call the former rep, for
representation, and the latter den, for denotation.

We interact with the external server by extending the CONCRETE specification with
an operation

concrete-value : Num -> Nat

which we implement by sending the text string to the arithmetic server and returning
the result as a number.

Similarly, we extend the SEMANTIC specification with an operation

semantic-value : Num -> Nat

which is actually the identity, since Num and Nat are identical.
Finally, it remains to be seen how the abstract model allows us to connect the

concrete and semantic models. We extend a specification containing all of the above
with the single axiom

(concrete-value (rep as)) = (semantic-value (den as)))

40

This axiom states that the values produced by the server are the same as those
produced by the semantic "reference" implementation. For example, we can reason

as follows:

(concrete-value (c+ (c-num 3) (c-num 5)))

= (concrete-value (rep (a+ (a-num 3) (a-num 5))))
= (semantic-value (den (a+ (a-num 3) (a-num 5))))
= (semantic-value (s+ (s-num 3) (s-num 5)))
= 8

We write a-, c- and s- to distinguish the three algebras. The first and last steps are
justified because rep and den are homomorphisms. The middle step is justified by

the axiom.
The axiom also allows us to transfer algebraic laws to the external server. For

example, we can show commutativity of addition:

(concrete-value (c+ (rep al) (rep a2)))
= (concrete-value (rep (a+ al a2)))
= (semantic-value (den (a+ al a2)))
= (semantic-value (s+ (den al) (den a2)))
= (semantic-value (s+ (den a2) (den al)))
= (semantic-value (den (a+ a2 al)))
= (concrete-value (rep (a+ a2 al)))
= (concrete-value (c+ (rep a2) (rep al)))

The reasoning steps are essentially the same as before. We rewrite from concrete to
semantic, apply the relevant law, and reverse our steps. The explicit use of abstract
syntax allows us to quantify over all arithmetic expressions al and a2.

Of course, we could begin with the axiom

(concrete-value (c+ (rep al) (rep a2))) =
(concrete-value (c+ (rep a2) (rep al)))

and spare ourselves the intermediate reasoning, but the point is that the machinery
we have constructed immediately transfers all axioms from semantic to concrete in a
single step. Without it, we would need to transfer each axiom individually.

Note that the simplified axiom

(c+ (rep al) (rep a2)) = (c+ (rep a2) (rep al))

is simply not true, since the two sides are different arithmetic expressions, even though

their values are the same.

41

7.2.2 Semantics of SQL

Now that we have understood the general approach, let's see how it applies to SQL.
First we need to specify the SQL language itself. Leaving out some details, the usual
syntax for the SQL select statement is roughly:

SELECT [DISTINCT] field+
[INTO table]
[FROM table+]
[WHERE condition+]
[GROUP BY [ALL] column+]

. [HAVING condition+]
[ORDER BY column [DESC]+]

Depending on which options are specified, select can perform rather complex com-
binations of joining, filtering, grouping, accumulating, sorting, and projecting. We
have chosen to decompose select into five simpler operations:

basic-select
: Distinct?, Projection, Tables, Where?, Order? -> Table

aggregate-select
: Aggregate, Tables, Where? -> Element

group-select

: Projection, Tables, Where?, Same?, Having?, Order? -> Table
group-summary-select

: Summary, Tables, Where?, Same?, Having?, Order? -> Table
group-aggregate-select

: Aggregate, Tables, Where?, Same?, Having? -> Element

These functions differ subtly according to what kind of data is returned and what
operations are applied to it:

basic-select joins several tables, filters rows according to a predicate, projects onto
several fields, sorts the result, and possibly eliminates duplicate rows.

aggregate-select joins several tables, filters rows according to a predicate, and ap-
plies an aggregation function to the resulting table such as counting, summing,
or averaging,

group-select joins tables, filters rows, groups rows into equivalence classes, filters
equivalence classes, picks a representative from each class, applies a projection
function, and sorts the result.

42

group-summary-select is like group-select but instead of choosing arbitrarily
from each equivalence class, it applies a more given summary function.

group-aggregate-select joins tables, niters rows, groups rows into equivalence
classes, filters equivalence classes, picks a representative from each class, and
applies an aggregation function to the resulting table.

Even given a general understanding of these operations, there are several choices
for their exact semantics. For example, should we project before or after we sort?
Should we project before or after we group into equivalence classes?

To specify the semantics of these operations, we proceed as in the last section.
We will skip over the details of SQL algebras, but, as before, we have three algebras,
concrete syntax, abstract syntax, and semantics, and two homomorphisms rep and
den. The concrete algebra allows interaction with the SQL server, while the semantic
algebra provides actual semantic content.

Figure 28 shows the definition of the SQL semantic algebra. Each operation
is specified as a specific combination of joining, filtering, grouping, accumulating,
sorting, and projecting. Each of these mathematical operations is easily specified via
the appropriate laws. Thus, the semantics of SQL is given by reduction to these more
basic operations, and, as before, the homomorphisms rep and den allow us to reason
about the behavior of the server.

Figures 30 through 34 show several English language queries and their formula-
tions using the SQL operators. These examples refer to a sample publishing database
of books, authors, and publishers, whose schema is shown in Figure 29. Each Figure
shows the query, the columns of the joined tables used to answer it, and the query
formulation. For simplicity, columns are referenced by number.

The relationship between the query and the operator chosen to answer it is not
always obvious, because the database is organized around different concepts than
the query. A theorem prover may be used to search for a low-level formulation of a
high-level query, assuming that the database is wrapped in a formal theory.

43

(equal (basic-select
distinct-f projection table where? order?)

(distinct-f
(sort-table
(map-table projection
(filter-table table where?))

order?)))

(equal (aggregate-select aggregate table where?)
(aggregate (filter-table table where?)))

(equal (group-select
projection table where? same? having? order?)

(group-summary-select
(lambda (neT) (projection (first-row neT)))
table where? same? having? order?))

(equal (group-summary-select
summary table where? same? having? order?)

(sort-table
(summarize-partition summary
(filter-partition
(partition-table (filter-table table where?) same?)
having?))

order?))

(equal (group-aggregate-select
aggregate table where? same? having?)

(aggregate
(summarize-partition first-row
(filter-partition
(partition-table (filter-table table where?) same?)
having?))))

Figure 28: SQL semantics

44

Table Field 0 Field 1 Field 2 Field 3

Authors Author Id Name Address
Books Book Id Title Pub Id Price
Authors-Books Author Id Book Id
Publishers Pub Id Name Location

Figure 29: Sample publishing database

11 What are the titles and price's of Sue's books, sorted by title?

11 0 1 2 3 4 5 6 7 8
Au-Id, Name, Address, Au-Id, Bk-Id, Bk-Id, Title, Pub-Id, Price 11

1 Distinct?
1 Projection

1 Tables
1 Where?

(basic-select
not-distinct
(lambda (r)

(make-row2 (column r 6) (column r 8)))
(join authors (join authors-books books))
(lambda (r)

(and
(equal "sue" (column r 1))
(and (equal (column r 0) (column r 3))

(equal (column r 4) (column r 5)))))
(lambda (rl r2) 1 Order?

(elt-le? (column rl 0) (column r2 0))))

Figure 30: Query using basic-select

45

°/,°/, If I buy one of each of Bob's books, how much do I have to spend?

IX 0 1 2 3 4 5 6 7 8
%% Au-Id, Name, Address, Au-Id, Bk-Id, Bk-Id, Title, Pub-Id, Price

(aggregate-select

(lambda (table) •/„ Aggregate

(sum-table (lambda (r) (column r 8)) table))

(join authors (join authors-books books)) '/, Tables

(lambda (r) °/0 Where?
(and

(equal "bob" (column r 1))

(and (equal (column r 0) (column r 3))

(equal (column r 4) (column r 5))))))

Figure 31: Query using aggregate-select

'/,'/, Which books have more than one author?

H 0 12 3 4 5
{% Bk-Id, Title, Pub-Id, Price, Au-Id, Bk-Id 0/0,

(group-select

(lambda (r) •/, Projection
(make-rowl (column r 1)))

(join books authors-books) •/, Tables
(lambda (r) •/„ Where?

(equal (column r 0) (column r 5)))
(lambda (rl r2) •/„ Same?

(equal (column rl 0) (column r2 0)))

(lambda (table) */, Having?
(not (elt-le? (count-table table) elt-1)))

(lambda (rl r2) true)) •/, Order?

Figure 32: Query using group-select

46

n
n

What is each publisher's average book price,
sorted by publisher's name?

%% 0 12 3 4 5 6
•/.•/. Bk-Id, Title, Pub-Id, Price, Pub-Id, Name, Location

(group-summary-select
(lambda (table) % Summary

(make-row2
(column (first-row table) 5)
(avg-table (lambda (r) (column r 3)) table))

(join books publishers) % Tables
(lambda (r) % Where?

(equal (column r 2) (column r 4)))
(lambda (rl r2) % Same?

(equal (column rl 2) (column r2 2)))
(lambda (table) true) '/. Having?
(lambda (rl r2) % Order?

(elt-le? (column rl 0) (column r2 0)))))

Figure 33: Query using group-summary-select

How many books have at least one author living in Palo Alto? n
n 0 12 3 4
0/o°/o Au-Id, Name, Address, Au-Id, Bk-Id

(group-aggregate-select
count-table °/0 Aggregate
(join authors authors-books) '/, Tables
(lambda (r) '/. Where?

(and (equal (column r 0) (column r 3))
(equal (column r 2) "Palo Alto")))

(lambda (rl r2) '/, Same?
(equal (column rl 4) (column r2 4)))

(lambda (table) true)) °/0 Having?

Figure 34: Query using group-aggregate-select

47

7.3 GIS demonstration

The GIS mediator displays elevation data for a rectangular region around a given
location. Figure 35 shows the results produced by the GIS mediator. After starting
the ArcView tool, we execute a query script, which brings up a dialog box asking
for the name of a place and the size of a rectangle around it, in arc seconds. The
mediator then produces a display like the one shown in the figure. The mediator
performs the following actions:

• It obtains the location of the place from the GNIS database.

• It obtains the elevation data from the DEM database.

• It obtains the names and locations of places within the rectangle from the GNIS
database.

• It sends all this data to ArcView.

The GNIS and DEM formats were already described in Chapter 5 on wrappers. We
first describe the ArcView interface, then the mediator itself.

7.3.1 ArcView

ArcView is a widely used visualization tool in the commercial GIS field. It is pro-
duced by Environmental Systems Research Institute (ESRI) of Redlands, CA, which
also produces Arclnfo, the standard system for GIS computation. ArcView can dis-
play and query GIS data in both vector and raster formats and includes a scripting
language called Avenue.

ArcView accepts data from the the mediator in two formats:

• a .txt file containing the names of places and their locations, shown in Fig-
ure 36, and

• a .tiff file containing the elevation data image in a standard format, together
with a .tiffw file ("w" for "world"), shown in Figure 37, describing the size
and geographic location of the .tiff file.

The .txt file format is straightforward, except that locations are represented
in signed decimal degrees, while locations in the GNIS database are represented in
degrees, minutes, seconds, and direction. The mediator converts between the two
representations; for example, 372631N becomes 37.441944.

The mediator writes elevation data in .raw-pgm format; elevations are represented
as decimal numbers, one per line in text format. To create a .tiff image, we run the

48

t«

Hl
1

E
i
€

.Q

S =

©

:;!!!:!#:,

«S .dials'

^ijijljföiiÜlMjiiiSiSi^:
WVJPS*.' $•■•'•' wi! "'fti 3

«I «
£ E
« • «

V V

<u <n (n:

o Z

' K!

E
:■■:»■:,

a
.2
4J

CO
*H

+J
CO

Ö
O

0)

f-H o

in
Ü

S-l

49

shell script shown in Figure 38, which also colors the data according to a standard
elevation color map. The mediator writes .txt and .tiffw files directly.

The .tiffw file informs ArcView where the .tiff image is located on the earth,
what size it is, and how it oriented, so that ArcView can display it properly. The
file gives an affine transformation from the image grid (with indices 0, 1, 2, ...) to
the world coordinate system (in decimal degrees). Since DEM image data is parallel
to the equator and meridians, no rotation or shear is necessary, so the second and
third numbers are always zero. The first and fourth numbers then give the degrees
per pixel in the horizontal and vertical directions; for 1-degree DEM files, they are
always positive and negative three arc seconds, the standard DEM spacing. The final
two numbers specify the location of the image's southwest corner.

7.3.2 GIS mediator structure

Figure 40 shows the top level specification of the GIS mediator. It imports the colimit
of the diagram shown in Figure 39. The diagram indicates the overall structure of
the mediator, while the final specification shows how the different elements are used
in the mediation process.

The operation gnis-dem-main takes two strings and two numbers and produces
an action, which is to write several files. Actions are discussed in the next section.
The strings represent the name of a place to locate and a file name prefix for the files
to be written. The numbers represent the height and width of the rectangle in arc
seconds. The function finds the place, complains if it doesn't exist, and writes the
relevant image, world, and text files.

The mediator is composed of three wrappers, glued together via a shared on-
tology, which ties them together conceptually. Without the shared ontology, the
databases could not exchange data. The shared ontology is composed of three spec-
ifications, Geographic-Rectangle, which describes rectangular geographic regions,
List-of-Gnis, which describes lists of GNIS records, and Demi-Rectangle, which
describes grids of elevation data. The morphisms in the diagram show which ontology
components are required by which wrappers; careful consideration shows that these
are the necessary and sufficient relationships between the wrappers.

50

Location, Latitude, Longitude

Woodside, 37.43, -122.253

Upper Crystal Springs Reservoir, 37.5094, -122.35

Union City, 37.5958, -122.018
Tunitas, 37.3817, -122.388

Sunnyvale, 37.3689, -122.035

Figure 36: ArcView .txt file

0.000833333

0
0
-0.000833333
-122.503

37.7197

Figure 37: ArcView .tiffwfile

#!/bin/sh

main "$1" $2 $3 $4
scale < $4.raw-pgm > $4.pgmr
pnmflip -rotate90 $4.pgmr > $4.pgm
pgmtoppm -map ../utilities/256b.ppm $4.pgm > $4.ppm
pnmtotiff -none $4.ppm > $4.tiff
rm $4.pgmr $4.pgm $4.ppm

Figure 38: GIS mediator shell script

LIST-0F-GNIS GEOGRAPHIC-RECTANGLE DEMI-RECTANGLE

DEMI-WRAPPER GNIS-WRAPPER ARCVIEW-WRAPPER

Figure 39: GIS mediator architecture

51

spec GNIS-DEMl-MAIN is

import GNIS-DEMl-MAIN-import

op gnis-dem-main : String, String, Distance, Distance -> Action
definition of gnis-dem-main is

axiom (equal (gnis-dem-main place file w h)
(gnis-dem-auxl

(find-first-gnis "ca-concise" < name-equal? place >)
file v h))

end-definition

op gnis-dem-auxl : Gnis?, String, Distance, Distance -> Action

definition of gnis-dem-auxl is

axiom (equal (gnis-dem-auxl ((embed 2) x) file w h)
(write-string "Can't find place!\\n"))

axiom (equal (gnis-dem-auxl ((embed 1) g) file w h)

(gnis-dem-aux2 file (geo-rect (gnis-geo-loc g) w h)))
end-definition

op gnis-dem-aux2 : String, Geo-Rect -> Action

definition of gnis-dem-aux2 is
axiom (equal (gnis-dem-aux2 file r)

(seq-actions
(write-pgm-file

(concat-string file ".raw-pgm")

(deml-rectangle r))
(seq-actions

(write-world-file
(concat-string file ".tiffw")

r)

(write-gnis-table
(concat-string file ".txt")

(find-all-gnis "ca-concise" < gnis-in? r >)))))
end-definition

end-spec

Figure 40: Top level GIS mediator specification

52

7.3.3 Actions

As part of the GIS mediator, we have included a theory of actions. This theory
allows us to mix imperative and functional programming styles. Normally, in a purely
functional language such as SLANG or Haskell, computations can only return values;
they cannot perform I/O operations, such as writing files. Needless to say, it is useful
for mediators to write files! There are two solutions to this problem:

• Abandon purely functional languages.

• Treat I/O-performing computations as values.

In the former, we program in a mixed functional / imperative language such as Lisp
or C, in which we can execute printf ("xyz") or (format t "xyz"). In the latter,
we use a purely functional language to construct actions. Actions are values that
represent I/O-performing computations. For example, (write-string "xyz") is an
action that, when executed, writes "xyz".

Figure 41 shows the ACTION specification, which states that actions form a monoid
under null-action and seq-actions; in other words, actions are sequences of more
basic actions. The basic actions are writing natural numbers, characters, strings, and
newlines. In addition, actions can be directed to files using with-output-to-f ile.
For example, the action

(with-output-to-file "foo"
(seq-actions
(write-nat 43)
(seq-actions
(write-string "hello")
write-newline)))

writes "43hello", followed by a newline, to the file foo.

Functional programs can return actions, but they cannot execute them. Once
returned, actions are executed by an external agency (the surrounding system), so
that the functional computation remains free of side-effect. Actions are not executed
unless they are sequenced into the final action returned at the end. In particular, an
action that is constructed and then "thrown away" is never executed.

In our current implementation, all actions are executed at the end; however, we
could alternatively interleave the execution of the functional program and the actions
it returns. That is, we could run the functional program to produce an action, execute
the action, then continue the program to produce more actions. This strategy would
allow us to reclaim some of the space used to produce the initial actions, reducing
the storage requirements of the program.

53

spec ACTION is

sort Action

op write-nat

op write-char
op write-string

op write-newline

Nat -> Action

Char -> Action
String -> Action
Action

const null-action : Action
op seq-actions : Action, Action -> Action

'/o'/o Actions form a monoid:

axiom (equal (seq-actions a null-action) a)

axiom (equal (seq-actions null-action b) b)
axiom (equal (seq-actions a (seq-actions be))

(seq-actions (seq-actions ab) c))

op with-output-to-file
end-spec

String, Action -> Action

Figure 41: Action specification

54

Compared to Lisp or C, actions in functional language are easier to reason about
but less modular. For example, in SLANG it is always true that

(+ (f x) (f x)) = (* 2 (f x))

but, in a mixed language, f may print "hello", in which case we obtain two hellos
from the left side and only one from the right. Thus, in order to reason effectively, we
need knowledge of which operations perform side-effects. In the functional language,
there is only one kind of computation; side-effects are not allowed.

On the other hand, a mixed language is very convenient, because actions are
implicit and implicitly sequenced. If we change a low-level function to print a message
for debugging, we don't need to change every function that calls it to return an action.
In other words, small conceptual changes require only small textual changes.

The long-standing debate between the functional and imperative schools is not yet
over, although the issues involved are understood fairly well. It is clear that both sides
have significant advantages and disadvantages; what remains is to find an acceptable
synthesis between the two. One possibility is a type system that keeps track of which
computations are imperative, yet allows them to be implicitly sequenced.

The basic idea behind actions was invented independently by several researchers:

• by the Algol 60 commitee, as pointed out later by John Reynolds, while design-
ing a programming language,

• by John McCarthy, while reasoning about actions in planning,

• by Peter Henderson, while drawing graphical pictures in a functional language,

• by Eugenio Moggi, while structuring the denotational semantics of mixed lan-
guages.

Reynolds emphasized Algol's subtle distinction between values and phrases (i.e.
computations or actions) [Reynolds 81]. For example, 5 is a value, while 2+3 and 1+4
are phrases. Both of these can be passed to and returned from functions. As above,
this distinction allows Algol programs to be conceptually evaluated in two phases, a
functional phase that yields an imperative program (an action), and an imperative
phase that executes it.

McCarthy invented the situation calculus for reasoning about actions in blocks-
world planning [McCarthy and Hayes 69]. The calculus includes expressions such as
puton(A, B), the action of putting block A on block B, and result (a, s), the state
obtained by performing action a in state s. McCarthy was probably the first author
to represent actions as values.

55

Henderson invented a way to express graphical pictures in a functional language
[Henderson 80]. He used combinators, such as horizontal and vertical juxtaposition,
rotation, and reflection, to build complex pictures from simpler parts. None of the
operators actually cause pictures to appear on the screen; they simply construct
pictures from other pictures, as though pictures were values. When a picture is
finally returned by a program, it is "magically" displayed on the screen.

Eugenio Moggi generalized actions using the category-theoretic concept of monad
[Moggi 89]. Moggi showed how monads can represent many different types of im-
perative computation (state, I/O, nondeterminism, continuations, parallelism, excep-
tions, etcetera). Moggi's ideas were popularized by Philip Wadler [Wadler 92], and
numerous papers have since been written on this topic in the functional programming
community.

The GIS mediator uses actions to write the .tiff, .tiffw, and .txt files. Us-
ing actions, the handwritten main program for the mediator is very simple: extract
the command line arguments, pass them to the SPECWARE-generated mediator, and
perform the action that it returns. This action writes the files needed by ArcView,
which displays the appropriate images.

56

8 Results and Future Plans

The results of our project so far indicate progress on all aspects of our approach: a
formal specification and refinement process applied to the development of mediators.

Formal wrappers: A formal wrapper is a logical specification of the relevant func-
tionality (interface) of an information source, together with a formal connection
to the code which realizes it. In SPECWARE, a wrapper specification is a theory
in higher-order logic, while the code realizing it can be in Lisp or C++.

We have constructed such wrappers for the GNIS (Geographic Name Informa-
tion System) and DEM (Digital Elevation Model) databases from the US Ge-
ological Survey, and for simplified versions of the TPFDD (movement require-
ments) and GEOLOC (port locations) databases from the DARPA Planning
Initiative. In addition, we have shown how to wrap an external SQL server.

Composition and patching: The wrapper (or interface) specifications mentioned
above are structured, i.e., composed from smaller specifications. SPECWARE
provides flexible ways of interconnecting and composing specifications, enabling
rapid construction of interfaces using pre-existing libraries.1

Patching is the composition of specifications which represent a shared concept
differently. Patching also applies to refinements: it is the composition of refine-
ments which refine a shared concept differently. A simple version of patching is
used in combining the GNIS and DEM databases to handle different represen-
tations of geographic coordinates.

Mediator generation: In the SPECWARE framework, mediator generation is the
refinement/realization of the application interface in terms of the interfaces of
the information sources. As already mentioned, SPECWARE supports the com-
position and patching of the interface specifications; this composition structure
can be exploited to build a refinement from the application interface into the
code connected to the wrappers.

The GIS demonstration (Section 7.3), which combines the GNIS and DEM
databases, is an example. The application interface consists of a single kind
of query: retrieve elevation and location information in a rectangular region
around a given place. This function, after several steps of refinement, is finally
realized by the basic functionality provided by the GNIS and DEM databases.
Currently, this refinement process is manual.

1Of course, the building of useful libraries is a hard problem.

57

Future Plans

In subsequent work, we plan to automate the mediator development process and
exploit this automation to construct larger examples.

System support for patching: The goal here is to provide a new composition op-
erator, patching, in SPECWARE. Such an operator, in the basic case, would take
two different refinements (representations) of a concept, together with conver-
sion functions relating the two representations, and combine them into a single
refinement (i.e., a dual representation). In other words, an implementation of
patching will transparently handle multiple representations of concepts.

Mediator development automation: The process of refinement in SPECWARE is
mostly manual because of its generality. Mediator development is more specific
and stylized, so it is possible to automate some parts, e.g., the refinement to
code of an interface specification built by composing and patching together
wrapper specifications which have direct realizations as code.

We will also leverage any progress on SPECWARE which helps us to tackle larger
mediation problems.

58

References

[Blaine and Goldberg 91]

BLAINE, L., AND GOLDBERG, A. DTRE - a semi-automatic transformation
system. In Constructing Programs from Specifications, B. Möller, Ed. North-
Holland, Amsterdam, 1991, pp. 165-204.

[Gilham et al. 89]

GlLHAM, L.-M., GOLDBERG, A., AND WANG, T. C. Toward reliable reactive
systems. In Proceedings of the 5th International Workshop on Software Specifi-
cation and Design (Pittsburgh, PA, May 1989).

[Henderson 80]

HENDERSON, P. Funcional Programming: Application and Implementation.
Prentice-Hall, 1980, pp. 255-267.

[Lambek and Scott 86]

LAMBEK, J., AND SCOTT, P. J. Introduction to Higher Order Categorical Logic.
Cambridge University Press, Cambridge, 1986.

[Mac Lane and Moerdijk 92]

MAC LANE, S., AND MOERDIJK, I. Sheaves in Geometry and Logic. Springer-
Verlag, New York, 1992.

[McCarthy and Hayes 69]

MCCARTHY, J., AND HAYES, P. Some philosophical problems from the
standpoint of artificial intelligence. In Machine Intelligence 4, B. Meltzer and
D. Mitchie, Eds. Edinburgh University Press, Edinburgh, 1969.

[Meseguer 89]

MESEGUER, J. General logics. In Logic Colloquium'87, H.-D. Ebbinghaus et al.,
Eds. North-Holland, 1989, pp. 275-329.

[Moggi 89]

MOGGI, E. Computational lambda calculus and monads. In IEEE Symposium
on Logic in Computer Science (Asilomar, CA, June 1989), pp. 14-23.

[Reynolds 81]

REYNOLDS, J. C. The essence of Algol. In Algorithmic Languages, de Bakker
and van Vliet, Eds. North-Holland, Amsterdam, 1981, pp. 345-372.

[Smith 90]

SMITH, D. R. KIDS - a semi-automatic program development system. IEEE
Transactions on Software Engineering Special Issue on Formal Methods in Soft-
ware Engineering 16, 9 (September 1990), 1024-1043.

59

[Srinivas and Jüllig 95]

SRINIVAS, Y. V., AND JÜLLIG, R. Specware:™ Formal support for compos-
ing software. In Conference on Mathematics of Program Construction (Kloster
Irsee, Germany, July 1995), B. Moeller, Ed., Lecture Notes in Computer Science,
Vol. 947, Springer-Verlag, pp. 399-422.

[Steenrod 51]

STEENROD, N. The Topology of Fibre Bundles. Princeton University Press,
1951.

[Turski and Maibaum 87]

TURSKI, W. M., AND MAIBAUM, T. S. E. The Specification of Computer
Programs. Addison-Wesley, 1987.

[Wadler 92]

WADLER, P. The essence of functional programming. In Proceedings of the 19th
Annual ACM Symposium on Principles of Programming Languages (Albuquerque,
NM, January 1992), pp. 1-14.

«U.S. GOVERNMENT PRINT.NG OFRCE: M99-MO-130-MU6

60

DISTRIBUTION LIST

addresses

OR. RAYMOND A. LIUZZI
AFRL/IFT8
525 BROOKS ROAO
ROME, NY 13441-4505

numoer
of copies

10

KESTREL INSTITUTE
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-^514

ATTENTION: DTIC-OCC
OEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINSMAN ROAD, STE
FT. BELVOIR, VA 22060-6218

0944

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LOR, 2950 P.STREET
AREA 3, 8LDG 642
WRIGHT-PATTERSON AFB OH 45433-7765

AFRL/MLME
2977 P STREET, STE 6
WRIGHT-PATTERSON AF8 OH 45433-7739

DL-1

AFRL/HESC-TDC
2698 6 STREET, BLOG 190
WRIGHT-PATTERSON AFB OH 45433-7604

ATTN: SMDC IM PL
US ARMY SPACE I MISSILE DEF CMD
P.O. BOX 1500
HUNTSVILLE AL 35807-3301

TECHNICAL LIBRARY D0274<PL-TS>
SPAWARSYSCEN
53560 HULL STREET
SAN DIEGO CA 92152-5001

COMMANDER, CODE 4TL000D
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

COR, US ARMY AVIATION & MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-P0-08-R, CDOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

ATTN: D'BQRAH HART
AVIATION BRANCH SVC 122.10
F0310A, RM 931
800 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

DL-2

USAF/AIR FORCE RESEARCH
AFRL/VS0SACLIBRARY-8LDG
5 WRIGHT DRIVE
HANSCOM AF3 MA 01731-3004

LABORATORY
1103)

ATTN: EILEEN LADUKE/0450
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

OUSDCP)/OTSA/DUTD
ATTN: PATRICK G. SULLIVAN,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

JR,

SOFTWARE £NGR»G INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3890

USC-ISI
ATTN: OR ROBERT M. BAL2ER
4676 ADMIRALTY WAY
MARINA DEL REY CA 90292-6695

KESTREL INSTITUTE
ATTN: DR CORDELL GREEN
1801 PAGE MILL ROAD
PALO ALTO CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROP J. A. LASKY
1 LOMB MEMORIAL DRIVE
P.O. BOX 9887
ROCHESTER NY 14613-5700

AFIT/ENGv
ATTN:TQM HARTRUM
WPAF8 OH 45433-6533

THE MITRE CORPORATION
ATTN: MR EDWARD H. 3ENSLEY
BURLINGTON RO/MAIL STOP A350
BEDFORD MA 01730

DL-3

UNIV OF ILLINOIS, URBANA-CHAMPAIGN
ATTN: ANDREW CHIEN
DEPT OF COMPUTER SCIENCES
1304 W. SPRINGFIELD/240 DIGITAL LAB
UR8ANA IL 61801

HONEYWELL, INC.
ATTN: MR BERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
MCLEAN VA 22102

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM E. HEFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2218
PITTSBURGH PA 15213-38990

UNIVERSITY OF SOUTHERN CALIFORNIA
ATTN: DR. YIGAL ARENS
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL REY CA 90292-6695

COLUMBIA UNIV/DEPT COMPUTER
ATTN: DR GAIL E. KAISER
450 COMPUTER SCIENCE BLDG
500 WEST 120TH STREET
NEW YORK NY 10027

SCIENCE

SOFTWARE PRODUCTIVITY CONSORTIUM
ATTN: MR ROBERT LAI
2214 ROCK HILL ROAD
HERNDON VA 22070

AFIT/ENG
ATTN: DR GARY B. LAMONT
SCHOOL OF ENGINEERING
DEPT ELECTRICAL S. COMPUTER
WPAF8 OH 45433-6583

ENGRG

NSA/OFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE G. MEADE MD 20755-6000

AT&T BELL LABORATORIES
ATTN: MR PETER G. SELFRIDGE
ROOM 3C-441
600 MOUNTAIN AVE
MURRAY HILL NJ 07974

DL-4

ODYSSEY RESEARCH ASSOCIATES,
ATTft: MS MAUREEN STILLMAN
301A HARRIS 3. DATES DRIVE
ITHACA NY 14350-1313

INC.

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. WELLS
P.O. 80X 655474, MS 238
DALLAS TX 75265

KESTREL DEVELOPMENT CORPORATION
ATTN: DR RICHARD JULLIG
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

DARPA/ITO
ATTN: DR KIRSTIE 8ELLMAN
3701 N FAIRFAX ORIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULBERT
MAIL CODE PT4
HOUSTON TX 77053

SAIC
ATTN: LANCE MILLER
144 WESTFIELD
MCLEAN VA 22102

STERLING IMD INC.
KSC OPERATIONS
ATTN: MARK MAGINN
SEECHES TECHNICAL CAMPUS/RT
ROME NY 13440

26 N.

HUGHES SPACE & COMMUNICATIONS
ATTN: GERRY 8ARKSDALE
P. 0. BOX 92919
3LDG Rll MS M352
LOS ANGELES, CA 90009-2919

SCHLUMBERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: OR. GUILLSRMO ARANGO
3311 NORTH FM620
AUSTIN, TX 78720

DL-5

DECISION SYSTEMS DEPARTMENT
ATTN: PROF WALT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS
6220 CULESRA ROAD
SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DABROWSKI
ROOM A266, BLOS 225
GAITHS8URG MD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE & TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 3REAUX/C0DE 252
12350 RESEARCH PARKWAY
tLANDO FL 32826-3224

OR JOHN SALASIN
OARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OR BARRY BOSHM
DIR, USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 90039-0781

OR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DR MARK MAY3URY
MITRE CORPORATION
ADVANCED INFO SYS TECH; G041
8URLINT0N ROAD, M/S K-329
BEDFORD MA 01730

DL-6

ISX
ATTN: MR. SCOTT FOUSE
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE,CA 91361

MR GARY EDWARDS
ISX
433 PARK TERRACE
WESTLAKE VILLAGE

ORIVE
CA 91361

DR ED WALKER
33N SYSTEMS £ TECH CORPORATION
10 MOULTON STREET
CAMBRIDGE MA 02238

LEE ERMAN
CIMFLEX T5KN0WLEDSE
1310 EM8ACADER0 RQAD
P.O. BOX 10119
PALO ALTO CÄ 94303

DR. DAVE GUNNING
DARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DAN WELD
UNIVERSITY OF WASHINGTON
DEPART OF COMPUTER SCIENCE
SOX 352350
SEATTLE, WA 98195-2350

t ENGIN

STEPHEN SODERLAND
UNIVERSITY OF WASHINGTON
DEPT OF COMPUTER SCIENCE & ENGIN
BOX 352350
SEATTLE, WA 98195-2350

OR. MICHAEL PITTARELLI
COMPUTER SCIENCE OEPART
SUNY INST OF TECH AT UTICA/ROME
P.O. BOX 3050
UTICAi NY 13504-3050

CAPRARO TECHNOLOGIES, INC
ATTN: GERARD CAPRARO
311 TURNER ST.
UTICA, NY 13501

OL-7

USC/ISI
ATTN: BOB MCGREGOR
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292

SRI INTERNATIONAL
ATTN: ENRIQUE RUSPINI
333 RAVENSWOOD AVE
MENLO PARK, CA 94025

DARTMOUTH COLLEGE
ATTN: DANIELA RUS
OEPT OF COMPUTER SCIENCE
11 ROPE FERRY ROAD
HANOVER, NH 03755-3510

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON
CISE DEPT 456 CSE
GAINESVILLE, FL 32611-6120

CARNEGIE MELLON UNIVERSITY
ATTN: TOM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

CARNEGIE MELLON UNIVERSITY
ATTN: MARK CRAVEN
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

UNIVERSITY OF ROCHESTER
ATTN: JAMES ALLEN
DEPARTMENT Or COMPUTER SCIENCE
ROCHESTER, NY 14627

TEXTWISE, LLC
ATTN: LIZ LIDDY
2-121 CENTER FOR SCIENCE £,
SYRACUSE, NY 13244

TECH

WRIGHT STATE UNIVERSITY
ATTN: OR. BRUCE 8ERRA
DEPART OF COMPUTER 5CIENCE
DAYTON, OHIO 45435-0001

& ENGIN

DL-3

UNIVERSITY OF FLORIDA
ATTN: SHARMA CHAKRAVARTHY
COMPUTER L INFQR SCIENCE DEPART
GAINESVILLE, FL 32622-6125

KESTREL INSTITUTE
ATTN: DAVID ESPINOSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

STOLLER-HENKE ASSOCIATES
ATTN: T.J- GQAN
2016 8ELLE MONTI AVENUE
BELMONT, CA 94002

USC/INFORMATION
ATTN: DR. CARL
11474 ADMIRALTY
MARINA DEL REY,

SCIENCE INSTITUTE
KESSELMAN
WAY, SUITE 1001
CA 90292

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. MICHAELS SIEGEL
SLOAN SCHOOL
77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

USC/IN^ORMATION SCIENCE INSTITUTE
ATTN: DR. WILLIAM SWARTHOUT
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

STANFORD UNIVERSITY
ATTN: DR. GIQ WIEDERHOLD
857 SIERRA STREET
STANFORD
SANTA CLARA COUNTY, CA 94305-4125

NCCOSC ROTE DIV 044208
ATTN: LEAH WONG
53245 PATTERSON ROAD
SAN DIEGO, CA 92152-7151

SPAWAR SYSTEM CENTER
ATTN: LES ANDERSON
271 CATALINA BLVD, CODE
SAN DIEGO CA 92151

413

DL-9

GEORGE MASON UNIVERSITY

ATTN: SUSHIL JAJODIA
ISSE OEPT
FAIRFAX, VA 22030-4444

OIRNSA
ATTN: MICHAEL R. WARE
DQD, NSA/CSS CR23)
FT. GEORGE G. MEADE MO 20755-6000

DR. JIV RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPOLIS, MN 55418

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPT
ATTN: DR. PETER CHEN
257 COATFS HALL
BATON ROUGE, LA 70803

INSTITUTE OF TECH DEPT OF COMp SCI
ATTN: DR. JAIDEEP SRIVASTAVA
4-192 EE/CS
200 UNION ST SE
MINNEAPOLIS, MN 55455

GTE/BBN
ATTN: MAURICE M. MCNEIL
9655 GRANITE RIDGE DRIVE
SUITE 245
SAN DIEGO, CA 92123

UNIVERSITY OF FLORIDA
ATTN: DR. SHARMA CHAKRAVARTHY
E470 CSE BUILDING
GAINESVILLE, FL 32611-6125

AFRL/IFT
525 BROOKS ROAD
ROME, NY 13441-4505

AFRL/IFTM
525 8RO0KS ROAD
ROME, NY 13441-4505

DL-10

MISSION
OF

AFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

