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Abstract 

High-quality automatic target recognition algorithms implemented 
using a real-beam radar require imagery with resolved target 
characteristics. This report presents an iterative motion parameter 
estimation algorithm that improves the quality of high-resolution 
two-dimensional inverse synthetic aperture radar (ISAR) images. The 
algorithm uses the derivative of the phase history of isolated point 
scatterers to estimate the initial conditions for the target motion 
parameters of a maneuvering vehicle. The algorithm was tested using 
simulated data. We report on the agreement between the actual and 
estimated values of range and entropy. 
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Introduction 
Real-beam radars have been used for many years to detect and track 
moving targets, but their role in automatic target recognition (ATR) has 
been limited. Typically the input to ATR algorithms from real-beam radar 
has been one-dimensional (1-D) high-range resolution profiles. 2-D high- 
resolution imagery can be obtained from real-beam radar data, but it 
requires intensive signal processing. Such imagery has the potential to 
improve ATR algorithm performance in existing systems such as 
Longbow, Patriot, and other military surveillance radars. 

Synthetic aperture radar (SAR) techniques have been extensively studied 
and many systems have been successfully implemented that generate 
high-resolution 2-D imagery. The synthetic aperture is typically generated 
by a side-looking radar within an airplane that is flying in a straight 
trajectory. The basic scenario describing noncooperative inverse synthetic 
aperture radar (ISAR) consists of a stationary radar that illuminates a 
moving target. The radar could be tracking the target or pointed at a fixed 
location with a target driving through the radar beam. In either case, the 
processing techniques are very similar. In general, a high ratio of 
crossrange to downrange motion is desirable. 

ISAR images generated with a radar operating at millimeter-wave 
(MMW) frequencies have advantages and disadvantages over images 
generated with longer wavelengths. The image resolution in the 
crossrange direction is proportional to frequency, so higher resolution 
images can be generated with a higher frequency radar. At higher fre- 
quencies, a larger frequency bandwidth is usually available, so higher 
downrange resolution can also be achieved. The major disadvantages of 
operating at higher frequencies are increased cost and reduced power. 
Also, high-frequency radar returns are more sensitive to small changes in 
the aspect angle of the target. This suggests that images can only be 
coherently processed over small aspect angles. The algorithm developed 
in this report uses range-Doppler processing techniques, which also are 
limited by small angle requirements [1,2]. 

A major problem associated with imaging a maneuvering vehicle with a 
real-beam radar is motion compensation. For spotlight mode processing, 
the phase of the radar signal is compensated to stabilize the center of the 
scene for SAR and the center of rotation of the target for ISAR. The stan- 
dard criterion to generate a focused image is that the relative range to the 
target can be estimated to within A/16, where X is the transmitted wave- 
length of the radar, which is a difficult criterion to meet at MMW frequen- 
cies [3]. SAR algorithms often use the phase gradient autofocus (PGA) 
technique to improve image quality [4,5]. We used this technique to 
estimate the derivative of the phase histories of isolated scatterers. Other 
factors that complicate estimating the motion of the target are the nonuni- 
form target rotation rate, clutter, multipath, and countermeasures. In this 
report, we describe an algorithm that automatically improves image 
quality by iteratively estimating the initial condition of four motion 
parameters. 



Simulation 

An iterative motion-parameter estimation (IMPE) algorithm was devel- 
oped and tested on simulated radar data. The major components of the 
simulation were the target backscatter, target motion, and the radar. The 
target backscatter was simulated using an N-point, isotropic scatterer 
model. The simulated radar was modeled after an existing U.S. Army 
Research Laboratory (ARL) instrumentation radar [6,7]. A simplified 
target motion model was developed to simulate the 2-D motion of a 
maneuvering vehicle. Knowledge of the motion model was also used in 
the IMPE algorithm. Noise was simulated by adding independent and 
identically distributed (iid) Gaussian random variables to the radar in- 
phase and quadrature (I&Q) data. 

The radar model was configured to match several characteristics of an 
existing ARL instrumentation radar. The radar is frequency-stepped, 
pulsed, and coherent. The frequency range of the existing and simulated 
radar is 33.2 to 34.8 GHz with 256 equally spaced frequency steps. The 
simulated pulse repetition frequency (PRF) was 70 kHz, which is slower 
than the maximum PRF of the existing radar, but faster than the maxi- 
mum speed of the current data acquisition system. We assumed that the 
antenna pattern was uniform and that a ramp of data could be collected 
simultaneously. Pulsewidth, polarization, duty cycle, and range ambigu- 
ity were not modeled. 

Radar backscatter was generated with two different target configurations. 
The first configuration consisted of 5 scatterers positioned at equal inter- 
vals around the circumference of a circle with a radius of 2 m. Each 
scatterer had a radar cross section (RCS) of 1 m2. The second configura- 
tion consisted of 20 scatterers with random positions and RCS. Their 
downrange and crossrange positions were randomly determined using a 
1-D Gaussian distribution with a mean of 0 m and a standard deviation of 
1.5 m. The RCS of the scatterers was randomly determined using a 
Rayleigh distribution with a mean-square value of 1 m2. 

Simulated radar data were generated by coherently summing the normal- 
ized electric fields scattered from each scatterer on the target at discrete 
times as shown in equations (1) through (3): 

k(m)-_2*JJ^f) ,   and (2) 

t = nT, (3) 



where E = normalized electric field at t - time for the mth frequency; k = 
the propagation number, which is a function otm;I- the number of 
scatterers on the target; oi = the RCS of the zth scatterer; R{ = the range of 
the fth scatterer to the radar; fQ = the carrier frequency of the radar; 
m = the number of frequency steps; A/= the frequency step size; c - the 
speed of light; n = the radar ramp number; and T = the time to transmit a 
ramp of data, which is the reciprocal of the pulse PRE The effect of range 
on equation (1) was ignored, since the target will be in the far-field. 

A simple 2-D motion model was developed to simulate the target trajec- 
tory. The model assumes that the target is rigid and that it has constant 
angular and translational acceleration as illustrated in figure 1. The radar 
is positioned at the origin of the x, y coordinate system, and the center of 
rotation of the target is positioned at the origin of the xl, y\ coordinate 
system. The distance between these coordinate systems is denoted X0, 
which corresponds to the initial range between the radar and the target. 
The radar coordinate system is fixed, and the target coordinate system is 
being translated and rotated as a function of time. The initial start time is 
assumed to be zero, and the target does not move in the Z direction. The 
velocity and acceleration denoted by V and A in figure 1 describe the 
translational motion of the target in the xl direction as a function of time. 
The angular velocity and acceleration denoted by 6 and a in figure 1 
describe the rotational motion of the xl, yl coordinate system. 

The model describes the motion of a target using four parameters: veloc- 
ity, acceleration, angular direction, and turning angle. The turning angle 
in the model roughly corresponds to the angle of the front wheels of a 
vehicle relative to its body. The equations of motion ignore effects such as 
tire side slip. The radius of curvature is estimated from the turning angle 
and the length between the axles of a vehicle using 

2 tan ($/2) ' <4> 

where p = the radius of curvature of the vehicle, E, - the turning angle of 
the wheel, and L = the length between the axles of the vehicle. The angu- 
lar velocity and acceleration of the target can be determined from the 
radius of curvature and from 

a> = j5 ,   and (5) 

« = £, (6) 
where co = angular velocity, a = angular acceleration, V = velocity, and A - 
acceleration. The angle and velocity of the target coordinate system as a 
function of time is described by 

*2 
6{t)=e+m + d- , and (7) 

V(t) = V + At. (8) 



Figure 1. Radar and 
target coordinate 
systems. 

Stationary target 

<  
XQ 

V + At 

0O + at + at2/2 

The x and y components of the velocity were calculated using standard 
trigonometry. The acceleration was calculated by differentiating the 
velocity with respect to time. The results were then evaluated at t = 0, as 
shown in equations (9) through (12) 

yx(O) = Vcos(0), 

Vy(0) = Vsm(ff), 

AXV) = jt (Vx(t)) = -V sm(e)a> + A cos (0) , and 

(9) 

(10) 

(11) 

Ay(0) = j-t (Vy(0) = V cos(e)co + A sin (0) . (12) 

The range from the radar to the center of rotation of the target as a func- 
tion of time can be approximated by applying the Euclidean distance 
formula to the x and y position of the target: 

/ 

R0(t)~ 

( 

X, + Vxt+Ax^ ■■0' 

I 

V+A/y 
,\i 

j 

(13) 

where X0 is initial range from the radar to the target. Next, a first-order 
Taylor series expansion is performed on equation (13). We assume that 

X0>>\vtf + A~2J'wnere */= final imaging time. Applying these ap- 

proximations to equation (13) and keeping only the coefficients up to t2, 
results in 

( 

Ro(f) = Xo + Vcos(0)f + 
1  .    9 

- V sm(8)a) + A cos(0) + V sm ^ 
\ 

\ 
Xr 

(14) 

J 



This equation will be used to estimate the effects of motion-parameter 
errors on the range. 

The target radar model consisted of N isotropic point scatterers that were 
fixed on the target. The position of the zth scatterer on the target with 
respect to the radar can be determined by adding the x and y components 
of the distance between the radar and the center of rotation of the target 
to the distance between the center of the target to the zth scatterer. This is 
illustrated by equations (15) and (16): 

X{(t) = X0(t) + *,-(*), and (15) 

Yi(t) = Y0(t)+yi(t). (16) 

The position of the zth scatterer can be described in the polar coordinate 
system by 

*,-(*) = r,-cos(0f(f)) , 

yf(f) = r,-sin(0f(f)) ,  and 

(17) 

(18) 

(j) •(£) =</>; +cot + a V (19) 

( 

where r • = the distance from the center of rotation of the target to the zth 
scatterer, ty = the initial angle of the zth scatterer in the xl, yl coordinate 
system, co = angular velocity, and a = angular acceleration. The first and 
second derivatives with respect to time were calculated for equations (17) 
and (18), and evaluated at t = 0 as shown below: 

if(0) = -rfsin(^)ft), (20) 

yl-(O) = -rfcos(0/)ö)/ (21) 

f .(0) = -r{cos{^i)co2 - r;sm (0,-)a , and (22) 

y .(0) = -rfsin(0;)<o2 + r:-cos (0,-)a . (23) 

The range to the zth scatterer can be approximated by calculating the 
Euclidean distance of the components described by equations (15) and 
(16) using 

,2 f2 
Rt(t)=   \X0 + Vxt+Ax

t- + xi+xit+xi
l- 

V 

V 1 2 2^ 
Vyt + Ay y + y;+^+y';y (24) 

J 



where the coefficients are described in equations (9) through (12), (17), 
(18), and (20) through (23). The difference in range from to the z'th 
scatterer to the range of the center of rotation of the target can be com- 
puted by subtracting equation (14) from (24) using 

AR{t) = Ri(t)-R0(t). (25) 

To produce a polynomial equation as a function of time, a Taylor series 
expansion was performed on both terms in equation (25). The expansion 
of RQ(t) was previously calculated in equation (14), and a Taylor series 
expansion of R{(t) can be performed if it is assumed that 

/ 

X0>> Vf, + A -f- + r,- + r4f + h y I, where fyis the final imaging time f/TnyT''  f/ 
V 

and the higher order terms are small. The results are 

AR#) «X,. + X{t + X{   l~ + ± [y.Vy + y .y . jf + J_ [y.Ay + 2y.Vy + y 2 + y . •• . j t   . (26) 

If the target motion parameters are incorrectly estimated, then additional 
terms are required to describe the range to the center of rotation of the 
target. The actual range to the center of rotation to the target can be 
decomposed into an estimated range and a range-error term using 

R0(t) = R0(t) + eRo(t), (27) 

where R0(t) = estimate range and£R0(t) = range error. The range error can 
be estimated multiplying the motion-parameter errors for velocity, accel- 
eration, turning angle, and angular direction by the partial derivatives of 
R0(t) with respect to the target motion parameters: 

dV dA d% 
+ A0 <%o(0 

de (28) 

The results of applying equation (28) to the estimate of R0(t) described in 
equation (14) are 

£R 0(t) = {AV COS(0) - A8V sin(0))f + 

( 
AA cos(0) - A6A sin(0) - AV sin(d)co - AdV COS(Ö)ö) - AcoV sin(0) 

+AY 2ysin2^+Ad ^y2 sin(ö) COs(Ö) 

(29) 

Xr Xr 



The estimated change in range for the fth scatterer with respect to the 
center of rotation of the target can now be determined with the effects of 
the individual motion-parameter errors included in the calculation. The 
change in range of the fth scatterer after nonexact motion compensation is 
described by 

AR ,-(*) = R i(t) - R 0(0 = R 0(0 + AR,- - R 0(t) + eR Q(t) = AR . + eR Q(t) ,   (30) 

where the last two terms are described by equations (26) and (29). 

The phase history of a scatterer can be estimated using techniques such as 
prominient point processing (PPP) and PGA algorithms [8]. The PGA 
technique estimates the derivative of the phase history of individual 
scatterers using 

0,-(tf) = Imag 

\ Ml* ; (31) 

where gi (d) = the crossrange slice at the dth bin of the complex image 
calculated using a 2-D discrete Fourier transform (DFT), dot = derivative, 
star = complex conjugate, and Imag = imaginary [4]. Equation (30) can be 
transformed to correspond with equation (31) by multiplying the two- 
way range by the propagation number and taking the derivative with 
respect to time as shown below: 

Wi(t) = lkARi(t) . (32) 

If the scatterer location and the motion-parameter errors are known, then 
the phase derivative calculation described in equation (31) should be 
approximately equal to the theoretical result described in equation (32). 
The scatterer locations can be estimated if motion-parameter errors are 
known. The next section will describe the algorithm in more detail. 



IMPE Algorithm 
The IMPE algorithm presented in this report iteratively estimates the 
initial conditions of four motion parameters. Figure 2 shows a block 
diagram of the algorithm. The first half of the algorithm, shown on the 
left side of the figure, describes how information on the phase history of 
individual point scatterers was estimated. The second half of the algo- 
rithm, shown on the right side of the figure, describes how the initial 
conditions of the motion parameters were estimated. As the estimates of 
the target motion parameters were improved, the motion compensation 
correction and the image quality were also improved. 

The derivatives of the phase history of individual point scatterers were 
estimated using equation (31). This equation assumes that there are 
isolated point scatterers on the target and that they are still recognizable 
in the ISAR image after nonexact motion compensation. First, the radar 
data were motion-compensated to stabilize the center of rotation of the 
target using the best available estimate of the target motion. Next, an 
image was formed using a 2-D DFT. If this is a "good" image, or if a 
stopping condition has been met, the algorithm will end. (Currently, the 
algorithm stops after 60 iterations.) Otherwise, the locations of the target 
scattering centers were determined by convolving a 2-D Gaussian tem- 
plate with the ISAR image, applying a weighting function, then selecting 
the elements with the largest magnitude. A fixed-length, uniformly 
weighted window function was used to extract crossrange data in the 
ISAR image. The phase derivative was calculated for each scatterer and 
was fit to a second-order polynomial. 

Once the phase derivatives of the scatterers were found, the motion- 
parameter estimation portion of the algorithm shown on the right side of 
figure 2 was started. Third polynomials were fit to the results obtained 
using equation (31), and the zero- and first-order polynomial coefficients 
were equated to coefficients calculated using equation (32). The zero- 
order coefficients were used to calculate the crossrange position of the 
scatterers, and the agreement between the simulated and calculated first- 
order coefficient was used to evaluate the motion parameters. First, four 
motion parameters were selected from a 4-D hypercube that was dis- 
cretely sampled at equal intervals. Next, the crossrange positions of the 
scatterers in the ISAR image were calculated based on the zero-order 
polynomial coefficients calculated from the phase derivative of each point 
scatterer and on the selected motion parameters. The downrange position 
of the scatterers on the target were calculated by assuming that the aver- 
age downrange position of the scatterers in the image were located at the 
center of the target. The agreement between the simulated and calculated 
first-order coefficients were determined using 

(33) 
f ,\l A 

Xn - \fwi\cin -,|J( (?y») + e 

j 



Figure 2. Block 
diagram of the IMPE 
algorithm. 
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where Xn = the agreement for the nth set of motion parameters, wi - the 
magnitude from the scatterer selection routine for the fth scattering center, 
cin = the calculated first-order coefficient of the phase derivative for the 
z'th scatterer and the nth set of motion parameters, s2- = the simulated first- 
order coefficient of the phase derivative, I = the set of scatterers with the 
smallest absolute difference between cin and s •, yin = the crossrange posi- 
tion, and £ = a small positive constant (0.5 m). In the first factor in equa- 
tion (33), the absolute value of the agreement between the first-order 
coefficients is calculated. In the second factor, the crossrange position of 
the scatterers is averaged and added to an offset. This forces the average 
crossrange position of the scatterers to be near the origin. This is justified 
if the average scatterer position identified on the target is close to the 
center of rotation of the target. The motion-parameter vectors with the 
smallest value of X were saved. For runs using the target configuration 



with 5 fixed scatterers, the 5 most prominient scatterers were evaluated 
and the motion-parameter vectors with the three smallest values of X 
were averaged together to form a new estimate. For runs using the target 
configuration with 20 random scatterers, the 8 most prominent scatterers 
were evaluated and the 7 scatterers with the best agreement were used to 
determined the smallest value of X. The 7 motion-parameters vectors 
with the smallest values of X were then normalized by subtracting the 
mean and dividing by the standard deviation. The 6 motion-parameter 
vectors with the smallest Euclidian distance were averaged to form a new 
motion-parameter estimate. The updated estimate of the motion param- 
eters are calculated using 

p(n +1) = p(n) + u[p(n)-p (n)) , (34) 

where p{n + 1) = the new estimated motion-parameter vector, p(n) = the 

previous estimated motion-parameter vector, p(n) = the motion-parameter 
vector calculated for the nth iteration of the algorithm, and u = the step 
size parameter equal to 0.1. 

The search pattern used by the IMPE algorithm to locate the best motion- 
parameter vectors was a brute-force method that requires N4 iterations. 
Motion parameters were selected from a 4-D hypercube that was dis- 
cretely sampled at equal intervals. The center of the hypercube was set to 
the current estimate of the motion parameters, and it extended ±1.5 times 
the error estimate in the motion parameters. The initial error estimate was 
equal to the actual error estimate. For successive iterations, the search 
space for each parameter was linearly reduced. For the last iteration, the 
range of the search space was ±0.3 times the initial error. This part of the 
algorithm was implemented with four loops. This is an inefficient search- 
ing algorithm, but it reduced the problem of finding local minimums 
rather than the global minimum. The number of motion-parameter error 
vectors searched varied from approximately 29,000 to 200,000. More 
searching was required when there was a less accurate estimate of the 
motion parameters. Implementation of the IMPE algorithm would require 
a more intelligent search procedure. 

The computational complexity of the entire algorithm was evaluated 
using the number of arithmetic operations as a criterion. The computa- 
tional complexity is approximately equal to L(MN

A
O + FRlog(F) + 

RFlog(R)), where L = the number of iterations, M = the number of scatter- 
ers, N = the number of possible values for each motion parameter, O = the 
number of operations required to calculate Xn (80 to 100), F = the number 
of frequencies, and R = the number of ramps. This results in a total of 
between 5 x 1010 to 8 x 1010 calculations per run. The algorithm took 
between 3 to 5 hr per run using code written in Matlab, version 5.2.1, on a 
Pentium II computer running at 333 MHz. 

A standard set of motion-parameter values and errors was selected for 
testing the algorithm. Realistic values were selected for the motion pa- 
rameters that did not violate any of the assumptions required by the 
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algorithm. The motion errors were selected using the following proce- 
dure. First, the maximum error that the IMPE algorithm could correctly 
compensate for was determined separately for each motion parameter. 
Then the maximum error for each parameter was reduced by 40 percent 
and combined to form a motion-parameter error vector. The initial esti- 
mate of the range and motion parameters was determined from the sum 
of the actual values plus the initial errors shown in table 1. 

The initial range from the radar to the target was 1 km. The downrange 
error was equal to the mean downrange position of the scatterers in the 
ISAR image, since the center of rotation of the target was at the origin. 
The distance between the axles in the target required by equation (4) was 
set to 3.5 m and the exact value was used in the algorithm. The results of 
applying equations (4) through (6) to the parameters selected in table 1 is 
a radius of curvature of approximately 200 m, angular velocity of 0.05 
rad/s, and angular acceleration of 0.005 rad/s2. The total collection time 
is equal to the number of frequencies transmitted, multiplied by the 
number of ramps collected, divided by the PRF of the simulated radar. 
This results in a simulated collection time or final time L, of approxi- 
mately 0.94 s. The rotation angle, calculated using equation (7), is ap- 
proximately 0.05 rad, which is much less than 1 rad. The total distance 
traveled by the target is approximately 10 m, which is much less than the 
range of 1 km. These calculations indicate that the approximations made 
in developing the IMPE algorithm are valid. The downrange and 
crossrange resolution of an ISAR image generated using the radar model 
and the above target motion values are both approximately 0.1 m. 

Table 1. Target motion Motion parameters Parameter values Initial errors 
parameters and initial 
errors. Velocity (V) 10 m/s 0.15 m/s 

Acceleration (A) lm/s2 0.3 m/s2 

Angle of wheel 1° 0.41° 
Angular direction 60° -0.26° 
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Results 
The results are presented in two parts: a qualitative section where some 
intuition can be developed and a quantitative section where two metrics 
are evaluated. In the qualitative section, ISAR images and the motion 
parameters are shown in detail for a single run. The images were gener- 
ated using a 2-D DFT. In the quantitative section, the metrics normalized 
range error and entropy are evaluated. These metrics were selected 
because they are relatively simple to calculate, have physical significance, 
and are related to image quality. When the simulated data were motion- 
compensated with the exact motion parameter values, the value of both 
metrics was zero and the image quality was high. The normalized range 
error and normalized entropy statistics were evaluated for various levels 
of noise. The range error was calculated by subtracting the estimated 
range from the exact range at each radar sample time, then the standard 
deviation was calculated as a function of time, or equivalently, ramp 
number. The normalized range error was calculated by dividing the range 
error by the average radar wavelength. The entropy was calculated using 

Hk = -IXIY g{x,y)\og(g{x,y)), (35) 

where Hk - entropy at the kth iteration of the algorithm, g{x,y) - the 
image of the motion-compensated radar data, and x and y are indices. The 
entropy was normalized using 

■Li   _     k    rL min Hk-H     H       / (36) 
"0    -"min v    ' 

where Hk = the normalized entropy, Hk = the entropy at the kth iteration 
of the algorithm, Hmin = the entropy (minimum) with exact motion 
compensation, and HQ = entropy calculated with the initial motion com- 
pensation. The range error and entropy were calculated after each itera- 
tion of the algorithm. Perfect motion compensation resulted in zero range 
error and zero normalized entropy. 

Detailed results of the IMPE algorithm are presented for a target RCS 
model consisting of 20 random scatterers with independent Gaussian 
noise with a mean of 0 m and variance of 5 m2. Figure 3 shows range- 
Doppler images of the target at various stages in the algorithm. Figure 
3(a) shows the initial ISAR image with motion compensation that in- 
cluded the errors shown in table 1. Figure 3(i) shows the exact motion 
compensation. The remaining ISAR images had motion compensation 
performed using estimates from the IMPE algorithm at various iteration 
points. These results qualitatively show the improvement in image 
quality. 

12 



Figure 3. Range- 
Doppler images of 20 
random scatterers 
with Gaussian noise: 
(a) Initial ISAR image, 
(b) after 6 iterations, 
and (c) after 11 
iterations. 
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Figure 3 (cont'd). 
Range-Doppler 
images of 20 random 
scatterers with 
Gaussian noise: 
(d) after 16 iterations, 
(e) after 21 iterations, 
and (f) after 26 
iterations. 
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Figure 3 (cont'd). 
Range-Doppler 
images of 20 random 
scatterers with 
Gaussian noise: 
(g) after 31 iterations, 
(h) after 61 iterations, 
and (i) with exact 
correction. 
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It is also informative to examine the estimates of the motion parameters 
as a function of iteration number. Sometimes, the motion parameters 
converged to their correct values, but most of the time they did not. 
Certain combinations of values produced very good range estimates, 
even though they did not correspond to the actual motion parameters. 

For example, a high estimate in velocity could be partially offset by a low 
estimate in acceleration in the range calculation. Figure 4 shows the 
normalized error for the four motion parameters. The initial errors shown 
in table 1 were normalized to a value of 1. Figures 5 and 6 show the 
normalized range error and the entropy versus algorithm iteration num- 
ber. These graphs qualitatively indicate that range error and entropy are a 
better measure of image quality than error in the motion parameters. The 
motion-parameter errors were often large and had a large variance over 
several trials. 

The algorithm performance was quantitatively analyzed using the nor- 
malized range error and entropy, as shown in tables 2 and 3. Ten trials 
were run for each target configuration and noise level. A visual analysis 
was performed to eliminate trials where the minimum range error was 
larger than the other trials. The number of trials eliminated is encapsu- 
lated by parentheses in columns two and three of tables 2 and 3. The 
mean and standard deviation were calculated for the remaining runs. For 
the fixed target configuration with no noise added, the actual values were 
reported rather than the statistics. 

Figure 4. Normalized 
motion-parameter 
errors for a single trial 
run. 
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Figure 5. Normalized 2.6 
range error for a 
single run. 2.4 
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Table 2. Minimum 
range error 

Noise variance 
Mean ± standard deviation (trials eliminated) 

normalized by 
wavelength. (m2) 5 scatterers 20 random scatterers 

0 0.008 (0) 0.18 ±0.10(0) 
5 0.048 ± 0.027 (1) 0.21 ±0.10(1) 

20 0.056 ± 0.032 (2) 0.26 ±0.16(1) 
40 0.087 ±0.066 (2) 0.25 ±0.11(1) 
80 0.133 ± 0.107 (2) 0.27 ±0.11(1) 

160 0.256 ±0.138(0) 0.24 ± 0.12 (1) 
320 0.249 ± 0.122 (0) 0.27 ±0.10(1) 
640 0.232 ± 0.129 (0) 0.21 ±0.11(1) 

1280 0.363 ± 0.212 (0) 0.23 ±0.12(1) 

Table 3. Minimum 
normalized entropy. 

Noise variance 
Mean ± standard deviation (trials eliminated) 

(m2) 5 scatterers 20 random scatterers 

0 0.0027 (0) 0.017 ±0.05(0) 
5 0.027 ±0.050(1) 0.086 ± 0.12 (1) 

20 0.051 ± 0.076 (2) 0.31 ± 0.38 (1) 
40 0.085 ± 0.12 (2) 0.32 ± 0.40 (1) 
80 0.23 ± 0.26 (2) 0.38 ± 0.41 (1) 

160 0.52 ±0.38(0) 0.34 ± 0.34 (1) 
320 0.57 + 0.38(0) 0.46 ±0.41(1) 
640 0.38 ± 0.40 (0) 0.50 ±0.36(1) 

1280 0.51 ± 0.49 (0) 0.14 ±0.34(1) 

The results are reported for different noise levels, but they can also be 
expressed as signal-to-noise (SNR) ratios. The expected values of the RCS 
of the two target configurations are 5 and 20 m2. The expected values of 
the RCS of the noise are 0,5,20,40, 80,160,320, and 640 m2. This results 
in SNRs of infinite, 0, -6, -9, -12, -15, -18, and -21 dB for the 5 fixed 
scatterer configuration and infinite, 6, 0, -3, -6, -9, -12, and -15 dB for the 
20 random scatterer configuration. Coherent processing gains obtained 
using 256 frequencies and 256 ramps could potentially improve the SNR 
by 48 dB. In the simulation, full coherent gains were not achieved. For 
example, randomly placed scattering centers could interfere with each 
other, which represented a noise to the algorithm. The initial range error 
was approximately 2.5 wavelengths. The initial entropy varied depending 
on the scatterer configuration and on the variance of the noise. 

These results indicate that in approximately 80 percent of the runs with 5 
fixed scatterers and approximately 90 percent of the runs with 20 random 
scatterers, the algorithm was able to significantly improve range error 
and entropy statistics. As the noise levels increased, the number of outli- 
ers first increased, then began to decrease. This odd behavior was a result 
of the threshold for outliers changing, rather than the performance of the 
algorithm improving. 
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The results in tables 2 and 3 indicate that the IMPE algorithm significantly 
improved the evaluation metrics. Higher SNRs produced better metric 
statistics and image quality. The algorithm also was able to improve 
estimates of the motion parameters, but often improvements in the 
metrics did not correspond with improvements in estimates of the motion 
parameters. This is not a surprising result since four motion parameters 
were being estimated with a sensor that estimated range. There are many 
combinations of these motion parameters that could result in very similar 
estimates of the range. 

The range error was usually larger than A/16, the standard criterion to 
generate a focused image. The results in table 2 are reported in range 
error divided by wavelength, so the normalized range error should be 
less than 1/16 or 0.0625 for a focused image using the standard criterion. 
This was only satisfied for the 5 scatterer target configuration with small 
noise levels. However, there were significant visual improvements in 
image quality even when this criterion was not satisfied. 

In general, the metrics for the 5 fixed scatterer configuration were better 
than those for the 20 random scatterer configuration. But the 5 fixed 
scatterer configuration also had more trials eliminated. These results are 
due to tradeoffs between having isolated scatterers and more scatterers. 
More scatterers produce increased stability in the algorithm and isolated 
scatterers produce better metrics and image quality. 

Minimum range error and entropy statistics were examined to determine 
if entropy could be used as a stopping condition for the IMPE algorithm. 
Table 4 shows the mean and standard deviation for the range error at the 
minimum entropy, and table 5 shows the mean and standard deviation of 
the difference between the iteration number corresponding to the mini- 
mum range error and the iteration number corresponding to minimum 
entropy. 

These results indicate that minimum normalized entropy and minimum 
range error are not highly correlated. More sophisticated metrics are 
required to determine when the algorithm should stop iterating. 

19 



Table 4. Range error at 
minimum entropy. 

Table 5. Difference in 
iteration index 
number of minimum 
range error and 
minimum entropy. 

Noise variance 
Mean ± standard deviation (trials eliminated) 

(m2) 5 scatterers 20 random scatterers 

0 0.010 0.81 ± 0.57 
5 0.12 ±0.13 0.86 ± 0.57 

20 0.16 + 0.22 0.80 ±0.52 
40 0.18 + 0.21 0.66 ± 0.33 
80 0.24 ± 0.22 0.98 ±0.43 

160 0.73 ± 0.78 0.98 ± 0.52 
320 0.77 + 0.80 1.09 ± 0.54 
640 0.72 + 0.65 0.95 ± 0.60 

1280 1.8 ±1.6 1.06 ± 0.76 

Noise variance 
Mean ± standard deviation (trials eliminated) 

(m2) 5 scatterers 20 random scatterers 

0 1 -21 ± 16 
5 5.9 ± 12 -18 ± 19 

20 5.9 ± 20 -21 ± 29 
40 0.5 ± 19 -19 + 22 
80 -7.5 ± 23 -14 ± 30 

160 -10 ± 25 -17 + 25 
320 -5.0 + 27 -18 + 26 
640 -11 ± 18 -23 ± 17 

1280 1.3 ± 22 -10 ± 32 

20 



Conclusions 
An iterative motion-parameter estimation algorithm was developed for 
noncooperative ISAR at MMW frequencies. The algorithm was tested 
using simulated radar data with various levels of noise. The major com- 
ponents of the simulation were the target backscatter model, the radar 
model, and the target motion model. Two target RCS configurations were 
tested: 5 point scatterers located at fixed locations and 20 scatterers 
located at random locations. The significant parameters of the radar 
model corresponded to an existing ARL instrumentation radar. A simple 
2-D target motion model was developed and reasonable motion- 
parameter values and errors were selected. Normalized range error and 
the entropy metrics were used to evaluate the algorithm. 

In approximately 80 percent of the runs with 5 fixed scatterers and ap- 
proximately 90 percent of the runs with 20 random scatterers, the algo- 
rithm was able to significantly improve the metrics and the visual image 
quality. The image focus criterion that required range error of less than 
XI16 was only satisfied for the 5 scatterer target configuration with small 
noise levels. However, there were significant visual improvements in 
image quality when this criterion was not satisfied. The algorithm was 
able to improve estimates of the motion parameters, but the updated 
values usually did not converge to their actual values. Visual analysis 
indicated that improvements in image quality often did not correspond 
with improvements in estimates of the motion parameters. In general, the 
5 scatterer target configuration had better image quality than the 20 
random scatterer configuration, but it also had more trials eliminated. 
Minimum entropy was tested as a stopping condition for the algorithm. 
The results indicated that minimum entropy was not highly correlated 
with the minimum range error. The metrics selected did not always 
correspond with visual analysis. Thus, more sophisticated metrics based 
on specific target recognition algorithm requirements are needed. 

Overall, the results were positive enough to warrant further investigation. 
The algorithm should be tested on real data in a benign environment. If 
the algorithm performs well, the next step would be to develop a more 
realistic simulation and to reduce the computation time. More sophisti- 
cated target backscatter, motion, and noise and clutter models as well as 
multipath effects are required. Additional sensors such as a monopulse 
radar and/or infrared sensors should also be included in the simulation. 
Also, a more efficient search pattern should be developed for locating 
motion-parameter corrections. 
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