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Part III: 
Heterogeneous Lanchester Attrition Theory - 
Fire Allocation and Theory of Aggregation 



Foreword 

Warfare is as old as recorded human history. War has been especially prevalent in the last 500 

years with the increasing conflict between large nation states. A great amount of analysis and thought 

has been given to the "Art of War". Nine principles of War have been defined: Objective, Offensive, 

Mass, Economy of Force, Maneuver, Unity of Command, Security, Surprise, and Simplicity. Despite 

these accepted principles, the science of war has remained elusive. Since World War II, investigators 

have searched for a theory on the physics of war-"De Physica Belli". Efforts have been more 

successful with the prominent rise of Operations Research as an analysis tool to assist combat 

operations. Dr. Bruce W. Fowler uses these modem analytical tools to seek the answer to the 

following question in this report-"Is there any scientific basis to describe the physics of war?" This 

report provides the answer to this question. His approach to a physics of war is the application of 

Lanchestrian attrition mechanics which first appeared in theory in the early 1900's. 

In Part HI, Dr. Fowler deals with the heterogeneous Lanchester attrition theory, which inherently 

deals with forces comprised of more that one type of unit each. The scope of this coverage is 

fundamental and in keeping with the two previous parts of this work, educational in nature. He 

introduces the formulation of the attrition differential equations as matrix differential equations, and 

describes the basics of eigenvalues and eigenvectors. On this basis, Dr. Fowler then covers the basic 

problem associated with mixed unit forces of fire allocation in the context both of mathematical 

optimization and human nature. Next, he introduces the formal theory of aggregation and establishes 

its role in modeling and simulation. Finally, Dr. Fowler reviews the formulation of stochastic 

Lanchester theory and relates this to other models. 

u 



"De Physica Belli" is intended to be a general reference and introduction to attrition theory 

suitable for the combat soldier, the student-soldier, or the military analyst. The manuscript succeeds 

in that respect and provides a good overall summary of the state-of-practice in attrition theory 

through 1990. However, given the great advances in modeling, simulation and computational power 

since 1990, it would not be surprising to see future updates to this work. The mathematical tools of 

complexity theory, fractal dimensions, fuzzy logic, information theory and the power of scientific 

visualization of data in interactive computer simulations may offer new and exciting insights into 

the physics of war. These new developments will most certainly provide opportunities to conduct 

experiments in the science of warfare that go beyond the limitations inherent in the analysis of 

historical data. 

in 
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Chapter 1 

Introduction to Part III 
With this Part HI of the work, we have now completed our consideration of both the basic fun- 
damentals of classical Lanchester attrition theory, and the fundamental scientific underpinnings 
of the conjugate theory of the attrition rate coefficients, Parts I and II, respectively. This does 
not mean that we will be ignoring these results. Rather, we now move on to consideration of 
more advanced topics that build on and reinforce what has been considered previously. 

In Part I, we were primarily concerned with the mathematical properties and underlying 
assumptions of the classical archetypes of the Lanchester attrition differential equations, the 
Linear and Quadratic equations, and the extended variations including the generalized Osipov 
differential equation. In Part II, we were primarily concerned with the conjugate theory of 
attrition rate coefficients that provides the connection between the neatness of the rate based 
attrition theory that draws its evolution from Lanchester and Osipov, and the fundamental physical 
and psychological principles that describe the phenomenology of our human oriented but physical 
world. 

All of this consideration has essentially had a lumpen aspect that seems to harken back to 
the simplistic view of basic Newtonian mechanics. Forces, which we know either from direct 
experience with the Armed Forces, or study of history or doctrinal manuals, have structure both 
of an organizational and a physical sense. Armored battalions occupy space and are not just 
comprised of tanks firing their weapons against the same target in a consistently prescribed 
fashion. Yet most of our consideration in Part I considered such units as the equivalent of being 
comprised of identical elements which had fallen into some strange sort of black hole which 
compressed their spatial and temporal behavior and character into a sort of two-space and time 
geometrical point mass, while permitting their attritional process behavior to interact beyond the 
horizon of the black hole. 

In Part II, we considered the physical and psychological basis of the conjugate theory of attri- 
tion rate coefficients, and nothing we obviously considered there was restricted to this geometric 
point compression. Indeed, the overt relaxation of the range constancy restriction implicit in 
the assumption structure of Part I has set the stage for consideration of further relaxation of the 
geometric point consideration of forces and their attritional interactions. 
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This then is both the prescription and the intent of Part in of the work. We shall now consider a 
succession of formalisms which relax the compression of force structure into a geometric point. 
Our intent here is twofold. First, we want to describe bases for consideration of battlefield 
attritional processes in a more generalized, more obviously realistic, in the sense of sensual 
observation of the world and our mental models of the same, form than the geometric point 
representation that we have described thus far. Second, we do not want to lose connection with 
the vast body of consideration, formalism, and insight that is embodied in that geometric point 
picture. 

This leads to an outline that is somewhat reminiscent of some stylized dance such as may 
be performed about a May Pole. We shall move away from the centrality of the geometric 
point picture by generalization, of the mathematical formalism and then move back to the 
center whenever possible. In this manner, we shall weave a complex picture variation of greater 
generality in the treatment of space, time, and organization as it applies to attritional processes. 

The fundamental concept of this complex picture is one that we have briefly dealt with 
previously, either overtly or covertly, either inherently or explicitly. This concept is Aggregation. 
Our goal throughout in establishing the connection between more generalized formalisms and 
the geometric point picture is to rest this connection on as firm a foundation of aggregation as 
possible. In some cases, we shall be successful in varying degrees, while in others, aggregation 
must proceed in a manner that can often be characterized as ad hoc at best. 

In keeping with the custom established in previous Parts, I wish now to dedicate this Part III 
to individuals who have contributed to my investigations. Sadly, I cannot acknowledge all of 
those who have done so and so I present apologies to those many folk who have triggered my 
mind and who have contributed to my understanding and insight. In particular, I must thank 
Dr. James Taylor of the Naval Post Graduate School who triggered my interest in the subject 
of spatially distributed Lanchester theory during a lecture he presented during the Modeling, 
Simulation, and Gaming of Warfare course of Dr. Griff Callahan (COL, USA Ret.) at the 
Georgia Institute of Technology, I believe about 1982, and Dr. Ben Wise, whose affiliation I am 
now uncertain of, who through the kind offices of Griff Callahan, triggered my interest in the 
area of State Solutions for Heterogeneous Force Attrition Differential Equations in about 1989. 
Of course, I must acknowledge the information brokering and mentoring role of Griff, without 
whom none of this work would have occurred. 



Chapter 35 

Heterogeneous Force Attrition Differential 

Equations 

35.1    Introduction 
In this chapter, we begin our consideration of heterogeneous force attrition differential equations 
(ADEs). In this case, we examine relaxation of the organization aggregation of the force structure 
of units although we do retain the geometric point aggregation of their spatial extent. This is 
an obvious generalization of the methodology and formalism established in Part I. Indeed, a 
simplified variation of this formalism was considered by Osipov in his initial work.fl] 

Osipov considered the addition of artillery and machine guns to an infantry force weaponed 
with rifles. He gives a pair of attrition solutions, 

C £ 
A + -AAR + -AMG a a 

S £ 
Bi + -flBAR + ~^BMG 

it)   = 

(*) 

A + -AAR + -AMG a a 
cosh 

t=o 
c p 

Bi + ~öBAR + -pBMG 

Bi + ~öBAR + -rßuG 

t=0 

cosh 
t=o 

C   A £   A 
Ai + -AAR + -AMG 

a a 

(y/öfit) 

aßt) 

(1) 

sinh 

We may note several things about these two equations. First, the roles of a and ß are reversed 
from our normal convention. Second, it is assumed that although artillery (AR) and machine 
guns (MG) add to the attrition of the overall force, they are attrited at a rate proportional to 
their lethality. This is the first instance that I know of where force heterogeneity is taken into 
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account. 

35.2    Homogeneous Lanchester Review 
Before embarking on discussion of heterogeneity on the basis of force structure, we shall 
pause briefly to review the basic form of homogeneous Lanchester ADE archetypes. The basic 
archetype is the Quadratic Lanchester ADE which has the pair form, 

dA 
dt 
dB 
~dt 

The Linear Lanchester ADE has the form, 

dA 
~dt 
dB 
dt 

While the Osipov 3/2 ADE has the form, 

=   -aB, (2) 

=   -ßA. 

-a'AB, (3) 

-ß'BA. 

dA 
~dt 
dB 
dt 

=   -a"y/ÄB, (4) 

=   -ß"y/BA. 

The state and implicit solutions, and assumptions, of these ADEs are described in Part I. 
In their original interpretation, these ADEs represented different battlefield conditions (con- 

stant versus variable density,) weapons mode of operation (point verses area attack), and doctrinal 
restrictions (area versus line fire.) We have seen in Part II that these archetypes represent limiting 
or asymptotic cases. Thus, we may write a general Lanchester ADE of the form 

ft - -OB. e> 

The Attrition Rate Coefficients (ARCs) a and ß are indicated as being functions of some vari- 
ables, but we have not specified these variables. In general, we know from Part II that these 
variables include force strengths and ranges. 
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35.3    Heterogeneous Lanchester ADEs I 

We start our consideration of Heterogeneous Lanchester ADEs by considering a two forces, 
Red and Blue, which are comprised of different types of elements. In common usage, these 
elements may be characterized on the basis of different weapon systems, or different organiza- 
tional elements. Care must be taken in both cases to conform to the restrictions and assumptions 
associated with geometric point aggregation, but especially for the latter. Assume that each force 
consists ofNA, NB sets of elements and that we have aggregated these sets of elements together 
individually. Thus, the Red force consists of NB force strengths, A{ (i), and similarly for the 
blue force. 

Further assume that we may define or calculate an ARC for each Red force strength to attrit 
each Blue force strength, and reciprocally for the Blue force strengths attriting the Red force 
strengths. All of these ARCs are not necessarily nonzero. 

In this case, we may write two sets of ADEs for the two total forces. The ADEs for the Blue 
force are 

dt 

while the ADEs for the Red force are 

A     -£«u()*i, (6) 

dBj NA 

= -£/M)A. (7) 
t=i dt 

The quantities onj () and ßjti () are the ARCs for the ith R.ed force being attrited by the jth Blue 
force, and reciprocally for the Blue forces being attrited by the Red forces. There are thus a 
total of NA + NB ADES in this characterization. 

In general, solution of systems of ADEs such as this are possible only if the ADEs are 
linear in a mathematical sense. We shall consider this restriction in detail later in this and other 
chapters. This means that in general we may find analytical solutions under only very restricted 
conditions. Of course, we still have the option of solving these equations numerically. As with 
the homogeneous ADEs, these equations are generally highly stable, so long as all of the force 
strengths are not too small (or negative), so that open integral approximations such as 

NB 

A(k + 1)   ^   Ai(k)-yEaiJQBj(k)At, (8) 
i=i 
NA 

Bj(k + i) ~ ay(fc)-E/M)4(t)At, 

where At is the time increment indexed by k = 0.. This class of approximation can be imple- 
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Figure 1: Two by Two Pure Quadratic Heterogeneous Attrition 

mented using our usual spreadsheet simulation.1 

To illustrate this, we present two sample calculations. The first is a 2 X 2 engagement (that 
is, 2 Red forces and 2 Blue forces) that are purely quadratic in attrition interaction. All Red 
forces fire on all Blue forces, and visa versa. The results of these calculations, performed using 
a simple spreadsheet simulation, are shown in Figure 1. 

To contrast with this, we also present calculations where the first force on each side is 
Quadratic but the second is Linear in their attrition interactions. To promote comparison, the 
linear attrition ARCs have been scaled from the corresponding Quadratic ARCs of the preceding 
example by dividing by the initial force strengths. These calculations are shown in Figure 2. 

1This Part witnesses a departure from our normal mode of simulation. Much of the formalism here and many 
of the techniques cannot be easily nor readily simulated using a spreadsheet. Recourse to actual coding becomes 
necessary with frequency. We shall try to be explicit in noting these cases. 
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Figure 2: Two by Two Mixed Quadratic-Linear Hetherogeneous Attrition 

35.4    Heterogeneous Lanchester ADEs II 
It is sometimes useful to separate the two sets of force strengths into subsets based on the nature 
of the attrition interaction. Suppose that the Red force consists of two subsets of NR forces that 
attrit by point attack (thus, Quadratic), and Nfi forces that attrit by area attack. The Blue force 
is similarly divided. In this case, the ADEs have the forms 

dt 

dJt 
dt 

dB 
 j_ 

dt 

Q 

NQ 

3=1 

-t^AfBf, 
3=1 

(9) 

N<1 NL
A 

= -E/sS^-E*5?^ 
t=\ t=i 
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>L *V ^ 
d§- = -Z&ti-XfoBtM 
al t=l 1=1 

We considered a much simplified version of this earlier in Part I. 
This divided notation helps numerical calculations by explicitly showing the forms of the 

ADEs, but it also emphasizes the potential problems that we shall have in actually solving these 
sets of ADEs. 

35.5   Mathematical Linearization 
We have already indicated that straightforward solution of heterogeneous ADEs is largely a matter 
of having all of the differential equations linear in the mathematical sense. This presents some 
problems since we know that some attrition interactions will be Linear (in a Lanchester sense), 
and a few may be even more complex. In Chapter 33, however, we examined approximations 
for the exact ARCs that first removed the dependence on the ADEs on the target force strengths 
and then on range. Can we try the same approximation in the heterogeneous problem? 

To examine this, we posit a set of calculations using the Quadratic, Linear, and 3/2 ADEs 
described above. Basically, we want to replace target force strengths in the latter two type of 
ADEs with the initial target force strengths. By doing this, approximate ADEs result which are 
Quadratic in a Lanchester sense and linear in a mathematical sense. That is, we replace Linear 
Lanchester ADEs of the form 

d4   =   -<*ABt (10) 
at 

<§ - -** 
with approximate Quadratic Lanchester ADEs of the form, 

—   ~   -aA0B = -a'B, (11) 
dt 

^f   ~   -ßB0A = -ß'A. 
dt 

A similar approximation is made for Osipov 3/2 attrition order ADEs. 
To examine this, we generated a set of attrition rates for each type of equation that was scaled 

by the Quadratic ARCs divided by the target initial force strength raised to the power of two 
minus the attrition order. Thus, e.g., 

  ^Quadratic fl9"\ 
^■Linear ~t • v      ' 

A) 

10 
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Figure 3: Comparison of Quadratic, Linear, and Osipov 3/2 Exact Calculations 

Example calculations of the three "exact" ADEs are shown in Figure 3. We call these exact 
since they were solved numerically using a spreadsheet simulation. 

Next, we made comparison calculations for the Linear Lanchester and Osipov 3/2 ADEs 
approximated as Quadratic Lanchester ADEs. These are shown in Figures 4 and 5. 

We note that (visually), this approximation seems to be reasonable to force strengths of about 
80% of initial. This is wonderful! It offers us the hope that we may approximate all Lanchester 
ADEs as Quadratic, and thus linear from a mathematical sense. The question is, can we live 
with having calculations truncated at 20% loses? 

To examine this, we return to our historical data bases. In this case, we calculated the remain- 
ing force strength fraction for each side in each battle in our databases, and form an unbinned, 
Kolomogorov-Shmirnov type of cumulative distribution from each database. These are shown 
in Figure 6. From this, we may see that in 80-90% of the battles in each database, the remaining 
force strength fraction is greater then or equal to 80%. Thus, we are on reasonably comfort- 
able ground if we "Quadraticize" all of our heterogeneous ADEs so that they are mathematically 
linear. Even for those cases where we know that we shall have less than 80% force strength frac- 
tion remaining, we may safely approximate attrition by dividing the calculation into successive 

11 
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Figure 4:  Comparison of Linear Lanchester and approximate Linear as Quadratic Lanchester 
Calculations 

approximations of this extent. 

35.6   Heterogeneous Lanchester ADEs III 
Before concluding this brief chapter introducing the notation of heterogeneous Lanchester ADEs, 
it is useful to introduce one more set of notation. In this case, we reduce the two sets ofForce 
Strength ADEs into one set. In this case, the force strengths are represented by a vector F with 
components Ft. By inspection, Ft = Aui = l..NA, and Fi+NA = B{,i = l..NB. The vector 
ADE has the form 

dt 
F = T • F, (13) 

where the ARC array is of the form 

12 
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Figure 5:   Comparison of Osipov 3/2 and approximate Osipov 3/2 as Quadratic Lanchester 
Calculations 

- a 

ß     o 
(14) 

where: "a? = Blue ARC array on Red, and ß  = Red ARC array on Blue. We note that a 

has NA rows and NB columns while  ß  has NB rows and NA columns. Thus, the upper left 
hand zero subarray has NA rows and columns, and the lower right hand zero subarray has NB 

rows and columns. Equation 13 can also be written in component-summation notation as 

J jp        NA+NB 

(15) 

This notation has the advantage of clearly reducing the perceived form of the ADEs to a single 
set. We shall use this notation fairly extensively in considering solutions and aggregation in a 
subsequent chapter. Note that the minus sign has been imbedded into the array itself. 

13 
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Chapter 36 

Fire Allocation 

36.1 Introduction 
In this chapter, we take up a subject that is new to our view, fire allocation. This is not a subject 
that occurs in considering geometric point Lanchester theory since there are only two forces: 
one Red; and one Blue; both of which normally fire only on each other (neglecting fratricide, a 
subject that we shall take up in Part IV.) Thus, in homogeneous Lanchester theory, the problem 
is how to average different weapons or unit types. (This is a subject that we shall examine in the 
next chapter.) In heterogeneous Lanchester theory, the problem is how force strength is aligned 
against the target population. 

The conjugate theory of attrition rate coefficients (ARCs) that we described in Part II provided 
a physical and psychological basis for the calculation of the mean time for a given weapon system 
to kill (acquire and engage) a given target system. From that mean time to kill, the rate at which 
weapon systems kill target systems can be calculated directly. This is the fundamental success of 
the conjugate theory. Unfortunately what that conjugate theory does not tell us is how weapon 
systems are paired with target systems. That is the subject of this chapter. 

36.2 Fire Allocation 
As in the preceding chapter, we assume that there are two forces: one Red; one Blue; that are 
engaged in combat. We designate these subforces as A and Bjt respectively. Each force is 
comprised of some number of subforces: NA Red subforces; and NB Blue subforces. We define 
two ARC matrices: ay; and ßj/, respectively, i = l..NA, j = l..NB. If we combine these 
subforce strengths in a force strength vector 

F EE ( [^ ) = ASi + Bfi (1) 
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Chapter 36   Fire Allocation 

in matrix notation as an (NA + NB)X1 matrix, then a combined ARC matrix is definable as 

Y.fl ;5Wä (2) 
which is (NA + NB) X (NA + NB). The individual ARCs in this matrix are presumed to be 
calculated using the formalism described in Part II, and linearized using techniques described 
there and in the preceding chapter. The basis unit vectors e* are assumed to have a Kronecker 
delta function orthogonality. We defined an evolution or rate equation for this notation as 

^-F=Y.F. (3) 
dt 

We may now reveal that this picture is a lie, or at least only partly accurate. Since the &,i 
are presumed calculated as ARCs on a pure basis, this picture is in error because it overcounts 
the attrition. Quite simply, the elements of each subforce can only engage a number of targets 
(point or area) equal in number to that subforce strength at any instant of time. Thus, since this 
picture applies all of a subforce to each ARC, the effect is to allow each subforce element to 
simultaneously engage as many targets as there are ARCs in the corresponding row of the ARC 
matrix. 

To correct this overcounting, we introduce the concept of Fire Allocation which is simply 
the assignment of the totality of each subforce's elements among the potential targets. Since the 
subforces are aggregated, the most common notation for designating this allocation is to assign 
fractions of the total subforce strength against other subforces. These fractions are designated 
as fk,i where k indicates the target subforce and I indicates the engaging subforce. Since these 
are fractions, they must obey constitutive relations, 

NA+NB 

These relations assure that only as many targets are engaged as there are subforce elements. 
With these fractions and constitutive relations, the evolution or rate equation becomes 

-£F=T.F, (5) 
dt 

where: 

Y = fk^kßkei. (6) 

The remainder of this chapter will be primarily concerned with the different approaches to 
calculating the subforce fractions. These approaches basically fall into two categories: 

•   approaches based on optimization; and 
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Example Format 

•   approaches based on physical and psychological processes. 

The former category tends to be defined by optimization techniques that are the province 
of classical Operations Research. The latter tends to be defined by accessible states and their 
densities. 

36.3    Example Format 

As is our custom, we will be presenting examples wherever possible. Since we are dealing with 
optimization for several of these approaches, it is difficult to present visualizations for problems 
more complicated that 2X2. Thus, the examples that we shall present will be within a common 
format. Specifically, we shall consider a combat where the two forces are each comprised of two 
subforces. For clarity, we shall explicitly split the calculations into two separate sets of ADEs, 

d-§   =   -c-ijBj, (7) 

The ARC matrices will always be the same, specifically, 

/0.01   0.02 \ (8) 
at'3    y o.02 o.oi j ' 

and 

( 0.005    0.01  \ (9) 
Pj-1     ^ 0.01    0.005 J 

We note in passing that these two matrices are symmetric in the sense that the ratios of elements 
are constant. This will have special significance in optimization approaches to fire allocation. 

The initial force strengths are (Ax (0), A2 (0), By (0), B2 (0)) = (100,75,50,37). Note that 
in a homogeneous draw sense, the Blue on Red ARCs are too small by half. 

Because of the constitutive relations, we have to consider only two fractions for each force. 
(Since for each subforce, the sum of fractions must be one. If we designate the fractions of the 
two Blue subforces allocated to Red subforce 1 by /i and /2, and the fractions of the two Red 
subforces allocated to Blue subforce 1 by gx and g2, then the combined ARC matrix has the 
form 

r = 
/ 0 0 /l«l,l /2Ö1.2 

0 0 (1 - h) «2,1 (1 - h) «2,2 

9ißi,i 5201,2 0 0 

1(1 - 9\) 02,1 (1 - 92) 02,2 0 0 

\ 

(10) 
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Figure 1: Nominal Fire Allocation - All Fractions = 0.5 

As an introductory example, we consider the nominal case where the subforce fire allocations 
have a value of 0.5. This is shown in Figure 1. 

36.4    Maximum Kills 
The most common fire allocation approach found in the literature is based on maximizing kills. 
Over any period of time, the loss to Red is given by the integral equations, 

KB    ,t 
AA> = M (0) - A (t) = £ / fijaijBj {If) dif,i = l..NA. (11) 

If t is small, then we may approximate the integrals as one point open integrations, so that these 
equations reduce to 

NB 

AAi ~ £ kö^jBi (0) *.» = 1
-
N

A- (12) 
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Minimum Loss 

If we assess Red loss as simply the sum of these subforce losses, and recognize that time t is 
essentially arbitrary (if we stay away from any subforce strength becoming zero,) then we may 
note that the quantity 

NA NB 

LA = EEh^Bi(°) (13) 

t=i i=i 

essentially represents the kills per time by the Blue force subject to the constitutive relations. 
This is the quantity that we want to maximize by the proper selection of values for /y. 

For the example we want to present, which is 2 X 2, the integral equations take on the form 

(14) AAi   =   A1(0)-A1{t)= l*\fialtlB1y)+f2ai,2B2tf)]dl!, 

AA2   =   A2 (0) - A2 (t) = jT[(l-/i)a2,ißi(0 + (1-/2)«2,2^2 (t')]dt', 

which approximate as 

AAi   a   [/iaMßi (0) +/2ai,252 (0)] t, (15) 
AA2   ~   [(l-/i) «2,10! (0) + (l-/2)a2i2J52(0)]t. 

The Red loss then becomes 

LA   =   [/iai,ißi (0) +/2ai,2ß2 (0)] + (16) 

[(1 - /1) a2liJ3i (0) + (1 - h) «2,2^2 (0)], 

which can be graphed as a surface plot by varying /1 and /2 from 0 to 1. This is shown in 
Figure 2. From this plot, it may easily be seen that j\ = 0 and /2 = 1 maximize Red kills by 
the Blue force. A plot of the force strength trajectories for these fractions is shown in Figure 3. 

36.5   Minimum Loss 
The minimum loss approach to Fire Allocation is an extension of the maximum loss approach. 
In this approach, the assumption is made that the enemy has made some sort of fire allocation, 
usually maximum kills. If we continue to examine the approach from the standpoint of the Blue 
force, then the starting point is the Blue losses, given by the integral equations 

ABj = Bs (0) - Bj (t) = E / 9iJ»Ai (O dt'>3 = ^^ (17> 
i=iJO 
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Figure 2: Maximum Kills 2X2 Example 

which we write using the Red subforce equations as 

*A    rt r NB    /•*' 
AS;   =   E     9i.ißi.i&  ^(°)-E/n fi,^Bk(t")dt" 

t=iJo fc=iJ0 

(18) 

NA    ft NA    rt NB    ft< 

= E I* a A<4 (o) dt' - E l gußutä E L A*«*** (f)df' • 
£iJo i=ij0 k=iJO 

Since the first integral on the rhs is a given and thereby constant (we have assumed some values 
for the gjti), the only quantity that contributes to the maximization is the second integral. If 
we apply the same integral approximation as before, then we may write a loss function to be 
minimized as 

NB NA NB 

L'B « - EEftÄ E fi,k<Xi,kBk (0). (19) 
t=l i=l fc=l 

Since this expression is negative only because of the leading minus sign, it is equally useful to 
maximize the negative of the expression. 
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Figure 3: Heterogeneous Force Strength Trajectories - Maximum Kills Fire Allocation 

In the context of our 2 X 2 example, if we assume that the Red force has allocated fire to 
maximize Blue losses, then the Red fire allocation matrix is 

(20) 

The Blue loss is then 

L'B     «     -Ä.2[(l-/l)a2,lßl (0) + (1-/2)02,202(0)] 
-ß2,i[fia1,iB1(0) + f2alt2B2(0)] 

(21) 

This surface is plotted in figure 4. It may be seen that the fire allocation fractions are /i = 0 
and h = 1, which is the same as we realized for the Maximum Kills example. Thus the force 
trajectories for this example are the same as shown in figure 3. 
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Figure 4: Minimum Losses 2X2 Example 

36.6    Segue 
This is not an exhaustive exposition of fire allocation schemes based on optimization. The astute 
student will note that the complicated mechanics is not really needed in many cases. If the loss 
functions are linear in the allocation fractions, then the optimized solution is usually to set to 1 
the fraction in each column of the ARC matrix which corresponds to the maximum value ARC 
with the rest of the fractions set to zero. This is essentially a pure or integer optimization. 

There seem to be a number of similar schemes, based on optimization of some loss function 
and implemented by some classical Operations Research technique such as Linear Programming, 
SIMPLEX, or even game theory. An interesting example of the latter is the work of Sternberg.[l] 

There are two difficulties arising from the use of optimization schemes such as these. First, 
since there are other targets present on the battlefield, the calculation of the ARCs must be mod- 
ified to account for the acquisition of targets of types that the fire allocation scheme effectively 
dictates not be engaged. This effectively forces target recognition/identification into the target 
acquisition process and adds a process of target rejection to decide not to pass these targets to the 
engagement process. Both of these increase the mean time to kill and thereby decrease the value 
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Natural Density 

of the ARC, an effect that the fire allocation scheme is intended to counter by optimizing the 
killing process (e.g.) Despite this, the modified process is modelable and can thus be accounted 
for. 

The second difficulty is more troublesome. Fundamentally, the question arises "Is this alloca- 
tion scheme realistic?" If a target is acquired, is perceived to be both a danger and is engagable, 
then it seems reasonable that circumstances will arise not only naturally, but frequently, where 
those targets will be engaged despite doctrinal dictates arising from an optimal fire allocation 
scheme. The next two fire allocation schemes address this concern. 

36.7   Natural Density 
The first fire allocation scheme that tries to reflect human psychological proclivities is the 
"Natural" Density scheme. In this scheme, the assumption is made that the detectability of 
enemy targets is essentially the same despite variations in targets, and that friendly false targets 
can be instantly identified and rejected.1 Thus, the fraction of fire allocated against an enemy 
subforce is just the fraction of target elements of that subforce in the total enemy force. Put 
mathematically, for the Blue force, this is simply 

and the ADEs are thus just 

f. . = ^  (22) 

dAi -s—^ AiOtijiij (nx\ 

dt    n EL
A
I A k 

Note that by assuming this type of fire allocation, we have forced the ADEs to be Lanchester' 
linear which violates our goal of keeping the ADEs Lanchester quadratic. 

This difficulty does not prevent us from making numerical calculations and can be done 
simply using a spreadsheet simulation in our usual manner. The force strength trajectories are 
shown in figure 5. 

To recover from this, we want to examine the application of the initial force strength ap- 
proximation that we have so successfully applied before. In this case, the evolution equations 
become 

dAt ,,    Ä A (0) OjjBj (24) 

dt ~   ^E^4(0)' 
The force strength trajectories are shown in figure 6.  As we would expect, the losses in the 
example are of order 20%, so there is little difference. Thus, the approximation seems to have the 
same validity we have seen previously, and we thus recover the quadratic Lanchester behavior. 

xWe address this assumption explicitly in consideration of fratricide and amicide in Part IV. 
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Figure 5: Heterogeneous Force Strength Trajectories - Natural Density Fire Allocation 

36.8   Attrition Processes 
The preceding section addressed fire allocation as a natural process with the so-called Natural 
Density approach. As we noted there, this approach assumes that fire is fractionally allocated 
as the fraction of available targets. This technique ignores the acquisition and engagement 
differences of targets and the problem of rejecting friendly ("false") targets. While we defer 
consideration of the latter effect for a later chapter in Part IV, we may further consider the 
variation in targets. 

One approach that improves on the situation is to use the probability of detection as a weighting 
function. The idea here is that the product of probability of detection times subforce strength 
is approximately the number of targets that are detectable. Fire is then allocated amongst these 
detectable targets. If pd [i,j] is the probability of detection of the Xth target type by the jth firer 
type, then for the Blue subforces, fire allocation fractions are 

fij ~ 
Pd[i,j]Ai (25) 

which can be quadraticized using the initial force strength approximation.   Since we have to 
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Figure 6:  Heterogeneous Force Strength Trajectories - Natural Density Fire Allocation with 
Initial Force Strength Approximation 

calculate ARCs anyway, and probability of detection is usually a factor in the calculation of the 
ARCs, this fire allocation scheme only adds marginal calculational burden. 

Another approach is to consider not only the density of targets, but the amount of time it 
takes to acquire (or kill) a target. Let ry be the time for a firer of the ]th type to acquire (or kill) 
a target of the \th type. If all of the targets had to be acquired (or killed) by the ]th subforce, 
ignoring both attrition to the subforce and the presence of the other subforces, then the total time 
to acquire (or kill) all of the targets is 

NA 

(26) 
i=i 

The idea here is that if there are Bj elements in the ]th subforce, then the fraction of these 
elements engaged in acquiring (or killing) elements of the ith Red subforce is 

Jhj ~ 

Ti,jAi (27) 
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At this point, it is useful to discuss the two schemes separately. For fire allocation on the 
basis of acquisition, we recall from Part II that the rate of acquiring targets of a given type is 
proportional to the number of targets of that type present. Thus, 

r- • =     1 (28) 
*i 3     3 

where Kitj is the rate of acquiring one target of the ith type by a searching element of the }th 

subforce. This reduces the total time to acquire all targets to 

NA T>-^h (29) 

which is independent of the subforce strengths. Similarly, the fire allocation fractions reduce to 

l 

/« = %-, (3°) T 

which is also independent of subforce strength. 
The argument against this fire allocation approach is that it does not really account for how 

the subforce elements spend their time. They are not exclusively engaged in acquisition, but 
rather in killing (attrition). Thus an approach that is hailed as improving on the acquisition time 
scheme is the engagement or attrition time scheme. This scheme looks exactly like the scheme 
above except that the attrition times 

1 (31) ) 

are used, making the allocation fractions 

/* = ^ftr (32) 

This scheme is readily amenable to the initial subforce strength approximation to restore quadracitic- 
ity. An example of this is shown in figure 7. 

Before proceeding, two matters need to be examined, which are related. The first of these is 
the situation where either due to weapon's alethality, or the amount of time to acquire that type 
of target, the time to kill is effectively infinite, or equivalently, the ARC is zero. This has the 
effect of making the normalizing summation in equation 32 effectively infinite (since the ARC is 
close to but not quite zero), and thereby, only the fraction corresponding to that ARC is nonzero 
(effectively).2 This has the rather startling effect of allocating all fire against the targets that fire 

2 We are limiting this discussion to the case where only one ARC in a column of an ARC matrix is effectively 
zero. The extension to multiple zeros is straightforward and left as an exercise for the interested student. 
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Figure 7: Heterogeneous Force Strength Trajectories - Attrition Time Fire Allocation with Initial 
Force Strength Approximation 

is least effective against, in contrast to the effect of the optimization schemes (e.g., minimum 
loss and maximum kills). 

Of course, the practical answer to these situations tactically is that the firing element will 
know it has poor lethality (or poor detection performance) against these targets and therefore 
reject them in most cases. (Infantry armed with rifles don't directly attack tanks.) We may do 
the same, leaving zero ARCs zero and excluding them from the scheme. 

The second matter that we want to consider is what this type of fire allocation scheme does 
to the ADEs. If we substitute equation 32 into the ADEs, the result (for Red attrition) is 

dAj 

~dt 
(33) 

NB 

-4E 
which is Lanchester linear (but we can alter to Lanchester quadratic, mathematically linear by 
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the initial force strength approximation.)  What is more important is that the denominator is 
effectively only a function of j in this approximation. If we define 

c,= ■NA   Afc(0) ' 
2->k=l 

(34) 

as a fire allocated ARC, then the ADEs become 

dA 
dt  _-A(0)EcA, (35) 

(We will assume that we have excluded all values onj ~ 0 from the summation.) This has the 
effect not only of leveling the ARCs across the targets for each firing subforce, but effectively 
clouds the basis of the role of the conjugate theory of Part II. Before leaping to the conclusion 
that all of our effort has been wasted, some further consideration is appropriate. 

First, it is useful to apply the initial force strength approximation slightly differently to equa- 
tion 33. In this case, we selectively apply the approximation only to the terms remaining in the 
summation, so that the ADEs become 

3=1 

which, since the individual ADEs now only depend on the attritted subforce strength (in the 
sense of the approximation,) they have solutions of the form 

A(f)^(0)e-^^(0)t, (37) 

which at least indicates a handy approximate solution of a complexity that is still readily amenable 
to spreadsheet simulation, indicates a form of aggregation, and indicates exponential solution 
forms. The latter two presage the next chapter on aggregation. 

Second, it is useful to examine the allocation scheme in the context of the forms of modern 
ARCs. A common form for both serial and parallel attrition processes is 

_   VijAjVij fags 
WijsU + vi,j 

which we may substitute into the denominator summation of equation 33 as 

y^AlL       y ^ Afc + Vk>* (39) 

NA     A NA     -, 

fc=l Vk,j       fc=i VkJ 
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Conclusion 

We see from this that the effect of this fire allocation scheme is indeed to spread attrition 
across the attritability of the available targets, but the means by which this spread occurs is the 
componentry of the ARCs as described in Part II. What this type of fire allocation does is to make 
comparison of the conjugate theory with either historical data or detailed simulation extremely 
difficult - which we already knew, but now have complicated mathematical confirmation. 

Of course, we do not know that this, or any other fire allocation scheme is accurate. What 
we can conclude, in the absence of other data, is that we have different techniques of modeling 
fire allocation that can span the range from total concentration of fire against one target type 
to complete averaging across all target types. This explains why considerable effort is spent in 
tuning simulations to have reasonable fire allocations. 

36.9    Conclusion 
We have reviewed several simple fire allocation schemes. More elaborate schemes are possible 
and are in use in different simulations. Of particular interest are combination schemes which 
combine the forms and merits of the optimization and "natural" schemes. These schemes produce 
allocations intermediary between the (often) single target allocations of the optimization schemes 
and the bland allocations of the "natural" schemes. An important consideration that we have 
only alluded to here is the necessity of considering target rejection in calculating ARCs when 
target rejection is an important (i.e., time consuming) subprocess of the overall attrition process. 
This can be accomplished using the same general modeling techniques detailed in Part II, so we 
shall not dwell on this now. 

Additionally, our consideration thus far has been primarily concerned with just calculating 
force strength trajectories. Of course, attrition simulations have other applications. One particular 
application that deserves mention here is force structuring; that is, of which and how many 
weapons systems is a force comprised? If we know the structure of a potential enemy force, 
know all of the ARCs and have assumed some fire allocation scheme, then we may readily 
treat the initial subforce strengths as variables. Given some measures of merit for attrition 
performance of the force as a whole, the heterogeneous Lanchester methodology provides a 
basis for examining force structuring. 

Finally, we must comment that the subject of fire allocation, for a variety of application 
purposes, is a subject of on-going research.[2] This dynamic nature of the subject area has been 
the primary motivation for the admittedly general approach that we have taken here. As we have 
seen from the figure herein, there can be little difference among different schemes in terms of 
force strength trajectories. (And there can be enormous differences!) The moral of this story is 
that the decision of what type of fire allocation scheme to use is not a matter of mathematical 
certainty, nor of compelling behavior. Rather the selection must* be made within the context of 
the investigation to be performed. 
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Chapter 37 

Basic Eigenmath 

37.1    Introduction 
With this chapter, we begin our approach to the problem of formal aggregation. In this chapter, 
we review the basic mathematics of eigenvalue and eigenvectors. This is a subject of academic 
study for physicists and engineers, primarily in the area of Mechanics, albeit this study is 
concentrated on matrices which have a high degree of symmetry. It is also an academic study 
of Operations Researchers in such areas as Saaty's Analytical Hierarchy Process where there is 
concern with matrices which are still symmetric but of a vastly different sort and possessing 
calculational problems akin to those we shall encounter in Lanchester Theory.1 If not practiced, 
this learning may have rusted somewhat, and may be totally new to the military student although 
if they have served in Germany may have knowledge of the language. Resultingly, we are 
going to bore you with a chapter of mathematical manipulations. It is not complete nor rigorous 
and the student may wish to consult a real text on eigenmath at this point. A large number of 
texts in common use are available for this purpose.[2][l][3] If the reader has had such academic 
exposure, and still has the text (because most of us nerds keep ALL of our textbooks!), then 
you have a ready reference for most of what we will say in this chapter. If not, you have two 
choices: either take my word for things and suffer with the presentation; or go find a book at 
the library or college bookstore. 

Basically, I find that the whole idea of eigenvalues and vectors is easiest understood by con- 
sidering the problem we have posed in the preceding chapters in terms of differential equations. 
If we have a set of N first order differential equations, in principle, we can reduce this set to one 
Nth order differential equation. We know this single differential equation must have N general 
solutions and the specific solution (neglecting inhomogeneous terms in the differential equations) 
must consist of some linear combination of these N solutions. Now, we know that the same 

.-,' Physicists and Mechanical Engineers study matrix systems which are either symmetric or complex conjugate 
symmetric across the diagonal - that is Hermetiaa The Analytical Heirarchy Process matrices tend to be inverse 
symmetric across the diagonal. 
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applies to the original N first order differential equations. The N specific solutions of these first 
order differential equations are also linear combinations of these N general solutions. Now let 
us turn this who situation inside out and ask the question - what linear combination of these N 
specific solutions is each individual general solution? Put another way, what linear combinations 
of first order differential equations give rise to a solution which is exactly one of the general 
solutions of the Nth order differential equation? This sounds horribly nasty and possibly even 
a very perverse thought, but this is exactly what the eigenmath problem is - turning the whole 
system inside out to get to the solutions. 

Before we proceed, I need to make a few more caveats on this whole exposition. As I have 
said before this will not be a rigorous discussion. Search as you may, you won't even find any 
statement of Theorems, to say nothing of proofs. I am going to make the assumption that all 
of the composition of the attrition problem has been done correctly. Since we are going to be 
dealing with differential equations that have to be mathematically linear, I have to assume that all 
of the attrition contributions of attrition order not exactly equal to two have been quadraticized 
in a Lanchester sense. Initially, I am going to also require that the differential equations be 
homogeneous. This means that consideration of reinforcement is going to be left till later in the 
chapter. I am also going to defer any consideration of fratricide till the next part of the work. 
Finally, I am going to require that the ARC coefficient matrix is constant, being neither range 
nor time dependent, and come back to the matter later. 

37.2    We've Seen This Already 
Actually, we have already seen the basic ideas of this math, deriving simply and directly from the 
differential equation mathematics of Lanchester Theory. As we recall, the basic homogeneous 
Lanchester ADEs are: 

^ = -aB; (1) 
at 

and 

dB 
«   ~ßA- (2) 

If we differentiate the first equation with respect to time, 

d2A dB 
= — a- 

and substitute the second, we get 
dt2 dt ' 

d2A 

(3) 

dt2 

If we now postulate that the solution is exponential, 
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A oc ext, (5) 

and substitute this into equation 4, and perform the differentiation, but retain the functional 
notation, then 

X2A = aß A. (6) 

Since this equation contains A on both sides, we can remove the force strength from both sides, 
reducing the equation to 

X2 = aß. (7) 

This is a simple quadratic equation (no direct relation of Lanchester Quadratic) which has the 
solution, 

A = ±y[äß = ±7, (8) 
and is the definition of 7. This immediately gives the Red force strength solution as 

A(t) = C1e
xt + C2e-xt, (9) 

where Ci and C2 are constants which are determined from the initial conditions. We have seen 
this before in Part I. The new information is that the two A are eigenvalues] 

37.3    Eigenmath of Matrices 
To proceed, we now consider square matrices, that is, matrices with as many rows as columns. 
As a general case, we denote these as 

M 
mil mi,„ 

m„ 
(10) 

where the convention we use is that the first subscript indicates row number and the second 
subscript indicates column number. We shall be concerned with equations of the form 

M• e = A» e (11) 

The quantities (there are n of these) ~t and A are called eigenvectors, and eigenvalues. We may 
also write matrices of eigenvalues and eigenvectors as 

A = 
Ai 0 0 " 
0 A. 0 
0 0 A„ J 

(12) 
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and 

[ ei.i     ei,„    ei,„ 
*e*=     e..,l    e     e..,„ 

Cn,l &n,..      &n,n 

Then we may write equation 11 as 

M «*e* =  A • "*"£*. 

Alternately, we may also write this as n equations, 

M • e? = \i~e~t,i = l..n, 

where: 

(13) 

e* e» 

(14) 

(15) 

(16) 

We may take advantage of the fact that the eigenvectors are defined on both sides to rewrite 
equation 14 as 

(M-V) •  e  =  0 , (17) 

where: V is a null matrix (all entries are zero.) Since all of the entries of the result of this matrix 
multiplication are zero, then we may require that the determinant of the quantity in parenthesis 
to be zero, 

M - X = 0. (18) 

This determinant has the matrix form, 

mi,i — Ai    ..   mi)n 
(19) 

mnii ..    mn>Tl — An 

It also has a polynomial form, (of order n,) called the Characteristic Polynomial,2, which is 

Ec^ = °- (20) 
i=0 

2For the language buffs, the German name for the Characteristic Values (roots) of the Characteristic Polynomil 
is Eigenwerte from which we get eigenvalues. 

34 



Eigenmath of Matrices 

The roots of this polynomial are the eigenvalues. From these individual values, the eigenvectors 
can be calculated using equation 15. 

The eigenvalues can be calculated fairly directly using a variety of techniques since this is 
a scalar calculation. The eigenvector calculation is vector (matrix actually) so it is somewhat 
more difficult. The most elegant approach is to use what is know as a Unitary Transformation. 

In this method, the transform is a matrix U which has the property that 

V.V-X = T, (21) 

where T is the identity matrix and V"1 is the inverse of V. To show the application of this 
method, let us start by assuming that a transformation can be found 

A? = V • M • V-1, (22) 

such that Af is diagonal 3 (that is all of the off diagonal elements are zero, but the diagonal 
elements are neither necessarily zero nor identical.) That is, 

M' = 
0       0 

0 m\.    0 
0 0       mn 

•"? = m'i e'i, 

(23) 

This matrix has an eigenvalue equation, 

A? . 7 = ro$7, (24) 

where mj is the ith diagonal value on the M' matrix, and e^is the ith eigenvector of M'. It is 
a simple matter to show that all of the components of each e- are zero except for the ith, which 
is uniquely one. We may now rewrite equation 24 using equation 22 as 

*U • M • V_1«ef = mjef. (25) 

If we now multiply this equation on both sides by U ~l from the left, then we get 

V-^V.M-V-1«?- V-1.™'^. (26) 

If we now take advantage of equation 21, and the fact that m^ is a scalar, then we may reduce 
this equation to 

M • V"1 • 7i = mff-1 • 7t. (27) 
3In practice, it is difficult to find a Unitary Transform that reduces the ARC matrix to diagonal form. We can 

find a Unitary Transform which reduces it to upper triangular fairly easily, however. This is sufficient to determine 
both eigenvectors and eigenvalues. This does not compromise the math either. 
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If we now define 

^EEt/-1.^, (28) 

then equation 27 reduces to 

M •'et = m'/et, (29) 

which we recognize as identical to equation 15. 
It follows then that if this Unitary Transformation can be found, then 

\ = mj, (30) 

since the e'{ have only one nonzero element, 

V = V\ (31) 

and, 

*X = A?. (32) 

Calculationally, the problem of finding eigenvalues and eigenvectors is thus reduced to finding 
this Unitary Transformation. 

Before proceeding, we want to make one more association. We note that since M' contains 
the eigenvalues, and we may rewrite equation 22 as 

M   =    U -1 • M' • U , (33) 

From this and equation 31, we may write 

M = V-1 • T • V, (34) 

and infer that the original matrix may be reconstructed from the eigenvalue and eigenvector 
matrices! 

37.4    Back to Differential Equations 
At this point, we want to return to consideration of differential equations. In particular, we want 
to consider a set of n first order differential equations that are linear in a mathematical sense. 
That is, 
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jtFi{t) = Ci>jFj{t), (35) 

where the Ft are the functions which we seek as solutions, and the Citj are (constant) coefficients 
which define the functional relationship of the functions to their derivatives. In matrix notation, 
these differential equations may be written as one matrix differential equation, 

d 

where: 

and 

C = 

-rF = dt 
C   • 

\ Fi 1 

F, 

F = F 
Fn 

> 

r ci.i C\t..    Ci,n 

C..,i c.,..  c..,„ 
Cn,l cn,.. Cn.n 

(36) 

(37) 

(38) 

Because *C is an ARC matrix, it is not symmetric and we must make a distinction between the 
eigenvectors calculated from the left or right sides of the matrix. In our case, we want the left 
eigenvectors (the eigenvalues are the same!) since they correspond to the solutions that we are 
interested in. Thus, the matrix differential equation that we want to calculate with is really 

dt 
G (39) 

where the T superscript indicates the transpose. Thus FT is a row matrix. When we make this 
transposition, we can now extract the right eigenvectors which are the ones that most calculation 
algorithms and software compute. In other words, we are making this seeming meaningless 
transposition so that the calculations will come out right. 

If we now make the same assumption that we did earlier, namely that the solutions are 
exponential, 

Fi(t)cxeXit, 

then we may calculate the time derivatives as 

!tfr = [ XiFx    \.F.    XnFn } 

The rhs side of this equation may readily be rewritten as 

(40) 

(41) 
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[ AiFi    X.F.    AnFn ] = [Fi    F..    Fn 

Ai 0 0 
0 A. 0 
0     0     An 

(42) 

From our exposition of the previous section, we further recognize the rhs of this equation as 

Ai 0 0 
0 A. 0 
0     0     An 

[ Fi    F.   Fn j . 

which allows us to rewrite equation 36 as 

which is just an eigenvalue equation. 

= F1 • A, (43) 

(44) 

37.5    Solution Forms 
We are now in a position to form solutions of our set of first order linear (in a mathematical 
sense) differential equations. Assuming we may find the proper Unitary Transformation, we may 
use our earlier definitions of the eigenvalue matrix as 

T = tT • CT*'U-\ (45) 

to simplify equation 36 by multiplying from the right by U   \ and using the identity property 
of the Unitary Transformation, equation 21, to write 

— FT • V"1 = ~FT • "U'1 • V • GT • U~\ 
dt 

If we now make use of equation 45 and define the eigensolutions as 

7
T
 = I?

T
.1J-\ 

(46) 

(47) 

Since the Unitary Transformation is constant (since *C is constant!), then we may exchange the 
order of transformation and differentiation to yield 

dt 
fT = JT* A (48) 

(since the eigenvalues are the same regardless of left or right!) which, if we rewrite in index 
notation, 
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d_ 
dt fi    —     \°i,jh J> 

(49) 

has the obvious solutions, 

fi(t)=fi(0)eXit. (50) 

It now remains to accommodate initial conditions and get back to the solutions of the original 
functions. It is useful in doing this to introduce two sets of notation. First, if we rewrite the rhs 
of equation 50 in opposite order, and define the matrix 

T(t) 
eAlt 0 0 
0 eA-* 0 
0       0       eXnt 

(51) 

then we may rewrite the eigensolutions in matrix form as 

7T(t) = 7T(0).V(i). (52) 
We may use equation 47 to further rewrite this as 

JT (t) = -pT (o) • ff-1 . Y (t). (53) 
Since the transformation of equation 47 is invertible by the properties of the Unitary Transfor- 

mation, 

it follows immediately that we may write the solutions as 

(54) 

Fr(t)   EE    FT(0).V-x. T (*)• U, (55) 

where: 

T7 (t) = V"1 • V (t) • U . (56) 

If we want to return to our familiar column matrix-notation, we have only to take the transpose 
of equation 55 which is 

F(i)= T'T(t). F{t) (57) 
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To develop the other notation, we first refer back to equation 47 which we may rewrite as 

7 = tf-ir.F, (58) 

and its inverse as 

f = *uT.7- (59) 
This gives us a new definition of the eigenvector matrix, 

V = V-1T, (60) 

which we may contrast with equation 31. If the ARC matrix, C , were symmetric (or Hermitian), 

then this definition would be the same as before since then U ~1T = U, alternately, if we had 
properly extracted the left eigenvectors from the untransposed differential equations rather than 
the right eigenvectors of the transposed differential equations, we should not need this new 
definition! Instead, we must update this definition because of the asymmetry of the ARC 
matrix to get back to some semblance of our original notation. This equation indicates that 
the eigenvectors are the rows of the transpose of the inverse transformation, which are jusUhe 
columns of the inverse transform, so we may write the components of the ith eigenvector e? as 

«*li = «jj. (61) 

and similarly identify the inverse eigenvectors as the rows of the transpose of the transform or, 
the columns of the transform, thus, 

ei\j -uk> 
(62) 

Next, we rewrite equation 55 in index notation (with implied summation of repeated indices) as 

*i(*) = n«(*)fi(0)> (63) 

and similarly rewrite equation 56 

Since the eigensolution matrix is diagonal, it can be written as 

Tj,k (t) = e^\k, (65) 

and used to simplify equation 64 as 

KS)   =   u[]exi\kukti, (66) 
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By using equations 61 and 62, this may be rewritten as 

which reduces the solutions to 

Fi (*) = *&***& (°) • 
Similarly, we may rewrite the eigensolutions, equation 53, as 

fi(t) = eXiteilJFj(0). 

This equation will be of considerable importance in the formal theory of aggregation. 

(67) 

(68) 

(69) 

37.6    The Basic Example 
The simplest case that we may consider is the homogeneous Lanchester problem.  Written in 
matrix notation, the attrition differential equations are: 

(70) 

If we take the transpose of this, calculate the eigenvalues and the right eigenvectors, and then 
transpose these again, we find the eigenvalues are 

d ' A ' ' 0     -a • 
' A ' 

dt B l-ß   0  j B 

and the eigenvector matrix is 

which has an inverse, 

The eigensolutions are 

A   =   ±y/aß, 

=   ±7, 

e = Vß   yß 

6      =2 

i        i 

(71) 

(72) 

(73) 

/i 

h 
Vß   yß 
yß     -yß 
x/ßA + yßB 
jßA-yßB 

A 
B 

(74) 
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The attrition differential equations become 

dt 
h 
h 

which have solutions 

/i(0 
/2W 

-7    0 
0     7 

e""7'   0 
PT* 0 

h 
h 

/i(0) 
/2(o) 

We may combine equations 74 and 76 to form the explicit time eigensolutions, 

fi(t) 
h{t) 

e_7t   0 
»it y/ßA(0)-V^B(0) 

and then use the inverse eigenvectors, equation 73, to write 

Mt) 
B(t) 

1 
2 

1        1 
e~7t   0 
0        e7' 

y/ßA(0) + y/äB(0) 
VßA{0)-^B(0) 

If we carry out the matrix multiplications, then the result will be 

A(t) 
B(t) 

1 
2 

1 
2 

1 
2 

Jß      y/ß 
e 
v/a \A*   - 

V^A(0) + v^5(0) 
v^A(0)-v^ß(0) 

^ (Vfr4 (0) + yßB (0)) + ^ (V^4 (0) - V^B (0)) 

^ (y/ß A (0) + v^ß (0)) - $ ( v^ (0) - ^B (0)) 

A (0) (e-7t + e7<) + ß (0) yf (e-7t - e7t) 

^ (0) V? (^7f - e7t) + ß (0) (e-7t - e7<) 

A (0) cosh (7i) - yf B (0) sinh (7t) 

B (0) cosh (7t) - ißA (0) sinh (7t) 

which is what we expected. 

(75) 

(76) 

(77) 

(78) 

(79) 

37.7    Reinforcements 
We may now turn our attention to the question of solutions of the heterogeneous attrition dif- 
ferential equations with reinforcement. In this case, we rewrite the matrix differential equation 

as 

4-1* = *C • F + K (t) ■ 
dt 

(80) 
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We note immediately that this niatrix differential equation is also non-homogeneous in the math- 
ematical sense. The quantity ~Fr (t) is the reinforcement vector or column matrix. If we define 
the eigenreinforcements as 

fR(t) = ^.t(t), (81) 

then this matrix differential equation can be reduced to 

at 

where C? is the eigenvalue matrix. Since we are using the eigenvector solutions developed 
above, we do not need to concern ourselves at this time about right and left. 

Since C^ is diagonal, we may simply decompose equation 82 into individual differential 
equations, 

±fi = *if< + fr{t)t. (83) 

We may now posit solutions of the form 

/;(*) = M*)+/;(0)]eAit, (84) 

which has a derivative 

If we compare equations 83 and 85, and eliminate common terms, then we find that 

|ft(t)e^ = /r(t)*, (86) 

which may be solved immediately as 

9i{t)=fe-Xit'fr{t')idt>. (87) 
Jo 

This allows us to write the particular eigensolutions as 

e Ait fi(t)   =    lle-^frit'^di' + MO) 

If we now return to the vector/matrix notation, then we may write the eigensolutions as 
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7 = V (t). 7 + V (t). jf* V-1 (f) • 72 (f) < (89) 
where we understand the integration to be over every matrix element product and recognize that 

V-1 (t) = V (-£) because of its diagonal nature. We may now apply the definition of both 
the eigensolutions and the particular solutions to rewrite this in final form as 

F (t) = V-1 • V (t) • V • F (0) + V-1 • T* (i) • f y~l (f) • V . i£ (f) df.   (90) 
»/u 

As we noted earlier for the homogeneous problem, the reinforcement solutions do not posses 
state solutions until after all reinforcements have been applied because the solutions are not 
stationary. The situation in the heterogeneous case is similar but in keeping with the greater 
number of force strengths, more complicated. 

37.8   Solution Restrictions 
Before concluding this chapter, a few words on solutions are in order. The reader will have 
already noted that the ARC matrix is inherently nonpositive. That is, all its entries are either 
negative or zero. Despite the desire to extract the minus signs, they are necessary to assure the 
proper eigensolutions. Since we have neglected fratricide, the diagonal entries are zero. This 
has a special effect since it indicates that the sum of the eigenvalues is zero. We shall treat this 
in more detail in the next chapter. 

It is important that the ARC matrix be dense in a combat sense. In particular, it is necessary 
that every force strength component in the combat attrit at least one other force strength com- 
ponent, and be attrited by at least one other force strength component. If this is not the case, 
then the solutions do not usually exist. 

It is also desirable that the ARC matrix not be divisible or partitionable as we have described 
previously. This does not effect the solution generation process, but will be important in the 
next chapter. 

Finally, we come to the question of time or range dependent ARCs. If all of the nonzero 
ARCs vary only slightly from constants, then approximate solutions can be formed using series 
expansions in a manner akin to that used in the section above for reinforcements. Let the matrix 
attrition differential equation be 

!y = ^(t).F. (91) 
dt 

Now consider the expansion of the ARC matrix 

*Ü{t)**Ü (t*) + j^C (**) (t -1*), (92) 
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where the derivative of the matrix indicates the derivative of every element of the matrix. We 
want to select the mean value t* which represents a time which minimizes the deviation in some 
sense. One convenient way is to minimize the square deviation of the ARCs, 

trace ( fte ±*tf {f) . ±*tfT (t*) y _ t*f dt\ = mini 
\Jo   dt at ) 

imum, (93) 

where trace indicates the sum of the diagonal elements. Since the derivatives are constants, and 
the time integration simplifies to the same for all elements, it is possible then to select t* so that 

is minimizes 

Given this, then we may rewrite equation 91 as 

(94) 

dt CV) + |^ (**)(*-**) • F (95) 

*&{?)• F +{t-t*)-C {t*). F 
dt 

If we form eigensolutions from the mean value ARC matrix *& (t*), then we may reduce the 
equation to the form, 

-7 ~F(t*) •? + (*"**) <c*»^(**)»*c*"1- /> dt dt 

which may be written in component form as4 

d 
dt 

fi^Xifi + it-t^eij 
dt 

C(t*) e-k}fi- 

(96) 

(97) 

-b'.fc 

If we again assume a solution form, 

fi(t) = [fi(0) + hi(t))eXit, 

which has a derivative 

and compare this equation with the approximate attrition differential equation, equation 97, then 

we see that 
4We adopt the convention in this section that repeated indices are summed quantities unless otherwise noted. 

(98) 

(99) 
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d e^-hiMoiit-t^eij 
dt jt

c^ H\U m 
j,k 

This equation may be integrated directly, 

and resubstituted to form the solution 

dt 
C<?) e-k}fi(t')dif, 

3,k 

fi(t) fi (0) + f e-W (f - t*) eitj \jC {A    e-k}ft (t>) dt' rt^i* 

(100) 

(101) 

(102) 

We see immediately that this is really an integral equation since it contains the solutions on 
both sides of the equation and under the integral sign. This presents as knotty a problem as 
the original eigenvector problem unless we introduce some approximation. A usual one is to 
approximate the eigensolution under the integral as the constant ARC matrix eigensolution. That 

is. 

ft (t) * /i(0) + ^e-Ait'(t'-O^i 4<7(t*) at 
e-k}fi(0)eXltdt> 

i,k 

0A«t (103) 

These integral are straightforward and it is a simple matter to reduce this equation back to force 
strengths, albeit the algebra is a bit messy in notation. We leave this as an exercise for the 
student to familiarize with these techniques. 

As we have said before, these solutions can easily be computed numerically using spreadsheet 
simulation or with the help of a symbolic algebra or array manipulation program. Regardless of 
what method is used, care needs to be taken to avoid continued calculation past the point where 
any one force strength component approaches zero. We have previously noted that the attrition 
relationship changes when the density gets very low, so the minimum action should be to recast 
and recalculate the eigensolution at the time when this occurs. 
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Chapter 38 

Formal Aggregation 

38.1    Introduction 
With this chapter, we take up the formal theory of aggregation. My daughter's school dictionary 
[1] (mine wasn't handy and hers was!) defines aggregate as: "a group of things gathered into 
a total or whole", and aggregation as: "a number of separate things brought together into a 
single group." Both of these are nouns. As we would expect, the dictionary doesn't define a 
verb (to aggregate), but we might extrapolate a definition from the above: 

"to gather or bring together a group of separate things into a single group". 

Aggregation is at once a matter of interest and practice both in the normal course of physics 
and in attrition mechanics. In practical terms, it is the combination of separate things into a whole 
for the purpose of simplifying the model of those things. In classical mechanics, a collection 
of atoms in a solid may be aggregated as either a point mass (three degrees of freedom,) or 
as an extended point mass (six degrees of freedom.) Since each atom is comprised of several 
individual particles, an exact treatment would treat the solid as having six degrees of freedom 
per particle. This is clearly a large number (of approximately the order of Avogadro's Number 
- 1023) which would be exceeding cumbersome (if practicable) to do bookkeeping on much less 
do computations with. 

On the opposite hand, quantum theory indicates that each of these particles is individually 
different even if they do obey common laws and have common general behavior. Just as a 
common assumption of statistical physics is that some collection of particles is indistinguishable, 
and thus alike, we commonly make the assumption in attrition mechanics that some collection 
of things is effectively indistinguishable for the purposes of modeling. (Indeed, we make this 
approximation in any type of modeling. Thus any modeling must incorporate some degree 
of aggregation - assumption of indistinguishability or identicality.) As a general rule then, 
aggregation is necessary for modeling and the degree of aggregation is dictated by the observable 
aspects of the system that must be represented. 
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38.2    Proper Aggregation 
There are two basic concepts of aggregation that we need to capture before proceeding to discuss 
the theory of aggregation as it applies to us here. These are Proper and Formal Aggregation. 
We discuss Proper Aggregation here and defer discussion of Formal Aggregation to later in the 

chapter. 
Proper Aggregation is nothing more than a name for the process that we have alluded to 

above. That an aggregation is proper means little more than that the collection of separate 
things into a single thing has been done in keeping with the observable characteristics of the 
resulting one. There are two sides to this, albeit they are opposite sides of the same coin. One 
is recognizing what the observable characteristics of the aggregate are. The other is recognizing 
that these observable characteristics are consistent with the observable characteristics desired of 
the model. The second deals with the requirements for the model; the first with what the model 

can represent. 
In practice, the degree of aggregation of a model seldom matches the requirements. If the 

model has greater characteristics than required, the model may be said to be underaggregated 
in terms of these requirements. If the model has fewer characteristics, it may be said to be 
overaggregated; and if they match, it may be said to be exactly aggregated. 

Of course, exact aggregation is essentially an unattainable goal. In general, we want a model 
to be underaggregated and we want the degree of underaggregation to be minimal. 

We must note that there is an inherently subjective aspect to aggregation. Recognition of this 
subjectivity is the genesis of Proper Aggregation as a consideration. As a case in point, we want 
to model the combat performance of some tanks. If we ignore for the moment the individuality 
of their positions and the individual performance characteristics of the tanks themselves and their 
crews, then we may choose to represent these tanks as being identical. This may or may not be 
proper. 

Let us suppose that the group of tanks consists of equal numbers of M-lAl's and M-lA2's. 
A primary difference between these two versions of the model is their primary armament. The 
Al has a 105mm main gun while the A2 has a 120mm gun. (They also have different size basic 
loads because of the constant storage volume in the tank.) These two guns (and their fire control 
systems) have somewhat different lethality properties. If these differences are small compared to 
either the variations within the performance of each subset, or (and more important) the degree 
of resolution sought from use of the model, then the two sets may properly be aggregated. If 
this is not the case, the two subsets cannot be properly be aggregated although they may still be 
formally aggregated. 

Often, we are confronted with little choice on the subject of aggregation. Model makers and 
data collectors are not always either the same person or in close communication with each other. 
In this case, the degree of aggregation is often decided by the data collector. We have already 
noted this situation in Part I, in Chapters IX, XII, and XIV. 
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38.3    Formal Aggregation 
In the past, several attempts have been made to develop algorithms for the aggregation and 
disaggregation of units. This effort has intensified with the advent of geographically distributed 
but electronically connected simulation interconnectivity (e.g., Distributed Interactive Simulation 
(DIS) on the Distributed Simulation Internet (DSI)). Often these connected simulations have 
different resolutions so that connecting them with each other and the basic environmental support 
software of the system necessitates some cross resolution mechanism. 

Formal aggregation takes a somewhat different approach to the problem. It takes as a funda- 
mental that the aggregation process must not only conserve some observables of the things being 
aggregated, but it must conserve the mathematical symmetry properties of those observables. Put 
in terms that we are used to dealing with in our discussions herein on Lanchester attrition theory, 
this says that if we aggregate (as we are about to do,) from a heterogeneous Lanchester picture to 
a homogeneous Lanchester picture, the mathematical process of that aggregation must conserve 
the symmetry properties of homogeneous Lanchester.[2] 

In mathematical terms, we define a (linear) formal aggregation as 

\/p   =   5>A, (!) 
rib 

t=l 

and require that the aggregated force strengths satisfy the homogeneous Lanchester ADEs, 

P -  -uE, C) 

where: A and B are aggregated force strengths, and a and ß are aggregate ARCs. 
We distinguish two classes of Formal Aggregation: Intensive; and Extensive. Intensive 

aggregation is completely self-consistent and does not depend on any external decision or de- 
termination in the aggregation process. It is thus a consistent aggregation in that it contains 
no arbitrary component. In particular, intensive aggregation is independent of the initial force 
strengths. Extensive aggregation, on the other hand, does depend on an external decision in 
the aggregation process. That is, extensive aggregation can depend on the force strength com- 
ponents. This externality induces a degree of arbitrariness into the aggregation process which 
compromises its consistency. 

38.3.1    Intensive Aggregation 
As before in Chapter XXXV, we adopt the force strength matrix notation of the attrition differ- 
ential equations, 
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— F = T 
dt 

(3) 

where F is the force strength vector (column matrix), and T is the Attrition Rate Coefficient 
tensor (matrix) which by definition is nonpositive, and neglecting fratricide, is traceless. Thus, 
we know from the start that the sum of the eigenvalues of this matrix is zero. The eigenvalues 
of the system are Xu i = l..na + nb, where n«, nb are the number of Red, Blue force strength 
components. The eigenvectors of the system are represented in the tensor (matrix) e . 

The eigensolutions of this system are 

/ oc *e* • F, 

which since the eigensolutions have simple solutions, 

fi (t) = e»*fi (0), 

this gives Force Strength explicit solutions of the form, 

F(t) = V-1.'r (t).V.F(O), 

where: 

(4) 

(5) 

(6) 

T(t) = 
eXlt 0 0 
0 ex..t 0 
0 0 e A„t 

(7) 

is the propagator and V"1 is the inverse of the eigenvector tensor. 
To develop the aggregation methodology, we must first examine the spectrum of the eigen- 

values. As we have already indicated, the sum of these eigenvalues is zero. This leads us to 
speculate that the neatest way for the eigenvalues to uniquely have a zero sum is if the eigen- 
values occur in pairs that are equal in magnitude but opposite in sign. Of course, if the number 
of eigenvalues, n = na + nb, is odd, then one of the eigenvalues would have to be zero. 

If we examine the eigenvalues of a dense ARC tensor, that is, one for which all force strength 
components are attrited by at least one other force strength element, and which attrit at least one 
other force strength component,2 we indeed find that within the accuracy of the calculation, this 

iHarkening back to the last chapter, these are the left eigenvectors of this equation. Since most eigenvector 
algorithms calculate right eigenvectors, it is usually necessary to calculate the right eigenvectors of the transposed 
equation. . , 2Actually, we also want to require that the ARC matrix not be reducible. See discussion later in this chapter 
under Extensive Aggregatioa 
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is exactly the case, and it is a wonderful result!3[3] Why is this wonderful? Consider this in the 
context of equation 5. For a pair of matched eigenvalues, the solutions are 

f+(t)   =   e*/+(0), (8) 

/_(*)   =   e-At/-(0). 

If we multiply these together, 

U(t)f-(t)   =   e»f+ (0) e"*/_ (0) (9) 

=   /+(0)/-(0), 

then we have a result which is independent of time! This is the counterpart of the state solution 
in the homogeneous Lanchester problem, but where the state solution is used in homogeneous 
Lanchester theory to effect a solution, in heterogeneous Lanchester theory it is the basis for 
aggregation. 

Of course, if the number of eigenvalues, n, is odd, then one eigenvalue is zero, and the 
particular solution corresponding to that eigenvalue, 

/o (t) = /o (0), (10) 

is also a constant. 
Since the general form of the eigensolutions is 

/i(*) = e?)^r(*), 01) 
where "e*w is the ith eigenvector (note the change of notation here - it is intended to reduce 
confusion. Also, we are using the repeated index summation convention.), and the general form 
of the force strength solutions is 

F« (t) = eTVi (0 . (12) 
we may rewrite equation 9 as 

f+(t)f-(t)   =   ^FiVe^F,® (13) 

=   e^F^e^O), 

which explicitly shows the state solution form. 
3I cannot claim all of this result. Dr. Ben Wise, via the offices of Dr. Leslie G. Callahan (COL USA Ret.), piqued 

my interest in state solutions (time invariant relationships) for the heterogeneous Lanchester problem. Investigations 
following from that prod reesulted in the results given here. 
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As it stands, this is not sufficient to provide a basis for aggregation, but it is a beginning. 
Let us further consider that if among these pairs of eigenvalues and eigenvectors, there is one 
pair with some special properties. Specifically, these properties are that the magnitudes of the 
eigenvector components are equal, 

,(+) ,(-) ,i = l..n,an (14) 

and that either all of the first na components of the two eigenvectors are of the same sign and 
the remaining nb components are of opposite sign, or visa versa. That is, 

=(+) e\ \i = l..n„, (15) 

et- 
(+) =   -e\ \i — na + l..na + nb, 

or the opposite. In practice, we find this is the case although we cannot present a rigorous proof 
Oh well, you can't say we don't offer challenges to the mathematicians. 

Having said all this, it is useful before we proceed to make another shift of notation. Let us 
split the eigenvector components into two sets of components, defined by 

bi   =   e\+),i = l..na, (16) 

d; =   -e(+)    "•- ^j+Tla J = \..nh. 

This change of notation allows us to write the two eigensolutions as 

/+(*)   =   e xt 
na "b 

/-(*)   =   e 

(17) 

-xt 
nb 

£Mi(o) + I>;ß;(0) 
i=i i=i 

where we have explicitly reintroduced the original Red, Blue force strength components. We 
also know that these eigensolutions can be written as 

/+(*)   = 

/-(*)   = 

na nb 

£M*(*)-E«**i(*) 
i=l 

na nb 

i=i i=l 

(18) 

so that if we combine equations 17 and 18, and perform a bit of adding and subtracting, we may 
form two new equations, 
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na 
no n* 

5>4(t)   =   cosh(Ai)i;Mi(0)-sinh(AOEaißi(0)' <19) 
i=\ i=l i=i 
Tlfc "6 n" 

53 o,-J5j- (i)   =   cosh (At) £a.B, (0) - sinh (At) £Mi (0). 
i=i i=i i=l 

If we now select two new mean "attrition rate coefficients" Ö7 and ß, subject only to the 
restriction that 

äß = A2, (20) 

then we may define aggregate force strengths A and B by 

yftA(t)   =   EMiCO), (21) 
i=\ 

y/zB(t)    =    Eaißi(°)- 

If we now combine equations 19 and 21, and do a bit of algebra, we may find that 

A(t)   =   cosh(At)Ä(0)-sinh(At)j'|ß(0)) (22) 

B(t)   =   cosh(Af)ß(0)-sinh(At)i/^(0)) 

which is nothing more than the homogeneous Lanchester quadratic attrition solution. This lucky 
(?) happenstance of the behavior of these two eigenvectors provides the basis for aggregation 
of the heterogeneous Lanchester formalism to the homogeneous Lanchester formalism in a for- 
mal sense. That is, the aggregation preserves the mathematical symmetry. In simple terms, 
the mathematical form of the end result of the aggregation (from heterogeneous Lanchester to 
homogeneous Lanchester) has the same mathematical properties as homogeneous Lanchester. 

38.3.2    The Bed Queen Problem 
In the real world of crunching number and doing analyses, we have left a question unanswered. 
Namely, how do we pick the mean attrition rate coefficients, a and /?? The answer is that we 
don't, at least directly. Rather, we take advantage of the fact that there is additional information 
in the original force strength components. In general, these components represent preexisting 
aggregations (we shall treat the problem ofthat aggregation in this formalism in a later chapter.) 
These components are: 
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• An aggregate of a single type of weapon system (e.g., tanks or missiles,) or 

• An aggregate of a single military unit (e.g., a tank company or an infantry battalion.) 

It is natural from a comparison standpoint to want to compare to a base force strength 
component. If one of the components is (e.g.,) tanks, then it is natural to compare the other 
force strength components to that force strength component. (This is the basic idea of Weapon 
Effectiveness Values (WEV's) and Unit Effectiveness Values (UEV's). [4] These values are 
often based on either test range or training exercise data which does not always reflect actual 
combat effectiveness. We do want to emphasize, and this is implicit in the development here, 
that the aggregation is situationally dependent! There is no one aggregation.) If we select a 
force strength component from each side, say At*, and Bj*, as the base comparison force strength 
components, then we may define the aggregation as 

A   =   A* +-^ £ Mi (0), (23) 

  1        «6 

With this definition, the aggregate solutions, equation 22, become 

Ait)   =   cosh(Ai)Ä(0)-sinh(A0^1ß(0), (24)' 

B(t)   =   cosh(\t)B{0)-sinh(\t)—A~(Q), 
CLj* 

and we may define the mean attrition rate coefficients from what we know from homogeneous 
Lanchester theory, 

a   = 
üj*-\, (25) 

ß 
bi* 

Cbj* 

This provides a base of comparison for the aggregation (allows comparison of one weapon 
type to another, or one military unit to another) without compromising the symmetry of the 
aggregation. It does, however, introduce an aspect of arbitrariness to the aggregation since there 
is no mandate from the methodology for the force strength components to be selected. 
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38.3.3    Extensive Aggregation 
As we have indicated, intensive aggregation works only for those situations where the ARC 
tensor is dense. At this point, we must extend our definition of (or at least restrictions on) 
denseness. Where before, we required only that all force strength components attrit and are 
attrited, this is a requirement only on the existence of solutions. As we indicated in an earlier 
chapter, an ARC tensor of the form, 

T = 

0 0 -on 0 
0 0 0 -a2 

-fa 0 0 0 
0 -ß2 0 0 

(26) 

while it has an eigensolution, that solution is separate in two parts since this ARC matrix is 
separable. 

To again show this, if we transform the force strength vector, 

F = 

then the ARC tensor transforms to 

Mi i \AX 1 
A2 Bi 
Bi A2 

[B2 J [B2 J 
= F\ (27) 

•"W      

0 -ai 0 0 
-ßi 0 0 0 
0 0 0 -a2 

0 0 -ß2 0 

(28) 

which is obviously reducible. 
Returning now to our problem, how do we aggregate (albeit approximately) heterogeneous 

force strength components which are not densely connected? Two choices present themselves 
to our fervid minds. The first is to make the ARC tensor dense by inserting small ARCs (as 
compared to the other ARCs). This gives a new ARC tensor of the form, 

ryri 

0 0 -OL\ —€i 

0 0 -e2 -OL2 

-ßl -£3 0 0 
-e4 -ß2 0 0 

(29) 

which we may aggregate using the method described above. The problem with this method 
is that it tends to drastically reduce the value of one of the subcombats, so that in addition to 
being arbitrarily dependent on the choice of the added ARCs, it may give a misleading picture 
of the value of some of the force strength components. There is a simple (but mathematically 
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complex) way around this problem, but we will defer this to a later time since what we are really 
interested in is extensive aggregation. 

The second choice is to do something ad hoc. Let us assume that we have a situation where 
na = nb, so that we have § separate combats that we want to aggregate. If we write the Red 
force strength component solutions (which we again assume to be Lanchester homogeneous 
quadratic,) as 

^O.«^,.^^), (30) 

and similarly for the Blue components. We may postulate an aggregation based on the inverse 
square roots of the ARCS as weighting or aggregation factors, 

a t=i 

Ä^(0)     , ,   .     Äßi(0)  .     ,    . 
=   V —±=*- cosh (-fit) - 2^ —j^- smh (Tjt) 

i=l 

If we write an aggregate eigensolution of the form, 

M*) , -6(0 4)+Bfi 
v^       y^_ 

,-T* 

E 
1=1 

A(0) | fr(Q) 
B-7i« 

this offers a definition of 7" if we choose a suitable definition of i, 

-7* 
i=\ 

Aj(Q)   ,   Bj(0) -7i* 

i=l 
Aj(0)   ,   Bj(0) 

(31) 

(32) 

(33) 

One such selection would be a value of t = 1 which represents a unitary aggregate attrition. 
It now remains to actually aggregate the force strengths. To do this, we proceed in the same 

(arbitrary) manner as for Intensive Aggregation, selecting a base (or comparison) force strength 
component, 

Oti* 
Ä(o) = A*(o) + £J—4(0), (34) 

i=i Oti 

and similarly for Blue. This gives us an aggregate 8 of the form 
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(35) 

which we may use to calculate aggregate ARCs as 

a   =   76, 

ß - I 

38.4    Examples 
At this point, it is useful to present a few sample calculations. As is usual, I have made the data 
up and adjusted it so that the force strengths don't go negative too soon. The calculations were 
performed in two steps. I first calculated the eigenmath using MAPLE although any symbolic 
algebra program would suffice, and then actually generated the numbers in a spreadsheet. Since 
this eigenmath only depends on the values of the ARCs, this leaves considerable leeway. 

Both of the examples are for 2 x 2 combats.   That is, each side has two force strength 
components. The initial force strengths are 

F(0) = 

75 
35 
75 
50 

(36) 

(If you go to repeat these calculations, note that I have done some judicious rounding, partly 
because of laziness and partly to correct for some of the inaccuracy in the calculations.) 

38.4.1    Intensive Aggregation Example 
In this case, we use an ARC tensor of the form 

T = 

e   = 

r    0 0   -.1      -.2 
0 0   -.3    -.35 

-.15 -.25      0        0 
-.4 -.3      0        0 

±0.07. The eigenvector 

r .59 .56   -.43    -.60 
-.72 .35    -.46     .30 
-.72 .35     .46   -.30 
.59 56     .43     .60 

(37) 

(38) 
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which has been arranged in order of descending value of eigenvalue. (I want to emphasize again 
that I have rounded judiciously here. The symbolic algebra program gave me considerably more 
decimal places not all of which were right.) Of course, I also got the inverse of the above, but it 
isn't really valuable for the discussion. It should be obvious from just looking at the eigenvector 
tensor that the first and last eigenvectors (corresponding to the larger magnitude eigenvalue pair) 
are the aggregation eigenvectors. 

Next, we may generate a variety of calculations from these data. First, we may calculate the 
force strengths by brute, numerical force in the manner that we have become used to. These 
are shown in figure 1. We may also calculate the eigensolutions (the fc (t)) since we have the 
eigenvalues and the eigenvectors. These are shown in figure 2. Once we have these, it is a 
simple matter to calculate the force strength solutions using the inverse eigenvectors. We show 
these in figures 3 and 4 for the Red and Blue force strengths respectively. For comparison we 
have included the corresponding curves from figure 1. Finally, we can go ahead and perform the 
aggregation. The calculations shown are from a fundamental formal aggregation (initial force 
strengths and mean ARCS) applied to the analytical solution, and a pointwise aggregation of the 
individual force strengths as shown in earlier figures. 

The agreement of these curves is noteworthy; the differences being largely due to differences 
in calculation and rounding. The reader may want to pay particular note to the agreement 
between the ab initio and pointwise aggregations in figure 5. 

38.4.2    Extensive Aggregation Example 
We now turn to an example of extensive aggregation. Where the previous example demonstrated 
the aggregation of a 2 x 2 dense or connected combat, this example demonstrates the aggregation 
of a 2 x 2 unconnected combat. As we have earlier indicated, there are approximate ways of 
performing the aggregation, both with drawbacks. 

The ARC tensor for this problem is 

(39) 

As we noted earlier, this is a reducible ARC tensor which has eigenvalues ±0.32 and ±0.12. 
The eigenvector tensor is 

0 0 -.1 0 
0 0 0 -.35 
5 0 0 0 
0 -.3 0 0 

0 0.68 0 -0.73 
0.78 0 -0.64 0 
0.78 0 0.64 0 

0 0.68 0 0.73 

(40) 

As before, we calculate the force strength trajectories for this example. These are presented in 
figure 6. These are the result of two independent pairs of eigenvectors as indicated by equation 
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Figure 1: Red and Blue Force Strengths calculated numerically. 

30. 

38.4.2.1     Artificial Denseness 
We may approximately aggregate these in one of two ways. First, we may insert small connecting 
ARCs in the ARC matrix, 

T = 

0 0 -.1 -.02 
0 0 -.03 -.35 

-.15 -.025 0 0 
-.04 -.3 0 0 

(41) 

which results in connected eigenvectors. This is equivalent to making the problem artificially 
dense, thereby reducing the problem to one of Intensive Aggregation which we may perform ex- 
actly. This permits formation of an aggregate solution, but suffers inaccuracy due to the arbitrary 
coupling of the force strength components via the inserted small ARCs. This is demonstrated 
by comparison of the aggregation of the force strength components propagated by the single 
pair of eigenvalues and comparable time by time aggregation of the individual force strength 
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Figure 2: Eigensolutions for Intensive Aggregation Example. 

trajectories. This is shown in figure 7. These curves should compare closely if the aggregation 
were useful. 

38.4.2.2     Ad Hoc External Aggregation 
Alternately, we may externally aggregate using the ad hoc method previously described. If we 
perform these calculations and perform the same time by time comparison, the result is shown 
in figure 8. Close comparison shows this to be a better aggregation. 

38.5   Aggregation and Disaggregation 
We have demonstrated two aggregation methodologies in this chapter. The first, Intensive Ag- 
gregation, which does not implicitly depend on the initial force strength components, is exact 
when the combat is dense. That is, when all force strength components each attrit at least one 
other force strength component and are attrited by at least one other force strength component. 
The second methodology, Extensive Aggregation, which does depend on the initial force strength 
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Figure 3: Comparison of numerically and eigensolution calculated Red force strengths - Intensive 
Aggregation Example 
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Figure 4: Comparison of numerically and eigensolution calculated Blue force strengths - Inten- 
sive Aggregation Example 

components, can provide a useful approximate aggregation for those problems where combat is 
not dense by using the square roots of the ARCs as weight factors. In principle, these two 
methodologies provide a basis for aggregation of the heterogeneous Lanchester problem to the 
homogeneous Lanchester problem within the limits of the quadraticization of the attrition differ- 
ential equations. This is sufficient to permit a collapse of resolution scale from a unit or weapon 
system level of aggregation to a higher level of aggregation. In principle therefore, one may 
start with a very complicated set of combats at the engagement level and aggregate up to battle 
or campaign level. 

Care must be taken in performing this aggregation. Unless the combats are close to identical, it 
may be necessary to distinguish among variations in the ARCs. This may require the generation 
of a time series of aggregate ARCs. Since this process is straightforward but situationally 
dependent, we shall only allude to the process here. 

Finally, some mention must be made of the process of disaggregation. It should be evi- 
dent from the discussion above that aggregation discards information about the combat. This 
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Figure 5: Comparison of Force Aggregate time solutions - Intensive Aggregation Example. 

is blatantly obvious in the methodology of Intensive Aggregation where we retain only 2 of n 
eigensolutions in the aggregation. Although less obvious, the same is true of Extensive Ag- 
gregation. If we discard this information, then it is not available for disaggregation. Exact 
disaggregation is possible only if, for Intensive Aggregation, we retain all of the eigensolu- 
tions, not just the two selected ones. Exact disaggregation is not possible if, for the Intensive 
Aggregation methodology, we discard these other n - 2 eigensolutions, or at all for Extensive 
Aggregation. 

It would be comforting to suggest that we might disaggregate by assuming proportional losses 
of force strength components. Sadly, this is not the case. Proportionality calculations of this 
type are fraught with error. (Indeed, we again note our caveat that Intensive Aggregation is valid 
only so long as all force strength components are positive.) This is a sad story in our modern 
world of interfacing multi-resolution simulations where on-the-fly aggregation/disaggregation is 
a desired capability. At best, we must recognize that disaggregation can only be accomplished 
in a arbitrary and ad hoc manner. 
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Figure 6: Red and Blue Force Strengths calculated numerically - Extensive Aggregation Example. 
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Chapter 39 

Aggregation for Simulation 

39.1    Introduction 
In the previous chapter, we developed two methodologies for aggregating the heterogeneous 
Lanchester problem into a homogeneous Lanchester problem. These two methodologies were: 

• Intensive Aggregation; and 

• Extensive Aggregation. 

Intensive Aggregation is an exact method of aggregation which is limited to dense combat. 
That is, each of the force strength components must both attrit at least one other force strength 
component and be attrited by another force strength component. This type of aggregation does 
not depend on the initial force strengths, but only on the Attrition Rate Coefficient (ARC) matrix. 
Extensive aggregation is an approximate method for aggregating non-dense combat and it does 
depend on the initial force strengths and the ARCs. 

Both of these aggregations may be performed either across or by weapons type. This is 
depicted in figures 1 and 2 which are the same as shown in Chapter XV. In figure 1, aggregation 
of three units is depicted. Two of these units are infantry units, while the third is an armored 
unit. Alternately, these may be viewed as two collections (aggregates) of infantry weapons (e.g., 
assault rifles, etc.) and one collection of armored weapons (main tank gun). The aggregation 
here is to a composite which has the properties of all three types of weapons (units). (This 
division into three units is an artifact in terms of the methodology presented in the previous 
chapter.) 

In figure 2, aggregation of three units is also depicted. Again, two of these units are infantry 
units, while the third is an armored unit. The aggregation here is to three units (aggregates), two 
of which have infantry properties and a third which has armor properties. 
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Q— 

Figure 1: Aggregation across weapons types 

The question arises, how do we arrive at the initial aggregation? 

39.2    Process Models 
In Chapter XV, we described the fundamental role of the process in the formulation of models 
and simulations. At that juncture, we identified two ways in which models and simulations could 
be constructed. These two ways are depicted in figure 3. 

The left hand branch depicts the way in which process models are used to develop (and 
utilize) simulations at the platform or weapons' system level. The right hand branch depicts 
the way that Lanchester-type models and simulations are developed and utilized. In platform 
level simulations (nominally stochastic), the processes are randomly sampled to determine when 
processes conclude (assuming they are time dependent processes - this serves to define events), 
and to determine the outcome of random events (do shots hit and damage targets?) 

Since these simulations are stochastic, they are executed several times for the same set of 
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Figure 2: Aggregation by weapons types 

input data, and the results are statistically analyzed. This provides information on attritional 
losses (and more, but that's what we are interested in here.) These results reflect a form of 
aggregation. 

In Lanchester-type models, aggregation is performed initially, usually in the form of proper 
aggregation of the platforms into units and/or weapons' types, and in the formulation of ARCs. 
The attrition differential equations (e.g.,) are then coded into a simulation which is executed once 
(assuming the formulation is not stochastic Lanchester in form.) The results of this execution is 
then compared to the results coming from the platform level, stochastic simulation. 

The question we want to address here is, how do we bootstrap these stochastic, platform level 
simulation results into Lanchester aggregations. The answer to this question is of interest for 
several reasons. It allows more direct comparison of the results of the two formalisms, and it 
provides a hierarchial framework of models and simulations. In general, this latter is important 
because of the limitations of computer size and available time to execute studies and analyses. 
(Of which, the latter is today the more important.) 

In general, the time to execute a combat simulation is of the order of N2 where N is the 
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Figure 3: Alternate Routes for Process Models 

number of individual degrees of freedom in the simulation and data. For stochastic, platform 
level simulations, iV is related to the number of platforms while for Lanchester-type simulations, 
N is the number of force strength components. As we successively consider higher levels of 
combat (engagements -* battles ->• campaigns -> wars,) the number of platforms increases by 
a factor of approximately 3, so that if the number of degrees of freedom stays constant, each 
successive higher levels of combat increases its execution time by a factor of approximately 10. 
Since we generally want to support more executions that this in a study, the most reasonable way 
to reduce the time for execution is to successively reduce the number of degrees of freedom. 
This requires aggregation. 

39.3    Platform Simulation Results 
The attrition output of stochastic, platform level simulations is commonly expressed in the form 
of Killer-Victim Scoreboards (KVS.) These KVS are matrices whose columns represent attriting 
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systems/platforms and whose rows represent attrited systems/platforms.   The entries are the 
losses. For a 3 (Red) by 3 (Blue), the one-sided KVS is: 

Killer-Victim Scoreboard 
Victims\Killers Killer 1 Killer 2 Killer 3 

Victim A A loss to 1 A loss to 2 A loss to 3 
Victim B B loss to 1 B loss to 2 B loss to 3 
Victim C C loss to 1 C loss to 2 C loss to 3 

If we combine the KVS for the two sides (again ignoring fratricide until a later chapter,) then 
for a 2 x 2 combat (two Red, two Blue,) then they can be formed into a differential loss matrix, 

Loss Matrix 
Victims\Killers Red 1 Red 2 Blue 1 Blue 2 

Red 1 0 0 A Al   Blue 1 A Ai   Blue 2 

Red 2 0 0 AA2   Blue 1 AA.2   Blue 2 

Blue 1 AJ3l   Red 1 ABi   Red 2 0 0 
Blue 2 AB2   Red 1 A^2   Red 2 0 0 

In addition, if these results reflect several executions, then there can also be a standard deviation 
(and correlation) matrix(s). Further, since these data can be collected at different times, a series 
of them can be generated representing different snapshots of the combat. 

39.4    Connectivity 
If we adopt the notation that we have used previously where we combine the force strength 
components into a single force strength vector (matrix), 

Ai 
A. 

Bi 
B.. 
B. «fc j 

(1) 

then we may represent the entries of the Loss Matrix as AF^-. 

39.5    Back to Matrix Attrition 
Recalling the form of the matrix attrition differential equation, 
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|F(0 = *r.F(*), (2) 

which may be written in component (index) notation as 

j «a+«6 

at J=1 

where we recall that the ARC matrix is nonpositive by definition. If we integrate equation 3 
with respect to time, then the left hand side is 

=   -AFt{t), 

(4) 

and the right hand side is 

/   E Hjm')dt'=  E^i/fiW^ (5) 
Jo    3=1 j=l J° 

From the eigenmath, we know that the eigensolutions have the form, 

7(i) = V.F(i), (6) 

with specific solutions, 

Mt)   =   /*(<>)«*«, (7) 

=     £ efF»e^, 
i=i 

where we have designated the ith eigenvector in component notation as'e}*'. The inverse eigen- 
solutions are given by 

na+nb 

Fi(t) = E «rViW, (8) 

n0+«6 «o+nfc 

=    E^"1 E e«Ffc(0)«M 
i=i *=i 

This allows us to combine equations 5 and 8 to yield 
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„/ rt na+n6    , ,       na-{-nb 

Fj(t<)dt   =   /   £ c«-1  £ ejf>Ffc(0)e^< (9) 

=  E ef_1 / *Xjt'dt' E ^ (o), 
n0+n6 Ajt _ i n0+nb 

=  E *f ^-ir1 E 4J)^(o). 
j=i Ai       fc=i 

With this in place, we are now in a position to explicitly define the entries in the loss 
matrix. This requires that we identify the losses to force component i caused by fire from force 
component j to have an attrition differential equation, 

j/iU (t) = li.Fi [t). (10) 

If we integrate this equation, we obtain, courtesy of the above equations, 

where we note there is no summation on j! If we write this in matrix notation, it becomes 

Af|=-<foV-1.T(i).V.F(0), (12) 

where we note the addition of a symbol o which indicates a special multiplication as defined 
in equation 11. The matrix product to the right of this symbol reduces to a column matrix. 
This symbol indicates that each row entry of this column matrix is to be multiplied by the 
corresponding column entry of the preceding matrix, but the usual summation does not occur. 
Thus, since ¥ in an N x iV matrix, and the resulting matrix is an N x 1 matrix, the resulting 
matrix of this special multiplication is also JVxJV. This effectively constitutes the mathematical 
basis for extracting Lanchester information from stochastic, platform level simulation KVS. 

Note the minus sign follows from the implicit nonpositivity of T . 

39.6    Algorithm 
I say effectively because the situation is not as completely defined as we should like. These 
equations, 12, depend on explicit knowledge of Vl We do not have that knowledge and indeed 
need it to calculate both eigenvalues and eigenvectors. How do we get that knowledge? 
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The answer is to revert to a simple numerical trick. We must iterate to a solution. To do 

this, we must first guess what *T looks like. To do this, we make use of equation 10 and 
an approximation. For clarity, we shall now label the entries of the loss matrix, the composite 

KVS's, which are our original given as L^, and the iterations of the calculations of T , and the 
eigenmath with superscripts. If we integrate equation 10, 

jfl^C'K = -WM«) O3) 

then we may recognize the differential losses as the entries of the loss matrix, and define our 

zeroth order guess of the T matrix as 

J°] = b\i  (14) 

where the minus sign follows from the nonpositivity of the ARC matrix. It is now time to 
introduce the approximation. Since we do not as yet know the form of the solution for the force 
strength trajectories, we must approximately integrate the integral in the denominator of equation 
14. If we define the total losses to force component i as 

then we may apply the trapezoid rule [1] 

fFtf)*!*. ! fö (t) + F, (0)]. (16) 

Since 

equation 16 reduces to 

^(0=^(0)-^, (17) 

fFj^dt' 
Jo 

*[2Fi(0)-Li] (18) 
2 

h 
2F, (0) 

If ^m < 1, (me sma11 l°ss limit,) then equation 18 can safely be reduced to 
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Jo 
This reduces equation 14 to 

Fjit'jdt' ~tFj(0). (19) 

joi hi_ (20) 

This introduces a potential ambiguity. As we indicated before, it is possible to execute the 
stochastic, platform level simulation to produce a number of KVS (loss matrices) at different 
times during the simulated combat. Presumably these are generated and averaged (to get the 
KVS) at the same combat clock times. Indeed we must assume this. These loss matrices may be 
viewed as a set [L^ (kAt), A: = 0..ÄJ where At is the combat clock time increment between 
KVS samples. The ambiguity arises since we do not know explicitly when the combat begins 
(i.e., when time is zero from a Lanchestrian sense.) In this case, we must proceed by calculating 
the differential loss matrices 

ALiy (kAt) = LiU (kAt) - Ly ((k -l)At),k = 1..K, (21) 

and proceed to perform K separate analyses, generating Lanchester ARCs for each, and treating 
the previous attrited force strength components as initial values. We may then further analyze 
these calculations using the techniques described in Chapter XXI to determine either the "true" 
combat start time (in a Lanchestrian sense) or be satisfied with time dependent ARCs. 

The question is, what do we do with the time factor? The answer to this will become evident 
as we continue. 

We may now use this calculated <T>[0! to compute eigenvalues and eigenvectors. These give 
computed differential losses given by a modified form of equation 12 

^[oi = _^[o]<>V[o]-i.Ylol(t).Vo.F(0), (22) 

which we may use to generate an error matrix, 

eid = Li{j - APS- (23) 

If all of the entries in this error matrix are sufficiently small (and this must be determined in 
context depending on the size of the losses and the accuracy desired,) then we may conclude 

the calculation. Otherwise, we must generate a new T m and iterate again. This process is 
repeated until the errors are sufficiently small to be satisfactory (after all, we are doing this with 
a computer.) In this case, the new ARC matrix is defined from 

m *$>   _ (24) 
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This equation also resolves the time ambiguity we identified earlier and safely allows us to select 
the time that we use somewhat arbitrarily for these calculations. We may fairly safely assume 
a unitary value for that time knowing that it simply scales the ARCs linearly. Thus we may 
perform the iterative calculations with a unitary time and then divide all of the ARCs by the 
actual time afterwards. 

39.7   Examples 
It is useful at this point to present a couple of examples of calculations, first to demonstrate the 
mechanism and then to show the scope of the results achieved. 

39.7.1     lxl Example 
We begin by using our old friend (all right, at least admit acquaintance at this point in the 
relationship,) the homogeneous Lanchester problem. That is, we have data from a very simple 
simulation that has only two types of platforms. Nonetheless, the simulation may be much 
more differentially richer than a Lanchester calculation because of more explicit consideration 
of terrain, weather, process variations, etc. The KVS in this case are simple scalars, and the loss 
matrix is 

0   10 
5    0 

(25) 

and the initial forces are 

F(0) = 
100 

75 
(26) 

We may now define an ARC matrix from equation 20 (since the losses are fairly small,) as 

_        0       -0.133 
1 -0.05        0 

which has eigenvalues of A = ±0.08164965809 and eigenvectors of 

0.5865023124  0.9565563235 
0.5227083735 -0.8525115579 

(27) 

(28) 

which we note are not quite symmetric. This is a result partly of the iteration and partly of the 
calculation method. In practice, it may be necessary to perform some judicious averaging. 

Application of these eigenvalues and vectors gives a differential loss matrix of 

KP[0] = 0.33101405 9.9860870625 
5.005557425  0.249826053 

(29) 
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which gives us a maximum error of approximately 0.33, which is also approximately (time four- 
thirds, the per centum error.) This is amazingly good convergence and clearly indicates that the 
process may be continued to the desired degree of accuracy - assuming the computer will support 
it. We shall not proceed further with this example but proceed to one of greater complexity. 

39.7.2    2x2 Example 
We now consider a more complicated example, that of two Red force strength components 
in combat with two Blue force components. To perform this calculation, it was necessary to 
develop a stand-alone piece of code to calculate the eigenvalues and vectors. There are numerous 
methods available to perform these calculations. The only care that must be taken is to select an 
algorithm which does not assume the matrix to be processed is Hermitian or otherwise symmetric 
(or even nonnegative!) Accordingly, we shall not dwell on this aspect of the calculation beyond 
this advisory of some care in selecting the appropriate algorithm and its coded implementation. 
Such implementations are often available either as libraries or from an archive and thus do not 
require coding by the analyst, merely some checking. 

The Loss Matrix is given by 

L = 

0.00000 

0.00000 
4.84435 
1.45330 

0.00000 
0.00000 
0.22952 
1.72143 

7.29355 

2.18807 
0.00000 
0.00000 

0.37381 
2.80358 
0.00000 
0.00000 

(30) 

which we note is fully dense and therefore should give us the type of result we desire, and the 
initial force strengths are 

F(0) 

100.0 
25.0 
75.0 
20.0 

(31) 

The margin of accuracy assigned to the calculation was a maximum error component of 10 6, 
which gives an ARC matrix of 

T = 

0.0000000 
0.0000000 

-0.0503998 
-0.0151199 

0.0000000 
0.0000000 

-0.0102231 
-0.0766748 

-0.1007026 
-0.0302109 
0.0000000 
0.0000000 

-0.0203477 
-0.1526082 
0.0000000 
0.0000000 

(32) 

This ARC matrix has eigenvalues of A = ±0.1151867, ±0.0642273, and eigenvectors of 

e = 

-0.2525987 -0.5200254 0.3572268 0.7335915 

0.2525987 0.5200254 0.3572268 0.7335915 
0.5487775 -0.1802358 -0.7756556 0.2543949 
-0.5487775 0.1802358 -0.7756556 0.2543949 

(33) 
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and inverse eigenvectors of 

►-1 

-0.2723373 0.2723373 
-0.8292056 0.8292056 
0.1927552 0.1927552 

0.5877149 0.5877149 

0.7857610 
-0.3816779 
-0.5558429 
0.2706710 

-0.7857610 
0.3816779 

-0.5558429 
0.2706710 

(34) 

From these we may see that the first two eigenvectors (and thus first two eigenvalues) are the 
aggregation eigenvectors. 

Because we had a Loss Matrix which was fully dense (all Blue/Red components attriting and 
being attrited by all Red/Blue components,) this calculation has demonstrated the aggregation 
of output from stochastic, platform level simulations into a Lanchester context. Of course, this 
problem was specified. All we really cared was that the Loss Matrix was not reducible. This 
could as easily have been satisfied by other loss configurations. 

It is now possible to calculate the Lanchester force strength component trajectories which 
correspond to this simulation's results. These are shown in figure 4. The time corresponding to 
the KVS (Loss Matrix) in these scaled units is t = 5. This permits direct integration and compar- 
ison between the stochastic, platform level simulation and a simulation based on heterogeneous 
Lanchester. 

It is also possible to aggregate these results using the techniques described in Chapter 
XXXVHI. Of course, this discards exactly half of the force strength information (since we 
are effectively throwing away two components,) but it does allow the use of these KVS results 
in a higher level simulation based on homogeneous Lanchester. These trajectories are shown in 
figure 5. 

39.8 Conclusion 
This concludes our exposition of applying the formal aggregation methodologies in the aggrega- 
tion of results from higher resolution simulations such as stochastic, platform level simulations. 
These methods permit us to calculate both the heterogeneous Lanchester equivalent ARCs and to 
aggregate to heterogeneous Lanchester (if the combat is dense.) As such, they provide a valuable 
tool in not only comparing the results of simulations of similar level but different resolutions, 
but also in maintaining a hierarchy of simulations. 

39.9 References 
[1] Carnahan, Brice, H. A. Luther, James O. Wilkes, Applied Numerical Methods, Chapter 2, 

"Numerical Integration", John Wiley & Sons, Inc., New York, 1969, pp. 69-75. 
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Chapter 40 

Heterogeneous Stochastic Lanchester and Other 

Aggregations 

40.1    Introduction 
With this chapter, we come to the conclusion of Part III of the work. There are yet a few 
remaining topics to be treated, so the composition of this chapter will be a bit varied. In 
particular, we are going to deal with three topics: 

• Stochastic Heterogeneous Lanchester; 

• The Anti-Potential Potential Aggregation methodology; and 

• the ATCAL methodology. 

40.2    Stochastic Heterogeneous Lanchester Theory 

Thus far, our consideration of heterogeneous Lanchester theory has been limited to the determin- 
istic theory. From this, we have developed the theory of formal aggregation. Before concluding 
our consideration of heterogeneous Lanchester theory, it is fitting that we spend a few moments 
considering a stochastic formalism. 

40.2.1     Review of Stochastic Homogeneous Lanchester Theory 
We have earlier covered (again briefly,) stochastic homogeneous Lanchester theory in Chapter 
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XX in Part I of this work. At this time, we review the quadratic homogeneous stochastic attrition 

differential equations. For the expected force strengths, these are 

and 

-{A)—aiB), 

>> = ^>, 

where {X) indicates the expected value of X. The variance equations are 

dt 
o\A = -2aa2

AB + a(B), 

and 

and the covariance equation is 

dt 
alB = -2ßaAB + ß(A), 

dt 'AB -ß°AA ~ aaBB> 

0) 

(2) 

(3) 

(4) 

(5) 

where: o1 Y = (XY) - (X) (Y). The explicit solutions of these equations is given in Chapter 

XX 
In that chapter, we also introduced the Fokker-Planck-Kolmogorov (FPK) equation for the 

joint probability distribution function, [1] 

^(W.O + E^^ti bijP = 0, (6) 

where there are assumed to be n random variables x{, and the functions a{ and 6y are known 
as the drift and diffusion coefficients. It is possible to show that the approx.mate FPK equation 
for homogeneous quadratic Lanchester attrition as 

d_ 
dt 

P(A,B,t) MaB + ^A P + 
82 d2 

8A2 8B' 
P. (7) 

If we accept that P(A,B,t)-+0 sufficient fast as t - oo, then this equation becomes an exact 
representation of equations 1-5. Of course, this set of equations is based on the assumption that 
the attrition rate coefficients (ARCs) are constants. Consideration of the case where the ARCs 
are themselves random variables (as we might expect) is deferred until Part IV. 
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40.2.2    Extension to Heterogeneity 
If we again adopt our favorite heterogeneous Lanchester notation where the force strength com- 
ponents (now considered to be random variables) are represented by the components of the vector 
F and the ARC matrix (still constant and nonpositive, and now non-random,) is represented 

by *T, then the FPK equation for heterogeneous stochastic Lanchester attrition can be readily 

extrapolated from equation 7 as 

Since we are only interested in deriving the ADEs at this point, an explicit solution of this 
equation is unnecessary. We again require the pdf to go to zero as t goes to infinity. 

We may derive the ADEs for the expected force strength components in a direct manner. It 

we form the average, 

(9) 

where dT = n?=1 dFt is the state space differential, then we may use the FPK equation to write 

l A  r „„ d2 

(10) 

So that formation of the ADEs is only a matter of calculating the expectation integrals. The 
algorithm that we shall use is to successively integrate by parts. To see this, we first examine 
an integral of the form given in the first right hand side sum of equation 10, 

d Ik = jdTFkM^F]P. 

Integration by parts with respect to F{ gives 

Ik = jdY't  FMjFjPl^-f % pip. 'I,J J 

00 

(12) 

where dV, is m'issi ina the dFi differential. If we assume the first right hand side term is zero (I 

am not going to show this, you just have to take my word for it,) then the integral reduces to 

dFk 

'* = -SdTw^p (13) 

84 



Back to Eigensolutions 

=  - j dTSijriijFjP 

=   -7fc,i (Fj) ■ 

In a similar manner, the integrals of the second summation are all identically zero (derivative of 
a constant is zero!), so that equation 10 reduces to 

d 
<F*> = X>,; (F,) , (") 

dt 

which are identical to the deterministic equations. 
The ADEs for the variances are calculated in a similar manner, except that we start by 

calculating the second moment equations, 

If we proceed as before, this gives 

T* (W = t bw (FtFj) + lu (KFj)} - £ötjKj (F,-> • (16) 
dt .=1 ,-=i 

It is a simple matter then to form the variance ADEs from the definition of the variances, 

;*L = t KÄ + -riA] - ± 6k,nu <F,->, (17) d 
dt' i=i 3 

where: E^ = {FkFt) - (Fk) (F,). Because we are going to be referring to our eigensolutions, 
we introduce a notation here where the capital sigma indicates the force strength component 
variances and the lower case sigmas indicate the eigensolution variances. 

At this point, it is appropriate to note that based on the form of the variances, we would 
expect transformation between the eigenvariances and the force strength component variances of 

a2 ;.= X>^Ä (18) 
k,l=l 

40.2.3     Back to Eigensolutions 
At this point, it is convenient to return to consideration of the eigensolutions of the deterministic 
ADEs. The reader may recall that we defined the eigensolutions as 

7   =   V.F (19) 
n 

Ji     —     /_j ei,3^j, 
J=l 
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and that the transformation of the ARC matrix was 

V.T* .V"1   =   T, (2°) 
n 

We now want to make use of these equations to transform the FPK equation into the coordinate 
system of the eigensolutions. To do this, we must first convert the two derivative terms. 

We start with the first order term, changing the variables of differentiation to e.genfunct.ons, 

±r.Fj==y^^ljFj, (2D 

and substitute eigenvector expansions for the first and last terms in the right hand side sum, 

A   dFt d _x , 

Since by definition, fg = 6iJL, this equation may be rewritten as 

dF^3 M^=1 
vdfk 

n ß 

fc,m=l °h 

which we may reduce further using equation 20 to 

«7T7i/;   =     E   JT^Sk,mfm (24) 

n      3 

The second order term is somewhat more complicated, reducing after somewhat more algebra 

(but via the same approach,) to 

d2 A   8    d _lx   , nc\ 
?7i, 
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With these in hand, we may write the FPK equation (where P is now a function of the eigen- 

solutions,) as 

This is a disappointing result since it indicates a highly complicated form for the diffusion 
components It is this very complexity that points up an important distinction. Even though there 
are eigensolutions for the deterministic (expected value) ADEs, these eigensolutions correspond 
to the expected values, not to the variances. Therefore, we may draw a distinction between 
randomness that is natural to the force strength components and randomness that is natural to 
the eigensolutions. To explore the consequences of this, we shall address the solutions of each 

in turn. 

40.2.3.1      Eigensolution Randomness 
If the randomness (stochastic quality) of the attrition was natural to the coordinate frame of the 
eigensolutions (which we may argue would be the case of randomness due only to interaction 
among the force strength components rather than inherent to them,) then the FPK equation would 

have the form 

This FPK gives rise to ADEs of the form: 

It ^ = ^ <''■>' (28) 

for the expectation values; and 

|0?ifc = (Ai + Afc)a?fc + «iltAi(/i). (29) 

This is a wonderful result! Since it is common to assume that the variances have zero value 
at the initiation of combat, all of the covariances are zero. Only the variances are nonzero and 

they have the form, 

,2\5t _ p\jt 

ev - 1 

(30) 

Two things are noteworthy about this: first, the variances in this representation do indeed scale 
as we would have expected, and they are indeed intensively formally aggregable in the sense 
that we have developed this methodology. 
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40.2.3.2      Force Component Randomness 
If the randomness of the attrition is natural to the force component coordinate frame, then 
equation 26 is the appropriate FPK equation. In this case, we may again form ADEs and we 
find that the expected value ADEs are the same as equation 28 so that we at least have the joy 
of simple solution. The variance ADEs however, have a somewhat more complicated form, 

TS% = (^ +A*) °l + Ul+s^ £ ei.'e^er«A- <■/-*> • (31} 
dt      ' * J,m=l 

In this case, the covariances are not zero. If we again assume the variances are zero initially, 

these equations may be solved as 

«U W = \ (i + *») t ^aA    *"       </- «»> [^"** " «*"'] ■     <32> 
i,m=l 

lXj + Xk-X. 

While these variances may be transformed into the force strength component coordinate system 
using the transformation described above, we note (sadly) that they cannot be aggregated in an 
intensive form because they exhibit time dependence of all of the eigenvalues. 

40.3    AntiPotential Potential 

The AntiPotential Potential (APP) is an aggregation methodology used in a variety of combat 
simulations to "value" weapon systems. [2] In this methodology, each weapons type (which 
corresponds directly to the force strength components) has a "value". In matrix notation, the 

Blue values are 

ßBp = +a>T*V*, (33) 

and the Red values are 

ß^ = ifT*V^, (34) 

where: ßB and ßR are Blue, Red proportionality constants; and VB and VR are "value" vectors. 
If we combine these two equations, eliminating the respective "value" vectors, we may easily 

find, 

ßBßR\ß   =   ^>r.^r-V^> (35) 

which we may clearly see are clearly eigenvector equations. 



AntiPotential Potential 

Anderson notes a theorem, due to Frobenius, which states that if a matrix is "irreducible" 
and nonnegative, then there exists at least one eigenvalue which is posit.ve, and the maximum 
value eigenvalue has corresponding eigenvector components which are all nonnegative. This 
provides a basis for aggregation and the eigenvector components prov.de a weighting of the 
force strength components in a manner analogous to what we have already seen in Intensive 

Formal Aggregation. 
If we start with the basic heterogeneous matrix ADEs, 

±A    =   -V.ß, (36) 
dt 

differentiate these with respect to time, and back substitute equations 36, then the resulting 
second order matrix heterogeneous ADEs are 

2 
Lr£ = v.?«X (37) 
dt2 

dt2 

If we now define the left eigenvector matrices of *ö* •   ß   and   ß   • *ö* as V and   e' , 
respectively, and further denote the eigensolutions as 

o> = v.Z (38> 
T = V*~B, 

then the matrix heterogeneous ADEs, equations 36, become 

** = *'-*' (39) 

where A^ and A^ are diagonal matrices whose components are the squares of the eigenvalues.1 

The eigensolution components are simply 

i Actually, the components are the eigenvalues of the calculation which are the squares of the eigenvalues of the 

second order ADEs. 
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ai(t)   =   a+ie
A't + o_ie-^Jt = l..nai (40) 

bi{t)   =   b+ieW +_brie-
xit,j = l..nb, 

since the ADEs are second order. If the two maximum eigenvalues are the same, then we may 
designate these two solutions with the subscript m, and note that these solutions then have the 
form of homogeneous Lanchester solutions 

n -I na   nb 

bm (t)   =   £ emiBt (0) cosh (Ami) - -== E E Cßu4 (°)sinh (A^) > 

which satisfy the homogeneous Lanchester ADEs 

where: 

—am   =   -abm, (42) 
at 

—bm   =   -/3am, 
at 

ä   =   EEe™a^'e™i' ^ 
nb    na 

ß     =     EE^m^M^mi- 
i=l j=l 

If also follows that 

and 

VR   =   e^, (44) 

V^   =   4, 

/?*/3B = Am. (45) 
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40.4    ATCAL Methodology 
The ATCAL (an acronym for Attrition CALibration) is an aggregation methodology which in- 
corporates (among other parameters) fire allocation. It is a methodology for taking the results 
of high resolution (platform level) simulations and aggregating them for use in lower resolution 
simulations It is noteworthy in our context here that the methodology is essent.ally not Lanches- 
trian although it does bear similarities.^] Since this is an exceedingly complex methodology, we 
shall not provide a complete description here but will limit ourselves to an overview of certain 
aspects of the methodology to make associations with Lanchester theory. We do note that the 
methodology is iterative because of the non-linearity of some of the equations. 

Like the example chapter on stochastic, platform level simulation connectivity to intensive 
aggregation the ATCAL methodology is a bootstrap in that it uses the Killer Victim Scoreboards 
and also Rounds Fired Scoreboards from higher resolution simulations. The methodology dis- 
tinguishes among platforms, weapons, and target types which are designated by the indices 13 
k A key quantity is the exponential mean number of systems (platforms, weapons, and targets) 
during the combat. This is a key, non-Lanchestrian assumption, that the number of systems ot 
a given type has a trajectory during the combat which is exponential. That is, if the number or 
systems (we suppress type indication for simplicity at this point,) is S (t) then this number has 

trajectory, 

S(t)~S(0)e-K\ (46) 

where: S (0) is the number of systems at the beginning of the combat (which we recall is taken 
from a high resolution simulation execution,) and K is an "attrition" rate. 

We may make a simple comparison of this approximation with homogeneous Lanchester 
theory. If we designate the number of enemy (firing) systems by T (t), then the homogeneous 

Lanchester solution for S (t) is just 

5(t) = 5(0)sinh(7t)-5T(0)sinh(7t), (47) 

which we are familiar with from Part I of this work. In the short time or small attrition limit, 
this equation may be expanded to first order in time as 

S{t)czS(0)-aT{0)t, (48) 

which we may rewrite as 

(49) S (t) * S (0) 
\_<*T(0)t 

5(0) 

Since the quantity in brackets is just an exponential to the same order of expansion, we may 

approximately replace this with 
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sim (50) 
S{t)~S(0)e    s<°> 

which is exponential as is the ATCAL approximation. 2 
The exponential average, which is used to account for large changes in system strength   , is 

defined as 

5_ Jo5(*')<**'. (51) 

If we use equation 46 then this equation can be exactly integrated as 

^(OHl-e-^ (52) 

K,t 

and if we make use of the change in system strength, 

AS = S (0) [l - e-Kt] , 

then this may be solved for the argument of the exponential, 

(53) 

^ = -ln(1_^))' (54) 

and the two equations substituted into equation 52 to yield 

S = ^L^, (55) 

which can be calculated entirely from the output of a high resolution simulation. 
A key concept in the ATCAL methodology is the idea that during the duration of a combat 

taroets are available for engagement only during some fraction of this time. This is represented 
by quantities Aik which are the Availability of target type k to engagement bya weapon/platform 
of type i If there are a mean number of weapons/platforms of type i of Su then the fraction 
of time that none of these targets are available (assuming they are completely uncorrelated,) is 
(! _ Aik)

Si. It is convenient to define the fraction of time that at least one target of type k is 
available for engagement by weapons/platforms of type i as 

/^l-ll-tf- (56) 

A second key concept of the ATCAL Methodology is an absolute prioritization of target type 
for each weapon/platform type.  That is, if a weapon/platform of type i is presented with the 
simultaneous opportunity to engage two targets of different type and one type target has a higher 

2If the system is essentially completely attrited, then a linear average of system strength would approach %& 

which is potentially misleading. 
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priority that target is engaged completely preferentially to the other target. This allows a rigid 
system of determining the fraction of time that each target type is available for engagement. It, 
for convenience of notation, we assume that the targets are numerically ordered in decreasing 
priority, then we may define actual fractions of time targets are available for engagement as 

r   =  /"I (57) 
Ji\ •/*!> 

fo   =   /a (Wii), 
fl   =   As (1-/«.)(!-/«). 

and so forth. In general terms, which do not assume ordering, these fractions may be written as 

/£ = /* IK1-/*•). (58) 

where the product ranges over all targets of higher priority than target type k. 
If the rate of fire by weapon/platform of type i is ru then the firing at targets of type k by 

weapons/platforms of type i is simply 

from which the point fire attrition equation is defined as 

(A5fc)y   =   FucPiJk <60) 

where- Pijk is a kills per round figure which is calculated by dividing the Killer Victim Score- 
board value by the Rounds Fired Scoreboard value. It thus represents a "probability of kill per 

shot" value. . 
If we designate the product of the rate of fire, the kills per round figure, and the actual fraction 

of available engagement time, 

KijkT = nPijkf*k> (61) 

to be the product of an "Attrition Rate Coefficient" Kijk times the duration of the combat r, then 

we may rewrite equation 60 as 

(ASk){j = S"iKijkr, (62) 

then we have a simple attrition equation. If we now substitute equation 51 into equation 62, 

then we get 

{ASk)ij = £si(t')dtKijk, (63) 
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which we may differentiate with respect to time to get 

d 
dt 

Sk\ij  — ~KijkSi- 
(64) 

If we now sum this equation, 

(65) d Q V d 9 , 

i,j 

which we recognize as nothing more than a heterogeneous "Lanchester" ADE written in com- 
ponent form This association is meant to be descriptive only and is meant to indicate that the 
ATCAL methodology is Lanchestrian only within the limits of the approximations and assump- 

tions outlined above. 
For area fire, the ATCAL attrition equation is given as 

AS = 5(0) 1-e ' As (66) 

where- AL = the area of lethality of a single round, R = the number of rounds fired, and As- 
the area occupied by the targets S (0). In a Lanchester context, we may make an assumption that 
the latter area is a constant although this is not necessary, but is helpful for comparison purposes. 
An implicit assumption of the ATCAL methodology is that all rounds fall within this area. We 
recognize the exponential character of this equation as arising from the possibility of the lethal 
area of successive rounds overlapping (see Part I). Recognizing this, we may differentiate th.s 

equation with respect to time, 

ss<*> = 
d_ 
dt 

dt 

AS 

ALR 

(67) 

A, 
S(t) 

since 

AS S{t) = S(0)e 

We may now designate the Rounds fired as 

(68) 

(69) 

which is just the product of the rate of area fire (rounds per time) per firer, the duration of the 
engagement, and the exponential mean of the number of firers. Further, we designate the area 

fire "attrition rate" as 
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' = ^L± (70) 
Ki ~   As ' 

which is comparable to what we have done earlier.  The combination of equations 69 and 70 

reduce equation 67 to 

*S{t). (71) 

i'M-S S(t). (72) 

_ i 

If we now again use equation 51, this equation reduces to 

We may now differentiate this equation to obtain 

|s(t) = -£/<S(0S(0, (73) 

which is just a heterogeneous linear Lanchester ADE (in component notation). We emphasize 
that this comparison has been made simply for that purpose and does not const.tute any claim 

that ATCAL is Lanchestrian. 

40.5 Conclusion 
This chapter concludes Part III of the work. This concludes our discussion of heterogeneous 
Lanchester attrition theory. It also concludes our discussion of basic Lanchester attrition theory 
and sets the stage for Part IV which is a collection of chapters dealing with advanced Lanchester 

theory in some sense. 
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