LOAN DOCUMENT

PHOTOGRAPH THIS SHEET

RIK-77-2% 990

DTIC ACCESSION NUMBER

DOCUMENT IDENTIFICATION

UL 72

INVENTORY

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

A-l

DISTRIBUTION STAMP

DISTRIBUTION STATEMENT

DATE ACCESSIONED

B> E=—-S EHCO ZP T

DATE RETURNED

ST 10

e ——————

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

[
DTIC 5% 70A

DOCUMENT PROCESSING SHEET

LOAN DOCUMENT




'TECHNICAL
LI

S ' N73-11189

RIA-77-U990

DEBUGGING COMPUTER PROGRAMS: A SURVEY
WITH SPECIAL EMPHASIS ON ALGOL '

R. S. Scowen

National Phys'ic‘al Laboratory
Teddington, Middlesex, England

June 1972

! Reproduced From

Best Available Copy National Technical Information Service
—— oo oo U.S. DEPARTMENT OF COMMERCE
5285 PortiRoyaI Road, Springfield Va. 22151




(HPL-NAC~21)v DEBUGGING COMPUTER
A SURVEY WITH‘SPECIAL EHPHASIS oN
R.S. Scowen {N

39 p ‘

PROGRAHS.
, ALGOoL
Ysical Lab,) Jun,

ationaerh
1 1972 f

" Reproduced by

ICAL
NAL TECHN -
AgROMATION SERVICE




e e L'ﬂ‘s‘. ad bt b M B 1

No'r,xcn'

OCUMENT HAS BEEN an:pnonucsn-rnom THE

THIS D
BEST coPrPY FURNISHED Us BY THE SPONSORING
AGENCY ALTHOUGH IT IS RECOGNWED THAT CER-

IT IS BEING RE -

s ARE ILLEGIBLE,
LABLE

TAIN PORT!ON
LEASED IN THE INTEREST OF MAKING AVAIl
AS POSSIBLE.

'AS MUCH INFORMATION /




DEBUGGING COMPUTER PROGRAMS
A SURVEY WITH SPECIAL EMPHASIS ON ALGOL

. R. S. Scowen
National Physical Laboratory
Teddington, Middlesex. England

Abstract

This report considers the problems of debugaing computer programs and sore
of the tools which can simplify the task. The main sections describe:- (1)
wa;5 in which compilers can aid the debuaging of programs, (2) ALGOL ‘programs
which can be used to determine the kinds of errors detected by an ALGOL
compiler. (3) results of running the test programs on sixteen different
compilers: (4) results oktained from a survey of the errors made by
programmers at N.P.L. ' ‘

CONTEMTS
INTRGDUCTION S S B 1
USEFUL PRINCIPLES 2
Detecting errors 2
Error messages 2
Efficiency 3
Extra debugging options 4
The operating system 5
Debugging and programming language design 5
Debugging and conpiler design 6
THE ALGOL TEST PROGRAMS | | 7
1. Procrams which should fail to translate o 7
2. Programs which should fail during execution 1"
3. Programs which are legal but might contain an error 14
4. Programs to test the rigour of the compiler ' 17
THE ‘ALGOL COMPILER TESTS ' S 10
The compilers, machines and testers | 19
The results ' : : 20
A SURVEY OF THE ERRORS MADE BY PROGRAMMERS _ 26
Runtime errors ' ' 26
Translation errors ' ‘ 30
CONCLUSION 7 “;1: 33
ACKNOWLEDGEMENTS . 24

REFERENCEY | 35




DEBUGGING ' DATE 19/06/72 "~ PAGE 1

INTRODUCTION

pebugging is the process of locating and correcting the errors in a computer
program; the efficiency with which it can be carried out depends critically on
the compilers and . software available. This . report describes:- (1) some
properties which compi lers should possess to simplify debugging; (2) a number
of small ALGOL 60 test programs designed to discover how helpfully an ALGOL
compi ler treats incorrect programs; (3) a summary of the results which were
obtained when the test programs were run on sixteen different compilers; (&)
the results of a survey of failures in ALGOL 60 programs recorded by suitably
" modified compilers used at NPL.

pebugging would be unniecessary if programs could be proved to be correct.
Much work is going on in this field (see London 1970, and Adams et al. 1972)
but the techniques are not yet widely applied, and debugging is tikely to be
necessary for some time to come. The topic is not considered further in the
present report: neither are the special problems of debugging real-time
systems; see a paper by van Horn €1968) for some pertinent suggestions.

Debugging tools can be classified as active or passive. An active tool is
one which enables the programmer to specify what he wants after he has
realized there is an error; examples are given below in the . paragraph ‘Extra
debugging facilities’ on page 4. A passive tool works automatically without
any effort from the programmer, e.g. failure messages, store post-mortens.
etc. This report 1is mainly concerned with passive tools since these are
generally more useful. The basic handicap of active debugging “aids is that
they rely on foreknowledge of where the errors will occur.




DEBUGGING DATE 19/06/72 PAGE 2

USEFUL PRINCIPLES

Detecting errors

‘A compiler should not translate and run illegal programs ‘It not only makes
debugging harder but also adds to the d1ff1culty of ensur1ng that a program is
machine independent.

Errors should be found during translation rather than at runtimé; Lless
computer time 1is then wasted and the failure message is more likely to be
helpful because the position of the error can be specified more precisely.
Errors which are not found by the compiler are particularly wasteful of the
programmer's time; the only evidence is often the whole program and a mass of
more or less incorrect results. With programs that lose control (e.g. by
overwriting the program or compiler) the only evidence is an octal or
hexadecimal core-dump (see Anon 1969).

of course, not all programming errors can be found by a compiler. For
example, if the programmer writes the constant ‘997’ instead of '977'., or uses
faulty Llogic (e.g. see Forsythe 1970), then the program is legal but
performing the wrong task. Occasionally the compiler can help detect these
errors by printing warning messages when it finds odd features in the progranm.

Error messages

Failure messages should be intelligible; if the programmer - cannot
understand them, then effectively all he is told is "invalid program’'. Ideally
all messages should be 1in a language understood by the programmer. It is a
poor compiler if the programmer needs to know the assembly or machine language
in order to be able to debug his programs. Error messages should also be
reliable and not tell the programmer that he has made one sort of error when.,
in fact, the mistake is someth1ng quite different. : :

When the compiler flnds a syntax error: it should report the pos1t1on and
cause of the error precisely and clearly. Note that the position of the error
may not be where it is discovered. For example, although the KDF9 Uhetstone
ALGOL - compiler does not detect ‘variable used but not declared' until the end
of the translation:, it nevertheless tells the programmer where the variable
was used. o '

One concise way of specifying the position is to give a Lline number. but
‘this will be insufficient unless the programmer can easily identify the line
concerned. There are other methods of specifying the position of an error
clearly, e.g. the compiler can print the symbols which occur just before and
after the error, or give the number of lines since the start of the latest
procedure declaration or label. The clearest way is to print a listing of the
program with the error messages interspersed in the appropriate places.
However ‘this can be expensive, it is also often impractical in-an online
situation. : : :

When an error is discovered during ‘execution the minimum amount of




s

DEBUGGING DATE 19/06/72 . PAGE 3

information which should be given is:-

(1) The cause of the error. :
(2) The position in the program text where the error was

detected. The position in the object code is less useful.

Not all compilers help even this much. In any case extra information is
nearly always useful. e.g. : b ‘ _

(3) The route of the program _just before it failed (a
‘retroactive trace' in KDF9 terminology). S

(4) The vatue of some or all the variables at the time the
program failed.

This information can be printed only if runtime errors are discovered

before the whole store has been corrupted. i

efficiency

Some compilers contain optional facilities which test the program more
thoroughly. If these aids are slow and expensive, the programmer may be unable
to afford to use them. The KDF9 ALGOL system is faulty in this respect. It
consists of two compatible compilers: one (Whetstone) is designed for program
testing. and the - other (Kidsgrove) for| executing correct programs.
Unfortunately the Whetstone compiler executes programs SO slowly that some
programs have to be debugged using the Kidsgrove compiler. Also the system
will be inefficient unless as many errors as possible are found during each
translation. It is impossible to find every syntax error in every program but
a good compiler should find most of the errors most of the time. Note that
successful recovery from an error is more difficult in languages with a nested
recursive structure like ALGOL than in one-staiement—at—a—time languages like
FORTRAN or BASIC. ' P ‘

‘Whether a program should be executed further after a runtime error is
debatable. Additional errors might be discovered. but the program is going to
run for a longer time and cost more; the results are bound to be wrong and it
may be more difficult to trace the first error because some evidence will have
been destroyed. Perhaps the compi ler should continue after some runtime errors
(e.g. when a value ‘does not fit a specified output format), but not after
others. ’ o ’ 5 ' .

A useful option for load-and-go compilers” (*1) would allow a program to be
executed more than once with different sets of data even if it fails at
runtime. . , . N

(1) A load-and-go compiler compiles a program and immediately executes
it o o E ’

USEFUL PRINCIPLES




.

DEBUGGING DATE 19/06/72 B PAGE &

Extra debggging options

Debugging can often be simplified if éxtra.facilities are availéble to the
programmer.

1. Tracing

Tracing is the process of printing a record of the steps executed by a
program while it is running. Tracing is rarely needed if other debugaing
facilities are good, but occasionally it is extremely valuable; various levels
are useful, e.g:-

(1) Every procedure call or label
(2) Every jump

(3) Every assignment statement
(4) Every operation

It is also helpful if the values of some or all of the variables can be
printed when tracing is switched on. '

" Tracing is not so useful if it can be switched on and off only durina the
translation and thus must be performed every time the specified parts of the
program are executed. Difficulties will arise when an error occurs on the last
time round a loop. Printing the trace each time round the loop would be very
slow and expensive and so it is essential to be able to trace only the last
few relevant circuits. ’ ‘ ' '

A variant of tracing is the opt1on of printing the value of a particular
variable every time there is an assignment to it.

2. Documentation aids

Documentation programs [e.g. SOAP (Scowen et al, 1971), NEATER/2 (Conrow
1970) and flowcharters] list a program in a consistent way which clarifies its
structure and action. Flowcharters have the disadvantage that they present all
parts of the program with the same degree of eémphasis, rather like a map that
shows footpaths and motorways in the same way. SOAP is generally superior for
documenting ALGOL programs; by indenting some Llines more than others it
exposes the extent of any statement, declaration or comment, and the
alternatives 1in a conditional statement. SOAP is also faster and cheaper than
flowcharters. : : L

3. A flow-trace

A flow-trace is a listing or table wh1ch specifies how many times each part : .
of a program has been executed. It too is a useful tool for gaining insight
into what a program does. S :

A related facility gives the amount of t1me spent in each part of the
program. :

7




DEBUGGING DATE 19/06/72 : - PAGE 5

4. A concordance

when a programmer has to modify a large program. he will often find he is
unable to understand the use of a particular variable; in these circumstances
he needs a concordance of the program, i.e. a listing of the declaration, us2as

and assignments of every variable in the program.

5. A general macro processor

A general macro language and processor (e.g. ML/I., sée Brown 1966.1967) is

useful when altering large progams from one language or dialect to another. A
general macro-processor will make many of the alterations consistently and
avoid introducing random trivial mistakes. ' - '

The operating system

The characteristics’of a compiler should depend on the sort of operating
system in which it is embedded. For a multi-access operating system with
remote job entry facilities. the compi ler should be small and fast. Only a
limited amount of output is desirable if the printing speed of the terminal is
slow; certainly there is no time for a program listing or reference tables.
Output on a display or line-printer should still be brief; too much is merely
confusing. Some systems continue to print information which was neeced by the
implementors when the system was being developed. Also it is less important to
discover all the syntax errors during one translation because little will be
lost if an extra compilation is necessary.. :

On the other hand, for a batch operating system with a turn-round measured
in  hours. the programmer will feel frustrated if the compiler discovers only
oné error in each run. It may be appropriate to execute a program up “to the
first syntax error even if it fails to translate (as in 1900 ALGOL).

Debugging and programming language design

Two of the most impcrtant objectives in desianing new programming languages
should be to make it easier to write proarams and less easy to make mistakes.
These objectives are often not given their due importance but they can be
achieved. A concise natural notation using simple consistent rules helps ‘the
programmer avoid errors; and redundancy in the language ensures that as many
errors as possible are found during translation. Default rules are dangerous
because they can be applied unwittingly; it " is safest and simplest if
programrers follow the advice given to Alice: they say what they mean as wzll
ac mean what they say. ' ‘ L

The modern versions of ALGOL are superior to ALGOL 60 which itszlf has
advantages over FORTRAMN. Some coumon srogramaing errors. which vould be more
easily cured or avoided if FORTRAN had been defined differently, are described

by Elspas et al (1971) and by Evershed et al (1971). CITRAN (see Moulton et al -

1967) is an implementation of FCRTRAN which does a full check on the Llegality
of a prooram. The authors wanted to use the compi ler. for teaching students and

"‘—————————————————————————————————————————---i--lIIIlllllI-iiiiiHiliiiﬂiiﬁiii.-..||-|..||




DEBUGG ING DATE 19/06/72 PAGE & '

they were more interested in fast translation and good diagnostics than in
runtime speed. The paper describes the contortions which are esszential if a
complete check is to be performed on a FORTRANM program but it does not state
what effect the checks have on runtime efficiency.

Debuggjng and compiler des{gg

The best and most efficient compilers for debugging purposes are probably
those which are load-and-go and produce machine code (e.g. ALGOL W, Babel,
WATFOR) . Lcad-and-go compilers are convenient to use because there is only a
single job to be submitted to the operating system. Compilers are faster when
they produce machine code because they avoid the overheads of assemblers and
linkage editors.

It is a common belief that an interpretive system i3 necessary for good
runtime diagnostics, but this is not true. It is not difficult to produce and
store tables during compilation which can be used after a runtime failure to
interpret and output sensibly the contents of the storc. Other debuaoing
facilities can ke rrovided by compiling programs in slightly different ways.




DEBUGGING DATE 19/06/72 PAGE 7

. ~ THE ALGOL TEST PROGRAMS

ﬁ. Programs which should fail to translate

1.1 Illegal syntax

begin
real ;

end

1.2 Variable used but not declared

begin
x 1= 2.3
end

1.3 Variable declared twice

begin
real x;
intager x;
end

1.4 Invalid operator

begin /
real x. Y;
X 1=y >X
end

1.5 Wrong number of subscripts

begin
' real x;
array al1 : 101;
x = alt, 3]
end

-

| THE ALGOL TEST PROGRAMS




DEBUGGING

1.6 Actual parameter 6f wrong type

begin '
procedure p(x);
real x;
boolean z;
pzz)
end

1.7 Illegal use of cornstant as parameter

begin
procedure p(x);
real x;
X == 3.14;
p(2.71) '
end

‘1.3 Wrong number of parameters

begin
procedure p(x);
real x;
end

DATE 19/06/72

1.9 Wrong number of subscripts in a formal array

begin ,
procedure p(a);
array a;
al1l := 0;
array af0 : 3, 0 : 31;
p(a)
end

PAGE 8




T

DEBUGGING . DATE 19/06/72 ' | PAGE 9

1.10 An inconsistent actual procedure parameter

Procedure 'p' has a formal parameter ‘g which is specified as a prccedure.
It is possible to deduce from the use of ‘g’ inside 'p' that 'q' has one
parameter of type real . When 'p’ is called, it has an actual parameter 'r’
which is a procedure with onec boolean parameter. Thus the use of ‘p' is

inconsistent with its declaration and the program contains an error.

begin
procedure r(b);
oolean b;
procedure p(q);
procedure q;
a(x);
- real x;
' erns /
end

1.1 Declaraﬁion follows statement

begin
procedure p(x);
- real x;
’
’
real y;
end

1.12 A yoto statement into a for statement

begin
integer i;
goto m;
for i := 2 do
— begin
m:
end
end

1.13 Variables of different types in a left-part list

begin
real x;
integer i;
X =1 :=2
end

THE ALGOL TEST PROGRAMS




DEBUGGING

1.14 Invalid use

begin
integer
izx=7;
i = abs
end

of integer divide-

i;

(i) div 2

1.15 A missing closing String quote

DATE 19/06/72

PAGE 10C

It is desirable that the programmer should be told not only that there is
an unmatched string-quote-synbol at the end of his program, but also where the

string starts.

begin

procedur

ep (s );

string s;

p ¢

0122456789abcdefghi jk Lmnoparstuvwxyz
0123456739%abcdefghi jk Lmnopgrstuvwxyz
0123456789%abcdefghi jk Lmnopgrstuvwxyz
0123456789abcdefghi jk Lmnopgrstuvwxyz
012345678%abcdefghi ik Imnoparstuvwxyz
0123456789abcdefghi jk lmnopgrstuvwxyz

0123456789abcedefghi jk Lmnopgrstuvwxyz

7end

0123456789abcde fghi jk Lmnopqrstuvwxyz
0123456789abcdefghi jk lmnopgrstuviixyz

012345673%abcdefghi jk Lmnoparstuvwxyz
); _ v o :




e

DEBUGGING | DATE 19/06/72

2. Programs which should fail during execution

2.1 Subscript outside the array bounds - (i)

begin
real array al 1 : 10 1;
~at0] := al11]
end

2.2 Subscript outside array bounds - (ii)

begin
array al1 : 19, 1 : 3];
afZ. 4] := 0

end |

2.3 Subscript outside array bounds - Giii)

begin
array al1 : 3, 1 : 10];
a[Z. 21 := 0

end

2.4 Division by zero

begin
' real x;
X := 3.7 / 0.0
end |

2.5 Square root of a negative number

begin
’ - real x;

X := sert( - 1.0)
end

PAGE 11

THE ALGOL TEST PROGRAMS



DEBUGGING | DATE 19/06/72 PAGE 12

2.6 Logarithm of zero

begin

real x;

X := n(0.0)
end

2.7 Overflow on exponentiation

begin

real x;

X = exp(2000.0)
end

2.8 Use of a variable with no previous assignment

begin
real X, y. z;
X :=y;
X = z % 2
end

2.9 The lower bound of an array exceeds the upper bound

begin
array al10 : 01;
4 al2] := 3 '
end

2.10 Zero exponentiate zero

begin
integer i;
A0 AN
i = 0;
i=1d4i
end

2.11 -1.0 ¢+ 2.0 is undefined

begin
real x;
x = - 1.0;
X = x t 2.C




s

DEBUGGING ' DATE 19/06/72 ' ' PAGE 13

2.12 overflow during exponentiation

hegin

real x;

X := 10 000;

x = x 11000
end

2.13 An infinite loop

This progran is designed to test what happens to a progam which translates.
but when executed goes into an infinite loop. It is undesirable for the
programmer to get no information except ‘fails. time limit'. It is equally
undesirable that he should use kis total allocation of computer time with this

one program.

A retroactive trace often helps when trying to find the cause of an

infinite Lloop because it can indicate the whole of the loop, and not just the .

single point in it where the program failed.

begin

ab:

- goto lab
end

o - TUHE ALCOL IiSl PROGRAM




DEBUGGING DATE 19/06/72 PAGE 14 i

3. Programs which are legal but might contain an error |

ALl these programs are valid ALGOL.60; each one should compile and run
without failing. However, they all contain an odd feature which might be there
only because the programmer has made an error. If the compiler produces a
warning message about this odd feature. it may help the programmer to trace an
otherwise troul:lesome mistake.

3.1 End comments
The programmer may have forgotten a semicolon after the first end . A

helpful compiler will detect the error if it gives a warning of odd end
comments.

begin
integer x;
ii true taen
Eegsn
x =1
’ - end
X := exp(x)
end |

3.2 Begin - end structure is invalid

The extra end in this program may indicate that an error has occurred
earlier. A compiler will detect: this error if it insists on a unique
end-of-program symbol at the end of.all ALGOL programs. It will also detect
the error if it warns the programmer of extra text after the end of his
program. .

begin
real x;

end

ena




DEBUGGING DATE 19/06/72 | PAGE 15 :

3.3 Assignment to a value parameter

: The programmer may have been under a misapprehension when he made the
assignment to the value paraneter. The compiler should warn him that if he
wants the result, the parameter must be called by name. If the compiler makes
the assignment to the actual parameter (an error), then this progran will fail
subscript overflow.

begin
procedure p(n);
value n; integer n;
n := 100 000 * n;
array al0 : 11;
integer n; ' ' ;
n = 1; ' :
pn);
alnl := 0
end

3.4 Real-to-integer operations are invisible. =~ ) ' |

This program contains a real-to-integer operation. The compiler should warn
the programmer:— (1) that he will lose accuracy; and (2) that to save tine he
shoulc move the operation outside any inner loops.

begin
integer i;
1= 3.4
end

3.5 A null for Loop

This progran contains a for loop wh1ch is not executed; this is worthy of - !
comment by the compiler (perhaps n' has an jnvalid value). The program is S
written so that if the loop is executed once (3 la FORTRAN) the program will ,
fail division overflow. ' R

begin
integer i+ j+ n;
n := -3;
for i := 0 step 1 until n do
j =2 divi ' . A
end ' '

, ' ’ ' ' : - THE ALGOL TEST PROGPAMS |




e —————— ]
DEBUGGING DATE 19/06/72 " PAGE 16

3.6 Identifier declared but not used

A program which contains an identifier which is declared but not wused is
probably longer than necessary. It may contain an error because the use of the
identifier is misspelt. ' :

begin o
real x, y;
x :=1

end

3.7 Switch index overflow

This program does not contain an-error according to the Revised Report.
However in ECMA Subset ALGCL 60 (see ECMA, 1943) and IFIP Subset ALGOL 60 (see
IFIn, 1964), a goto statement involving an undefined switch designator is
undefined, i.e. an error. The program is sufficiently odd to warrant an errcr
message from compilers dealing with strict ALGOL 60, and all other compi lers
should report a failure. L

. begin .
switch s := L1, L2, L1;
--goto sf[41; .
L1: L2:
end -

3.8 Real relations

Comparing two real values may well give different results with different
compilers. It may help the programmer if he is warned whenever he does ithis.

begin
: real x. y;
X =y = 2.0;
if x =y then
; .
end




DEBUGGING DATE 19/06/72 PAGE 17

i

4. Programs to test the rigour of the compiler

4.1 use of local identifier in array subscript bound

begin
integer i;
LIS A
1= 3;
begin
array al1 : il;
al1l := 0;
i: :
end;
i =2
end

4.2 1f, then. for., else ambiguity

This program is legal according to the ALGOL 60 Report, but not according
to the Revised Report. B R ‘

begin
integer i, j;
if true then _
T fori:=2do
. j =1
else
j =1
end

4.3 Redeclaration of standard entity
This program is legal.
begin

real sin;
end

e

4.4 A check that comments are correctly recognized

begin :
comment an odd comment;
real X; .
commeni further than end. up to the semicolon in fact. real x;
x == 1.0
end

THE ALGOL TEST PROGRAMS

. .




e
DEBUGGING . ' DATE 19/06/72 PAGE 18

4.5 Own arrays

This program checks both that own array is not a valid abbreviation for own
real array , and whether dynamic own arrays are al lowed.

begin
integer 1i;
i := 10;
begin
own array al1 : il;
end T
end

4.6 Non printing characters are not significant

This program checks that space-symbols are not regarded as significant in
the middle of identifiers or numbers. : |

begin -
: boolean acheckonlongidentffiers; o _ ‘
real pi; - ' o
a check on long identifiers := true,
‘ pi = 3.14159 26535 89793 23846 26433 83280;
end




THE ALGOL COMPILER TESTS

The compilers, machines and testers

The programs listed in the previous section have been executed on sixteen
compilers in order to see how they treat incorrect programs. Some of the
compilers tested were standard versions available as part of the
manufacturer's software., others were produced in universities, etc. They are
listed below together with the dates of the tests and the names of the people
who performed them. Some compilers have since been improved. e.g. UNIVAC 1108.

ICL KDF9, Whetstone ALGOL Compiler, Miss R. Thorn., NPL, June 1970 '(sée
Randell and Russell, 1964). o

ICL 4120, The manufacturer's compiler., Miss R. Thorn., NPL, June 1970.

GE625, Honeywell Computer Time Sharing Service, Miss. R. Thorn. NPL., June
1670.

ALGOL W, Stanford University compiler on an IBM 360/67. E. Satterthwaite.
Stanford University, Nov 1970 (see Wirth et al 1966, Bauer et al 1968 and
1971, Satterthwaite 1971).

ICL 1900, XABE (except programs 2.8, 3.1 which were run ‘using XALT/3). R.
L. Dees, ICL, June 1970.

UNIVAC 1108, The manufacturer's compiler._G; H. L. Buxton. NEL. June 1970.

IBM 360/65, The manufacturer's compiler, P. A. Samet, Joan Garrett, M.
Thomas. University College, June 1970. o

ICL ATLAS, The ALGOL compiler (6 Feb 1970), F. R. A. Hopgood. Atlas
Computer Lab, July 1970. ‘ : o

XDS 9300, The manufacturer s compiler, I. D. Hill, Medical Research Councitv
Computer Unit., July 1970.

IBM 7094/1, Alcor - Illinois 7090 compiler., E. Hansen, Atomic C[neray
Commission., Denmark, July 1970 (see Bayer et al 1967). s

GIER4, GIER ALGOL III and ALGOL IV, E. Hansen, Atomic Energy Commission,
Denmark., July 1970.

BABEL. The KDF9 Eldon Babel compiler. M.’J..Parsons. NPL, Oct 1971 (sce
Scowen 1969).

EGDON, The KDF9 EGDOM ALGOL compiler, B. tooper and M. D. Poole, Culhan
Laboratory., July 1970. - . S

ICL System 4/50, The manufacturer’'s compiler, C. Harris and M. D. Poole.
Culham Laboratory, July 1971. S

THE ALGOL COMPILER TESTS




R |
DEBUGGING DATE 19706/72 | PAGE 20 :

ALGOL 68R, RRE Compiler on ICL 1907F, I. Currie, Royal Radar Cstablishment,
May 1971. _ :

Electrologica X8 'THE, THE ALGOL, C. Bron, Technological 'University.
Eindhoven. October 1971.
The results

The results are summarized in four tables using the symbols:-

T A translation error was detected
R A runtime error was detected

W A warning message was printed

0 No error was detected

X  The program was not tested with this compiler

0K This legal program ¢ompiled and ran successful ly

NA- There is no equivalent program in this version of ALGOL

No quantitative value for the debugging effectiveness of each compiler is
given because these tests do not measure all the relevant factors. In any case
the compilers were written for computers differing in age., size, cost,
characteristics and operating systems. '

I would be happy writing programs for any of the 7094, ALGOL 683, ALGOL W
or Babel compilers (the order is random). ALl these systems give clear error
messages. check for all or most faults, and give a clear runtime post-riortem.
ALl except 7094 give extra lainguage features which simplify the expression of
many programs. ALGOL W and Babel give a flowtrace and other tracing
facilities. Babel and ALGOL 68R can be used from a terminal for online remote
job entry and execution. ’




’lIIIIIIIIIllllllIlIIIIIIII--------

vebuuuing UAIL 1¥/UD/(cC ) rAUL Gt

1. Translation errors

COMPILER1 2 3 &4 5 6 7 8 9 10 11 12 13 14 15 COMPILER
KDF9 T T T R T R R T R R: T T T T T KDF9
4100 T T T T T T T 1T 1T 7T 17T 1T 7T 7T M 4100
GE625 T R T T T R R R R R 0 R 0 0 (1) GE625
. CAMGOLW T T T T T T @ 1T T R T T T @& 7T ALGOL W
1900 T T T T T T R T 0 o T 0 X X X 1900
1108 T T 7T T R R R R R (3 O o 3 0 o0 1108
. 360/65 T T T T T R R T R R T T T T T 360765
ATLAS T T T T T T R T 0 T T R T O T ATLAS
2300 T T T T R (&) % R R B T )y o T T 9300
7094 T T T T T T T T T 0 T T T © T 7094
GIER4 T T T T T 75 0 T R(5) 0O T 0 T T M GIERLG
BABEL T T T T T T T T T 6 T T T (6 T BABEL
EGDON T T T T T T 0 T 0 T T T T T T EGDON
4/50 T T T RO T T 0 T 0 T T T T T T 4/50
ALGOL68R T T T T T T NA T NA T 0K T OK - NA T ALGOL6SR
X8 THE T T T T R R R g R R T T T 0 T X8 THE
(1) 4100, GE625, GIER4.
" The Translator asks for more.
(2) ALGOL W. ; '
The error 'in program 1.7 is found during “translation if the
formal parameter is specified to be REAL RESULT; otherwise the
error is found during execution. Program 1.14 is a legal
program in ALGCL W because ‘abs’ is an operator, but real
operands for integer—divide fail during translation.
(3) 1108. ‘
Program 1.10 fails at runtime because the declaration of ‘x'-
must precede its use. Program 1.13 is legal in th1s vers1on of
ALGOL. ‘
(4> 9300. ,
3.14 is assigned to the constant '2.71 in program 1.7. In
program 1.6, true = 1 and false = 0. Program 1.10 probably
fails to translate betause 'x' 1s used before jts declaration.
Program 1.12 goes into a closed loop during execution.
(5) GIER&.
"The errors in programs 1. 6 and 1.9 are not detected in. the
GIER 3 compiler. '
(6) BABEL. :
There is no Babel program equivalent to 1 10 Pragram 1.14 is
legal in Babel because ‘abs’ is an operator.
(7) 4/50. _
Program 1.4 fails at runtime but gives no error ~message. The"
failure message for program 1.15 is a random alpha-numeric
string. ’

THE ALGOL COMPILER TESTS

S




DEBUGGING DATE 19/06/72

2. Runtime errors

9 10 11 12 13 COMPILER

COMPILER 1 2 3 &4 5 6 7 8
KDF9 R R 0 R R R R R R R R R (1) . KDF9
~ 4100 R R R R R (@ R 0 R 0 R (2 (3 = 400
GE625 R~ R R R R R R O R R 0 R (3 GE625
ALGOLW R R R R R R R O0(4)R(4)0(4)(9 R (1) ALGOL W
1900 R R 0 R R R RRBSR X X X X 1900
1108 R~ R R 0O R R R (6 R R 0 R M 1108
360/65 R 0 R R R R R 0 R R R R (1) 360765
ATLAS R R R R R R R O R O R R (1) -ATLAS
9300 R R R R R R R 0 T(MR R R 2300
- 7094 R 66 R R R R R R R R 0 R 7094
GIER4 R 0O R R R 0 R O R 0 R R (3 GIER4
BABEL R R R R R R R (6 R (8 (9 R (1) BABEL
EGDON R~ R 0 0 R R R O R R R R (1) EGDON
4/50 0O 0 0 R R R R O R R R R ® 4/50
ALGCLGBR R R R R R R R R R X (99 R (1)ALGOL6SR
X83THE R R R 0O O O O O R O O O (3) X3 THE

(1) KDF9, ALGOL W, 1108, 360/65, ATLAS, 7094, BABEL, EGDON,
ALGOL6S8R. : o
Program 2.13 fails time Llimit.

(2) 4100. . . :
In program 2.6 the result is the Llargest possible negative
number. Program 2.12 went into a runtime loop printing FPOFLO.

(3) 4100, GE625, GIER4, 4/50, X8 THE. |
Program 2.13 continues until it is terminated by the operator:

(4) ALGOL W.
The postmortem dump indicates that no value has been assigned
in program 2.8. The declaration in program 2.9 is legal but
attempting to access an element fails. Program 2.10 is legal
(per request of D. E. Knuth).

(5) 1900. ’
Program 2.8 fails overflow and the postmortem dump ‘indicates
that no value has been assigned.

(6) 1103, BAEBEL. .
ALl variables are intialized to zero in these versions  of
ALGOL.

(7) 9300. o
An error is found during translation in program 2.9  because
the array has fixed bounds. Program 2.13 compiled, ran and
terminated after about one minute without operator
intervention.

(3) BABEL. : _
Program 2.10 fails during translation because the - real
exponentiate operator is defined only for ‘real = real %




ey

UEBULGLLING DATE 19/06/72 . . PAGE 23

jnteger’.

(9) ALGOL W, BABEL. ALGOLOSR. .
Program 2.11 fails to translate in this version of ALGOL
because real 1 real is not defined in the Language.

. 3. Marning messages : _ .
. COMPILER1 2 3 4 5 6 7 8 COMPILER
: KDF9 Ww T 0 0 6 W R 0O KDF9
4100 o 0 0 0O O 0 R O 4100
GE625 O © O 0 0 0 (1 0  GE625
ALGOLWT(D T O T ©0 0 R O ALGOL W
1900 Ww G 0 (3> 0 0 0 O 1960
1108 o T 0 06 0 0 © 0 1108
360/65 W T O € 0 O R 0 360/65
ATLAS () 0 0 0 O O 0 O  ATLAS
9300 o T 0 0 0 0 O © 9300
7096 W T 0O C 0 0 (5 0 7094
GIERE O ©0 O O O O O 0  GIERS
BABEL T(6)T(6)T(6)T(6) O O R(6)0(6)  BABEL
EGDON O T O ©0 .0 O R .0  EGDON
4/50 T o 0 0 © 0 R O 4/50
ALGOL6SR NA T T T 0 O R T ALGOL68R
X8THE W T O O O O O O X3THE

(1) GE625. ,
The compiler eventually reported ‘system malfunction® fecr

Program 3.7.

(2) ALGOL .

The compiler detects the error in program 3.1 because only an
jdentifier is allowed as an end comment.

(3) 1900.
' The constant '3.14' is converted to *3' during translation in

Program 3.4.

(4) ATLAS. | )
The compiler Lists the text of program 3.1 with the end
comment on the same iine as end . An inadvertent error will

thus ke easier to spot.

(5) 7094.
I1f a switch overflow occurs (as in program 3.7, the program

either stops or runs wild.

(6) BABEL. . » .
Programs 3.1 to 3.4, 3.7 are jllegal. End comments no longer
exist; instead an end-of-line comment has been introduced.
j.e. C <LIST OF BASIC SYMBOLS> NEWLINE-SYMBOL is equivalent to
NEWLINE-SYMEOL. Each Babel program must finish with an
end-of-program symbol. Assignment to value paramenters is not

l " THE ALGOL COMPILER TESTS

v . . L o o




DEBUGGING DATE 19/06/72 PAGE 24

permitted. Type conversion operators must be specified
explicitly. The concept of switches has been replaced by
Cases; a case—index overTlow is def1ned as an error.

Each relation is preceded by a symbOL which specifies the
type of the operands. thus the real relation in program 3.8 is
clearly indicated.

4. Other tests - | ' ’ -

COMPILER 1 2 3 & 5 6 COMPILER ) | -
KDF9 T T O OK T OK KDF9
4100 o 0o T 0K T OK 4100
GE625 (1) 0 T OK T  OK GE625
ALGOL W (3) T OK OK (5 T(2) ALGOL W
1900 3 T 0K X X X 1900
1108 T 0 OK OK 0 T(12> 1108
360/65 W T 0K OK (&) W(6) 360765
ATLAS O T OK OK T OK ATLAS
9300 T T O O 0 O 9300
7094 0 0O OK OK -0 OK 7094
GIER4 T T(3) OK OK (& T(3)  GIER4
BABEL  (3) ($) OK OK (5 OK  'BAEEL
EGDOM T 0 0K OK T  OK EGDON
4750 T T OK 0K T(10) 0K 4/50
ALGOL68R (3) HA OK NAC11) (5) X  ALGOL68R
X3 THE T T OK T 0 OK  X& THE

{1) GE®625. '
Program 4.1 is inapplicable because array bounds must be
constant in this version of ALGOL.

(2) ALGOL W.
Spaces are illegal within identifiers and constants.

(3)4ALGOL W, 1900, EABEL. ALGOL 68R.
‘ Program 4.1 is legal in these versions of ALGOL.

(4) 360/65, GIERA.
oun is not implemented in these versions of ALGOL

(5) ALGOL W, BABEL., ALGOL6&R.
own is not a concept in these versions of ALGOL.

(6) 360/65. _
For program 4.6, the compiler prints @ warning message “that
the precision of the real constant beginning 3. 1415926535
exceeds . the internally handled precision and has been
truncated. :

(7) 9300.

The compiler makes no comment, but the value ass1gned to ‘pi’
is incorrect (= -6 * 10 t -17).

THE ALGOL COMPILER TESTS




(3) GIER4.
The error in program 4.2 is not detected in the GIER3 ALGOL
compiler. In program 4.6 the constant is too long.

(9) BABEL. :
Progam 4.2 is legal in Babel the if -then statement has been

replaced by a WHEN-DO statement. This change ensuras that
" there are no ambiguities caused by a rule that a statement

appearing in a syntax rule of Babel can always be any sort of

statement. ' '

(10) 4/50. ,
The compiler fails because own array is not the same as own

real array . Dynamic owun arrays are not implemented.

(11) ALGOL 68R. ,
Comments are always bracketed and may appear anywhere in ALGOL
68, so there is no need for a special end comment or parameter

comment.

(12> 1108. -
Spaces are illegal 1ns1de identifiers., and only 18 o1o1ts are

allowed for a constant.

THE ALGOL COMPIL CSTS

7 . : e




. |
DEBUGGING DATE 16/06/72 . , PAGE 26 ;

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS

It does not seam ‘'very sensible to consider dobuggxng uac1l1t1es without
knowing what errors are actually made by programmers. Accordingly:; two of the
KDFS ALGOL 69D compilers used at NPL were modified (*1) to ' record details of
the errors which were made. (*2)

There are two different ALGOL 60 compilers in use at NPL. One, known as
WAlgol., 1is load-and-go with rapid compilation and interpretive execution; the
other, known as KAlgol, compiles slowly but gives efficient code and is used
for working programs. Two operating systems are used at KPL - Eldon provides
interactive file editing and remote job en:iry facilities, and 'Red box' is the
standard batch operating system used for all jobs which cannot be run under
Eldon. ,

The programs surveyed at NPL are generally under development and cover a
wide range of mathematical, scientific and engineering applications. Most
users are familiar with ALGOL 60 becausz it has been the most commonly used
language at NPL for the past seven years; however they are primarily
scientists, not expert programmers. ‘

Runtime errors

. The Eldon WAlgcl controller was medified so that it counted in a file the
total number of programs which fail for each different error. This compiler is
dsed when an ALGOL program is compiled and run from a teletype. There is a
time limit of 30 seconds and the output must not exceed 4320 characters.

" The rasults of surveying 8902 programs which failed during execut1on -
No. of Failures per cent Reason for failure
4516 50.73 time limit

667 7.49 subscript overflow
544 6.11 call read at end of data
436 5.46 variable used before assmgnment
478 5.37 real overflow on /
397 4.46 array variable used before ass1gnment
242 2.72 error in code body
223 2.51 actual = formal incompatibility
191 2.15  scrti{x), x < 0
188 2.11 program needs too much space
182 2.04 read
147 1.65 real overflow not / or 1%
145 1.63 errors in stream number
109 1.22 error using ¢
95 1.07 dynamic type check

(1) I am grateful to A. L. Hillman and C. Knighttley for ‘making the
alterations, and to D. Allin and M. J. Parsons for writing programs to
summarize the results.
(2) L. B. Smith (see Smith, 1967) conducted a similar survey in 1966 to
discover the errors that were made by students in s1x exampies given on
a programming course.

A QHRYEY NE THE FRRNRS MADE RY PPOGRAMMERS

T




—

]  DEBUGGING ._ DATE 19/06/72 | " PAGE 27

72 0.81 integer overflow not t

70 0.79 lower bound > upper bound

66 0.74 n(x), x <0

35 0.39  write text

24 N.27 exp{x), x > &
9 0.1C  copy text ,
9 0.10 out of range switch ‘ .

. 3 0.03 16 invalid basic symbols output
3 0.03 output a real number
1 0.01 read array
Notes on the runtime errors ‘ .

The figures in the above table cleariy depend on the compiler as much as
the programs and programmers. Some errors are not detected (e.g. underflow);
others are treated as merely worth a warning message (e.g. printing a number
too big to fit into the specified format).

1. Timé limit (51%)

This value is large because WAlgol is so slow that most programmers make no
attempt to avoid it. They know that they must eventually run offline or wuse
the KAlgol compiler to achieve faster execution. - .

2. Subscript overfloﬁ (7.5%)

this 15 & vommon fajlure. Tt 1s also & danyefous failure because af
assignment to ati illegal array elafent will overwrite some other variable, nr,
even worse, overwrite the code of the program. it is a time consuming check
but there are various possibilities for reducing the inefficiency:- ‘

(1) Do not check each subscript., but check only that the addre:zs
of the subscripted variable lies somewhere in the array.
Compi lers which have détected an error in only one of the
programs 2.2 and 2.3 presumably use this technique.

(2) Check array subscripts only on assignment; at least the
completely disastrous effacts of overwriting code ara avoided
*x1). - : :

(3) Make the check a compiler option. This is 'dangerous because
niost programs “thought to be correct still contain errors.

(4) The first three measures are palliatives; there are two
better solutions. The first is to have special hardware to
check subscripts built into the computer so that there is an

b interrupt whenever the check fails. . B

(5) A second possibility is to define and implement better
programming Languages which enable operations to be performed
on complete and partial arrays. Subscript checks can then be-
replaced by less frequent checks that ~the arrays are

(1) A combiler for the ELX8 does this

A SURVEY OF THE ERRORS MADE BY PPOGRAMMERS

e




DEBUGGING  DATE 19/06/72  PASE 28

compatible. APL, ALGOL 68 and PL/I are examples of lanauages
which contain some of the required features. Note that such
languages should also make it easier to avoid making the

error. : - ) -

3. Call read at the end of the data (6%)

This error is sometimes merely the result of poor programming. The
frequency as an error may thus be exaggerated. S

4. Overflow (97)

Half of all the overflow errors occur because the programmer has divided by
zero. . _

5. Using a variable before assignment (10%)

This common error 1is checked by very few compilers. Like subscript
checking, it is expensive to check and most easily done by special hardware;
failing this, it is probably best to make the check optional. Three new
instructions would be necessary:- ‘ :

(1) Store a special (= unassigned) value in a specified number of
words.

(2) Cause an 1nterrupt if any word with the unassigned value is
accessed.

(3) Test if a given word has the unassigned value, this
1nstructxon is necessary in post mortem routines.

As with subscript overflow: there is an alternative' solution of avoiding
the error by redesigning the language. for example, every variable is assianed
a value at its declaration. But there are disadvantages: block entry would be
a very slow operation when large arrays are declared and it would still be
rather difficult to trace the error when it occurs. Nevertheless, it is a good
feature in FORTRAN and ALGOL 68 that it is possible to assign an initial value
to a variable at its declaration. Good programming pract1ce of us1ng this
opt1on wou ld reduce the frequency of the error.

6. Dynamic variable checks (3.5%)

Ideally it should be possible to check during translation that variables
are always used in a manner consistent with their declaration; however it is
difficult to make a complete check in ALGOL 60. Programs 1.4 to 1.10, 1.13,
1.14 test whether such errors are found during translation. Most ALGOL
compilers, including WAlgol, are unsuccessful and need to make runtime checks.
The successful compilers often compile only a subset of ALGOL 60.

The solution with this problem is definitely better language design; ALGOL
W, ALGOL 68 and Babel compilers all check during translation that each use of
an identifier is fully cons1,tent with its declarat1on.




e

VEDUUUANG vAIlL 17/V0/(C FALL . 7

T Errors while reading a number (2%)

WAlgol reads free-format data and is rather tolerant of incorrect data. A
failure - is detected if there is a syntax error in the data (e.g. two decimal
points in a number or no digit after a decimal point) or if the number is too
large. Other possible errors (e.g. too many digits. a silly value, reading out
of step) must be checked by the programmer.

8. Output errors (.6%)

Output errors are rare because Walgol is very tolerant. Wthen a value does
not fit the specified format, it is printed with a default format. The layout
of the results is spoiled but the results are those calculated: this is 'more
sensible than preserving the layout by deleting leading digits. Similarly.
when outputting symbols. a program fails only after the program has tried to
output 16 non-existent -symbols.

9. Errors in stream or channel numbers (1.3%)

These errors arise when the programmer:- (1) forgets to open a stream
before using it., (2) closes it before the end of his program, (3) outputs to
an input device or vice versa. A different form of Input Output scheme can be
used which removes the possibility of making most of these errors. In this
scheme all input and output goes to whichever suitable streams are currently
specified in the oprogram.. Each program starts with one standard input and
output device and for most programs this is sufficient for the whole program.
A scheme like this has proved very convenient in Babel.

10. Errors in code bodies (3%

It is not possible to deduce very much from the number of errors found in
code bodies. WAlgol checks that the the stacks are not grossly incorrect at
the end of a code procedure. A failure also occurs if the program executes an
illegal instruction or jumps to an non-existent address. As with all machine
code, it is easier to make mistakes than detect them.

11. Errors when calling a standard function (3%

‘sqrt’ fails more frequently than "ln' because it is called more often (see
Wichmann, 1970). o ‘ . _ ; _

12. Errors with dynamic array bounds (3%)

These errors occur when the upper bound of an array is so large that the
array will not fit into the available space., or when an upper bound is less
than the lower bound. The error ‘program needs too much space’ rarely occurs
because a program is too complex (recursive) and has filled the stack.

These errors would not occur if the space required for program and arrays
is found during translation (as in FORTRAN). I suspect the error often occurs’
in WAlgol because the bounds for the arrays have been read from incorrect
data. ’ » : . : S .

A SURVEY OF‘THE ERRORS MADE BY PROGRAMMERS




e ———LLSm———————
DEBUGGING DATE 19/06/72 . PAGE 30 :

13. Switch index overflow (0.1%)
I am surprised how infrequently this error occurs; I assume that it is

beceéuse most wuseérs do not understand and use switches. Perhaps when an error
does occur, it is easily cured once and for all.

Translation errors

The 'red~box WAlgol®' translator has been modified to record the translation
failures. This is the batch compiler used for testing those  programs which,
for one reason or another, cannot be tested online in the Eldon system. For
instance, they may be too big. or-:segmented., or use the graph plotter. Many of
the errors are d1ff1cult to 1nterpret and explain; they are probably*caused by
misprints.

For each program that fails to translate. the identifier and first four
error messages are remembered. A program has been written to print the list of
errors and to count the number of times each failure number occurs:= (1) as a
first error, (2) as a subsequent error. Each entry in the table below
specifies a translation failure, the number of programs in which it was the
first failure reported, and the number of times it was reported as a second.
third or fourth failure in a prognam.

The table gives only the most common errors. All other errors were reported
as a first error in less than 18 programs.

Total number of programs that failed = 1383

FIRST SUBSEQUENT CAUSE OF ERROR

- 561 - Identifier used but not declared or C : i
' program is too large -
92 8  Wrong number of subscripts or parameters
59 31 Redeclaration of identifier _
54 31 ‘No end-of-program symbol after program
- 45 34 - End-of-program symbol inside program -
43 37 ‘Adjacent delimiters inadmissible
42 87 Current use of identifier is 1ncon51stent
with previous uses
41 20 Letter, digit. dec1mal point or subscript ten
misplaced
32 7 Identifier in value-part or specification—part
but not in formal-parameter-list. or vice versa
29 79 Illegal statement
24 12 Statement.ends incorrectly

23 82 Declaration follows statement

Notes on the translation errors

The survey of translation errors has not been so successful because several

Srems ety A mtient R AnA MARE PV CRAMA AR ARSI A




'l.l.ll.....lIIlIIIlIIIIIIIIII-I------LA,

DEBUGGING ' ‘ DATE 19/06/72 S PAGE 51

factors have added to‘thé difficulty of analysing the figures:-

(1) Some of the errors are spurious, i.e. an earlier error .has
upset the compiler so that it reports one or more errors which
do not actually exist. It is possible to recognize the errors
which are probably spurious because they have a much higher
frequency of being a subsequent error than a first error.. For

‘ WAlgol I estimate that about a quarter of subsequent errors
are spurious. ’

* (2) The failure message usually says what the compiler found
wrong., not the mistake made by the programmer. For jnstance, I
suspect that the following errors are ‘all very common:-
deleting or inserting a character. transposing two characters.
not underlining a basic symbol., confusion between I, L and 1.
confusion between 0 (a letter) and 0 (a digit), typing a
character in the wrong shift, missing out an operator. failing
to match brackets. Although one of these errors usually causes
a syntax error, the failure message does not give the error in
this form. - : ‘

(3) The two_commohest‘ehrors'with“this‘cONbfler are ‘'identifier
used but not declared’ and 'program too Large'; however: both
errors have been remembered in the same way in the table.

1. 1dentifier used but not declared

This is by far the most common - ALGOL 60 error. In WAlgol it is only
detected if no other errors have been detected in the program. - o

In many programming languages (e.g. FORTRAN)i'Variables do not have to be
declared’ gxpticitly. In this case the error can be found easily only if the
~compi ler prints a warning message. ‘ S . . o

2. Program is too large

- The survey found this to be a common error only because the version of the
compiler which was surveyed is mainly used for very large programs.

3. Inconsistent use of identifieré”

WAlgol tries to check that identifiers are used consistently with their
declaration; however. the checks are not complete and as a result some errors

. are not detected until execution. ‘ :

4. Begin - end structure

Errors in the begin - end structure of a“phogkam show up in a variety of .
ways: an error in a procedure body will -appear asf‘declaration follows'
statement’, an extra begin (or opening string-quote) as end-of-program symbol
inside program. an extra end as 'no end-of-program symbol after program’.

5. The number of translation errors found at a time

A SURVEY OF THE ERRORS MADE BY PROGRAMMERS

S L p—




|

DEBUGGING 'DATE 19/06/72 PAGE 32

WAlgol is quite successful at finding all the syntax errors.in a program;
therefore the number of errors reported will be approximately the same as the
number of syntax errors in the program.

Programs Number and sort of errors
40% One or more identifiers used but not declared
or program is too large

30% One syntax error : A '
12% Two syntax errors :

S% Three syntax errors

13% Four or more syntax errors




rIIlllIIIII------....._.—4444444444444444444444444444444444444444444444444444444ﬁ

DEBUGGING ~ DATE 19/06/72 ~ PAGE 33

CONCLUSION

Good debugging facilities do not arise by chance. but through the foresight of
_the software engineer when he was designing the compi ler,

This paper has outlined some compiler properties a@ﬁ available tools -which
. aid debugging, and shown that some compilers are vastly superior to others.
pebugging is important because incorrect programs are expensive. _ v

Not enough attention has been paid to the problems of ensuring that a
" program does what was originally intended. As a result some languages are far
 better than others at guiding the programmer to produce correct programs. A
good language for debugaing contains redundancy so that a random misprint
almost always results in a syntactically incorrect program; a good language
also has a natural compact notation. ’ o

Compi lers also differ greatly, even for the same language. A compiler makes
debugging easy if it is small and fast, produces code which is at least
reasonably efficient, has a very rapid turnround. and gives concise clear
error messages. A compiler should also provide extra documentation and
diagnostic aids. : ‘ .

CONCLUSION

L e S S S—




DEBUGGING ~ DATE 19/06/72 | PAGE 34 ‘

3

- ACKNOWLEDGEMENTS

I am grateful to colleagues at NPL who helped this survey in various ways
including discussions, amending - compilers, writing and running various
programs, typing results, etc; among them are D. Allin, Miss L. Ellis, A. L.
Hitlman, C. Knightley, M. J. Parsons, Miss. H. Pinkham, Miss R. Thorn'and Dr.
B. A. Wichmann. ’ ' o T '

I am also grateful to all those people (see page 19) who took ‘the trouble
to run the test programs and let me have the results.

Finally I would also Like to thénk I. D. Hill for suggesting some of the
test programs. - : : : :

AR VMOLN ERCEMEMTC




Anon .,

DEBUGGING | DATE19/06/72' . PAGE 35

REFERENCES = | T G

Figure 17 - CONputer output canihave many var1at1ons and can v"éff
l - . . .v

keep students occupied for hour
SIGPLAN Not1ces 4, 11(Nov- 1969)

M. Adams, J. B. Johnston, R. H.NStart. (Edltors).
Proceed1ngs of an ACM COnferenc %on Prov1ng assert1ons about

programs ’
SIGPLAN Not1ces. 7. 1(Jan 1972)

Bauer: S. Becker. S. Graham, ° \
ALGOL W Implementation. PR B v S
stanford University Computer Sc1ence Report, CS 98. May 1968.

Bauer, S. Becker, S.L. Graham. E\ Satterthwa1te. R.L. S1tes.t
ALGOL W Language definitions
Stanford Un1vers1ty tomputer 3c1epce Report CS 230, July 1971.

Bayer., D. Gries, M. Paul. H. R. W1ehle.
The ALGOL Itlinois 7090/7094 Post) Mortem Dump. S S G
Comm ACM. 10(Dec 1967). 804 - 808. ST S R

J. Browns - B o \ Ly - - SR
ML/I User's manual, ‘ . - _ ' . o
University Mathemat1cal Laboratoryw Canbrldge. "England, July -
1966. ; ; fo s S '
‘ \ : Y

J. Brown, ’ R B :
The ML/I Macro processor. Comm ACM. 10(0ct 1967). 618 - 623.

R \ s , v '
Conrow. R G. Sm1th. ‘ ‘ o
NEATER 2, A PL/I Source Statement eformatter.
Comm ACM, 13(Nov 1970), 669 - 674. :

ECMA subset of ALGOL 60.
Comm ACM. 6, 10(0ct 1963). 595 59?.

ECMA, B \
|
1
|

F.

Elspas, M. Y. Green, K. Levitte - -
Software reliability. Computer (IEEE) Jan-Feb 1971. 21 —27.

G. Cvershed, G. E. R1ppon. k N
Highlevel languages for lowlevel users. Comp. Jo. 14._ 1(Feb
1971).-87 - 90. o ‘ l . o

E. Forsythe.

pitfalls in computation. or why a "math book isn't 'enough.
Stanford Un1ver51ty Computer Sc1ence Report. €S 147, Jan_1970.

Gruenberger. ' L N
Problens and pr1or1t1es. o . '

3 * - N | -




" R |
DEBUGGING » DATE 19/06/72 »PAGE 3¢ '

5

Datamation, Vol 18, 3(Mar 1972), 47 - 50. o

IFIP,
Report on SUBSET ALGOL 60(IFIP),
Comm ACM, 7. 10(0ct 1964), 626 - 628.

R.L. London, : , ,
Proving programs correct - some techniques and examples,
BIT, 10, 2(1970) 168 = 182.

P. G. Moulton, M. F. Muller,
DITRAN - A compiler emphasizing diagnostics. Comm ACM, .10, ‘ P
1(Jan 1967), 45 - 52, - . !

B. Randell and L. J. Russell,
"ALGOL 60 Implementation’,
Academic Press., 1964.

E. Satterthwaite.
Debugging tools for h1gh level languages; o
Computing Laboratory Technical Report 29, Hewcastle-upon-Tyne
University. Dec 1971. '

R. S. Scowen.
Babel. a new programming language. NPL CCU Report No ?. Oct
1969.

R. S. Scowen, D. Allin, A. L. Hillman, M. Shimell, ‘
SOAP - A program which documents and edits ALGOL 60 programs,
Comp J. pp133 - 1350 V‘Ol 14, No 2. 1971. ' i

P.W. Shantz, R.A. German, J.G. Mitchell, R.S.K. Shirley, C.R.
Zarnke.
WATFOR - The University of Waterloo FORTRAN IV compiler.
Comm ACM, 10, 1CJan 1967), 41 - 44.

L. B. Smith, o :
Part one: A comparison ‘of batch processing and instant
turnround. Part two: A survey of most frequent syntax and
execution time errors, Stanford Computation Center. Feb 1967

E. C. Van Horn, ,
Three criteria for designing computing systems to facilitate
debugging.

Comm ACM 11, 5(May 1968), 360 - 365

N. W1rth. C. A. R. Hoare,

A contribution to the development of ALGOL. Comm ACM. ppé13 -
432, Vol 9, Mo 6., 1966,

REFERENCES




