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ABSTRACT 

Two methods are presented for the analysis 

of tunnel support loading caused by rock failure. 

In the first part of this thesis closed-form 

solutions are used, in the second part numerical 

techniques.  Emphasis is put upon the statical 

indeterminacy of the problem and upon the necessity 

for considering the relative displacements between 

ground and support.  From this follows the need 

for a realistic calculation of the stiffness of 

ground and support, as well as the need to consider 

the sequential development of the interaction between 

these two elements.  It is assumed that the rock 

mass behavior during failure is softening and 

dilatant.  Interface problems between ground and 

support that can strongly influence the effective 

support stiffness are discussed. 

The closed-form solutions obtained in the 

first part are expressed in terms of ground and 

support characteristics.  The derivations are 

based upon the assumption that the problem is 

radially symmetric.  Bounds for the ground reaction 

can be derived by accounting for the intact and the 
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residual rock strength.  Within the thus defined 

domain the ground behavior is determined by the 

rate of strength loss with increasing strain.  The 

ground reaction curve can have fundamentally- 

different shapes depending upon the post-failure 

rock behavior.  Corresponding to failing or 

yielding sections of the ground reaction will be 

the desirability of stiff or soft supporting 

methods.  The increased trend towards the use of 

stiffer supports as well as the emphasis on the 

need for early installation manifested by the 

combined use of reinforced shotcrete, grouted 

bolts and steel sets confirms the likelihood that 

optimum support conditions can be approached when 

only limited convergence is allowed.  The optimum 

equilibrium state depends on the brittleness or 

the relative instability of the failing rock.  The 

optimum displacement will be affected by rock 

loosening, but loosening will have a dominant 

effect only when the tunnel is shallow, the 

residual friction very low and when pronounced 

differences exist between support pressures required 

on the roof and on the floor. 

Strength of material formulas are used to 

calculate the support stiffness or characteristic. 
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The significance of the ground-support interface 

is illustrated with examples of the influence of 

wood blocking on steel set characteristics and of 

the influence of end bonds and longitudinal shear 

bonds on the behavior of grouted bolts.  The wide 

range of theoretically possible behavior modes 

indicates the need for pertinent field evaluation 

of the true support action provided by such systems, 

The sensitivity of some support system character- 

istics to ostensibly secondary structural elements 

suggests that practical problems must exist in 

obtaining a consistent utilization of the full 

support capacity of such systems.  It also indi- 

cates the serious difficulties likely to be 

encountered in the design and implementation of 

representative in-situ observation programs. 

In the second part of this thesis the ground 

behavior is modeled by the finite element method. 

The elastic parameters that determine the rock 

behavior are changed progressively in order to 

simulate softening and volume increase of the 

failing rock mass. 

This method is used in an axisymmetric 

analysis of failure patterns near the face and to 

study the influence of face behavior on support 
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loading.  Initial support loading strongly depends 

on the stiffness of the rock ahead of the face 

relative to the rock stiffness behind the face, and 

can depend strongly on the face distance at the 

time of support erection. 

A simple equivalent mining method is used to 

simulate progressive excavation in a plane strain 

analysis.  The support model consists of beam and 

spring elements.  At least for some support systems 

the latter must be chosen with care if the model 

is to be realistic. 
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Chapter I 

INTRODUCTION 

Driving a tunnel disturbs the equilibrium of 

the penetrated rock mass.  The disturbed rock mass 

will search and find a new state öf equilibrium. 

If the tunnel were left unsupported, the new state 

of equilibrium frequently would be reached through 

collapse of the tunnel.  Installing a support system 

is the method commonly used to prevent such an un- 

desirable occurrence.  The function of tunnel sup- 

port then is to permit the rock mass to reach a 

post-tunneling equilibrium state in which a safe 

usable tunnel is guaranteed. 

The goal of tunnel support selection and 

design is to arrive at a support system that will 

function satisfactorily while minimizing the cost 

of the total tunnel construction.  Both criteria 

must be satisfied simultaneously if an optimum is 

to be achieved.  The overall economics of a tunnel- 

ing operation depend on a number of factors that 

I - 1 
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frequently conflict to a considerable extent.  The 

purpose of tunnel support design, therefore, cannot 

be limited to a narrow optimization of the support 

system per se.  But neither can one minimize the 

total tunnel cost by treating the support require- 

ments as a variable with little or no constraints. 

This consideration is particularly significant since 

the complex interaction between ground and support 

makes it a non-trivial matter to determine the 

consequences of support system variations and 

modifications.  A more straightforward example is 

that when support requirements are averaged along 

tunnels or tunnel sections, it can suffice that the 

minimum required support function is not met at 

one or a few locations along the section to com- 

pletely negate all potential gain that was expected 

from standardizing the construction operations 

along that section. 

In order to optimize the support selection 

and design within the framework of the total tunnel 

cost, it is thus necessary first to determine the 

(minimum) required support function, and second to 

determine what available support techniques can be 

used most efficiently to fulfill that minimum 

requirement.   "Minimum support requirement" does 



1-3 

not refer to minimum support "strength" but rather 

to a combination of factors such as bending and 

ring stiffness, strength and time of installation. 

To ascertain the minimum support requirement 

one needs an understanding of the mechanics that 

determine the pre- and post-tunneling equilibrium 

states as well as the transition process from one 

to the other.  This does not imply that the design 

of supports nor, more generally, the construction 

of tunnels requires an explicit understanding of 

the mechanics involved.  Indeed, tunnels have been 

driven and supported, more or less safely, for many 

centuries.  And only in the last decades has 

mechanics entered the field of support design with 

serious pretensions. 

The variety of methods that have been developed 

for the design of tunnel supports is extremely great. 

Moreover, they have been developed in a number of 

different fields, and often have been published in 

journals of limited circulation with main interests 

ranging from railroad construction to coal mining 

to water supply, and many others.  As a consequence, 

it would be a difficult and major undertaking, 

although an interesting one, to present a compre- 

hensive survey of the existing design methods as 
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they developed over the last century.  It is possible, 

nevertheless, to distinguish some broad classes of 

approach to the problem. 

In what is likely to be the oldest method, 

one proceeds by trial and error, or full-scale in 

situ modeling.  This approach is still used quite 

commonly, particularly in mining, or in those urban 

areas where numerous tunnels have been driven with- 

out excessive difficulties.  When sufficient 

experience can be gained under a fairly fixed set 

of conditions, and when the possibility for experi- 

mentation with various systems exists, such a method 

can lead to an adequate and efficient support. 

Errors, however, tend to be very costly.  And it is 

not easy with such an approach to assess the in- 

fluence of significant variations in either 

encountered ground conditions or applied support 

methods from previously experienced ones. 

The earlier design methods, i.e., methods in 

which an effort was made to quantify the support 

requirements, were based upon estimates of the 

amount of rock likely to fall out of the roof. 

It was then postulated that the support's function 

is the safe carrying of the loads that would result 

from such a fall-out.  Numerous methods of this 
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type were further developed on the basis of various 

assumptions about the development of possible 

failure planes, arching action and beam action in 

the roof.  In the meantime, increased attention was 

being paid to the possibility of applying elastic 

and later plastic analysis to the rock behavior 

around tunnels.  As the realization of the full 

complexity of the problem grew, two very different 

schools of thought developed. 

The first one attempted to simplify the 

problem of support determination to the greatest 

possible extent.  This goal was approached by corre- 

lating information about the rock, and preferably 

a bare minimum of information, with corresponding 

support requirements.  This minimum of information 

would hopefully be sufficient to narrow down the 

range of support requirements for a particular 

situation to a fairly precise point on a scale of 

support requirements determined empirically for a 

wide range of conditions.  This approach has led 

to a large number of rock classification systems 

for support determination purposes.  The most recent 

methods of this type are computerized statistical 

correlations between parameters characterizing the 

rock mass and support requirements. 
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The second school of thought strives towards 

a more complete and precise understanding of tunnel 

support mechanics.  This approach led to more com- 

prehensive continuum analyses of rock behavior, 

studies of arching and instability along joints, as 

well as advanced structural analysis of the supports. 

The most recent methods of this type are computer- 

ized numerical analyses of the mechanics of rock- 

support interaction. 

In this thesis a two-fold approach is made 

towards a clarification of the problem of rock- 

support interaction, or the mechanics of tunnel 

supports,  in the first part a combination of simple 

continuum and structural mechanics methods is used 

for the study of the interaction about a circular 

tunnel in a highly idealized rock mass.  In the 

second part of the thesis use is made of the finite 

element method to develop a more general analysis 

technique. 

For both approaches emphasis is put on the 

necessity to include a sufficient degree of realism 

in the model.  This requires the use of a truthful 

description of both rock and support behavior, as 

well as a correct description of the problem posed 

by the interaction between these two basic elements 
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of the structure. 

The problem considered is that of the role 

played by the support system during the transition 

from the pre-tunneling rock mass equilibrium to the 

post-tunneling equilibrium.  The support is installed 

near the face. As excavation progresses, the tunnel 

walls converge, and the support is compressed.  The 

reaction forces developed by the support induce a 

stressfield in the rock mass, and constitute a new 

"external" factor in the post-tunneling equilibrium 

state.  The problem, even in its most simplified 

form, is a statically indeterminate one.  Therefore 

the rock mass stiffness and the support stiffness 

must be incorporated into the analysis.  Through an 

analysis of the deformation and force changes during 

the sequence of support loading the final state of 

equilibrium can be determined. 

The analysis of the rock mass displacements 

requires a realistic estimate of the rock mass 

properties prior to tunneling and of the behavioral 

changes induced by tunneling.  Throughout this 

thesis, except for some minor and usually qualita- 

tive comments, the rock mass is treated as a 

continuous medium that reacts instantaneously. 

Both of these assumptions imply a severe idealization 
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of the real behavior, and allow great simplifica- 

tions in the analysis.  Whether or not one is 

willing to accept the one in order to accomplish 

the other will depend upon one's basic approach to 

rock mechanics problems, as can be attested more 

or less by the fact that the disagreement between 

proponents of the use of "continuum" or "discon- 

tinuum" approaches is longstanding, continuing and 

unresolved (but for die-hard proponents of either 

school).  Conceptual as well as practical arguments 

can be invoked to justify the continuum simplifica- 

tion.  Of the first type are the arguments that 

lead to the definition of equivalent continuum 

models, i.e., models that under certain boundary 

and geometrical conditions will lead to an adequate 

description of rock mass behavior.  More specifically 

for tunnels, it can be argued that one of the 

frequently essential functions of an efficient 

support is the elimination or at least the restric- 

tion of the detrimental influence exerted by the 

discontinuities.  A "continuum" representation is 

then helpful in studying conditions under which 

discontinuities are likely to become a dominating 

factor.  Finally, only under very unusual circum- 

stances are tunnels driven through a rock mass in 
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which the discontinuity locations and their 

mechanical properties are known, and with few 

exceptions, an analysis of their influence must be 

fully three-dimensional with all the complications 

this entails. 

The analysis of rock-support interaction 

usually will have to be based upon a significant 

amount of idealization and generalization, and it 

is felt that the analysis presented here includes 

several basic characteristics of rock mass behavior 

that have not been included previously.  Particular 

attention is paid to the consequences of strain- 

softening, i.e., the fact that a reduced but 

significant strength remains in rock that has been 

deformed beyond its peak strength, as well as to 

the associated inelastic volume increase.  Whether 

these effects are due to the influence of newly- 

created or pre-existing discontinuities is assumed 

here to be of secondary importance.  What is not of 

The term "dilatancy" is avoided here because 
it appears to have a different meaning in several 
related fields of mechanics. Whereas in plasticity 
theory and soil mechanics the term is reserved 
specifically for volume increases associated with 
changes in shear stress, such a restriction is not 
commonly observed in the rock mechanics literature. 
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only secondary importance is the extent to which 

these strength and stiffness reductions, as well as 

eventual volume changes,   continue with time, 

because this will influence the long-term stability 

and support requirements.  Certainly in some rock 

types, because of weathering, swelling, alterations, 

wash-outs, drying or wetting, etc. a time-dependent 

decrease in strength and in stiffness does occur. 

When such effects can be predicted quantitatively, 

their incorporation into the presented analysis 

techniques is straightforward. 

It is a common and widely accepted statement 

that "the ground is unknown," or certainly not 

well-known.  A frequently implied association is 

that the support system is a well-defined structural 

unit and that the analysis of the support is, there- 

fore, straightforward.  Even though some elements 

of the support structure are usually well-defined, 

e.g., a steel set, a steel rod, a ring of concrete 

elements, most support systems contain additional 

elements that are frequently very variable, and 

unknown prior to construction, such as blocking, 

anchors, backfill.  As a consequence, neither the 

stiffness nor the strength of the support system, 

as a rule, can be considered as immutable constants 
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imposed once and for all at the design stage.  Too 

many construction imponderables can affect the 

in-situ support behavior to permit such an assump- 

tion without at least a critical evaluation of its 

validity. 

Two methods of attack have been used in this 

thesis to study the loading of tunnel supports 

caused by rock failure.  While both methods have 

advantages and disadvantages, they tend to be com- 

plementary. 

In the first part, closed-form solutions have 

been derived for the case of a circular tunnel in a 

radially symmetric rock mass and with radially 

symmetric supports.  Although the problem is simpli- 

fied greatly compared to some tunneling situations, 

it is not an unrealistic approximation to many 

tunnels. A more fundamental justification for this 

approach is that it allows the quantification of 

some general concepts.  It is possible, within this 

simplified framework, to evaluate the influence of 

most significant variables that determine rock and 

support behavior, particularly by incorporating 

such effects in the derivation of the ground and 

support load-deflection curves.  Visualization of 

the dominating factors and of their respective 
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contributions follows then immediately. 

The finite element analysis complements the 

study in the first part quite logically because, 

while some of the generality of the conclusions is 

lost when a case-by-case study becomes necessary, 

some problems are exceedingly difficult to handle 

with closed-form solutions.  Many of these, in 

principle at least, should not present fundamental 

problems when a numerical analysis technique is 

used.  Difficulties such as complicated geometrical 

boundaries and boundary conditions, gravity effects, 

inhomogeneity and non-isotropy can be handled easily 

with the finite element method.  The use of the 

finite element method was oriented towards the 

development of a strain-softening dilatant rock 

model that would permit a heuristic analysis of the 

influence of such effects upon tunnel support 

loading.  Particular attention was paid to support 

loading near the face, where a three-dimensional 

configuration was approximated by an axi-symmetric 

model and by a sequential plane strain analysis 

corresponding to progressive excavation and tunnel 

support loading. 



Chapter II 

CONTINUUM ANALYSIS OF TUNNEL SUPPORT LOADING 
CAUSED BY ROCK FAILURE 

II-l.  Introduction 

The use of continuum mechanics for the analysis 

of tunnel stability and the design of tunnel supports 

has been suggested frequently, and in a variety of 

forms.  In the most common methods the problem is 

discussed by analyzing the stress distribution 

around an opening (usually circular) in an infinite 

medium with given constitutive properties.  In an 

attempt to improve the realism with which the model 

approximated the real situation, the material models 

that were used became increasingly complex.  They 

evolved from isotropic into orthotropic elastic 

solutions, and various elasto-plastic, visco-elastic 

and visco-plastic calculations were considered. 

While a progressively better understanding of tunnel 

support loading might have developed, it does not 

appear that a fundamental influence on support or 

construction procedures has been exercised by these 

methods. 
II-l 
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The usual procedure for estimating support 

requirements from such calculations was based on 

the potential development of fracture or failure 

zones.  This, then, was complemented by calculating 

the support pressures required to prevent failure 

or by determining support strengths required to 

prevent collapse of the tunnel when certain failure 

modes were assumed to occur. 

The applicability of continuum analysis to 

tunnel support design has been disputed from two 

opposite points of view: 

- The methods involve too many assumptions 

regarding material behavior, require much more 

knowledge about the material properties and the 

state of stress than is usually available, and are, 

therefore, only of theoretical interest.  They do 

not offer a practical alternative to conventional 

rule of thumb design. 

- The methods involve too many simplifying 

assumptions regarding material behavior and problem 

geometry.  These restrictions, due to the insurmount- 

able mathematical difficulties associated with 

1Most older design methods are similar with 
regard to this final step.  They were usually based 
upon assumptions and observations of possible roof 
fall-outs rather than upon explicit stress distri- 
bution calculations. 
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solving all but the very simplest problems make it 

unlikely that these simplistic methods are still 

useful when compared to the flexibility and potential 

of computerized numerical methods. 

Both types of criticism, stated here in a 

somewhat extreme form, have validity under certain 

circumstances.  They imply, however, that the use 

of continuum mechanics is threatened from two 

directions, by the simple pseudo-empirical design 

methods and by the sophisticated modern numerical 

analysis techniques.  The potential use or signific- 

ance of continuum mechanics solutions compared with 

the two classes of methods listed above can be based 

upon the following arguments: 

- Continuum analysis attempts to explain the 

mechanics of tunnel support loading.  This requires 

an explicit evaluation of the factors needed to 

make an analysis.  It reduces the likelihood of 

unconsciously hiding assumptions under a cover of 

empirical parameters. 

- Continuum analysis provides guidelines as 

to what type of factors or results must be con- 

sidered or expected when various support types are 

loaded by various rock failure mechanisms.  This 

facilitates narrowing down the range of effective 
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influence factors.  It reduces the likelihood of 

having to consider a near-infinite number of possible 

case studies. 

Continuum mechanics steers a middle course 

between the simplest and the most complicated 

analysis procedures.  The former, with a nearly 

exclusive interest in the final goal, the determina- 

tion of support requirements, might never reach it 

by neglecting potentially valuable information. 

The latter, with an extreme interest in determining 

the optimum path to the goal might never reach it 

by becoming enmeshed in a wealth of potentially 

valuable information. 

The analysis of support loading in this chapter 

incorporates a comprehensive (if greatly simplified) 

model of rock failure characteristics and of support 

characteristics within a continuum mechanics frame- 

work . 

A survey is given of the literature on the 

analysis of tunnel support loading caused by rock 

failure.  This survey is limited strictly to methods 
2 

of the continuum type that have been published with 

2 
Frequently referred to as "plasticity" solu- 

tions in the tunneling literature, i.e., excluding 
elastic, visco-elastic, and other continuum mechanics 
solutions. 
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3 
explicit reference to support design.  The survey 

aims to indicate in which way a growing awareness 

of rock failure characteristics was appreciated and 

applied to the study of tunnel support loading.  Only 

publications that present a significant additional 

feature over earlier ones are included, but they 

are neither fully summarized nor critically dis- 

cussed. 

In the subsequent sections the basic phenomena 

associated with rock failure are used in calcula- 

tions of the stress redistribution and the tunnel 

convergence caused by progressive failure.  Con- 

sidered are the (gradual) strength, stiffness and 

volume changes. As relaxation advances, it becomes 

necessary to include the influence of gravity forces. 

More comprehensive or detailed calculations can be 

done by one-dimensional numerical generalizations. 

The problem of rock-support interaction is a 

statically indeterminate one.  For this reason the 

stiffness of the support plays a critical role in 

the establishment of the final equilibrium position. 

The numerous plasticity solutions to such 
problems as holes in plates, hollow cylinders, etc, 
that could be used either directly or after some 
modification are not reviewed. 
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The significant influence of construction "details" 

is shown with simple but realistic methods.  This 

obviates the need for qualitative comparisons between 

support systems. 

The results are summarized in the form of 

typical ground and support characteristics.  Such 

graphs illustrate the principal examples of possible 

equilibrium modes.  Included are suggestions for a 

simplified analysis of time-dependent changes as 

well as a discussion of the influence of discon- 

tinuities and of tunnel size upon support require- 

ments. 

The applicability of the derived methods 

depends directly on a sufficient knowledge of the 

rock mass behavior.  It is unlikely that sweeping 

generalizations regarding "ideal" tunnel support 

characteristics can be realistic in view of the 

wide range of possible rock types and properties. 

Differences in the latter can cause fundamental 

differences in the ground reaction.  A final 

appreciation of the discussed hypotheses must await 

in-situ confirmation of calculated predictions. 

II-2.  Literature Survey 

One of the first calculations of an elasto- 
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plastic stress distribution around a cylindrical 

underground opening was performed by Terzaghi (1919, 

1925, 1943).  This solution was presented in a 

slightly different form by Westergaard (1940).  The 

resulting stress distribution was used by these 

authors to explain the stability of small bore- 

holes, stability that could be obtained with minimal 

support in cohesionless sand and without support in 

a cohesive clay.  Terzaghi (1925) suggested that 

these calculations might lead to a semi-empirical 

evaluation of a plastic load bearing zone around 

a tunnel, but he did not consider or discuss the 

application of these calculations for the design 

of tunnel supports. Moreover, he did not accept 

these calculations as a valid method for calculating 

support pressures on shaft liners, although it was 

implied clearly that this rejection was based on 

the observations of failures near a shaft mouth. 

An attempt to use elastoplastic stress calcu- 

lations for determining the support pressures 

required in cylindrical underground excavations was 

first made by Fenner (1938).  Because the cohesion 

is always included in his calculations they lead 

to the conclusion that stability of the opening is 

always possible without support.  In order to 
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circumvent this contradiction with practical experi- 

ence in shafts and tunnels Fenner imposes some 

arbitrary limits upon the depth to which plastic 

zones can be allowed to propagate.  This he justi- 

fies with the argument that the plastic zones 

required to eliminate the need of any support pres- 

sure are very large.  It, therefore, takes a long 

time before they are developed fully, and supports 

are usually installed long before the "natural 

equilibrium state" has been attained.  Moreover, 

the development of the plastic zone is associated 

with a rock volume increase, and in order for the 

natural equilibrium to be reached, large displace- 

ments should be allowed or large amounts of rock 

4 
should be removed.   Fenner assumed that the volume 

increase of the plastic region would equal the 

elastic volume increase following a total destressing 

of the plastic region from a hydrostatic pressure 

equivalent to the overburden pressure at the tunnel 

center.  The plastic zones required to guarantee 

This is probably the origin (or at least a 
theoretical justification) of the "stress-relief" 
technique that has been suggested occasionally for 
stabilizing tunnels at reduced support pressures 
by removing some of the rock behind the supports. 
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unsupported stability that resulted from his 

numerical examples were extremely large (several 

orders of magnitude larger than the tunnel radius). 

Fenner, therefore, concluded that the volume of 

rock to be removed was excessive and that it was 

preferable in practice to install supports. 

Goguel (1947) derived the stress distribution 

by using the second stress invariant as a criterion 

for plastic flow. He pointed out some of the 

difficulties associated with including in the analysis 

the stress component parallel to the tunnel axis. 

To negate the conclusion that support is not required, 

he suggested that the process of deformation is not 

finished with the development of the plastic zone 

but that deformations continue, particularly within 

this plastic zone.  The function of the support 

then is to provide a boundary, which makes it 

possible for the surrounding material to regain a 

hydrostatic state of stress (at a velocity that 

might be extremely small).  Goguel suggested that 

it might be necessary to use reduced cohesion and 

friction values in the calculations. 

Labasse (1949) derived essentially the same 

stress distributions.  He proposed several possible 

alternative calculations to approach the problem 
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for the case where the pre-tunneling stressfield 

is not hydrostatic.  Labasse's essential contri- 

bution was to consider the interaction between rock 

and support:  support cannot be characterized by a 

"support pressure," nor can rock be characterized 

by a "rock load."  The equilibrium state between 

rock and support will determine the contact pressure 

between the two structural elements.  This indicates 

that the relative displacements are a significant 

factor.  It is, therefore, necessary to consider 

the influence of volume increases associated with 

rock failure. 

Kastner (in a series of papers, 1947-1952, 

incorporated and extended in his 1962 book) pre- 

sented a stress distribution similar to the one 

derived by the above-mentioned authors.  His solu- 

tion for the non-hydrostatic case is based on the 

potential fracture zones calculated from an 

elastic stress distribution.  The support design 

application is derived by imposing some fairly 

arbitrary limits upon the depth to which such 

"plastic zones" can be allowed to propagate.  Käst- 

ner characterizes the support by a required support 

pressure and strength, and gives minimal attention 

to the statically indeterminate nature of the problem. 
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Morrison and Coates (1955) discussed in great 

detail the paper by Fenner (1938) and corrected 

many of the numerous errors in the original.  They 

presented a graphical estimate of the stress distri- 

bution around a tunnel based upon the assumption 

that the "broken" material in the plastic zone 

should be characterized by a failure envelope with 

a smaller cohesion than the initial envelope.  A 

comprehensive calculation of the stress distribution 

based on such a "bilinear" approach was given by 

Krech (1966). 

Mandel (1959) strongly criticized the use of 

continuum type plasticity calculations for analyzing 

rock failure around underground openings.  He 

emphasized that rock crushing or breaking was 

neglected in such analyses.  Mandel postulated that 

the only reasonable conclusion to be retained from 

such an elasto-plastic analysis is that a maximum 

stress concentration develops somewhere within the 

rock mass. 

Rabcewicz (1963) suggested that the "ground 

unloading curve" could be determined by measure- 

ments of pressure and deformation on shotcrete 

liners with a known "loading curve." 

Pacher (1964) emphasized the necessity of an 



II - 12 

empirical approach to the determination of the rock- 

support equilibrium state.  He presented a compre- 

hensive qualitative discussion of the interaction 

between rock and support in terms of their respec- 

tive "characteristics," pointing out the importance 

of the time of support installation and the necessity 

to avoid the development of "loosening" pressure. 

Sirieys (1964) suggested that a "broken" zone 

might develop inside the plastic zone, and so did 

Serata (1964) who suggested a series of various 

material models around the opening. 

Hobbs (1966) calculated the stress distribu- 

tion for a circular roadway surrounded by a broken 

zone in which a nonlinear failure criterion is 

satisfied.  Ihe nonlinear relation between the 

largest and the smallest principal stresses was 

derived from the results of compressive strength 

tests.  He complemented the solution with an approxi- 

mate calculation of the roadway closure and of the 

possible displacement patterns. 

Richter (1966) characterized the zone around 

a failing tunnel as a succession of an annulus with 

reduced elastic modulus, an annulus with increased 

modulus and the outside region with the unchanged 

original modulus. 
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DeBeer and Buttiens (1966) calculated the 

tunnel closure assuming a constant volume deforma- 

tion in the plastic region, and found fairly good 

agreement with the volume of surface settlement. 

Lombardi (1966) subdivided the ground 

characteristic by two limiting points:  the tran- 

sition from elastic to plastic, and the point 

where rupture occurs. 

Bray (1967) calculated the displacements by 

considering slip along fracture planes. 

Luetgendorf (1968) emphasized the significance 

of gravity effects in the broken rock as well as 

the reduced strength properties of the broken zone, 

while Lecian (1968) in his similar discussion under- 

scored the need to include a time factor in such an 

analysis. 

Lombardi (1970) pointed out that the volume 

increase due to failure does not merely increase 

the displacements but can also have a significant 

stabilizing effect. 

Daemen and Fairhurst (1970), Wagner (1970) 

and Egger (1972, 1973) discuss the strength reduc- 

tion in the broken zone and the resulting changes 

in support pressure requirements in terms of the 

complete stress-strain curve. 
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II-3.  Stress. Redistribution Caused by Rock Failure 
Around a Tunnel 

II-3.1.  Introduction. When the stresses 

around a newly-excavated tunnel exceed the rock 

strength, failure occurs.  Tunnel supports usually 

are not sufficiently stiff and strong, and generally 

they cannot be installed early enough to maintain 

a stress state in which the rock remains intact. 

Even if it were possible to construct such a sup- 

port, it would not necessarily be the most economical 

one, because it would not allow the mobilization of 

the significant residual strength of the surrounding 

rock.  Optimizing a support system will require this 

mobilization.  It is necessary, therefore, to 

analyze the consequences of rock failure on the 

stress distribution around a tunnel.  Failed rock 

has a reduced strength, and the propagation of 

failure causes stress relaxation.  Pronounced 

relaxation can lead to a situation where local 

gravity effects around the tunnel can no longer be 

ignored. 

The following analysis starts along the same 

lines as the derivations presented by most of the 

aforementioned authors, and specific references are, 

therefore, omitted. 
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The problem considered is that of a circular 

opening being driven through a rock mass under 

hydrostatic stress.  The problem is statically 

determinate so that stresses can be calculated 

without regard to displacements or strains (assumed 

small enough so that no significant changes in the 

geometry occur). 

Prior to tunneling the rock is assumed to be 

homogeneous, isotropic and linearly elastic.  The 

stress concentration induced by the excavation ex- 

ceeds the rock strength, and a homogeneous isotropic 

cylindrical broken zone develops. 

II-3.2.  Constant Strength Broken Rock. 

Failure around the opening is initiated when the 

stress state reaches a failure condition.  The con- 

dition accepted here is that failure occurs when 

the circle representing the stress state in an 

elastic rock intersects the failure envelope in a 

Mohr diagram.  A preliminary calculation of the 

stress distribution can be made assuming that the 

stresses throughout the plastic zone satisfy the 

condition of incipient failure (i.e., the stress 

circle touches the failure envelope).  The solution 

can then be obtained from the following conditions: 
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i)  Equilibrium 

%  " <*r  d<Pr 
(II-3.1) r               dr = u 

ii) Boundary conditi ons 

e =  <rQ - p r           0 at r =o° 

*r   = s r         r at r = b 

<f    = P. r         l at r = a 

where: 

(T     (1-sin 0) =   <F  (1 + sin 0) + 
ö r 

2 c cos 0       at r = b 

iii)  Constitutive equations 

Sh
e   (1 - sin 0) = <T^ (1 + sin 0) + 

2 c cos 0       for a < r < b 

<Te + Ö-® = 2 P r    e 

e   b 
S'    i   <T  ,   &     = radial stress, in the elastic 

region, in the broken zone. 

y-   *-e  *~b 6a/ o _, (T_ = tangential stress, in the 
ö    is G 

elastic region, in the broken 

zone. 

r, 0:  polar coordinates 

P:  hydrostatic stressfield 

c, 0:  cohesion and angle of internal friction 

a, b:  tunnel radius and radius of the broken 

zone. 
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The resulting relation between the radius b 

of the plastic zone and the support pressure P. is 

given by: 

p. = —: -r [ (P sin 0 +  c cos 0) (1 - sin 0) 
x  sin 0 

(|f - c cos 0] (II-3.2) 

,     rr       2 Si"- 0 where tc - ■■■.^ ■ 
1 - sxn 0 

(Details of all calculations summarized in this 

chapter are given in Appendix A). 

The support pressure required to maintain 

equilibrium decreases monotonically with increasing 

radius of the plastic zone.  For all rock types 

with cohesion, i.e., with at least some uniaxial 

strength, equilibrium can be reached without support 

if the broken zone is allowed to propagate deep 

enough. 

II-3.3.  Broken Zone Characterized by Residual 

Strength.  When rock is strained beyond its peak 

strength, the residual strength tends to decrease 

more or less rapidly.  As a first approximation, 

this effect can be accounted for by specifying a 

constant residual strength throughout the broken 

zone.  The only change from the basic equations in 

the preceding section is in the constitutive 
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equation describing the behavior of the rock in the 

broken zone.  This equation now becomes: 

<T* (1 - sin 0 ) = <T* (1 + sin 0 ) + 
ö r     i xr 

2 c  cos 0 
r     r 

for a <_ r ^ b 

where c and 0 are the residual cohesion and the 
r     r 

residual angle of internal friction, properties of 

the broken rock. 

The resulting relationship between the radius 

b of the broken zone and the support pressure P. can 

be written as: 

P. = [P(l - sin 0) - c cos 0 + c cot 0 ] 

(J) r - c  cot 0    (II-3.3) 
b      r     r 

^        2 sin 0 ' where of    =       r 
r  1 - sin 0 

r 

The required support pressure decreases mono- 

tonically with increasing radius of the broken zone. 

For all materials with some residual cohesion, i.e., 

some residual uniaxial strength, equilibrium is 

possible without support pressure. 

II-3.4.  Gravity Effects.  In the preceding 

sections the state of stress around the tunnel was 

assumed to be generated by a hydrostatic stressfield 
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maintained at a great distance from the tunnel. 

When gravity forces are taken into account, the 

radial and tangential stresses are no longer 

principal stresses, and the equilibrium equation in 

the radial and in the tangential directions can be 

written as: 

*e ~    <Tr - r -j^- - -J5- + rw cos e = 0 

***- + 2r + •££■ r - rw sin 6=0 

where w is the specific weight of the rock, % is the 

shear stress. 

Because of the symmetry about the vertical 

axis, the radial and tangential stresses are principal 

stresses along that axis.  The equilibrium conditions 

along that axis can be reduced to: 

d<T 
<f - 6" - r .,   + rw = 0 (II-3.4) 
0   r     d r — 

(+: floor; -: roof) 

Comparing this equation with (II-3.1) it can 

be seen that the gravity term was neglected in the 

previous sections.  It is justifiable to neglect 

that term when it is small compared with the differ- 

ence between the others.  The other terms are a 

positive one, the stress difference, and a negative 

one, the radial stress increase into the rock mass. 



II - 20 

Both of these terms decrease rapidly in absolute 

value with the development of a plastic or stress- 

relieved zone around the tunnel.  This decrease is 

accelerated when residual properties are assigned 

to the broken zone, and both terms decrease par- 

ticularly rapidly with a decreasing angle of in- 

ternal friction.  The error introduced by neglecting 

the gravity field will, therefore, become larger 

under such conditions.  In particular, when the 

broken zone becomes so large that little or no 

support is required the stress distribution near 

the opening can be so small and equalized that 

neglecting the gravity term in this region can no 

longer be justified. 

The problem can now only be solved when severe 

simplifications are introduced.  Neglecting the 

gravity forces in the elastic region, and assuming 

the same boundary conditions as in Section 3.2, the 

relation between the support pressure P. and the 

radius b of the broken zone can now be written as: 

P. = [P(l - sin 0)   - c cos 0 + c cot 0] 

2 sin 0 
1 -  sin 0. ,a 1 - sin 0 .  . 7 _   t 

(—)        *r - c  cot 0 + aw : -r- b r     r     1-3 sxn 0 
3 sin 0-1 
 _r  

[<§> X - Sin0r  - 1] (II-3.5a) 
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Two special cases have to be considered. 

When sin 0 = 1/3, 

P. = [P (1 - sin 0)   - c cos 0 + 2 \/2 cr] ä - 2 4~2  c^ 

+ wa In — (II-3.5.b) 

When 0=0, 
r .       . 

p. = P(l - sin 0) - c cos 0  - 2 c In - + w(b - a) i r   a 

(II-3.5.C) 

The derivation of these equations is given in 

Appendix A.l.  The preceding equations contain two 

unknowns,   the radius b of the broken zone and the 

support pressure P..  Application of these equations 

to tunnel support loading requires consideration of 

rock-support interaction, and therefore of the dis- 

placements.  The determination of the displacements 

necessitates even more simplifying assumptions 

regarding rock failure behavior than does the 

determination of the stress distribution.  It seems 

reasonable, therefore, to discuss the above results 

in somewhat more detail by illustrating the various 

factors included in the analysis up to now. 

Figure II.1 shows the material strength model 

representation used in this analysis.  The rock 

around the tunnel is in a state of incipient failure 

when the stress reaches a state represented by a 
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Residual Envelope 

Figure II.1.  Failed Rock Description Used in the 
Broken Zone 
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circle touching the intact rock failure envelope. 

It is assumed that the circles corresponding to the 

stress states throughout the failed zone touch the 

residual envelope. 

A reduction in internal friction and in 

cohesion, associated with rock failure, can have a 

significant bearing upon the support pressure 

requirements.  This is illustrated in Figures II.2 

and II.3. 

Taking into account the gravity forces acting 

on the stress-relieved or loosened rock can intro- 

duce basic modifications of the results.  The 

support requirements in the roof and on the floor 

can differ significantly (Figures II. 4, 5).  This 

conclusion is not likely to be considered a major 

revelation by tunnel engineers.  When the difference 

between roof and floor support is significant, it 

also will depend strongly upon the tunnel size 

(Figure II.5).  For a tunnel of given size, the 

gravity term is determined mainly by the residual 

friction (Figure II.6), because the specific weight 

usually will not change greatly.  The relative 

significance of the gravity term with respect to 

the total support requirements decreases with 

increasing pre-tunneling pressure (Figure II.7), 
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A P. (psi) 

200 

3.5  b/a 

Figure II.2.  Support Pressure P. Required to Limit 

Failure Propagation to a Radius b for 

Various Values of the Residual Internal 

Friction.  Gravity Terms are Neglected, 

Hydrostatic Pressure P = 500 psi 

Intact Cohesion c = Residual Cohesion =' 

50 psi 

0 = Intact Friction = 30 

0    =  Residual Friction 
'r 

Graphs: a:  0 = 30 
r 

c:  0 = 10C 
r 

b: 0 = 
r 

d: 0  = 

20 

0° 
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n P (psi) 

200 

3.5  b/a 

Figure II.3. Support Pressure P. Required to Limit 

Failure Propagation to a Radius b for 

Various Values of the Residual Cohesion. 

Hydrostatic Pressure P = 500 psi 

Intact Cohesion c = 50 psi 

c = Residual Cohesion 
r 

Intact Friction 0 = Residual Friction 

0    = 30° 
*r - 

Graphs:  a: cr = 50 psi b: c^  =25 psi 

c: c  = 0 psi 
r 

3 
Gravity is neglected; w = 0 lbs/in . 
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Figure II.4. Support Pressure P. Required at the 

Roof and at the Floor to Prevent 

Failure Propagation Beyond a Radius b. 
3 

Specific Weight w = 0.09 lbs/in  = 

155.5 lbs/ft3 

Graphs a: c = c  =50 psi 0  =   30° 

0     =   10° r 

Tunnel Radius a = 10 feet 

Hydrostatic stress P = 500 psi 

Graphs b: c = c  - 25 psi 0   =   30° 

0     =   0" r 

Tunnel Radius a = 15 feet 

Hydrostatic stress P = 250 psi 
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■ , P,( psi) 

100 
_____a = 20' roof  

75 - 

^--^a = 5'     roof 

50 - \a = 5' 
^\floor 

25 
V a = 20'         ^^ 

\floor 

0 1 1 1                 l\  1 * 
I      1.5     2     2.5     3      3.5 b/a 

Figure II.5.  Influence of the Tunnel Size Upon 

the Required Support Pressure, 

a = Tunnel Radius 

P = 250 psi 

c = c =25 psi 
r 

0 = 30 0=0 

w = 
3 

0.09 lbs/in 
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Figure II.6. Gravity Term ^P. for an Increasing 

Broken Zone Radius b and for Various 

Residual Angles of Internal Friction 

0 . The Term ^P. Must be Added to 
'r i 

or Subtracted from the "Weightless" 

Support Pressure to Obtain the Hoof 

or Floor Support Pressure. 

Tunnel Radius a = 10 ft. 

3 
Specific Weight w = 0.09 lbs/in = 

,  3 
155.5 lbs/ft . 
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'i R (psi) 

300 

250 _ 

200 

150 

loo: 

Figure II.7.  Relative Significance of the Gravity 

Term ^P. Compared to the "Weightless" 

Support Pressure P. Required in Four 

Hydrostatic Stressfields P( A/ Depths). 

Tunnel Radius a = 15 feet 

Intact Cohesion c = 50 psi 

_o 
Intact Friction 0 = 20 

. 3 
Specific Weight w = 0.09 lbs/in 

Residual Cohesion c = 25 psi 

.   _ . o 
Residual Frictxon 0 = 10 
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or in general with increasing depth.  When the fric- 

tion drops to zero in the broken zone the full weight 

of this zone has to be supported in the roof, as can 

be seen from the last term in equation II-3.5c. 

The terms in equations II-3.5 which are inde- 

pendent of the specific weight can be written as 

f(b/a, c, c / 0,   0  ).  The broken zone radius b enters 

the relation only relative to the tunnel radius, 

through the ratio b/a.  The resulting graphs of the 

required support vs. the relative radius of the 

broken zone therefore can be used for any tunnel size 

provided the rock properties are identical. 

The terms in equations II-3.5 which are 

dependent upon the specific weight can be written 

as aw-f(b/a, 0  ).  Graphs of the gravity terms versus 

the relative value of the broken zone radius b/a 

can be used for a tunnel of any size with the same 

residual friction, provided they are scaled appropri- 

ately for size and specific weight.  The gravity 

term for a residual friction angle 0    = 0 , 10 , 20 , 

o 
30  can be derived from the A P. value in Figure II.6. 

If the actual tunnel radius differs from ten feet, 

the value read from Figure II.6 must be multiplied 

by the tunnel radius divided by ten.  If the specific 

3 
weight differs from 0.09 lbs/in , the gravity term P. 
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read from Figure II.6 must be multiplied by the actual 

value and divided by 0.09. 

II-4.  Tunnel Convergence Caused by Rock Failure 
Propagation 

II-4.1.  Introduction.  The load build-up on 

a (passive) tunnel support system results from the 

interaction between the support and the converging 

rock.  As the problem is statically indeterminate, 

the determination of the displacements is a pre- 

requisite for the calculation of the support 

requirements. 

An analytical solution is possible only for 

relatively simple material models.  Nevertheless, 

these can be made sufficiently comprehensive to 

include, at least qualitatively, the principal 

deformational characteristics of rock failure.  It 

is then possible to evaluate the potential sig- 

nificance of such characteristics on tunnel stability 

and support requirements. 

Several additional assumptions beyond the ones 

involved for the stress distribution have to be made 

in order to derive displacement results.  Several 

additional rock properties have to be known as 

well.  One of the principal requirements is a more 

comprehensive definition of the stressfield.  In 
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the previous section, during the derivation of the 

stress distribution, it was tacitly assumed that 

the (principal) stress parallel to the tunnel axis 

is always intermediate between the radial and the 

tangential stress, and has no influence upon the 

rock behavior in the broken zone.  Such an implicit 

understanding is not sufficient when the displace- 

ments are calculated because the axial stress enters 

the results explicitly. 

General assumptions regarding the axial stress 

are somewhat more difficult to make than similar 

hypotheses for in-plane stressfields.  The axial 

stress, in a way similar to the horizontal in-plane 

stress, undoubtedly will depend strongly upon the 

site conditions for a particular tunnel.  This can 

be illustrated best by two extreme but realistic 

examples: 

i.  Consider a short tunnel through a long 

narrow ridge and well above the average level of 

the surrounding terrain.  Both tunnel portals are 

in vertical or near-vertical cliffs.  Certainly 

near the portals the axial stress will be close to 

zero.  If the axial stress is larger near the 

center of the ridge then it is not a principal 

stress, at least along some sections of the tunnel. 
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This can be seen from the equilibrium equation for 

a direction z parallel to the tunnel axis: 

2<TZ      pTxz     ££z     n 
  + —=:  + -r—*— = 0 dz 9 x BY 

In a situation such as this, for example near 

a tunnel portal, the failure mode will bear little 

resemblance to what is suggested by a two-dimen- 

sional analysis of the type discussed in the pre- 

ceding sections.  In such a case, unless the 

horizontal and vertical stress are very different, 

the axial stress is the smallest (principal) stress 

throughout the rock surrounding these tunnel 

sections. 

ii.  Consider a tunnel well below the average 

(and lowest) terrain level.  A reasonable first 

assumption is that prior to tunneling all stresses 

are equal to the overburden pressure.  A plane 

strain condition can be imposed along the tunnel 

for the stress and displacement changes induced by 

tunneling. 

In this thesis only the second situation is 

considered in more detail. 

II-4.2.  Constant Volume Expansion and Mini- 

mum Tunnel Convergence.  A first assumption that 
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can be made regarding the deformational character- 

istics of breaking rock is that the entire broken 

zone experiences an equal and constant volume in- 

crease (Labasse, 1949).  Ihe tunnel wall displace- 

ment can then be written as: 

x, 
2 2 2   z 

u =a-[a(l + K)-bK- 2btL + u. ] 

(II-4.1) 

where: 

K = constant volume expansion factor 

a,b = radius of tunnel and of broken zone 

u /U = radial displacements at r = a and r = b 

The  radial displacement VL    is given by: 

^ = 
(1 *^b [P sin 0 + c cos 0]    (II-4.2) 

where: 

E, \> —  Young's modulus and Poisson's ratio 

c,0 = cohesion and angle of internal friction 

P = hydrostatic stress 

When K = 0 in (II-4.1) it is assumed that no 

volume change occurs in the broken zone, and this 

results in a lower bound for the displacement or 

tunnel convergence.  When the displacements are 

small in comparison with the tunnel radius one can 

simplify equation (II-4.1) to: 
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u = b     K(b
2- a2) (II-4;3) 

a  a b     2a 

II-4.3.  Elastic Relaxation of the Broken 

Zone.  The lower bound displacement calculation of 

the previous section implies that a substantial 

change in the stress and stress deviation invariants 

can take place (stress relaxation around the tunnel) 

without an associated volume change.  This is in- 

compatible with the assumed failure criterion (at 

least when the angle of internal friction is not 

zero).  The assumption of a constant volume change, 

independent of strain and stress is obviously an 

extreme simplification, although it can be used 

with benefit in some circumstances. 

A reasonable basic assumption for the dis- 

placement calculations is to regard the volume 

changes or displacements induced by the progressive 

unloading during the propagation of the broken zone 

as elastic.  Prior to tunneling the rock has been 

compressed, and the volume change due to that com- 

pression, in a plane perpendicular to the tunnel 

axis, is given by: 

V  dr  r E 

2P<1 - 21^) (H-4.4) 
E 
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where 6~ , <T and 6" , the radial, tangential and r   ©     z 

axial stresses are assumed to equal the hydro- 

static stress P. 

If the rock remains elastic after excavation 

of the tunnel and a plane strain condition is im- 

posed for changes induced by tunneling the axial 

stress will remain constant.  This can be seen 

from: 

4<r = viA<rx +4<re] = VL <?r - P + SQ - p] = o 

(II-4.5) 

where A6L,   Aff   and A6L  are stress changes induced 

by tunneling.  It follows that no rock volume 

change occurs around an elastic tunnel, as can be 

seen directly by substituting ,4<T / AS   and ASi   in z   r      © 

equation (II-4.4). 

Assuming that the elastic plane strain con- 

dition remains valid for the broken rock, the axial 

stress in the broken zone can be derived from: 

A&    = V(AG   +dO = ViCT0*  +(T^r - 2P)(H-4.6) & r     o r     o 

where A(>z  = <T2 -<5"z = (?z    - P, ACQ  = SQ    - 

el br    el $„    and Ac   —   6       - <T  are the stress changes ©     *-" vr r     r 

induced by failure.  The axial stress in the broken 

zone is then given by: 
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br   „   oiJx« . x) .«rbr J. *hr 
<Tör = (1 - 2V)P + V (IT:" + ff« )    (H-4.7) 
z r     © 

Assuming elastic stress-strain relations, the 

volume increase caused by the stress relaxation 

in the broken zone can be written as: 

dV _ du  u  v  r 6   z © r z— 
. V ~ dr.  r E 

The tunnel wall displacement can then be 

calculated by equating the final volume of the rock 

within the broken zone to the original volume 

augmented with the expansion caused by the stress 

relaxation during the propagation of the broken 

zone. Assuming that the displacements (or strains) 

are small compared to the tunnel radius, this 

results in: 

(II-4.8) 

where:  VL is the radial displacement at the outer 

boundary of the broken zone, given by 

(II-4.2) 

u is the radial displacement on the tunnel 
a 

periphery, r = a 

E, V  are the Young's modulus and Poisson's 

ratio 
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P is the hydrostatic stressfield 

br   br 
6"  , <5" 0 are the radial and tangential 

stress in the broken zone. 

Equation (II-4.8) can be rewritten in terms 

of residual and intact elastic properties: 

fa2^ I»  ■  „ *    (1+ ^ ua = ä   T~  <P sin *" + ° cos *>  +    3aK r 

[P(b2-a2)   - 7  ( ehx+ (T^r)rdr] (II-4.8a) a r © 

E 
where V and K = -r-r:—r-"7V are the Poisson's ratio r     r  3 (1-2 i/ ) 

r 
and the bulk modulus of the broken rock. E the 

r 

Young•s modulus. 

It is clear from equation (II-4.8a) that an 

inelastic volume increase due to failure in the 

broken zone, expressed as an increase in the 

Poisson's ratio, a decrease in the bulk modulus, 

or both, will lead to an increase of the tunnel 

convergence beyond the value resulting from purely 

elastic relaxation. 

It is illustrative to rewrite (II-4.8) for 

the assumption that the axial stress <T remains 

equal to P during failure.  The displacement is 

then given by: 

b (P sin 0 +  c cos 0)    ,   r^/w2 J*\ f 
Ua = a  2G    + 2G" [P(b "* } " l r 

(6-br+ <Tbr) rdr] (II-4.8b) ©     r 
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where G and G are the shear moduli of the intact 
r 

and of the broken rock.  This shows that a decrease 

in the rock shear stiffness caused by rock failure 

will increase the tunnel convergence. 

When failure propagates into the rock the 

tangential stress near the tunnel periphery de- 

creases (as does the radial stress).  For both of 

the preceding <f assumptions a situation can develop 

where the tangential stress in a region (a,r) with 

a < r < b, drops below the axial stress <$"z.  Failure 

is then most likely in between the (z,r) directions. 

This type of failure induces stress relief in the 

axial direction.  A third reasonable f, assumption 

can be made, and it eliminates the problem of (T, 

becoming the largest principal stress.  One can 

impose as a condition for 6~z that the stress state 

in the broken zone must satisfy the generalized 

three-dimensional Mohr-Coulomb failure criterion 

(Drucker and Prager, 1952).  Combining this with 

the plane strain condition leads to: 

br ^br           br  br 
br   ^6 + Sr            .  „  ^e -ffr-  (II-4.9) 

6 z =  2 Sin 0r   2 

The displacement at the tunnel wall is then 

given by: 
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b    . P(l-2 V) (b2-a2)   1-2^ h
(   ,_br _ br. . 

u = — u, + —i -7— L  - —~— ' ( & n + 6      ) rdr a  a b       aE    ,      aE  a   e   r 

V sin 0b,    ,  ■ 
-  aE'

r | (ff er" Ordr       (II-4.8C) 

The full derivation of the preceding equations 

leads to rather lengthy expressions and is given 

in Appendix A where a Fortran program for the 

numerical evaluation of the ground reaction curve 

is included. 

Examples of the relation between displace- 

ments and corresponding support pressures as calcu- 

lated from the preceding expressions are shown in 

Figure II.8.  The straight line in this figure 

comprises the elastic section of the ground reaction 

curve (full line) as well as the ground reaction 

that would result if the rock were to remain elastic 

after complete removal of all internal confinement 

(dotted line).  The "minimum displacement" ground 

characteristic is based on the assumption that no 

volume change occurs when the failure zone develops, 

i.e#/ K = 0 in equation II-4.1.  The same equation 

was used to calculate the displacements when a 

constant 0.1% (K = 0.001) volume increase accompanies 

failure throughout the broken zone.  Two sets of 

"elastic relaxation" ground reaction curves are 
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Figure II.8, Influence of Variations in Residual 
Properties on Ground Reaction Curves 
Calculated for Different Assumptions 
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remains elastic, i.<?., when <T >2P 

u 
el 

u Pi 

displacement when <T is calcu- 
lated from an elastic plane 
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II-4.7) 

displacement when C     is calcu- 
lated from a plastic plane 
strain assumption (equation 
II-4.9) 
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included, for two different sets of residual (broken 

rock) properties.  One graph of each set was calcu- 

lated for an axial stress <f calculated from the z 

elastic plane strain assumption (II-4.7), the other 

graph results from the plastic G    definition (II-4.9) 

No gravity effects were included in the results of 

Figure II.8. 

Three fundamentally different types of "roof" 

ground reaction curves are illustrated in Figure 

II.9.  When the rock strength drops very steeply 

once the ultimate strength has been exceeded, the 

support pressure required in the roof increases 

rapidly with deeper failure propagation (curve 1). 

For a rock type that can be subjected to large 

inelastic strains without significant strength 

loss the increased "arching" in the larger tangen- 

tial compression zone more than compensates for 

the combined contribution of the (limited) strength 

loss and increased broken rock weight (curve 2). 

Finally, and possibly most realistic or common, when 

a gradual strength loss occurs (or a fairly steep 

one but only well beyond the peak strength) the 

support pressure required in the roof can decline 

during the initial stage of nonelastic deformation 

but will increase beyond the point where the 
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Figure II.9. Fundamental Types of "Roof" Ground 
Reaction Curves 

(1) Failing ground 
(2) Yielding ground 
(3) Transition from yielding to 

failing ground 

Data:  P = 250 psi; E = E = 10  psi; 

V =  0.25; a = 10 ft. c = 50 psi; 

0  = 30°; w = 155.5 lbs/ft 
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combined effects of strength loss and increased 

broken rock weight preponderate (curve 3).  This is 

the shape of the ground reaction originally sug- 

gested by Pacher (1964) in his discussion of the 

influence of "genuine rock pressure" and of "loosen- 

ing pressure" upon support requirements. 

II-4.4.  Influence of a Progressive Strain 

Dependent Strength Decrease During Rock Failure. 

The analysis of the preceding section, where re- 

sidual properties have been assigned to the broken 

zone, implies that an abrupt change in material 

behavior occurs across the broken zone boundary. 

It also implies that all residual properties are 

strain-independent.  Stress-strain diagrams for 

such a material are shown in Figure 11.10, dotted 

lines.  Such a material is characterized by a 

sudden lowering of the failure envelope from its 

original level to the residual level, at the 

instant the strength is exceeded.  When the strength 

properties are changed according to this model a 

discontinuity in the tangential stress and in the 

radial stress gradient across the broken-intact 

boundary is introduced.  A similar discontinuity 

is added in the displacement behavior if deformational 
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properties such as the moduli are changed abruptly 

once failure does occur.  The brusqueness of the 

changes is revealed particularly well when the 

drastic changes are considered that occur when 

failure is initiated on the tunnel periphery.  At 

least these sudden changes at the rock surface can 

be eliminated by incorporating a rock failure model 

with a gradual change in properties, the change 

being related to the increasing inelastic straining 

of the rock. 

An easy inclusion of such a modification into 

the closed form solutions is possible by considering 

the residual cohesion c as a function of the 
r 

maximum inelastic strain, while maintaining c 

5 
constant throughout the broken zone.   This can be 

achieved by letting: 

cr = c exp  {-k[(|)
2 - 1]} (II-4.10) 

where the constant k(> 0) determines the rate of 

decrease of the residual cohesion c  for increasing 

broken zone radius b and a is the tunnel radius. 

5 
The strength for every specific b-value 

remains then strain independent.  Incorporating a 
truly strain-dependent strength variation leads to 
integrations that cannot be solved in closed form. 
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The relationship between c and the maximum 

strain can be derived explicitly in a simple form 

for the special case of the small displacement 

solution without volume increase.  Applying equation 

(II-4.3) twice, with K = 0/ once for b = a, result- 

el ing in u , once for b >a, and subtractxng the 

results after substitution of (II-4.2), one obtains: 

el 
ua " ua    ,b 2     (1 + y>) (P sin 0 +  c cos 0) 

a    ~ L V     J E 
(II-4.11) 

= Q[(|)2-1] (II-4.12) 

The relation between the maximum strain and 

the cohesion decrease results from the substitution 

of (II-4.12) into (II-4.10), giving: 
el 

ua " ua   1 
c = c exp[-k ■ a> ■ ■ -a- • ~] (II-4.13) r a      Q 

Q is a constant for a given problem, but 

depends on the stressfield P, and thus is not a 

material constant.  By translating the problem to 

an equivalent one in an applied stressfield Pt = 

p - g- /2 = P - c cos 0 / (1 - sin 0) for a rock 

with strength parameters c^ = 0, 0^ = 0 equation 

(II-4.11) can be rewritten as: 

iel    . 2     (1 +1?) sin 0        . 2 
■*- = [ & - i]  F— ~ \ = [ <!> -^ pi 

(II-4.14) 
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Substitution of (II-4.14) into (II-4.10) 

results in: 

el 
r,    - r,  ~™ r vp   a   a    1   1 c = c exp [-k  • ■        • —— • —i r a       Q^  P/J 

(II-4.15) 

Q is thus reduced to a material constant. 

An appropriate k factor can be selected for P^ = 1. 

The same material behavior, i.e., strain dependent 

c reduction can then be obtained in an arbitrary 

stressfield by letting k = P^ • k 

It follows from equation (11-4.10) that the 

residual cohesion will approach asymptotically a zero 

value for increasing broken zone radius b.  If it 

is desired that the residual cohesion tend to a 

j_     -, min constant value c   one can generalize equation 

(II-4.10) in the form: 

min   /     min.     ( . . ,bx 2   \ 
cr = cr  + (cr - cr ) exp {-k[ (-) - l]j  (II-4.16) 

The preceding translation is unnecessary 
when either the angle of internal friction 0 or 
the cohesion c equal zero.  For these cases <S"  =0, 

and equations (II-4.11) and (II-4.12) reduce to: 

• x * el i)  0 = 0 u - u 2 

el 
n)  c = 0 u - u b 2 

-£ — = p • Q -[(f) - 1] a a 
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Similar relations can be written down for 

other residual properties: 

J* = Cn + (0 - JO exp f-l[(|)2-l]j  (11-4.17) 

Er = ^
in + (E - E^in) exp  f-m[ (|)2- 1]J  (II-4.18) 

The direct substitution of these equations 

into the expressions used for calculations of the 

support pressures and the displacements leads to 

very lengthy equations, and therefore the sub- 

stitutions are made numerically within a computer 

program (Appendix A-3.2). 

Figure 11.10 shows four sets of stress-strain 

curves.  The post peak section of this curve was 

calculated from equations (II-4.16) and (II-4.17) 

after substitution of (II-4.14).  Four different 

values cmiand 0m)ndefining the residual strength, 

have been used, as well as two values of the factors 

]<r and 1 that define the rate of exponential 

decrease. 

The influence on the resulting ground char- 

acteristic of variations in the rate of decrease 

of the strength and deformational properties is 

illustrated in Figures II. lla,b,c.  These three 

figures are calculated for different values of the 
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Figure II.lib.  Ground Reaction Curve for a Rock 
with a Gradual (Exponential) 
Strength Decrease 

Data:  P = 250 psi; E = 10  psi; 

1>= 0.25; c = 50 psi; 

0 =  30° 

min  ,Ä     ^ min   _o C     =10 psi; 0     = 5 ; 
r r 

E min = 0.2E; w = 0; k = 1 = m 
r 
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minimum residual properties.  The resulting ground 

reaction curves are within the domain bound by the 

extreme cases where the intact properties are 

maintained (k = 1 = m = 0) or where the residual 

properties are attained instantaneously (k = 1 = 

m = oo). However, the path along which the residual 

properties are approached has a decisive influence 

upon the shape of the ground reaction curve.  The 

gravity forces in the broken zone were neglected 

in all graphs of Figures 11 (w = 0). 

II-5.  Numerical Generalization of the Ground Re- 
action Calculation 

II-5.1.  Introduction.  The closed form 

determination of the ground reaction curve developed 

in the preceding sections permits inclusion of the 

principal features that characterize rock failure. 

Nevertheless numerous approximations and assumptions 

are made that could be considered too restrictive. 

Some of the factors that might have to be included 

in a more comprehensive or detailed analysis are 

the nonlinearity of the failure envelope, particularly 

for low confining pressures, and a strain-dependent 

decrease, along an arbitrary and more complicated 

path, of the strength and deformational properties 

characterizing the rock behavior once the peak 
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strength has been exceeded.  Incorporating such 

effects into the analysis, at least in a general- 

ized form, requires the use of numerical methods. 

II-5.2.  Numerical Generalization of Ground 

Reaction Calculations,  in the preceding sections 

the entire rock mass around a tunnel is subdivided 

in two regions:  a broken zone surrounded by an 

elastic rock mass.  Both regions are homogeneous 

and isotropic.  For the broken zone particularly, 

it would appear reasonable to relax these restric- 

7 tions at least partially. 

A simple approach to the generalization of 

the problem, suggested by the assumption of com- 

plete radial symmetry, is to subdivide the region 

around the tunnel in a series of concentric zones. 

Each zone is characterized by a set of rock proper- 

ties.   These properties are constant for a given 

7 . 
This not only complicates the mathematics, 

an objection only prior to the derivation of the 
solution, but it tends to increase rapidly the 
number of required material properties.  Even for 
the simplest of methods discussed in this thesis 
the determination of realistic material properties 
poses difficult problems. 

8 An extreme example of such a zone would be 
a superficial rock layer with a strength and 
stiffness significantly reduced by blasting. 



11-55 

radius of the broken zone, but can change when 

failure propagates deeper.  This provides a direct 

physical picture for a mathematical model that can 

be used to calculate the relationship between the 

support pressure and the tunnel wall displacement 

for cases where the rock behavior cannot be repre- 

sented adequately by the simple laws used in earlier 

sections. 

In the numerical analysis the rock around the 

tunnel is subdivided into a number (n) of concentric 

regions.  The rock behavior within each cylindrical 

zone j is characterized by properties c., 0., E., 
3       3       3 

u..  At the internal (r.) and external (r. .) bound- 
3 3 3+± 

aries of each zone the equilibrium condition (equal- 

ity of radial stresses on both sides of the boundary) 

as well as continuity in the (radial) displacement 

must always be satisfied.  The external radius 

r , of the thus subdivided zone is equal to the 
n+1 

broken zone boundary b (or falls within the elastic 

region, although this increases the number of 

calculations unnecessarily).  The internal radius 

r equals the tunnel radius a. 

An iterative procedure is used to calculate 

the stresses, displacements and strains throughout 

the broken zone for increasing radius of that zone. 
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The properties of each particular subzone j are 

changed after each iteration so that a prescribed 

correspondence is satisfied between the desired 

material behavior and the results from the last 

iteration. 

Results obtained from a simplified calcula- 

tion of this type are shown in Figures 11.12 and 

II.13b.  Figure 11.12 shows the decrease in required 

support pressure for an increasing broken zone 

radius. A stepwise approximation to the (linear) 

cohesion decrease was used.  It was assumed that no 

volume change occurred in the broken zone.  Three 

rates of cohesion decrease are considered, and the 

(variable) cohesion was taken constant throughout 

the broken zone. 

Figure II.13b illustrates the potential sig- 

nificance of nonlinearities in the failure envelope. 

The intact and residual failure envelopes (1,11,111, 

IV) used for this calculation are shown in Figure 

II.13a.  The iteration consisted in deciding which 

of the straight line segments was the appropriate 

tangent to a stress circle.  Only stress distri- 

butions were considered, so that the strength 

parameters fully define the problem.  The results 

corroborate the expectation that in low stressfields 
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there is a greater chance that the initial high- 

friction part of the failure envelope will dominate 

the results.  It will depend on all factors that 

determine the stress state, i.e., on the original 

stressfield, the support pressure and the rock 

strength whether or not bilinearities in the failure 

envelopes have a significant influence upon the 

ground reaction. 

The numerical method proposed here has not 

been developed beyond this fairly elementary stage, 

and will not be discussed in any greater detail. 

II-6.  Tunnel Support Characteristics 

II-6.1.  Introduction.  The ground reaction 

characteristic determines one-half of the static- 

ally indeterminate problem posed in the analysis 

of tunnel support loading.  The other half can be 

described by the load deflection curve of the 

support system.  The point where the two character- 

istics intersect defines the equilibrium state, 

and thus, in the absence of time-dependent stiffness 

changes, the final tunnel support loading and tunnel 

convergence. 

II-.6.2.  Tunnel Support Characteristic.  Com- 

mon support systems can be considered as being 
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built up of two elements:  on the one hand the 

support "strictu sensu", e.g., a steel set, a 

concrete liner, and on the other hand the elements 

connecting the support to the rock, e.g., wooden 

blocks, gravel backfill, a bolt anchor.  It is 

convenient to describe the support behavior in 

9 
terms of the "support ring stiffness,"  defined as 

the slope of the curve representing the support 

pressure P. versus the radial deformation u .  The 

"support pressure" as used here is not necessarily 

the contact pressure between the support and the 

rock, but is rather the contact pressure averaged 

over the area to be stabilized by a particular 

support element (for a steel set, a wooden block, 

a rock bolt, this would depend upon the spacing). 

It will be assumed that the support system 

stiffness (K ) can be derived from the stiffness 

of the support "strictu sensu" (K ) and the 

The rather neutral term "support stiffness" 
is avoided here in order to emphasize that it is 
necessary to differentiate between bending and 
compression stiffness.  The latter is the sig- 
nificant factor under the highly restrictive 
assumption of radially symmetric convergence used 
here.  Any generalizations regarding "support 
stiffness" conclusions for real tunnels have to be 
tempered by an evaluation of what the support^ 
behavior will be when the tunnel convergence is 
not uniform all around. 
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stiffness of the connection between rock and 

support (K ).  The two components of the support 

system are considered to be springs in series, and 

the overall support stiffness is then given by: 

JL- = _i- + i_ (II-6.1) 
K    K     K s   ss   c 

II-6.3.  Characteristics of Common Tunnel 

Support Systems.  The determination of the support 

characteristic requires an evaluation of the two 

stiffness components in the preceding equation. 

For most support systems a realistic determination 

of the second term requires a reasonably good 

assessment of the actual in-situ support conditions. 

Alternatively a range of installation conditions 

corresponding to practical possibilities can be 

considered, and the significance of construction 

"details" can thus be evaluated.  A comprehensive 

summary of stiffness expressions for various support 

systems is given in Appendix A-4.  The results are 

presented here graphically, in a form similar to 

the ground characteristics shown on Figures 11.11 

in order to facilitate a comparison between the 

various support systems as well as an evaluation 

of the rock-support equilibrium mode. 
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II-6.3.1.  Shotcrete liner.  The stiffness of 

a shotcrete liner (K  in equation II-6.1) is s s 

calculated as the stiffness of a plane strain 

cylinder (thick or thin wall) with constant (i.e., 

time independent) properties.  It is assumed that 

the shotcrete liner is in intimate contact with 

the rock (K = °° in equation II-6.1).  Several 

methods could be used to account for the lower 

stiffness during the initial hardening period near 

the face.  The simplest way of doing so is to in- 

clude a pre-installation displacement, or offset 

from the displacement at installation along the 

displacement axis.  Alternatively one could calcu- 

late cylinder stiffnesses for various curing steps 

and modify the elastic modulus according to a time- 

displacement relation corresponding approximately 

to the sequence of face advance (see III-4.2). 

Several examples of (linear) shotcrete character- 

istics are included in Figures 11.14 and 11.15. 

II-6.3.2.  Steel set with wooden blocking. 

The stiffness of the steel set (K  in equation 
SS 

II-6.1) was calculated for a steel ring with equally 

spaced loads (corresponding to the blocking points). 

The calculation of the block stiffness (K ) was 



rr - 64 

t    EB= 1,400,000 tB = 2 

0 .4     .6 
U (inches) 

Figure 11.14. Support Characteristics of a Blocked 
Steel Set for a Range of Blocking 
Parameters 

Tunnel diameter = 16.7 feet 
Steel set: 6" x 4" light beam, 
16 lbs/ft, 2» spacing 
Block spacing = 41.9 inches 
E  - elastic modulus of block, in psi 

t  = block thickness, in inches 

Dotted line is characteristic of a 
3 inch thick shotcrete liner, with 
Young's modulus E = 3,000,000 psi 
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4     .6 
U (inches) 

8 1.0 

Figure 11.15. Support Characteristics of Blocked 
Light, Intermediate and Heavy Steel 
Sets.  Support Characteristics of 
Thin (2»), Intermediate (4") and 
Thick (8") Shotcrete Liners 

Tunnel diameter = 16.7 feet 

B 
block thickness 
t = 4 inches, 1 B 
SS = Set spacing in feet 

Block modulus ED = 1,400,000 psi; B 

t = 4 inches, block spacing = 41.9" 
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based on the assumption that the blocks function as 

linear springs. 

Major variables of practical significance 

that have to be considered are the set spacing, 

block spacing and block stiffness.  The stiffness 

of the wooden blocks, as well as the block spacing, 

depends greatly on construction details.  The 

dominating role of the block stiffness can be 

established by evaluating the overall blocked 

steel set stiffness for a realistic range of block 

stiffnesses. A precise determination of the support 

stiffness does require an in-situ evaluation of 

the block behavior (or, alternatively, imposing 

certain blocking procedures in order to guarantee 

a particular stiffness level). 

Factors that affect the block stiffness are: 

i.  Overbreak 

It might appear at first that the block 

(spring) stiffness is simply inversely proportional 

to the distance between steel set and rock.  Such 

an assumption is likely to lead to a significant 

underestimate of the loss in stiffness caused by 

increased overbreak.  Indeed, a larger gap between 

steel set and rock complicates the composite of 

wooden blocks composing a blocking point, which 
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requires progressively more careful workmanship 

if gaps and "soft spots" are to be avoided. 

ii.  Block construction 

Although it is common practice to draw 

blocking points as a single wood block, actual 

blocking points, particularly in situations where 

the overbreak is large, have to be build up of a 

number of blocks, boards, wedges, etc.  The true 

stiffness of such a blocking point, constructed 

under difficult if not dangerous conditions in 

between the steel set and the rock, might bear 

little resemblance to the stiffness of an ideal 

"one block" blocking point. 

iii.  Wood properties 

Even under optimum conditions the stiff- 

ness of wooden blocks will vary greatly, because 

wood is strongly anisotropic so that the orienta- 

tion of the block is important, and because all 

wood properties change markedly with changes in 

humidity and temperature as well as with the 

duration of loading (Wood Handbook, 1955). 

It is clear that wooden blocking introduces 

a significant uncertainty factor in the determina- 

tion of the stiffness of a blocked steel set. 

Only when the blocking is done with unusual care 
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will the stiffness of this support system depend 

mainly on the stiffness of the steel set. 

The overall stiffness of blocked steel sets 

in a 16.7 ft. diameter tunnel is illustrated in 

Figures 11.14 and 11.15.  Figure 11.14 illustrates 

stiffness variations of an average steel set 

selected for this tunnel (Proctor and White, 1968) 

under a variety of blocking conditions.  Steel set 

type is 6" x 4" Light Beam, 16 lbs. per foot, set 

spacing 2 ft., block spacing 42 inches, and the 

wood modulus ranges from 1,400,000 psi (upper 

range for softwood parallel to the grain) down to 

40,000 psi (lower range for softwood perpendicular 

to grain and parallel to ring).  Blocking thick- 

nesses range from 2 inches up to 12 inches.  In 

the same figure the load deflection curve of a 3 

inch shotcrete liner is included. 

The load deflection curves of light (417.7), 

intermediate (6LB16) and heavy (6H25) blocked steel 

sets at set spacings of 1, 3 and 5 ft are shown on 

Figure 11.15 for a 16.7 ft. diameter tunnel.  The 

blocking point spacing is the recommended maximum 

42", block thickness is 4" and the block modulus is 

1,400,000 psi.  Included for a comparison with 

these very stiffly blocked steel sets are the 
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corresponding lines for shotcrete thicknesses of 

2", 4" and 8". 

II-6.3.3.  Rock bolts.  Because the resultant 

compressive (reinforcing) stresses induced in- 

between the bolt ends are limited to that region, 

and because of the tensile stresses induced behind 

the anchor, it can be argued justifiably that rock 

bolts are not truly a support system, and in par- 

ticular that a support characteristic or support 

stiffness concept as used here does not provide a 

meaningful tool for the analysis of rock bolt 

mechanics.  This general idea being accepted, 

there are nonetheless conditions under which an 

array of rock bolts can be considered as a support 

system.  This is true in particular for point 

anchored bolts with an anchor section well within 

the elastic or intact rock.  Under these con- 

ditions it can be assumed that the compressive 

force applied at the tunnel periphery does rein- 

force the rock in a similar way to blocking forces 

at steel set blocking points, while the tensile 

stresses induced behind the anchor are rather small 

relative to the existing (compressive) stresses 

and do not significantly affect the displacements 
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nor impair the opening stability by propagating 

deeper fracturing. 

The .stress distribution induced by deforma- 

tion and tensioning of fully grouted bolts is more 

complicated, and particularly during the initial 

stages of deformation will correspond to a rein- 

forcement mechanism rather than to an external 

support.  Once plastic yield of a friction bolt is 

induced, the stress distribution will approach the 

one induced by a point anchored bolt, certainly 

when optimum boundary requirements (sufficiently 

stiff and strong anchor and bearing plate) are 

satisfied (Appendix A-4).  Under the latter con- 

ditions, plastic yield in a fully grouted bolt is 

likely to be initiated for a smaller convergence 

than in a point anchored bolt. 

The stiffness of an array of bolts presented 

here is calculated for steel only, i.e., the con- 

tact term K is assumed equal to infinity.  Whether 

this is a reasonable assumption or not will depend 

on the stiffness of the connections between rock 

and bolt.  It certainly will require a sufficiently 

large bearing plate as well as a "good" anchor, 

i.e., a thin grout over a sufficiently large area 

in order to minimize shear deformations of the 
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grout and in order to prevent local overstressing 

of either rock or grout (resin or cement). A good 

tensile bond between hole bottom and anchor end, 

although probably difficult to achieve, would be 

desirable. 

It is assumed in the stiffness calculation 

that the force exerted at the bearing plate is 

distributed evenly throughout the rock. A representa- 

tive set of support pressure versus convergence 

graphs, ranging from a very dense pattern (1* 

spacing) of short (4») thick (1.25" diameter) bolts 

up to a set of widely spaced (5') long and thin 

bolts is given in Figure II.16, on the same scale 

as Figures 11.11 and 11.14.  Accounting for an 

installation tension can be done by raising the 

ordinate at the point of zero bolt displacement to 

the support pressure applied by the pre-tension. 

II-6.3.4.  Backfilled concrete segments. As 

a first approximation concrete liners composed of 

precast segments can be treated as hollow cylinders 

loaded externally.  When the segments are jacked 

in place so that intimate contact between ground 

and support is assured the stiffness of the support 

system will equal the stiffness of the concrete 
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Figure 11.16.  Support Characteristics of Various 
Patterns of Bolts Anchored Within 
the Elastic Region. 

Tunnel diameter = 200 inches (16.7 feet) 
d = bolt diameter (inches) 
L = bolt length (feet) 
S = bolt spacing (feet) 
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ring (K = c*? ) . When the segmented ring is back- 
c 

filled, the situation becomes more complicated 

because then the support stiffness will depend on 

the type of backfill and on the care with which the 

backfilling operation is performed.  In the case 

where a high quality backfill or grout is injected 

carefully the combined support stiffness can 

approach that of a two-material cylinder, or the 

support system stiffness can be considered equal 

to that of two parallel springs.  At the other 

extreme, for loosely blown in gravel it is more 

appropriate to consider two springs in series, and 

the overall stiffness, certainly during the initial 

convergence or gravel compaction would be dominated 

by the rather low gravel stiffness. 

II-6.3.5.  Composite support systems.  When 

two or more support methods are used simultaneously, 

the overall support stiffness can be obtained by a 

combination of the stiffnesses of the individual 

support elements.  The type of combination to be 

used will depend on the distribution of the gener- 

ated reaction forces over the various support 

elements.  The combination of bolts with either 

shotcrete or steel sets is a clear case where the 
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supports are acting in parallel, and the composite 

stiffness is obtained as the sum of the individual 

stiffnesses.  The situation is less obvious for a 

combination of shotcrete and steel sets.  The 

simplest and not altogether unreasonable approach 

is to postulate that the combined stiffness corres- 

ponds to the sum of the two unit stiffnesses.  As 

discussed in the above section on shotcrete, the 

gradual hardening of shotcrete can be accounted 

for by a stepwise stiffness increase corresponding 

to the displacement increments associated with the 

face advance cycle.  If the shotcrete thickness 

within the external periphery of the steel ring 

constitutes a significant fraction of the total 

shotcrete thickness, the shotcrete stiffness could 

be separated into two parts, the first one corres- 

ponding to the ring outside the steel set, the 

second one to the ring within the steel set.  The 

total (final) stiffness would be the sum of three 

terms, and the same as before.  However, the out- 

side shotcrete ring is the vehicle through which 

the equilibrium pressure between rock and steel 

must be transmitted.  If it is assumed that the 

initial shotcrete stiffness and strength are very 

low, then this is also a limiting factor on its 
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stress transmission capacity.  If/ during initial 

convergence, the shotcrete remains sufficiently- 

soft to flow plastically between the steel set and 

the rock the combined support action becomes one 

of springs in series, rather similar to that of a 

blocked steel set. 

The individual stiffnesses are used to calcu- 

late the composite stiffness of the support.  Once 

the equilibrium support pressure is determined, the 

decomposition of this total pressure in accordance 

with the respective individual stiffnesses allows 

the determination of the pressures exerted by and 

on the separate support components.  This, combined 

with the strength of the various components, makes 

it possible to judge the effectiveness with which 

the support pressure is distributed over the com- 

ponents . 

II-7.  Extending the Ground Reaction Derivations 

II-7.1.  Introduction.  In the preceding sec- 

tions the ground characteristic and the support 

characteristic have been derived.  They can be 

considered as essential tools for the analysis of 

rock-support interaction.  An attempt was made to 

incorporate as many significant parameters as 
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possible in order to derive a realistic model of 

that interaction, while maintaining the simplicity 

of a closed form solution.  Nevertheless, numerous 

simplifying assumptions were made, some of them 

sweeping generalizations that could put severe 

restrictions on the range of conditions for which 

the results remain meaningful.  The influence of 

at least some of these simplifications can be 

assessed by comparing observed behavior of tunnel 

supports as described in the literature with con- 

clusions that would be reached from the preceding 

analysis.  Such a comparison can point out basic 

shortcomings of the analysis, and one can then pro- 

ceed by making appropriate changes in order that a 

better approximation to the true solution might be 

achieved.  The extensions that will be suggested 

here are mostly rather simple and qualitative in 

nature, although, if appropriate data were avail- 

able, a quantitative generalization would be 

straightforward. 

II-7.2.  Time-dependent Variations in Support 

Pressures.  Numerous measurements of pressures on 

a variety of support systems installed in a wide 

range of ground conditions have shown that changes 
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in support pressures can continue for prolonged 

periods of time following the support erection. 

The changes can be quite regular and monotonic or 

they can be very erratic.  Measurements of tunnel 

convergence similarly indicate that shifts in the 

equilibrium position are not uncommon. 

Within a short distance from the face, changes 

in tunnel support loads can be explained by con- 

vergence increments caused by face advances (Daemen 

and Fairhurst, 1972).  In homogeneous ground such 

geometric effects will be reduced to negligible 

values within at most two or three tunnel diameters 

behind the face (see III-4.2).  in rock inter- 

spersed by discontinuities the effects are likely 

to be limited to an even shorter distance from the 

face.  As pointed out by Lombardi (1974), the 

extent to which convergence behind the face is con- 

trolled by the stiffness of the rock in the face 

depends on the competence of the rock behind the 

face, and in particular on its ability to transmit 

shear stresses.  The convergence postponement also 

depends on the stiffness of the rock in the face, 

stiffness that is more likely to be significantly 

decreased by blasting, mucking, etc. in a jointed 

rock than in a homogeneous one.  A more precise 
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evaluation of the geometric effects on tunnel sup- 

port load changes should be possible with three- 

dimensional finite element methods (e.g., Iseriberg, 

1973) or with "discontinuity analysis" (Crouch and 

Fairhurst, 1973). 

Assuming that an initial "equilibrium" state 

is reached near the face, subsequent displacement 

and support pressure changes (around a single 

tunnel not affected by extraneous excavations) can 

be explained by the following mechanisms: 

- a decrease in support stiffness 

- a decrease in rock stiffness 

- a decrease in rock strength (it is assumed 

that the rock throughout the broken zone is 

working at its strength limit) 

- a change in temperature (Burke 1957, Lane, 

1957). 

These factors cannot be considered as being 

truly independent because mutual interaction 

effects are likely to occur. 

Once equilibrium has been reached an increase 

in the support stiffness (for example, with continued 

It is not strictly necessary that an equilib- 
rium state must be reached.  The listed factors can 
also influence the behavior for example during the 
pre-equilibrium support stage. 
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shotcrete hardening) will not change the equilibrium 

position. 

Many mechanisms can cause a decrease in the 

support stiffness, the most obvious and extreme 

one being support failure.  Support stiffness 

decreases are to be expected for steel sets with 

wood blocks.  This is particularly true in wet 

tunnels, because the elastic moduli of wood de- 

crease rapidly with increasing moisture content, 

but it is generally true because the wood stiffness 

decreases under continuous loading (Wood Handbook, 

1955).  Creep is also common in mechanical bolts 

and in shotcrete, for the latter certainly during 

initial curing.  Whether a decreasing support stiff- 

ness will cause an increase or a decrease of the 

support pressure depends on whether a "dynamic" 

equilibrium is being approached along an ascending 

or a descending branch of the ground reaction 

characteristic (Figures II.11). 

A decrease in rock stiffness and in rock 

strength will initiate renewed convergence and 

will cause a support load increase.  A variety of 

closed-form visco-elastic and visco-plastic solu- 

tions to the problem of a (reinforced) circular 

hole in an infinite medium can be used to illustrate 
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such conclusions.  Besides rock materials that be- 

have inherently according to the mentioned rheo- 

logical models, there are a number of mechanisms 

that can cause an (apparently time-dependent) 

reduction in the rock properties.  Several of these 

mechanisms can be related to the presence, and 

particularly to the flow of water.  Notable examples 

of this are volume increases or decreases of 

minerals in the rock or in the joint fillings 

caused by hydration, dehydration or changes in 

crystal structure.  Along similar lines effects 

such as weathering, decomposition and washing out 

of rock particles can contribute significantly to 

rock mass strength losses.  Also to be considered 

is the possibility of a gradual strength and 

stiffness reduction of rock or of discontinuities 

within it when both are loaded at or around their 

peak strength for prolonged periods of times. 

A simple and at least qualitative model of 

time-dependent variations can be obtained by re- 

placing the material constants in the expressions 

for the ground reaction characteristic (II.4) by 

appropriate time-dependent functions, e.g., 

E = E x f (t) = EQ • e (Xt  = EQ(l-e" ^
/fc) 
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c = c x f (t) 
o 

A possible hypothetical result from a calcu- 

lation of this type is illustrated in Figure IIJ7a, 

and a resulting support load graph is shown on 

Figure II.17b. 

II-7.3.  Influence of Discontinuities and 

Inhomogeneities on Tunnel Support Requirements. 

The entire analysis of the interaction between 

tunnel support and rock as presented here is based 

on the assumption that the rock mass can be des- 

cribed as a homogeneous isotropic continuum.  It 

has been assumed that this holds true prior to 

tunneling as well as after tunneling, and in the 

latter case whether or not failure occurs. 

The rock mass characteristics that can cause 

deviations from such an idealized model are numerous 

and exist in many, if not most, rock formations. 

Their combined effect will be that the rock mass 

tends to behave as an inhomogeneous non-isotropic 

discontinuum. Factors that can be significant 

contributions to such effects on a scale influenc- 

ing most tunnels are variations in rock type (e.g., 

in bedded deposits, near intrusive contacts, etc.), 

preferred orientations within rock types (e.g., in 
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Decrease in peak and post- peak 

strength as rock is subjected to 

load for  prolonged  time... t4>.. ..> t. 
~ ~ - - _z 

Figure II.17a. Support Pressure-Deformation-Time 
Ground Characteristic for a Tunnel 
in a Rock Mass That Has a Decreasing 
Strength and Stiffness When it is 
Loaded for Extended Periods of Time 
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Support load-deformation-time curve 

Displacement inwards 
Ds Ts: time of support installation 

Ds! inelastic deformation preceding 
support installation 

Figure II.17b.  Progressive Tunnel Support Loading 
Caused by Continued Rock 
Deterioration 
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shale, gneiss, etc.) and sections through the rock 

mass with very different strength and stiffness 

(e.g., joints, bedding planes, dykes, new fracture 

planes, etc.) 

Rock mass characteristics of the type listed 

affect the tunnel-support interaction on two 

different scales.  Firstly, they modify the effec- 

tive parameters that are to be used to describe the 

overall rock mass behavior, whether or not a tunnel 

is being driven through the rock.  To the extent 

that the needed parameters are known they can be 

taken into account when adequate numerical analysis 

techniques are used (Singh, 1973).  The problem 

nearly always will be a truly three-dimensional one. 

A second consequence of the presence of the 

above-listed rock mass characteristics is that they 

modify the changes induced by tunneling from the 

ones predicted by the simple continuum analysis 

methods used here.  Specifically, it is possible 

that low strength discontinuities have a dominating 

role in the development of failure around an ad- 

vancing tunnel (Cording, et al., 1971).  Dis- 

continuities will determine the failure mode when 

the stress changes caused by slip along the dis- 

continuity planes disturb the stress field to such 
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an extent that the results as calculated in II.3 

become meaningless.  When the circumferential 

stress is thus reduced or eliminated, it follows 

from the equilibrium condition that the gravity 

force becomes a dominating factor.  The problem 

nearly always will be a truly three-dimensional 

one. 

A simplified and at least qualitative repre- 

sentation of the effect of slip along discontinui- 

ties on the ground reaction curve is shown in 

Figure 11.18.  For the "calculation" of this graph 

it was assumed that no stress deviations from the 

ideal (continuum) solution occur until sudden slip 

(corresponding to a vertical jump in the character- 

istic) causes complete relaxation of a "ring."  The 

weight of the ring (= pressure jump) is then added 

to the required support pressure, and it is assumed 

that further convergence of the rock without the 

relaxed ring is possible and reduces the support 

pressure to be provided there until renewed slip is 

initiated.  It is likely that Figures II.11 corres- 

pond to smoothened-out versions of this ground 

reaction type curve, whether the discontinuous stress 

changes are caused by slip along pre-existing 

discontinuities or by slip along freshly created 
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Figure 11.18. Hypothetical Discontinuous Ground 
Reaction Curve.  Jumps in the 
required support pressure are due 
to the sudden relaxation of a "rock 
ring" caused by slip along dis- 
continuities 

P = 200 psi   c = 10 psi   0 = 30 
Tunnel radius a = 12 feet 
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fracture surfaces. 

II-7.4.  Influence of Tunnel Size on the 

Required Support Pressure.  It is axiomatic to many 

writers discussing the subject of tunnel supports 

that larger support pressures are required in larger 

tunnels.  Neglecting gravity forces, it follows from 

the continuum analysis that the required support 

pressure is independent of the tunnel size.  How- 

ever, this does necessitate heavier supports in a 

larger tunnel.  For a (thin wall) shotcrete liner 

the thickness required to provide the same support 

pressure at the same relative displacement (u&/a) 

is approximately proportional to the tunnel size. 

If the same absolute displacement is allowed, the 

required thickness is proportional to the square of 

the tunnel size (Equation A-28b).  For a steel ring 

with widely spaced blocking, so that only bending 

displacements are significant, the required moment 

of inertia of the steel section is proportional to 

the fourth power of the tunnel radius when the same 

set spacing and the same number of blocks are used 

(Equation A-29, middle term).   For steel sections 

The imposed blocking criterion is usually 
the maximum allowed block point spacing.  Although 
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of the same shape it follows that the cross- 

sectional area and the weight of the sets are 

proportional to the square of the tunnel radius. 

1 5 
(Proportional to a   if the relative rather than 

the absolute displacement is used).  The fact that 

heavier supports are needed in larger tunnels is 

not in itself an indication of increased support 

pressures. 

Support pressure requirements are likely to 

increase with tunnel size in rock masses with an 

average joint spacing much smaller than the tunnel 

dimensions because of the increased number of possible 

displacement modes (Daemen and Fairhurst, 1974). 

A direct method for including a rock strength re- 

duction, causing increased support pressure, with 

larger tunnel size could proceed along similar lines 

as the methods used for the design of mine pillars. 

A variety of such methods (Jaeger and Cook, 1969; 

Obert and Duvall, 1967) postulate that the rock 

strength (<r ) decreases with increasing pillar 

height (t), the rate of decrease being determined 

not directly proportional to the tunnel size, as 
is assumed here, it does increase markedly with 
size (Proctor and White, 1968, pp. 238, 240). 
Observations in tunnels would be required to deter- 
mine what is common practice. 
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by an empirical parameter <X -. 

By analogy one could include similar rela- 

tions for the rock characteristics in the calcula- 

tions of the ground reaction curve, with the tunnel 

diameter (d) relative to a reference diameter (dQ) 

as parameter, e.g., 

o o o 

II-8.  Applications of the Continuum Analysis of 
Rock-support Interaction 

II-8.1.  Tunnel Support Design.  Continuum 

approaches to the problem of rock-support inter- 

action of the type discussed here can be considered 

as intermediate level methods of analysis.  These 

are bounded on the one side by empirical or pseudo- 

empirical methods, on the other side by sophisti- 

cated and all-inclusive numerical techniques. 

The very simple methods base the determination 

of support requirements on a correlation between one 

or a small number of parameters describing the rock 

mass and the necessary support.  Ideally they are 

based on a sufficiently large amount of data 

obtained under a variety of conditions representa- 

tive of those for which the methods are to be used. 
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As a general rule, these methods are based on an 

extremely simple mechanistic model of the tunnel 

support loading mode. 

The highly sophisticated numerical analysis 

methods, at present mainly finite element methods, 

make it possible, at least in principle, to study 

the support loading mechanism in detail, by in- 

corporating in the analysis an extremely wide range 

of possible material behavior models.  Ideally, 

they are based upon a sufficiently large number of 

data about at least one particular location,..so that 

the soundness of the analysis method and the valid- 

ity of the used properties is confirmed by a match 

between predicted and observed behavior. 

As can be expected from its relative position 

inbetween these two extremes, continuum analysis of 

tunnel supports combines some of the advantages and 

some of the disadvantages of both.  It requires 

more information than the simple empirical methods. 

The information required is of a different nature, 

namely specific mechanical properties rather than 

descriptive rock mass characterizations.  On the 

other hand, the needed mechanical properties are 

average values, and less precise detail is necessary, 

whether factual or assumed, than for numerical methods, 
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The information needed for the direct design 

of tunnel supports by means of continuum analysis 

must be sufficient to allow a reasonably accurate 

description of the two structural components, the 

support system and the rock mass.  Within limits 

one can impose a range of permissible values for 

the support characteristic by means of construction 

specifications.  But construction problems in rock 

frequently cannot be predicted to the point where 

very narrow limits on the amount of overbreak can 

be imposed, or where it can be assumed that it is 

a trivial problem to make a reasonable estimate of 

such factors as blocking stiffness, footing stiff- 

ness and strength, rock bolt anchor stiffness. 

Regarding the rock mass behavior, one needs reason- 

ably accurate values for the average strength and 

displacement properties, particularly for the 

residual properties.  Factors that might reduce 

these properties under prolonged loading must be 

considered. Also needed is an estimate of the 

stressfield at tunnel level. 

II-8.2.  Optimum Support Stiffness.  The 

parameters needed for a direct tunnel support 

design by means of continuum analysis are numerous 
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and difficult to measure.  It, therefore, is 

appropriate to ask whether the results from the 

analysis might suggest some general guidelines 

that would be helpful in optimizing support design 

and construction. 

In general, a ground reaction curve can have 

descending and ascending sections.  Ideally the 

support stiffness and the time of support erection 

should be selected in such a way that equilibrium 

is attained at the lowest minimum of the ground 

characteristic.  Ideals not easily being attained, 

the more general question to be answered is whether 

it is preferable to install stiff supports early 

or to install soft supports late.  Figures II.11a, 

b,c indicate that the ground reaction curve is 

characterized by a steeply descending initial part 

followed by a more gradually ascending section when 

the post-failure strength drop is significant, i.e., 

when the residual strength is markedly lower than 

the intact strength and is reached quickly.  This 

general demeanor of the ground reaction is ampli- 

fied when gravity forces are included. 

A stiff support, installed close to the face 

and in intimate contact with the rock, can be 

extremely efficient under such conditions whenever 
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equilibrium is reached at or before the initial 

minimum.  This is consistent with the numerous 

practical observations of the effectiveness of 

shotcrete and rock bolt supports.  The justifica- 

tion of this effectiveness frequently has been 

explained on the basis of the traditional elasto- 

plastic ground reaction curve as derived by Fenner, 

Goguel, Labasse and Kastner.  Explanations of this 

type have been used since the early successful 

use of such supports (Rabcewicz, 1957) up to very 

recently (Egger, 1973).  It would seem more 

reasonable that the logical conclusion from the 

elastoplastic derivation is that the use of yield- 

ing supports (Labasse, 1949) and delayed installa- 

tion following substantial deformation (Fenner, 

1938) would be the most efficient method of sup- 

porting tunnels.  It is probably not incidental that 

these conclusions were accepted fully by these 

authors, both of whom were associated with (Euro- 

pean) coal mining during the time when yielding 

steel roadway and face supports were introduced 

with great success.  The support mechanics along a 

longwall face are clearly entirely different from 

tunnel support mechanics.  But so are the mechanics 

of roadway supports, because the overwhelming 
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majority of mine roadways are repeatedly subjected 

to the influence of nearby large-scale mining 

excavations. 

The contradiction between the logical con- 

clusion from the traditional elastoplastic analysis 

and shotcrete practice becomes particularly strik- 

ing when one considers the great emphasis put on 

the necessity to use appropriate hardening acceler- 

ators . 

While shotcrete and rock bolts will be acti- 

vated rapidly for small displacements, they also 

maintain some flexibility, certainly very shortly 

after installation during initial hardening. 

This flexibility allows the minor displacements 

required to approach optimal support conditions 

without detrimental effects. 

There exists, moreover, an unmistakable 

general trend towards the use of stiffer supports. 

This is illustrated by several typical examples: 

- the replacement of timber sets by blocked 

steel sets 

- the replacement of blocked steel sets by a 

combination of bolts, shotcrete and light 

steel members 

- the replacement of blocked steel sets by 
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shotcreted steel sets 

- the replacement of mechanical anchor bolts 

by grouted bolts 

- the use of jacked~in-place concrete seg- 

ments 

A critical factor determining the shape of 

the ground reaction curve, as illustrated in Figures 

11.11, is the rate of change from the intact to 

the residual strength.  This effectively corres- 

ponds to the sequence or rate of stress relaxation 

around the tunnel.  Two other factors can comple- 

ment such effects. 

The first one is the "additional" load 

component that can be caused by the weight of the 

broken zone (Pacher, 1964).  Prior discussion (II- 

3.4) has indicated that this factor is unlikely to 

be significant except for rather shallow tunnels 

surrounded by rock with an extremely low residual 

friction.  Whenever these gravity loads are 

12The use of unbolted segmented liners does 
not contradict this general trend, because it is 
aimed at reducing the bending stiffness of the 
support ring.  Conditions where increased bending 
stiffness is advantageous would be most unusual. 
There is no doubt, however, that jacking precast 
segments is frequently done in order to minimize 
subsidence rather than to optimize the support 
loads. 
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significant one should expect a pronounced differ- 

ence between roof and floor support requirements 

(Figures 11.4,5).  This is contradictory with 

recommended good practice in difficult tunneling 

conditions, where local gravity effects should be 

most likely to develop (because of a relatively low 

internal friction). 

A second factor, and one generally more likely 

to contribute significantly to the aforementioned 

results is the influence of joints on tunnel sup- 

port requirements.  Slip along joints intersecting 

the tunnel will have a relaxation effect similar 

to that of the strength reduction previously 

treated as a continuous homogeneous phenomenon. 

Taking into account the gradual reduction of joint 

strength with excessive slip, a picture at least 

qualitatively similar to Figures 11.11 can be 

expected. 

There is no reason to expect a similar or 

even qualitatively the same behavior in all rock 

types.  A specific example that is likely to con- 

stitute a different class of behavior is that of 

rock susceptible to large volume increases for 

reasons not associated with failure.  In ground of 

this type there can be distinct disadvantages to 
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the use of unyielding supports.  Displacements 

caused by such volume changes can be accounted for 

in a simplified way by a constant volume change 

factor, similar to the one used in equations II-4.1 

and II-4.3.  It is clear that whatever failure mode 

might occur in such rock, the support characteristic 

is likely to have a rather flattened or level 

appearance. 

II-8.3.  Tunnel Support Instrumentation. 

Whether or not continuum analysis is a viable and 

practical proposition for studying tunnel support 

mechanics will depend on results from comparisons 

between in-situ measurements and calculated pre- 

dictions.  Conversely, the mechanics of support 

action must guide the design of measurement and 

instrumentation programs.  Continuum analysis 

provides the simplest techniques that can be used 

for a reasonably comprehensive evaluation of support 

systems. 

The ultimate answer as to what constitutes 

an optimum support system can be obtained only from 

actual support installations, and the ultimate 

criterion is a strictly öconomical one:  what 

support system will perform all necessary functions 
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and minimize the total cost of the tunnel.  De- 

pending upon the circumstances the support cost 

can vary from a minor to a major fraction of the 

total tunnel cost.  Because the latter case is not 

uncommon and because of the increasing volume of 

tunneling works an increased need for rational 

analysis of support structures is felt, and numer- 

ous methods and variations of analysis procedures 

are being developed.  The assessment of the worth 

of such methods depends upon their validation by 

in-situ observations.  This makes the interpretation 

of in-situ measurements an essential element in a 

comparative evaluation of various design and 

analysis methods. 

The purpose of support instrumentation is to 

observe the equilibrium state reached between rock 

and support.  The problem is highly statically 

indeterminate, and an infinite number of equilibrium 

positions are possible.  The variables fully de- 

fining the equilibrium position of such an in- 

determinate problem are the displacement and the 

stressfields.  An appropriate general instrumenta- 

tion program, therefore, will be planned so that 

sufficient information about these two groups of 

values is obtained to allow an analysis of the 
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support loading.  In order that an understanding 

of the sequence of events leading to the equilib- 

rium state might be achieved, it is necessary to 

know the fundamental characteristics that define 

the problem, i.e., the rock and support properties. 

Corresponding to the complexity or complete- 

ness of the methods of support-rock interaction 

analysis (II-8.1) must be an equivalent complexity 

or completeness of the data gathering and in- 

terpretation effort.  For the simple semi-empirical 

methods an obvious need exists for expanding the 

available data basis.  For design methods that 

correlate one rock mass parameter with one parameter 

defining the support requirements the most efficient 

method of providing a sounder design basis consists 

in increasing the number of instances where the 

two parameters have been observed and the reli- 

ability of the predictions evaluated.  The simple 

empirical methods derive their value from the 

practical limitations that preclude a more compre- 

hensive analysis in many situations.  There are 

obvious limitations to the applicability of such 

simple methods. 

As more complex conditions are encountered, 

the reliability of "correlation methods" not based 
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on the mechanics of the problem decreases.  A two- 

fold reason for this lies in the selection of the 

correlated parameters and in the evaluation of the 

meaning of the resulting correlations.  The selec- 

tion of the parameters used in the correlations is 

quite independent from the method, and the adequacy 

of the choice can neither be vindicated nor refuted 

by the correlation results.  A rather simple tool 

such as continuum analysis can provide valuable 

guidelines as to what parameters must be con- 

sidered if a detailed explanation of the support 

loading mechanism is desired.  The significance 

of the resulting correlations is notably dependent 

upon the assumed statistical model.  From this point 

of view also continuum analysis provides insight 

into the type of mathematical relations that are 

likely to exist between a variety of parameters. 

A complete and detailed analysis of support 

loading, as should in principle be possible with 

appropriate finite element methods, requires a 

very comprehensive body of information.  The 

needed data input might be reduced by a combination 

of statistical and mechanical methods aimed at 

establishing a significance level for the possible 

variables.  Such a reduction is likely to be 
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limited by a general lack of specific knowledge 

about the (wide) range of potential values of the 

potentially large number of significant parameters. 

The wide range of possible numbers facilitates the 

adjustment between observed and calculated results. 

By the same token, this complicates and reduces 

the predictive value of such methods. 

The discussed principles probably can be 

clarified best by means of examples.  A classical 

pseudo-empirical design method is the Terzaghi rock 

load theory (Proctor and White, 1968).  An instru- 

mentation program to solidify the foundation of the 

method would consist in obtaining more data of 

steel set loads and the corresponding rock classifi- 

cation.  Other parameters needed are obtained very 

simply, as only steel set spacing and tunnel size 

are necessary.  The raw data has been obtained in 

several tunnels, but appears to be unpublishable 

unless it has been sanitized by statistical manipu- 

lations sufficient to obfuscate any simple and 

direct meaning behind reams of computer output 

(e.g., Abel, 1967).  A straightforward comparison 

between predicted and measured values for one of 

the most frequently used support design methods 

obviously would be of great value to the tunneling 
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Community at large.  It is doubtful that a sig- 

nificant additional contribution to the improve- 

ment of this method can be expected from more 

detailed observations or from very precise measure- 

ments.  One can select a larger number of rock 

properties and make more detailed observations, and 

correlate the resulting data by means of increas- 

ingly sophisticated statistical techniques.  If 

the selection of the parameters is not based on 

the mechanics of the problem, one is apt to exclude 

significant ones or to include trivial ones.  An 

example of this would be a correlation between some 

rock characteristics and steel set loads (measured 

over prolonged periods of time) while neglecting 

significant stiffness factors such as set spacing, 

blocking point stiffness, temperature changes, 

time-dependent changes of the rock properties.  As 

correlations become more complicated and the number 

of parameters more numerous, the amount of data 

required to guarantee a meaningful sample increases 

rapidly.  While such methods can be of benefit in 

the back-analysis of the support loading in a 

particular tunnel, they cannot be used to predict 

support requirements in different ground for the 

same support type nor for different supports in the 
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same ground.  Indeed, correlations do not provide 

information about the characteristics of either 

of the two interacting elements of the structure. 

Anything more comprehensive than a simple 

empirical analysis must be based on the mechanics 

of tunnel supports in order that causal rather than 

coincidental relations might be established.  Con- 

versely, causal relations such as the ground 

characteristic have to be confirmed by experi- 

mental evidence.  Such a confirmation has to show 

that it is possible to make a reliable estimate of 

tunnel support loading once the stiffness and the 

strength of rock and support are known.  Completing 

the cycle, such experimental confirmations must 

indicate what significant parameters are needed and 

which simplifications are possible in order to 

derive a rational support design method. 



Chapter III 

STIFFNESS ANALYSIS-OF TUNNEL SUPPORT LOADING 
CAUSED BY ROCK FAILURE 

III-l.  Introduction 

Driving a tunnel through a rock mass disturbs 

the equilibrium of the rock mass.  In order to 

maintain a safe opening it is frequently necessary 

to install a support system.  The function of the 

support system is to assist the rock mass in find- 

ing a new state of equilibrium.  This assistance 

is given through the reaction forces developed by 

the support system.  These reaction forces are 

caused by the compression of the support system 

under increasing tunnel wall convergence.  The 

stresses thus induced in the rock by the support 

system strongly depend upon the support system 

stiffness. 

A simplified closed-form analysis of this 

rock-support interaction was given in the preceding 

chapter.  It is clear that, given the complexity 

of the problem, any analysis intended to be more 

III-l 
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than a basic model must invoke numerical methods. 

In order to have a numerical model that is reason- 

ably well balanced, it is necessary that it 

incorporates the two elements of the structure with 

a similar degree of realism.  This requires that 

increasing accuracy or complexity of modeling the 

rock behavior be accompanied by an increased 

sophistication of the support analysis method. 

If, on the other hand, a very simple rock load con- 

cept is acceptable, it is doubtful that a detailed 

analysis of support behavior is necessary or justi- 

fied. 

The tunnel wall convergence depends directly 

upon the rock displacements induced by the tunneling 

operations.  In order to evaluate these displace- 

ments it is necessary to know the pre-tunneling 

equilibrium state as well as the changes caused by 

tunneling.  Within the context of this thesis, the 

full emphasis is put on changes induced by tunnel- 

ing, although it is well recognized that an accurate 

description of the pre-tunneling rock mass 

equilibrium state is a formidable problem in itself. 

The pre-tunneling rock mass will be assumed to be 

a homogeneous elastic continuum characterized by 

known properties and stress distribution.  The 
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changes induced by tunneling will be studied by- 

means of the displacement finite element method. 

While the tunnel walls converge, the support 

system is activated.  The reaction forces thus 

developed determine the final equilibrium around 

the tunnel.  In order to clarify the support system 

behavior a distinction will be made between the 

support itself and the interface between rock and 

support, even though this interface or connection 

can justifiably be considered to be a part of the 

support.  Such a distinction makes it possible, 

however, as was already shown in the simplified 

analysis of the preceding chapter, to illustrate 

the dominating role that can be played by seemingly 

minor construction details.  These details are one 

of the principal reasons for the very wide range of 

possible support characteristics.  They are at the 

basis of the variability and uncertainty regarding 

the support structure, and make the support be- 

havior an "unknown quantity" in a manner not unlike 

the rock behavior, even though support behavior 

uncertainties can be reduced more easily through 

appropriate observations and specifications.  The 

support system will be modeled by means of the 

stiffness method of structural analysis. 
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In this text the methods used for the analysis 

of the two structural components will consistently 

be referred to as the finite element method for 

the rock (continuum) analysis and as the stiffness 

method for the support analysis.  The distinction 

between the two is rather arbitrary, but simplifies 

the terminology.  The finite element method is 

"defined" here as the use of discrete triangular 

and quadrilateral elements to describe the mechanics 

of the (rock) continuum while in the stiffness 

method beam and spring elements are used to describe 

the support system.  There is no generally accepted 

rigorous definition of these and similar methods 

that use matrix analysis for the study of struc- 

tures .  Depending upon one's point of view, one 

can consider the displacement finite element method 

as.used here as a particular type of stiffness 

structural analysis (Przemieniecki, 1968), or one 

might consider the stiffness method as used here 

as a subsection of the finite element method (Desai 

and Abel, 1972). 

The purpose of this chapter is not the develop- 

ment of a computer program that might automate the 

design of tunnel supports by substituting data 

manipulations for engineering judgment.  The purpose 
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is the development of a tool that can assist in 

making an engineering judgment by quantifying and 

rationalizing the procedures for deriving such a 

j udgment. 

III-2.  Finite Element Analysis of Rock Failure 

III-2.1.  Introduction.  Tunnel support load- 

ing is caused by the convergence of the tunnel 

walls that occurs after the support system has been 

installed.  The support pressures thus developed 

must be sufficient to guarantee the stability of 

the opening.  As an extreme condition the stability 

can be guaranteed by maintaining a stress state 

that assures elastic rock behavior.  Even neglecting 

practical problems caused by the very early in- 

stallation and the intimate contact necessary to 

allow the development of such a stress state, it 

remains an excessively conservative proposition and 

an inefficient method to try to recreate an 

equilibrium state equal to or even approximating 

the pre-tunneling state. 

Frequently it is unavoidable (if not un- 

desirable) that some failure does occur around the 

opening.  An optimized support system is one that 

will allow failure to the extent that it helps 
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mobilizing the inherent rock strength and thus 

minimizes the support requirements.  Once the 

optimum is exceeded rock failure can become a 

self-propagating phenomenon.  This situation must 

be avoided. 

The study of the failed rock behavior around 

the tunnel must be directed towards the determina- 

tion of the mentioned optimum, and centered upon 

the analysis of the factors that influence the 

location of the optimum.  These factors character- 

izing the broken rock zone can be determined/ to 

a greater or lesser extent, from two sources: 

laboratory investigations of rock failure and in- 

situ observation of stability problems in tunnels. 

The fundamental information must come from 

controlled investigations on a laboratory scale, 

an<^ in-si tu observations must confirm at least 

qualitatively the extrapolation from the one situa- 

tion to the other.  The extrapolation requires an 

analysis technique that makes it possible to calcu- 

late the consequences of the failure characteristics 

determined under a specific set of circumstances 

for a quite different set of conditions.  The finite 

element method is a numerical analysis technique 

that might be sufficiently powerful and flexible to 
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make such an extension possible.  The use of the 

finite element method in this context requires the 

definition of the basic phenomena that characterize 

rock failure and the formulation of a mathematical 

model that will adequately describe these character- 

istics under the various circumstances for which 

the model is to be used. 

III-2.2.  Characteristics of (Compressive) 

Rock Failure.  The discussion (and the computer 

model) is limited to the failure of rock in purely 

compressive stressfields.  To some extent this 

limitation can be justified by the argument that 

compressive stressfields are more likely around 

tunnels.  Nevertheless this limitation remains 

somewhat artificial. 

The discussion is limited to a phenomeno- 

logical description, and no attempt is made to 

explain the mechanics of failure.  Failure has some 

consequences for the requirements of rock behavior 

description that are significant for determining 

tunnel support requirements, but (hopefully) at a 

level well removed from the point where a detailed 

study of crack initiation and propagation becomes 

necessary.  This presumption is basic for the here 



III-8 

included attempt at a large-scale numerical analysis 

of rock failure effects upon support loading. 

Particularly during the last decade a great 

deal of work has been performed in the area of rock 

fracture mechanics.  This has led, at least on the 

laboratory scale, to a fairly comprehensive des- 

cription of the principal features that characterize 

rock fracture, from failure initiation down to final 

collapse.  It will be assumed here that these 

features, studied mostly on small cylinders in 

triaxial compression, also characterize rock failure 

around tunnels, in polyaxial inhomogeneous stress- 

fields.  The experimental work on which the following 

summary is based has been reported by Wawersik (1968), 

Wawersik and Fairhurst (1970), Wawersik and Brace 

(1971), Brace (1963), Brace, et al. (1966), Brace 

and Byerlee (1966), Wiebols, et al. (1968), Crouch 

(1970a,b; 1971), Bieniawski (1970), Rummel and Fair- 

hurst (1970), Hudson, et al. (1971), Cornet and 

Fairhurst (1974), Cornet (1975). 

Greatly simplified, the fracturing process can 

be described as the progressive but somewhat over- 

lapping sequence of three main developments: 

i.  Micro-fracturing, with opening of cracks, 

volume increase or dilatation and change in "elastic" 
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properties. 

ii.  Decrease in stiffness or strain softening 

and stable or unstable fracturing, i.e., energy 

must be added to or withdrawn from the failing 

rock as the final collapse state is approached. 

iii.  Development of a major throughgoing 

failure plane, characterized by extremely low 

shear stiffness. 

Phenomena i and ii are pervasive properties 

of the failing rock, and on a scale substantially 

larger than that of the "fracture details" the 

failing rock remains homogeneous.  This is no longer 

true in the final collapse stage. 

The principal tool that has been used for 

quantifying the failure behavior is a set of com- 

plete stress-strain and volumetric strain-axial 

strain curves.  For the application to the analysis 

of the long-term stability of underground openings 

it is necessary to have such curves for the rock 

mass while it remains subjected to prolonged loading. 

III-2.3.  Finite Element Simulation of Rock 

Failure. 

III-2.3.1.  Introduction.  The interaction 

between rock and supports is a complicated problem, 

and unless greatly simplifying assumptions are made 
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it is necessary to study it by means of numerical 

techniques.  Presently the most popular of these 

techniques for the study of continuum mechanics 

is the finite element method.  The method has been 

documented exhaustively in a large number of text- 

books (e.g., Martin and Carey, 1973; Desai and 

Abel, 1972; Przemieniecki, 1968), conferences in- 

cluding review and state-of-the-art papers and 

innumerable publications on new developments of 

the method.  A discussion of the fundamentals of 

the method seems therefore superfluous, and reference 

will be made only to publications discussing problems 

related to tunnel stability, rock failure, or both. 

The finite element simulation of rock failure 

used in this thesis closely follows the procedure 

developed by Crouch (1970).  In this approach 

failure propagation is assumed to be equivalent to 

a sequential development of a series of elastic 

states.  Each state is characterized by an 

iterative derivation of appropriate elastic con- 

stants.  The independent variables defining the 

elastic constants are the largest principal strain 

and the smallest principal stress.  The "principal" 

elastic constants are defined as secant values 

from stress-strain and volumetric strain-axial 
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strain curves.  Because of the lack of numerical 

information about failed rock properties some 

"associated" constants are selected upon the basis 

of qualitative considerations. 

III-2.3.2. Literature Survey.  A number of 

methods have been used to study rock failure by 

means of finite element analysis.  The earlier 

developments of this type were based upon the 

finite element methods formulated to study "stable" 

plasticity problems.  Such calculations clearly 

are subject to the same kind of criticism as the 

conventional closed-form plasticity solutions used 

for the evaluation of tunnel support requirements 

that have been discussed in section II-2.  The 

essential shortcoming of such methods is that they 

do not allow for the deterioration of rock proper- 

ties with failure propagation. 

Reyes (1966) and Reyes and Deere (1966) used 

the generalized Mohr-Coulomb criterion (Drucker 

and Prager, 1952) to study the development of 

plastic zones around circular tunnels during 

incremental unloading of the "confining" pressure 

on the tunnel walls.  Kovari (1969) simplified the 

generalized Mohr-Coulomb criterion by eliminating 
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the intermediate principal stress in order to 

reduce computing time.  Kovari imposed incompressible 

flow and used the "initial stress" technique 

(Zienkiewicz, 1971, pp. 372, 381) to solve the 

problem for several lined tunnels.  Kovari included 

a numerical example of the influence of neglecting 

the construction sequence upon the stresses in the 

support.  He used equivalent nodal point forces 

to simulate excavation of the tunnel.  In a more 

recent version of the program (Grob, 1973) the 

fully generalized Drucker and Prager yield surface 

seems to be used. 

Dahl (1969) and Dahl and Voight (1969) used 

an anisotropic generalization of the Mohr-Coulomb 

yield function to study the plastic zone propagation 

around a circular opening subjected to incremental 

external loading.  Dahl (1969) compared results for 

incremental external loading with results for 

incremental unloading of the walls of a hole in a 

stressed medium and found the final results to be 

quite insensitive to the used approach. 

Baker, et al. (1969) used the same generalized 

Mohr-Coulomb criterion as Reyes (1966) with an 

improved method for the "plastic displacement" 

corrections to study stresses and displacements 
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around a deep circular tunnel.  Chang, et al. (1972) 

compared results from an analysis based upon 

Reyes' (1966) derivation with published experi- 

mental results and obtained a qualitatively similar 

behavior.  Baudendistel (1972, 1973) apparently 

used a simple Mohr criterion and some type of 

initial strain technique developed by Malina (1970). 

Desai and Reese (1970) used a simple Mohr failure 

criterion in combination with a non-linear stress- 

strain curve approximated by tangent moduli to 

study failure around an incrementally loaded deep 

borehole.  Hayashi and Hibino (1970) incrementally 

unload the walls of a large underground cavity. 

They assign lower stiffness values to the super- 

ficial layer of blasted rock and use a parabolic 

two-dimensional Mohr envelope as well as a vari- 

able modulus and Poisson's ratio in combination 

with an initial stress analysis that includes a 

time increment.  Ishijima and Suzuki (1970) combine 

the original Griffith criterion with a time- 

dependent decrease of the tensile strength included 

therein and a decreasing modulus as well as an 

increasing Poisson*s ratio to study loading of a' 

circular tunnel support. 

Of particular interest within the context of 
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this thesis, discussing the influence of rock 

failure on tunnel support requirements, are finite 

element analyses that incorporate techniques for 

simulating strain softening behavior.  The incre- 

mental-iterative model with secant orthotropic 

elastic constants developed by Crouch (1970) is 

used in the following section and is discussed 

there in more detail.  Hoyaux and Ladanyi (1970a, 

b) used a somewhat similar pseudo-elastic analysis 

but with isotropic strain-dependent elastic proper- 

ties.  These authors used a two-dimensional Tresca 

as well as a parabolic failure criterion to study 

plastic flow around shallow tunnels in a medium 

with reduced post-peak strength. 

The isotropic secant modulus variation, based 

upon relations between octahedral stress and strain 

had been applied to plate loading tests of sand by 

Girija Vallabhan and Reese (1968) and to the 

analysis of a rock-soil interaction problem by 

Girija vallabhan and Jain (1972).  A combination 

of a variable "secant modulus"  with a stress 

transfer technique is proposed by Lo and Lee (1973), 

Although not defined as "secant " by the 
authors, who used the absolute value of the descend- 
ing slope of the stress-strain curve in the post- 
peak region. 
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The amount of stress transfer is defined by the 

properties of a residual (linear, two-dimensional) 

Mohr-Coulomb envelope.  A similar stress transfer 

analysis for a strain-dependent strength decrease 

has been used by Zienkiewicz, et al. (1970). 

A somewhat extreme example of "secant" 

modulus variation was given by Barla (1972).  At 

(compressive) fracture initiation, determined from 

the modified Griffith criterion (Jaeger and Cook, 

1969, p. 95), the Poisson's ratio is increased to 

account for non-elastic volume increases.  At 

"strength failure," i.e., when a (non-linear) 

failure envelope condition is reached, the strength 

and stiffness of the concerned element(s) are 

equated to zero.  Around a circular opening in a 

hydrostatic stressfield this implies total collapse. 

A straightforward extension of incremental 

nonlinear elastic solutions, including a negative 

shear stiffness in the post-peak region, was used 

by Perloff and Pombo (1969). 

Models of rock failure based upon sequential 

variations of the secant stiffness properties can 

be closely associated with an elastic or pseudo- 

elastic approach.  Some models are based more 

directly upon a plastic formulation of the strain- 
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softening problem.  Prime examples of these are 

the models developed by Gates (1971, 1972), by 

Höeg (1972) and by Isenberg and Bagge (1972).  The 

method proposed by Hoeg involves an extension of 

the von Mises yield criterion, while Gates as well 

as Isenberg and Bagge use a similar extension of 

the generalized Drucker and Prager criterion.  Gates 

formulates a sudden complete reduction to residual 

strength values and combines this with Reyes« (1966) 

stress-strain matrix.  Hoeg and also Isenberg & 

Bagge incorporate a negative strain-hardening term 

in the stiffness matrix in order to simulate a 

strain-softening material.  This procedure had been 

suggested by Dahl (1969, Appendix B) in a discussion 

of the significance of strain softening for rock 

mechanics problems. 

There is little doubt but that serious problems 

remain to be solved in the general area of simulating 

strain-softening behavior by means of finite element 

techniques.  Neither for the pseudo-elastic nor 

for the pseudo-plastic approach have the questions 

of uniqueness, convergence or stability received a 

satisfactory final answer (Crouch, 1970, p. 98; 

isenberg and Bagge, 1972, p. 1157; Desai, 1972, 

p. 36; Lo and Lee, 1972).  Probably the best 
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argument for using such methods at present is the 

heuristic justification invoked by Zienkiewicz 

(1971, p. 370) for engineering applications of non- 

linear finite element analysis. 

III-2.3.3.  Finite Element Simulation of 

Compressive Rock Failure. 

III-2.3.3.1.  Introduction.  The finite 

element analysis of compressive rock failure used 

in this thesis follows an incremental-iterative 

path similar to the one developed by Crouch (1970). 

In this model it is assumed that propagating rock 

failure can be considered as being equivalent to a 

sequence of pseudo-elastic states, each one of 

these corresponding to the rock mass behavior after 

the last load increment or decrement.  After each 

change in boundary conditions, corresponding either 

to a load increment on the structure or to an 

additional step in the sequential excavation of 

an opening in a stressed medium, iterations are 

performed to determine a set of elastic constants 

corresponding to the new stress and strain state 

in every element.  The failed rock is thus treated 

at each increment as an inhomogeneous linearly 

elastic continuum build up of elements with properties 
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derived from the preceding stress and strain con- 

ditions to which they have been subjected. 

The main practical problem with this approach, 

besides the previously-mentioned more fundamental 

difficulties of uniqueness, convergence and sta- 

bility, is the determination of a sequence of 

pseudo-elastic constants that will guarantee a 

fair modeling of rock failure.  In order to illus- 

trate the combination of empirical data, mathe- 

matical derivations and heuristic arguments upon 

which such a selection of equivalent constants is 

based, the procedure will be detailed for a few 

elastic models.  Starting with the assumption of 

isotropy, the models progress from the simplest 

one, one that is probably physically not very 

satisfactory, but that allows the most internally 

coherent and rational derivations. 

III-2.3.3.2.  Isotropie rock failure model. 

Although rock failure causes the rock to lose its 

(presumed initial) isotropy, it is worthwhile to 

discuss the requirements that would be imposed upon 

a set of equivalent isotropic elastic constants 

used to model rock failure.  The assumption of 

isotropy simplifies the mathematical expressions 
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while providing an easier insight into the physical 

nature of the problem and still illustrating the 

general requirements of a finite element rock 

failure model. 

The principal failure characteristics as 

presented in the greatly simplified discussion of 

section III-2.2 are represented, in a linearized 

form that will be used throughout, in Figure III.l. 

These graphs show, for an idealized uniaxial com- 

pression test, the axial stress and the lateral 

strain or volume change as a function of the axial 

strain.  The secant isotropic elastic constants 

at any strain level can be derived from: 

■ e = 4r £■+£'= -^T'*„ = ~2)/e *  du-2-!) z   E   r   6    E  z        z 

The equivalent secant elastic modulus E 

decreases as soon as fracture is initiated, while 

the equivalent Poisson's ratio starts increasing 

at that point.  The changes accelerate in the post- 

peak region, until the residual plateau is reached, 

and the changes slow down rapidly.  In the finite 

element model of the uniaxial compression test the 

elastic constants E3 and V3, after any applied 

strain  increment j, are calculated from: 

£r + *e 
c z 

E3 =-^    ^ TF (III-2.2) 
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Figure III.l.  Idealized Uniaxial Compression 

Stress-Strain Curve and Associated 

Lateral Expansion 6  + 6 . ■ The 
r    © 

Elastic Modulus E and the Poisson's 

Ratio V are Secants. 
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6    and £    +    £    are the total axial stress 
z      r    6 

and lateral volumetric strain in any element with 

total largest principal strain £    after the boundary 

condition increment j has been applied.  The problem 

is solved again with the same boundary conditions, 

and if a significant strain change has occurred in 

one or more elements the elastic constants are 

adjusted so that they correspond to the new strain 

level.  This procedure is iterated until no more 

changes take place.  The next boundary load or dis- 

placement increment or decrement is then applied. 

Rock failure is, even qualitatively, strongly 

dependent upon the confining pressure.  For this 

reason it is necessary to specify the pseudo-elastic 

constants for a range of confining pressure levels. 

In the computer program it is assumed that the 

intermediate principal stress does not influence 

rock fracturing, and that the confining pressure 

equals the smallest principal stress.  The require- 

ments this entails for the finite element analysis 

can be derived by considering an (idealized) tri- 

axial compression test.  In this case the stress- 

strain relations are given by: 

c 6-z - V(<fr + *V    Sz -  2V    ycon 
t
z
=   i E       (III-2.3) 

a -v> < *r + se>   2vsz    2(i-v)<rcon-2^2 
C  + £   _  —=  _ =  cr6 E E E 



111-22 

The secant to the axial stress-strain curve 

is no longer the elastic modulus, and neither is 

the Poisson's ratio (half) the secant of the lateral 

volumetric strain versus axial strain diagram. 

Both curves depend upon both elastic constants, 

and a straightforward derivation as "secants" is 

no longer possible.  In order to find such a direct 

secant definition, one can rewrite equations 

(III-2.3) in terms of the total volumetric strain: 

( S +  C+ S ) (1-2 V)   £   +2  <T 
r  e  z  _  z   con 

r ' ~Q   "   z E 3K 
(III-2.4) 

It is thus possible, from a plot of the total 

volumetric strain versus the first stress invariant, 

to define the bulk modulus K as a pseudo-elastic 

constant.  A second (independent) elastic constant 

that can be derived from a polyaxial test is the 

shear modulus G.  Indeed, one can rewrite (III-2.3) 

in the form: 

*    S*+Sr        (2V V V(1+^)   *«- *con 
z "  2  = 2E 2G 

(III-2.5) 

Equations (III-2.4) and (III-2.5) permit the 

derivation of the two independent "secant" elastic 

constants K and G. It is then a trivial matter to 

calculate the corresponding values for the Poisson's 
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ratio V and for the elastic modulus E that are used 

in the stiffness matrix formulation. 

Equations (III-2.4) and (III-2.5) indicate 

limiting necessary conditions that must be satis- 

fied by the "experimental" volume-stress-strain 

relations in order that they might be represented 

by an equivalent secant isotropic model.  From the 

conditions that bulk and shear modulus must be 

positive follow the requirements: 

^r+ £e+   ez >0  2£z- ^e + ^V > ° 

Alternatively this  can be expressed as: 

E-  9  KG 3   K -   2   G 
E"3K+G>U 2(3   K+G) 2 

The last of the latter conditions clearly 

indicates the restrictive character of the iso- 

tropic model.  Indeed, numerous experiments have 

shown that frequently, and even well before the 

peak strength is reached, the tested rock could no 

longer be considered as an "equivalent isotropic" 

material, because such an assumption would violate 

the requirement that the Poisson's ratio should 

not exceed 0.5. 

A somewhat arbitrarily selected set of com- 

plete stress-strain curves is shown in Figures III.2, 

Intact and residual strengths were selected so that 
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the intact and residual failure envelopes would be 

linear (0. = 30°, 0    =  15°).  In order to illustrate 

the restrictions imposed by the isotropy conditions, 

long-dashed lines on Figures b and c indicate 

the limits of the domain that can be covered by an 

isotropic model.  These lines correspond to a 

residual Poisson's ratio equal to one-half.  Because 

numerical instabilities in the solution of the 

stiffness equations are likely to occur well before 

this limit is reached, a bound of more practical 

significance is indicated by the solid lines, 

corresponding to a maximum residual Poisson's 

ratio of 0.45.  As a consequence of this restriction 

the volume increase (Figure III.2c - K secant) ends 

when the peak strength is reached.  The initial 

section of the graphs in III.2b corresponds to an 

idealized triaxial test in which the pressures are 

increased hydrostatically until the confining 

pressure is reached (solid lines) or in which the 

confining pressure is applied first (dotted lines). 

Two possibilities exist for the use of the 

preceding derivations in the plane strain finite 

element analysis.  It is possible to use a set of 

curves as shown in Figures III.2 as input data, 

and to consider the resulting largest principal 
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°"con = 10,000 psl 

Figure III.2a.  Set of Idealized Complete Stress- 

Strain Curves for Various Confining 

Pressures 6*    and for Linear 
con 

Intact and Residual Failure 

Envelopes, with Angles of Internal 

Friction 0. - JO  and 0  - lrj 

respectively. 
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Figure III.2b.  Set of Idealized Lateral Expansion 

( £  + £ ) Curves Associated with 
r    G 

Stress-Strain Curves of Figure 

III.2a. 

Solid lines are for a residual 
Poisson's ratio of 0.45, long- 
dashed lines for a residual Poisson's 
ratio of 0.5.  The initial (at 
origin) loading path is for a test 
in which the pressures are increased 
hydrostatically until the confining 
pressure is reached (solid lines) 
or for a test in which the confining 
pressure is applied prior to any 
axial load (dotted lines). 
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crcon 10,000 psi 

Figure III.2c. Mean Hydrostatic Stress or First 
Stress Invariant Versus Dilatation 
or First Strain Invariant Correspond- 
ing to the Stress-Strain-Volume 
Behavior of Figures III.2a and b. 
The bulk modulus K is secant.  Solid 
lines correspond to a residual 
Poisson's ratio of 0.45, dashed 
lines to a residual Poisson's ratio 
0.5. 
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°"con = 8,000 psi 
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Figure III.2d. Stress Deviator Versus Strain 
Deviator Corresponding to the 
Stress-Strain-Volume Behavior of 
Figures III.2a and b. 

The shear modulus G is secant. 
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strain and smallest principal stress in every (plane) 

element as equivalent to the axial strain and the 

confining pressure in polyaxial tests. One would 

then proceed by using equations (III-2.4) and 

(III-2.5) to calculate the equivalent elastic con- 

stants.  The simplified results of such a translation 

from a triaxial to a plane strain domain performed 

(analytically) on the graphs on Figures III.2a and b 

are shown in Figures III.3a and b.  These results 

are not strictly "linear" because of the simul- 

taneous change of the Poisson's ratio and of the 

elastic modulus.  (An indication of the simplifica- 

tion introduced here is given, in the ascending 

section only, by the dotted lines for the zero 

confining pressure curve). 

An alternative approach was incorporated into 

the computer program included in Appendix C.  It 

was assumed that a set of (idealized) results from 

a series of plane strain tests at different "con- 

fining" pressures were available, and that their 

appearance would be entirely similar to that of 

Figures III.3.  The pseudo-elastic constants are 

calculated directly from the following expressions, 

the equivalents of (III-2.4) and (III-2.5) for the 

plane strain case: , 
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Figure III.3a. Idealized Plane Strain (£  = 0) 

Axial Stress-Strain Curves Derived 

From Triaxial Curves of Figures 

III.2a and b. 
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Figure III.3b. Idealized Plane Strain Curves of 
the Lateral Expansion Versus the 
Axial Strain Derived from Tri- 
axial Curves of Figures III.2a 
and b. 
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G   S    -   £     6 

( 6   + O   £  -< 6   + <f ) £ X        Z X z X        z 
(III-2.6) 

(1+V)   [(1-V)  (fz - V<5x] 
B.  . K  

The derivation of these equations, in which 

the z-direction corresponds to the larger and the 

x-direction to the smaller in-plane directions, is 

given in Appendix B-l.  The numerical approximations 

calculated according to this method, with a single 

square finite element, for a minimum principal 

stress equal to zero and for a minimum principal 

stress equal to 6,000 psi respectively are shown in 

Figures III.4a and b.  The solid lines and squared 

points are input, while the dotted lines and circled 

points indicate the successive approximations under 

stepwise increased axial strain. 

III-2.3.3.3.  Orthotropic rock failure model. 

Rock fracture initiation coincides with the develop- 

ment or propagation of cracks, usually in preferred 

directions, depending upon the three-dimensional 

stress state.  Detailed study of the fracture 

mechanism (see authors listed in section III-2.2, 

particularly Wawersik) has clearly revealed this 

directional character of crack development and rock 
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Figure III.4a, Numerical Approximation (dashed 
lines, circled points) to an 
Idealized Plane Strain Compression 
Input (solid lines, squared points) 
for Zero Minimum Principal Stress. 
Calculation with one square finite 
element and stepwise incremented 
largest principal strain c . 
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Figure III.4b. Numerical Approximation (dashed 
lines, circled points) to an 
Idealized Plane Strain Compression 
Input (solid lines, squared points) 
for a Minimum Principal Stress of 
6,000 psi.  Calculation with one 
square finite element and stepwise 
incremented largest principal 

strain £ . 
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failure.  This implies that an isotropic model is 

unlikely to be satisfactory for the description of 

rock failure. 

The most reasonable three-dimensional generaliza- 

tion of the isotropic pseudo-elastic failure model 

would seem to be that of an orthotropic medium 

(orthogonally-anisotropic or orthorombic; Lekhnitskii, 

1963, p. 19; Hearmon, 1961, p. 36), i.e., a material 

with three orthogonal planes of elastic symmetry. 

The three planes of symmetry are assumed to 

correspond pointwise to the planes perpendicular 

to the principal stress directions.  This is based 

on the assumption that the facility of crack develop- 

ment in a particular direction, and therefore the 

directional softening and dilatancy, is determined 

by and only by the principal stresses, their 

directions and relative values. 

It is obvious that the determination of the 

nine independent elastic constants in this model is 

a major task, and a problem that requires, in the 

absence of experimental data, that several assump- 

tions be made.  In order to develop some guidelines 

for the selection of these constants it is worthwhile 

to look in some more detail at the triaxial com- 

pressive test, one of the most frequently performed 
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and therefore best documented rock tests.  In an 

ideal triaxial test the radial and tangential 

directions are fully equivalent ( 6    = 0    and 

£     = £  ) .     Assuming that this remains true during 

failure, the orthotropic model can be reduced to a 

transversally isotropic one, the number of inde- 

pendent elastic constants reduces to five, and the 

stress-strain relations can be written as: 

«r"Vl ^0    VJ,<     y     _! £   =    qr      i    e   - ~ 6   y   = 
E2  "  - 

rz 
E E^  z  rz   G 

7 ez = -—          (III-2.7) 

rer 
2<1+VV *er 

En 

fce    E       E2 z 

fcz  E2 
v r   e;  E2 

There is little or no information about values 

for the shear modulus during rock failure, and 

therefore its value is determined from the follow- 

ing combination: 

2V 
i = i- + i- + —- (III-2.8) 
G   El   E2   E2 

This reduces to the correct expression for an 

isotropic material, and it is a special reduction 

from the more general formulation given in Appendix 

B-4. 

It is possible to derive some information 
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about the secant elastic properties from a uniaxial 

compressive test on a cylindrical rock specimen, 

as equations (III-2.7) then reduce to: 

2 * 6 
£   + £ =„—£<T  €    =-r~       (III-2.9) cr   e ■  E2   z   z   E2 

Complementing this with assumed relations for 

the remaining unknown constants ^ and E1 fully 

defines the pseudo-elastic sequence.  The problem 

is somewhat more complicated in a conventional 

triaxial test, where, with ^con =  &r  = ^@' the 

following relations are measured: 

2(1- Vn) S 2 V 
c        c 1  con   2 ar + Se = II  - ""ST ^ 

(III-2.10) 
2» „  S 6* 

c  -     2  con   z 
tz   "    E2       E2 

It does not appear feasible to reduce these 

equations into a form that permits a direct secant 

formulation of the type given by equations (III-2.4) 

and (III-2.5) for the isotropic material.  The 

most direct approach to the determination of the 

elastic constants is then based upon the substitu- 

tion of assumed relations for V and E1 in function 

of V2 and E2 into (III-2.10), followed by a point- 

wise calculation along the stress-strain curves of 

the appropriate elastic constants for various 
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confining pressures.  The assumed relations between 

the elastic constants must, as a minimum condition, 

correspond to an assumption that is physically 

reasonable.  One such relation was proposed and 

discussed in some detail by Crouch (1970, p. 90): 

E 
^o 

E V2 V  =  JTJ 
1   i+* (-4^-1) i +*<-?-- -1) 

(III-2.11) 

E and V   are the initial elastic modulus and 
o     o 

Poisson's ratio of the unfailed (isotropic) rock, 

Ä is an as yet undetermined parameter.  These 

relations were based on the assumption that the 

stiffness perpendicular to the largest principal 

stress decreases with increasing (inelastic) 

lateral expansion.  Substituting expressions (III-2.11) 

into the stress-strain relations (III-2.10) results 

in equations for all elastic constants in function 

of the stress-strain-volume input data.  In order 

to ensure positive definiteness of the sequential 

elastic systems, it is necessary to impose con- 

ditions similar to the requirements that the iso- 

tropic modulus be positive and the Poisson's ratio 

less than one-half; the choice of the as yet un- 

determined parameter «£• facilitates satisfying 

this requirement.  Details and manipulations are 
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given in Appendix B-3, as well as a more compre- 

hensive discussion of the problems involved in the 

calculations. 

In order to apply a derivation similar to 

the preceding one for the analysis of a polyaxial 

test to the study of a plane strain problem, 

accepting the anisotropy assumption for which far 

less justification exists in this case, it is 

necessary to make several decisions.  The first 

and most straightforward possibility at this stage 

is the one previously mentioned in the discussion 

of the isotropic model:  analyze the plane strain 

problem, consider the largest principal strain 

and the smallest principal stress in each element 

and at every iteration as independent variables 

equivalent to the axial strain and the confining 

pressure in the triaxial test, and calculate the 

new elastic constants with the expressions derived 

in Appendix B-3, based upon the preceding discussion. 

The last decision that remains open then is whether 

to assign the plane strain direction constants 

equal to those in the direction of the largest 

principal strain or equal to those in the direction 

2 
of the smallest principal stress. 

2 
Back-analysis of plane-strain experiments 
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An alternative method, again parallel to the 

isotropic discussion, is to start with the assump- 

tion of the availability of plane strain data input. 

The expressions used for the calculation of the 

sequence of elastic constants are then derived 

directly from the plane strain stress-strain formu- 

lations.  It will then be necessary to start the 

derivation with the decision of whether the plane 

strain direction is equivalent to the largest 

strain or to the smallest stress direction.  A 

more comprehensive discussion of this alternative 

is presented in Appendix B-3. 

There is little doubt but that the physically 

most appealing model is the fully orthotropic one. 

Moreover, a fully consistent formulation of such a 

model would eliminate the need for a separate 

consideration of each particular boundary condition 

problem (e.g., plane strain versus triaxial), a 

particularly inelegant aspect of the preceding dis- 

cussion.  Unfortunately, the number of constants and 

the lack of experimental evidence create a situation 

where the derivation of equivalent elastic constants 

on rock could provide an indication which is more 
appropriate, or whether the anisotropy assumption 
is a reasonable one altogether. 
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becomes increasingly arbitrary and artificial. 

Ideally, one should wish for a completely sym- 

metric formulation of the derivation of the 

equivalent pseudo-elastic constants, in such a 

form that "special cases" such as plane strain or 

axisymmetric conditions could logically and simply 

be derived from it.  Such a formulation has not 

been attempted here. 

III-3.  Stiffness Analysis of Tunnel Supports 

III-3.1.  Introduction.  Two basic require- 

ments must be satisfied by a support model that is 

to be part of the numerical analysis of the rock- 

structure interaction.  In the first place it must 

permit the generation of realistic reaction forces. 

This requires that the support model, compressed 

during tunnel convergence, induces accurate support 

stresses in the rock mass.  In the second place it 

is necessary to obtain sufficient information 

about the stresses in the support, so that the 

safety as well as the efficiency of the system can 

be evaluated. 

Several stiffness methods have been used to 

study support behavior and the influence of supports 

on tunnel stability.  One of the simplest methods, 

and one that has some attractiveness when one has 
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access only to a very simple finite element pro- 

gram consists in using constant strain triangular 

or linear strain quadrilateral plane elements 

(e.g., Zienkiewicz, et al., 1968; Zienkiewicz, 1971, 

p. 389; Baudendistel, 1972, 1973).  Part of the 

overall mesh is then used to represent the support 

system, and the elements in that part are given 

support (e.g., concrete) properties,  in principle 

it should be possible to use such a method.  But 

because of the poor characteristics of these 

"simple" elements under bending conditions it is 

necessary to use a large number of elements across 

the support section, or to limit these methods to 

problems where bending strains are comparatively 

small.  It will be shown in the next section that 

the support models used by the aforementioned 

authors are inadequate for the types of support 

loading they considered. 

A second very simple support model is obtained 

by representing the support action as a pressure 

applied to the tunnel walls (Heuze and Goodman, 

1972).  As in the preceding case, its simplicity 

makes this model attractive.  It does assume that 

the support behavior is known, rather than provide 

information about it.  Nevertheless, under 
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appropriate conditions, such as the case of a 

failed support considered by Heuze and Goodman 

(1972),  it provides an approximation that could be 

improved only by going to a great deal of sophistica- 

tion. 

A more precise tool for modeling the support 

system is provided by stiffness structural analysis. 

Kovari (1969) derived a combination of one-dimen- 

sional bar elements, equivalent to a concrete 

liner.  Dixon (1969, 1971, 1973) and Isenberg 

(1973) used beam elements to represent the support. 

Ihis type of element will be used here, because it 

minimizes the number of equations needed for 

adequate support representation, while allowing 

an accurate stiffness model and providing full 

information about support moments, stresses and 

displacements. 

A general discussion of the necessary require- 

ments to be satisfied by a support model must be 

restricted by the great variability of support 

characteristics.  Because this variability is 

mainly related to installation procedures and con- 

struction details, it is necessary to pay careful 

attention to the elements that determine the stiff- 

ness of the rock-support interface.  The same 
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factors that were shown to have a dominating role 

on the support system stiffness in section II-6 

must also be considered here, in addition to fac- 

tors that can become significant in the general 

non-axisymmetric case.  The requirements this 

poses for the numerical model will be discussed 

separately for a variety of support methods, as 

indeed different support systems tend to have very 

different interface structures. 

III-3.2.  Stiffness Model of Tunnel Supports. 

A very simple model for shotcrete and concrete 

supports has been used by Baudendistel (1972, 1973) 

and by Zienkiewicz (1968, 1971).  Because it makes 

use of triangular and quadrilateral elements, its 

incorporation into a finite element analysis is of 

trivial facility and therefore very tempting.  Such 

a method must raise serious doubts as to the accuracy 

of the results, because of the questionable value 

of the used element types when a single element 

must account for the entire strain variation 

associated with bending or for a large fraction 

thereof.  Such situations do arise in most of the 

problems discussed by the above-mentioned authors. 

Indeed, because a relatively large number of 
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elements is already used to represent the rock 

mass, one tends to minimize the number of elements 

used to represent the support structure.  Such a 

minimization can easily lead to large numerical 

inaccuracies in stress and displacement results. 

Although fairly large errors in some of these 

results might be acceptable, one should be aware 

of conditions where they can occur, as well as of 

the cumulative effect they can have.  The latter 

consequence results from the fact that under non- 

homogeneous loading the models described by the 

preceding authors tend to be much stiffer than the 

actual supports they are supposed to represent, 

i.e., the external displacements of the support, 

at the rock-support contact, tend to be smaller 

than the true values.  This obviously influences the 

results of iterative schemes used to approach non- 

linear rock mass behavior.  By the SÄme token it 

makes the use of such simple methods unreliable 

for the calculation of the stress distribution in 

the support, i.e., for evaluating the safety or 

the efficiency of a particular system. 

The support models used by Zienkiewicz, et 

al. (1968) and by Baudendistel (1972, 1973) are 

shown in Figures III.5a and b, as well as the 
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Figure III.5a. Tunnel Support Model (A) Used by 
Zienkiewicz, et al. (1968) and 
Loading Conditions (B-E) used to 
Evaluate the Adequacy of the Model. 
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Figure III.5b, Tunnel Support Model (A) used by 
Baudendistel (1972, 1973) and 
Loading Conditions (B-G) used to 
Evaluate the Adequacy of the Model, 
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loading configurations that have been used to 

evaluate the adequacy of the models.  The results 

of the evaluation are summarized in Table III-l. 

The first column of this table gives a problem 

designation, corresponding to Figure III.5a for 

Z and to Figure III.5b for B.  The second letter 

3 
indicates the loading case. 

Two types of stiffness models have been 

used, and the results under various loads compared 

with the theoretical results.  For the in-plane 

plate element analysis either constant strain 

3 
All calculations on which the results in 

this section are based were performed with FORTRAN 
programs in single precision arithmetic on a CDC 
6600 computer (with about 14 significant decimal 
digits per word).  This should minimize the errors 
compared to the ones resulting on most other com- 
puter types.  Gaussian block elimination was used 
to solve the stiffness equations.  The nodal point 
numbering system was always the same, and corresponded 
to a solution sequence away from the fixed nodes 
(e.g., ZB, BE, BF), towards the fixed nodes (e.g., 
ZE, BG), or a mixed sequence (e.g., BC) .  This type 
of analysis should correspond reasonably well to 
an analysis that might be performed under routine 
conditions, when no special attention is paid to 
error minimization.  It is realized that the matrix 
population density is particularly low in these 
problems, lower than it would be if the supports 
were connected within a larger mesh, so that the 
errors are likely to be larger, at least if they 
contain an error component due to the equation 
solver (Melosh, 1969). 



111-49 

Table III-l. Relative Errors (%)   for Support 
Stiffness Models Consisting of in- 
plane Elements and of Beam Elements. 
Loading cases and meshes are illus- 
trated in Figure III.5a for problems 
Z and in Figure III.5b for problems B 

Plate Elements Beam Elements 

Problem Type 
No. 
El. 

No. 
NP 

% 
Error 

No. 
El. 

No. 
NP 

% 
Error 

ZB T 36 30 0.8 

ZC T 36 30 165. 9 10 4.04 

ZD T 36 30 170. 9 10 0.24 

ZE T 25 21 94.6 

BB Q 20 42 0.2 

BC Q 20 42 1366. 20 21 0.73 

BC T 80 62 1370. 

BC QS 20 42 23.1 

BD Q 20 42 160.2 20 21 1.30 

BD QS 20 42 295. 

BE Q 20 42 1358. 20 21 0.31 

BE QS 20 42 48.8 

BF Q 10 22 1405. 10 11 0.52 

BF QS 10 22 91.7 

BG Q 10 22 1380. 10 11 0.01 

BG QS 10 22 38.8 
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triangular elements (T), quadrilateral (Q) elements 

with a stiffness matrix build up from four tri- 

angles and elimination of the central nodal point, 

or a higher order quadrilateral element (QS, 

Wilson, 1970) have been used.  The number of ele- 

ments and the number of nodal points is tabulated 

so that a quick comparison of the work necessary 

to calculate the stiffness matrix and of the number 

of equations to be solved is possible.  The largest 

relative error in the nodal point displacements is 

given in the last column of each of the basic 

element type tabulations. 

The relative errors that occur with the plate 

element model clearly indicate the existence of 

two very different types of problems.  Very accurate 

displacement results are obtained for a thick wall 

cylinder under radially symmetric load (problems 

ZB and BB).  Very large errors occur in all tested 

cases where bending displacements dominate.  None 

such errors are observed in the models using 

(straight) beam elements.  As would be expected in 

the displacement finite element method, the errors 

in the stresses at the element centers tend to be 

more erratic and generally larger than the dis- 

placement errors. 
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The very poor behavior of the "triangular" 

and the "quadrilateral" models under bending is 

very clear, and not unexpected (Zienkiewicz, 1971, 

p. 155; Wilson, 1970).  More specifically for tunnel 

supports, Vouille (1974) used triangular elements 

with six nodal points, and justified this choice by 

mentioning the difficulty of obtaining adequate 

accuracy with simpler elements.  Although the 

meshes of Figure III.5 would be adequate under some 

very special circumstances, e.g., hydrostatic 

loading and circular structure, and small varia- 

tions thereof, it would appear that beam elements 

can usually be relied upon to provide better results 

with less computing time. 

III-3.3.  Stiffness Model of the Rock-Support 

Interface. 

III-3.3.1.  Introduction.  Incorporating the 

connection between rock and support into the 

analysis requires as much care as does the develop- 

ment of rock and support models.  This could already 

be expected from the results in section II-6, where 

it was shown how dominant the influence of connecting 

elements can be upon the overall stiffness of the 

support in a circular tunnel.  In the general case 
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of non-hydrostatic loading and non-circular problem 

geometry some additional factors will have to be 

considered. 

A realistic discussion of the support-rock 

mass interaction must take into account the three- 

dimensional nature of the problem.  This aspect of 

tunnel support loading will be taken up in more 

detail in section III-4.2. 

The interface between rock and supports must 

be characterized by an appropriate combination of 

shear and normal stiffness.  What constitutes an 

"appropriate combination" will depend on the support 

type, and also rather strongly on construction 

procedures.  For these reasons the interface con- 

nections will be discussed separately for a number 

of common support systems.  The type of interface 

stiffness also has an influence upon the require- 

ments to be imposed on the support model itself. 

A complete separation of the two would be somewhat 

artificial and therefore this mutual influence 

also is discussed under this heading. 

Although the principles of an interface model 

can be based on mechanical concepts, the numerical 

values can be obtained only from actual installed 

supports.  For some support types it is possible to 



111-53 

combine visual observation with simple assumptions 

to obtain a reasonable estimate of the interface 

stiffness.  For other support types this is a very 

questionable approach, although it is generally 

unavoidable.  Indeed, the published information on 

the subject is widely scattered, usually more or 

less incidentally included in the presentation of 

case histories, and frequently incomplete and 

qualitative or descriptive.  One of the few definite 

statements that can be made is that a wide range of 

stiffness values do occur.  It is therefore worth- 

while to consider the consequences of such vari- 

ations for support requirements, and particularly 

their influence on the efficiency of various support 

systems. 

III-3.3.2.  Stiffness model of a blocked 

steel set.  The analysis of a blocked steel set as 

a stiffness structural problem is of practical 

significance because of the continued widespread use 

of steel supports.  In addition it allows an easy 

illustration of the problems that arise in the 

development of a realistic model for a rather 

simple support structure. 

The basic model of the blocked steel set is 

shown in Figure III.6.  The steel set itself is 
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Figure  III.6. Stiffness Model of a Blocked Steel 
Set. 

A:  Beam Element 
B:  Hinged Bar (Spring) Element 
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represented by a number of straight beam elements, 

and the wooden blocks by one-dimensional bar ele- 

ments.  These springs function in compression only. 

The external hinges on the spring element coincide 

with finite element mesh nodal points representing 

points on the tunnel circumference.  The model 

implies that no shear stiffness exists between rock 

and steel.  This can be justified by the very low 

combined shear strength of the wood-rock contact, 

the wood-wood contacts, the wood-steel contact and 

the wood shear stiffness (Proctor and White, 1968, 

pp. 208-209).  This justification also implies that 

all set loads are in-plane loads, a conclusion that 

might be valid in clean-cut situations, with rela- 

tively large overbreak and consistent separation 

between rock and steel.  Frequently this is not 

the case, particularly when the convergence is 

large and a soft ground embeds the steel set.  In 

such situations there is no reason to presume that 

the rock displacement patterns are limited to two 

dimensions, and this is especially unlikely when 

the rock behavior is dominated by joints, shear 

zones or other discontinuities.  The simplest 

evidence for out-of-plane loads is given by the 

turning over of steel sets. 
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The stiffness calculation will commonly be 

performed internally, and it is therefore necessary 

to adjust the input parameters in such a way that 

the pointwise, three-dimensional nature of the 

contact between rock and steel set is accounted 

for.  The simplest way to make this adjustment for 

the steel set itself is by using the properties of 

the steel set as installed, and multiplying the 

stiffness matrix of the surrounding rock mass with 

a thickness factor equal to the set spacing.  The 

stiffness of the wood blocking can be estimated 

from the (usually flimsy) available information 

about block spacing, amount of overbreak, type of 

block build-up, and care exerted in the blocking 

point construction.  Maintaining a constant dis- 

tance between rock and steel set facilitates data 

generation, and therefore stiffness variations of 

the blocking points can best be entered as variations 

in area and in elastic modulus.  It is likely that 

a statistical variation of such parameters, based 

upon a sufficiently large number of observations of 

blocked steel sets, could produce a range of block- 

ing point types and spacings that covers common 

practice. 

Of particular significance in the analysis of 
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a horseshoe-shaped steel set as shown in Figure 

III.6 is the characterization of the footing 

spring.  This footing spring is a very simple symbol 

for a complex structural component consisting of 

the connection between the steel set and the wall 

plate, the wall plate itself, what frequently amounts 

to not much more but a very wet layer of disinte- 

grated rock, and finally the floor rock itself, 

more or less scattered depending upon the amount 

of explosives used to avoid tight corners.  The 

footing stiffness can have a dominant influence 

upon the overall vertical stiffness of the support. 

This is particularly so because it is not uncommon 

that footings have less strength than the sets 

resting on them.  Some examples of situations where 

this condition exists can be seen in Proctor and 

White (196S), pp. 84, 86, 126.  A case of wall plate 

collapse is described by Hopper, et al. (1972). 

Numerous factors complicate a straightforward 

definition of the footing spring, but they all 

tend to indicate that this spring, unless its real 

equivalent is carefully designed and built, will be 

of lower strength, will be non-linear and will be 

of greatly reduced stiffness in comparison with 

the steel set resting on it. 
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III-3.3.3.  Stiffness model of shotcrete 

support.  The interface modeling problem for a 

shotcrete support is likely to be nonexistent in 

most situations where shotcrete can be applied 

successfully.  In such situations the assumption of 

complete displacement continuity between rock and 

support is probably realistic.  This eliminates 

the interface modeling problem, but by the same 

token greatly complicates the overall support 

modeling problem.  Because shotcrete is usually 

sprayed as close to the face as possible, the 

problem of the initial loading sequence is generally 
* 

three-dimensional.  Because of the shear stiffness 

between rock and support tangential load components, 

in-plane as well as out-of-plane forces do exist. 

Moreover, the major three-dimensional effects 

coincide with the period of rapid change in stiff- 

ness of the shotcrete layer.  An additional problem, 

of main but not exclusive interest in blasted 

tunnels, is posed by surface irregularities.  It is 

next to impossible to model all irregularities in 

detail.  But when they have a major effect upon 

the shotcrete behavior (e.g., Mahar, et al., 1972, 

p. 675) a model that entirely negates their in- 

fluence is obviously inadequate. 
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III.3.3.4.  Cast-in-place concrete.  Pouring 

of concrete generally proceeds only after the 

stability of the tunnel has been guaranteed, at 

least temporarily.  If the temporary support is 

left in place, unchanged, during the concreting 

operation, loading of the concrete liner will occur 

only when a stiffness change develops in any of 

the components of the statically indeterminate 

structural system.  Concrete support loading is 

therefore essentially a time-dependent phenomenon. 

The interface between cast-in-place concrete 

and rock will greatly depend upon the construction 

techniques employed during casting.  In any event, 

a complete displacement continuity between rock 

and concrete (as assumed for example by Zienkiewicz, 

et al., 1968) is unlikely to exist.  The most 

obvious reason for this is the almost unavoidable 

gap between rock and concrete in the roof following 

concrete settlement, and the all-around influence 

of shrinkage.  With the growing tendency to avoid 

the labor costs associated with removing the wood 

blocks, and the use of longer telescoping concrete 

forms it becomes more difficult to assure a homo- 

geneous distribution of concrete around the entire 

tunnel periphery. 
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For these reasons, and given the lack of 

published field information, the contact problem 

for a concrete liner remains largely an unknown 

quantity.  Reasonable assumptions for a first 

approach to an analysis are that the shear stiff- 

ness of the contact will be very low, and that 

numerous gaps will cause a quite erratically 

variable normal stiffness distribution, with very 

low normal stiffness likely during the initial 

tunnel convergence following concreting. 

III-3.3.5.  Rock bolt model.  The interaction 

between mechanical bolts and rock is determined by 

the strength of the anchor and of the bearing plate 

contacts.  A realistic model must allow slip or 

crushing at an appropriate stress level. 

The interaction between grouted bolts and 

rock is determined by the shear stiffness along 

the bolt of the grout-rock and grout-bolt contact 

as well as by the shear stiffness of the grout 

itself.  The relative displacements allowed by 

these shear elements determine the induced stresses, 

and thus the stabilizing effect of the bolts.  The 

relative displacements depend on the quality of 

the contacts, and this is likely to depend upon 
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rock type, precision of the drilled hole and work- 

manship quality. 

A detailed stiffness model of a bolt would 

require a very large number of elements to repre- 

sent the great stiffness variations between steel# 

grout and rock that occur over very short distances, 

and would have to be three-dimensional. 

III-3.3.6.  Concluding remarks on the 

support-rock interface model.  The connecting ele- 

ments, or the absence thereof, between rock and 

support can be considered as an integral part of 

the support system if so desired.  They can certainly 

not be treated as a fully known quantity, however, 

but are more likely to be very variable and fre- 

quently unknown parameters.  This obviously does 

not mean that their importance can be neglected, 

but requires that a reasonable assessment be made 

of what range of stiffness parameters might 

characterize the interface. 

As more sophisticated and costly analysis 

techniques are used it becomes necessary to include 

such variations more precisely if the improved 

techniques are to be truly as realistic as they are 

assumed to be.  The above discussion centered on 
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the problems this creates for some of the commonly 

used support systems.  Stiffness analysis is a 

powerful tool/ and in its most advanced forms can 

deal with the problems.  This does not alleviate 

the problem of obtaining adequate information, in 

fact, as the model becomes more comprehensive and 

complicated the input information problem becomes 

more acute.  This does not negate the value of the 

analysis method for studying the significance of 

the various parameters, but its efficient use as 

a design tool prerequires parametric analyses in 

order to determine what are the truly important 

parameters. 

III-4.  Stiffness Analysis of Tunnel Support 
Loading Caused by Rock Failure 

III-4.1.  Introduction.  The progressive 

loading of tunnel supports during the face advance 

is studied in two ways.  In the first approach the 

three-dimensional problem is reduced to a two- 

dimensional one by considering an axisymmetric 

case.  Tunnel and support are circular (or at 

least the tunnel support stiffness can be reduced 

to an axisymmetric expression), the stressfield is 

hydrostatic, at least in the plane perpendicular to 

the tunnel axis, and gravity effects are neglected. 



111-63 

This model is a direct generalization of the analysis 

in Chapter II. 

In the second approach a plane strain finite 

element model is used.  The boundary conditions 

are changed sequentially so that an approximate 

simulation of the three-dimensional face-influence 

is made. 

III-4.2.  Influence of the Face Distance Upon 

Support Loading and Rock Failure. 

III-4.2.1.  Introduction.  In most theoretical 

analyses of tunnel support loading the problem is 

treated as a two-dimensional one, in a plane 

perpendicular to the tunnel axis.  Such an analysis 

is clearly inadequate to study the events near the 

face.  When neither rock nor support undergo time- 

dependent stiffness changes, the final equilibrium 

state will be reached within a relatively short 

distance (corresponding to a few diameters at most) 

from the face.  Even in the more general case 

where time-dependent stiffness changes do occur 

the initial loading can be influenced strongly by 

the three-dimensional nature of the problem. 

Because of the nearness of the face (stiff- 

ness) , the tunnel wall convergence, even in an 
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ideally elastic rock mass, approaches its full 

value only at some distance behind the face. 

Terzaghi (1946, pp. 65-66) describes this support 

provided by the face in terms of a dome action, 

and visualizes a transition from a half-dome near 

the face to an arch at about one and a half times 

the advance length behind the face.  Peck (1969, 

p. 249) suggests that the face influence can be 

taken into account by allowing for a fraction of 

the wall convergence to occur prior to the support 

installation, i.e., by giving the support load- 

deflection curve an offset from the origin.  Lom- 

bardi (1972, pp. 373-374) assigns an independent 

support characteristic to the rock in the face, and 

includes it in the force-displacement diagram.  Wag- 

ner (1970) and Daemen and Fairhurst (1970; 1972) use 

the results from axisymmetric finite element calcu- 

lations to estimate the face influence on tunnel 

wall convergence along the tunnel, and the 

consequences for support loading.  The geometry 

of the problem is entirely similar to that used 

by Desai and Reese (1970; also Desai and Abel, 

1972, pp. 340-343) to study the development of 

plastic zones around deep boreholes. 

III-4.2.2.  Axisymmetric finite element 
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analysis of rock failure near the face.  Axisymmetric 

finite element analysis (Zienkiewicz, 1971, pp. 73- 

89) permits the study of the face influence in a 

circular tunnel with only minor modifications from 

plane two-dimensional analysis.  A fully three- 

dimensional analysis, in contrast, requires a 

different order of magnitude in computer time and 

in programming effort. 

The problem considered here is that of a 

circular cylindrical hole penetrating into a hydro- 

statically loaded cylindrical body, along its axis. 

The central part of the finite element mesh used 

for the analysis is shown in Figure III-7.  The 

analysis was performed by incremental external 

loading of the cylinder.  Two different types of 

material behavior during failure were used.  These 

are illustrated in Figure III.8 by means of the 

corresponding sets of stress-strain-volume change 

curves.  Data input for the finite element analysis 

was in the form of three straight line segments 

for each curve.  All calculations of equivalent 

elastic constants were performed internally, 

according to the orthotropic cylindrical model 

described in Appendix B-5.  An independent check 

on the positive definiteness was made prior to the 
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Figure III.8a. Axial Stress-Strain Curves used 
in the Rock Model for the Calcu- 
lations of the "Brittle" Failure 
Patterns Plotted in Figure III.9, 
Lower Figure at each Loading Step 
Confining Pressures Ranging from 
0 psi up to 10,000 pr;l, in steps 
of 500 psi. 
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Figure   III.8b Lateral Strain Versus Axial Strain 
Curves used in the Rock Model for 
the calcuations of the "Brittle" 
Failure Patterns Plotted in Figure 
III.9-  Curves are associated with 
Figure III.8a, but for confining 
pressures from 0 psi up to 12,000 psi, 
increments of 1,000 psi. 
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finite element analysis, and it was found that 

satisfactory results were obtained by selecting 

parameters °^= 0 and tf = 100. 

The progressive development of the failure 

zone during incrementally increasing external dis- 

placements is shown in Figure III.9.  On Figure III, 

10 the tunnel wall displacement (equal to half the 

tunnel convergence) is shown along the tunnel axis, 

for identical external displacements, in the 

assumption that the rock remains elastic and in 

the assumption that the rock fails. 

III-4.2.3.  Implications of axisymmetric 

face influence analysis for support loading.  A 

qualitative summary of the failure development near 

the face is given on Figure III.11.  Two basically 

different types of behavior are shown.  In the 

first type the integrity of the face is essentially 

maintained.  The full development of the broken 

zone occurs then only well behind the face, because 

the stiffness of the face rock prevents the develop- 

ment of large stress differences in that area.  On 

the other hand, when the face stiffness decreases 

substantially, e.g., because rock blocks in the 

face are permitted to slip out, a large fraction 
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Figure III.9. Failure Zone Near the Tunnel Face 
for Increasing Field Stress and 
for "Pseudo-Plastic" or for 
"Failing" Rock Behavior. 
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Figure III.9. 
(cont.) 

Failure Zone Near the Tunnel Face 
for Increasing Field Stress and for 
"Pseudo-Plastic" or for "Failing" 
Rock Behavior. 



111-72 

Distance from Face in Tunnel Diameters 
^ 2 L_ 

Tunnel 
Face 

a> 

g 
O 
"55 c 

~2 

[3- 

.5 

1 

Tunnel Diameter = 240 in 
E=4xlOe     l/=0.l 
P= 10,000 psi 

Figure III.10, Tunnel Wall Displacements Near the 
Face in Elastic Rock and in Failing 
Rock. 
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Figure III.11. Schematic Summary of Failure Zones 
Near a Tunnel Face for Increasing 
Ratios of the Field Stress to the 
Rock Strength. 
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Figure  III.12. Typical Fracture Trace on Plane 
Through Tunnel Axis, Navajo Tunnel 
No. 3 (After Sperry and Heuer, 
1972). 
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of the failure zone can develop ahead of the face. 

When this implies a strength reduction of the wall 

rock to low residual values it means that the 

support system will not function in optimum con- 

ditions. 

It is clear from Figure III.10 that the con- 

vergence and therefore the support loading path 

near the face strongly depends upon the rock 

behavior.  In elastic rock nearly one-fourth of 

the ultimate convergence occurs ahead of the face, 

well over half within one-fourth of a diameter 

and over ninety per cent within one diameter from 

the face.  This behavior can be altered radically 

when the rock does not remain elastic, and the 

mode of change will be contingent upon the face 

rock behavior. 

When the face remains quite stiff during 

failure propagation, as in the example of Figure 

III.10, and failure develops exclusively, or nearly 

so, behind the face a very steep displacement 

gradient exists for the first diameter along the 

tunnel axis.  Only a small fraction of the con- 

vergence occurs ahead of the face.  Convergence has 

nearly reached its final value within one to two 

diameters behind the face.  Support loading (and 
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thus the exerted support pressure) will be very 

sensitive to the distance of installation from the 

face • 

At the other extreme, when the face is allowed 

to disintegrate, a very large fraction of the 

total convergence can occur ahead of the face. 

Support loading will then be rather insensitive 

to the distance of erection. 

A qualitative analysis of face influence on 

support loading is possible in a very simple form 

for the case where the rock remains elastic.  The 

influence of support stiffness, and of the distance 

from the face at which support is installed on its 

effectiveness will be illustrated here for the 

idealized case of a circular lining installed in 

perfect contact with the tunnel wall. 

The final displacement uf induced by driving 

a tunnel of diameter D in an (elastic) rock mass 

under hydrostatic pressure P is given by: 

PD (1 + V   ) 
«f = -5-j *- du-*-!) 

r 

where V  and E are the Poisson's ratio and 
r     r 

the elastic modulus of the rock. 

At a distance d from the tunnel face a 

circular support of external diameter D and thickness 
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t is installed (Figure III.13).  As the face ad- 

vances the tunnel walls at this point, if un- 

supported, would move inwards a distance u .  This 

displacement can be expressed as a fraction of the 

total displacement, 

PD (1 + V ) 
Ud = Xuf = X~T-i * (IH-4.2) 

r 

where X is a proportionality factor that can be 

derived from the tunnel wall displacements along 

the tunnel, results obtained from an axisymmetric 

finite element analysis (Figure 111.14).  As the 

face advances a radial contact pressure P builds 

up between rock and support.  Under this contact 

pressure the inwards displacement at the rock- 

support contact of the circular cylindrical support 

is equal to: 

u_ = _s_ s_ [R2 {1_2V ) + (R-t)2] (III-4.3) 
P_ R(l + VJ 

~S        Es[R
2-(R-t)2]      V     S' 

where R = D/2 and V and E are the Poisson's ratio s     s 

and the elastic modulus of the support cylinder. 

Under this contact pressure P  the rock mass s 

will displace outwards (or the inwards displacement 

will be reduced) by: 

P  D(l + V ) 
uf = _J r_ (ni-4.4) 

2E 
r 
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Figure III.13. Geometry of the Problem used to 
Study the Influence on Support 
Loading of the Support Stiffness 
and of the Distance from the Face 
at the Moment of Support Erection. 
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The total displacement that would occur, 

after the face has advanced to the point correspond- 

ing to support erection, if no support were in- 

stalled, is equal to the sum of the displacement 

which does take place and the displacement which 

was prevented: 

n = u + u (III-4.5) 
d   s   r 

Substitution in this equation of the expres- 

sions for the displacements results in the following 

relation for the support pressure P  (relative to 

the virgin hydrostatic stress P): 

p- = x    i+i/   E    (1-2 V ) + (l-t/R)2  <i:icI-4-6> 
s   r        s 

i + .     • — • .. « ■ ' ■■ 
1+ V E      t /n tx r   s    — (2-—) 

R v  R7 

This expression can be used to illustrate the 

influence of: 

i.  Distance from the face of support erection. 

The support pressure is directly proportional 

to X, and the rapid nonlinear decrease of this 

factor is obvious from Figure III.14.  Although an 

extrapolation to a nonlinear situation is not 

straightforward, it would appear from Figure III.10 

that for a situation in which most of the failure 

development takes place behind the face the support 

pressure would be even more sensitive to the face- 
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installation distance.  The opposite would be true 

when large stiffness reductions are permitted within 

the face. 

ii.  Relative stiffness of rock and liner. 

a. Mechanical properties V   and E. 

b. Liner thickness t/R. 

In Figure III.15 the resulting pressure is 

plotted versus the distance from the face at which 

the support is installed.  Figure III.16 shows the 

resulting support pressure and the maximum tangential 

stress in the support cylinder as a function of 

liner thickness.  The vast majority of real support 

systems would fall in between t/R =0.05 and t/R = 

0.25, more densily concentrated around t/R = 0.15. 

Several conclusions can be drawn from these 

graphs.  The extrapolation of these conclusions to 

real tunnel support problems must be tempered by 

an awareness of the idealizations implicit in the 

derivation of the results. 

1. The same support pressure can be obtained 

with support systems of different stiffnesses (e.g., 

different thickness) when installed at different 

distances from the face. 

2. The earlier a support is installed the 

higher support pressure it will provide (and the 
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Radius R and Support Modulus E 
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Figure III.16. Support Pressure and Maximum Tan- 
gential Stress in the Support Versus 
Support Thickness for Two Distances 
(D/4/D/8) from the Face at the Point 
of Support Installation. 
D is the tunnel diameter. 
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higher the load it will be subjected to).  Depend- 

ing upon the type of rock mass behavior, i.e., the 

rate of strength loss of the rock with increasing 

inelastic strain, early installation of stiff 

supports will be good or poor practice. 

3. The thicker a support installed at any 

particular location the smaller the maximum stress 

in it will be.  This conclusion is true in this 

particular case where hydrostatic loading and 

perfect rock-support contact is assumed, so that 

no bending moments can develop. 

4. The higher the stiffness of a support 

system relative to the rock mass stiffness the 

higher the developed support pressure will be. 

When the rock mass stiffness exceeds the support 

stiffness substantially (i.e., E^ >   2 Es) the 

maximum stress in the liner cannot be reduced 

significantly by increasing the liner thickness. 

The preceding analysis was made for a truly 

cylindrical support.  By means of the axisymmetric 

support stiffness expressions derived in Appendix 

A-4 a generalization to and comparison of various 

support systems is straightforward. 

The problem is less trivial when nonlinear 

behavior must be considered.  It is then necessary 
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to simulate the actual mining sequence, i.e., to 

progressively eliminate elements from the central 

part of the mesh corresponding to the face advance 

and connect stiffness terms equivalent to (radially 

symmetric) support systems. 

III-4.2.4.  Face influence in non-homogeneous 

rock masses.  In homogeneous rock masses the dis- 

tance from the face at which a support is erected 

can have a major influence upon the exerted support 

pressure.  It is pointed out by Lombardi (1974b) that 

the effectiveness of the face in providing "support" 

near the face depends upon the ability of the rock 

in that area to transmit shear stresses perpen- 

dicular to the tunnel axis.  This ability is likely 

to be seriously impeded in fault zones and similar 

major inhomogeneities or discontinuities with low 

shear strength. 

In the previous section it was emphasized 

that failure-induced face stiffness changes (or 

the absence thereof) will diminish (or amplify) 

the three-dimensional character of support loading. 

A similar influence can be expected when the tunnel 

face approaches and intersects rock formations of 

markedly different stiffnesses, e.g., dykes or 

shear zones. 



111-85 

These two modifications from the problem 

analyzed previously, due to variations in rock 

mass stiffness along the tunnel axis that are not 

induced by tunneling, can be analyzed with the 

elastic axisymmetric finite element method.  To 

use this method it is necessary to limit the 

problems to the highly idealized situation where 

it is assumed that the tunnel is driven perpen- 

dicular to the rock formation contacts.  A sche- 

matic representation of the problem as analyzed 

is given in Figures III.17a and b.  The first 

figure illustrates the problem where the face 

approaches a rock formation of very different 

characteristics, while the second figure is an 

idealized case of a narrow stiff or soft zone 

intersecting an otherwise homogeneous region. 

The (radial) displacements at the tunnel wall 

radius along the tunnel axis are plotted in Figure 

III.18 for two different boundary conditions.  In 

the first one external stress boundary conditions 

( £     = 12.000 psi; C     = 4,000 psi) were imposed 

on the cylinder.  In the second one external 

boundary displacements were imposed such that for 

_  6'  . 
a homogeneous solid cylinder (E±  = E2 - 10 psx; 

V  = V = 0.2) a hydrostatic stress state (6r = 
1   ~ 
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§  = £  = 12,000 psi) would result.  For both 
©    z 

these figures the face has just reached the contact 

area between two large zones of different stiff- 

nesses (d = 0).  The corresponding result for a 

homogeneous rock mass is included to facilitate 

comparisons.  As would be expected, a "stiff" face 

tends to delay convergence, while convergence runs 

ahead of the tunnel when the face is "soft." 

When the displacement distribution for the non- 

homogeneous cases is compared with that for the 

homogeneous problem it is clear, especially oh 

the lower figure, that a large fraction of the 

final displacement occurs ahead of the tunnel 

when the face is very soft compared to the tunnel 

walls, while the opposite is true when the face 

is relatively stiff. 

A recurring peculiarity of the results is the 

nonmonotonic displacement distribution observed in 

the top graph on Figure III.18.  This suggests 

that at some points near the interface between 

the rock types an outwards radial displacement 

might be induced by further tunnel advance (as 

can also be seen on Figure III.19).  Although such 

movements have been observed (Müller, et al., 1970; 

Lombardi, 1974), there is an element of the 
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unexpected in this result.  It is at least some- 

what influenced by the boundary conditions, but 

it is not obvious that it would be eliminated by 

modeling the mining sequence rather than loading 

a partly hollow cylinder, because that would not 

eliminate the necessity to decide upon either 

stress or displacement boundary conditions.  The 

physical interpretation of the result is compli- 

cated by its three-dimensional nature and by the 

influence of the large shear stresses along the 

contact between the two rock types.  Before making 

precise numerical conclusions from these results 

it would seem necessary to study in more detail 

the influence of such factors as boundary conditions 

and the sequence in which they are imposed as well 

as that of the mesh size along the contact area 

and possibly the method of solving the stiffness 

equations. 

The next sets of Figures (III.19 and III.20) 

present a series of results for situations where 

the face is at various distances from the contact 

plane.  Deviations from the homogeneous case are 

rather minor when the contact plane is more than 

one tunnel diameter ahead of the face or once the 

tunnel has advanced more than two diameters beyond 
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Figure III.19. 
(cont.) 

Radial Displacement U at the Tunnel 
Periphery Versus the Distance x 
from the Face for Various Values of 
the Distance d Between the Face and 
the Contact of Two Rock Formations. 
A hydrostatic pressure is applied 
at the external boundaries. 
Triangles: E2 = 10 E^  Circles: E^E^ 

Squares: E2 = E.j/10 
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Figure III.19. 
(cont.) 

Radial  Displacement of the Tunnel 
Periphery Along the  Tunnel   for 
Different Distances Between the 
Face and the Rock Formation Contact, 
Applied hydrostatic pressure. 
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Figure III.20. 
(cont.) 

Radial Displacement of the Tunnel 
Periphery Along the Tunnel for 
Different Distances from the Face 
to the Rock Formation Contact. 
Displacements imposed at the 
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the contact plane.  Because no limits are imposed 

in any of these calculations upon the shear stresses 

that can be transmitted along the contact plane it 

is likely that this represents somewhat of an 

upper bound upon the spatial extent of the influence 

from inhomogeneities.  This is confirmed by the 

results from the analysis of a narrow zone of 

very different stiffness.  These results are shown 

on Figure III.23.  The displacement pattern near 

the face is markedly different from the one in 

homogeneous rock when the face is close to the 

soft or stiff zone.  A soft zone in the face 

enhances convergence ahead of the tunnel.  The 

difference drops off rather rapidly when the face 

is more than a few diameters away from the soft 

(or stiff) band. 

Figure III.22 gives the radial displacement 

for a point on the contact plane and for two points 

on either side of it as a function of the face 

distance, i.e., as the face approaches and passes 

by the points.  This kind of a plot could be used 

to study support loading in a similar way as the 

analysis given in section 111,4.2.3 for the homo- 

geneous problem.  It is obvious that support load- 

ing will be much more sensitive to the face distance 
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Figure III.21. Geometry of the Problem Used for 
the Convergence Calculations 
Plotted in Figure III.22. 
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Figure III.23. 
(cont.) 

Radial  Displacement Along the Tunnel 
when the Face is Near a Narrow Rock 
Zone with Different  Stiffness. 
Geometry as  in Figure III.17b. 
Triangles:   E =10   E       Squares:   E^Kj/10 



111-99 

-^ 0-3 
to 
a> 

"§ 0.2 

0.1 

d,= -a/4  d2=0 

a □ 

0 6
A
6DO 

2 Q 

-0.5 0.0 0.5 

x/2a 

1.5 2.0 

-^ 0.3 
to 
a> 
.c 
o 
c 0.2 

d,=-a/2 d2 = -a/4 

6 Ö' 
A Q A Q a a 2 

Cx   &A 66$ 

fl 

-0.5 0.0 0.5        1.0 

x/2a 

1.5 2.0 

Figure III.23. Radial Displacement Ur Along the 
Tunnel when the Face is Near a 
Narrow Rock Zone with Different 
Stiffness.  Geometry as in Figure 
III.17b. 
Triangles: E2=10 E±     Squares: E^E^/IO 

Circles: E2=E 



III-100 

at the time of support erection when the face is 

very stiff, while it will be rather unsensitive when 

the face is soft. 

III-4.3.  Plane Strain Stiffness Analysis of 

support Loading Causer» by Rock Failure. 

III-4.3.1.  introduction.  The combination of 

the finite element rock failure model (III-2) and 

of the stiffness support model (III-3) with a 

simulation of the excavation sequence should allow 

a reasonably accurate analysis of the overall 

phenomena occurring during support loading caused 

by rock softening and weakening.  It was shown in 

the preceding section that tunnel support loading 

near the face, as a general rule, must be treated 

as a three-dimensional problem.  Once the face has 

advanced up to a few tunnel diameters beyond the 

point of support erection the problem is more 

likely to approach a two-dimensional one, at least 

when the rock behavior is not dominated by a few 

major discontinuities.  If support loading con- 

tinues once the face has advanced several diameters 

it indicates a continued (time-dependent) stiffness 

change of rock,support, or both. 

Two methods would seem to be appropriate for 
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the simulation of the mining sequence, or for taking 

into account the influence of the face, in a two- 

dimensional model.  Firstly, one can load an unmined 

mesh, and then sequentially eliminate a series of 

elements, corresponding more or less precisely to 

an actual excavation sequence.  Secondly, one can 

apply boundary forces equivalent to the pre-mining 

stressfield at both the tunnel circumference and 

the external boundaries.  The forces at the tunnel 

periphery are then gradually reduced to simulate 

mining.  In both methods, at some point in between 

the pre-mining and the final excavation step the 

support system stiffness matrix is connected to the 

rock mass stiffness matrix. 

The second method, a gradual reduction of the 

internal boundary forces, is far less demanding in 

computer memory requirements.  Indeed, when a pro- 

gressive elimination of elements is used a far 

greater number of elements is required to model 

the problem, because the zone of high strain 

gradients shifts gradually towards the final tunnel 

periphery. Whether either of these methods is 

more "accurate" is a somewhat artificial question 

because of the substantial simplifications already 

introduced.  In the real near-the-face condition 
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the plane perpendicular to the tunnel axis has 

only geometrically a somewhat special significance. 

The displacements, even in a circular tunnel in a 

homogeneous elastic rock are not radial (or, more 

generally, in-plane) but have an out-of-plane com- 

ponent.  The principal stresses (strains) within 

the plane perpendicular to the tunnel axis are not 

truly principal stresses with respect to the com- 

plete three-dimensional stress (strain) state, 

particularly for a plane very close to the tunnel 

face the deviations are large.  Consequently, the 

two-dimensional analysis given here can only be 

considered as a preliminary step in the study of 

near-face tunnel support loading. 

III-4.3.2.  Support loading during face ad- 

vance.  The method used for the plane strain 

calculation of the ground-support interaction 

during face advance is illustrated on Figure III.24, 

Applied boundary stresses enforce a stress and 

displacement distribution corresponding to a pre- 

mining situation.  The nodal point forces at the 

tunnel periphery are eliminated stepwise, to 

simulate the progressive reduction of internal 

pressure associated with face advance. At some 
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Graphical Representation of one of 
the Simple Problems Used for De- 
bugging TUNSUP, and Illustration 
of the Sequence of Computations. 
The Four Element Mesh Representing 
the Ground is Compressed Hydro- 
statically in step (1).  The con- 
fining pressure is reduced to simu- 
late face advance/ (2), after which 
the support is connected, (3), and 
equivalent mining proceeds, (4), 
until completed (5). 
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intermediate stage the support is connected to the 

ground.  An estimate of the appropriate moment for 

starting the interaction can be based upon the 

results of the axisymmetric analysis discussed in 

the preceding section.  From that discussion it is 

fairly obvious that it is next to impossible to 

give any fast and easy rules for making such an 

estimate.  Indeed, the convergence fraction that 

preceeds support interaction with the ground depends 

on a variety of factors such as face distance, 

nonlinearity of the rock behavior, face stiffness, 

heterogeneity of the rock mass, stress state, etc. 

It is not sufficient, in a calculation of 

this type, to combine the ground and support stiff- 

ness matrices in order to start the interaction 

sequence.  The problem can be illustrated by con- 

sidering point A on Figure III.25.  The displacement 

u of this point has a two-fold meaning.  When A is 
A 
considered to be a point on the ground (finite 

element mesh) u indicates the full displacement 

that occurs after the initial unloading step. When 

A is considered to be a point on the support, uft 

denotes the displacement subsequent to support 

connection only.  These two values of the displace- 

ments at the rock-support contact points must be 



lil-105 

(inch) 

Figure III.25, Numerical Example of Iterative 
Convergence Towards the Equilibrium 
Position Between "Ground" and 
"Support" at each Unloading Step. 

F is the contact force between 
"ground" and "support", u is the 
displacement increment over the 
displacement that occurred prior 
to making contact between ground 
and support. 

S1 remains constant.  Points 1, 2, 
3, ... indicate the iterations 
after the first reduction in S- 
that follows support installation; 
points a, b, c ... indicate the 
iterations after the next reduction 
in S„. 
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separated explicitly, unless the entire calculation 

is sequential.4 If such a distinction is not made, 

the effective displacements to which the support 

is subjected are excessive, the support will be 

loaded much heavier than would result from a cor- 

rect calculation, and correspondingly the confining 

pressure exerted on the rock will be too high. 

The separation method used here makes it 

necessary to approach the equilibrium state between 

ground and support iteratively, as illustrated on 

Figure III.25.  (In many cases the equilibrium will 

be between nonlinear characteristics, not, as in 

this example, between straight line loading and 

unloading characteristics).  The iterative approach 

described here fits in rather well with the iterative 

sequences already used for solving the finite 

element stiffness equations and for modifying the 

element properties.  By combining these various 

iterative schemes a relatively fast approach to the 

equilibrium position at each step is usually obtained 

with a decidedly small number of iterations on the 

finite element equations, by far the major 

4The calculation is then fully self-contained 
at each step, and cumulative values are obtained 
through appropriate summation after each step. 
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contributor to the total number of arithmetic 

operations. 

While the full emphasis in this discussion 

has been on modeling the support loading due to 

near-face convergence, an entirely similar method 

could be used to study the consequences of time- 

dependent softening of either ground or support. 

III-4.3.3.  Examples of ground and support 

behavior analysis performed in plane strain.  The 

examples presented in this section have been calcu- 

lated with the program TUNSUP, given in Appendix 

C, in which most of the plane strain finite element 

techniques discussed in this chapter are incorporated, 

The examples have been selected to illustrate some 

points of practical significance in the mechanics 

of tunnel supports, to point out some of the inter- 

esting features of the analysis method, and to 

illustrate some of the dubious properties of the 

proposed rock failure model. 

The central section of the finite element mesh 

used for all the examples is shown in Figure III.26, 

where one of the blocked steel set models is also 

included.  The rock modulus E has been taken equal 

to 500,000 psi, the Poisson's ratio V equal to 0.2 
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and the applied hydrostatic pressure P equal to 

1,000 psi. No weight has been assigned to the 

elements. The tunnel (rock periphery) is 20 feet 

wide and high.  Unloading of the tunnel boundary 

from the initial hydrostatic stress is performed 

in 20 steps. 

The first set of examples illustrates failure 

patterns around unlined tunnels. Figures 111.27a, 

b, c correspond respectively to rock with a uni- 

axial strength <?c of 1,000 psi, 500 psi and 250 

psi.  For each of these the absolute value of the 

post-peak stress-strain slope equals the pre-peak 

slope, the angle of internal friction derived from 

peak strengths equals 30°, the angle of internal 

friction associated with the residual strengths 

equals 15°, the residual cohesion is one-tenth of 

the intact cohesion. 

in each case the failure propagates deepest 

behind the flat sections of the tunnel periphery. 

While it is true that the maximum stress concen- 

tration occurs in the sharp corner at the floor, 

the build-up in confining pressure is sufficiently 

fast to prevent failure propagation in this 

region (see also Figure III.28). 

The overall fracture pattern description, 
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*■ 
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A A A A A 

Figure III.26. Central Section of Finite Element 
Mesh Used for Rock Modeling for 
Figures III.27 Through III.31. 
Geometry of blocked steel set used 
for Figures III.29 and III.30a,b. 
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Figure III.27a. Progressive "Failure" Development 
Around a Tunnel when the Boundary- 
Stresses are Eliminated in 20 
"Equivalent Mining" Unloading Steps, 
Uniaxial Compressive strength 
6     -  1,000 psi; hydrostatic 
stressfield of 1,000 psi. 
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15 

Figure III.27b. Progressive "Failure" Development 
During the Last Seven Steps of 
a 20-step "Equivalent Mining" 
Unloading Sequence.  Uniaxial 
compressive strength <ST = 500 psi; 
hydrostatic stressfield of 1,000 
psi. 
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12 13 

Figure III.27c. Progressive "Failure" Development 
During a 20-step "Equivalent 
Mining" Unloading Sequence. Unx- 
axial Compressive Strength 6 c = 
250 psi; hydrostatic stressfield 
of 1,000 psi. 
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as in Figures III.27, lumping together all the 

elements in which the properties are modified from 

the original ones, is not a very sensitive indi- 

cator of the changes associated with failure. A 

more precise comparison is possible on the basis 

of the state of stress, as shown in Figure III.28. 

Plotted here are the principal stresses at selected 

points around the tunnel, after complete unloading, 

for different rock models:  A, elastic; B, no 

strength drop beyond the peak .6 Q  = 250 psi, large 

volume increase; C, strength drop and large volume 

increase, same properties as for Figure III.27c, 

described in a preceding paragraph; D, same stress- 

strain curves as for C, but only a small volume 

increase. 

It is clear from the results that the volume 

increase associated with failure plays a dominant 

role in the resulting stress distribution and thus 

upon the degree of instability caused by failure. 

Whether a large ubiquitous volume increase associated 

with failure is a reasonable proposition must be 

questioned, because of the resulting extremely strong 

stabilizing influence. 

It has been pointed out in the discussion on 

support stiffness models (section III-3.3) that the 
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interface elements between ground and support must 

be treated rather carefully.  An example of this 

is illustrated in Figure III.29, where the influence 

of the stiffness of the footings underneath a steel 

set on the loading of the set is described.  In 

order to isolate the influence of this element, the 

ground model was elastic throughout this calculation. 

The blocking point geometry at initial contact 

(after unloading step 10 in a 20-step sequence) is 

shown in Figure III.26. The range of footing stiff- 

ness values illustrated here is the one within which 

the results change most rapidly.  Even if the 

footing is much stiffer than the highest value 

(2.5 x 105 lbs/in)5 used here, the resulting block- 

ing point force distribution will not be greatly 

affected. If the footing stiffness is much softer 

than 2.5 x 104 lbs/in, the contact forces will be 

concentrated even more in the crown, but the overall 

6 
picture will not be very different. 

5This specific number would obviously be dif- 
ferent for ground, steel sets or blocking points 
with different stiffnesses.  In this particular case 
the stiffness is about 2@ 5 times lower than the 
stiffness of an average double beam wall plate for 
the support type used in the calculation, and assuming 
that the wall plate rests on an infinitely stiff floor, 

6When the footing is very soft a relatively 
small load suffices to cause a large contraction in 
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Figure  III.29. Influence of Variations in the 
Footing Stiffness Upon the Contact 
Forces Between a Steel Set and the 
Ground and Upon the Bending Moment 
Distribution in the Steel Set.  The 
plotted results are the values after 
complete equivalent mining unloading 
in 20 steps, with the support 
"connected" after unloading step 10. 
Tunnel is 20 feet wide, 20 feet high. 
8 x 5h  WF (17 lbs/ft) steel sets, 
at 5 ft spacing. 
Block spacing as in Figure III.26, 
block stiffness=2,500,000 lbs/in. 
The rock is elastic throughout the 
calculation, with a Young's modulus 
E = 500,000 psi and a Poisson's 
ratio V = 0.2. 
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If the supporting capacity of the steel set 

is to be fully and efficiently utilized, the foot- 

ing stiffness must exceed a minimum value.  On the 

other hand, little will be gained by increasing 

it much beyond the minimum.  This minimum value 

can be estimated (rather roughly) from the require- 

ment that the contraction of the footing (including 

the influence of excessively blasted rock, muck 

underneath the wallplate, influence of water on 

the floor, etc.) should not exceed the contraction 

of the blocked steel, or the footing stiffness 

should certainly not be smaller than the combined 

stiffness of the (roof) blocks. 

The next three figures (III.30a, b, c) show 

three stages in the load development on a steel 

set installed within a failing rock mass.  The 

properties assigned to the rock are identical to 

those used for the calculation of Figures III.27c 

and III.28c.  The influence of all three support 

types upon the extent of the failure zone is small, 

as this zone is reduced by a few elements only. 

Similarly, on the scale used in Figure III.28, the 

the footing and thus settlement of the steel set, 
with a consequent potential loss of contact at 
many blocking points. 
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Figure 111.30a, 
Steel Set Blocking Point Forces 
and Bending Moments at Three 
Steps in a 20-step Equivalent 
Mining Unloading Sequence with 
the Steel Set Connected After 

Step Ten. 
All conditions as in Figure   _ 
III 29, with high footing stift- 
ness, except that ground is 
failing as in Figure III.^Bc. 
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Figure III.30b, Steel Set Blocking Point Forces 
and Bending Moments at Three Steps 
of a 20-Step Equivalent Mining 
Unloading Sequence, with the Steel 
Set Connected After Step Ten. 
All conditions as in Figure 111.30a, 
except for the footing stiffness 
to which a large horizontal 
component has been added. 
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Figure III.30c. Steel Set Blocking Point Forces 
and Bending Moments at Three Steps 
of a 20-Step Equivalent Mining 
Unloading Sequence, with the Steel 
Set Connected After Step Ten. 
All conditions as in Figure 111.30a, 
with the exceptions that only four 
blocking points are used in the 
upper steel set section versus 
nine in the preceding calculations 
and that the steel set spacing is 
only three feet. 
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change in stresses due to the support action would 

be barely visible, if at all. 

In all three examples the stress component 

due to bending is small compared to the axial force 

stress component.  Although no detailed comparisons 

have been made, the overall picture is qualitatively 

not unlike the one that would be obtained from the 

Proctor and White method.  (This is not the case in 

the first set on Figure III.29, where nearly all 

blocking points have been inactivated). 

The vertical leg of the steel set provides no 

support to the sidewalls when there is no horizontal 

footing stiffness, but even with a rather high 

horizontal stiffness (Figure 111.30b) whatever 

sidewall confinement is provided remains very 

.  n 7 localxzed. - 

7ln this calculation it is implied that the 
horizontal stiffness is due to shear stiffness 
between the steel set and the floor.  An alternative 
that could be included with a trivial change in 
the program would be a spring (allowed to act in 
tension, which the blocking point springs are not) 
connecting the steel set footing to a point within 
the rock mass, thus simulating a point-anchored 
rock bolt.  An invert strut could obviously be in- 
cluded very simply.  It would appear that any of 
these measures would have only a very localized 
effect as regards the confinement pressure provided 
on the flat vertical sidewalls. 
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A somewhat surprising result is the very 

small force, in all three cases/ at the springline. 

Also rather unexpected was the fact that the blocking 

point springs that were in compression after the 

first support contact step remained so during the 

entire sequence, and that none of the others was 

ever reactivated. 

The last example (Figure III.31) is an attempt 

at modeling a. shotcrete liner.  Two extreme models 

have been used, one with complete displacement con- 

tinuity between ground and support, one with 

continuity only in the direction perpendicular to 

the contact surface.  For the fully continuous model 

(two figures on the left) the support is represented 

by beam elements and the nodal points are assigned 

the (post support erection) displacements of the 

corresponding ground nodal point.  At the other 

extreme, where no shear stiffness is assumed between 

ground and support (which might correspond more 

closely to the behavior of a cast-in-place not 

backgrouted concrete liner) the support is modeled 

with beam elements and with short, stiff springs 

(the latter used to preclude mutual penetration of 

ground and support). 

The normal contact force distribution is 
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Figure III.31. Contact Forces Between Shotcrete 
Liner and Ground After Equivalent 
Mining Unloading in 20 Steps and 
with the Support Activated After 
Step 10. 
Ground modulus E = 500,000 psi, 
Poisson's ratio V = 0.2. 
Pre-mining hydrostatic stressfield 
of 1,000 psi. 
Shotcrete modulus E = 500,000 psi, 
thickness = 4 inches. 
Left:  Shotcrete modeled with beam 
elements; complete displacement 
continuity at the nodal points, i.e., 
infinite normal and shear stiffness 
between ground and support; dotted 
lines connect points indicating the 
magnitude of the normal force within 

the liner. 
Middle:  Same as above, but with 

floor beam. 
Right:  Same shotcrete model as on 
left, but without shear stiffness, 
and very high normal stiffness en- 
forced with very short, very stiff 

springs. 
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fairly similar for the two extreme models. But in 

the presence of shear stiffness the shear forces 

become a significant part of the total contact 

forces.8 In both examples of continuous displace- 

ment calculations (with and without floor beam) the 

normal forces within the liner are reduced to very 

small values at some points around the periphery. 

This fact, also frequently apparent on diagrams of 

measured tangential pressures in shotcrete liners 

(in the references cited in the footnote, for example) 

would tend to indicate that shotcrete liners do 

not act as integrated units, but rather as somewhat 

isolated segments.  This is also indicative of the 

very good interaction between ground and support, 

as it shows the stabilization mechanism by means of 

a very local and immediate stress redistribution 

within the rock mass, a mechanism which is, mutatis 

mutandis, reminiscent of fully grouted bolt action. 

This has some obvious implications for the 
instrumentation of shotcrete liners, and for the 
interpretation of the measurements. When the normal 
forces are only one part of the significant contact 
forces, and that this is probably frequently the 
case can be seen from the lack of equilibrium in 
measured radial pressure diagrams, e.g., Golser, 
1973, Figure 3; Rabcewicz, et al., 1972, Figure 14, 
then the measurement of only the normal pressures 
provides a very incomplete picture of the ground- 
support interaction. 
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As previously observed for steel sets, very- 

little confinement is provided on flat surfaces, 

whether wall or floor.  In this case also the hori- 

zontal stiffness, provided here through a floor 

beam, has a very localized effect only.  Of interest 

also is the development of rather high tensile forces 

between ground and support at some points. 

The  preceding examples are only preliminary 

approaches to the analysis of some problems in the 

mechanics of tunnel supports with finite elements. 

More comprehensive studies, covering ranges of 

properties, as well as detailed comparisons with 

field observations are needed to confirm or to 

refute any general validity of the results and con- 

clusions . 



Chapter IV 

SUMMARY, CONCLUSIONS AND 
POSSIBLE FURTHER DEVELOPMENTS 

IV-1.  Summary 

Two methods have been used to study the 

transition from a pre-tunneling to a post-tunneling 

equilibrium state.  In the first part of this 

thesis closed-form expressions have been obtained 

for the characteristics that describe the inter- 

action between ground and support.  In the second 

part a strain-softening dilatant finite element 

continuum was developed to represent the (failing) 

rock mass.  It was used to analyze the face in- 

fluence in a circular tunnel, and it was combined 

with a matrix structural stiffness model to study 

the interaction between support and rock in a two- 

dimensional simulation of excavation and support 

loading.  In both parts an effort was made to 

represent the two aspects of the problem, the support 

system and the ground, to an approximately similar 

degree of realism, with methods of about equal 

IV-1 
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simplicity or complexity. 

Although the closed-form solutions are based 

upon highly idealized and simplified assumptions, 

these were chosen in such a way that the influence 

of some of the basic characteristics of rock failure 

upon support loading could be evaluated.  This 

necessitated the use of a strain-softening model 

with a dilatant volumetric behavior to characterize 

the failing rock. Because of the large stress 

relaxations associated with deeply propagating 

broken or stress-relieved zones it is necessary to 

consider the potential significance of gravity effects, 

The ground-support interaction problem is 

statically indeterminate, and can therefore only be 

solved when the displacements are determined.  This 

requires further assumptions about the pre-tunneling 

stress state and about the stress changes induced by 

tunneling.  It is also at this point that the volu- 

metric rock behavior during failure must be incorpor- 

ated into the analysis. 

The final result of the calculations that 

represent the rock behavior is the "ground reaction 

curve" or "ground characteristic." A numerical 

method is outlined that would permit a relatively 

simple generalization and extension of the ground 
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reaction calculations.  On the other hand, simple 

techniques are suggested for including such effects 

as variations with time and with size. 

The study of the ground behavior is comple- 

mented by simple structural analysis methods that 

permit accounting for support behavior.  A detailed 

evaluation of blocked steel set and grouted rock 

bolt support action is given, while a more general 

descriptive discussion is presented of other common 

support methods, together with an outline of the 

requirements that should be met by more precise and 

realistic models. 

The first part of this thesis, on the continuum 

analysis of tunnel support loading, is concluded 

with a discussion of some potential practical 

applications.  The need for a large number of material 

properties and characteristics severely limits the 

direct design applicability of such methods.  The 

difficulties are compounded by the uncertainty 

introduced by the potentially very significant if 

not dominating influence exerted by construction 

procedures.  It is possible, however, to outline 

some generally desirable properties of support 

systems.  It nevertheless remains true that refine- 

ment and optimization of tunnel supports can only be 
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accomplished through detailed observation of in-situ 

installations.  But this, in turn, requires a real- 

istic tool for the interpretation and application 

of the measurement results. 

While the first part of this thesis was 

oriented towards the development of general results 

with broad implications from a highly idealized 

situation, the second part was directed towards the 

development of a "case study" technique that requires 

far less idealizations and simplifications with 

respect to geometry, boundary conditions and material 

characterization.  It was nevertheless possible, 

with this method also, to study some situations that 

can be considered as archetypical for a variety of 

real tunneling conditions. 

In this second part, a finite element analysis 

technique is proposed for the study of strain- 

softening dilatant failing rock.  The method is 

based upon a sequential modification of the elastic 

constants. Loading or "unloading," the latter cor- 

responding to gradual excavation, progresses step- 

wise, and after each step the elastic constants are 

adjusted in each element in which the limiting 

elastic strain has been exceeded.  This adjustment 

is based upon the largest (compressive) strain and 
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smallest CV confining) stress, and proceeds to 

follow a set of input stress-strain data.  After 

each adjustment iterative problem solutions are 

performed until no more changes occur, and prior to 

applying the next change in boundary conditions. 

The finite element analysis was used by itself 

to study the influence of the face upon tunnel 

support loading.  The analysis of this strictly 

three-dimensional problem was limited to the axi- 

symmetric case.  Failure and convergence patterns 

near the face were presented, and a simplified 

study was made of the consequences for support 

loading. 

A two-dimensional plane strain model was 

developed in which excavation is simulated through 

progressive "unloading" of the tunnel periphery. 

In this analysis the support action is represented 

through a combination of beam and spring elements. 

A fairly detailed discussion is presented of the 

requirements that must be met by stiffness models 

that are to be used for studying the behavior of 

common support systems.  Because of its relative 

simplicity, a blocked steel set is considered in 

some more detail. 
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IV-2.  Conclusions 

Two methods have been presented for the 

analysis of tunnel support loading caused by rock 

failure.  For both of them an attempt was made to 

model the mechanics of the interaction between ground 

and support.  Because of this interactive nature of 

the problem, emphasis was put on the development of 

methods that take into account realistic stiffnesses 

for the two interacting elements, as well as a 

realistic sequence for the progressive interaction 

between them. 

In the closed-form solutions it was found 

that the progressive strength reduction of failing 

rock has a profound effect upon the requirements 

for an ideal or optimum support method.  As failure 

develops, a stress-relaxed zone propagates into the 

rock mass.  In the "dynamic" or progressively chang- 

ing nature of the stress distributions lies a 

possibility for fundamentally different support 

requirements or ground reaction characteristics. 

From a continuum mechanics point of view, one can 

conclude that the consequences of rock failure can 

radically change the support requirements that would 

be postulated upon the basis of conventional plastic 

analysis.  From the latter, one can hardly avoid the 
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conclusion that supports should be soft, that large 

displacements are desirable, and that delayed in- 

stallation of yielding supports should tend to 

optimize support loads.  This conclusion must be 

qualified somewhat when gravity effects assume a 

non-negligible role.  It was shown that localized 

loads are likely to become more predominant when 

the tunnel is at rather shallow depth and when the 

residual friction of the broken material is very 

low.  The more significant the gravity effects are, 

the larger the differences should be between roof 

and floor support requirements.  In difficult ground, 

however, where the use of continuum type analyses 

has most often been suggested, such differences 

tend to be minor compared to the overall support 

requirements. 

Although the entire derivation and discussion 

of the ground reaction was based upon the assumption 

that the rock was and remained continuous, the 

general conclusion that the required support pres- 

sure decreases rapidly during the initial small 

convergence but tends to increase once an optimum 

displacement has been exceeded is likely to have a 

more general validity.  Indeed, the essential factor 

needed for the development of such a model is a 
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particular sequence of equilibrium states or stress 

configurations.  There is no a priori reason why an 

equivalent sequence of equilibrium states should not 

determine support requirements in real (dis- 

continuous) rock masses, and there is much semi- 

quantitative information that it does. 

The closed-form expressions for the support 

stiffness calculations have been used to emphasize 

the need to incorporate into such calculations a 

realistic rock-support interface element, as well 

as the dearth of information about such interfaces. 

It was shown that the support characteristic of a 

blocked steel set is likely, in many practical 

situations, to be dominated by the stiffness of the 

wooden blocks.  Similarly, the support action of 

grouted rock bolts will be significantly affected 

by the effective in-situ action of the "contact" 

elements, notably the end forces and the displace- 

ment and shear stress distribution along the bolt. 

The closed-form solutions presented here in- 

volve too many rock and support properties, proper- 

ties too difficult and expensive to determine not 

only prior to but even during construction, to be of 

much value as "cookbook" type design rules.  How- 

ever, they do provide guidelines that can be used 
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to evaluate the significance of measurements and 

observations, to compare the influence of varying 

support systems and to assess the effect and value 

of narrowing down the range of uncertainty about the 

rock and support parameters. 

From the axisymmetric finite element analysis 

it follows quite clearly that the distance from the 

face at which supports are erected can have a 

dominant effect upon (at least the short-term) sup- 

port loading and support effectiveness.  One cannot 

give general rules for such effects, unless the 

degree of homogeneity of the rock mass as well as 

the failure patterns near the face are established. 

Indeed, the convergence pattern near the face will 

be basically different depending upon the relative 

stiffness of the rock ahead of and behind the face. 

Whether these stiffness changes existed prior to 

tunneling or are induced by it might not profoundly 

affect the (qualitative) convergence sequence, but 

it is nevertheless likely that the amplification of 

stiffness differences caused by tunneling will have 

a strong bearing upon the type of remedial action 

that can or should be taken. 

IV-3.  Further Development and Research 

IV-3.1.  Introduction.  The subject of tunnel 
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support loading is a rather broad one, involving 

many aspects of mechanics, geology and construction 

engineering.  As a consequence, research related to 

it can progress along many paths.  In the last 

decade it has greatly increased, and has taken many 

directions.  Many of these possibilities do not fit 

directly or obviously within the framework of this 

thesis, and are therefore not discussed. 

Two distinct possibilities exist for continu- 

ing the work presented here, and ideally they 

should progress more or less simultaneously.  On 

the one hand, the analysis techniques that have been 

presented must be improved, further developed and 

corrected or refined.  On the other hand, their 

validity and practical significance must be estab- 

lished. 

IV-3.2.  Further Development of Presented 

Analyses.  Necessary further developments of the 

presented analysis methods include straightforward 

extensions and generalizations as well as more 

profound changes aimed at the development of funda- 

mentally different and more realistic models. 

While the latter should be the more profitable and 

basic propositions, they are also the far more 
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difficult ones to pinpoint, particularly beyond the 

stage of somewhat nebulous and vague declarations 

of intent and desirability. 

Several "straightforward" type extensions of 

the closed-form results have already been suggested 

in Part II.  Improvements or generalizations in this 

area should concern the analysis of both ground and 

support characteristics.  Incorporation into the 

ground characteristic of (some types of) time-and 

size-dependency presents no problems.  Similarly, 

a numerical generalization of the calculations, 

thus allowing an inclusion of a wide range of non- 

linear effects should not be overly demanding. 

A number of potential improvements or refine- 

ments of the support characteristic calculations are 

similarly obvious.  This involves notably the non- 

linear behavior of (crushing) wooden blocks, the 

development of plastic hinges in the steel rings, 

the time and face distance effects of shotcrete 

hardening, the calculation of grouted bolt stress 

distributions based upon a more comprehensive dis- 

placement field calculation, the influence of 

strain-hardening upon bolt behavior. 

A more inherent shortcoming of the closed-form 

solutions, and one not so easily overcome, is the 
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assumption of radial symmetry.  Indeed/ numerous 

observations in laboratory experiments [Daemen and 

Fairhurst, 1970; Jamet, 1973; Gay, 1973 (the last 

two list numerous additional references)] as well 

as observations and descriptions of fracture pat- 

terns around tunnels (Rabcewicz, 1965, 1969; Sperry 

and Heuer, 1972) clearly indicate that fractured 

zones do not tend to be axisymmetric.  Many con- 

vergence and load measurements on tunnel supports 

tend to confirm the unlikelihood of axisymmetric 

behavior.  This, in fact, is not surprising in view 

of the frequently non-symmetric appearance of the 

final collapse shape assumed by a cylindrical rock 

specimen in triaxial compression.  From a general 

point of view, whether the non-symmetric behavior 

is due to non-perfect loading, or to frictional 

end-effects, or to some (minor) variation in rock 

properties, or to non-perfect grinding of the speci- 

men ends or some similar mechanism is quite im- 

material.  A relatively minor perturbation seems 

to, or at least can have a dominating effect, so 

that a stability problem exists, as is confirmed by 

the need to reduce the load. 

Equivalently, around the opening of a hollow 

cylinder in a "homogeneous isotropic" rock (or 
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similar artificial brittle material such as hydro- 

stone), and, a fortiori, around a tunnel, even 

assuming perfectly hydrostatic loading, it is not 

unlikely that some local perturbation will have a 

dominant effect upon failure initiation, and thus, 

propagation being considered as an unstable event, 

upon the ultimate broken zone development. 

It is not clear to the writer whether and how 

the general support design problem could be approached 

from this point of view.  It is not unlikely, how- 

ever, that an analysis that accounts for the failure 

mechanism and associated energy changes might lead 

to some type of stability or ultimate load design 

criterion (Fairhurst and Cook, 1966; Cook, 1966). 

A number of further extensions and develop- 

ments of the stiffness analysis of tunnel support 

loading caused by rock failure as presented in 

Chapter III should not pose serious difficulties. 

A first and rather obvious extension would be to 

incorporate the failing rock model into a fully 

three-dimensional finite element program.  Of 

probably more benefit, cost-effectivewise and from 

a tunnel support mechanics viewpoint, would be the 

inclusion in the analysis of time-dependent decreases 

in rock strength and stiffness.  This could be 
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accomplished by a step-wise pseudo time-dependent 

change of the elastic constants in elements in which 

a certain fraction of the rock strength has been 

exceeded.  The step-wise change could be imposed in 

a manner that forces the stress-strain state in the 

element towards the post-peak branch.  Substantial 

laboratory evidence indicates that such a time- 

dependent path might be quite realistic (Wawersik, 

1972; Peng, 1973; Hudson and Brown, 1972).  And 

numerous measurements have shown that tunnel sup- 

port loading often continues for prolonged periods 

of time. 

It might be worthwhile to include the possi- 

bility for entering non-linearized failure descrip- 

tion input into the finite element analysis.  This 

could probably most efficiently be accomplished by 

expressing the stress-strain-volume relations in 

terms of spline functions (Desai and Abel, 1972, 

p. 325). 

It would be valuable to incorporate a pro- 

gressive mining and support erection sequence into 

the axisymmetric finite element model.  The support 

characteristics in this case necessarily being 

radially symmetric, it would be relatively simple 

to incorporate the closed-form stiffness results 
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obtained in Appendix A (eventually in a more general 

nonlinear form) into such an analysis.  This would 

permit a direct comparison of the behavior and 

efficiency of various support systems when failure 

near the face precludes a simple linear analysis. 

While it might similarly be interesting to 

include a mining sequence, i.e., possibility for 

element removal, into the two-dimensional plane 

strain program, it is less than obvious that this 

would greatly improve the realistic nature of the 

analysis.  Probably of more interest here is the 

development of a truly orthotropic and consistent 

rock failure model.  In connection with this, and 

although somewhat outside the realm of tunnel sup- 

port loading, it is clear that a more comprehensive 

body of experimental evidence about rock failure 

under polyaxial conditions would be most helpful. 

A problem in the finite element rock failure 

model that certainly remains wide open at this point 

is the one of stability, uniqueness and convergence. 

It is very likely that what is desirable in the 

solution is some form of instability.  But this does 

nothing to alleviate the problem of uniqueness and 

of convergence, the opposite being more likely. 

Besides improvements to the representation of 
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rock failure, a number of extensions could be made 

to refine the support modeling.  Starting with the 

simplest case, that of the blocked steel set, it 

might be necessary first and foremost to include 

some rotational freedom at beam element nodal points 

that correspond to connections between steel set 

segments as well as plastic hinges at sections 

where the elastic limit has been exceeded.  Crush- 

ing and nonlinear time-dependent stiffness changes 

of wooden blocks might be included.  For concrete 

and shotcrete support modeling, but certainly for 

loose or semi-stiff backfill, it would seem appropri- 

ate to include shear elements besides spring elements 

to study the influence of the interface character- 

istics.  A detailed analysis of the increasingly 

used combination of steel sets, shotcrete and 

grouted bolts poses several difficult problems. 

The first one is the combination of steel sets and 

shotcrete, and the interaction between them.  The 

second one is the evaluation of the in-situ shear 

stiffness along grouted bolts. 

Because of the long running times of the com- 

puter programs, a great deal of work could (and 

should) justifiably be spent in improving the pro- 

gramming itself, as well as in some other ways that 
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might substantially reduce the computing cost. 

Among the latter two possibilities should certainly 

be considered.  The first one is the use of stiff- 

ness coefficients (Crouch, 1970) or, more generally, 

of substructural analysis methods (Pzremieniecki, 

1968), in order to reduce the number of equations. 

The second one is the possibility of using an 

alternate equation solver, and it would appear that 

some of the more sophisticated iterative schemes 

should be considered first. 

Most of the emphasis in this section on fur- 

ther developments has been upon further development 

of the analysis techniques, and the truism that this 

is necessary should be obvious.  It is nevertheless 

worthwhile to explore some other potential avenues 

of further study, and at the same time return some- 

what closer to the immediate problem of tunnel 

support loading. 

While admitting the crudity in some approxi- 

mations of the presented analyses, they nevertheless 

provide a method for a reasonably efficient com- 

parative study of some support problems.  An example 

of this was given in the study of the face influence 

upon support loading.  An example of a similar 

parametric analysis that would be of interest and 
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could be performed without difficulties or changes 

to the plane program is that of the influence of 

blocking upon steel set behavior and loading.  Fac- 

tors that could easily be considered are block 

spacing, and variations thereof around an average; 

block stiffness, and variations thereof, whether 

due to block construction or due to overbreak; 

reblocking, i.e., partial removal, replacement or 

addition of blocks after some load has come on the 

set.  Obvious examples for possible parametric 

analyses with regard to ground behavior are the 

study of lined and unlined openings in rock masses 

subjected to a variety of stressfields, and with a 

variety of intact and residual strengths as well as 

with various rates of progressive change from one 

to the other. 

IV-3.3.  Evaluation of the Validity and the 

Practical Significance of the Presented Analysis 

Methods.  Any analysis of the types presented here 

needs experimental confirmation or evaluation. 

While the methods might be rejected upon the basis 

of fundamental or theoretical considerations, these 

cannot be used to justify their validity.  An experi- 

mental program should, therefore, be considered an 
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integral part or at least a logical extension of 

the development of the preceding analysis methods, 

particularly so as the analysis is relatively 

simplistic compared to the real complexities of the 

problem. 

An experimental program of sufficient ampli- 

tude to evaluate the practical validity, short- 

comings and needed improvements of the presented 

analysis techniques should not be outside the realm 

*of present-day engineering and economically justi- 

fiable possibilities.  It is indeed a well-recognized 

fact (OECD Conference on Tunnelling, Washington, D.C., 

1970) that serious shortcomings exist in the state- 

of-the-art of tunnel support design, that the support 

cost is frequently a significant factor of the total 

tunneling cost, and that the total volume of tunnel- 

ing will significantly increase in the foreseeable 

future.  Moreover, the geology of the area to be 

tunneled through is usually only partially known, 

at best, and the knowledge about the mechanical 

characteristics of the rock mass tends to be äs 

meager, or worse.  In addition comes a significant 

uncertainty factor introduced by construction in- 

fluences, notably blasting and support erection. 

It would appear that this combination of 
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factors should lead to a situation where Terzaghi's 

(1943, p. 2) "learn as we go" or Peck's (1969) 

"Observational Method" would find an ideal field of 

application.  This has been strongly emphasized by 

Rabcewicz (1963, 1965, 1968), who has repeatedly 

stressed the need to consider instrumentation pro- 

grams as an integral part of tunneling, as it has 

become in the "New Austrian Tunneling Method." 

Assuming that the methods of support action 

analysis presented here can be considered as a 

valid "working hypothesis" for tunnel support evalua- 

tion, one should, ideally, find testing conditions 

where simultaneous benefits would be derived for 

owner and experimenter.  This would necessitate an 

instrumentation and investigation program that is 

cost-effective in reducing the total tunneling cost 

while allowing an evaluation of the analysis method. 

The cost factor evinces the need to consider 

each tunneling project on its particular merits, and 

the unlikelihood that a universally acceptable 

program can or should be devised.  There must exist 

some correlation between tunneling cost, complexity 

of design and analysis methods used as a working 

hypothesis and comprehensiveness of field investi- 

gations and support instrumentation used to evaluate 
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their applicability. 

Considering cases of increasing complexity, 

one might start, for a tunnel of limited overall 

cost, with the ground reaction as represented in 

Figures 11.11 as a working hypothesis.  The purpose 

of the (low cost) instrumentation program would then 

be to determine whether an optimum support stiff- 

ness exists, and what it is.  In order to evaluate 

the validity of the hypothesis one-needs assurance 

of a sufficient continuity in geological conditions 

along the tunnel, so that direct comparisons of 

measurements along different sections are meaningful, 

By comparing deformations in supports of different 

but known stiffnesses, one can locate points on the 

ground reaction curve. 

A more complete evaluation would incorporate 

measurements of stresses, whether in between rock 

and support or within the support.  Although in 

principle deformation measurements on a liner of 

known stiffness should be sufficient to allow back- 

calculation of the loads, this is a rather problem- 

atic procedure, because it requires at the least 

some assumptions about the load or contact distri- 

bution.  Some redundancy is desirable as well as 

some specific information about loads. 
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A far more comprehensive investigation would 

be required if not only the shape of the ground 

reaction is postulated as a working hypothesis, or 

the existence of an optimum convergence for the 

support equilibrium, but if, moreover, one wishes 

to determine the ground reaction curve quantitatively 

and fairly accurately.  This necessitates a knowledge 

of the stress-state and of the mechanical properties 

of the rock mass.  Deformation and pressure measure- 

ments on supports of various stiffnesses should be 

sufficient to allow back-calculations, considering 

the support as a large-scale inclusion instrument 

implanted in a rock mass with more or less unknown 

behavior. 

Whether the most elementary closed-form solu- 

tions, structural stiffness analysis, or the com- 

bination of the latter with finite element analysis 

constitutes the most appropriate interpretation 

tool would seem to depend mainly upon economic 

factors. When rather expensive comprehensive 

instrumentation programs are implemented there seems 

little justification for limiting the interpretation 

to a simplistic minimum.  On the other hand, when 

the information gained is a bare minimum, a compre- 

hensive parametric back-analysis by means of finite 
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element rock mass modeling and stiffness support 

modeling would be a laborious large-scale project, 

justifiable only under special circumstances,  in 

the absence of sufficient information and redundancy, 

a good deal of judgment is necessary to avoid the 

danger of replacing analysis by curve fitting and 

arbitrary parameter adjustments. 
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APPENDIX A 

DETAILED CALCULATIONS FOR THE CONTINUUM ANALYSIS 
OF ROCK-SUPPORT INTERACTION 

In this appendix a detailed derivation is 

given of the results presented in Chapter II. 

A-l.  Stress Distribution 

The following equations are used in the 

derivation of the stress distribution: 

Equilibrium (Eq. II-3.4): 
d<T 

C   -  (T - r rr-E + rw = 0 (A.l) we    r    dr — 

Failure condition in the broken zone: 

<f^r (1 - sin 0r) = tf*r (1 + sin jzy + 

2c  cos 0 (A.2) 
r     r 

a < r < b 

Incipient state of failure on the elastic 

side of the broken zone limit: 

If®1 (1 - sin 0) = <rel (1 + sin 0) + 2 c cos 0 

(A.3) 
at r = b 

A-l 



A - 2 

Stress distribution in elastic region, 

resulting in: 

5'e1+6-f = 2P (A.4) 

Boundary conditions 

/C = P.  at r = a 

In the above equations 

/- , g~ :  tangential and radial stress 
■©  r 

^br/ 6"
br: tangential and radial stress in broken 
r  zone 

5-el, 5-el: tangential and radial stress in elastic 
r  region 

w = specific weight 

C/ 0:     cohesion and angle of internal friction 
of intact rock 

c ,   0  : (residual) cohesion and internal friction 
r  r    of broken rock 

a, b:     tunnel radius and radius of broken zone 

p:        hydrostatic stressfield 

P.:       support pressure 

Substituting (A.4) into (A.3), one finds 

/Tel = P(l - sin 0)   - c cos 0 at r = b (A.5) 
r 

The radial stress at r = b is determined by 

the stressfield P and the intact rock strength 

(c, 0)/ and is independent of b. 

Substituting (A.2) into (A.l) one obtains a 



A - 3 

br 
differential equation for 6"r : 

6-^r(l + sin 0r) - ff^r(l - sin 0r) + 2 cr cos 0^ 

1 - sin 0 
^ r 

d<Tbr 

- r —T-^—  + wr = 0 dr  — 
br 

dgbr _ 2 sin0r    fr 2 cr cos 0^        +  w 

1 - sin 0    r    r (1 - sin 0 ) 
dr ■ r r 

(A. 6) 

Integration of (A.6) results in: 

a) when sin &r /  1/3 and0r / 0 2 sin 0 

br           „   rw(l - sin0r)    ^  1-sin 0 

*T = " Cr COt 0r ± 1 - 3 sin 0r  
+ Mr 

(A. 7a) 

b) when sin 0 = 1/3 

rbr = -3 c cos 0 + rw log r + Mr      (A. 7b) 
r       r     r — 

c) when 0=0 equation (A.2) reduces to 
'      r 

_br   rbr  9 

0     r      r 

Substituting in (A.l) gives an equivalent 

for the differential equation (A.6): 

d (T 
r  __X_ = 2 c + rw 

dr       r — 

After integration this gives: 

<Cbr = 2 c  log r + wr + M (A. 7c) 
r      r      — 

In equations (A.7) M is a constant of inte- 

gration, which is determined from the boundary 
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condition on the tunnel periphery r = a, where the 

radial stress equals the support pressure, (T, = 

P. at r = a.  After substituting the thus deter- 
x 

mined constant M in equations (A.7) one obtains 

the stress distribution in the broken zone: 

a)  sin 0r / 1/3, 0r ^ 0 

rw (1 - sin 0 ) 
br          ^ r 

<Tr = - cr cot 0r  +  i _ 3 sin 0 
r 

2 sin 0 

-   1 - Sin 0r       wr%l - si/0 + (P. + cr cot 0r  + aw ! , 3 sin ^ ) <£> 

(A.8a) 

b) sin 0r = 1/3 

br /T   = - 3 c  cos 0 + rw log r 
° r        r     r — 

+ (P. + 3 c cos 0 + aw log a) —    (A. 8b) 
i     r     r a 

c) sin 0=0 

<cbr . p. + 2 c log - + w (r - a)     (A.8c) u  r    l     r    a — 

By introducing the continuity in radial 

stresses across the broken zone boundary r = b, 

i.e., by equating (A.5) and (A.8), one obtains a 

relationship between the depth b to which the 

broken zone propagates and the corresponding 

support pressure P.: 

a)  sin 0r ?  1/3, 0r ^ 0 
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1 - sin 0 

P (1 - sin 0) - c cos 0 = c cot 0 + bw - :—. x       ^' ^ r     r —   1 - 3 sin 0 
r 

2 sin 0 
1 - sin 0 

+ (P. + c cot 0 + aw ,  . x,  ) (V " sin 0r l   r     r     1-3 sm 0  a' 
r 

2 sin 0 

P. = [P(l - sin 0) - c cos 0 + c cot 0 ] (—)  " Sxn ^3 
1   "■ .■ r     r b 

3 sin 0 -1 
aw (1 - sin 0 ) r 

. -,     ,    r  r.  ,a,l - sin 0  . 
- c cot 0 + ■"" "% : w  [ 1 - Or)        r 1 r     r — 1 - 3 sin 0   L   xb J 

b)  sin 0r = 1/3 
(A.9a) 

P. = — [P (1 - sin 0) - c cos 0 + 3 c cos 0 ] 

a . 
+ w a log — - 3 c cos 0 (A.9b) 

c)  sin 0-0 
r 

P. = P (1 - sin 0) - c cos 0 - 2 c log   w (b-a) 

(A. 9c) 

Equations (A.9) are given in Chapter II as 

equations (II-3.5). 

Two functions of the stresses are needed in 

>. br    br the calculation of the displacements, 0   + <T   and 

(?   - 6"  .  These can be obtained from (A.2): 
6r 

,      ,  1 + sin 0   2c   cos 0    , 

0     r     r 1 - sin 0    1 - sin 0     u r r r 

2 ffbr     2 c cos 0 
= 1—?—ST + n—^—^ (A. 10a) 1-sm 0   1 - sin 0 

r r 
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2 <5br sin 0   2 c cos 0 
sbr _ br   r .   *r +  , r ■  /    (A.lla) 6 e   °r   1 - sin 0 1 - sm 0r 

When sin 0    = 1/3, this can be written as: 

S
hr  +<S-br = 3 <Tbr + 3 c cos 0 (A.lOb) 
r    ©      r      j.     i 

* br - 6br = 5br + 3 c cos 0 (A.lib) 
@       XV       iv x. *■ 

When sin 0=0, 
r 

(?er+^r = 2(5f+ cr) (A.10C) 

<rbr _f
br = 2 c (A.llc) 0 6    r      r 

Substituting equations (A.8) into (A.10) and 

(A.11), these functions can be written as: 

a)  sin 0r ±  1/3, 0r  / 0 

V>-r   br ./    2 r w g-Dr
+  <-Dr -  _ 2 c cot 0 + ■= ., -.„ ^ 0 ©  ö r        r    ^r— 1-3 sm 0 , 

^ r 
__ aw (1 - sin 0r)  r 

[P, + c^ cot 0^. +  ;—— ] (-) 
1 - sin 0  " X r     r  1 - 3 sin 0 

r 

(A.12a) 
2 sin 0 __ 

<r r . <e r =  r-~r- [P. + c  cot 0 + 
°e   °r   1 - sin 0  L l   r    ^r 

1 - sin 0     oCr  2 r w sin 0 
a» 1 - 3 sinr0 ' <f>  ± 1 - 3 sin 0„ <A-13a) 

r r 

b)  sin 0r = 1/3 
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<T   + 6" r = -6c cos 0 + wr log r ° e     r        r 'r — 

+ ~ [P. + 3 c cos 0 + wa log a)        (A.12b) 
a L x     r     r 

£-br - x-br = (P. + 3 c cos 0 + wa log a) f + wr log r WQ   or   \ x     r    'r a — 

(A. 13b) 

c)  sin 0=0 
r 

^ + Ö"tr = 2 <p^ + c ) + 4 c log f + 2w (r-a) 

(A.12c) 

br   br = 2 c (A.13c) 
w 6    r      r 

The above sums and differences of principal 

stresses have to be integrated from a to b,   and it 

is convenient to separate the various  functions 

of r: 

a) sin 0    ^ 1/3,   sin 0r ^ 0 

g.** + ,Tbr = K + Lr + Mr*r (A.15a) 6r 

b) sin 0r = 1/3 

(Tbr + <Tbr = K + Lr  log r + Mr (A. 14b) 6r 

(T@r -(Tbr = Lr log r + Mr (A. 15b) 

c)     sin 0=0 

ChT +ffbr = K +  L  log r + Mr (A. 14c) @ r 
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In the above expressions K# L and M are the 

appropriate coefficients for each particular case, 

The needed integrals are: 

/«TIT +*rr> rdr' and S1^ - *hrX)   rdr a a 

After substituting (A.14) and (A.15), the 

results are: 

b ^ ■ i 2  2    v.3  3 

ir ccx b -a   „. b -a 
a) y (K + Lr + Mr  ) rdr = K —^— + L —^— + 

a H- + 2 öc ■+ 2- c£r     ^r 
M£ ^a   (A. 16a) 

ccr  + 2 

where *r + 2 = r——— 
'r. 

b b2-a2 
b) F (K + L r logr + Mr) rdr = K —;j— + 

a 
3        3 3    3     ,33 

T y  locfr - a loc? a  b - a      b - a 
L { 3 ~    9   '        3 

(A.16b) 
b b2 - a2 

c) f  (K + L log r + Mr) rdr = K  ^  + 

a 
2 2 ,       t2    2  .   .3    3 

T fb  log b - a  log a  b - a      b - a „, 
L(    2 "    4   ) +     3 

(A.16c) 

A-2.  Displacements 

A-2.1.  Constant Volume Increase Throughout 

the Broken Zone.  Prior to failure the volume per 

unit tunnel length of rock in the broken zone is 

1Y (b2 - a ).  During failure this volume increases 
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2    2 
toir(b - a ) (1 + K) .  After failure the volume 

2 2 
can also be written as ITt (b - u,)  - (a - u&) ], 

where u and u_ are the radial displacements at 

the tunnel surface, r = a, and at the broken zone 

boundary, r = b, respectively.  K is the volume 

expansion factor.  Equating the two expressions 

for the final volume results in: 

(a - ua)
2 = (b - i^)2 - (1 + K) (b2 - a')  (A.17) 

ua = a - [ (b - Uj^)2 - (1 + K) (b2 - a2)]%     (A.18) 

A simpler expression for u can be derived 

by rewriting (A.17) as 

(b2 - 2bub + v^2)   - (a - 2 aua + %  )   =   (1 + K) 

2   2 
tt> - a ) 

Iff  u «a and u <<be   this reduces to 

b   + K(b
2 - a2) A 

a  a ^ u- = - "b +   2a" 

2 
The error introduced by neglecting u. a 

2 . 
XL      increases with increasing K, with increasing 

b/a and with increasing Uy/a/ as can loe  seen in 

Figure A.l. 

The displacement u, is the displacement at 

r = b caused by tunneling, or the displacement 

induced by the stress change in the elastic region. 
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0.4 

0.3. 

0.2 _ 

Figure A.l.  Relative Error Introduced by Linear- 
izing the "Constant Volume Expansion" 

Displacement Calculation, i.e., by 

neglecting u  - u, 

u = exact u , according to equation 
1   (A.18) a 

u = linearized u - according to equation 
o a. 

(A.19) 
b, a = radius of broken zone and tunnel 

radius 
u, 

A: -£ = 0.01  B: — = 0.0001 
a a 



A - 11 

Prior to tunneling <Tr = ö"e = <5"z = 
p»  After tun- 

neling: 

The tangential strain change over the pre- 

tunneling value is: 

*e " r E 

"b _ (P " ^r^b* (1 +X?)   =   (P sin 0 + c cos 0) (1 + 0) 
b~ "      E E 

(A.20) 

where 6"   , is substituted from (A.5). 
r, r=b 

A-2.2.  Displacements Caused by Elastic 

Relaxation.  Driving a tunnel is equivalent to 

removing the central core from a loaded very thick 

cylinder, or to depressurization of the central 

hole of a hydrostatically loaded thick wall cylinder. 

During the depressurization, when the stresses 

reach a critical value (on the hole periphery) 

failure is initiated.  Failure propagates during 

further depressurization or "unloading."  The entire 
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sequence occurs under constant external pressure. 

The lower (radial or confining) principal stress 

decreases during the process, while the larger 

(tangential) principal stress increases up to the 

point of failure and decreases thereafter. 

The displacement associated with the propaga- 

tion of a broken zone will now be considered as an 

elastic relaxation of the (broken) rock caused by 

stress relief around the tunnel. 
2 

Considering an annulus with volume *TT (b - 

a2) prior to tunneling, its volumetric compression 

prior to tunneling can be calculated from 

C /äH + H) 2^ rdr, where the strains are calcu- 
J vdr  r' a . 
lated from the hydrostatic stress distributxon. 

This volumetric compression does not change after 

tunneling, if the tunnel remains elastic. When 

the rock surrounding the tunnel has failed up to 

r = b, the final compression can be calculated 

from the same integral, but now using the "broken 

zone" stress distribution.  The difference between 

the two integrals constitutes the "elastic" volume 

relaxation.1  Equating the final volume in this 

a 

1Although it might appear that a more direct 
solution could be obtained by expressing the volume 
change in differential form as a function of the 
stress changes caused by failure, i.e.: 
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form to the final volume as a function of the dis- 

placements, one finds: 

.du be   e b ; br  .br 

a a 

2 2 
2lTrdr =m(b - u^  - (a - ua) ]    (A.21) 

where: 

da! ^u!_ 2P(1 - 21/) 
dr   r     ■ E 

du"  „"   ^b/^b/)a-^-2< br   br   ( <T 

dr    r B    . 
2     2 

Substituting, and neglectxng u& - u^ , one 

obtains for the radial displacement: 

9  2    ■  ■ S 
b„ ^ Pll - 21/V(b2-a )   (l^L.f #<rbr^ br, ^ 

ua = aub+      aE Ea a   6   r 

+ 2j^ /f
br rdr       (A.22) 

T Ea «/  z 
ci 

br 
The results depend upon ^z , and two assump- 

tions for this axial stress will be considered: 

br 
i)  "Elastic" plane strain, or 6" z = P(1-2V) + 

br 
+ 0 

one finds 

y ( 5*br + 6" br).  Substituting this into (A.22), 
©     r 

(AC   +  A€J   (1 - V>) - 2 1/4 <r, 
dUff) +-43 =  E 5 ; 

dr      r E 

it turns out that the integration of this expression 
leads to far lengthier computations. 
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b 

Si 

(A.23a) 

This equation is given in Chapter II as 

(II-4.8a). After substituting integrals (A.16) 

with appropriate coefficients, the radial dis- 

placement is given by: 

a)  sin 0 ^ 1/3, sin 0r ^ 0 

2 2, u = b  + ,d^Mi-^) t (p -  cot 0 (^_a^ 
a  a D O.ÜJ .      *■ *- 

3  3 aw(l-sin 0 ) 
z 2w(b -a )      ( . £ ■£ ^_) 
+ 3(1-3 sin 0r) ~ (Pi + Cr COt *r + 1-3 sin 0r  ' 

oCr+
2 e^r+

2 

£ -=£ 1 (A. 24a) 

b) sin 0 = 1/3 

a  a HD     aE l a 

3 3        b 
- 3c cos 0 b2 (| - 1) + w(-b :a - b log-)] 

(A. 24b) 

c) sin 0r = 0 

log b - w(b- a)
2 (2 b + a)-,        (A.24o) 

a 3 
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ii)  "Plastic" plane strain, or 

*>r ^ ^br        ^br   br 
br    0    r       w  v ±1». rUi = —2— ,!., ■*— « sin 0  r-—— 

6 z        2 r    ^ z 

Substituting this into (A.22), one finds 

b    P(l-2»/,Hb2-a2> _lz  2^r(<r
bVbr) rdr 

7 "v, +     aE aE J  . 6 ^r üa = a "b +     aE __ a 

Vsin 0b, 
- . -£r«Thr  - <T ) rdr (A. 23b) 

aE J     e   r 

This equation is given in Chapter II as 

(II-4.8C). After substituting integrals (A.16) 

with appropriate coefficients, the radial dis- 

placement is given by: 

a)  sin 0 £  1/3, sin 0r ^ 0 

(P + c cot 0 ) (1 - 2U)   (b - a ) 
b r r 

ua = - ^ + ■ aE 

(1-2)/+   ^sin2 0r) •   2w(b3 - a3) 
- aü P 3 (1-3  sin 0r) 

<£r+2      öCr
+2 aw(l-sin 0r) 

+ —^T  [Pi + °r COt 0r + 1-3  sin *      ] 

a x 

(A.25.ä) 

b)     sin 0    = 1/3 

2     2,       3  c    cos 0^.   (b - a) 

) 

= b P(l-2i/) (b -a  ) r *r 
a      a "b aE " a

2
E 

r n        2jA   b2 ^(b2
+ab+a2) 1 -  2y+i;/9 

[ (1 - 2i/)  b    + 5 J aE 

bjU3, - w   (bf-a?_ _ b3  log |} 3 (A#25b) [P.   ——   T -   v     a       --_-=, a 
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c)  sin 0=0 
r 

ua = a 
^ + 

1
a" 

2lJ[ (P „ p.) (b2-a2) - 2 cr b
2 log | 

- w<b - a)^2b + a)3 (A>25c) 

After substitution of (A.20), and neglecting 

the gravity termsy the equations (A.24) and (A.25) 

for the displacements can be written in dimension- 

less form, for example (A.25c) as: 

Ü =(£)
2 (P sin 0 + c cos 0) (1 +]))   +   (1_2y) 

[^-^((|) - 1) - 2 ^ (|) log £]   (A.26C) 

The displacements have been calculated for 

two different cases.  It is likely that there is a 

gradual change from an "elastic" plane strain con- 

dition during the initial stages of failure, when 

&   is the largest principal stress, to a condition 

where $    becomes the largest principal stress as z 

$     decreases with further propagation of the 

broken zone.  One would then expect the "plastic" 

plane strain condition to be valid in an annulus 

immediately surrounding the tunnel, and the "elastic" 

plane strain condition through the remainder of 

the broken zone (as well as in the elastic region). 
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The difference between the displacements 

calculated for the two cases can be calculated from 

~br 
(A.22), after substitution of the appropriate 6 2 : 

v i br   ^br 

2 V b      ea    +   GV 
-f - <" - a«*/ [(p" -jL^-^->(1"2 *> r a 

br    br 
+ sin 0r ,fe ^  r 3 rdr (A#27) 

el ^ The integrand is always positive, or ua  > 

vp1   (equal iff a = b) .  The difference will increase 
cL 

with increasing b.  The difference increases with 

increasing V    up to 1/4, beyond that no general 

statement is possible.  This can be seen by re- 

writing the difference as: 

f (^) = A^ (1-2V>) + Bl/* 

f« (») = A (1-4») + B 

A and B are positive constants. When 0r = 0, 

B = 0 and f (V)   is symmetric around V> = 1/4, and the 

difference is then a true maximum at V = 1/4.  As 

B increases with 0 the maximum difference shifts 

to higher V   values with higher 0r- 

The difference will increase with increasing 

P for constant support pressure Pi (i.e., constant 

fi-br and (Tbr).  The difference will decrease for 
& r 

increasing tunnel size (a) and will increase for 

decreasing residual stiffness (Er). 
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Cumulative effects of the various parameters 

on the relative difference are shown in Figures 

A.2 and II.8. 

A-3.  Computer Programs for the Calculation of the 
Ground Reaction Curve 

A-3.1.  Introduction.  The following programs 

calculate the required support pressure and the 

corresponding displacements for increasing values 

of the broken zone radius b.  In both programs the 

support pressure is calculated according to 

equations (A.25), also given as (II-3.5).  In the 

first program, GRCSZE, the displacement calcu- 

lation is based upon the assumption that the axial 

stress &    is given by the elastic plane strain 

assumption, and equations (A.24) are used.  In 

this program, an entirely independent displacement 

calculation according to (A.18) is also included. 

In the second program, GRCEXPD, the axial stress 

(f is calculated from the plastic plane strain 

condition, and equations (A.25) are evaluated.  In 

GRCSZE a set of ground reaction curves is calculated 

for various values of the residual strength, always 

taken to be constant for each particular curve (for 

example, Figures II.8 and II.9).  In GRCEXPD the 

expressions (II-4.16) through (II-4.18) are 
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uel - upl 

100 

Cr=C     4>r = 4>      Er = 0.2-E 

Figure A.2.  Relative Difference Between Radial 
Tunnel Wall Displacements u Calcu- 
lated for 5" Determined from the    ^ 

-,     "Elastic" plane strain Assumption (u ) 
or from the "Plastic" Plane Strain 
Assumption (u ) . 
Common data; 
P = 500 psi 
V = 0.25 
0 =  30° 

E = 10 psi 
c = 50 psi 
w = 0 lbs/in5 
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substituted, so that the ground reaction curve can 

be calculated for a gradual (exponential) strength 

and stiffness decrease.  Only one curve is calcu- 

lated for an input data card. 

A-3.2.  Input. 

A-3.2.1.  Program GRCSZE.  Input data are 

submitted with one data card.  F0RMAT (F.10.1, 

5F8.2, 5F6.2) as follows: 

Column 1-10 

11-18 

19-26 

27-34 

35-42 

Young's modulus E of the rock, in psi. 

Hydrostatic stressfield P, in psi. 

Tunnel radius A, in feet. 

Poisson's ratio V. 

Residual modulus decrement factor 

RK (0 < RK < 1) . 

A first calculation is performed with the residual 

modulus E   equal to the original modulus E.  If res 

RK is different from zero, a series of calculations 

is initiated during which the residual is decreased 

by RK x E at each step.  The series is terminated 

when a zero or negative modulus results. 

3 
43-50:  Specific weight of the rock, in lbs/in 

51-56:  Cohesion of the rock, in psi. 

57-62:  Angle of internal friction of the 

rock, in degrees. 
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63-68:  Residual cohesion decrement DELCR, 

in psi. 

A first calculation is performed with the residual 

cohesion equal to the "intact" cohesion.  If DELCR 

differs from zero, a series of calculations is 

initiated such that at each step the residual 

cohesion is decreased with the decrement punched 

here.  The series is terminated when a negative 

residual cohesion results. 

69-74: Residual angle of internal friction 

decrement DELPHIR, in degrees. Used in a similar 

way as the preceding decrements. 

75-80:  Constant volume increase increment 

DXK.  An initial calculation of the displacements 

is based upon the assumption that the broken zone 

rock undergoes no volume change.  Subsequent 

calculations are performed after adding an incre- 

ment DXK to the volume expansion factor during 

each cycle. 

A-3.2.2.  Program GRCEXPD.  Input data are 

submitted with one data card, F0RMAT (2E9.4, 7F6.2, 

4F5.1), as follows: 

Column 1-9:  Initial Young's modulus E of the rock, 

in psi. 
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10-18:  Minimum residual Young's modulus 

min  .    . E  /in psi. res'   ^ 

19-24:  Hydrostatic stressfield P, in psi. 

25-30:  Tunnel radius AF, in feet. 

31-36:  Poisson's ratio V. 

.3 
37-42:  Specific weight W, in lbs/xn . 

43-48:  Cohesion of the rock C, in psi. 

49-54:  Angle of internal friction PHID, in 

degrees. 

-,-,-    ..       .-,-   ,.   / min . 55-60:  Minimum residual cohesion (c   in r 

(II-4.16)) CRMIN, in psi. 

61-65:  Minimum residual angle of internal 

friction (jzf1111 in (II-4.17)) PHIRMIN, 

in degrees. 

66-70:  Parameter k (II-4.16) determining the 

rate of decrease in residual cohesion, 

PARK (PARK £ 0). 

71-75:  Parameter 1 (II-4.17) determining the 

rate of decrease in residual internal 

friction, PARL. 

76-80:  Parameter m (II-4.18) determining 

the rate of decrease in residual 

modulus, PARM. 

A-3.3.  Output.  All input data are 



A - 23 

printed on the first output page, as well as some 

values calculated directly from the input.  This 

includes the uniaxial compressive rock strength, 

the equivalent tunnel depth calculated from the 

(hydrostatic) stress and the rock weight and the 

bulk modulus.  Also printed is the radial dis- 

placement that would result if the rock had 

sufficient strength to remain elastic following 

tunneling.  This value determines the intersection 

of the elastic ground reaction curve with the 

(horizontal) displacement axis. 

A-3.3.1.  Program GRCSZE.  Values of the 

residual cohesion, friction and bulk modulus as 

well as the broken zone volume increase (in %) 

are printed as a heading above the calculated data 

giving the ground characteristics.  These data are 

printed in ten columns.  The first one gives the 

radius b of the broken zone (in ft), the second 

one, the value of b divided by the tunnel radius a. 

The next three columns give results when the gravity 

forces are neglected (w = 0), namely, the support 

pressure, the displacement and the displacement 

divided by the tunnel radius.  The following columns 

give support pressures and displacements at the 
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tunnel roof and floor.  All displacements are given 

in inches, all support pressures in psi. 

The last column is entirely independent from 

all preceding ones but the first two.  It gives the 

displacements based upon the assumption of a 

constant volume increase throughout the broken zone. 

This calculation is altogether independent from the 

stress distribution so that the last column from 

any page of the printout can be combined with the 

third column of any page in order to obtain the 

data defining the ground reaction curve for that 

particular combination of strength and displacement 

properties. 

The support pressures and the displacements 

are calculated for every combination of the gener- 

ated values of the residual modulus, cohesion and 

friction, from b/a = 1 in steps of b/a = 0.1 up to 

either b/a = 6.6 or the value of b/a where all 

support pressure requirements reduce to zero, 

whichever is smaller. 

When all calculations for the first data card 

input are terminated the next data card will be 

read.  This cycle will continue until all data sets 

have been processed, following which an error 

message will be printed.  It is thus possible to 
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multiple problems with one program compilation. 

A-3.3.2.  Program GRCEXPD.  The calculated 

data determining the ground reaction curve are 

printed in twelve columns.  The first nine columns 

give the same variables as the corresponding columns 

of the previous program.  The last three columns 

give respectively the residual angle of internal 

friction (column headed PHIR), the residual co- 

hesion (CRES) and the residual Young's modulus 

(ERES) used for the corresponding b/a value.  A 

check on the decline rate of the residual properties 

is thus provided. 



A - 26 

PROGRAM GRCSZFtINPUT,OUTPUT) 
C     THIS PROGRAM CALCULATES A SET OF GROUND HEtCTIO;«J CURVES FOR VARIOUS 
C RESIDUAL STRENGTH VALUES AND ELASTIC RELAXATION 
C AXIAL STRESS SIG7 FROM ELASTIC PLÄNE STRAIN 

DIMENSION U(3) ,PS(J) »WlM.i) 
Y = ASlN(l./3.) 

300 READ l(..E,PfAF,V,RK,*i,C»^HID,DELCR»DELPHlR,nxK 
In FORMAT (F10. 1. ♦^F8.2'5K6.?.) 

IF(DXK) 432,432,433 
432 DXK a 0,001 
433 XK = - UXK 

IF(UELCR) 400,40t,410 
'♦CO DELCR = C 
41(, IF(DELPHIR) 420,420,43C 
42(i DELPHIR = PHI 
43(J WF = 1728.*W 

VR = 1-.*V 
VE = VR/E 
VP = 1,-2«*V 
OK = E/VP/3. 
WU(1) = U. 
WU(2) s - W 
WU(3) = W 
PHI = PHID/57.29B779Ö131 
DEP * P/W/12. 
SI = 1. - SIN(PHI) 
PP s P»S1 
CC = C»COS(PHI) 
PPI a PP - CC 
pPtt a p - PPI 
SIGC = 2.»CC/Sl 
PRINT 20iP,AF,E»V,OK,C,PHlD,SlGC»W,WF,DEPtDEl-C«»DELPHlR»RK 

2c FORMAT»/* PRE TUNNELING STRESS = * F7.1* PsI* 5X* TUNNEL RADIUS = 
1*F6.2* FEET*//* ROCK PR0PERTIES*//5X*  YOUNGIS MODULUS = * F10.1 * 
2 PSI*5X* P0ISS0N»S RATIO a *F6.3, bX* ORIGINAL HULK MODULUS = »F'l 
3,1* PSI * //5X*  COHESION = *F7.2* PSI*5X* ANGL 
4E OF INTERNAL FRICTION a »Ffc.l* DEGREES* 5X* UNlAXlAL COMPRESSIVE 
5 STRENGTH a »F8.2* PSI*//5X*  SPECIFIC WEIGHT a *F6.3* LBS/CURIC I 
6NCH   a»F7.^* LBS/CUBIC FT*5X* CORRESPONDING TUNNEL DEPTH a »F7.1 
7* FEET*//5X*  DECREMENT »-'F RESIDUAL COHESION a *F8.2*PS1*7X* DECRE 
8MENT OF RESIDUAL ANGLE OF INTERNAL FRIcTlON a *F7.2* DEGREES*//5X* 
9 FRACTIONAL BULK MODULUS CHANGE =*F6.3//> 
A = l2.*AF 
UAR a P*VE 
UAO a A*UAW 
PRINT 5o»UAO»UAR 

5n FORMAT«//*       FINAL RADIAL DISPLACEMENT IF THE TUNNEL WERE TO R 
"lEMAlN ELASTIC = *E10.4* INCHES*/*       RELATIVE TO TUNNEL RADIUS 
2a *El2.4) 
IF<SIGC - 2.*P) 22,24,24 

24 PRINT 25 
25 FORMAT«//* UNIAXIAL COMPKESSIVE STRENGTH IS LARGER THAN MAXIMUM ST 

1RESS    NO FAILURE *//) 
GO TO 300 

22 CONTINUE 
VEP = VE*VP/A 
A? = A*A 
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A3   =   A2*A 
DELPHI«   *   r>ELPrilH/57.?4i>779bl31 
CR * C 

60 CONTINUE 
PHIR = Phi 

71 CONTINUE 
X = ABS(Y - PHJR) 
FK = 1. 
PHIRD = PHIR»57.r>957795 

5?0 RKR x FK*OK 
XK = XK ♦ DxK 
XKX a XK*100. 
PRINT l8Ü.CR»PMl«0»RKP»X^X 
VF a VF.P/FK 
CP = COS(PHIR) 
IF(PHIR) 44(>»4*0»450 

450 SIR ■ 1. - SlM(PHlrt) 
S3R = 1. - 3.»SIN(PHIR) 
ALR = 2.«SIN(PHIR)/(1.-SIN<PHIR)) 

ALRl * ALR - V. 
ALR2 = ALR ♦ ?. 
CCR a CR/TAN(PHIR) 

440 Al = AF/10. 
BF = AF - Al 
NC = - 1 
DO 110 U = 1,57 
BF a 8F ♦ Al 
B a 12.»BF 
B2 a B«B 
B3 a B2*B 
BA2 a (B-A)»(R*A) 
BA3 a (B-A)»(B*B ♦ A«B ♦ A«A) 
AB a A/B 
BA a 8/A 
UB a B»VE»PPA 
UA2 a <8-UB)**2 - <1.*XK)»BA2 
1F(UA2> 82,8^,83 

82 UA2 a C. 
83 UAK s A - SQRTIUA2) 

UAR a UB»BA 
OB = BF 
IF(PHIR) 200,200,210 

200 CONTINUE 
PS(1) a PPI - 2.*CR«ALOG(BA) 
IF(PS(1)> 350.360,360 

350 IF(NC) 352*354,354 
354 PS(2> a PSd* ♦ W*(B»A> 

U(2) = UAR ♦ VF»((P-PS(2»)»BA2 - 2,«CH»B2«ALOG<UA> ♦ W»(b-A)♦(B-A) 
1 »(^,»b*A)/3.) 
IF(PS<2)) 111,356*356 

356 PRINj 358,bF,RA,PS<2) ,U<2) »UAK 
358 FORMAT(F9.2»F10.3»37X,F1*.3,E14.4»28X,F14.4> 

GO TO 110 
352 PS<1) a ü. 

NC a 1 
BA = EXP(PPI/?./CR) 
B -  BA*A 
PS(2) a W*(B-A) 
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BF = H/12. 
ÜB s B«VE»PPA 
U(l) = BA»UH ♦ VF*(P*(B-A)*(fe* + A) - 2. *CFl*B»W*AUOG (BA) ) 
U(?) = Uli) ♦ VF»W*(B-A>»<B-A>»U*2.<M>/3.-VF*PS<?)MB-A)«<B*A) 

460 UOA x u(D/A 
PRINT 470»8F.BA,PS(1> »Ud) »JUA»PS(2) ,U(2) »UAK 

470 FORMAT<F9.2in<'.3,Fl3.3,ILl*.*.El0.3.Fl*.J»El*.*»2fiXtEl*.*> 
BF = OB■ - Al 
60 TO 110 

360 PS(2) = PS(1) ♦ w«(ö-A) 
PS(3) a PS(l) - «*(8-A) 
IF(PS<3)> 370.380,380 

370 PS<3) = 0. 

372 U(I> = UAR + VE»VP#((P-P5(I))*BA2 - wU(I)*(8-A)*(B-A)*(2,»B*A)/3. 
1     -2,»CR*B*b*AL0G(ÖA))/A/FK 

461 UOA = UU>/A -,.,., 
PRINT 470,BF»BA»PS(1).0(1)»UOA»PS(2),U<2)»UAK 
GO TO 110 

22? U((I^2° UAR i*VE»VP*l(P-PS<I))*BA2 - WU (I) » (B-A ) • ( B-A ) * (2 . »B* A ) /3 . 
I     -2,«CR*B*B*AL0G(BA)1/A/FK 
GO TO 240 

210 IF(X-O.Oül) 250.250.260 
250 GR = W*A»ALOG(BA) 

CCR a 2,«SÜRT(2.)*CR 
PS(l) = (PPI ♦ CCR)*AB - CC« 
IF(PS(D) 270,280.280 

270 IF<NC> 272,274,274 
274 PS (2) * PSd)' ♦ GR 

U(2) » UAR ♦ VF*(P»BA2 ♦ 3. »CR*CP»B2*(A-B)/A - PS(2)*BA3/A  - 
1  W»(8A3 - 3.*B3*AL0G(BA))/3.) 
IF(PS(2>) 111,356,356 

272 PSd) s 0. 
NC = 1 
BA = PPI/2./S0RT(2.)/CR ♦ 1. 
B = BA»A 
BF = 8/12, 
ÜB = B«VE»PPA 
PS(2) = W«A*ALOG(BA) 
Ud) = U8*ÖA ♦ VF*(P*(8-A>*(B*A) - 3.»CR*CP* <B-A) »8*B/A> 
U(2) = U(l> -VF»(W»(<B-A)»(B*B*B»A+A«A)/3. - 8»8»B»AL.0G (BA) ) ♦ 

1   PS<2)*<B-A)*(B*B*e)*A*A*A)/A> 
GO TO *60 

280 PS(2) « pS(l) ♦ OR 
PS<3> = PS<1> - GR 
IF(PS<3)> 290,31.»,310 

29() PS«3) ~   0. 
DO  292   I   »   1»? ' 

292   Ud)    *   UAR   ♦   VF«(P*BA?   -   3. »CR*CP* (B-A) *B»B/ A   -   PSd)«BA3/A   ♦ 
1        WU«I)*(BA3/3.   -   B*»3»A|_0S<BA))) 

GO   TO   461 
310   00   320   I   =   1,3 , ,      ,,      ,A 
320   Ud)    =   UAR   ♦   VF*(P«BA2   -   3. »CR*CP» (B-A) »ö*B/ A   -   PSd)*BA3/A   + 

1        WUd)»(BA3/3.   -   B»»3»AL0G(BA) )) 
GO   TO   ?*0 

260   PS(l)   =    (PPI   ♦   CCR)«AB**ALR   -   CC» 
OR   s   A*W*(AB**ALR1   -   l.)/(l.-ALR> 
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iF(Psm>  iat>ti3oti3o 
120   IF(NC)   lZ2»12*il2* 
1?4   PS(2)    s   PS(1)    ♦   GR 

U<2)   =   UAR   ♦   VF«M<P*CCR>*BA2   ♦   2,*W*BA3/3./S3R   -   (PS(2>   ♦   CCR   ♦ 
1 A*W*S1R/S3R)*<B**(ALR*2.) - A**<ALR*2.>>/A**AL«> 
IF(PS(2)) 11±,356,356 

12? PSU) = 0. 
NC = 1 
BA = (PPI/CCR ♦ lt)»*(l./ALR) 
B = A*BA 
8F = B/12. 
UB = B»VE*PPA 
PS<2) = A«W*(('A/fa)»*ALRl - 1.)/<1.-ALR) .„■»,'   »..,», 
U(l) • Ud*bA ♦ VF*((P*CCM)»(B-A)*(B*A) - CCR*<B**<ALR*2.> - A»*(AL 

1U(2)2x>iartL2M(2.*W»(b-A)»(H*B ♦ B»A ♦ A«A)/3./S3R - (PS(2) ♦ 
\        A«rt*SlR/s3R)*(B*»(AL«H) - A**(ALR2)>/A»»ALR) 
GO TO 460 

130 PS<2) c PS<1> ♦ öR 
PS(3) -   PS<1> - oR 
IF<PS<3)> 1*0,150,150 

ItJ S?I)4= UAR i'vF»<<P*CCR>»BA2 - 2.*WU(I)*BA3/S3R/3. - <PS<I> ♦ CCR 
1 - A«WU(I)*S1R/S3K)*(B**ALH2 - A**ALR2)/A»»ALR> 
GO TO *6l 

2!o U°I?
3- UAR 1

,
3F»((P*CC«)*8A2 - 2.*WU(I)*BA3/S3R/3. - <PS<I> ♦ CCR 

1 - A»WU(l)»SlR/S3R)*(B*»ALR2 - A*»ALR2)/A»«ALR) 
240 PR?!*' ioJ>,BF,BA,PS(l),U(l).UÜA,PS(2),ü(2),PS(3),U(3),UAK 
100 FORMAT(F9!2»F10.3»F13.3'E14.4.E10.3.FU.3.E14.4.F14.3»2E14.*) 

110 CONTINUE 
111 IF(FK - RK) 50U»510»500 
500 IF(RK) 501.510,^Ul 
501 FK = FK - RK 

IF(FK) 510»510'520 
510 IF(DELPHIR) I6ö,l60»l7l 
171 PHIR = PHIR - DELPHIR 

IF(ABS(PHIR) - 0.0001) 172,173,173 
172 PHIR * 0.  ■ 
173 IF(PHIR) 160,70,70 
160 IF(OELCR) 170,170,161 
161 CR = CR - DELCK 

IF(CR) I70»o0,b0 

170 CONTINUE oeciniiAi rfiri^TOw - * F7.2» PSI * ' 5X • RESIDUAL ANG 
18°,rrRSrAT!NTERNAL ?""lON -^"z* DEGREES* 5X * RESIDUAL BULK MOOULU 

l« - « 11» PSI */• BROKEN ZONE VOLUME INCREASE - *Ffl.3« PER CEN 
??.//• iinTUSR 8/A SUPPORT PRESS DISPLACEMENT DISPLMNT ROO 
ATSUPPSR? «OOF ^LOOR SUPPORT FLOOR CONST VOL INCg 
WAIP»/2«X»  NO GRAVITY    NO GRAVITY  OVER RAD OISP 
ICEMEN? DISPLACEMENT    OISPLACEMENT*/, 

PRINT 2 
2 FORMAT(lHl) 

GO TO 300 
FND 
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PROGRAM GRCEXPl)( INPUT,OUTPUT) 
THIS PROGRAM CALCULATES THE GROUND REACTION CURVE FOR A GRADUAL 

EXPONENTIAL DECREASE  IN THE RESIDUAL PROPERTIES 
AXIAL STRESS SIGZ ACCORDING TO DRUCKER PRAGER     PLANE STRAIN 

DIMENSION U(3)»PS(3)fWU(3) 
Y * ASIN(l./3.) 

300 READ lO»E»EM»P»AF.VfW»C»PHlDtCRMlN,PHlRMIN,PARK,PARLtPARM 
10 F0RMAT(2E9.4»7F6.2»4F5.1> 

430 WF = 1728.*W 
VR * l.*V 
VE * VR/E 
VP » l.-2.*V 
OK = E/VP/3. 
WU(1) « 0. 
WU(2) * - W 
WU(3) * W 
PHI • PHID/57.2957795131 
DEP ■ P/w/12. 
Si = 1. - SIN(PHI) 
pp  s p»si 
CC » C»COS(PHI) 
PPI a PP - CC 
PPA a P - PPI 
SIGC ■ 2.«CC/S1 
PRINT 20»P»AF,E»ViOKtc,PHlD»SlGC.W.WF»DEP»cRMlN»PHlRMINtEM 

20 FORMAT«/* PRE TUNNELING STRESS a # F7.1* PsI* 5X* TUNNEL RADIUS ■ 
1*F6.2* FEET*//» ROCK PR0PERTIES*//5X*  YOUNG»S MODULUS a * F10.1 • 
2 PSI»5X* POISSON»S RATIO a »F6.3» 5X* ORIGINAL BULK MODULUS a *Fll 
3.1* PSI * //5X*  COHESION a »F7.2« PSI*5X* ANGL 
4E OF INTERNAL FRICTION ■ «F6.1* DEGREES* 5X* UNIAXIAL COMPRESSIVE 
5 STRENGTH a #F8.2* PSI«//5X»  SPECIFIC WEIGHT a »F6.3* LBS/CUBlC I 
6NCH   a«F7.2* LBS/CUBIC FT*5X* CORRESPONDING TUNNEL DEPTH a «F7.1 
7* FEET*//5X»  MINIMUM RESIDUAL COHESION ■ »F8.2» PSI*7X*  MINIMUM 
8RESI0UAL ANGLE OF INTERNAL FRICTION a «Fa.2* DEGREES*//5X* MINIMUM 
9 ELASTIC MODULUS « * FÜ.2* PSI */) 
PRINt 2ltPARK,PARL»PARM 

21 FORMAT«//* PARAMETERS DETERMINING THE DECREASE IN THE RESIOUAL PRO 
1PERTIES*/5X« COHESION    K a *F10.3t5x*   INTERNAL FRICTION   L 
2a *F10.3/ 5X*   YOUNGtS MODULUS   M a »Fl0.3//> 
PHIR^IN a PHlRMlN/57.2957795131 
A ■ 12.*AF 
UAR a P«VE 
UAO a A*UAR 

50 FORMAT^//»* ,U R FINAL RAOIAL DISPLACEMENT IF THE TUNNEL WERE TO R 
lEMAlN ELASTIC » *EK>.4« INCHES*/*      RELATIVE TO TUNNEL RADIUS 
2« *E12.4) 
IF(SIGC •■2.*P) 22,24,24 

24 PRINT 25 
25 FORMAT(//»UNIAXIAL COMPRESSIVE STRENGTH IS LARGER THAN MAXIMUM ST 

1RESS    NO FAILURE *//) 
GO TO 300 

22 CONTINUE 
A2 ■ A«A 
A3 a A2*A 
VRES »V 
PRINT 180 
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Al » AF/10. 
BF « AF - Al 
NC » - 1 
DO HO U ■ 1.57 
BF ■ BF ♦ Al 
B » 12.»BF 
B2 » B«B 
B3 r B2«B 
BA2 ■ (B-A)»(B*A) 
BA3 s (B-A)*(B«8 ♦ A#B ♦ A«A) 
AB a A/B 
BA a B/A 
CR = CRM1N ♦ <C-CRMIN).EXP<-PARK*(BA»BA-1.)> 
PHIR a PHIRMIN ♦ (PHI - PHIRMIN)»EXP(-PARL»(BA»BA - 1.)) 
X■» ABS(Y-PHIR) 
PH1R0 ■ PHIR*57.2957795 
CP = COS(PHIR) 
1F(PHIR> 440*440*450 

♦50 SIR « 1. - SIN(PHIR) 
S3R ■ 1. - 3.»SIN(PHIR) 
ALR » 2,»SIN(PH1R)/(1.-SIN(PHIR>) 
ALRl « ALR - 1. 
ALR2 « AUR ♦ 2. 
CCR ■ CRZTAN(PHIR) ■ ' 

♦♦0 ERES « EM ♦ CE-EM)»EXP(-PARM»(BA»BA-1.)> 
UB ■ B»V£*PPA 
UAR x UB*BA 
OB i BF 
IF(PHIR) 200*200*210 

200 CONTINUE 
PS(1)   ■   PPI   *  2.»CR*AL.OG(BA) 
IF(PS(D>   350*360*360 

350   IF(NC)   352.354*354 
354   ^2),=*UAR<1)(1.-2!^SES)M(P-PS<2>)«BA2   -   2.»CR«B2*AL0G(BA>   *   W* 

1 (B-A)»(B-A)*(2.*B*A)/3,)/A/ERES 
IF<PS(2>)    111.356.356 . . . 

«A   PRINT   358.8F*BA*PS<2)*U(2).PHIR0.CR*ERES 
He  PSRMIT(F9.2,F10.3.37X,F14.3,E14.4,2BX.F6.2.F7.3,F10.1) 

GO  TO   110 
352  PSd)   =0. 

NC «   1 
BA »  EXP(PPI/2./CR) 
B   «  BA*A 
PS(2)   «   w*(B-A) 
BF   a   B/12. 

Sa"  TITZT*   .<i.-2.»VRES>»<PMB-A>MB.A)   -  2.»CR«B»B»AL0G (BA))/A 
1V\£*1SUIU   ♦   <l.-2,»VRES)*<B-A)»((B-A)»<A*2.»B)«W/3.   -PS(2>* 

1        (B*A))/A/ERES 

11> 
BF = OB - Al 
GO TO 110 ,„ 

360 PS(2) - PSd) ♦ W(B-A) 
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PSU) « PS(1) - WMB-A) 
IF(PS(3)> 370,-380.380 

370 PS(3) «0, 

372 Ulf» UAR I'a.-2.*VRES)*((P-PS(I))*BA2 - WU<I>•(B-A)*(B-A)* 
■  (2,*B*A)/3. - 2.»CR*Ö*Ö*AL06<8A).)/A/ERES 

461 PRINT ♦70.)»BF.BAiPS«l)tÜ(l)»ÜOAtPS(2)tU<2J.PHIRDtCR»ERES 

GO TO 110 

22? U°1>2- UAR l*(l.-2.*VRES>«M<p-PS<I>>«BA2 - WU(I)•(B-A)•<B-A>* 
1  (2t*B*A)/3. - 2.*CR*B*B»AL0G(BA))/A/ERES 
GO TO 2*0 

210 IFU-0.001) 250f250.260 
250 GR = W»A«ALOG(BA) 

CCR « 2.»SQRT(2.)*CR 
PS(1) * (PPI ♦ CCR)*AB - CCR 
IF(PS(D) 270.280t280 

270 IF(NC> 272,274,274 
274 ^2),==UAR<i)p»(U-2.»VRES>»BA2/A/ERES - 3.»CR»CPMB-A> • (<1 .-2.»VR 

1ES)»B2 ♦ VRES»(B2*A2*A*B)/9.)/A2/ERES- - (1.-(2.-1./9.>»VR£S>•<PS<2 
2)*BA3/A ♦W*(BA3/3.-B3»AL0G(BA)))/A/ERES 
IF(PS(2)) Ul,356*356 

272 PSd) «0. 
NC ■ 1 
BA ■ PPI/2./SQRT(2.)/CR ♦ It 
B   - BA*A 
BF   a   B/12. 
UB   a   B»vE*PPA 

Ca2)a"uS»Sr*°pia).-2.»VRES)M8-A)»<B*A)/A/ERES   -   3.*CR*CP. (B-A) • 
i<il      ■?   »ubr«;i»n*>R   ♦   VRFS»(B*B   ♦   A*B   ♦   A*A) /9» > /A2/ERES 

U   2)"-'u(l)   -  *U-2.»VRES   ♦   5RES/9.)MPS(2)»(8-A>MB«B*BVA»A)/A 
1 ♦ w<M(B-A)»(B»B*   B»A   ♦   A»A>/3.   -  B»B»B»A|_OG(BA))>/A/ERES 

GO   TO   460 
280   PS(2>   »  PS(l)   ♦   GR 

PS(3)   »   PS(l)   -   GR 
IF(PS(3>)   29^,310,310 

290   PS(3)   ■   0. 

9Q,  ?.?T?9?   LR   l,^(i.-2.»VRES)*BA2/A/ERES  -  3.»CR*CP» (B-A) ♦ U1.-  2.» 
,VRES)»B2   ♦   IRES*  B2*A2;A»B)/9.)/A2/ERES  -   (1.-2.-VRES   ♦   VRES/9.J* 
2 (PS(2)*BA3/A - WU(l)»(BA3/3. - B3*ALOG(BA)))/A/ERES 
GO TO *6l 

III   5m2« UAR I/?«(1.-2.»VRES)*BA2/A/ERES - 3.«CR*CP» (B-A) • <ill .- 2.» 
°,VRES)"B2 ♦ VRES» B2*A2*A*B)/9.)/A2/ERES - <1.-2.*VRES ♦ VRES/9.)* 
2 <PS(2?*BA3/A - WU(I)M8A3/3. - B3*AL0G (BA))) /A/ERES 

260   PS(1?   -4«PPI   ♦   CCR)»AB»*ALR  -  CCR 
GR  a   A»W*(AB**ALR1   "   1.)/<1.-ALR) 
IF(PS<1))    120,130,130 

120   IF<NC>   122*124,124 
124   E(2?,»8UAR<1) <P^R>*n.-2.*VRES)*<B-A>MB*A>/A/ERES   -   «J-f^RES 

1 ♦   VRESMSIN   PHIR))«2)»(-2.»«*BA3/3./S3R   ♦    (B»*ALR2  -   A»«ALR2> 

2 »(PS(2)»CCR   ♦A*W«SlR/S3R)/A**ALR)/A/ERES 
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IF(PS<2>> Illt356i356 
122 PSU) « 0, 

NC ■ 1 ' 
BA ■ JPPI/CCR ♦ l.)*»(l./ALR> 
B = A*BA 
BF s B/12. 
nB ■■.B#vE»PPA 
PS<2> ■ A«W»MA/8)*»ALR1 - 1.)/<1.-ALR> 
Uli) * UB»BA*(P*CCR)»(1.-2.»VRES>*(B-A»*<B*A)/A/ERES - <1.-2.*VRES 

1  ♦VRES»(SIN(PHIR)>*»2)*(B»*ALR2 - A**ALR2)»CCR/ERES/A»»ALR/A 
U<2) ■ U<1> - (l.-2.»VRES% vRES*(SIN(PHIR))»*2)»(-2.»W*(B-A)»<B»B 

1 ♦ B*A*A*A)/3./S3R ♦<B»*ALR2-A**ALR2>*(PS(2> ♦ A*W*S1R/S3R>/A»»ALR 
2)/A/ERES 
GO TO *60 

130 PS(2) « PS<1> ♦ GR 
PS<3> ■ PS<1) - 6R 
IF(PS(3)> H0tl50tl50 

142 U<I> ■ UAR ♦*(P*CCR)*(1.-2.*VRES)*BA2/A/ERES - U.-2,*VHES ♦ VRES* 
l(SIN(PHlR))»*?)*(WU(l)i2.*8A3/3./S3R ♦ <8»«ALR2 - A*»ALR2>*<PS<I> 
2 *CCR  -  WU(1>*A«S1R/S3R)/A*»ALR)/A/ERES 

GO  TO  *6l 

III   Sat3»   UAR   1'%*CCR)M1.-2.»VRES)»BA2/A/ERES  -   <1.-2.*VR|S   ♦   VRES* 
l(SIN(PHlR))»«2)»(WU(I)«2.*BA3/3./S3R  ♦   (B»*ALR2  -  A**ALR2>•CPSU) 
2     *CCR  -  WU(D»A*S1R/S3R>/A*»ALR)/A/ERES 

240   PRINT   liolBF,BA,PSa),U(l).ÜOA.PS(2).U(2),PS(3),U(3),PHlRD:CR.ERES 

lF7.3tF10.1) 
110 CONTINUE 

\ll   FORMAT^////* RADIUS B     B/A  SUPPORT PRESS  DISPLACEMENT  DISPL 
1MNT  ROOF SUPPORT      ROOF     FLOOR SUPPORT     FLOOR      PHIR 
2 CRFS   ERES •  / 20X»  NO GRAVITY    NO GRAVITY  OVER RAD 
3 DISPLACEMENT DISPLACEMENT*   /  I 

PRINT 2 
2 FORMAT(1HI) 

GO TO 3*>° 
END 
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A-4.  Support Stiffness Calculation 

The support stiffness as defined in II.6 and 

as calculated here is equal to the average support 

pressure developed on the tunnel walls for a unit 

convergence of the support system.  It is assumed 

that the convergence and the support reaction 

pressure are radially symmetric. 

A-4.1.  Shotcrete Cylinder.  The stiffness 

of a shotcrete liner is assumed to be that of a 

hollow cylinder of the thickness t and external 

radius a.  For a thick wall cylinder in plane 

strain the expression for the stiffness is: 

K  = ^ =  * (2a-fr)t      {A>28a) 
ss  ua   (1+V) a [(1-2V) a + (a-t) ] 

For a thin wall cylinder ("t < 0.04 a) this 

can be reduced to: 

K  = ~ (A.28b) 
ss    2 

a 

A-4.2.  Blocked Steel Set.  Determining the 

stiffness of a blocked steel set requires the 

determination of the steel set stiffness and of 

the stiffness of the wooden block.  In a simplified 

form the stiffness of the steel set can be assumed 

to consist of the "ring stiffness," or stiffness 
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under an evenly distributed (external) pressure 

and of the "bending stiffness/' or stiffness under 

a number of evenly spaced radial forces (Roark, 

1954, p. 158).  The stiffness of a wooden blocking 

point is assumed to equal that of a linear spring. 

The resultant steel set stiffness can then be 

written as: 

ii     2    4       .       2Sae-fc, 
i.B^sE. + SL (e,(ew> . i) + _-S. (A.29) 
Kss   P.   EA    El    2s2 ABEB 

where: 

K  = stiffness of blocked steel set 
ss 

a u - tunnel radius and radial displacement 
'a 

p. = support pressure 

A, E,I  = steel cross-sectional area, elastic 

modulus and moment of inertia 

S = steel set spacing 

2e = angle between blocking points 

n = ir/e  = number of blocking points 

s = sin e, c = cos 6 

EL, t  = elastic modulus and thickness of blocks 

AB = cross-sectional area of blocks^ 

in all calculations for Figures 11.12, 11.13 and 

A.3 assumed equal to the square of the steel set 

flange width. 

Figure A.3 illustrates the effect of block 
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300 

5200 
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Number of Blocks 

35 40 45 

Figure A.3. Support Stiffness of Light (41 1.1), 
Intermediate (6x4 LB 16), and Heavy 
(6x6 H 25) Steel Sets at the Indicated 
Spacings (1 ft, 2 ft, ... 5 ft) ina 
16.7 ft Diameter Tunnel.  Block thick- 
ness is 8 inches, block modulus is 
either.1.4 x 106 psi (full lines) or 
8 x 10 psi (dotted lines).  The 
number of (evenly spaced) blocks 
corresponding to the maximum recom- 
mended block spacing (from Proctor and 
White, 1968) is indicated (BSmax). 
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spacing (or number of blocks) upon the support 

stiffness of a light/ intermediate and heavy steel 

set in a 16.7 ft diameter tunnel for stiff and soft 

blocks.  For stiff blocks the total stiffness will 

not increase significantly when the number of 

blocking points is increased much beyond the mini- 

mum recommended number.  For soft blocking points 

the total stiffness will continue to increase well 

beyond that point. 

A-4.3.  Rock Bolts.  Two types of rock bolts 

are considered.  In point anchored bolts the inter- 

action between bolt and rock is limited to rather 

short lengths at the ends of the bolt.  It will be 

assumed that for such cases the bolt action can be 

replaced by a force applied on the tunnel surface 

(through the bearing plate) and that this force 

can be replaced by a pressure distributed evenly 

over the rock surface.  The anchor force is assumed 

to be exerted well within the elastic region, and 

the anchor is assumed to be sufficiently stiff and 

strong to guarantee that no relative displacement 

between bolt end and hole bottom can occur.  There 

is substantial empirical and experimental evidence 

that the latter condition, in most rock types, can 
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only be met by bolts grouted over some length, 

particularly when the bolts are to be effective 

over extended periods of time.  The second bolt 

type is the one where friction can develop along 

the entire bolt length, either because the bolt 

was grouted or because it was driven in place. 

The stress induced in the rock by bolt action 

is determined by the bolt tension generated by the 

relative displacement between bolt anchor and bolt 

bearing plate (an installation tension does not 

affect the stiffness if the yield limit is not 

exceeded, although it does correspond to an initial 

induced stress).  The relative displacement between 

the bolt ends can be calculated from the expression 

for the radial displacement u at radius r as a 

function of the radial displacement u on the tunnel 

periphery (r'= a): 

. u = - u (A.30) r  r a 

This expression is correct in the elastic 

domain, but assumes that no volume change occurs 

in the broken rock (compare with equation A.19). 

When failure does occur, the strain calculated from 

A.30 will be an underestimate, and therefore the 

bolt stiffness as calculated here will be too low. 
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A-4.3.1.  Point anchored bolts.  The change 

in length Al  of a bolt of length 1 induced by a 

tunnel wall displacement u that occurs after bolt a 

installation is given by: 

AL = u - u = u - — u = — u   (A.31) a x a. -       a ,   a a+1     a+1 

The forces developed at the bolt ends are 

then: 

TTc£ 
*>   1   4 (a+1)  a KK.n) 

• ■r»iin i ss* 

where A is the bolt cross-sectional area, E, is 

the elastic modulus of the bolt and d, is the bolt 

diameter. 

Assuming that this force corresponds to a 

distributed support pressure P. and that the bolts 

are at distances S along the tunnel and S across 
P a 

the tunnel, the equality of two expressions of the 

bolt forces gives: 

^d^K 
PiSaSP = Ifa+TT Ua (A'33) 

The stiffness of the bolt  system is  then 

given by: 

P.        fTd?   K 

«b = u7 =  4S  S   (a+l) <A'34> a a p 
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A-4.3.2.  Full friction bolts.  The stress 

distribution induced by a bolt that can generate 

friction along its entire length is not as easily 

calculated as that resulting from the preceding 

bolt type.  For that reason, the stiffness concept 

as used here is not directly applicable to this 

type of bolt.  The interaction between rock and 

bolt will depend upon the boundary conditions, 

specifically upon the degree of displacement con- 

tinuity between rock and bolt ends (stiffness and 

strength of anchor and bearing plate) and between 

hole walls and bolt circumference (shear stiffness 

and strength of grout, rock-grout and bolt-grout 

contact).  Four possible assumptions regarding the 

interaction are discussed, representing extreme 

cases of boundary conditions.  In all these cases 

the induced stress distribution will approach that 

of point anchored bolts when plastic yield progresses 

in the bolt.  As long as the bolt remains elastic 

the induced stresses can be markedly different. 

Basic equations common to all cases are: 

$" + ■—a dr u  dr 

i.  Equilibrium 

Writing the conditions 

for equilibrium of a bolt 
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segment of  length dr results  in: 

.   WÜfeä? '       ' (A.35) 
4    dr 

6" is the bolt tension, -t is the shear stress 

between bolt and rock. 

ii.  Relation between bolt stress, strain and 

displacement. 

«■-«b's (A-36) 

ASSUMPTION A:  Complete displacement continuity 

From equations (A.30,35,36) one can derive 

the boundary conditions required to assure com- 

plete displacement continuity between bolt and 

rock. Writing the displacement relative to the 

bolt anchor (which adds a rigid body displacement 

only), the results can be written as: 

u = <- ^-r)   ua (A.37a) vr  a + 1'  a 

«■-■*;£ -\^ (A. 37b) 

t = fb d^-= % ya u (A#37c) 
4 dr   ~ 3    a 2r 

The stress distribution along the bolt is 

illustrated in Figure A.4a.  In order to have a 

complete displacement continuity a sufficiently 
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1 T (psi) 

_ 0.08 
150 

0.06 

100 

NX 
1                        \ 

0.04 

50 

0 1                                         1 i              i              i     — 

0.02 

0 
100            112               124 136              148              160 172   r    u    » r (inches) 

_ 10,000 

_ 20,000            ^^-""'^ 

** 

-" 

30,000 

1 i  (T(psi) 

Figure A.4a, Stresses and Displacements Along a 
Fully Grouted Bolt with Complete 
Displacement Continuity Between Bolt 
and Rock.  Full lines:  elastic 
bolt; dotted lines;  one-half of the 
bolt is plastic, 
r = radial distance along bolt (r = 

100" = a, tunnel periphery) 
u, ,   u = bolt and rock displacement 

6~= bolt tension ~t = shear stress 
between bolt and rock 

Bolt length = 72 inches, bolt diameter 
1 inch 
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stiff and strong bond has to exist across the bolt 

ends (bearing plate and anchor). 

The resultant forces at the bolt ends (F& at 

r = a, F     at r = a + 1) and the total shear 

force F-t along the bolt are given by: 

F  =  l£L_£ u (A.38a) 
a     4a   a 

F   =  
b A.- u (A. 38b) 

a+1   4(a+l)
2  a 

2 
a+1 fTcl E. l(2a+l) 

F* = ^ ^cL  "t dr =  £    2  Ua 
a1*   % 4a(a+l)

2 

(A.38c) 

The direct equivalent of the stiffness calcu- 

lation for the point anchored bolt could now be 

performed by assuming that the bearing plate force 

F is distributed evenly over the rock.  A calcu- 
ct 

lation entirely parallel to the one producing (A.34) 

yields 
2 

K = y  ~k u (A.34a) 
%   4 (a+1)  a 

This might be interpreted as a higher stiffness 

for the continuous displacement bolt.  However, the 

entire bolt now acts as an anchor, and forces of 

opposite sign are induced all along the bolt, in 

particular, starting directly behind the bearing 

plate.  Therefore, the stress distribution at some 
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depth will not correspond to the one induced by a 

point force on the surface.  For this reason it is 

doubtful that a direct stiffness calculation as 

above is very meaningful. 

The maximum bolt tension is reached at the 

tunnel periphery so that plastic yield will be 

initiated at that point and will progress towards 

the anchor with increasing tunnel convergence. 

When strain hardening is neglected, it follows 

from (A.35) that the shear stress along the plastic 

bolt section is nullified.  The tunnel wall dis- 

placement at which a bolt length lp has yielded 

results from (A.37b): 

y,a+lp _    *Y   (a+V2 

aE
b 

where <T is the yield stress of the bolt steel. 
Y 

In a continuous displacement bolt yield is 

initiated when: 

uY,i=Jx_ (A. 40) 
*b 

The entire bolt yields when 

6   (a+1)     6\,(a+1)   a+1 „Y/f _ JLX  = --2  • ä±i    (A.41) 
aEb      "b 

These results can be compared with the  dis- 

placement at which a point anchored bolt yields: 
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<Tr(
a+l) 

UY = __2  (A.42) 
\ 

At this displacement the entire bolt yields. 

For a continuous displacement bolt yield will be 

initiated for a smaller displacement and will be 

complete for a larger displacement. 

The stress distribution along the bolt induced 

by a displacement that causes yield of half the 

bolt (1 = 1/2) is shown in Figure A.4a.  Equilibrium 

is now maintained by the end forces and by the 

shear stress block along the anchor half of the 

bolt.  The required anchor end force increases 

with progressing yield.  As yield progresses the 

stress induced in the rock approaches that of a 

(yielding) point anchored bolt. 

ASSUMPTION B:  No end forces, friction along the bolt, 

The actual shear force distribution generated 

along the bolt will depend upon the developing rela- 

tive displacements between the rock and the bolt, 

and in particular, upon the shear stiffness of the 

contact area along the bolt.  A condition that 

must be satisfied is that the resulting shear 

force is zero, because the shear stresses are self- 

equilibrating.  The simplest assumption is that of 
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a linear shear stress distribution.  Imposing the 

condition of zero end forces and of equal rock and 

bolt displacements at the point of zero shear 

stress, the results, obtained by integrating (A.35) 

and (A.36) can be written as: 

*- A (1 " 2T7T' (A"43a) 

s = 
4A {;: ;><* ta - r>       (A. 43b) (2  a + 1)   (^ 

4A rli r3 a(a+l)   r      a(a+l)        (2a+l)2 

% ~  E^ c^  L2    "  3(2a+l)   "  2  a + 1    T   ■   2 "       12 

a 1 u 
+ -; rrr^ 7T (A.43c) (a+1)(2a+l) 

The factor A could be considered as an 

"empirical" factor, dependent upon the properties 

of the rock-steel interface.  However, some con- 

ditions must necessarily be satisfied in order that 

the solution be consistent.  In particular, it is 

necessary that the relative displacement between 

bolt and rock be oriented in a direction conforming 

with the direction of the induced shear stresses. 

In this solution the bolt half close to the tunnel 

(r < a + 1/2) tends to be pulled out by the rock, 

while the other half (r > a + 1/2) anchors the bolt. 

This argument permits the derivation of some 

necessary conditions that have to be imposed upon 

the constant A: 
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du,   du 
i.  at r = a + 1/2, — > —, or 

4 a ua \ % 
A > - --nj  

1  (2 a + 1) 

ii.  at r = a + 1, tu. > 0, 

3aEtdbUa 
A > - 

l2 (a + 1) 

In these conditions u_ is the bolt displace- 

ment and u is the rock displacement, both with 
r 

respect to u = 0 at r = a + 1.  When 1 < 2a con- 

dition i is more stringent, whereas condition ii 

is to be used when 1 > 2a.  In the former case the 

constant A can be written as: 

4a u iL 4 
A = - k   2 (A.44) 

1  (2a + 1) 

where 0 < k <  1 

Displacements and stresses along the bolt for 

this solution are plotted in Figure A.4b.  The 

maximum bolt tension is generated in the middle of 

the bolt.  The displacement at which plastic yield 

is initiated can be calculated from (A.43b) after 

substitution of (A.44).  For k = 1 this results in 

uy.i _ qy2^1'2 _ i£ ,2-i,2- va+l). 12-12! u-  ~  4 E^ a     F^  v 2a ' F^     4a(a+l) 

(A. 45) 

a 
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Figure A.4b.  Stresses and Displacements Along a 
Fully Grouted Bolt Without End Forces 

Same symbols as on Figure A.4a. 
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Yield will be initiated for a larger dis- 

placement than for either a continuous displacement 

or a point anchored bolt.  To calculate the effects 

associated with progressive yield it will be assumed 

that yield progresses symmetrically about the middle 

of the bolt.  This assumption is consistent with 

the calculated bolt tension distribution, but not 

with the (more fundamental) relative displacements. 

Assuming that the bolt has yielded from a + lp up 

to a + 1 - 1 , the preceding calculation can be 

repeated for those r-values where the bolt remains 

elastic.  The complete solution can then be written 

as: 

u 

for a + 1 < r < a + 1 - 1 : 
p -  ~      ■  . P 

for a < r < a + 1 : 
""" hr 

2 2 
4A(r-a-l )  r+a+1   r +(a+l )r + (a+1 ) 
 E_ r -£ - ——- S , ■,."*— 
\dl 

£  2   "      3(2 a + 1) 

(1-1 ) a u 
a (a+1) 1    , , P ä (A.46a) 
2 a + 1J   (a+1 )(a+1) 

hr 

for a+1-1     <r<a+l 
P ~      "~ 2 

4A(r-a-l+l  ) r+a+1-1 r +(a+1-1  )   r+(a+1-1  ) 
 P_ r P _  E -— =— u= —I~H [     2 3(2a+l) 

t>    b 

aja+lj_        .,„   P „,.a _ (A.46b) 
"  2a+l     J  +   (a+1)(a+1-1  ) 
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Similar necessary conditions as above can be 

imposed to guarantee consistent relative displace- 

ments and shear stresses, and, for 1 < 2a, this 

results in 

(2a+l) E^ db au^  
A " ' k 4(1-1 ) 1  (a+1-1 ) 

P  P      c 

(A, 47) 

From this 

E. au  (r-a) (a+l-r) 

^""Vy \ (a+i-y2 (A. 48) 

E, d, au  (2a+l-r) 
±-     k-   - —;—rr^2       <A-49> *--k-4(l-lp) lp (a+l-lp) 

The preceding results are illustrated in 

Figure A.4b for the case where half the bolt has 

yielded (1 = 1/4).  Equilibrium is maintained by 

the blocks of shear stress near the ends of the 

bolt. As yield progresses the induced stress 

distribution approaches that of a point anchored 

bolt.  The limit displacement that causes yield of 

the entire bolt can be deduced from (A.48) and is 

identical to that at complete yield of a continuous 

displacement bolt (A.41). 

ASSUMPTION C:  Friction along bolt compensates 
anchor end force 

With this assumption, the compressive force 
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exerted on the rock by the shear stresses along 

the bolt is in equilibrium with the anchor force 

at the bolt end, while no force is exerted at the 

tunnel periphery (no bearing plate).  Assuming that 

the displacement continuity at the anchor end is 

assured by the end force, i.e, u^ = 0 at r = a + 1, 

and that therefore t=  0 at r = a + 1, one can 

proceed from: 

-tr= A (r - a - 1) (A.50) 

Integrating (A.35) after substitution of 

(A.50), and imposing the equilibrium condition 

TTdL     f trdr = £ (T 
*> £        4  u r = a + 1 

results in: 

6-=2A (r - a)(r - a - 21) (A>51) 

% 

Integrating (A.36) and imposing ufc = 0 at r = 

a + 1 results in: 

= 2A(r-a-l)((r-ta+l))
2- 312)      (A#52) 

% 3 \ % 

In order to assure that the relative dis- 

placements be consistent with the developed shear 

stresses it is necessary that u, < u .  A necessary 

condition is that at r = a + 1: 

du,   du 

dr — dr 
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E, d, au_ _ b  a 
or A = k  2' " ~~2~ 

21 (a+1) 

with  0<k<l 

Stresses and displacements along an elastic 

bolt tensioned according to this assumption are 

shown in Figure A.4c.  The maximum bolt tension 

occurs at the bolt anchor.  Yield is initiated 

there when: 

<T (a + l)2 

This is the same displacement that causes 

complete yield of the continuous displacement 

bolt (Assumption A), the friction only bolt 

(Assumption B) and the bearing plate bolt 

(Assumption D). 

One can proceed by assuming that the bolt 

has yielded from a+1 up to a+1, and impose 

the proper conditions at the elastic-plastic 

boundary point and along the elastic and plastic 

bolt sections.  The results from such a calculation 

indicate that the displacement required to propa- 

gate yield decreases with increasing length of the 

yielded section, pointing out an instability (this 

is associated with the equality of bolt and rock 
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Figure A.4c. Stresses and Displacements Along a 
Fully Grouted Bolt When Friction 
Along the Bolt Compensates an Anchor 
End Force (Elastic Solution Only). 

Symbols as in Figure A.4a. 
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displacements along the plastic bolt section. 

Postulating that the effective bolt length is equal 

to the true bolt length minus the yielded bolt 

length it can be seen that the above conclusion 

follows directly from A.52 . 

ASSUMPTION D:  Friction along bolt compensates 
bearing plate force 

This assumption can be regarded as the reversal 

of the preceding one.  It is assumed that the 

bearing plate assures displacement continuity 

between rock and bolt on the tunnel periphery 

(u, = u at r = a) .  Friction along the bolt 

anchors the bolt and equilibrates the pull-out 

force at the bearing plate.  Proceeding as before 

one finds: 

-fc= A (r - a) (A. 54a) 

6 = 2A (r - a - 1) (r - a f 1?      (A>54b) 

„       _ 2A (r - a)((r - a)2- 3 l2)   ^a 
TD 3R d, ^ a+1 

0 (A.54c) 

A necessary condition is that the bolt dis- 

placement u, must be larger than the rock displace- 

ment u ,   and in particular: r 

b a du      du ^V, ^ u- 
at r = a —r—      > ——  or A <       0 dr  - dr        -   2a ±2 
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3E CL_ U 

at r = a + 1 u, > 0 or A <   -A
1 

^ "* 4(a+l) 1 

K du 
for 1 > a/2 ■ A * k - ■ ■■ 2 * 

2 a 1 

3Eb ^"a 1 < a/2 A = k        2 
4(a+l) 1 

For the results plotted in Figure A„4d this 

necessary condition was not sufficient, and k was 

arbitrarily taken equal to 0.9.  Plastic yield is 

initiated at the bearing plate, 

.   a <T 
for 1 £ a/2 when u^' 1 = —* . 

for 1 < a/2 when uY'i = ££  • LJ~J1 

In the first case, assuming k = 1, yield is 

initiated for the same displacement that initiates 

yield in a continuous displacement bolt.  When the 

bolt is shorter than half the tunnel radius, yield 

is initiated for a smaller displacement.  When 

yield has progressed along a bolt section of length 

1  the bolt displacement in the elastic section 

can be written as: 

2A(r-a-l   )        2 2 

"b =     3Eb db' P     £r    +   <a+y   r +   (a+lp)     -  3a(r+a+lp) 

2 2 (1-1r,)    a   Ua 
+ 3(a   -^l+rfoSTT (A*55) 

p 
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Figure A.4d. Stresses and Displacements Along a 
Fully Grouted Bolt When Friction 
Along the Bolt Equilibrates a 
Bearing Plate End Force. 

Symbols as in Figure A.4a. 
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The stress and displacement results along a 

bolt that has yielded up to the middle (1_ =1/2) 

are plotted in Figure A.4d„  Equilibrium is main- 

tained between the bearing plate force (constant 

once yield is initiated) and the shear stress block 

near the anchor.  As before, the induced stress 

will approach that of a point anchored bolt with 

progressive yielding.  The entire bolt will have 

yielded for the same displacement that causes 

complete yielding in the preceding cases (A.41 and 

A.53). 

Because a rock bolt does not exert a net force 

on the rock around a tunnel the concept of support 

stiffness as defined in II.6 is not directly applic- 

able to a bolt support.  For bolts with the entire 

anchor section well within a zone that remains 

elastic, this problem is not too serious«,  In that 

case, the assumption of a fairly homogeneous distri- 

bution throughout the broken zone of the stresses 

induced by bolt tensioning appears to be a reason- 

able one.  For bolts that are in intimate contact 

with the rock along their entire length forces of 

opposite direction can be generated within very 

short distances.  In that case, it is more diffi- 

cult to justify the assumption of a homogeneous 
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stress distribution in the rock.  Therefore, the 

applicability of this method of support action 

analysis is questionable, certainly during the 

initial stages of deformation. 

It has been shown in the preceding analysis 

that for all assumptions, whether yield progresses 

from the bearing plate, from the middle of the 

bolt, or from the anchor end, the forces applied 

to the rock by the bolt tend towards a configura- 

tion equivalent to that developed by a point 

anchored bolt.  Therefore, the concept of stiffness 

can be used in a "limit" sense, i.e., with regard 

to the maximum support pressure corresponding to 

(perfect) plastic yield of the bolts, the character- 

istic of a full-friction bolt system will approach 

the characteristic of a point anchored bolt system. 

.  2 
Comparing the net-force in one dxrection 

exerted by bolts on the rock (Figure A.5) it can 

be seen that this force increases more rapidly for 

full-friction bolts with bearing plates (Assumptions 

A and D) than for point anchored bolts (PA), and 

2 Equal to the bearing plate force for Assump- 
tions A and D and for a point anchored bolt, equal 
to the total shear force for Assumption C and to 
the positive shear force for Assumption B. 
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0 0.1 0.2 
Uf   I,    ua (inches) 
—! 1 .5=  ^ 
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Figure A.5. Net Force F_ in One Direction Applied 
B 

to the Rock by bolts of Different 

Types'for Increasing Tunnel Converg- 

ence (= 2u ) . 
3. 

Tunnel diameter is 16.7 ft, bolt 
length 6 ft, bolt diameter 1 inch, 
bolt steel modulus 3 x 10? psi 

PA:  Point Anchored Bolt 

A,B,C,D:  Fully grouted bolts with 
boundary end conditions as in Figures 
A.4a,b/c,d. 

u :  tunnel wall displacement at com- 
plete yield of all grouted bolt types, 
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less rapidly for full-friction bolts without bear- 

ing plates.  For this reason the support character- 

istics given in Figure 11.14 for various systems 

of point anchored bolts can be considered as 

reasonable approximations for fully grouted bolts, 

provided the latter are equipped with bearing 

plates.  If no or only very small forces can be 

exerted at the tunnel periphery (Assumptions B and 

C) the stiffness of friction bolts will be smaller 

than that of point anchored bolts.  In all cases 

it would appear that the stiffness and the strength 

of the bond between rock and bolt ends are essential 

parameters. 

The preceding derivations were made to discuss 

the bolting support action in terms of support 

stiffness, and do not represent a comprehensive 

analysis of bolt support action.  Even within those 

limitations some of the assumptions made are debat- 

able.  Some specific examples are the assumptions 

regarding the shear stress distribution.  For 

Assumptions B through D it might be justified to 

accept a slope of opposite sign for the shear 

distribution, or to assume that no jump occurs 

across the elastic-plastic boundary.  As regards 

the generated forces, a comprehensive bolt action 
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analysis might have to include the compression on 

the bolt induced by closure of the borehole, during 

tunnel convergence.  The shear stress distribution 

will undoubtedly be influenced by rugosities in 

the borehole wall, irregularities in grout thick- 

ness, opening of cracks, etc. An analysis such as 

the preceding one should be complemented by field 

observations.  Critical unknowns are the end and 

shear stresses.  Information about these could be 

obtained from strain gaged bolts (Equations A.35 

and A.36 relate strain gradient to shear stress). 

Pull-out tests can give an indication of the 

anchor strength.  But the interpretation of such 

tests with regard to support efficiency is not a 

trivial one, because the relative displacements 

between bolt and rock (and therefore, the developed 

shear stress distribution) are entirely different 

in the two configurations.  The configuration con- 

sidered here that comes closest to that of a pull- 

out test is the one of Assumption D, where the bolt 

displacement u. is larger than or equal to the rock 

displacement along the entire bolt length.  In a 

pull-out test the bolt displacement is larger 

everywhere, and the largest displacement difference 

occurs at the hole collar. 



APPENDIX B 

DETERMINATION OP THE PSEUDO-ELASTIC CONSTANTS 
IN THE FINITE ELEMENT ROCK FAILURE MODEL 

B-l.  Introduction 

In this appendix a more detailed derivation 

is given of the methods used for the determination 

of the elastic constants in the finite element 

simulation of rock failure.  This presentation is 

organized according to the various elastic models. 

B-2.  Plane Strain Isotropie Model 

For a homogeneous linearly elastic isotropic 

material under plane strain conditions the stress- 

strain relations can be written as: 

<5-  (l-v2) -1/(1+1/) <r 

Sx - — ~  ^ 
e   (l-v2) -vd+v) 6~ 

£ = — —         <B-2> 
z 

Dividing (B.l) by (B.2) and solving the 

result for V  gives the first of expressions (III-2.6) 

and back substitution of V  into (B.2) provides the 

B-l 



B - 2 

second of those expressions used in the plane strain 

program. 

B-3.  Transversely Isotropie Model 

While in principle the (physical) attractive- 

ness and justification improve as an equivalent 

elastic model more closely approximates the three- 

dimensional physical aspects of rock failure, the 

number of necessary assumptions increases and the 

mathematical derivations become more strenuous. 

These factors, added to the lack of available 

experimental data, make the character of these more 

complex models also more hypothetical.  Nevertheless, 

given the established inadequacy of the, isotropic 

model, and the significant amount of information 

that is available about rock fracture in triaxial 

tests, it seems necessary and possible to establish 

some progress towards the development of a more 

comprehensive rock failure model. 

The transversely isotropic model would appear 

to be an appropriate extension of the isotropic 

model for the case of a triaxial test, certainly 

during the initial stages of failure, i.e., as long 

as radial symmetry is maintained and as long as the 

radial and tangential directions are fully equivalent, 
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The determination of the elastic constants derived 

from an {idealized) triaxial test can proceed 

directly from the stress-strain relations: 

2(1- W ) <T     2 V <T 
1  con     2  z 

(B.3) 

&r +^6      Ex E2 

2)^  <T     5* 
C _     2  con    z 
«Z--    E2       E2 

Although this model is derived specifically 

for the triaxial test, and although it is less apt 

to give a realistic description of rock failure in 

a less homogeneous stressfield, it is an appropriate 

basis for a more generalized model.  In order to 

derive the sequence of pseudo-elastic constants by 

means of equations (B.3) it is necessary that a 

continuous record be available of the axial stress 

6 , the (usually constant) confining pressure 6^on/ 

the axial strain £  and the lateral volume expansion 
z 

C  + £    .  To reduce the number of unknown material c r     6 

properties inequations (B.3) from four to two it 

will be assumed that the following relations (Crouch, 

1970, p. 90) hold: 

E „ V 
E.. =  o     V-,   = o      ±        p-       !    ,     

1 +*(<rrr - i) 1 +cC<ir - 1} 
0 o 

(B.4) 



B - 4 

E and V    are the initial elastic modulus 
o      o 

and Poisson's ratio of the unfailed (isotropic) rock, 

CC is an as yet undetermined (positive) parameter. 

These relations were based upon the postulate that 

the stiffness perpendicular to the largest principal 

stress decreases with increasing (inelastic) lateral 

expansion. 

From the second of equations (B.3) one finds: 

■S-  - 2^0 6~ 
E = _iL_ L_con (B>5) 
2     6Z 

Substitution of (B.4) and (B.5) into the first 

of equations (B.3) results in a quadratic equation 

for   ^2
: 

2 2 
4cC 6 ■ o 6        6        4 S 

_  £22 V2 + V>   [20C     con,   z -  £2£  (l-cC- y ) 
E    V               2  + 2   l E    V                    E           v                  o' o    o o    o o 

26"     6" 
-  2 6*   £     +  2 $• <£+£j]   +   <l-<*-*L) z     z con       r     © o 

con z 
z    z con       r    © o E 

-  ^z   (^r +£©)   = ° (B*6a) 

In order  to  simplify the manipulations  one  can 

rewrite this   equation as; 

a^2 + bV2 +  c = 0 (B.6b) 

where a, b and c are the appropriate coefficients 

corresponding to the ones in (B.6a). 
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In order to determine the correct branch of 

the solution that should be used, one can consider 

the equivalent problem for an isotropic material. 

After substitution of the stress-strain relations 

(III-2.3) for an isotropic model, equation (B.6a) 

reduces to: 

4°C<5-2    2        S 6* 0 0 

E ]/>     2 y con      z   2 

- 2oC 6"    6" + 2V <T2   =  0 (B.7) 
con z       z 

2 
For this equation (b -4ac) can be written as: 

i~2   /i-,    /n^-  2  con   . _ ^2      <-2 2 b - 4ac = (20C -■  - 4oC <J    - 20   = 
V con     z 

c 2       2        2 ^oon 6"z 2 

(Va-g)  = (2 5  + 40C<T   - 2dC-^^—^) = 
•^        z       con V 

(£ - ay)2 (B.8) 

c 
when — - Va > 0 

Vb2 - 4ac = 2tf2 + 40C6-2   - 20C ^on fz   c    ,; 
z     con V     ]/ 
/~2  

-, J        v,    -b - y b -4ac   ,. ,  „ . 
and   V 2  =  2a  = ^ (B.9a) 

when Va - — > 0 

n— 
V2   = " b + 2V  - 4aC- = V (B.9b) 

It will be assumed that the criterion i/a - 

c > 
j7 < 0, easily calculated from the coefficients of 

the quadratic equation, can be used to determine 
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the appropriate branch of the anisotropic solution. 

Once the iA Poisson*s ratio has been determined, 

the other elastic constants follow from back 

substitution into equations (B.4) and (B.5).  The 

last step in the derivation of the equivalent 

anisotropic constants is a check that positive 

definiteness is satisfied.  With stress-strain 

relations (B.3) a necessary and sufficient condition 

is that 

2 El 
l-W-2^^-i>0 (B.10) 

1      l   E2 

with Vlt     V2,   E and E2 > 0 

By extensive numerical checking of the pre- 

ceding derivations, i.e., by assuming a wide range 

of stress-lateral volume change-axial strain re- 

lations it was found that the determination of the 

elastic constants from the above expressions fre- 

quently leads to an acceptable result (in that the 

positive definiteness is satisfied).  However, this 

is far from always true, for either of two reasons. 

The first problem is that the quadratic equation 

(B.6) occasionally has imaginary roots.  The second 

problem is that positive definiteness is not always 

satisfied.1  The latter difficulty can always be 

1It should not be surprising that these problems 
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circumvented by increasing the value of the up to 

now arbitrary parameter OC.  It is not as simple to 

eliminate the former difficulty, and it appears 

that the best solution at this time is to limit 

the input to sets of values where the problem does 

not arise.  This necessitates that the combined 

changes in stiffness and volume should not be too 

large, or that a simultaneous very steep post-peak 

strength drop and very steep lateral volume increase 

cannot be modeled in terms of the preceding aniso- 

tropic model.  Under all circumstances, a very care- 

ful analysis of the input data, prior to their use 

in the finite element calculations is a strict 

necessity if unpleasant surprises are to be avoided. 

Figures B.l and B.2 illustrate some results 

from (closed-form) calculations according to the 

methods outlined above.  The solid lines represent 

"experimental input" from an idealized triaxial 

"test."  The points are calculated values based 

do arise.  There is indeed no a priori justification 
for the assumption that any fairly arbitrarily 
selected relation between lateral volume changes 
and axial stresses and strains can be fitted within 
a framework of transversally anisotropic elasticity. 
In fact, limitations similar to the ones for iso- 
tropic elasticity discussed in III-2.3.3 do exist, 
but have not been investigated. 
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Figure B.l. Uniaxial Stress-Strain Curve and 
Calculated Plane Strain Behavior for 
Different 0C-values when Elastic 
Constants are Calculated According 
to Equation (B.6). 
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Figure B.2, Lateral Volume Change S^ + £Q  Associ- 
ated with Uniaxial Stress-Strain. Curve 
of Figure B.l for Calculation of 
Elastic Constants from (B.6).  Points 
£  are corresponding plane strain 
results for variousoC-values. 
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upon substitution of pseudo-elastic constants 

calculated from quadratic equation (B.6) with con- 

ditions (B.9) and forOC-values ranging from (the 

minimum value) 1 up to 64.  The last point for each 

OC-value, the plotted point for the largest axial 

strain, was the last point for which positive 

2 
defxniteness was satisfied.  Figure B.l shows an 

input uniaxial stress-strain curve and back- 

calculated corresponding axial stress versus axial 

strain values for a plane strain condition in which 

the minor principal stress equals zero.  Figure 

B.2 shows the assumed input lateral strain under 

uniaxial conditions (solid line) and the calculated 

minor principal strain points for plane strain con- 

ditions.  For this example, unless OC is very large, 

and this implies an extremely rapid decrease in V 

and E  (equations B.4), positive definiteness can- 

not be satisfied shortly after the peak strength 

has been exceeded.  Whether results of this type 

are qualitatively correct (and results obtained 

from problems with smaller volume increase so that 

2 
It might be pointed out that the volume in- 

crease, Figure B.2, is very large as can be seen 
from a comparison with Figure Ili3b illustrating 
the limits for an isotropic calculation. 
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the positive definiteness problem is eliminated are 

qualitatively similar) can only be evaluated from 

experimental comparisons of triaxial and plane 

strain tests. 

An alternate relation between the elastic 

constants can be defined so that only linear equa- 

tions result for the elastic constants, replacing 

(B.4) by: 

E =  2 v =  2 
1        IE 1   PÖ  

1 +<X> (-£*--  1) 1 +«:(—_ 1) 

(B.ll) 

and substituting these equations into (B.3) results 

in: 

r  e  2 + 2 (O^i) <f 

»2 = —^ -~ 

£„ vo     con   z 

C    - 2 V>  ^ 

V^   2  C9n (B.12) 
z 

These relations imply that V     /  E = V / E«, 

and that E is smaller than E2 for positive 0C and 

increasing V „.  The physical or experimental justifica- 

tion for (B.ll) is thus far less evident than for 

(B.4). 

When it is assumed that relations (B.ll) exist 
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between elastic constants the criterion for positive 

definiteness reduces to: 

^2        ,     2 
1 +OC(  ~.l)-y2-2)/2>0     (B.13) 

° 
This in itself is easily satisfied by adjust- 

ing OC , but that does not imply that all problems 

are eliminated.  It is indeed not impossible that, 

because of the fairly complicated dependency of 

V_ upon CX $ £    +£ / etc. situations might 2 c '  con   r   6 

arise where unacceptable values for ^„ (e.g., V„  < 0 

or V > 1) or for E„ (< 0) are calculated.  It re- 

mains therefore necessary, in every case where a 

particular configuration of stress-strain-volume 

changes is to be represented by a transversally 

isotropic elastic material, to check the input data 

over the entire stress-strain domain that might 

occur in the finite element calculations, in order 

to ascertain the internal consistency of the 

equivalent elastic parameters.  As could be expected, 

it is frequently difficult to guarantee this 

internal consistency, unless the descending slope 

of the axial stress-axial strain curve is not too 

steep and the associated inelastic volume increase 

is not too large. 

Results based upon assumption (B.ll) and 
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corresponding to Figures B.l and 2 are shown in 

Figures B.3 and B.4.  The solid lines are uni-axial 

input data, the points are calculated for plane 

strain conditions. 

As was pointed out in the introduction to 

this section, the determination of the multiple 

elastic constants invokes many hypotheses.  The 

following diagrammatic representation illustrates 

the relative position of the two previously dis- 

cussed assumptions within the more general frame- 

work of eight reasonable options that have been 

considered during this investigation. 

One can start from two basic alternatives: 

the information about the rock behavior is given 

either in the form of plane strain data or in the 

form of triaxial data.  In the latter case there 

is little doubt but that the radial and tangential 

directions are equivalent, so that the anisotropy 

axis coincides with the axial loading direction. 

In the former case, if the (probably fictional) 

assumption of anisotropy is to be maintained, one 

can assume that the material properties in the 

plane strain direction are equal either to those 

in the principal loading direction or to those in 

the minimum principal stress direction.  It is then 
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Figure B.3. Uniaxial Stress-Strain Curve and 
Calculated Plane Strain Points for 
Various cc«.values when the Elastic 
Constants are Calculated According 
to Equations (B.12). 
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Figure B.4. Lateral Volume Change S    + £ft Associ- 

ated with Uniaxial Stress-Strain Curve 

of Figure B.3 for Calculation of 

Elastic Constants from (B.12).  Points 

(S    ) are corresponding plane strain 

results for various cC -values. 
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necessary to make assumptions about acceptable 

relations between various elastic constants. 

Finally, when the constants have been derived from 

the triaxial assumption, it still must be decided 

what type of anisotropy will be used in the stiff- 

ness matrix formulation. 

Two of the options have already been discussed 

in some detail.  A short survey of the options, 

their applicability and related problems follows. 

Option 1 

Plane strain input; plane strain direction 

assigned same constants as minimum principal stress 

direction, relations (B.4) between elastic constants. 

This option leads to a fourth order equation for 

]^2*   and nas not been considered in any more detail. 

Option 2 

Plane strain input; plane strain direction 

assigned same constants as minimum principal stress 

directions; relations (B.11) between elastic con- 

stants.  This option leads to a quadratic equation 

for y, with long complicated coefficients, and results 

in the same condition (B.9,16) as for options 4,5 and 7. 

Option 3 

Plane strain input; plane strain direction 
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PLANE  STRAIN  INPUT 
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Diagrammatic Representation of the Eight Options 
Considered for the Definition of Equivalent 
Transversally Isotropie Pseudo-elastic Constants 
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assigned same constants as largest principal stress 

direction; relations (B.4) between elastic constants, 

This option leads to a fourth order equation for 

V ,   and has not been considered in any more detail. 

Option 4 

Plane strain input; plane strain direction 

assigned same constants as largest principal stress 

direction; relations (B.ll) between elastic con- 

stants.  This option leads to the following quad- 

ratic equation for V0: 

Vl   < V £x> (6x+ «",) - V2   I fx £x + V «^ % " V 1 

+ S    6* - £ S     (1 -oc) = o    (B.14) 
X  Z     Z  X 

In order to define the appropriate branch of 

the solution, one can proceed in a similar way as 

in the discussion following quadratic equation (B.6) 

After substitution of the isotropic plane strain 

stress-strain relations equation (B.14) becomes: 

<5Z -v<r>] - v«r*- <rx) + <rxp([-v(rx+(W)<rz] = o 

(B.15) 

The discriminant of this quadratic equation 

can be written as: 
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b2 .. 4ac = [ (1+V) (^-(T^) - *X'-Sr <(1-^ ö"z-^>3
2 

2 2 
= (^- £)= (p.-»a) (B.16) 

When (1+V) (*£- (Tx) - ej&   [(1-W 6~2- ^-]' = ^-17 >0 

^ _ -b + v b -4a c_ 
2a 

When V^-'— < 0 

. ■ ,, ■ —b - v b-4ac 
» = 2i  

By continuity it will be assumed that the same 

relation betv/een the coefficients of the quadratic 

equation for V* can be used to select the correct 

branch for the solution of that equation. 

Options 5, 6, 7 and 8 

When the input is considered as results from 

triaxial tests, the equivalent elastic constants 

are calculated from (BjSa) for options 5 and 7, and 

from (B.12) for options 6 and 8.  The determination 

of the selected option must then be completed by 

inserting the desired elastic properties correspond- 

ing to the plane strain direction into the stiffness 

matrix.  This can be done most efficiently directly 

in the computer program, by inserting the desired 

replacement statements after the computation of the 
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first elastic constants.  The form of the stress- 

strain relations used in the computer program is 

given in the next section. 

The principal advantage of using triaxial 

data input is that enough experimental data is 

available to make a good estimate of the qualita- 

tive behavior of rock under such conditions.  In 

addition, a straightforward evaluation of all 

elastic constants is possible, whether assumptions 

(B.4) or (B.ll) are used. 

The principal advantage of using plane strain 

input data is that a direct verification of the 

degree of approximation induced by the finite 

element calculations is possible.  A simple deter- 

mination of the elastic constants is not possible 

when relations (B.4) are assumed to exist. 

B-4.  Orthotropic Rock Failure Model 

The three principal stresses will be different 

under all but the most simplistic boundary con- 

ditions.  As a consequence, the likelihood of the 

transversally isotropic model being truly equivalent to 

the deformational characteristic of failed rock is 

small.  This problem is easily illustrated for the 

anistropic derivation presented in the previous 
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section.  It was necessary there to assume that 

the plane strain direction was equivalent, with 

regard to change in stiffness, to either the largest 

or the smallest principal stress direction. While 

no experimental evidence is available, neither of 

these two alterations is particularly attractive. 

In principle, it would therefore seem reason- 

able to generalize the failed rock equivalent to a 

fully orthotropic material.  The difficulties en- 

countered in the derivation of the anisotropic con- 

stants give a fair warning of the problems and 

hypotheses that will be involved in a similar 

derivation for a far more complicated symmetry class. 

The orthotropic stress-strain relations, as 

used (Lekhnitskii, pp. 20-21) for the formulation 

of the plane strain stiffness matrix, are given by: 

ö   __£x  _^2i     V31 c 
x   Ex     E2   y -  E3   z 

yi2 ^  .  *"y   ^32 
z 

(B.17) 

fcy      E±     °x   E2     E3 

£Z 
= " ~E^~ fx " E3  

6y + E3 

y  _ ^xy  X  _ txz     v  _ tvz 

°*X        5l2    XZ  5i3        YZ  &3 

Taking the z-direction as plane strain ( £ =0), 
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and eliminating 6   ,   one finds: 

fx - <^ - —) *x - <— ♦ -IT") f y 

2 

£y = "■ (~ +  —>    ^x + % - —> ^y 

*xv (B'18) 

Öxy   G12 

■These equations suffice to solve the plane 

problem and to formulate the plane stiffness matrix. 

They are formally identical to the plane strain 

relations for an anisotropic material (Crouch, 1970, 

p. 82; Green and Zerna, p. 207).  Therefore, at 

this stage equations (B.18) could be rewritten in 

terms of four independent constants, the stiffness 

matrix in turn could be formulated in terms of these 

constants, and after reducing the number of inde- 

pendent constants by assuming some relations between 

"elastic" constants the problem could be solved. 

Such a course, although potentially very fruitful, 

has not been pursued here. 

An assumption that is incorporated in all 

numerical calculations in order to eliminate the 

shear moduli is that: 

,      1 + v..  1 + V ..        ■ 2 v.. 
_i ii ,     ii  1 . 1 ■ ,   n 
———  = *  + '  Ji    BS  —    +  —    +        ■" ■*'    = 
G..     E. E.       E.   E.    E. 
I]      1 D        1    D     l 
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2 v.;' 
1_ + i_ +    31 (B.19) 
E.   E.     E. x    3      D 

where i,-j = 1,2,3 and i ^ j 

It can be shown that these expressions lead 

to the correct relations for the shear moduli when 

any one of three principal axes is taken as an axis 

of symmetry, i.e., when the material is transversely 

isotropic.  This relation reduces to (III-2.8) when 

the z-axis is taken as the axis of isotropy. 

B-5.  Orthotropic Cylinder with Cylindrical Anisotropy 

This model might be of value for a study of 

the triaxial test, but here it was considered 

especially for incorporation into the axisymmetric 

program that was used to study the influence of the 

face stiffness on failure development and on the 

progressive support loading.  In principle nine 

independent elastic constants are included in the 

model.  The shear moduli are eliminated by the same 

assumption as before (equation B.19).  As can be 

expected from the preceding discussion two basic 

alternatives can be considered:  the elastic con- 

stants are derived either from idealized triaxial 

tests or from idealized assumed results corresponding 

directly to the geometry and boundary conditions of 
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the problem to be solved.  A combination of the two 

approaches, with heavy emphasis on the second one, 

has been used here. 

The axi-symmetric finite element with rec- 

tangular cross-section and sides parallel and 

perpendicular to the axis of symmetry is an ortho- 

tropic cylinder.  It is then desired to change the 

properties of this cylinder as it is strained into 

the failing region, in such a way that the cylinder 

softens, i.e., a larger convergence of the external 

boundary is caused by a decreasing external pressure, 

and increases in volume, i.e., a larger internal 

convergence results from a constant external con- 

vergence.  The conditions these requirements impose 

upon the sequence of elastic constants can be 

derived by considering the analytical solution for 

the stress and displacement fields in an orthotropic 

cylinder pressurized internally and externally. 

Following Lekhnitskii (1963, p. 65) the stress- 

strain relations can be written as: 

£* = a   6" + a   6"  + a   € 
r    11   r   12   9   13   z 

0    12   r    22   e    23   z     (B.20) 

K  ^ an o 6" + a__ 6"1 + a__ € z    13   r   23   6   33   z 
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The stress distribution for the general 

orthotropic case of a cylinder in plane strain with 

external pressure q and internal pressure p is 

given by Lekhnitskii (1963, pp. 249-250).  These 

expressions can be substituted in the differential 

stress-strain relations (Lekhnitskii, pp. 237-239), 

and after integration one obtains: 

v- <Ä2 ö;+ >Vvr       (B'21) 

where 

4    = a..   -  *i3  aj3 <Bm22) 

33 

From (B.21) it is possible to derive v^ / ua, 

the ratio of the external to the internal displace- 

ment.  The condition can then be imposed that this 

ratio must increase monotonically for increasing 

external displacement beyond the point of failure 

initiation.  In order to facilitate computation of 

this condition it is advantageous to eliminate the 

transcendental factors from the expressions for the 

stress distributions.  This can be achieved by 

letting: 
2 2 

ß      _1_  _^31-i_  l*k'-.ß (B 23) 
'\\-\-~ ~^2~     E3  - /22        (B.^3) 

The determination of the sequence of elastic 
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constants will then be completed by imposing, at 

each stress and strain level, a volume increase 

beyond the homogeneous Isotropie elastic one for 

equal boundary conditions.  This requirement is 

met directly from the ratios between external and 

internal displacements: 

u u 
(~_) = X (—-) (B.24) 
D ortho D iso 

where X is a proportionality factor, >1. 

After independent definition of some elastic 

constants, and substitution of assumed relations 

between additional ones, this equation can be 

solved.  Independently defined first of all is the 

modulus E2 in the tangential direction, calculated 

as secant from a set of axial stress-axial strain 

curves. 

In order to eliminate additional unknowns the 

following assumptions are introduced: 

E3  =   E2  +   (Eo *   E2><* 

El  =   V     ^31  =    ^32 <B'25> 

2 

V2_ 
31 v0 i + r a - i^f) 

where Oc and *£   are positive constants,OC < ±m 

The qualitative similarity of the assumptions 
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(B.25) to (B.3) and (B.ll) is easily recognized. 

Substitution of (B.25) into (B.24) leads to a 

quadratic equation for V2n • 'J^ie  si9n of tne 

selected branch is defined by the assumption of 

continuity in the sequence starting from the iso- 

tropic case/ for which the selection of the sign 

is obvious. 

Several implications from these calculations, 

used for the generation of the data in Section III- 

4.2.2, should be pointed out: 

- the equivalent elastic constants are calcu- 

lated for the radial and the tangential 

directions, not for the principal directions, 

- every element is considered to be in plane 

strain. 

- every (failing) element is assumed to be a 

cylinder with rectangular cross section. 

- at every confining pressure the modulus E2 

in the tangential direction is calculated 

as the secant of an axial stress-axial 

strain curve. 



Appendix C 

COMPUTER PROGRAM TUNSUP FOR THE PLANE STRAIN 
ANALYSIS OF TUNNEL SUPPORT LOADING 

CAUSED BY ROCK FAILURE 

C-l.  introduction 

The program included in this appendix has 

been used to calculate the results discussed in 

section III-4.3.3.  Options are included for plane 

strain or plane stress elastic analysis, with or 

without gravity loading, for a variety of imposed 

boundary conditions, for Isotropie rock failure as 

described in B-2, incremental loading or unloading 

(equivalent mining), with a support model as dis- 

cussed in III-3.2 and with a ground-support inter- 

action sequence as described in III-4.3.2. 

The program is based on a finite element pro- 

gram written by Crouch (1970a) who used the first 

program published by Wilson (1963) as a starting 

point.  The program as presented here is not as 

fully debugged nor as comprehensive as would be 

desirable.  This is due, in part, to severe opera- 

tional problems at the University of Minnesota 

C-l 
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Computer Center during the latter part of 1974, when 

this program was completed.   One example of such a 

problem is reflected directly in the following 

program.  The tape option is incomplete because the 

extremely long turn-around times for programs that 

used tapes and the frequent changes in tape labeling 

requirements made the use of tapes very inefficient. 

This is unfortunate because the tape use option is 

very valuable in several respects.  The finite 

element equations are solved by successive over 

relaxation, and for such an iterative method it is 

good practice to reduce the required computation 

time by using a good initial displacement approxi- 

mation.  For most problems an approximate closed 

form solution can easily be programmed, and the 

displacements thus calculated can be written on 

tape and used as input for the finite element pro- 

gram.  This procedure was used with very good 

results for the axisymmetric calculations discussed 

in III-4.2, where a large number of problems were 

presented with a relatively small number of elements 

The combination of the two main problems, 
the instability of the operating system and the 
frequent errors in the card reading equipment resulted 
in a situation where, for a long program, not more 
than a few runs a week could be made. 
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with different properties from one problem to the 

next one.  Such a procedure could not be used for 

the plane calculations because of the current diffi- 

culties with the tape handling system.  A second 

very useful feature of data storage on tape is that 

it permits easy transfer to various plotting rou- 

tines, after inspection of the output.  Finally, 

with temporary storage of all data it becomes easy 

to interrupt the calculations in order to check 

intermediate results, while the calculations can 

be restarted with a minimum loss in computer time. 

This method was used repeatedly in the axisymmetric 

problems, for example to refine the mesh when it 

appeared that the failure zone, and thus the region 

of high strain gradients, approached a mesh section 

with triangular elements. 

An option that can be included rather easily, 

by assigning different values to the NFE control 

parameter and by including the calculations given 

in Appendix B is the use of a variety of failure 

models.  Minor additions would be sufficient to 

include boundary shear stresses (variable E1T), to 

include orthotropic elastic materials (variables 

El, E2, E3, VI, V2, V3, Gl) and to include point 

anchored rock bolts (by eliminating the check on 
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the spring tension now imposed for "blocking point" 

spring elements). 

Program TUNSUP is written in FORTRAN IV, and 

for the version included here 135,000 central 

memory words are required on a Control Data Corpora- 

tion CYBER 74 computer with KRONOS operating system 

and RUN compiler.  Running times vary greatly with 

problem type, notably with the degree of non- 

linearity, with the number of ground-support 

interaction steps, with the over relaxation factor, 

with the degree of approximation of the input dis- 

placements, and so on.  Computing times for the 

examples given in III-4 ranged from 2 up to 18 

minutes. 

C-2.  Input 

Card 1:  FORMAT (15) 

Cols. 1-5:  TAPECOD: Tape selection parameter. 

TAPECOD = -3: Input read from tape 2, 

input and output stored 

on tape 1. 

-1: Input read from tape 2. 

1: Input and output stored 

on tape 1. 

0: No tape used. 

Card 2;  FORMAT (8A10) 



C-5 

Cols. 2-80: Identification to be printed with output. 

Card 3; FORMAT (614,2F4.0,F10.4,3I4,F8.0,14) 

Cols. 1-4:  NUMEL: Number of plate elements, Maximum 

310. 

5-8:  NUMNP: Number of nodal points, maximum 

320. 

9-12: NCYCM: Maximum number of iterations for 

one solution of the finite ele- 

ment stiffness equations. 

13-16: NUMIN: Number of loading or unloading 

(equivalent mining) steps. 

17-20: INBBG: First of the steps at which an 

explicit solution is calculated. 

21-24: ICOOR: Coordinate system selection. 

ICOOR = 0: Cartesian. 

1: Polar, nodal point inter- 

polation along circles 

centered at origin. 

-1:  Polar, nodal point inter- 

polation along radii through 

the origin. 

25-28: CODPL: Plane strain (=0) or plane stress 

0*0). 

29-32: CHECK: If different from zero all nodal 

points will be printed out with 
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all adjacent nodal points. 

33-42; DENS: Specific weight (identical for all 

elements). 

43-46: NUMBEAM: Number of {beam plus spring) 

elements in support model, 

maximum 32. 

47-50: NUMJOI: Number of nodal points in support 

model, maximum 32. 

51-54: NUMSUP: Step in the unloading sequence 

after which the support is 

activated. 

55-62; SETS: Steel set spacing along the tunnel. 

63-66: ITSUP: Number of iterations between 

ground and support, as discussed 

in section III-4.3.2. and as 

illustrated on Figure III.25. 

Card 4: FORMAT (4E13.6,4F7.4) 

Cols. 1-13: TOLER: Displacement unbalance tolerance 

after which iterations on stiff- 

ness equations will be terminated 

(the unbalance is equal to the 

sum of the absolute values of the 

displacement changes calculated 

in one iteration). 

14-26: ER: Young's modulus of material with code o. 
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27-39: EP: Young's modulus of material with 

code 1. 

40-52: ES: Young's modulus of material with 

code -1. 

53-59: VR: Poisson's ratio of material with 

code 0. 

60-66: YP: Poisson's ratio of material with 

code 1. 

67-73: VS: Poisson's ratio of material with 

code -1. 

74-80: BETA: Successive over relaxation factor, 

Element cards: FORMAT (7I4,F12.4) 

Cols. 1-4:  NOME: Element number. 

5-8:  NPI:  Nodal point I. 

9-12: NPJ:  Nodal point J. 

13-16: NPK:  Nodal point K. 

17-20: NPL:  Nodal point L (blank for a tri- 

angular element). 

21-24: MAT:  Material code (0, 1 or -1). 

29-40: E2T:  Boundary pressure applied per- 

pendicular to side IK of a tri- 

angular element/ to side JK of a 

quadrilateral element. 

Element cards can be omitted when the number- 

ing of elements and nodal points is such that the 



C-8 

following interpolation can be used:  nodal point 

numbers I^K and L (for quadrilaterals) will be 

incremented by one for each missing element card, 

the other element parameters will be assigned equal 

to those of the first element in the sequence. 

Element nodal point numbering must be counter- 

clockwise in a right-handed coordinate system. 

Nodal point cards: FORMAT (14,2F£3,2F12.3,2F12.8, 
F10.6) 

Cols. 1-4: NPNUM: Nodal point number. 

5-13: R: x or r coordinate. 

14-22: Z: y or 0 coordinate. 

23-34: FORR: Horizontal or radial force. 

35-46: FORZ: Vertical or tangential force. 

47-58: U: Horizontal or radial displacement. 

59-70: W: Vertical or tangential displacement. 

71-80: BDISC: Boundary displacement code deter- 

mining restrictions on the dis- 

placements. 

BDISC = -1: Vertical and horizontal 

displacements are imposed. 

-2; Vertical displacement is 

imposed. 

-3: Horizontal displacement is 

imposed. 
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0<BDISC<360: angle (in degrees) with 

the x-axis of the line 

along which the point 

must move. 

360 <BDISC< 720: an input displacement 

along this line is 

imposed and listed in 

the input table as X - 

DISP. (U) . 

720<BDISC: listed displacement is imposed 

but the point is free to move 

perpendicular to the given 

direction. 

Nodal point cards can be omitted when the nodal 

point numbering is such that the following inter- 

polation can be used:  nodal points are equally spaced 

along a straight line (or along a circle) and all 

variables except the coordinates are identical to 

those of the first nodal point in the sequence. 

Support element cards: FORMAT (314,4E12.4) 

Cols. 1-4: K: Element number. 

5-8: NPIB: Nodal point I. 

9-12: NPJB: Nodal point J. 

13-24: EB: Elastic modulus. 

25-36: AB: Cross-sectional area. 
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37-48: XIB: Modulus of inertia. 

49-60: PHIB: Shear deformation coefficient. 

Support nodal point cards: FORMAT (5F10.5,2l5) 

Cols. 1-10: XB: x-coordinate. 

11-20: YB: y-coordinate. 

21-30: UB: Horizontal displacement. 

31-40: WB: Vertical displacement. 

41-50: ROT: Rotation. 

51-55: NPBFEM: Nodal point of the finite element 

mesh associated with the support 

nodal point.  The component of 

this finite element nodal point 

displacement that occurs after 

support erection is an imposed 

displacement for this support 

nodal point. 

56-60: NPRE: Conditions imposed on the dis- 

placements (applicable only if 

NPBFEM = 0) . 

NPRE = -1: rotation is imposed. 

-2; vertical displacement is 

imposed. 

-3: vertical displacement and 

rotation are imposed. 

1: horizontal displacement is 

imposed. 



C-11 

2: horizontal displacement and 

rotation are imposed. 

3: horizontal and vertical dis- 

placement are imposed. 

4: all three displacements are 

fixed. 

Card with basic rock failure and ground-support 
interaction parameters'!  FORMAT (514,7X,F7.1, E13.6, 
18X,3I5). 

Cols. 1-4:  NFE: Failure parameter; when blank, 

elastic solution only. 

5-8:  NCON: Number of confining pressure levels 

for which stress-strain curves are 

given, maximum 40. 

17-20: NFEMX: Maximum number of iterations 

allowed at any loading or un- 

loading step for changes in the 

elastic constants. 

28-35: SIZC: Difference in confining pressure 

between two subsequent levels of 

stress-strain input. 

36-48: SIZE: Minimum strain difference in any 

element between two different 

subsequent failure states.  If the 

change in the.largest principal 

strain between two iterations is 
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smaller than this parameter no 

change in elastic constants will 

be made. 

66-70: LOAD: If positive, incremental loading; 

if negative, incremental unloading. 

71-75: INITUNL: First nodal point at which force 

will be reduced (stepwise) 

during unloading. 

76-80: LASTUNL: Last of the finite element 

nodal points at which the force 

will be reduced during unloading. 

All nodal points from INITUNL up to LASTUNL 

will be unloaded.  The difference between LASTUNL 

and INITUNL should not exceed 32. 

Axial stress versus axial strain rock failure model 
cards; FORMAT (4E16.9). 

Cols. 1-16: EM: Strain at peak stress. 

17-32: ERE: Strain where residual stress is 

reached. 

33-48: SM: Peak stress. 

49-64: SR: Residual stress. 

Lateral strain (volume increase) versus axial strain 
failure cards: FORMAT (5E16.9). 

Cols. 1-16: EMI: Axial strain at end of first straight 

line section of lateral strain 

graph (elastic limit). 
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17-32: ERl: Axial strain at end of second 

straight line section of lateral 

strain graph. 

33-48: PHIR: Lateral strain at end of first 

straight line section of lateral 

strain graph. 

49-64: PHII: Intersection of line for third 

segment with vertical axis, i.e., 

for axial strain equal to zero. 

65-80: PHIM: Lateral strain at end of second 

straight line segment. 

C-3. Output 

All basic information punched on the first 

four cards is printed on the first output page.  On 

the following pages appears all finite element nodal 

point information input/ support system element 

input, support system nodal point input and failed 

rock description. 

The tables with the element information for 

the finite element mesh show, in addition to the 

input, the centroid coordinates and the area of each 

element.  Also printed is the total area covered by 

the mesh.  This frequently facilitates the detection 

of errors in the mesh. 
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The step number is printed at each loading or 

unloading (equivalent mining) step.  The iteration number 

is printed for each iteration needed for additional 

changes in elastic properties and for each iteration 

between ground and support.  The total number of 

iterations for each solution of the finite element 

equations is printed as well as the initial and the 

final displacement unbalance. 

For each unloading step the displacements and 

forces at all support nodal points are printed, as 

well as the internal forces.  Similarly, for each 

finite element nodal point the displacements and 

forces are printed, and for each element the principal 

stresses, the angle of the largest principal stress 

with the horizontal axis and the three Young's 

moduli, the three Poisson»s ratios and one shear 

modulus.  The last output information is the strain 

energy stored in the finite element mesh. 

C-4.  Computational Scheme 

The flow chart of Figure C.l illustrates the 

basic functions of the main program TUNSUP and of 

the subroutines, FORM, SSMAT, FORMQ, MODST, SOL and 

FORMB.  The main program performs a significant 

fraction of all calculations, controls the overall 
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Figure C.l.     Simplified Flow Chart For the Principal 
Operations  of Program  TUNSUP. 
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sequence of the calculations and handles the input 

as well as most of the output.  The principal steps 

in the program are: 

1.  Input, generation of interpolated elements 

and nodal points. 

. 2.  Calculation of nodal point forces due to 

gravity and boundary pressures. 

3. Stiffness matrix assembly; element stiff- 

ness calculation in FORM and FORMQ, including rota- 

tions for inclined boundary conditions, with stress- 

strain relation matrix from SSMAT. 

4. Initialization of the boundary conditions 

for stepwise loading or unloading.  Skipped for one- 

step problems. 

5. Solution of finite element equilibrium by 

successive over relaxation. 

6. If no support will be connected, control 

goes to step 12. 

7. If the support will be connected in the 

next unloading step, the total tunnel periphery 

displacements up to that step are stored. 

8. The support stiffness matrix is assembled 

in subroutine SOL during the first support connection, 

with beam stiffnesses calculated in FORMB. 

9. The tunnel periphery displacements that 
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occur after support installation are imposed on the 

support.  The support stiffness equations are solved 

in subroutine SOL by Gaussian elimination (for a 

very narrowly banded matrix—no nodal point can be 

adjacent to more than three nodal points). 

10. Tensioned blocking springs are eliminated 

and step 9 is repeated for the new support geometry. 

11. If the maximum number of iterations 

between ground and support is not exceeded the 

program returns to step 5, with boundary conditions 

modified by the support reactions. 

12. Stresses and strains are calculated in 

each element, 

13. stresses and strains are compared with 

the rock failure model input.  New element stiff- 

nesses, when needed, are calculated in subroutine 

MODST, and control returns to step 5, with unchanged 

boundary conditions but with a modified stiffness 

matrix. 

14. When no more changes occur, or when the 

imposed maximum number of iterations is exceeded, 

an output of nodal point and element results is 

prepared. 

15. If loading or unloading is not yet 

terminated the boundary conditions are incremented 
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or decremented for the next step and computations 

continue at 5. 
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PROGRAM TUNSUP(INPUT,OUTPUT,PUNCH,TAPE1»TAPE2) 
COMMON NPI (3ln) »NPJ(31o> »NPK1310) »R(32o> «Z(320> »KOD<320> I NAP(320) ♦ 

1 NP(32o,ll),Sll(32o,10),Sl2(320,i0)»s
2l(32o,10),S22(32o,10)♦ 

2 C<3»3),tPtVp»Hl,RJ,RK,Zl.ZJ»ZK»s<0.8>«MAT(310)»NPL<310)»ES» 
3 VS»CODPL»RL»ZL»BDISC(320) 
4 ,NPRE<3?),U8<32),WB(32).ROT(32)»TEM(3H»3),NPId(32)»NPJB(32>• 
5 XB(32),Y6(32),EH<32>«A8(32),XI8(32),PHIö(32),NUMHEAM» 
6 NUMJOI,SNN(b,fa),NRBFEM<32)»SUPST 
DIMENSION EM(40),ERE(40)»SM(40),SR(40),EM1(40),ER1(*0),PHIR<40)t 

1 PHII(40),PHIM(40) 
DIMENSION NUM£(3lO)tNPNUM(32o)»FORR(32o),FORZ<320),U(320)•W(320)♦ 

1 LM(4),B(3»B),DIS(8)»EPS(3) 
DIMENSION   SIGRO10) tSIGl (3.10) »SIG2O10) »SlGTOlü) »EPMOlO) .EPMT(31 

10)»AN(320),E1T(310).E2T(310>,E3T(310),GlT(310)»v2lT(310)»v3lT(3lO) 
2 ,v32T(310),PSIT(310),E1(310),E2(3l0).E3(310),G1(310),V21(310) 

3 »V31(310)»V32(310)»PSI(310) 
DlMENSlONFORRFX(32)»F0RZEX(32)»UPM(32>,WPM(32>,FORRB(32),FORZB<32> 

100 READ 6,TAPEC00 
IF(TAPECOD) 10b,104,106 

104 READ 1,Tl,T2»T3»T4»T5,T6»T7,T8 
READ 3.NUMEL»NUMNP,NCYcM»NUMlN,INBEG»IcOOR,cODPL»CHECK»DENStNUMBEA 
1M,NUMJ0I,NUMSIJP,SETS,ITSUP 
IF(NUMEL) 230,230.231 

231 READ *»TOLER»ER»EP'ES»VR»VP,VS»BETA 
PRINT 2 
PRINT l.Tl,T2,T3»T4,T5,T6,T7,T8 
PRINT 17»TAPEC0D 
PRINT 5,NUMEL,NUMNP,BETA,T0LER,NCYCM,NUMIN,INBEG,NUMBEAM,NUMJ0I,SE 

1TS.NUMSUP,ITSIIP 
PRINT 14,ER»VR,EP»VPIES.VS»DENS 

PRINT 7,IC00R,C0DPL 
PRINT 29 
PRINT 2 
N = 0 
DO 310 K a ltNUMEL 
N = N ♦ 1 
READ 10»N.i|ME<N) »NPI (N) ,NPj(N) ,NPK(N) ,NPL(N) ,MAT(N) ,E1T (N) ,E2T <N) 
NPC « N— 1 
IF(NUMEL-l) 370,370,371 

371 NDIF » NUME(N) - NUME(NPC) 
NNDIF m   NDIF - 1 
IF<NDIF - 1) 320'330»340 

340 L ■ NUME(N) 
NUME(L) 3 L 
NPI(L) = NPI(N) 
NPJ(L> * NPJ(N) 
NPK(L> » NPK(N) 
NPL(L) * NPL(N) 
MAT(L) * MAT(N) 
EiT(L) ■ E^tN) 
E2T(L) ■ E2T(N) 
DO 350 KK a 1,NNDIF 
NUME(N) » NUME(NPC) ♦ 1 
NPI(N) a NPI(NPC) ♦ 1 
NPJ(N) « NPJ<NPC> ♦ 1 
NPK(N) ■ NPK(NPC) ♦ 1 
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IF(NPL(NPC>)   140»150»H0 
150  NPL(N)   ■   NPL<NPC> 

GO  To   160 
14Ö   NPL(N)   »   NPL(NPC)    ♦   1 
160   CONTINUE 

MAT(N)   ■   MAT(NPC) 
ElT(N)   ■   ElT(NPC) 
E2T(N)   ■   E2T<NPC> 

N ■ N ♦ 1 
350 NPC B NPC ♦ 1 
330 IP(N * NUMEL» 310,370,32U 
310 CONTINUE 
370 M B l 

READ 11»NPNUM(M)»R(M)»Z(M)»FORR(M)»FORZ(M)»U(M)»W(M)•BDISC(M) 
DO 500 K B liNUMNP 

M « M ♦ 1 
READ ll.NPNUM(M),R(M),z<M> »FORR(M),FORZ<M),U(M),w(M)»BDISC(M) 

MPC B M - 1 
MDIF B NPNUM(M) - NPNUM(MPC) 
IF(MDIF - 1) 520,530,540 

540 RDIF B R(M) - R(MPC) 
ZDIF B Z(M> - Z(MPC) 
XDIF B MDIF 
DELR B 0. 
IF(ICOOR) 1310,1310,1320 

1310 DELR B RDIF/XDIF 
1320 DELZ B ZDIF/XDIF 

DO 550 KK B 1»MDIF 
NPNUM(M) B NPNUM(MPC) ♦ 1 
FORR(M) B FORR(MPC) 
FORZ(M) B FORZ(MPC) 
U<M) B u(MPC> 
W<M) B W(MPC) 
R(M) B DEL« ♦ R(MPC> 
Z(M) B DELZ ♦ Z(MPc) 
BDISc^M) B BDISC(MPC) 
M B M ♦ 1 

550 MPC B MPC ♦ 1 
M ■ M p 1 

530 IF(M-NUMNP) 500»560»520 

500 CONTINUE 

560 PRINT 28 t (NPNUM(M) ,R(M) tZ(H) ,FORR(M) ,FORZ<M) tU'(M) tW(M) »BDISC<M> . 

1      MB 1,NUMNP) 
IF(ICOOR) 175,174,175 

175 DO 176 M«1»NUMNP 
ANGLE B 0.0174532925»Z(M) 
AN(M) B ANGLE 
ANCOS B COS(ANGLE) 
ANSIN B SIN(ANGLE) 
X = R(M)*ANCOS 
Z(M) B R(M)*ANSIN 
R(M) B X 
UX « U(M)«ANCOS - W(M)«ANSIN 
W(M) B U(M)«ANSIN ♦ W(M)»ANCOS 
U(M) m   UX 
FX B FORN(M)*ANCOS - FORZ(M)»ANSIN 
FORZ(M) » F0RRIM)»ANSIN ♦ FORZ<M)»ANCOS 
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176 FORR(M) ■ fX 
174 CONTINUE 

IF(NUMBEAM) 2000.2080,207(1 
20Tp PRINT 55 

DO 2050 N ■ 1,NUMBEAM 
READ 2oll»K»NPlB<K),NPJB(K)»FB(K)»AB<K>tXlR(K)»PHlB(K) 

2011 F0RMAT<3I*»4El2.4) 
IF(XIB(K)) 2020,5000»2020 

202* PRINT 20lO»K»NplB(K)fNPJb(K)fEB(K>tAB(K).xfB(K)»PHIB(K) 
201Ö F0PMAT(1«»11H BEAM      »H2,I1«>,EH.5»2FT?.5IF20.5) 

GO TO 2050 
5000 PRINT 2060.K,NPIB(K),NPJB(K)»EB(K>»AR<K) 
206o FORMAT(lB»llH     SPRING.I12» H*>»El*.5. 2ET9.5»E20.5) 
205Ö CONTINUE 
208Q IF(NUMJOI) 209n»166»2100 I 
2100 PRINT 56 

DO 2030 N*1,NUMJOI 
READ 63.XB(N)»YB(N)*UB(N)tWB(N)tROT(N),NPnFEM(N),NPRE<N> 
PRINT 64»N,XB(N),YB(N),UB(N),WB(N),ROT(N),NPBFEM(N),NPRE<N> 

203Ö CONTINUE 
166 READ 40»NFE»NCON,NFEMX»ALPHA,SIZC»SIZE»GAMMA,LOAD»INITUNL.LASTUNL 

IF(NCON) 240*260,200 
20Ö READ 43»(EM(N)»ERE<N)»SM<N>.SR(N),N»1»NCOM) 

READ 44»(EM1(N)»ER1(N),PHJR(N),PHII(N)»PHIM(N),N«1»NC0N) 
PRINT 16»NC0N»SIZC»SIZE»NFEMX 
PRINT B3»NFE»ALPHA,GAMMA 

252 PRINT 46 
PRINT 45»(EM(N)»ERE(N),SM(N),SR(N)»EMI(N),pRl(N)»PHIR(N)»PHII<N), 

1       PHIM(N)»N-l.NCON» 
GO TO 261 

26? PRINT 15 
261 PRINT 19*L0AD»INITUNL»LASTUNL 

DO 300 N « l»NuMEL 
EPM(N)«0 
EPMT(N)  « 0. 
E1(N)»ER 
E2(N)«ER 

E3(N) ■ ER 
GKN) ■ ER/(2.*>U.*VR>) 
V21(N) « VR 
V3i(N) m  VR 
V32(N) « VR 

3ÖÖ PSI(N)«0.0 
DO 410 L m   l,NuMNP 
DO 400 M ■ l»lP 
S11(L«M)«0.C 
S12(L»M)«0.0 
S2l(L»M)"0.0 
S22(L»M)«0.0 

4ÖÖ NP(L»M)«0 
NP(L»H) «0 

*1Ö NP(L»1) « L 

DO 1650 1 ■ INITUNL»LASTUNL 
FORREX(I) » 0. 

165n FORZEX(l) » 0. 
IF(SETS) 1710.1720.1730 

172Ö SETS ■ 1. 
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PRINT 49 
173Ö CONTINUE 

PRINT 2 
PRTNT 12 
ARTOT ■ 0.0 
ARCHECK « 0,0 
DO 700 N » l»Nl.!MEL 
I s NPl(N) 
J » NPJ(N) 
K e NPK(N) 
L ■ NPL(N) 
RI = R(I) 
RJ * R(J) 
RK ■ R(K) 
RL ■ R(D 
ZI ■ Z(I) 
ZJ ■ Z(J) 
ZK ■ Z(K) 
ZL « Z(L) 
IF(E2T(N)) 1605»1620tl605 

1605 IF(L) 1600»1600»1610 
160Ö RD » RK - RI 

ZD « ZI - ZK 
HS a(E2T(N)»ZD/2. - E1T(N)»RD/2.»»SETS 
VS »<E2T(N)*RD/2. ♦ E1T(N)«ZD/2.»«SETS 
FORR(I) ■ FORR(I) ♦ HS 
FORZ(I) ■ FORZ(I) ♦ VS 
FORR(K) « FORR(K) ♦ HS 
FORZ(K) « FORZ(K) ♦ VS 
IF(I.LT.INITUNL.OR.I.GT.LASTUNL) GO TO 163" 
FORREXd» « FORREX(I) ♦ Hs 
FORZEX(I) ■ FORZ£X<I> ♦ VS 

163? IF(K.LT.INITUNL.OR.K.ST.LASTUNL) GO TO  16?0 
FORREX<K) » FORRfrX(K) ♦ HS 
FORZEX(K) « FORZEX(K) ♦ VS 
GO TO 1620 

1610 RD « RJ - RK 
ZD ■ ZK - Zj ä 

VS ■(E2T(N>*RD/2. ♦ ElT(N)«Z0/2.)*SETS 
HS *(E2T(N)*ZD/2. - ElT(N)*R0/2.»»SETS 
FOPR(J) « FORR(J) ♦ HS 
FORZ(J> » FORZ<J) ♦ VS 
FORR(K) * FORR(K) ♦ HS 
FORZ(K) « FORZ(K> ♦ VS .        ■ 
IF(J.tT.INTTUNL.OR.J.GT.LASTüNL) GO TO 164« 
FORREX(J) = FORREX(J) ♦ Hs 
FORZEX<J) » FORZEX(J) ♦ VS 

164Ö IF(K.LT.INITUNL.OR.K.GT.LASTUNL) GO TO 162* 
FORREX(K) * FORREX(K) ♦ HS 
FORZEX(K) ■ FOoZEX(K) ♦ VS 

162Ö CONTINUE 
AREA » 0.5«<(RJ-RI>*<ZK-ZI)"<RK-RI)»<ZJ-ZT>> 
AR a AREA 
IF(NPL(N)> 120,130»120 

13r> RC ■ (Pl*RJ*RK)/3. 
ZC * (ZI*ZJ*ZK)/3. 
PR TNT 77*NUME(N) »NR! (N) tNPJ(N) »NPK(N) tMAT(M) ,RC »?C * AREA »El T (N) » 

1 E?T(N) 
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CALL   FORM(N,AREA,El,E2,E3,fil,V21,V31.V32.PST> 
ARTOT   «   ARTOT   ♦   AREA 
IF(DENS)   403,403,111 

Hi   WEi   *   -   DENS*AREA/3.#SETS 
FORZ(I) a FORZ<I) ♦ WEI 
FORz(j) a FORZ(J) ♦ WEI 
FORZ(K) ■ FORZ(K) ♦ WEI 
GO TO 403 

120 CALL FORMQ(N»AREA,El,E2»E3»Sl»V21»V31tV32,oSI) 
RC a (R(I) ♦ R(J) ♦ R(K) ♦ R(L>>/4, 
ZC = (Z(I) ♦ Z(J) ♦ Z(K) ♦ Z(L))/4. 
PRINT 27»NUME(N> »NPI(N) ,NPJ<N) ,NPK<N> »NPL(N> »MAT(N) .RC»ZC»AREA» 

1   E1T(N>.EHT(N) 
ARTOT B ARTOT ♦ AREA 
IF(OENS) 403,403,110 

IIP CONTINUE 
WEi   »  -  DENS*AR/6.«SETS 
FORZ(I) ■ FORZ(I) ♦ WEI 
FORZ(J) ■ FORZ(J) ♦ WEI 
FORZ(K) ■ FORZ(K) ♦ WEI 
AR a AREA - AR 
WEI a - DENS»AR/6.*SETS 
FORZ(I) « FORZ(I) ♦ WEI 
FORZ(K) ■ FORZ(K) ♦ WEI 
FORZ(L) ■ FORZ(L) ♦ W£I 
AR * 0,5*( (R(J)-R(I))«KZ«L)-7(I)) - (R(L)-P«I»)*(Z(J) - ZU))) 
WEI   ■   -   DENS»Ap/6.»SETS 
FORZ(I) ■ FURZ(I) ♦ WEI 
FORZ(J) ■ FORZ(J) ♦ WEI 
FORZ(L) ■ FORZ(L) ♦ WEI 
AR ■ AREA - AR 
WEi   *  -  DENS»AR/6,«SETS 
FOPZU)   »  FORZ(J)   ♦   WET 
FORZ(K)   ■  FORZ(K)   ♦   WEI 
FORZ(L) ■ FORZ(L) ♦ WEI 

403 IF(AREA) 1300,1300,420 
l3oS PRINT 21»N 

ARCHECK a - 1. 
42* LM(1) ■ NPI(N) 

LM(2)»NPJ(N) 
LM(3)»NPK(N) 

IF(NPL<N>)   450,*60,450 
45Ö   LM<4)   a  NPL(N) 

MM   a   4 
460   DO   700   L   =   1»MM 

LX   a   L^<L) 
DO   700   M   a   1,MM 
MX   a   0 

665   MX   »   Hx   ♦   1 
IF(NP(LX,MX)-LM(M))670»680,670 

67("   IF(NP(LX,MX) )   660,680,660 
68«   NP(LX,MX)aLM(M) 

IF(MX-IO)   b90»69n,1400 
69Ö   SH(LX,MX)aSll(LX»MX)*S(2»L-lt?»M-l)*SETS 

S1?(LX,MX)=S12<LX»MX)    ♦S(2»L'-1»2*M)«SETS 
S2l(LX,MX)aS21(LX,MX)*S(2»Lt2»M-l)»SFTS 

70T   S22(LX,MX)»S22(LX»MX)*S(2»L»2»M)»SETS 
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PRINT   31.AHT0T 
IF(ARCHECK)    lOO.lOSlO* 

106   IF(TAPECOO)   4228,4229,4227 
4227   WRTTE(l»l)   Tl»T2»T3»T4»T5»T6«T7»T8 

WRITE(1«3)   NUMEL»NUMNP,NCYCM,N(iMiN,INdEG»TrOOR»CODPL«CHECK.DFMS. 
l      .: NUMBEAM,NUMJOI,V)UMSUP,SETS.IT<;UP 
WRlTE(l,4)   T0LEP,E«,EP,ES,V«,VP,VS,HETA 

WRITE (1» 10)    (NUMF(N) »NPI (N) »NPJ(N) »NPK(N') .NPL(N) .MAT(N) »F1T(N> »E?T 
1 (N> »Nsl,NijMFL> 
WRITE(1»11)    (NPNI)M(M)»R(M),Z(M),FORR(M)»FOPZ(M)»U(M),W<M),PDJSC(M) 

1 tMsl,riUMND) 
IF(NUMBEAM)   20n0,2200»2210 

221^   DO  2220   N  a   I.NIIMBEAM 

222,)   WRITE(1.2011)   M.NPIB(N).NPJ3 <N) ,EB <N) . AH (N|) .XIH <N) . PHIB (N) 
WRITE(1.63)    (XR(M),Yrt(N),UB(M),WR(N),ROT(N)»NPRFFM(N).NPRE(N), 

1 N   B   1.NUMJOI) 
22ÖP   WRITE(1.40)    NFF,NC0N,NFEMx,ALPHA.Sl7CSIZF,GAMMA,L0An,INITUNL«LAST 

1UNL 
IF (NC0N)423'..4229.4230 

423r   WRlTE(l»43)    (EM (N) »EHE (N) ,S*1 (N) ,SR (N) »Nni ,NIC0N) 
WRITE (1.44)     (E*'l <N) ,ERl (N) , PHIR (N) ,PHI I (N) ,PHIM (N) .Mal.NCOM) 
GO   TO   4229 

422«   READ   (?.l)    T1.T2.T3,T4.T5,T6,T7,T8 
READ(2,3)      NUMEL.NUMNP,NCYC^,NUMIN.IN8EG.Tr00R,C0DPL.CHECK.DEN«?, 

1 NUMBEAM,NIIMJOI,MUMSUP,SETS,ITSI|P 
READ    (2.4)    TOLFR.ER.EP.ES,VR,VP,VS.PETA 
READ(2. 10)       (NuME(N),NPI(H)»NlPJ(N).NPK(N),MPL(N)»MAT(N)»ElT(M)»E?T 

1 (N) »Nal.NUMED 
REA0(2»11)       (NPN-JM(M)»P(M),Z(M),FORR(M).FORZ(M)»U(M),W(M).BDISC(M) 

1 .M=l.NUMNp) 
IF(NUMBEAM)   2000,2300,231n 

2315   DO  2320   N  =   I.NUMBEAM 
232"   READ(2,2011)    K,NPIB<N)»NPJB(N).EB(N).AH(N),XIB(N).PHIB(N) 

READ (2»63)    (XB (N) » YB (N) »Uf» ( M) »WB (N) »ROT(N) ,NPBFEM(N) ,NPRF(N) . 
1 M   s   l.NUMJOI) 

230Ö   READ (2»40)      NFE.NCON.NFEMx» ALPHA,SiZC»SIZF.GAMMA.LOAn» tMTUNL«LAST 
1UNL 

IF(NCON)   4231.4232.4231 
4231 REA0(2.43)    (EM(N)»ERE(N)»SM(M).SR(N).Nei.NrON) 

READ«2.44>    (EMI(N)»ER1(N)»PHIP(M)»PHII(N)»PHIM(N).N»l»NCON) 
4232 IF(TAPECOD     ♦   ?.)    4227,4220,4229 
4229   IF(CHECK)   406»407»406 
406 PRINT   411 

DO 408 M a 1,NUMMP 
40B PRINT 409»M,(NP(M.MX),MX»1.11) 
407 DO  720   M   «   l.NijMNP 

MX   a   1 
IF(«DISC<M))    710.710.8200 

82on    1F(BUISC(M)    -   360.)    82M . 7 1 0 , 82o? 
820?   IF(BDISC(M)    -   72(1.)    71 0 .B?0 1 ,B20 1 
820T   ALP  »   BDISC(M>/57.295779bl 

CA   s   COS(ALP) 
SA   a   SlN(AL.P) 
FO   a   FORR(M)#Cft   ♦   FORZ<M)»SA 
FOPZ(M)    a   -   FORR(M)*SA   ♦   FORZ(M)*CA 
FORR(M)    a   FÜ 
IFO-1.LT.INITUNL.OR.M.GT.LASTUNL) GO TO 71n 
FO a F0RREX(M)»CA ♦ F0RZEX(M)»5ä 



C-25 

FORZEX(M) = - FORPEX(M)*SA ♦ FORZEX<M)*CA 
FOPREX(M) = F" 

71n MXrrtX+1 
IF(NP(M,MX)) 720,720,710 

72" NAP(M)«MX-1 
SUPST ■ U, 
FlMBEG * INBEG 
FMUMIN ■ NUMIN 
DO 8000 INNUM ■ INBEG,NUMIN 
ITFRS »0 
FINNUM a INNUM 
PRINT 2 
IF(LOAD) 9^9*950,951 

95]" FAC * FIN8EG/FNUMIN 
IF(INNJUM - INBEG) 931,910,931 

931 FAC ■ FINNUM/(FIMNUM - 1.) 
91" DO 9*0 M « ltNuMMP 

U(M) a FAOU(M) 
W(M) = FAC*W(M) 
POPR(M) « FAC»F0RR(M) 

94Ö FORZ(M) « FAC*F0RZ(M) 
PRINT 81»INNUM 
GO TO 950 

949 IF(NUMIN - 1) 956*950*936 
936 FAC ■ 1. - 1./IFNUMIN - FINNUM ♦ 1.) 

IF(iNNUM - INBF6) 933,933,93? 
933 FAC ■ 1. - (FlMBEG - l.>/(FNl)MIN - 1.) 
93? DO 920 M ■ INITUNL*LASTUNL 

pORZ(M) a FORZ(M) - FORZEX(M) 
FORR(M) » FORR(M) - FORREX(M) 
FORREX(M) » FAc»FORREX(M) 
FOPZEX(M) - FAc*FORZEX(M) 
FORR(M) ■ FORR(M) ♦ F0RREx<*> 

92Ö FORZ(M) « FORZ(M) ♦ FORZExM) 
PRINT 82*INNUM 
IFÜNNUM - NUMSÜP) 950,1800»1810 

180Ö DO 1820 NB a l,NUMJOI 
DO 1821 M ■ 1*3 

1821 TEM(NB,M) ■ 0. 
IF(NPBFEM(NO)) 1820,1820*1830 

183* NN ■ NPBFEM(NB) 
1F(BDISC(NN)) 1831*1831*1832 

183? ALP = BDISC(NN) / 57.29577951 
CA a COS(ALP) 
SA ■ SIN(ALP) 
UPM(NB) ■ U(NN)»CA - W(NN)«SA 
WPMJNB) ■ U(NN)*sA ♦ W(NN)»CA 
GO TÜ 1833 

1831 UPM(NB) ■ UINN) 
WPM(NB) » W(NN) 

1833 FORRB(NB) a .. 
FORZB(NB) » 0, 

182Ö CONTINUE 
GO  TO   950 

181",   DO   184C   NB   a   1,NIJMJ0I 
IF'(NPBFEM(Nü) ) 1«40,1840,1850 

185Ö NN a MPBFEM(NP) 
IF(BDI5C(NN)> 1851*1851*1852 
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1852 

1851 

1853 
lö*o 

1915 

1870 

1875 

1873 

1874 

1860 
950 
960 

ALP 
CA 
SA « 
ÜB (NB 
WB<NB 
GO TO 
ÜB (NB 
WB(NB 
NPRE ( 
CONTI 
CALL 
IF(SU 
00 18 

NN ■ 
IF(tiD 
ALP « 
CA a 
SA « 
TEMPO 
TEM(N 
TEM(N 
F0RR( 
FORZ( 
FORRB 

F0RZB 
CONTI 
KOuNT 
NCYC 

BÜISC 
COStAL 
SIN(AL 
) ■ U( 
) ■ U( 
1853 

) ■ U ( 
) ■ W( 
NB) ■ 
NUE 
SOL 
PST) 1 
60 NB 
BFEM(N 
NPBFEM 
ISC(NN 
BDISC 
COS(AL 
SIMAL 
R « TE 
8«2> * 
B,l) ■ 
NN) a 
NN) 
(NB) 
(NB) 
NUE 
« 0 

■ 0 

(NN)/57.29577951 
P) 
P) 
NN)»CA - W(NN)»SA 
NN)»SA ♦ W(NN)»CA 

NN) - L)PM(NH) 
NN) - WPM(NH) 
3 

UPM(NÖ) 
WPM(NB) 

00.1 
■ 1 . 
Ö)) 
(NR) 
)) 1 
(NN) 
P) 
P) 
M (NH 
- T 
TEM 

FÜRR 
FORZ 
TFM 
TEM 

9l5fl9l5 
NUMJOI 

lBftOiI860.1870 

873,1673.1875 
/57.29577951 

»1)«CA ♦ TEM(NB,2)*SA 
EM(NB.1)*SA ♦ TEM(NB.2)«CA 
POR 

(NN) - TEM(NBtl) ♦ FORRR(NR) 
(NN) - TEM(Na,2) ♦ FORZfi(NB) 
(NB.l) 
(NB»2) 

730 

C 
C 

7*1 
760 

77o 

81? 

790 

800 

TOTEN * 0, 
TOTW «0. 
TOTSE »0. 
SUM . o.O 
NCYC = NCYC '*1 
DO 860 M a l»NUMNP 
NUM s NAP(M) 
TEMPU = FORR(M) 
TEMPw s FORZ(M) 

IF(B0ISC(M)) 7^1,790*770 
IF(BDISCIM) 
DU » 0,0 
GO TO 830 
DW a o.O 
IF(BDISC(M) 
IFIbDISC(M) 

♦ 2.) 760,770,860 

■3*0.) .8l0,fll<i,al2 
- 7^0.) 860,760,760 

DO 800 L ■ 1,NUM 
N ■ NP(M,|_) 
TEMPU»TEMPU-S11<M,L)*U(N) 

TEMPW«TE
MP

W-S?1<M,L)»U<
N
> 

DU » TEMPU/Sll(M,l) 
DW s TEMPW/S22(M,1) 
GO TO 850 

•S1?<M,L)«W(N) 
>S22(M,L)*w(N) 

810 00 820 L ■ 1,NUM 
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C 

N   a   NP(M.L) 
8?Ö   TEMPU^TEMPU-S1! (M»L>*U<N) «Si ? (M.|_)*»HN) 

DU   s   TEMPU/S11(M,1) 
GO  TO   850 

83Ö DO 840 L ■ ltNUM 
N a NP(M»L) 

8*0 TEMPW»TEMPW-S2l(M,L)*U(N)-S2?(M,L)»W(N) 
DW a TEMPW/S22(Mtl) 

C 
c 

85Ö U(M)»U(M)*BETA»DU 
W(M)=rt(M)*HETA#DW 

85i SUM»SÜM*A8S(DU)*AHS(üW) 
c 

86!' CONTINUE 
C 

IF<NCYC - 1) 8^2.862,864 
862 SUMIN = SUM 
864 COMTIMUE 

C 
IF(SU^-TOLER) lnlo»10lO»ll'OC 

100Ö IF(NCYC'M - NCYC) 1 0 1 0 1101 0 • 730 
C 
101Ö PPiNT ]8tSUHIN,NCYC»SJM 

IF(IN^UM - UUMSUP) lH8n,189(j,1^9n 
189^ IF(lTE«S - iTSuP) 191o,lBBO,]B80 
191Ä ITFRS r ITERS ♦ 1 

PRTNT 88,IT£RS 
GO TO 1»10 

188* CONTINUE 
C 

WRlTE(l»18) SUMIN,NCYC,SUM 
DO   Ü30C   M   =   1,MIJMNP 
IF(BDISC(M)) 8300,8300,8310 

631* ALP = 8QISC(M)/57,29577951 
CA a COS(ALP) 
SA a SIN(ALP) 
UO a J(M)»CA - W(M)»SA 
W(M) = U(M)*SA ♦ W(M)»CA 
U(M) a UO 

830Ö CONTINUE 
DO 7060 N = 1»MUMEL 
I   a  IMP I (N) 
J   s   I\PJ(N) 
K   a   NPK(N) 
RI   a   R(I) 
RJ   a   R(J) 
RK   a   R(K) 
zi - Z(D 
ZJ   a   ZU> 
ZK   a   Z(K) 

DO   1030   L   *   1»3 
DO   103C   M  a   1,8 
S(LtM)«0.0 

103*   B<l.»M)«0.0 
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0IS(1)«U(I) 
nis(2) » wd) 
DIS(3) * U(J) 
DISU) = W(J) 
niS(5)=U(K) 
DIS(6)=W(K) 
IF(NPL(N)) 1011,1032,1031 

103? PEL x 
OELT * 
S (1»1) 
Sd»3) 
S<1.5) 
S(2i2) 
S<2.4) 
S<2.6) 
S(3il) 
S(3f2) 
S(3.3) 
5(3.4) 
S(3f5) 
S<3i6) 

(RJ-RI)»(ZK- 
DEL 

ZI) (PK-RI)«(ZJ-ZI) 

ZJ 
ZK 
ZI 
RK 
RI 
RJ 

ZK 
ZI 
ZJ 
RJ 
RK 
RI 

S(2.2) 
5(1.1) 
S(2.4) 
S(1.3) 
S(2.M 
S(lf5) 

105o 

DO 1050 
EPS(L) •■ 
DO ^050 
EPS(L) > 

L = 1,3 
0.0 

M s 1,6 
EPS(L> S<L.M)»DIS(M) 

1031 
TO 1033 
NP|_<N) 

« R(L) 
= Z(L) 
= (U(I) *U«J) *U(K) *U(D )/<*. 
■ (W(I)*W(J)*W(K)*W(L>)/*. 
= (RI*Rj*RK+RL>/4. 
= (ZI*ZJ*ZK*ZL>/4. 

* 0, 
(RJ-RI)*(ZC-ZI) - (RC-RI)*(ZJ- 

* DELT ♦ DEL 
ZJ- zc 

1051 

GO 
L 
RL « 
ZL = 
UC = 
wc * 
RC = 
ZC = 
DELT 
DEL = 
DELT » 
S(l.l) 
S(l»3) 
S(1.5) 
S(2.2) 
S<2»4> 
S<2.6> 
S(3»l) 
S<3»2) 
S(3.3) 
S<3,4) 
5(3.5) 
S<3»b> 
DIS(5) 
DIS(6' 
DO   1051 
EPS(M|_> 
DO 1051 
EPS(ML) 

ZI) 

zc 
ZI 
RC 
RI 
RJ 

ZI 
ZJ 
RJ 
RC 
RI 

•   S<2.?) 
:    S(ltl) 
:    5(2.4) 
■   S(1.3) 
: S<2»f>> 
: S(l»5> 
: UC 
' WC 
ML   =   1« 3 
=   0,0 
M    a    l.b 
=   EPS(ML) -   S(ML.M)»DlS(M) 
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1052 

1053 

DEL 
DEL 
Sd 
Sd 
Sd 
S(2 
S<2 
S(2 
S(3 
SO 
SO 
SO 
S(3 
SO 
DlS 
DIS 
DIS 
DIS 
DO 
DO 
EPS 
DEL 
DEL 
Sd 
Sd 
SU 
S(2 
S(2 
S(2 
SO 
SO 
SO 
SO 
SO 
SO 
DIS 
DIS 
DIS 
DIS 
DO 
DO 
EPS 
DEL 
DEL 
S(l 
S(l 
sd 
S«2 
S(2 
S(2 
SO 
SO 
SO 
SO 
SO 
SO 
DIS 
DIS 

<RK-RJ)»(ZC-ZJ> - IRC-RJ>»<ZK-ZJ) 
DELT 

ZK 
ZC 
ZJ 
RC 
RJ 
RK 

3 
5 
2 
4 
6 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
052 ML 
052 M 
ML) 

DEL 
ZC 
ZJ 
ZK 
RK 
RC 
RJ 

S<2.2) 
Sd.l) 
S(2t4) 
Sd»3) 
S(2»6) 
S(l,5) 
U(J) 
W(j) 
U(K) 
W(K) 

lt3 
i ■ l.b 
<   EPS(ML) - S(ML»M)»DIS(M) 

<RL-RK)»(ZC-ZK> - <RC-RK)»(ZL-ZK) 
DELT ♦ DEL 
« ZL - ZC 

ZK 
ZL 
RL 
RC 
RK 

1) ■ 
3) ■ ZC 
5) « ZK 
2) *   RC 
4) s RK 
6) « RL 
1) * S(2t2> 
2) ■ S(ltl) 
3) * S(2«4) 
4) ■ S(l»3) 
5) » S(2t6) 
6) « S(l,5) 
1) * U(K) 
2) - W(K) 
3) « U(L> 
4) « W<L> 
053 ML ■ 1»3 
053 M s 1.6 
ML) ■ EPS(ML) - S(ML»M)»DIS(M) 
a (RI-RL)*(ZC-ZD - <RC-RL>«MZI-ZL> 

3) = 

s 
1) 
)) 
5> 
2) 
4) 
6) 
1) 
2) 
3) 
4) 
5) 
6) 
D 
2) 

DELT 
Zl 
ZC 
ZL 
RC 
RL 
RI 
S<2»2) 
Sd»l) 
S(2»4) 
S(IO) 
S(2,6) 
Sd.5) 
U(D 
W(L) 

DEL 
ZC 
ZL 
ZI 
RI 
RC 
RL 
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DIM3)    =   U(I) 
DIS(^)   *   W(l) 
DO   M-.5*   ML   a   1,3 
DO   lü5ft   M   =   l»f> 

1054   EPS(ML)    =   EPS(ML) 
L   =   UPL(N) 

DIM7)    =   U(L) 
DIS (a) = W ( L ) 

1033 CONTINUE 
DO   1055   M   =   1,3 

105^   EPMH)   *  EPS(M)/DELT 

S(ML»M)»nis(M) 

c 

c 

DE|T = OELT/2. 

CALL SSMAT<N»EiiE2iE3tGltV21»V31»V32»PSI> 

SIGXX e C(ltl)»EPS(l)*CU,2)»EPS(2)*C(l»3)*EPS(3) 
SIGYY a C(2,l)#EPS(l)*c(2.2)»EPS<2)*C(2.3)»EPS<3> 
TAyXY ■ C(3,1)*EPS<1> ♦'C<3,?)«EPS(2) ♦ C(3.3)*EPS (3) 
TOTSE a TOTSE ♦DELT»<SIGXx»EpS(1)♦SIGYY«Ep<; (2)*TAUXY«EPS(3))/2. 
SIGR(NJ) a SIGYY 
CC » (SIGXX ♦ SIGYYJ/2. 
A s SQRTU (SIGYY - SIGXX)/2.)**2 ♦ 

8851 
885? 
8854 

8B5Ö 
8855 

B86n 
8865 

7ooT 

7005 

TAUXY»»?) 
Slfil(N) ■ 
SIG2(N) a 
PAS ■ 0. 
SIGT(N) ■ 
IF(CODPL) 
SIGT(N) * 

CC ♦ 
CC - 

7010 

V31(N)»SIGXX*V32(N)»SIGYY 
8851,8852,8851 
0, 

IF(A-.000001) 8855i8855i885* 
PAS ■ - 28.64789»ATAN(2.»fAJXY/(siGYY-SlGXX)) 
IF(2.»SIGXX - SIGKN) - SIG2(N)) 8850f8865,8865 
IF(PAS) 8855»8855»8860 
PAS ■ PAS ♦ 90, 
GO TO 8865 
PAS * PAS - 90. 
CONTINUE 

IF(NCON) 240»7p58»7001 
ANG * 3.14159253»PAS/l80. 
CO? a C0S(AMG)»C0S(ANG) 
Si? s SlN(ANG)#SiN(ANG) 
SICO ■ SIN(ANG)»COS(ANG) 
SIC02 ■ SlCo«»? 
EPM(N) x EPS(1)»C02 ♦ EPS(?)»Si2 ♦ SK0»EPS(3) 
IF(MAT(N)) 705R»7005»7058 
Elf(N)»El(N) 
E?T(N)aE2(N) 
E3T(N)   »   E3(N) 
GlT(N)aGl<N) 
V2lT(N)    =   V21(N) 
V31T(N)   =   V3KN) 
V3?t(N>   ■   V32(N) 
PSlT(N)aPSI(N) 
IF(EPM(N)) 7058.7058,7010 
IF(EP^'N) - EPMT(N) - SIZF/2.) 7058,7015,7015 
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701«; SlT « SlG2(ri) 
.702" IF(SIT) 7025,7r35,7035 
70?"=; SITsO 
7C3C SI m  SIT/SIZC 

SCT ■ INT1SI ♦ 0.5) 
I ■ SCI ♦ 1. 

720=; ST a EPM(N)/SI7E 
STl   =   INKST   ♦   0.5) 

721Ö   SC  a   SCI»SI2C 
STR ■ STI*SIZE 

7C3Ö IF(SIT - (NC0N-1)»SIZC) 7o55,7055,7059 
7059 PRINT 78,N,I,SiT 

I ■ NCON 
705«; CONTINUE 

STRMJN a AMINl(EM(I),EM1(I)) 
IF(STRMIN-STR) 7ö57,7o5fl,705S 

7057 EPMT(N) a STR 
IFlSTR - EM(D) 7100,7100,7105 

71Ö* SZ = (ElT<N)»StR*V21T(N)»SC»(l.*V21T(N)))/<1.-V2lT(M))/(1,♦V?lT(M) 
1) 
GO tO 7130 

710* IF(STR-ERE<I)) 7l15,7120*7120 
712^ SZ = SR(I> 

GO TO 7130 
711«; SZ = SM(I> ♦ (SM(I)-SR(I>)*(«iTR-EM(I))/(EM(I)-ERF(I)) 
713: IF(STR-EMKi)) 7135,7135,714n 
713S VL a (SC«(1.-V?1T(N) ) - V?iT(N)»sZ)»(l.*V2i"T(N) )/ElT(N) 

GO TO 7160 
714: IF(STR-ER1<l>) 7145,7150,7150 
715- VL a PhlKD ♦ (PHIR(I) - PHII < I) ) «STR/ERT'< I > 

GO TO 7160 
714«; VL a BHIR(I) ♦ (PHIM(I) - PHIR(I)i»(STR-E(»T<I>>/(EMl m-ERl <I>> 
71ft" IF(STR - VL - WL/100.) 70s«,7058,7161 
7lM IF(tjFE) 950f ,7l6?,9000 
716? V21(U) = (STP»SC - VL»SZ)/(SZ*SC)/(STR-VL) 

V31 (N) a V2T (N) 
V3?(.n = V2i (Ni , 
EUfjl = (l.+V?l U ) >*( (1.-V21 IN) >»SZ - V21(M)»SC1/STR 
E?'U) a El ( :) 
E^(f-i) = El <>.) 
Cn   TU 72C0 

r       CALCULATION OF NON-ISOTROP!C PSEUDO-ELASTTC CONSTANT« 
C SEE APPENDIX B 

THIS SECTION IS INCOMPLETE ANO NEEDS DEBUGGING 
IT IS Nnt IMPLIED THAT THE OTHF»«? DO NOT 

r 
r 
95'"   CONTINUE 

GO   TO   241 
9(.rw    IFiuFE   -  5)   9100,9010,902n 
91 f'    IF<IJFE-4>    9530,9110,9000 
911, AVAR = (STR-VL)»<SC ♦ SZ > 

BVAR ■ - (SC*V|  ♦ STR»(SC»ALPHA/VR - SZ)) 
CV/iR a VL*SZ - STR*SC»(1. - ALPHA) 
DVfiR c HVARwbVAR - 4.#AVAR*CVAR 
IF(uVAR) 243, 9?l<i, 9210 

921"' DVA » SQRT(UVAR) 
IF(VR»AVAR - CvAR/VR) 9220,9220,9230 

922^ V2l<N> = (-MVAP - DVß)/2./AVAR 
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923Ö 
9240 

901Ö 

7164 
716? 

716c 

7167 

716P 
7l6Q 

716* 

Pü?Ö 
9o3o 

951 ö 

952Ö 

953fi 
953i 

9550 

954Ä 

957Ö 

958Ö 

950Q 

GO TÜ 9240 
V?] (N) x (-(iVAp ♦ DVA)/?./A\/A R 
E1(N) a U.*V?i (M) )»(-V?l. (N)#SC* (1.-V21 (NV)»SZ)/STR 
E2(N) s El(N)/(1.*ALPHA»(V?1(M)/VR-1.)) 
V31(N) a V?l(N)/(1.*ALPHA»(^21(N)/VR-1.)) 
IF(NFE-3) g^in,24i,952n 
CONTINUE 
AVAR   =   -   4.»ALPHA»SC<»Sr/ER/VP 
BVAR   *   ?.*At_PHA*SC»SZ/FP/VP   -   4.*SC*SC*(1 .-ALPHA-VRl/EP 

1 -   ?.*S?»STR   +   ?.*SC»VL 
CVAR   -    (1.   -   A| PHA   -   VP)»2.»SC«SZ/ER   -   SZivl 
IF(ALPHA)    242,71*3,7164 
IF(SC)    7163,71f~3,7165 
V2l(M) = - CVAp/pvAR 
GO TO 7169 
DVAR = BVARoBVAR - 4 . »AVAo#CVAR 
IF(DVAp) 2*i,7i66,7l67 
DVA   =   SQRT(nVAR) 
IF(VR»AVAP   -   CvAP/VR)    7166»7166,7168 
V2i (N)    a    (    -   RyAR   ♦   \)\Jt ) /? , / A V AR 
El(N)    x    <S7   -   ?.*SC*V21(N))/STP 
E?(N)    a   EP /(1,*ALPHA#(>/21 (M)/VR   -   1.)) 
V3]<N)    a    VR/(1.*ALPHA«KV2] (Vi)/VR   -    1.)) 
IF«-NFE   -   6)    95]0,9030,952o 
V2] (I'J)    a    (-4VAP   -   DVA)/?./A\/AR 
GO   TO   7169 
IFfhFE   -   7)    90?C,901ü,P(l3n 
CONTINUE 
V?l (U)    a    <V|_*S7/STR   *   ?. ♦ ( ALPHA-l . ) »SC ) /2. / ( VL»SC'STP 

1   -   l.)»SC   -   SZ) 
E1(N)    ~    (SZ   -   ?.*V2l(M)*Sc)/STP 
E?(N)    x   El(N)/(l.*ALpHA»(V21<N)/VR   -   1,)) 
V3](N)    a   V2l (N)/(1.*ALPHA#(\/?1 (M)/VR-1.) ) 
IF(|JFE   -   7)    9=i] o.9010,°52n 
COMTIMUE 

E3(N)    a   EKfM) 
V?2(N)    a   V?l(N) 
GO   TO   7200 
CONTINUE 
E3(N)    =   E2(NJ) 
V32(W)    a   V31(N) 
GO   TO   7200 
IF(,'jFE-2)   ?41»o531»2'+l 
AVAR   a   STR*(SC*K«LPHA»ALPHA/VR/VP-1.)-(1.*ALPHA/VR)»SZ)*VL#<S7*SC* 

1    Al PHA»SC/Vr>) 
BVÄR   a   STP»(SC*2.»ALPHA*(1 ,-ALPHA)/VP   -    (1 .-ALPHA) »SZ)    -   VL*(A|.PHA 

1 »SZ/VR   -    (1.-ALPHA)»SC) 
CVAR   a   STP»SC*(1.-2.«ALDHA   ♦   ALPMA^ALP1-1")    _    (1 . -ALPHA) *SZ»VL 
IF(AVAP)    95^0«9550»PS4P 
V2l(U)    a   -   CVAc/RVAR 
GO   TO   9240 
DVAR a 8VAR*BVfiR - 4.»awAR»CvAP 
IF(OVAR) 243,9c8r,957Q 
DVA a SQRT(UVAD) 
IF(CVAP/VP - Av/AP»VR) QSö», 9co" ,Q5qn 
V?l IN) a (-I5VAD*DV

A
)/2,/AVA^ 

GO To 9240 
V2HU)    a    (--3VAC-PVA) /2./AVA3 

*    (AlPHA/VR 
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GO TO 9240 
720'' G1IM) a l./(l./El (N)*i./E?(M)*2.»V2l (N)/F?CD) 
705« PST(N) = (PAS-90.)/57.?95779* 
706" CONTINUE 

KOlINT   =   KOUMT   +1 
DO 8330 M a 1»NUMNP 
IF(öüISC(M)) R33o»833o,834C 

834; ALP = »DISC <M)/57,29577951* 
CA s COS(ALP) 
SA = STN(ALP) 
UN s J(M)#CA ♦ W(W)#SA 
W(M) = - U(i)»SA ♦ WH)»CA 
U(K) s UN 

833^ COMTIMUE 
. IF(NCON) 70650 500*706^ 

TQ**-  KDFX =0 
PRINT 70»KOUNT,INNUM 
PPTNT ?_ 
DO   71)95   N=l,NllMEL 
IF(MAT(N)>    7o9c;,7o7o,7n95 

707"    IF(V21(N)    -   V2'T(N)    -   V21T(M)/l0n00,)    707R,7075»7080 
707S   IF<E2(N)   -   E2T(N)    ♦ ■ F?T(M)/\noon.)    708o»709^«70B? 
708^   KDFX   e   KDEX   +1 

KOD(KDFX)    s   M ■ .   ■ 
PR TNT 61tKt'EXlN»FHN) ,F1T(M) .E^tN) »E2T(N) ,\/?l (N) tV?lT»N) 
IFCJ.92-V21 (N)-2.*V31 (N)*\/31 (N) »E2 (N) /E 1 (.W) > 7094*7095.7"95 

C      FrR ORTHOTPOPIC FAILURE THIS CHECK SHOULD BE REPLACED HY A MnoE 
C      GENERAL CHECK ON POSITIV? DFFIMITENFSS 
709& KDFX = KÜEX - i 
708S El(N) x ElT(M) 

E2(N)=F2T(N) 
E3(N) = E3T(N) 
Gl<N)»G1T(N) 

V2l(N) = V2lT(M) 
V3ÜU) = V3lT(N) 
V3?(N) = V32T(M) 

7o95 CONTINUE 
IF(KDEX) lSCO»l5r:0»8010 

801'* CALL ^0DSTM(K0c-X,El»E2*E3,Gl.V2l , V31»V32.oe;I »E1T»E2T,F?T »r,i T, 
1 \/21T,V3lT,V32T,p5TT) 
IFJKOJNT - NFEMX) 960i960.1500 

l5r« PRINT "? 
IF(ICOOR) 120l.l?02»12il 

120? PRTUT ?6 
DO 120C M = 1,MUMNP 
FOP = <: 
F07 = r 

NUV a NAP(M) 
TOTW B TOTW ♦ FORR('M)»M(M) ♦ FORZ(M)»W(M) 
DO 1195 L = l.MUM 
N c WPlMtLI 
TOTEN i   TOTEN ♦ sll (M,|_)*ij(M)»U(rj) ♦ S12 (M,L) *U <M) *W <N) ♦ S21{M,|_) 

1  iu(M)«W(M) ♦ S22(M»L)*W(M)*W(M) 
FOR = FOR +S11(M,L)#U(N)*S12(M,L)»W(N) 

119R F07 = FOZ ♦ S21 (M*L)*U<N)+S2?(M,L)*iV(i\) 
IF(BDISC(M)) 8400»8400to*To 

84li ALP = 8DISC(M)/57.29577951 
CA = COS(ALP) 



C-34 

SA = SIN(ALP) 
UO ■ :l(M)»CA - W(M)*SA 
WO n U(M)»SA ♦ W(M)*CA 
FO * F0R*CA - FOZ»SA 
FOZ » FOR*SA ♦ FOZ»CA 
PRINT 25,M»UO»w0tF0»F0Z 
WRlTE(l»25) M.U(M)»W(M)»FOR»FOz 
GO TO 1200 

84ÖÖ PRINT 25»M,U(M),w(M),FOR»FOZ 
WRITE<1»25) M»u0»WO»F0.FOZ 

120n CONTINUE 
GO TO «Oil 

120T PRINT 126 
DO 1203 M a 1»NUMNP 
TOTW ■ TOTW ♦ F0RR(M)»U(M) ♦ FOPZ(M)*w(M) 
FOP so. 
FOZ * 0. 
NUM_= NAP(M) 
DO 1196 L = 1»NUM 
N a NP(M»L> 
TOTEN ■ TOTEN ♦ SI 1(M,L>*U< «0 *U (N) ♦ Si2<M,L>*U(M)»W (N> ♦ S2l(M»Ll 

)  »U(N)»W(M) ♦ S22(M,L)*W<M)*W(N) 
FOR « FOR ♦ Sll(M»L)»U(N) ♦ Sl2 <M,|_) »W <N) 

1196 FOZ » FOZ ♦ S2l(M,L)*J(N) ♦ S22<M,L)»*(N) 
ANGLE ■ AN(M) 
ANCOS a COS(ANGLE) ; 
ANSIN ■ SIN(ANGLE) 
IF(öOISC(M)) 8500»8500»85lO 

851Ö ALP = BDISC(M)/57.29577951 
CA a COS(ALP) 
SA a SIN(ALP) 
UO = J(M>*CA - W(M)«SA 
WO a U(M)»SA ♦ W(M)»CA 
UR a JO«ANCOS ♦ W0»ANSIN 
UT s WO*ANCOS - UO*ANSIN 
FO a FOR*CA - FOZ*SA 
FOZ a FOR»SA ♦ FOZ»CA 
FO" a FO 
RADFOR a F0»ANC0S ♦ FOZ»AN|SIN 
TANF0R = FOZ»AMCOS - FOR*ANSTN 
PRINT i25,M,UO,WO,FORfF0Z,UR,UT,RADFOR,TAMF°

R 

WRITE(1'125) M«U0»W0'FOR'F0Z»UR»UT»RADF0R«TANFOR 
GO TO 12o3 

850Ö CONTINUE 
UR a 'J(M)*ANCOS ♦ W(M)*ANSIM. 
UT a W(M)*ANCOS - U<M)»ANSIM 
RAOFOR a FOR*ANCOS*FOZ*ANSIM 
TANFOR a FOz*ANCOS - FOR*ANSlN 
PRINT i25*M»U(M)*W(M)*FOR»FDZ»UR»UT»RADFOÖ.TANFOR 
WRITE(1»125) M,U(M),W(M)»FOR,FOZ»UR|UT.RAOFOR»TANFOR 

1203 CONTINUE 
8011 CONTINUE 
832Ö CONTINUE 

PRINT 2 
PRINT 23 
PRTNT 32 
DO 1501 N = ltMUMEL. 
PAS a 57.2957795l3»PSl(N)*90. 
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1057 

l06r> 
1059 

106T 

150T 

800Ö 

lF(MAT(N)) 10i»7»iuou»i'.pi 
PRINT 24.N.SIG1(N>,SIG?<N),SlGR<N),SIGT<N).PAS 
WRITE(1*24) N.S1G1(N),SIG?(M).SIGT(N),PAS 
GO TO 1501 
IF(NCON) I0b9»106ltlo59 
PRINT 60»N,SIGl<N),SIG2(N),STGP(N),SIGT<N),PAS,El<N) ,E2(N),E3(N), 

1        Gl(fl) »V21 (N) »V31 (N) ,V32(N) 
WRiTE(l»60> N»5IG1(N),SIG?(M),SIGT(N)»PAS.EI(N),E2<N),E3<N).Gl<N), 

1 V?l(N)»V31(N),V32(N) 
GO TO l501 
PRINT 3C»N,SIGHN),SlG2(N),SlGR(N),SIGT(N)fPAS 
WRITE(1»30> N.SlGl<N),SIG?(M)»SIGT(N).PAS 
CONTINUE 
TOTSE ■ TOTSE*SETS 
TOjEN B TOTEN/?. 
TOTW ■ TOTW/2. 
PRINT 33»TOTEN,TOTSE.TOTw 

WRifE(l»33) TOTEN,TOTSE.ToT* 
CONTINUE 

GO TO 100 

1*00 PRINT 22»LX,(NP<LX»M) 
PRINT 2 
GO TO 100 

,M»2,MX) 

111'-   PRINT 50 
GO TO 100 

32Ö, PRINT 9»N»NUME(N) .NUME(NPC) 
GO TO 100 

24n PRINT 84.NC0N 
GO TO 100 

241 PRINT 85.NFE 
GO TO 100 

24? PRINT 86,ALPHA 
GO TO 100 

2n   PRINT 87»N 
GO TO 100 

52Ö PRINT 8»M,NPNUM(M).NPNUM(MPC) 
GO TO 100 

20ÖÖ PRINT 2001 
GO TO 100 

209p PRINT 2091 
GO TO 100 

FORMAT(8A10) 
FORMAT(/////) 
FORMAT<6I4.2F*.O.F10.*»3I*»F».C.I*> 

FORMAT1//22H 'NUMBER OF ELEMENTS « I5.26H  NUMBER OF NODAL POINTS 
1= 15// 26H  OVER-RELAXATION FACTOR « F7.3.5X.35H DISPLACEMENT UNRA 
2LANCE TOLERANCE 
3,5X,27HNUMBER OF 
4UMRER « 16 // 1P.H SUPPORT SYSTEM 
5 2*H JOINTS SET SPACING ■ FR.2 
6E ACTIVATED AT UNLOADING STEP 15 
7 16» 56H ITERATIONS BETWEEN GROUND 

6 FORMAT(l5) 

E10.3 // 33H  MAXIMUM NUMBER OF ITERATIONS m      \b 
LOADING STEPS «  I6.5X.3lH INITIAL LOADING STFP N 

110. 13H ELEMENTS        14, 
//47H  SUPPORT WILL B 

, 23H AT EACH UNLOADING STFP 
AND SUPPORT WILL RE PERFORMED/) 
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7 FORMAT<//26H COORDINATE SYSTFM CODE a lS,qX,34M CODE » 0 CARTE 
1SIAN COORDINATES /36X,75H CODE » 1 POLAR COORDINATES. INTFPPOl A 
2TION OF NODAL POINTS ALONG CIRCLES / 3bX,7^H CODE a -1 POLAP COO 
3R0TNATESt INTERPOLATION OF NJODAL POINTS A|_oNG RADII ///*»H P| ANF 
4STPESS OR PLANF STRAIN SELECTION CODE ■ T4.44H IF a 0.PLANE STRAIN 
5  OTHERWISE PLANE ST«ESS  /  > 

B FORMAT!//»  ERROR IN NODA|_ POINT NUMBERING *»3Iln> 
9 FORMAT!//*  ERROR IN ELEMENT NUMHERING*»3I?Q) 

lB F0RMAT(6l*.dFl?.4) 
11 FORMAT<l4,2F9.3,?F12.3.2Fl2.e.F10.6) 
12 FORMAT(119H ELEMENT     NODAL POINTS MATERIAL       CENT 

1ROID  COORDINATES        ELEMENT AREA        BOUNDARY STRESSES  / 
213X.5BHI     J     K     L      CODE X Y 
3 2]X»32H      PARALLEL    PERPENDICULAR   /) 

13 FORMAT (/HOH  MP       X - 3RD Y - ORD        X-FORCF. 
_ 1   Y-FORCE      X - DISPL      Y - DISPL     BOUND CODE /) 
U FORMATt// 26H MATERIAL CODE 0 E a FT5.3,18H POISSONrfS RATIO 

1= F8.3// 26H MATERIAL CODE' 1 E = FT5.3.1BH P0ISS0N*S RATIO 
2B F8.3// 26H MATERIAL CODE' -1 E a FT5.3.18H POlSSOUfS RATIO 
3= F8.3/// 21H  MATERIAL DENSITY a   E12.4 / ) 

IS FORMAT(///23H  ELASTIC SOLUTION ONLY / ) 
lft FORMAT(//25H  POCK FAILURE DEFINITION // 3<?H  NUMBER OF CONFINING 

lPRFSSJRE LEVELS a I3,32H  CONFINING PRESSURE INCREMENT a FR.2 // 
224H  STRAIN INTERVAL SIZE a Fl0.3.1 OX.52H MAXIMUM NUMBER OF TTFRAT 
3I0NS AT EACH LOADING STEP a I3///28H  STRFSS-STRftIN-VOLUME INPUT/) 

17 FORMAT(/13H  TAPE CODE a I5.4X.8H IF a -3,37H INPUT FROM TAPF ? 
10UTPUT ON TAPE 1 / 22X,27H IF a -1 INPUT FPOM TAPE ?        /22X.2SH IF 
2 a i OUTPUT ON TAPE I ) 

18 FORMAT<//54H  DISPLACEMENT UNBALANCE AFTER FIRST OVER RELAXATION a 
1E13.6 // 7H  AFTER I5,34H ITERATIONS THE DJSPL. UNBALANCE a E13.M 

19 F0RMAT</17H  LOADING CODE a 13,   6lH  INCREMENTAL LOADING WHFM PO 
ISITIVF, UNLOADING »'HEM NEGATE //56X,22H ALL NP FORCFS FROM NP 
2 I5»7H TO NP I5.37H WILL BE DECREMENTED DURING UNLOADING  /  ) 

21 F0RMATO2H ZERO OR NEGATIVE AREA, EL. NO. .14) 
2? FORMAT( »  MORE THAN 9 N.P, ADJACENT TO NODAL POINT #14/ 

1 27H ADJACENT NODAL POINT«; ARE  1816 ) 
23 FORMAT(133H  EL    SIGl SIG?     VpRT STRES     Z-STRFS 

1 ANGLE       El E2 E3 Gl       V21    V 
231    V32       ) 

24 FORMAT(I*.*El2.4,Fl0.4) 
25 FORMAT(I10.4E2l,8) 
26 FORMAT«»   NODAL POINT     HORIZ  DISPL VERT  OISPL 

1HORIZ  FORCE        VERT  FORCE   •//) 
27 F0RMAT<IÖ,4I6.I12,5F16.5) 
2B F0PMAT(I4,7F15.6) 
29 FORMAT(//117H BOUNDARY (DISPLACEMENT) CODE IN NOD POINT INPUT TAR 

1LF. WHEN a -1 VERTICAL AND HORIZONTAL DISPLACEMENT ARE IMPOSFD / 
258X.43HWHEN a -2 VERTICAL DISPLACEMENT IS IMPOSED / S8X.46HWHEN 
3a .3 HORIZONTAL DISPLACEMENT IS IMPOSED /5x. 97H IF POSTTIVF, T 
*HE ANGLE (IN DEGREES) WITH THE X-AXIS OF THE Ll^F ALONG WHICH THF 
5P0INT MUST MOVE /5X.115H IFl LARGER THAN 3*0, AN INPUT ÜISPLACFMFN 
6T ALONG THIS LINE IS IMPOSED AMD LISTED IN THE INPUT TABLE AS X-DI 
7SP.(U) /5X.123H IF LARGER THAN 720, THE l'ISTED DISPLACEMENT TS I 
BMPOSED BUT THE POINT IS FREE TO MOVE PERPENDICULAR TO THE GIVFN DI 
9RECTION  / ) 

3«, FORMAT<lS4El2.4.FlO.Sl5H   »    »    *   ) 
3l FOPMAT(//l^H  TOTAL AREA c FU5.B//) 
3? FOPMAT( 65H     (X-Y PLANE)   (X-Y PLANE) 



C-37 

■», FOSMA?(//// Ö5H *TWÄIM ENER3Y .CALCULATED FROM TRANSPOSFO niSPl.ACFM 
1ENTS X STIFFNESS X DISPLACEMENTS n El5.6//*«H STRAIN FUF«T,Y r*LCn 
2LATEÜ FROM STRFSS X STPAlN AT ELEMENT CENTOS . E15.6//33» wnPK n 
5oÄI BY BOUNDARY FORCES = Elf.«». 63H MEANINGFUL ONLY WHFN MO MO 
«►N-7ER0 DISPLACF^ENTS ARE T^OSEU  //> 

*? r09MAT«2l*»BXtI*.?F7.1,El3.6,Fl8.3,3ib) 

4T FORMAT(4E16.9) 
44 F0RMAT(5E16.9) 

:JKK:?:JS5A7)   EM        ERE       PE«.^ »««. 
1 STRESS EMI E=ll PHIR PHI I 

493F0PMATu}M55H      IMPUT   SF.T   SPACING   WAS   ZERO        HAS   BEEN   REPLACEO   BY   0 

■^FORMAT«//   31H   INPUT   SET   SPACING   IS   MEGATIVF     //> 
£  F0CT\///22H   'SUPPORT   SYSTEM   INPUT//1UH   .ELEMEM TYPF "On 

1POINT   I NOn   POINT   J E-MOOULUS AREA I-MOMENT 
2 SHEA« DEF COEFFICIENT //> .      „...„, 

56/OR„A„^,;3JH J0INT ROIATIDN»-COORD 4SSO-]ATEJ-«2-P      ".SIS1"« 
10DE "' 6p FORMAT(I4,4E12.4,F10.4,4E12.6,3F7.4) 

61 FOPMAT(2I5»6El7.8) 
6? FOPMAT(4F10.D 
63 FORMAT<5FlO.5,215) 

??  KSlilij;;?1   I?JRS?I5Ä5!I3..-     AT -LOADING   STEP..      15///» 

?I   FSRMS?!58UH6;NXELEMEN?16l"i32H   THE   CONFlNfNG   PRESSURE   LEVEL   -      ij, 
l'?0HANUlTHE   CONFINING   PRESSURE   »     E15.3.?7H   REPLACED   BY   (NCOM-1) 

8]   FORMAT(5X.14H   LOADING   STEP        15//) 

sir wü^^^ .rwja s^!l^[^,^, 
41^   B-ATIUMF PARAMETERS   ALPHA e  F8.1»loH   GAMMA « F8.1  /' 

84 FORMAT(// BH'NCSN - lU*H MOTIVE NUMBER OF CONFINTNG PRESSURE L 

SS'FORMATU/'^H THIS FAILURE MODEL OPTION, NrE -  T5.33H IS K.OT TNCL 

8«
1
FST(//I3H

T
  ITERATION'U^OH  BETWEEN .ROUND AND SUPPORT  //, 

125 FORMAT (110,8E15.6) - nISPL     H0H F0RCF 

'V^'FOPC™ """wo 5?^" U OTSX" ""OW 
2G FORCE     */) 

*09 FORMAT<12I6)   MP ADJACFNT NODAL POINTS  *///) 
,411 S NEGATIVE NUM3ER OF BEAM ELEMFNTS  //> 
|°0°i- FS5MAA?!// 39H  SIGSTIÜ NSMBIB OF JOINTS ?N SUPPORT  //) 
23Ö CONTINUE 

STOP 
END 
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SUBROUTINE  FORMIN,AREA,E1,E2.E3,Gl ,V21 ,V31 ,V32»PSI> 
COMMON  NPI(310).NPJI310).NPM310),R(320).Z(320),KOO(320).NAP<320 

1 NP(320,11).S11(320,10).S12(320,10>.S2H320.10).S22  320,10). 
2 c«3t3).EP,VPiRX,RJ.RK,ZI.ZJtZK.S-(8t.8).MAT(310)tNPL(310)tES. 

3 VS,CODPL»RL»ZL,BDISC<320) UP,B1MI.MP ifli12t. 
4 .NPREI32) .UBI32) ,WB<32> »R0TI32) ,TEM(32.3> »NPlB<32> •NPJB02). 
5 XBI32),YB<32>,EB(32> ,AB<32>,XIB<32>,PHIBI32>.NUMBEAM, 
6 NUMJ0I.SNN(6i6)iNPBFEH(32)iSUPST 

DIMENSION  SS(6,6),B(6»6> 

CALL  SSMAT(N,E1,E2,E3,61.V21.V31,V32,PSI) 
00 620  L »  1»6 
DO 620  M  ■   l»ft 
S(L»M)   ■  0. 

620  B(L»M)«0.0 
B<1»1)   »  ZJ-ZK 
B(l»3)   ■  ZK -  ZI 
B(lt5)   «  ZI  -  ZJ 
BI2.2)   ■  RK  - RJ 
Bl2,*)   »  RI   -  RK 
B(2»6)   »  RJ -  RI 
B<3»1>   ■  B(2*2> 
B(3,2)   «  BllfD 
B(3f3)   ■ B(2»4> 
B(3»4)   »  B(lt3) 
B<3»5)   "  B(2*6) 
BI3»6)   ■  BI1.5) 
DO  10   I   «   1»3 
00  10   J  »   1»6 
SS(I,J)  ■ o. 
DO  10  K  »   1»3 

10  SS(I»J)   »  SSU»J>   ♦   C(I»K)*B(K.J) 
DO  30   I   »   1*6 
DO 30   J  ■   1*6 
DO  30   K  ■   1»3 

30   Sd»J)   «  S(ItJ)   ♦   B(K,l)»SS«KtJ) 
DO  20   I   ■   1*6 
DO  40   J  *   1»6 

40   SCI.J)   ■  S(I*J)/*./AREA 
IFINPLIN))   712»100i7lZ 

100   I   ■  NPKN) 
J  «  NPJ(N) 
K   ■  NPK(N) 
IF(BDISCID)   U°»H?»J20 

110   IFIBDISC(J))   I30tl30.120 
130   IF(BDISCIK))   712,712.120 
125  DO  140   IK  ■   1«6 

DO   HO   JK   ■   1,6 
1*0  B(IK.JK)   »   0. 

IF(BDISCID)   150,150.160 
150  B<1S1>   ■   1. 

B(2,2)   «1. 

160   ALPT2  BDISCID/57.29577951 
B(l»l)   *  CÖSULP) 
B(lf2)   «  -   SIN(ALP) 
B(2il)   ■  -  B(lf2) 
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B<2»2)    =   Rllii) 
170   IF(BDISC(J))    160*180,190 
180B(3i3)   =   1. 

B(4|4)   =   1. 
GO TO 200 

19o ALP s BDlSC<J)/57.29577951 
B(3i3> ■ COS(ALP) 
B(3,4) = - SIN(ALP) 
B(4,3) s - B(3,4) 
B(4,4) * B(3.3) 

200 IF(BDISC(K)) 210,210.220 
210 B(5i5> = 1. 

B(6,6) =1. 
60 TO 230 

220 ALP B BDISC<K) / 57.29577951 
B(5.5) '   COS(ALP) 
B<5,6) = - SIN(ALP) 
B(6,5) * - 0(5,6) 
B(6,6) a B(5,5) 

230 00 240 I = 1,6 
DO 240 J ■ 1»6 
SS(I,J) = 0, 
DO 240 K = 1,6 

240 SS(I»J) = SS(I»J) ♦ S(I»K)*B(K,J) 
DO 260 I = 1*6 
DO 260 J a 1*6 
S(I»J) = 0. 
DO 260 K = 1,6 

260 Sd»J) = SU»J> ♦ B(K,D«ss(KtJ) 
712 RETURN 

END 
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SUBROUTINE SSMAT(N»EltE2tE3,Gl»V21iV31,V32»PSl> 

1 NP(320,ll)»Sll(320,l0)»Sl2(320.10)»S2K320tl0).S22 320 10). 
2 C(3,3),EP»VP.RI»RJ»RK,ZI.ZJ»ZK,S(8.8>»MAT(310)»NPL(310).ES. 

1 .„PÄ,!^^^ 
5 XB(32) ,"YB(32) ,EB<

32> .AB(32) ,XIB<32) ,PHlB<32> .NÜM8EAM. 
6 NUMJ0I,SNN(6,6),NPBFEM(32),SUPST w,.,,1A1 
DIMENSION El(310).E2(3l0).E3(310).Gl(3lO),v2K31O)fV31(3l0). 

,U        V32(3io),PSl<3l0).ElT(3l0).E2T(3l0).E3T(3lO).61T(3l0). 
2 V2lT(310)»V31T(310).V32T(310).f9SlT(310) 
DIMENSION D<3»3> »A<3»3) 
C<1»3> «0. 
C(2,3) « 0. 
C(3il) » 0. 
C(3»2) « 0. 
IF(CODPL) 70*80,70 

80   IF(MAT(N))   55»10»5 

55  COMM  »  ES/(1.*VS)/(1.-2.*VS) 
C<1»1>   *  cOMM»(l.-VS) 
C(l»2)   ■  COMM»VS 
C<2»1>   «  C<1»2> 
C<2»2)   ■  C<1»1) 
C(3.3)   ■   .5»ES/(1.*VS) 
GO  TO   15 

5  COMM  ■  EP/(1.*VP)/<1.-2.*VP> 
C<1»1>   ■  C0MM*<1'"VP) 

C(l»2)   «  COMM  *VP 
C(2tl)   «  CU»2> 
C(2f2>  ■■  C<1»1> 
C(3t3)   ■   ,5*EP/(1.*VP) 
GO  TO   15 

10   ALI   ■   l./EKN)   -   V31(N)»V31(N)/E3(N) 
AL2  «   l./E2(N)   -  V32(N)*V32(N)/E3(N) 
BE  «   V21(N)/E2(N)   ♦   V3l(N)»V32(N)   /   E3(N) 
COMM  -   l./(ALl»AL2  -  BE*8E) 
Cn*D   *   AL2*C0MM 
C(l»2)   =  BE»COMM 
C(2,l)   «  C(l»2) 
C<2»2>   "  AL1*C0MM 
C<3»3>   ■  GKN) 
GO  TO  90 

70   IF(MAT(N))   155,110*105 
155  COMM  «  ES/<l.-VS)/(l.*VS) 

C(M>   »  COMM 
c(l,2)   =  vS»COMM 
C(2»l)   =  C<1»2) 
C<2.2>   ■  Cd.D 
C(3.3)   ■  ES/(l.*VS)/2. 
GO  TO   15 

105  COMM  ■  EP/(1.*VP)/(1.-VP) 
C(l»i)   ■  COMM 
C<1»2>   »   VP«COMM 
C<2»1)   »  C<1»2> 
C(2»2)   »  C(1»D 
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C(3.3) » EP/(l.*vP.)/2, 
GO TO 15 

110 COMM »1. - V21(N)«V2l(N)»El(N)/E2(N) 
C(l,l) r £l(N)ZCOMM 
C(l»2) " v21(N)»C(ltl) 
C<2.1) * C(l.2) 
C(2,2) = E2(N)/C0MM 
CO.3) = GKN) 

90 

20 

25 

50 

60 
15 

TEST ■ 
TEST » 
IF (ABS 
00 25 
DO 25 
D(I*J) 
0(1.1) 
Dd»2) 
D(1.3) 
0(2.1) 
0(2,2) 
D(2»3) 
D(3.1) 
D(3»2) 
0(3,3) 
DO 50 
DO 50 
A(I.J) 
D° 50 
A(I»J) 
DO 60 
DO 6o 
C(I.J) 
DO 60 
C(I»J) 
RETURN 
END 

PSI(N) 
SIN(TEST) 
(TEST) - 0.0175)15,15,20 
I » 1,3 
J s 1,3 
«0*0 
«COS(PSI(N))»»2 
«SIN(PSI(N))**2 
» -SIN(2.«PSI(N)) 

■D(l,2) 
■ D(1»D 
« - D(l,3) 
» 0(2,3)/2» 
» -0(3,1) 
* D<1,1) 

I ■ 1,3 
J ■ 1,3 
* 0. 

K > 1,3 
= A(I»J) 

I ..J.3 
* 0. 

K = 1»3 
« C(I»J) 

- D(l,2) 

♦. D(I.K)*C(K.J> 

♦ A(I.K)»D(J,K) 
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SURROUTINE F0RMQ(N»A«EAiEl»E2»E3.GltV21.V3l»V32tPSI> 
COMMON NPI(310),NPJ(310).NPK(310),R(320).Z(320),KOO(3?0),NAP(320), 

l       Np (320,11) tSll (320,10) iS12(320.l0).s2K3^0tl0)iS22 (320*10) t 
?       c(3»3)»EP«VPtKl,RJtRKtZI»ZJfZK»S(8ifl)»MAT{3lO)tNPL<310)tESt 
3       VS*CODPLIRL»ZL»HOISC(320) inlD(„1 
l *NPRE<3?> tUB(32) *WB(32) .R0TO2) *TEM<32*3> *NPIB<32> *NPJ8(32> » 
5 XB(32),YB(32),EB(32),AB(32).XIB(32),PHIB(32)»NUMBEAM, 
6 NUMJ0I.SNN(6»6),NPBFEM(32)iSUPST 
DIMENSION SA(2*2)»SS(8.8)iSN(10*10) 
ARQUAO =0. 
DO 620 L = 1*10 
DO 620 M * 1*10 

620 SN(LfM) a 0.0 
RIO a RI 
ZIO « ZI 
RJO a RJ 
ZJO a ZJ 
RKO a RK 
ZKO ■ ZK 
RLO a RL 
ZLO a ZL 
RK   =    <RI*RJ*RK*RL)/4. 
ZK  =   (ZI*ZJ*ZK*ZL>M. 
AREA   =   0.5*((RJ-RI>*(ZK-Zl)   -   (RK-RI)*(ZJ-Z1>> 
ARQUADa   ARQUAO   ♦   AREA ■ 
CALL   F0RM(N,AREA,Er,E2,E3,Gl,V21fV31tV32fPSl) 
DO 10 I ~   1»* 
DO 10 J a 1,4 

10 SN(IiJ) a S(I»J) 
D° 20 I a 1,4 
SN<It9> a S<1.5> 

20 SN(jtlO) a S(I»6) 
DO 30 I a 5,6 

J ■ I ♦ ♦      , 
SN(J,9) a S(It5> 

30 SN(J,10) = S(I»6) 
RI a RjO 
ZI = ZJ° 
RJ a RKO 

AREA a 0.5*URJ-KI>*<ZK-Zi> - < RK-RI) • < ZJ-ZI) ) 
CALL FORM(N,AREA*E1.E2,E3,G1,V2I,V31,V32,PSI) 

ARQUADa ARQUAD ♦ AREA 
DO 40 I * 1«* 
K = I ♦ 2 
00 40 J a 1,4 

L = J ♦ 2 

40 SN(K,L) a SN(KtL) ♦ S(I.J) 
DO 50 I * 1'* 
K = I ♦ 2 
SN(K,9) a S(Ifb) ♦ SN(K*9) 

50 SN(K.IO) = S<I*6> ♦ 5N(K*10) 
DO 60 I -   5*6 

J a I ♦ 4 
SN(J,9) a SN(J»9) ♦ S(I»5) 

60 SN(JilO) ■ SN(J*10) ♦ S<I»6) 
RI a RKO 
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ZI « ZKO 
RJ * RIO 

AREA »L0.5«((RJ-RD*(ZK-ZI) - (RK-RD * (ZJ-ZD ) 
ARQUAD* ARQUAO ♦ AREA 
CALL FORM(NtAREA.El»E2,E3,G1.V21»V31»V32|PSD 
DO 70 I ■ 1*6 
J « I ♦ 4 
DO 70 K * 1»6 
L « K ♦ * 

70 SNU.L> « SN(J.L) ♦ S(IfK) 
RI - RLO 
ZI ■ ZLO 
RJ = RIO 

AREA "o.SMlRJ-RD'MZK-Zl) - (RK-RI )• (ZJ-ZD ) 
ARQÜAD« ARQUAD ♦ AREA ' «. „ . 
CALL FORM<N,AREA,El,E2,E3,61,V21.V31.V32.PSD 
DO 80 I » 1*2 
K = I ♦ 6 
DO 80 J ■ 1.2 
L = J ♦ 6 

80 SN(K.L) « SN(K.L) ♦ S<I»J) 
DO 90 I * 3.4 
L = I - 2 
DO 90 J 3 1*2 
K x j ♦ 6 

90 SN<L,K) ■ SN(L.K) ♦ S(I.J) 
DO 100 I ■ 3*4 
K B I - 2 
DO 100 J ■ 3.4 
L - J - 2 

100 SN(K,L) ■ SN(K,L) ♦ S{I,J) 
DO 110 I « 5.6 
K ■ ■ I ♦ 4 
DO 110 J ■ 5,6 
L ■ J ♦ * „ 

110 SN(K,L) « SN(K.L) ♦ S(I.J) 
DO 120 I ■ 1.2 
K a I ♦ 6 
DO 120 J ■ 5*6 
L ■ J ♦ 4 

120 SN(K»D « SN(K»D ♦ S(I»J) 
DO 170 I ■ 3,4 
L « I - 2 
DO 140 J ■ 5*6 
K ■ J ♦ 4 

140 SN(LtK) « SN(L*K) ♦ S(I»J) 
DO 1-0 I » 1*10 
DO 130 J ■ 1*10 

130 SN(J.I) ■ SN(I.J) 
D * SN(9,9)»SN(10.10) - SN(9.10)»SN(10,9) 
SA(1,1) » SN(10,10)/D 
SA(1.2) « - SN(10»9)/D 
SA(2.D " SA(1.2) 
SA(2,2) » SN(9.9)/D 
DO 200 I ■ 1*8 
DO 200 J ■ 1*2 
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S(I»J)   =   0. 
DO  200   K   n   1,2 
L   =  K   ♦   8 

200   S<IiJ>   =   SdtJ)    ♦   SN(I,L)«SA(K»J) 
DO  ^10   I   «   1,8 
DO 210   J   =   1,8 
SS(I,J)   »   0.0 
DO  210   K   r   1,2 
I   =   K   ♦   8 

210   SSdiJ)   *   SS(I'J)    +   S(I»K)«sN(L,J) 
DO  220   I   «   1,B 
DO   220   J   s   1,8 

220   SdtJ)   *   SN(I,J)   -   SS(I.J) 
AREA   =   ARQUAD 
I   »   NPI(N) 
J   =   NPJ(N) 
K   =   NPK(N) 
L   *   NPL(N) 
IF(BDlSCd)) 300,300,310 

300 IF<BDISC(J)) 320,320,310 
320 IF(BDISC(K>) 330,330,310 
330 IF(BD1SC(L>) 712,712,310 
310   DO  3*0   M  =   1,8 

DO  340   MM   =   1,8 
340   SS(M,MM)   a   0, 

IF(BDISCd))   350*350   »360 
350   SSd.l)   a   1. 

SS(2,2)   «   1. 
GO  TO   370 

36o   ALP   s   BDISC(l)/57.29577951 
SS(1,1)   -   COS(ALP) 
SS(1,2)   ■   -   S1^<ALP) 
SS(2»1)   »   -   SSd »2) 
SS(2,2)   «   SSd,D 

370   IF(BDISC<J)>    3B0,3ö0,390 
380   SS<3,3)   =   1, 

SS(4,4)   a   1, 
GO TO 400 

390 ALP » BDISC(J)/57,29577951 
SS(3,3) = COS(ALP) 
SS(3,4) = - SIN(ALP) 
SS<4,3) » - SS<3»4> 
55(4,4, B SS(3,3) 

400   IF(BDlSC(K>)   410,410,420 
410   SS(5»5)   =   1. 

SS(6,6)   =   1. 
GO  TO  430 

420   ALP  *   BDlSC(K)/57,29577951 
SS(5,5)   =   COS(ALP) 
SS(6,6)    s   SS<%5) 
SS(5,6)   =   -   SIN(ALP) 
SS(6,5)   »   -   SS(5t6) 

43o   IF(BDISC(L>>   4*0,440,450 
440   SS(7,7)   «   1.      ■ 

SS(8,8)   =   1, 
GO   TO   460 

450   ALP   *   BDISC(L)/57.29577951 
SS(7,7)    =   COS(ALP) 
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460 

470 

460 
71? 

SS(7,8) = - STN(ALP) 
SS(8,7) = - SS(7.8) 
SS(8,8) = SS(7»7) 
DO 4y0 I = ltB 
DO 470 J = 1*8 
SN(I»J) s 0. 
DO 470 K * 1*8 
SN(I,j) = SN(l,j) ♦ S(I,K)*SS(K,J) 
DO 480 
DO 480 
S(I*J) 
DO 480 
S(I»J) 
RETURN 
END 

a 1»8 
= 1,8 
0. 
* 1»8 
S(IiJ) ♦ SS(K.I) *SN(K,J) 
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SURROUTINE MODSTM(KDEX.El,E2,E3 ,G1iV21 . V3l,V32.PS I.ElT.E2T.E3T.G1T 
I   »V21T»V31T,V3?T»PSIT) 
COMMON NPl(310)»NPJ(310)»NPK(310)»H(320)»Z(320)»K00(320).NAP(320)♦ 

1 NP(320.11>,S11(320,10>.S12<320.10),s21(320.10).S22(320.10)t 
2 C(3,3),EP.VP.Ri,RJ,«K,ZI.ZJ.ZK,S(0.8» »MAT(3lO).NPL(3lO)»ES. 
3 VS.CODPL.RL»ZL.BDISC(320) 
4 ,NPRE(32)»UB(32)»WH(32)»ROT(32)»TEM(32.3)»NPIö(32).NPJB(32). 
5 XB(32),YB(32),EM(32),AB(32),XIB(32),PHIB(32).NUMBEAM, 
6 NUMJ0I,SNN(6»6).NPBFEM<32)»SUPST 
DIMENSION El(310).E2(310),E3(310).Gl(310),v21(310).V31(310)» 

1 V32(310)»PSI(310) »E1T(310) .E2K310) .E3T (310) »GIT (310) » 
2 v2lT(3l0).V3lT(3l0).V32T(3lO).PStT(3lo> 
DIMENSION LM(4)»T(8.8) 
DO 15 KT = 1.KÜEX 
N * KOD(KT) 
I = NPI(N) 
J = NPJ<N) 
K s NPK(N) 
RI = R(I) 
RJ = R(J) 
RK = R(K) 
ZI = Z(D 
ZJ = Z(J) 
ZK x Z(K) 
AREA = 0.5*{(RJ-RI)»(2K-ZI)-(RK-RI)*(ZJ-ZI)) 
LL = NPL(N) 
RL = R(LL) 
ZL = Z(LL) 
IF(LL) 30,30,40 

3o CALL FORM(N,AREA.E1T.E2T»E3T.G1T.V21T»V31T.V32T,PSIT) 
GO TO 50 

40 CALL FORMQIN.AREA,E1T.E2T.E3T,GIT,V21T.V31T.V32T.PSIT) 
5o DO 2o L * 1»8 

DO 2o M « 1.8 
20 T(L»M) = S(L»M) 

RI = R(I> 
RJ x R(J) 
RK = R(K) 
RL = R(LL) 
ZI = Z(I) 
ZJ = Z(J) 
ZK = Z(K) 
ZL = Z(LD 
IF(LL) 70,70,80 

70 CALL FORM(N.AREA.El»E2»E3»Gl»v2l,v3l»v32,psi) 
GO TO 90 

80 CALL FORMQ<N.AREA.El»E2»E3»Gl»V21»V31»V32.PSD 

90 

*50 

460 

1_M<1)    *   NPI(N) 
LM(2)    s   NPJ(N) 
LM(3)    =   NPK(N) 
MM   =   3 
IF(NPL(N>)    450, 460.450 
LM(4)    s   NPL(N) 
MM   =   4 
DO   15   L   =   ltMM 
LX=LM(L) 
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NUM=NAP(LX) 
DO 15 M * 1,MM 

00 5 I « liNUM 
IF(NP(LX»I)-LM(M)) 5tlOtS 

5 CONTINUE 

10 S1KLX,1) = S11(LX,I)*S(2»L-1.2«M-1) - T (2*L-li2»M-l) 
S12(LX.I) » Sl2<LX»I> ♦ S(2»L-1»2«M> - T(2«L-1«2»M) 
S2HLX.I) » S?1(LX»D ♦ S(2»L»2»M-1) - T(2»L»2*M-1> 

15 S22(LX»I> = S22(LX»I) ♦ S(2»L»2»M) - T(2»Lt2*M) 

RETURN 
END 
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SURROUTINE SOL 
COMMON NPI (310) iNPJPlo) iNPKOlO) »«<320> »Z(320> .K0U(320> .NAP (320) » 

1 NP(320.11)»SI1(3^0,10)»Sl2(32o»10)»S21(320»10)»S22(320.10). 
2 C(3»3)»EP.VP»N1.RJ.PK,ZI.ZJ»ZK.S(0.8) »MAT (310) »NPLO10) »ES» 
3 VS,CODPL.RL»ZL»HDISC(320) 
*      ,NPRE(3?),UB(32),WH(32).HOT(32),TEM(32,3)»NPIB(32),NPJB(32) , 
5 XB(32),YB(32),EB(32),AB(32),xiR(32),PHIB(32)»NUMBEAM, 
6 NUMJ0I,SNN(6.fe),NPBFEM(32)»SUPST 
DIMENSION  BSl(3,32,5),BS2(3,32,5),BS3(3,32,5),SPRC(32) 
DIMENSION BSU(32.5),BS12(32,5),BS13(32.5),BS21(32.5)»BS22(32,5) , 

1 BS23(32»5)»BS31(32»5)»BS32(32»5)»BS33(32»5)»NPB(32»5)» 
2 NAPB(32),F(3)»DIS(6)»ELF0R(6)»TEMO(32,3)»XYZ(3),LM(2) 

2222 FORMAT«//////) 
NCYCS s 50 
NCYCS =9 
IF(SUPST) 2731.200,2731 

200 SLTOT * 0. 
SUPST * 1. 
DO 2030 N = l,NUMJOI 
DO 2031 M ■ 1,5 
BS11(N.M) =0. 
BS12(N,M) « 0. 
BS13(N»M) s 0. 
BS^KN.M) s 0. 
BS22(N.M) =0. 
BS23(N.M) =0. 
BS31(N.M) =0. 
BS32(N.M) ■ 0. 
BS33(N»M> =0. 

2031 NPB(N»M) ■ 0 
NPB(N»5> =0 
DO 2030 J » 1.3 
TEM(N.J) = 0. 
TEMO(N.J) = TEM(N.J) 

2030 NPB(N.l) a N 
PRINT 2222 
NCYS B 0 

3004 CONTINUE 
DO 2050 N * l.NUMBEAM 
SPRC(N) ■ 1.  ' 
I = NPIB(N) 
J = NPJB(N) 
RI ■ XBd) 
ZI = YB(I) 
RJ = XB<J> 
ZJ = YB(J) 
SL = SQRT( (ZJ-ZD»(ZJ-ZI> ♦ (RJ-RD * <RJ-«I)) 
SLTOT = SLTOT ♦ SL 
IF(XI8(N))   6200.6300.6200 

6300   C  =   (RJ  -  RD/SL 
S = (ZJ-ZI)ZSL 
DO 6310 L = !»6 
DO 6310 M = 1,6 

6310 SNN<L»M) =0, 
STIF = EB(N)*AB(N)/SL 
SNN(l.l) = C*C»STIF 
SNN(1,2) = C*S»STIF 
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SNN<1.4) * - SNN(l.l) 
SNN(1»5) ■ - SNN(li2> 
SNN(2.1) a SNNd.2) 
SNN(2»2) a S«S*STIF 
SNN<2»4) * SNN(lt5) 
SNN(2t5) » -SNN<2,2) 

SNN(4,l) ■ SNN(1,4) 
SNN(4»2> a SNN<2»*> 
SNNU.4) » SNN(l.l) 
SNN<*»5) a SNN(1»2> 
SNN(5»1) » SNN<1»5) 
SNN(5i2) * SNN12.5) 
SNN(5»4) ■ SNN<*»5) 
SNN(5»5) a SNN12.2) 
60 TO 6220 

6200 CALL FORMB(N) 
622ft MMM m  2 

LM(1) a NPIB(N) 
LM(2) a NPJB(N) 
DO 2*50 L a 1,MMM 
LX » LM(L) 
DO 2050 M a 1,MMM 
MX « 0 

2660 MX ■ MX ♦ 1 
IF(NPB(LX. MX) - LM(M)) 2670.2680.2670 

2670 IF(NPB<LX» MX)) 2660.2680.2660 
2680 NPB(LXtMX) a LM(M) 

IF(MX - 5) 2690.2400.2400 
2690 LL ■ 3*L 

LI a LL - 1 
L2 » LI - 1 
MM a 3«M 
Ml a MM - 1 
M2 a MM - 2 
BS11(LX»MX)   a  BS1KLX.MX) ♦   SNN(L2»M2) 
BS12(LX.MX)   =  BS12<LX,MX) ♦   SNN(L2.Ml) 
BS13(LX»MX>   =  BS13(LX»MX) ♦   SNN<L2.MM> 
BS2KLX.MX)   »  HS2KLX.MX) ♦   SNN(L1.M2) 
BS22(LX.MX)   =  BS22(LX,MX) ♦   SNN(Ll.Ml) 
BS23(LX«Mx>   =   BS23<LX.MX) ♦   SNN(Ll.MM) 
BS3KLX.MX)   *   BS3KLX.MX) ♦   SNN(LL.M2) 
BS32(LX.MX)   »  BS32(LX,MX) ♦   SNN<LL»Ml> 

2050  BS33(LX.MX)   =  BS33(LX,MX) ♦   SNN(LL.MM) 
PRINT  6431»SLT0T 

6431  FORMAT(///  2*H   TOTAL   SUPPORT  LENGTH  ■     FlO.3  ///) 
DO  2720   M»l,NUMjOl 
MX »   1 

2710   MX   =   MX   ♦   * „   , 
IF(NPB<M.MX))   2720.2720.2710 

2720  NAPB(M)   a  MX  -   1 
2731 NCYS a   0 
2732 DO 300  N  a   l.NUMJOI 

DO  3oO  J  a   1.3 
300  TEM(N,j)   a  TEMO(NtJ) 

DO 6001   M  a   l.NUMJOI 
DO 6001   I   a   1,5 
BSK1.M.I)   a BS1KM.I) 
BSK2.M.I)   a  BS2KM.I) 
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6001 
8001 

2746 
274o 

2741 

2742 

2745 

2747 

2748 

2751 

2744 
6004 

1031 

5330 

5201 

■BSK3tM»l) 
BS2(1»M*I) 
BS2(2,MiI) 
BS2(3»M.I) 
BS3(1»M»I) 
BS3(2tM,l) 
BS3(3»MtI) 
DO  6Q_04  M  S 

■ BS31(M.I) 
; BS12(MfI) 
■■  BS22(M,l) 
■ BS32(M,I) 
•■ BS13(M.I) 
: BS23(M,I) 
!   BS33(M,I) 
1.NUMJOI 
2746,2744,?745 

2) 2740 
= BS2(2»M 
= BS3(3»M 
BS2(2»M»1 
BS3(3,M,1 

2741,2742 
1)*1.E*0B 
1)»1.E*0B 
«WB(M) 
«ROT(M) 

5401 

IF(NPRE(M)) 
IF(NPRE(M)    ♦ 
BS2(2.M.l) 
BS3(3.M.l) 
TEM(M«2)   = 
TEM(Mi3>   a 
GO  TO  2744 
BS2(2.M.l)   =  BS2«2»M,1)»1.E*08 
TEM(M»2)   «  BS2(2»M»1)*WB(M) 
GO  TO   2744 
BS3(3»M,1)   a  BS3(3tM,D*l,E*08 
TEM(M»3)   *  BS3<3,M.l)»ROT<M) 
GO  TO  2744 
BSKitMtl)   =  BS1 (l»M»l)*l,E*o8 
TEM(Mtl)    a   BS1(1»M,1)»UB(M) 
IF(NPRE(M) - 2) 2744*2747,2748 
BS3(3»M»1) a BS3(3»M*l)»i,"E»o8 
TEM(M»3) a BS3(3,M»1)»R0T(M) 
QO TO 2744 
BS2<2*M»1) = BS2<2»M»l)«l,E*08 
TEM(Mt2) a BS2(2,Mtl)«wB(M) 
IF(NPRE(M) - 3) 2744,2744f275l 
BS3(3»M,1) = BS3(3.M,D»l,E*o8 
TEM(M»3) » BS3(3»M»l)»ROT(M) 
CONTINUE 
CONTJNUE 
JOI ■ NUMJOI - 1 
FORMAT<I5»10E12,5/> 
DO 2860 M a l,joi 
NA^M B NAPB(M) 
IF(.000001 - RSl(l»M,l)) 
DO &002 j a 2,3 
IF(BS1(J,M,1)> 5201,5002»5201 
F(J) » BS1(J»M»1)/BS1(1»M»1) 
TEM(M.J) a TEM(M.J) - TEM(M,1)»F(J) 
BS2(J»Mfl) a BS2(J»M,1) - BS2(1»M,1)»F{J> 
BS3(JtM*l> a 8S3(J»M,1) - 
DO 5222 N « 2,NAPM 
NN s NPB(M»N) 
IF(NN - M> 5222»5222»5401 
BSKj»M»N) a BS1(J»M»N) - 

5330*5335.5335 

BS3(1»M»1)«F(J) 

BS2(j,M*N) a BS2(J»M»N> - 
BS3(J,M,N) a BS3(J»M,N) - 

5222 CONTINUE 
5002 CONTINUE 

DO 5432 N a 2tNAPM 
NN a NPB(MiN> 
IF(NN - M) 5432,5432,5403 

5403 NAPN a NAPB(NN) 
DO 5433 K a 2,NAPN 

BSl(l*M»N>*F(J) 
BS2(1,M»N)*F(J) 
BS3(1»M,N)»F(J> 
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KK * NPB(NN»K) 
IF(KK - M) 5433,5404,5433 

5404 DO 5434 I => 1 ♦ 3 
IF(BSKI»NN,K) ) 5405i5434,5405 

5405 F(I) ■ BSKI»NN.K)/BS1(1»M»1) 
TEM(NN,i> a TEM(NN,D . TEMfM,1)«F<I> 
BS2(I,NN»K> a BS2(I»NN,K> - BS2<1,M,1)*F<I) 
BS3<!,NN,K> » BS3(I,NNtK) - BS3<1»M,1)»F<1) 
DO 5402 L n 2,NAPM 
KM = NPB(M'L) 
IF<KM - M) 5402,5402,5406 

5406 DO 5422 |_L 3 i.NAPN 
LNN M   NPB(NN,LL) 
IF(LNN - KM) 5409,5408,5409 

5408 BSl(liNN»LL) ■ BS1 < I »NNt'LU - BS1 (1 ,M»i> *F (I > 
BS2(I,NNfLL, B BS2(I»NN,LL) - BS2(1.M,L)*F<I) 
BS3(IiNN»LL) = BS3(ItNNiLL> - BS3U »M,i_)*F (I) 
GO To 5402 

5409 IF(LL - NäPN) 5422,5421,5422 
5421 NAPNB ■ NAPB(NN) 

IF(NAPNB - NAPN - 1) 5426,5427i5427 
5426 NAPB(NN) a NAPB(NN) ♦ 1 

KX « NAPB(NN) 
NPB(NN,KX) a KM 

542? CONTINUE 
BS1(I,NN»KX) « - BS1(1,M»L)*F(I) 
BS2(I»NN,KX) a - BS2(1,M,L)»F(I) 
BS3<i,NN»KX) a -BS3(1,M,L)»F(I) 

5422 CONTINUE 
5402 CONTINUE 
5434 CONTINUE 
5433 CONTINUE 
5432 CONTINUE 
5335 IF(,000001 - BS2(2tM»l)) 534o»5345»5345 
5340 IF(BS2<3»M»1)> 5410,5415,5410 
5410 F(l) a BS2(3»M,1)/BS2(2»M,1) 

BS3(3iM»l) a BS3(3»M»1) - BS3(2tMt1)*F(1) 
TEM(M,3) a TEM(M,3) - JEM(M,2) »F (1 > 
DO 5420 N » 2,NAPM 
NN a NPB(M»N) 
IF(NN - M) 5420,5420,5430 

5430 BS1(3,M,N) a   BSl(3,M,N) - BSl(2,M,N) • F(l) 
BS2(3tM»N) a BS2<3»M,N> - BS2<2.M»N> * F<1) 
BS3(3,M»N) * BS3(3,MfN) - BS3(2,M,N> • F<1) 

5420 CONJINUE 
5415 DO 5532 N a 2.NAPM 

NN a NPB(M»N) 
IF(NN-M) 5532,5532,5503 

5503 NAPN a NAPB(NN) 
DO 5533 K B 2,NAPN 
KK a NPB(NN,K) 
IF(KK - M) 5533,5504,5533 

5504 DO 5534 I a 1,3 
IF(BS2(I»NN,K>) 5505*5534,5505 

5505 F(I) a BS2(I»NN,K)/BS2(2»M»1) 
TEM(NN,I) = TEM(NN,I) - TEM(M,2)*F(I) 
BS3(I»NNtK> a BS3(I»NN.K) - BS3(2»M,1> • F(I) 
DO 5502 L a 2,NAPM 
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KM   a   NPB(MiL) 
IF(KM  -   M)   5502.5502,5506 

5506  DO  5522  LL   »   1»NAPN 
LNN   ■   NPB(NN.LL) 
IF(LNN   -   KM)   5509.5508*5509 

5508 BSKI.NN.LL> a BSKI.NN.LL> - BSK2.M.L) » F(I) 
BS2(I,NN.LL) a BS2(I.NN.LL) - BS2(2»M,L) » F(I) 
BS3(I»NN.LL) = BS3(I,NN.LL> - BS3(2.M,L) » F(I) 
GO  TO  5502 

5509 IF(LL  "  NAPN)   5522.5521,5522 
5521 NAPNB   ■   NAPB(NN> 

IF<NAPNB - NAPN - 1) 552b,5527,5527 
5526 NAPB(NN) » NAPB(NN) ♦ 1 

KX = NAPB(NN) 
NPB(NN»KX) = KM 

5527 CONTINUE 
BS1(I»NN,KX> s . BSK2,M,L)»F(I) 
BS2(I,NN,KX> a - BS2(2»M»L) » F(D 
BS3(I»NN»KX) a - BS3(2,M»L)»F(D 

5522 CONTINUE 
5502 CONTINUE 
5534 CONTINUE 
5533 CONTINUE 
5532 CONTINUE 
5345 IF(,000001 - BS3(3»M»i)) 5351,2860i286o 
5351 DO ^632 N « 2.NAPM 

NN a NPB(M.N) 
IF(NN - M) 5632,5632.5603 

5603 NAPN a NAPB(NN) 
DO 5633 K a 2,NAPN 
KK a NPB(NN,K) 
IF(KK - M) 5633.5604,5633 

5604 DO 5634 I a 1,3 
IF(BS3(I»NN,K>) 5605,5634,5605 

5605 F(I) a BS3(I,NN»K)/BS3(3,M»1) 
TEM(NN.l) a TEM(NN.I) . TEM<M,3)»F<I) 
DO 5602 L a 2,NAPM 
KM a NPB(M.L) 
IF(KM - M) 5602,5602.5606 

5606 DO 5622 LL a i»NAPN 
LNN a NPB(NN.LL) 
IF(LNN - KM) 5609,5608,5609 

5608 BS1(I,NN,LL) a BSKI,NN,LL) . BS1(3,M,L) » F(I) 
BS2(I»NN.LL) a BS2(I»NN.LL> - BS2(3.M.L> » F(I) 
BS3(l»NN»LL> a BS3(I»NN.LL' • BS3(3»M.L> * F<I> 
GO TO 5602 

5609 IF(LL - NAPN) 5622.5621.5602 
5621 NAPNB = NAPB(NN) 

IF(NAPNB - NAPN - 1) 5626,5627,5627 
5626 NAPB(NN) a NAPB(NN) *   1 

KX a NAPB(NN) 
NPB(NN,KX) a KM 

5627 CONTINUE 
BSKI,NN,KX) a - BSK3.M,L)»F(I) 
BS2(i»NN.KX) a - BS2(3.M.L)*F(I> 
BS3<i,NN.KX) a - BS3(3,M.L) » F(I) 

5622 CONTINUE 
5602 CONTINUE 
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5634 CONTINUE 
5633 CONTINUE 
5632 CONTINUE 
286o CONTINUE 

M ■ NUMJOI 
IF(.000001 - BSl(liM,l)) 5208*5350,5350 

5208 DO r»007 I = 2,3 
lF(BSl(ItM»D) 5717,5007,5717 

5717 CONTINUE 
F(I) ■ BS1U»M,1)/BS1<1»M,1) 
BS2(l»Mil) = BS2<I»M»1) - BS2(1»M*1)»F(I> 
BS3<I»M,1) * BS3(I»Mil) - 8S3(ltMfl)*F(I) 
TEM(M»I) = TEM(M*I) - TEM(M»1)*F(I) 

5007 CONTINUE 
5350 IF(.000001 - BS2(2*M,1)) 5355.5360t5360 
5355 F(l) ■ BS2(3*M,l)/BS2(2iMtl) 

BS3(3,M»1) a BS3<3»M»1) - BS3<2,M»1>»F<1> 
TEM(M.3) ■ TEM(M,3) - TEM(M,2)*F(1) 

536o IF(BS3(3»M.1>) 5305»5306*5305 
5306 ROT(M) * ROT(M) 

G° TO 5308 
5305 CONTINUE 

ROT(M) ■ TEM(M»3)/BS3(3»Mil) 
5308 CONTINUE 

WB(M) > wB(M) 
IF(BS2(2tM»l>) 5365*5370*5365 

5365 WB(M) « (TEM(M.2) - BS3(2»Mfl)»ROT(M))/BS2(2*M.1) 
5370 UB(M) *   UB(M) 

IF(BSK1»M»D) 5375,5380*5375 
5375 UB(M) « (TEM(M»D - BS3( l.M. 1> *>ROT(M) - BS2(1»M»1)»WB(M) >/BS1 (1*M* 

1  1) 
5380 DO 5100 K » l*JOI 

M « NUMJOI - K 
XYZ(l) * 0. 
XYZ<2) * 0. 
XYZ(3> «0. 
NAPM ■ NAPB(M) 
DO 5110 N » 1»NAPM 
NN « NPB<M»N) 
IF(M-NN) 5115,5110*5110 

5115 DO 5116 L » 1*3 
5116 XYZ<L>« XYZ(L) ♦ BSl(L**»N>»UB<NN) ♦ BS2(L*M*N)*WB(NN) ♦ 

1 BS3(L.M»N)»ROT(NN) 
5110 CONTINUE 

ROT(M) « ROT(M) 
IF(.000001 - BS3(3,M,1)) 5315*5316*5316 

5315 CONTINUE 
ROT(M) ■ (TEM(M,3) - XYZ(3))/BS3(3,M,1) 

5316 WB(M) * WB(M) ,        .    . 
IF(.Ü00001 - BS2(2.M*1)) 5320,5385*5385 

5320 WB(M) ■ (TEM(M*2> - XYZ(2) - BS3(2,M»1)»R0T<M>>/BS2(2»M»1) 
5385 UB(M) « UB(M) 

IF(.000001 - BS1(1»M.1)> 5390*5100*5100 
5390 UB(M) ■ (TEM(M*1) - XYZ(l) - BS3(l»M*l)*ROT(M> - BS2(l.M.l)*>WB«M>) 

1 / BSl(l»M.l) 
5100 CONTINUE 

PRINT 11 
11 FORMAT«///*       JOINT   U W POT 
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1      HOR FORCE       VERT FORCE     MOMENT  *//) 
DO 2200 M = l.NUMJOI 
FO * 0.0 
FOZ »0.0 
FMOM » 0.0 
NUM B NAPB(M) 
DO 2195 L -   1»NUM 
N ■ NPB(MiL) 
FO r FO ♦ BS11(M,L)*UB(N)*8S12(M,L)»WB(N)*BS13(M,L)»R0T(N) 
FOZ * FOZ ♦ BS21(M»L)»UB(N) ♦ BS22(M»L)*WB(N) ♦ BS23<M»D»ROT(N) 

2195 FMOM B FMOM ♦ BS31(M.L)*UB<N> ♦ BS32(M,L>*W8(N) 
IF(NPBFEM(M)) 2200*2200.2210 

2210 TEM(M*1) » FO 
TEM(M»2) « FOZ 

2200 PRINT 2o25.M»IJB«M) .WB(M) .ROT(M) ,FO»FOZ.FMOM 
2025 FORMAT(U0.6E15,5) 

PRINT 12 
12 FORMAT(///* ELEMENT JOINT 1 

JOINT 2       */ • 

♦ BS33(M.L)*R0T(N) 

FORMAT(///* 
1 
2ND FORCE 
3MENT   •/) 
MODIF ■ 0 
NCYS ■ NCYS 
DO 3055 N ■ 
I a NPIB(N) 
J ■ NPJB(N) 
RI ■ XB(I) 
ZI » YB(I) 
RJ = XB(J) 
ZJ = YB(J) 
DIS(1) 
DIS<2) 
DIS(3) 
DISU) 
DIS(5> 
DIS(6) 
XLB » 

7300 

MOMENT 

♦ 1 
l.NUMBEAM 

AXIAL FORCE 
AXIAL FORCE  PERPE 

PERPEND FORCE     MO 

UB(D 
« WB(D 
= ROT(I) 
» UB(J) 
■ WB(J) 
= ROT(J) 
SQRT((ZJ-ZD*(ZJ-ZI) ♦ (RJ-RD»(RJ-RI> ) 

7310 

C = (RJ-RI>/XLB 
S = (ZJ-ZD/XLB 
DI2 « UB(J)»C ♦ WBU)»S 
DI1 « UB(D*C ♦ WB<I)»S 
XLN u   xLB ♦ DI2 - Oil 
IF(XIB(N)) 7200.7300.7200 
STIF * EB(N)»AB(N)/XLB 
DO 7310 L = 1.6 
DO 7310 M s 1,6 
SNN(L.M) 
SNN(l.l) 
SNN(1»2) 
SNN(li*> 
SNN(1,5) 
SNN(2,1) 
SNN(2.2) 
SNN<2.*> 
SNN(2,5) 
SNN(4.1) 
SNNU.2) 
SNN(*.*> 

C»C»STIF 
C»S»STIF 
- SNN(ltl) 
- SNN(i,2) 
SNN(1,2) 
S*S»STIF 
SNN<li5> 
-SNN(2,2) 
SNN(1.4) 
SNN(2.4) 
SNM(1.1) 
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SNNU.5)    =   SNN(1»2) 
SNN(5»1)    =   SNN(1»5) 
SNN(5t2)    =   SNN12.5) 
SNN<5.4>   =   SNN<4»5> 
SNN(5»5)   =   SNN<2»2> 
IF(XLN   -   XLB) 7430»7220t7400 

7*00   IF<SPRC<N>)   7220.7*22,7*20 
7420   LM(1)   a   I 

PRINT  4»N 
*   FORMAT«/* SPRING»   l4     * IS   IN   TENSION 

LM(2)   «   J 
DO  7451   L   »   1» 2 
LX  »  LM(L) 
DO   /45l   M  *   1. 2 
MX  a   o 

7660   MX  «   MX   ♦   1 
IF(NPB(LX,MX) -  LM(M))   7660, 7680,7660 

7680   CONTINUE 
LL  *   3»L 
Ll   ■  LL  -   1 
L2  -  LI   -   1 
MM  «   3*M 
Ml   s   MM   -   I 
M2   =   MM   -   2 
BSll(LXtMX)   = BSIKLX.MX)   - SNNIL2.M2) 
BSl2(LX»MX>   » BS12<LX,MX)   - SNN(L2,M1) 

BS13(LX»MX)   ■ BS13(LX»MX)   - SNN(L2»MM) 
BS21(LXtMX)   = BS21(LX,MX)   - SNN(LltM2) 
BS22(LXfMX)   = BS22(LX,MX)   - SNN(LltMl) 
BS23(LX»MX)   » BS23(LX»MX)   - SNN(LliMM) 
BS31(LXtMX>   » BS3KLX,MX)   - SNN(LL*M2) 
BS32(LXtMX)   = BS32(LX,MX)   - SNN(LL»M1) 

7451   BS33(LX»MX)   ■ BS33(LX.MX)   - SNN(LLtMM) 
SPRC(N)   ■   0. 
MODIF   ■  MODIF ♦   1 
GO  TO  7220 

7430   IF(SPRC(N>)   7220»744o»7220 
7440   LMU)   »   I 

LM(2)   B   J 
DO  7551   L  »   1 • 2 
LX   ■   LM(L) 
DO  f55l   M  «   1 .2 
MX   »   0 

7760   MX   =   Mx   ♦   1 
IF(NPB(LX,MX) -   LM(M))   7760 ,7780.7760 

7780  CONTINUE 
LL  ■   3«L 
LI   a  LL   -   1 
L2  =  Ll   -   1 
MM   a   3*M 
Ml   x   MM   -   1 
M2   a   MM   -   2 
BS11(LX»MX)    a BSlKLXtMX)   ♦ SNN(L2»M2> 
BSl2(LXtMX)    = BS12(LX,MX)    ♦ SNN(L2»Ml) 
BS13(LXtMX)    a BS13«LX,MX)   ♦ SNN(L2tMM) 
BS21(LX»MX)    a BS2HLX,MX>   ♦ SNN(L1.M2) 
BS22(LX»MX)   = BS22(LX,MX>   ♦ SNN(LltMl) 
BS23(LX»MX)   a BS23(LX»MX)    ♦ SNN(Ll*MM) 

*> 
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BS31(LX»MX) = BS3KLX.MX) ♦ SNN(LL»M2) 
BS32(LX,MX) a BS32(LX,MX) ♦ SNN(LL,Ml) 

7551 BS33(LX.MX) ■ BS33(LX,MX) ♦ SNN(LL»MM) 
SPRC(N) ■ 1. 
MODIF ■ MODIF ♦ 1 

7422 DO 7421 L ■ 1*6 
7421 ELFOR(L) = 0. 

PRINT 5»N 
5 FORMAT«/ 105X »SPRING • 14 » IS ELIMINATED * ) 

GO TO 3055 
7200 CALL FORMB(N) 
7220 DO 3060 J a 1,6 

ELFOR(J) ■ 0. 
DO 3060 I a 1,6 

3060 ELFOR(J) a ELFORU) ♦ SNN(JtI)*DIS<I) 
XFl * ELFOR(l) 
XF4 a ELF0R(4) 
ELFOR(l) a XFl*C ♦ ELFOR(2)»S 
ELF0R(2) a ELF0R(2)*C - XFl»S 
ELFORU) s XF4»C ♦ ELFOR(5)»S 
ELF0R(5) » ELF0R(5)*C - XF4»S 

3055 PRINT 3070,Nf<ELFOR(J),J»1»6>«XLBtXLN 
3070 F0RMAT(I5,3E15.5,5X,3E15.5,2F15.7) 

IF(MODIF) 7450.3001t7450 
7450 PRINT 3»NCYS 

3 FORMAT«///« ITERATION   • 14///) 
IF(NCYCS - NCYS) 7460,2732.2732 

7460 PRINT 7 
7 FORMAT(//• MAXIMUM NUMBER OF ITERATIONS IS EXCEEDED     SUPPORT IS 

1 JUMPING AROUND *//> 
SUPST a - 1, 
GO TO 3001 

2400 PRINT 2401»N 
2401 FORMAT<///l5»*   MORE THAN 3 ADJACENT NODAL POINTS »///) 
3000 CONTINUE 
3001 Da 0. 

RETURN 
END 
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SUBROUTINE FOPMB(N) 
COMMON NPl(310),NPJ(310).NHr((310),R(32o),Z(320)iKOÜ(320),NAP(320), 

1       NP<320,n)tSll(320,10)»S12(320.10)ts21(320.10)tS22(320»10)t 
\ C(3»3).EP.VP.RliRJtRK.ZItZJ.ZKtS(at8).MAT(3lO>.NPL«3lO>»ES. 3       VS»CODPLtRL»2L,BDISC(320) 
% •N^|<3?i'V^?2),^<32),R0T(32),TEM<32,3,'NPIB<32).NPJBO2), 
5 ^B<32),YB(32),EB(32),AB(32),XlB(32),PHIB(32)tNUMBEAM, 
6 NUMJ0I»SNN(6t6),NPBFEM(32),SUPST 
DIMENSION 0(6.6),SB(6,6)»SI(6.6) 
DO 10 I * h6 
00 lo J « 1,6 
Q(I»J)   »o. 

10   Sg(ItJ)   a   0, 
21   F°RMAT<Ilo»<*El8,8/> 

XLB  ■   SQRT((ZJ-Zl)»(2j-ZI)*(RJ-RI)*(RJ-Ri)) 
SB(l.l)   «   EB(N)*AB(N>/XLB 
SB<1,4)   »   -SB(1,1) 
SB<4,4)   ■   SB(1»1) 
SB(4,1)   ■   SB(1»4) 
SBPR   ■   EB(N)«XIB(N)/XLB/(1.»PHIB(N)) 
SB(2,3)   «  6.*SBPR/XL8 
SB(3»2)   ■   SB(2*3) 
SB(2,6)   «   SB(2»3> 
SB(6,2)   ■  SB(2,6> 
SB(3,5)   «  -SB(2,3) 
SB(5,3)   x   SB(3,i?) 
SB<5,6)   a   SB(3.5) 
SB(6»5)   »   SB<«5.6) 
SB(2,2)   a   2.«SB(2,3)/XLB 
SB(2t5)   ■  -SB(2,2) 
SB(5,2)   a   SB(2»5) 
SB(5,5)   ■   SB(2,2) 
SB(3»3)   ■   (4.*PHIB(N))*SBPR 
SB(6,6)   «   SB(3»3) 
SB(3,6)   ■   <2«   -   PHIB(N))»SBPR 
SB(6»3)   »   SB(3»6) 
Q(l»l)   ■   (RJ-RD/XLB 
0(1.2)   «   (ZJ-ZD/XLB 

60   Q(2»l)   »  -0(1.2) 
Q<2»2)   »  Q(l.l) 
Q(3t3)   B .1. 
Q(4,4>   «   Q.(ltl) 
0(5,5)   a  0(1,1) 
Q(6»6)   ■   1» 
0(4,5)   *  Q(l»2) 
0(5,4)   a  Q(2,l) 
DO  20   I   «   1.6 
DO  20   J  »   1.6 
SKI.J)   «0. 
DO  2o   K  ■   1.6 

20   SI(I,J)   a   SI(I.J)   ♦   SB(I.K)»Q(K,J) 
DO  30   I   ■   1»6 
DO  30   J  >   1)6 
SNN(I.J)   a   Oi 
DO   30   K   «   1.6 

30   SNN(i.j)   *   SNN(I.J)    ♦   Q(K,I)»SI(K.J) 
RETURN 
END 
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need to consider the sequential development of the interaction between 
these two elements.  It is assumed that the rock mass behavior during 
failure is softening and dilatant. Interface problems between ground and 
support that can strongly influence the effective support stiffness are 
discussed. 

The closed-form solutions obtained in the first part are expressed 
in terms of ground and support characteristics.  The derivations are 
based upon the assumption that the problem is radially symmetric.  Bounds 
for the ground reaction can be derived by accounting for the intact and the 
residual rock strength. Within the thus defined domain the ground behavior 
is determined by the rate of strength loss with increasing strain. The 
ground reaction curve can have fundamentally different shapes depending 
upon the post-failure rock behavior. Corresponding to failing or yielding 
sections of the ground reaction will be the desirability of stiff or soft 
supporting methods. The increased trend towards the use of stiffer 
supports as well as the emphasis on the need for early installation mani^ 
fested by the combined use of reinforced shotcrete, grouted bolts and steel 
sets confirms the likelihood that optimum support conditions can be 
approached when only limited convergence is allowed. ThV optimum equilibfiui 
state depends on the brittleness or the relative Instability of the failing 
rock. The optimum displacement will be affected by rock loosening," but 
loosening will have a dominant effect only when the tunnel is shallow, the 
jr^sidu^lj-f,ruction very low and when pronounced differences exist between 
support pressures required on the roof arid on the 'floor7 

Strength of material formulas are used to calculate the support stiff- 
ness or characteristic. The significance of the ground-support interface 
is illustrated with examples of the influence of wood blocking on steel 
set characteristics and of the influence of end bonds and longitudinal shear 
bonds on the behavior of grouted bolts. The wide range of theoretically 
possible behavior modes indicates the need for pertinent field evaluation 
of the true support action provided by such systems. The sensitivity of 
some support system characteristics to ostensibly secondary structural 
elements suggests that practical problems must exist in obtaining a con- 
sistent utilization of the full support capacity of such systems. It also 
indicates the serious difficulties likely to be encountered in the design 
and implementation of representative in-situ observation programs. 

In the second part of this thesis the ground behavior is modeled by the 
finite element method.  The elastic parameters that determine the rock 
behavior are changed progressively in order to simulate softening and 
volume increase of the failing rock mass. 

This method is used in an axisymmetric analysis of failure patterns 
near the face and to study the influence of face behavior on support 
loading.  Initial support loading strongly depends on the stiffness of 
the rock ahead of the face relative to the rock stiffness behind the face, 
and can depend strongly on the face distance at the time of support erection. 

A simple equivalent mining method is" used to" simulate progressive 
excavation in a plane strain analysis. The support model consists of beam 
andrjptiuag elements. At least for some support systems the latter must be 
chosen with care if the model is to be realistic. 
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