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Abstract

- This short paper sepplies & method for studying the
v configurational partition function of regular solutions
developed by Weng, Hsu and the author to & nuwber of apeclal
cases. In such concrete enleulations it 1s seen that the
| method is spplicable to almost every type of so0lid solutions.
g In feot, its epplicebility is independant of the type of
| tettice which stoms of the solution irhabit, of the existence
| of the long distance order, of the existence of interactions
| netween atoms more dlstant then nearest nelghbours, end of
the mumber of compconents in the solution. Since the method
is sctually an expansion of the configurational free energy
tn terms of certain coordination numbers of the lattice,
the results of the calculations after lgnoring the higher
coopdination numbers become eclosed cxpressions In terms of
the Boltzmann factors and thus avold expansions in kT or in
(wr)-1, Needlgss to say, expension of ihe results obtained
hepe in (¥P)”+ gives resulls identical with those obtained
by Kirkvood's method.

Next we dlscusgs guesi-chenical formulas based on the
above method. We point out that 1f we neglect sll the cO-
ordination numbeps except the lovest, we'obtaln the usual
quesi-chemical formule, qulie independently of the number of
eomponents in the solution. (& corresponding combinatory
formule 1z derived.) On including higher coordination
numhars, we get natural extenslong of the quasi-chemical
formule. Thus for a blnary solid solution on & face centere
eublc system, the quasi~chemical formula after including the
next higher cocrdination number becomes '
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In %the above, N8, N8, denocte the numbers of A, B
atoms, XiamXip-osX'y o ape numbers determined by (2},
(3), (%), and their substitution into the righthand side
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g
of {1) gilves the numbers Xos Xan, Xgs of AA, AR, BB pairs of
nearest neighbours. It may be noted that X' may be
ative and they Go not bear eny divect physical signi
1t is also pointed out that 1nstead of considerling t
numbers of pairs of nearsst neighbours, we may con2l
directly the nunbers of pairs of triplets {ie. 3 atoms
forming mutually nearest neighbcurs) and write down b3
analogy {(to the usual guasi~chemical formuls ) new qua
chemical equattions for the different numbers of triple
(From thls, a comblnatory formule 1s easily deriveﬁs*
+'¢ shown that such a thsory differs Irom (1) - (&) given
above.
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This short peper conslsts of two parts. The flrst
part discusses the application of the method of finding the
configurational pertition functlons of solid solutions,
vhich was developed by Wang Te-mac, Hsu Yung-Huan, and the
suthor (1) to different solid solutions. Comparisons have
heen made of the results obteined to the corresponding
ones obteined by the method of ¥Xirkvood.(2,3,4,5) We
discuss the followlng cases:

“



51; AB-type erystal lattice; binsry solld solution

2) Face-centered crystal lettice; binary solid

| golution

| (3) AR~type crystel lattice binery s0l1id solution
with intersction between next nearest neighbors.

Essentislly, this method takes &dventege of the
property thst the logerithm of the configuwrational parxti-
tion function, F, iz a linesy combimation of certaln co-
ordinetion numbers of the crystal lsttice. After ignoring
the higher coordination numbers of the lattice, we obtaln
F as & closed expression, no longer requiring & series :
expension in (K7)-1 or {(K?). Therefore, we expect the resul
thus obteined to be correct for any temperature. And we can
compare the result to thet by the Kirkweod method by 2imply
expanding the reault into series in (K¥)-1. The results
should be the same, snd in fast, they are. :

In the second part, we use the method of reference 1
to discuss the guasi-chemicsal approzimstion. Firast we polnt
out that if the lowest coordinstion nurber is retained, the
conventional quasi-chemical spproximstion formulss are
correcst no matter how meny kindes of atoms there sre in ths

)

s0lid solution. Second, we point out how to improve the cone
ventionel quasi-chemicel formule by keeping higher coordin-

gtion nupbers,
PART I

(1) &B-type lattice binery solid solutlon.

For @ binary solid solutlon with the AB-type lattlce,
we assume that the total nomber of atoms 1s N, the muwber of
L stoms iz N4, and interasction exists only for atous forming
nesrest nsighbor pairs. According Lo reference 1, ve gan
prove that the logearithm of the configurational pertition

function, ¥, is kg( g>+(2ﬁw3fdﬁﬂﬁ33+
vo )

+ (ﬁk‘m' )"‘ﬂ" hgrig )u”'e:"}fz{.zvs 8.5y ( 1)
in which hels the nelghbor metriz, defined as

Ay} 2 1f ¢, ¢! are nearest nelighbors

“G, othervise,

¢lements of the ilrreduclb ducts of the x 's summed over
the indices, end are called coordination numbers. The
functicne fy, fp, +... are certaln functlons of N, 6, and T

end the coefficlents of f%, fgé...», ete., are the matrlx
e pr

"""3 amanny




. Because these coordinstion numbers are apparently directly} -
proportionel to N, therefore £ does not contain N. Refer- °
ence 1 indicated that in order to determine £1, Lo, esey
ete., we need consider only the F of & hypothetlesl s0lid
aciuiion with the same values of ¥ and #. g

| Kow we ave going to conslder the follovwing hypothetl-
| cel lattice: the total number of points N of the hypothetics
| lattice are divided into X/2 groups, each group having two
points and Torming & nesrest-neighhor pair with no nearest
nelghbor between groups.
Then

F e LN Jog (420N N O Lo, (2)
in which

§roxp(~Van B
(Yups Van sesumed to be zero), is & function of N, ¢, gnd T,
determined by
IF =0 (3

From (3) we obtein

1 1=6 , 3 1. ‘ " (4)

__X,w_,,,._é..,m-{« 29 (i! 1‘) %

He= + {14+ 480083

yefed, ‘

subatituting into (2), we get
NF Bl B (5 B) Lot (1=0) + S 1o {5+ 8 v H)-

~ (-0 log {1+ 12..(,%5(1.{@1)}, (A)

gincs for this hypothetical latiice

2}‘:@-:‘:2\?, Ekw' )meho“"* }\,ﬁ”"g"‘"“ﬂ)'"!

we have

f:(ﬁ,?‘)m },i(‘g(»})..xrnf)+ “, }i)-’-

~gbamk®{b%2“iﬂ)uiwsﬂ,' - {8)




Expanding with respect to Y, vwe have
Lot d @ -20) 74 GO 401 -0~ 120 L 26) 7'+

'+§{m$¢ﬂxt~6fu+ﬁg+awwzuw+hunzw+uu (7)

Te see the symmetry betweend and (1-6), we rewrlte the sbove
expression asg

SO E L O Q=0+ L~ 6)(0 + (=0~ 2] 7'+
1 5 : , 4
*"‘ggk (1'“'9)”[; e 2 % (1«3}“m6@1m6\i«3)’+-2~] e, (8}

To determine f., we consider the following hypothetical
Jettices 1ihe %ot&l points ¥ of the assumed lattlce are
divided into N/-1 groups, sech group consleting of four
points sitting on the four vertlces of a cublc latitilce,
each 8ide of the cublic lattice representing one nearesi-
neighhor palr; and, as lu the former c&se, no nearest-
nelghbor pair exlsts betvween groups.

Undey this condition,

ifmée-l‘fiog(fﬁ.«iwéh-%wg%ﬂ»w-;»wgﬂ+mg&}-wme.@x, (2)
where ) satisflies

3F A=, . (1)

eractly a8 in the former csse. Eguation (16) is orf the
fourth order in A, and we can solve this eguation gn&lyti-
eglly for x end then substitute it into expression (9).
?h@ﬁf?”aaﬁumﬁs 1ts minimum value, the solutlion of Equation
10) 4s : v

;—mj—%ﬁ— + 2= Oy Ve ) - 28" 1

A+ 2P(L e @Y =280 000 (1Y)
Substituting into expression (9),
N7 = v B log G- (L= @2log (1~ 8) + 5+ ;0’(0%26) VRN
AL+ (1= B (~1=26428%) "+

+-;§[wé"+9'<1-6)=(1+2!}-{»4%-,zzuu-w'm‘ b (12)




* 8ince for this hypothetical lattice
Ek“-mzN, EXM')\“"MHI‘DL"!HQH321\[’ E(;")"U:"'a

therefore,
NF o = flog b (1) log( L= 0) +2 /8 1) 4 2L hT). R

 Cowparing with_(12), and making use of the known f, [8ee
expression 7}/, we arrive at :

fum JO =0t a9

substituting fy and £, into expression (1), we obtaln the F
for sll the other f£'s peglected. If we expand this result
ez & series in {-Vpa/kT -4, it appesrs exacetly the seme as
the result by Kirkwood!s method. (2} /In meking the comperi-
won, we noglected O {(k17)-6.7 - i

(2) Fece~centered lattlce binery solid solution

Here : N
Fa=lg { ‘ )+' (2)“08'.)’1 + (2’%&' )‘.:c" &Ac'o")j!'i" '
Ng

. i5
e {2)&‘.{' Xwn)\,‘nvor )“(v”‘n)fz.{.-a... ( )

Therefors, we should try to evaluate £3.

Consider the following hypothetlcal lattice structurs;
thie N points of the lattice are adivided into N/3 groups, each
group consisting of three points sitting on the vertices of
an equilateral trisngle. Bach =ide of the triengle repre-
sents one nesrest-neighbor palr, end there is no interaction
among atoms oF different groupi.

Then the logerithm of the conligurational partition function,
¥, should be

'5...\»

e

N log (1-+SA+ BN £+ N £5) = N Blogh, (16)

.

1y which) 18 determined by .

AF =0




wﬁen'? gesumes gmall values, it 1s essy to find

P 1-
L. 69 421Gy B(1 = B) (1= 28)y* +

+ 1B (L2 (1 4+ Dyt oer,
N W wBlopgfa (i) log (L~6) + 60 ~§;ﬁ?ge}“-2@pﬁ NS
+ 3{9"4‘6‘*(1»9)’*(.-1w3+€9‘)}n"+---. (17
Since for this lattice system we assumed
Fher = 2N, Shoherdper =28, TRAN=0, «,
therefore
N e e Gl (L= B) log (1=8)+ 2 [ +2 /5. (1%}

Comparing wiih expreasion (173, and meking uvse of the known
fj, we srrive at

Pt A R ) A SO T SRS TEN )

c;:i-

iLu%ing fi, fo, and £2 into {15), we would obtein
tetely the expression”of F with sll the other f's
oted. If we expand thisz result into a series in
w&, Ve Gee \hav ty 18 jdenticel with that obtained by
the Kﬁfhweod method. /in meking the compsrison, O (¥T)-5
hag heen negi ﬁut%d/a

(3} &B -type crystél lattice soclld solution with long-disience
o

voe, we will descyibe only the method of calculaw

&

rwau}c gpparently should be similsr to that

2 numbew of A stomz in the first sublattice m? 1/2
W wﬂ thw number of & atoms in the second subletiles by 1/2
4“ﬁ¢ Tne points in the first eublattlce sre P&?TEQ€ﬁt€ﬁ by

8, and tun points in the second by b. Then, CG???SQﬂQuLu5
e the veluesg snd &, the logerithm of the eonfi&urgticn&l
partition function Shﬁd;é be

{ Ly \ /iy
, 2 ¥ -;21- v
log ; ) . + B R FICB, &, Ty bere, (5¢)




#Note that since here £y 1s defined slightly differently
from that iIn exgressio& (1), we adopt fhe notetion £y,

To determine £1%, we will consider again the hypothetlcal
lattice system of expressicon (1). The logarithm of its
coni'lguraticnal partition function, F, is

1 r 1]

FNIog (LHA+X 42X §) m.:}!—:vazoga ~.g~,v3'1<>gx-, (21)

- where ) and M are functicns off ¢and T, determined by

OF jOhma B ¥ 24 =0 (22)
From (22), we have | '
O=NE+XE), (LA N 420N §), (23
F=NEHAE) (AN +2N g), S (2
From (23), we have
A=B(14N) (1-6)(L+NE), (25

Substituting into (24}, we get
QBN AN [L e m ' 4 £ =~ F =0, (26)

‘Similerly, solving the equation which satisfied,

E(L—)R 4 A[1m B + E(F =83 ] =00,
and substituting the values of A and X into expression (21)
and then meking use of the property of the hypothetical
jattice, T, -—;;N, 3= S AR e sa )

we could determine I,% (8, 7). Because the calculation is
very tedious and adds nothing new in the wey of results,
we omit it. _

#

{4) Binary sclld solution of AR-iype lsttice with next-
nearest nelghbor interectiong

Apparently, here

N
F =log( Né) F(E N )F06,7) + (S ) (8,1 +

+ (X, A TRNDD S PR (A Ty4-+, (27)



whereteﬁ'represents the *next nearest neighbor" matrix,
defined as

[TRRILS R when ¢!, ¢'! are next-nearest neighbors
«0 , otherwise, ' :

and Jw/fumare functions to be determined. /5 in the above ex-
pression is the f, we used before.

o In order t% determine fuand fu, we will consider the v
following hypothetical lattlce system: the lattice is divided
into N/3 groups, easch group consisting of three points sitti-.
ing on the vertices of & isoceles right triangle. The two
short sides represent nearest-nelghbor peirs, and the diago-
nal represents the nagtanemrest—naighbor palr. Then

F%%-Nlog(1+3x+7x’£'+2h”§+>~“f’é')--1\f@.ivgh» (28)

vhepe £ denoten exp (~V/kT) constructed from the next negrest
pair LA {essuming no intersction between AB, and BB) andiis
still determined by 2F,aA=y ,It can be easily calculated that

.1 1“"“0 2 ' U '
=gt A= @ty) e, g =g, (28)

H4F e e Blog (1~ 6) log (1-8) + (Zn 43 )0+
{3+ -% 0 (- 26) + (—;;)—wf -%»-—%f n'ﬁ) (6" +

PO (= 1= 20+ 26) )+ Ly B (A= B 4, (80)
We know that for this hypothetical lattice,

| ghwm,§4y, jgﬁwnugmg
Ehher g il Tem0, e, - (s1)

end slso that fa 1s expression (7), ana fu'1s expression (7)
in which £ is replaced by § Gris replaced by %' V . Substituting
a1l of them into (27) and”then comparing it with (30}, we
arrive at the result B

S8 Ty= LU~ e (82)

All the above celculations have shown the applicability of th
method of reference 1 to any kind of sclid solution. It is
mach more dependable, because Lt does not involve sepries °
sxpansion in (kT)-1 or (¥T). Morsover, from the procedure-
shown ebove we can saze that this method is much simpler in
caleculatlon.



PART IT
@U&%ImGHEMICAL FORMULAS

A wvery poweriul wey to trest guasi-chemical formulas
ig by ihe method of reference 1. We will consider two
CEERES :
(1) The quasi-chemicsl formule of & multiple-compon-
ent solid solution, neglecting all but one coordination
number.

. Denote the number of stoms of each component group
by N6, N6,-, . Here$§=1, Denote the total number of per-
mutations by K vhen ve pérmute them on N polnte. Then the
logerithm of the conflgurational partiticn function 1s
gquel to :

log H4+(Z }\m')fi(@u Gy Tyt (383)

Py ignoring the unwritten terms in the epove expressicn, ve
wiil get the conventlonal quasi-chemlical formuls. _

In oréer tc Getermine £+, we will discuss agaln the hypothe-
ticel lattice system (1% of Part I. Ite F is

EN log (Bnh; E) 2N f;logh;, (34)

£y oxp(—Viy/FD),

where ths *» ere determinsd by gﬁygkﬁd;‘ §eml, 2,00 o2,
they sre determined by

B By Nk €/ T o ki bu ) (35}
Now,

Sae=N, ShRAaHIM=0, -,

Therefore, We have
Nl = b W log (ENN ) = SN 8 loghlog M, (48)

:31
substituting into (33}, we get
where the hiare functions of & end T, datepmined by erpresse

ion (35). The nuwber of palrs of nesrest nelghbors, Xi., he
made up of atoms of the i-th kind eand the jeth kind, i

Fee (1= N7 2R b M+ (E0) | o BNk ) ~Edboah ], (31



£ ° F 4
1 3&, ($x fm““»ﬁngz) '

1e€o,

. gii&F(ffz.zr%m"“r?’tmks:*“),35‘1* (35}

Similarly; the nuwber of palrs of nesrest neighbors of
1-th kipd of atom is :

féiafria&i-
Therefore, -

Xy=(ENO My £ bl )

- 1 " (39)
Xym ZZ(X "'-aa’))"'g f@s,/ p Xl ff e }
Thﬁr@fmr@,-
X?i/}{a X” da™ {ﬂv“n Vi~ Vj;),/kT’ (4@}}

Thig is what we want to prove. BY & similar procedure, wWe-

can obtaln th&vqa&aimch@mie&}aformulaa when the left slde

of (40) 1s XXy or  XuXn "
XyXa NaXy

From exopression (40), it is very essy to calcoulate
the totsl number of permutations obtained by permutlng the
ctoms on the letiice, which produces all the atow pairs of
el ¥kinds, Xy3; £y, v.., elec. First, it can be derived
frem (%0) that T

\ b e . 5 . . | Q-
N-tlogg (1,0;,65 X, Xoge) S ) E Xlog Xy E: Xig 1“@".‘5‘}-&;’ (41)
, i §>j A
vhered(N,6 1s & function to be determined. When
X&)’m" ‘}2"{% hﬁﬁ“)&;‘l Xij e {2 }‘u')ﬂﬁ gﬁ (éi‘z)

the pright slde of expression (41) should be equal to

NEdlowb, andé therefore &(N,0) can-be termined., Now
denoting the number of nearest nelghbors of one point in
the lattice, N '%nr,, by %, we would obtsin

log g (zgpgnﬁm“'sxmxmr““) =ﬂ=1‘5322(%~'1)&%ug9;+

"'}" é Nzl(}g%f{g““ EX“ lng.{ Xﬁ hid ‘Z‘ }‘vii 1‘ 'g’%'}:ij P’ ' ) (43}
o]

1} in cerrying out this partial ﬂiffer@ntiatian,@v andigl
are treated es the same quantity, instesd of as mutuslly
independent verisbles.

N

o maah,



If there is long-distance order, the guasi-chemlcal :
formuls can also be derived by following the same prodecures
In fect, if we apply the method mentloned here to the AB-
type lattice solid solutlion, we will obtain the conventionsl
quasi-chemical formula immediately(no metter how many kinds ¢
of atoms there are). '

(2) The quasi~chemical formula with higher coordin-
ation numbers included. ' :

We are golng to discuss the quasi»chemical formula
when higher coordination numbers &are included. For con-
ereteness, we will conuider only the case (2) of Part I, $
and dilscues only the f3 and fg terms (+.e., consider only ’

$x end Tan terms, and neglec% all the other ecoordination
numbers). We can Drove that F is equal to

3 {EM"E)@«' Nas! ha'o") {i.log (Xi §“+2;\&)\g£‘£;j+
0 Eug) —Oalog ha— OalogRs }+
5 1B he b | s (B Bl 3R LuaBlt

8 Kb Eha K E3) ~ B B B 0ol B | #4)

where Ak,  Ea 8nd Kp ere funstions of ¢ and T, determined
by

AP {%xogwmwaxzﬂ‘seuafr—--)-—mgﬂwaglogHg}wn. (45)

From (4t} and
Xui=£4a(@F 30s), Xoo= Esn(@F3Ean)

the numbers Xpa, XQB and Xpg of AA, AD, BB»ﬂear«neighbor
peirs, can he easily detarm?neés In fact, 1f we deflne

ve 1 e . A5 E
- (Eh- 2NN M Eat 2 hgtantAblon
oo 3 Ashgf
Nyp= L (EA—ER R L. 7 S—
IO D L NS I W ope rE
x( e W PN UUR— £ T
AA b h§ g54+3 kY RpfiaEintB Ry K&t k3 £
A 1 KL K -1
X" = 1o YT I7E 3 U
(i) 2™ foa, v skt Kobutiat " (463

— 12
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“rpnen we will have

Nig= 2 hst f:»:,\:"s; p R ( B }3>

IR Sl | Bﬁ)& ax"( ;p} :

tX"( A )}x
«4 R
X ( . ( m*) X

o - {‘:}-.{'7’4 gV g Vi) 7Y,
2(NV et Nan) =2 oo SRIN 4

IS PE S 4 Qm)'m‘{}z‘hmmma}gm

X{é@ yrex{ jé }Jag,"*'( . Yoo .u.(g

and

(i)
b4 A .ﬁX ’ }'

\HBI

SRS

(A7

(4%}

4)

v,a.
B A 4
a{ B %M{ ) }/»3):"( R VR LTV £
.&ﬁ } EZ{ Aﬁj 2{& éﬂ&e Q’Vik}
s ’”Q} (43} and (BO] are the extended
r%al We went to point out thet Xf
“ £ g
o (BE } a;a (hol, X7 sEn bc Tound from (A9)
tﬁﬁﬂAW“ carn ecsloulate X. Th e influence of
more coordinaticn numbers is eznctly the
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wAT (A

A A" T AN By
X(AA)X(BB) *(ﬁg)l(sa)
~3expl— (2Vaa=Vaa=Ve) FTY, (A1)
3x(;i)+2x($;)+x(;Z)wz¢wﬁ“
&x(;;)+2x ;1)+x(;;)$24wﬁw | (52)

(In the above expression, ok N is equal to 1/2 ZMA Y. In-

ihis theory, the numbers Xaa, Xap and Xpp of AA, AB, and EB
paire of nesrest neighbors are determined by the folloving
expresalions:

v (f)ex ()
X,mm:l}_{zx;(‘fgy-zx( )3

Xyp= i{zx(;} )X ( Bi)} (5:8)

On comparing this theory with expressions (47)-(50),
we pust note that the expfeasiens here '

A A
X(Ag)’X(BB>
correspond to
i f B o A
X <,@3)' ’\ HH)'

Therefore, in both +heories, the perts involving

.4 A WY ./ B
X(f:A)’ X(AB)’ X{;B)' A(ﬁs)

are identical. But expresslion (53}, for determining KAA,.

etc., ls essentially aifferent from (47). Expression (53}
nes a factor of 1/4% on its right zide, arising from the
fact that ong pair of nearest neighbors exists for every -

w1l o



four atom groups, each group containing three atoms form-
ing mutually nearest neighbors. In expression (47), ve
do not have & factor corresponding to this. Finally, we
w11l derive the number of combinatlon g, of

*(A) x(A) x(A) x(2)

corresponding to N, 8, Og.
Suppose log g tekes the following form:

= (X 4an 108 X400+ X 4pplog X yon) ~ 6o{ X 104 108 X y0a +
+ Xomnlog Xppa) + 63( X 484 Xapn) + 6(Xuas+ X sag) + 6(X,8), (84)

Whet‘ﬂ XAAA, XAAB,..O, 1.6-, XA'J%’ XA%, e vty cl} CE), 03, CL‘_’
are constants to be determined end ¢ (N, §) 1s a functlion to
be determined. , ‘

Tyreating the configurational free energy as & function of N,
94005, Xaam X405 , (80 that we can put cy=0), snd setting its de~
rivetives with respect to Xgap, Xppp equel to zero, we
cbhtaln

“QIOEXAAa"Grl'%ﬁlogxm*‘%ﬁﬁs +%~ ¢ 1o Xpps
+ L abot (— 2Vt Vaat Vos) T =0,
-cilogXAm-«cl-f--g-c,logX”B%“mO, _ (885)
But from (51), we have
.

: R
(= 2V gtV s Vag) /Ml = log b XaM0__ . Jog. S &ans
AB Ak as)/ og R yiaXamn og XX s s

i.e.,
’ 1 27 X3 )
(=2Viat VstV ),/ kT = -glog ":"g;:;ﬁi;r (66}

Substituting into the first expression of (55), we get

6=1, G=1, Gelogd. (57)

And by the same time, the second eguation of (55) ig also
satisfied. Therefore, expression (54) is proved to be the
exact expression of log 8, and it is also equal to

log g=¢(N,8) = Xuslﬂg-.}gxun - XABBIOg%’XABB
=X 428102 X 444 X ppp 10¢ X pan (B8)



"an expression very similsr to (41}).
When

XeumIN2%g,  Xun=N246,02,
Napa=N-20,03.  Xpgom=N-2163

icg & shoﬁm be equal toNBlogl,—~NOzlogd; , and then we hsve
: ¢§N,ﬂ)m w;&'ﬂﬂcgﬂ;-l\’ﬂ;log@,-}-
+—§26,a,9,No24lng-§-(Nn24&039,,),

where the summetion ls teken overég,, g, and 8y, snd each
of 6,6,8, cen assume two values, g, g, - Therefore

(N0 = —~NOlog8;—NBlog 6, +8 N log8N +36,0,0,N 24106,
=N gﬁiug&wl\'ﬁglogﬁn-fi-&z\' 10@8:‘:"%‘&' 2‘)’:{64 lt*gﬂd+95l(3ge‘9,), (5«%})

Substituting into {58), we obtain the desired result:
logg=8 N log8 N +23 N (8, jog 6, +8glog ) —

","XMAlﬂgxm“xmalﬂgstﬂxmlog%Xus’xawlﬂg%xma (66)
Undoubtedly, this treatment can be extended to the
fere-centered lsttlce sollid solution of multiple components.
The pesult corresponding to (60) is
logg=8Nlg8 N+23N 3, 6,)ogh,

"‘2 Zalog Xy~ Z [!Xw log %“X wt
i 14 "

1
+ Xy IOQ";T;" X‘ﬁ]"-‘ . E.: X IO'%-X";&. (61)
i >k
A11 the no’c:eatiom in this expression follov the usual conven-
tion, and Xy11, X1jj, Xy and Xy, X3, heve the following
relations: “
8 Xt z (Xej;'§‘2xft;) 4 z X:i&”’24N9n
i ixk v

Xﬁ""%’{ 8 Xyt %_:Xm) ,

® Xﬁ”%(ﬁxm"*’ﬁxm*i' Eijub )a (62)
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