
NUWC-NPT Technical Report 11,042 
15 September 1998 

Three-Dimensional Analysis of 
Acoustic Scattering from a 
Coated Cylindrical Shell 

Sung H. Ko 
Bruce E. Sandman 
Submarine Sonar Department 

jpliraiuiB#;> 

mwc 
>^*»IBM NEWPORT,^/ 19990416036 

Naval Undersea Warfare Center Division 
Newport, Rhode Island 

Approved for public release; distribution is unlimited. 

DTIC QUALITY INSPECTED 4 



PREFACE 

This report was prepared under NUWC Division Newport 
Project No. 621Y47, "NOMAD," project manager Bruce E. 
Sandman (Code 01) and principal investigator Sung H. Ko (Code 
2133). 

The technical reviewer for this report was Jeffrey E. Boisvert 
(Code 2133). The authors are grateful to Bernard J. Myers 
(Code 01X) for sponsoring this project. Thanks are also extended 
to Sandra A. Marceau (Code 543 (SRM)) for her assistance with 
the technical editing. 

Reviewed and Approved:  15 September 1998 

r\&J-IJ/tfc 
Ronald J. Martin 

Head, Submarine Sonar Department 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), 
Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 
15 September 1998 

3. REPORT TYPE AND DATES COVERED 
Final 

4. TITLE AND SUBTITLE 

Three-Dimensional Analysis of Acoustic Scattering from a Coated Cylindrical Shell 

5. FUNDING NUMBERS 

6. AUTHOR(S) 

Sung H. Ko 

Bruce E. Sandman 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Undersea Warfare Center Division 
1176 Howell Street 
Newport, Rl 02841-1708 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

TR 11,042 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

A theoretical model was developed to evaluate the farfield pressure scattered from a coated cylindrical shell by a plane 
acoustic wave incident at an angle to the cylindrical axis (a three-dimensional problem). The model is a two-layer-structure 
comprising an outer layer of microvoided elastomer (coating) that is perfectly bonded to a cylindrical shell. The analysis of 
this model is based on the theory of elasticity, acoustic wave equations, and pertinent boundary conditions. The major 
results presented here are calculated directivity patterns using three-dimensional analysis. 

14. SUBJECT TERMS 

Acoustic Scattering                          Hull Arrays 
Submarine Sonar Systems 

15. NUMBER OF PAGES 
58 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) 
Prescribed by ANSI Std Z39-18 
298-102 



TABLE OF CONTENTS 

Section Page 

LIST OF ILLUSTRATIONS      ii 

LIST OF SYMBOLS     iii 

INTRODUCTION      1 
Background       1 
Specific Objective      1 

THEORETICAL ANALYSIS OF ELASTIC WAVES IN 
CYLINDRICAL COORDINATES      3 

FORMULATION OF THE PROBLEM     19 

NUMERICAL CALCULATIONS AND DISCUSSION    25 

CONCLUSIONS    35 

REFERENCES    37 

APPENDIX A — COEFFICIENTS OF EQUATIONS (75) THROUGH (88) A-l 

APPENDIX B — SYSTEM OF LINEAR ALGEBRAIC EQUATIONS B-l 



LIST OF ILLUSTRATIONS 

Figure Page 

1 Geometry of Theoretical Model      3 
2 Displacement Vector Components and Stress Tensors in the 

Cylindrical Coordinates  5 
3 Directivity Patterns at/= 5000 Hz  28 
4 Effect of Incident Angle (p on the Directivity Pattern at/= 5 000 Hz  31 
5 Effect of Frequency/on the Directivity Pattern for Incident Angle (p = 45°  31 
6 Effect of Coating Thickness h\ on the Directivity Pattern 

at/=5000Hzforp=45°    32 
7 Effect of Coating Thickness h\ on the Directivity Pattern 

at/=7500Hzfor^=45°    32 
8 Effect of Coating Thickness h\ on the Directivity Pattern 

at/= 10,000 Hz for ^=45°    33 
9 Effect of Dilatational Wave Speed c^x on the Directivity Pattern 

at/=5000Hzfor<z>=45°    33 
10 Effect of Loss Factor Q\ Associated with the Dilatational Wave 

on the Directivity Pattern at/= 5000 Hz for <p =45°    34 
11 Effect of Shear Wave Speed cs0i on the Directivity Pattern 

at/=5000Hzfor^=45°    34 
12 Effect of Loss Factor £s\ Associated with Shear Wave on the 

Directivity Pattern at/= 5000 Hz for q> =45°    35 

li 



LIST OF SYMBOLS 

B Complex bulk modulus 
cd Complex dilatational (compressional) wave speed 

cdl Complex dilatational wave speed in the coating (layer 1) 

cd2 Complex dilatational wave speed in the cylindrical shell (layer 2) 

cdm Real part of complex dilatational wave speed in the coating 

cd02 Real part of complex dilatational wave speed in the cylindrical shell 

cs Complex shear (transverse) wave speed 

c,j Complex shear wave speed in the coating 

cs2 Complex shear wave speed in the cylindrical shell 

cs0l Real part of complex shear wave speed in the coating 

cs02 Real part of complex shear wave speed in the cylindrical shell 

c0 Sound speed in water 

c3 Sound speed in air 

/ Frequency in Hertz 
Ä, Coating thickness 

h2 Shell thickness 

kd = co lcd Dilatational wave number 

ks=co lcs Shear wave number 

k2 Wave number in axial direction 
k0 =colc0 Acoustic wave number in water 

kz-(olci Acoustic wave number in air 

pt Incident pressure field (wave) in water 

Pt Complex amplitude of pi 

Paf Amplitude factor 

ps Scattered pressure field (wave) in water 

p0 Total pressure field (wave) in water 

p3 Transmitted pressure field (wave) in air 

P3 Complex amplitude of /?3 

/ Time 
ur Radial displacement 

ug Circumferential displacement 

u. Axial displacement 
x,y,z,r,9 Spatial coordinates 

111 



LIST OF SYMBOLS (Cont'd) 

Cdi Loss factor associated with dilatational wave in the coating 

£d2 Loss factor associated with dilatational wave in the shell 

£sl Loss factor associated with shear wave in the coating 

£s2 Loss factor associated with shear wave in the shell 

<p Angle of incidence measured relative to the normal (radial) direction 
A,ju Lame constants 

p Material density 
p0 Density of water 

pl Material density of coating 

p2 Material density of shell 

p3 Density of air 

r^ Normal stress in the radial direction 
xr6 Shear stress in the circumferential direction 

rre Shear stress in the axial direction 
<f> Scalar potential 
yr Vector potential 
yrr Radial component of y/ 

y/g Circumferential component of y/ 

yr. Axial component of yr 
a = 2nf Angular frequency in radians/s 

IV 



THREE-DIMENSIONAL ANALYSIS OF ACOUSTIC SCATTTERING 
FROM A COATED CYLINDRICAL SHELL 

INTRODUCTION 

In this study, a theoretical model is developed for evaluating the farfield pressure scattered 

from an infinitely long, coated cylindrical shell by a plane acoustic wave incident at an angle 

with the normal to the cylindrical shell axis (a three-dimensional problem). The model is a two- 

layer-structure comprising an outer layer of microvoided elastomer (coating) that is perfectly 

bonded to a cylindrical shell. The coating consists of an acoustically soft material that is 

designed for reducing flexural wave noise. 

BACKGROUND 

The acoustic reflection from a solid cylinder in water is described by Morse1 and Bowen 

et al.   The scattering of sound by hollow elastic cylinders in water has been investigated by 

Gaunaurd and Flax and Neubauer.    In these cases, the incident sound wave was taken as an 

infinite plane wave normally incident to the cylindrical axis (a two-dimensional problem). This 

wave excites the radial and circumferential modes. However, a plane wave incident at an angle 

with the normal to the cylindrical axis excites modes of vibration of the cylindrical shell having 

radial, circumferential, and axial dependence (a three-dimensional problem). 

SPECIFIC OBJECTIVE 

This report describes the three-dimensional analysis for the two-layer coated cylindrical 

shell. An earlier two-dimensional problem has been extended to the three-dimensional case to 

investigate the scattering of the plane acoustic wave by the coated cylindrical shell. Ko and 

Sandman presented a portion of the two-dimensional results. The formulation of the problem is 

based on the theory of elasticity, acoustic wave equations, and pertinent boundary conditions. 



The major accomplishment of this research is the numerical calculation of directivity patterns for 

the coated cylindrical shell using the three-dimensional analysis. 



THEORETICAL ANALYSIS OF ELASTIC WAVES 
IN CYLINDRICAL COORDINATES 

The geometry of the theoretical model in this study is depicted in figure 1. The outer 

surface of the composite structure, which consists of the coating and the cylindrical shell, is in 

contact with water. The core (cavity) of the structure contains air. 

CYLINDRICAL 
SHELL 

COATING 

INCIDENT >&> 
WAVE (p,)        .     *. 

SCATTERED 
WAVE (ps) 

*• z 

Figure 1.  Geometry of Theoretical Model 

It is essential to study waves propagating in elastic media. In this section, equations 

necessary for the formulation of the present problem are developed. The vector differential 

equation that governs the small elastic motion in the elastic medium is written as7'8 



fN2u + (A + //)V(V • u) = p 
d2u 

dt2- 0) 

where X and // are the Lame constants, u is the displacement vector, p is the material density, V 
2 

is the gradient operator, t is the time, and V is the Laplacian operator. The solutions of 

equation (1) are a combination of a vector potential ^and a scalar potential function ^, so that 

u = V0 + (Vxys), (2) 

which is true provided that <j> and ^are the solutions of the elastic wave equations 

V2<j> 
i ay 

c2 dt2 0) 

2.„_ i ay 
2    a,2   : vy 

C*   0/ 
(4) 

and 

Vys = F, (5) 

where F is an arbitrary function of the spatial coordinate and time.9'10 The complex dilatational 

(compressional) and shear (transverse) wave speeds are given by 

cä = 
X + 2ju 

1/2 

(6) 

and 

-.1/2 

c„ = £ (7) 



If equation (3) is written in cylindrical coordinates, then 

ay  I<¥  ±^V   ay = i ay 
a/-2 + r ar + r2 Ö92 + dz2 ~ c] dt2 ' (8) 

where r, 0, and z are the spatial coordinates in the radial, circumferential, and axial directions, 

respectively. If equation (2) is used, then the radial displacement is written as 

or    \r od       dz 
(9) 

where the radial displacement ur is shown in figure 2. Note that other components of the 

displacement vector and related stress tensors are also shown. 

Similarly, the circumferential and axial displacements are written as 

9    v   r Y)e    rdO    { dz       dr 
(10) 

^"r 

Figure 2. Displacement Vector Components and Stress 
Tensors in Cylindrical Coordinates 



and 

uz = (V0 + Vx¥)z 

= W , (We | dy/e    1 dy/r 

dz    \ r       dr     r dd j 

(11) 

Equation (4) can be decomposed in the radial, circumferential, and axial directions. In the radial 
direction, one obtains 

vyr- Vr     2 d¥e = I d2y/r 

r2    r2  89     c2   dt2 

rd2
¥r | i d¥r i i a>„ | d2

¥r ^ 
dr'      r  dr      rz 06' dzl 

*Ei_ 2 dy/g _  1  d2y/r 

J r2 de cls   dt1 

(12) 

In the circumferential direction, one obtains 

v>,-*f+ Ye ,  2 dy/r _ \ d2y/e 

r2  de     c2   dt2 

f*2 2,„    A 
d Ye  | 1 dYe ,   1  d Ye  , d ^e 

v ßr2      r  &      r2  502       5z2 , 
^g    ,  2 d^r =  1 g Ye 
r2 |    r2  06»      c2   a?2 

(13) 

In the axial direction, one obtains 

V>, = i ay, 
c2 a/2 

d2y/.     1 a^i      1 aVr     d
2w. 

5/-2      r  Sr      r2 de2      dz2 

1 a2^ 
2      ~v,2 (14) 



The solution of equation (8) is written as 

<f>(r,6,z,(p,t) = ®(r)®(e)e-i^-°>t\ (15) 

where k2 = k0 sin<p is the wave number in the z-direction, k0 - co /c0 is the acoustic wave 

number, co is the frequency in radians/s, and c0 is the sound speed in water. Substituting 

equation (15) into equation (8) gives 

^.cTO    Iß®        Id2©.    y2__       <y2 

0—— +—— 0 +——-<$>-k,<$>® = —-O0. 
dr     r dr        r2 dO 2    J/l2 (16) 

Dividing equation (16) by 0, one obtains 

(d2®^ 

d2<&    1 d®      2^ 
—— + + a 0 = 
dr      r dr 

1 
r2 0 

o, (17) 

where a = {kd - k2)   , and kd =colcd .  Dividing equation (17) by O/r2 gi gives 

J20       d® 
dr2 

+ rJlL + a2r2 

d2e 
_   de2 

$ <D 0 
(18) 

Let 

d2e 
de2 

© 
■=kl (19) 

Then, multiplying equation (18) by <£/r2, one obtains 



d2®   ld$   ( ,   k2^ 
■+ + 

dr      r dr 
a 2     

ne 0 = 0. 
V '   J 

(20) 

Equation (19) can be rewritten as 

d2© 

de 
+ k2Q = 0. 2  ^"-8 (21) 

The solution of equation (21) is written as 

0(0) = Acos(ke0) + Bsm(k90). (22) 

Single-valueness requirements on ©(0) give 

ke=n   (an integer). (23) 

Then, equation (20) becomes 

d20    \d<$>   f       -2A 

dr1     r dr 

n 
a -■ 

\        '   J 
0 = 0. (24) 

Note that equation (24) is the Bessel equation of order n. 

Equation (15) is now written as 

<f>{r,6,z,(p,t) = <D(r)cosn0 e*-<^. (25) 

Then, the solution of equation (8) is written as 



<f>{r,e,z,(p,t) = {AlJn{ar)+BJn{ar)}oosne e-Kk^\ (26) 

and J„(ar) and Y„(ar) are the first and second kinds of the Bessel function of order n, with the 

argument ccr, respectively. 

Similarly, the solutions of equations (12) and (13) are assumed: 

yr(r,0,z,(p,t) = '¥r(r)smr2ee-i^-ü'0 

(27) 

and 

¥e(r,d,z,<p,t) = ^cos/i**-«**-0. (28) 

Substituting equations (27) and (28) into equation (12) gives 

d2W     1 cW,     1 
+ —-^ + M-n2%-% + 2n%)+ß2Vr=0, 

dr       r dr     r 
(29) 

where ß = \k2 -k2)    and ks =colcs. 

Similarly, substituting equations (27) and (28) into equation (13) gives 

d2x¥a    1 eP¥a     1 
-+i^+4(-*2%"%+2"X)+ß2%=0. dr       r dr     r 

(30) 

Subtracting equation (30) from equation (29) gives 

d2     1 d 
 T- + + 
dr     r dr 

2       (" + 1)2 

ß2- ►OFr-%)=0. (31) 



Adding equation (30) to equation (29) gives 

d2     1 d —- + + 
dr     r dr 

ß 
2    (n-\f >{%+%)=0. (32) 

The solution of equation (31) is written as 

%-%= 2A2Jn+x (fir) + 2B2Yn+l (fir). (33) 

Similarly, the solution of equation (32) is written as 

% + V9 = 2A2Jn_,(ßr) + 2B2Yn_,(ßr). (34) 

The property of the gauge invariance ' '   can now be utilized to eliminate two of the integration 

constants. It may be shown that any one of three potentials, O, Q¥r - ^e), and 

Q¥r + ^e), can be set equal to zero, without loss of the generality of solution. If Q¥T + ^e) = 0, 

one obtains 

(35) 

which also means that A2 = B2 = 0. 

Substituting equation (35) into equation (33) gives 

x¥r(r) = A2J„+,(ßr) + B2Yn+}(ßr). (36) 

Note that %(r) = -%(r); i.e., 

%(r) = -A2Jn+}(ßr)-B2Yn+1(ßr). (37) 

10 



If equation (36) is substituted into equation (27), then the radial component of the vector 

potential is written as 

yrr (r, 9, z, cp, t) = & Jn+l (ßr) + B2Y„+l (ßr)} sin nO e^-"». (38) 

Similarly, the circumferential component of the vector potential is written as 

¥e{r,e,z,(p,t) = ^[AJ„x(ßr) + BJ„l{ßf)]}cQsnee*<-k*-m'). (39) 

Finally, the axial component of the vector potential is assumed to be 

ys2(r,e,z,<p,t) = Vz(r)smne e-^-*!\ (40) 

Substituting equation (40) into equation (14) gives 

X(r) = A,J„(ßr)+B3Yn(ßr). (41) 

Combining equation (41) with equation (40) gives 

Wz{r,e,z,(p,t) = {A,Jn{ßr) + B,Yn(ßr)}smn0e-i^-'o'). (42) 

If equations (26), (39), and (42) are substituted into equation (9), the radial displacement is 

written as 

11 



/   n        ^    <¥    1 dy/z    dy/g ur(r,e,z,<pj) = ^ + -^---fe- 
ar    r 08      oz 

A aJ„(ar) + Ä aY„(ar) 

+ A, 

+ A 

-ikJnAßr) + £, -ik^ißr) 

n 
JÄßr) + B, ~Yn(ßr) 

r 
(43) 

If equations (26), (38), and (42) are substituted into equation (10), the circumferential 

displacement is written as 

ue(r,9,Z,<p,t)=1-?l + ^-^ ev        '^' '    rdO      dz       dr 

n 
Jn(ar) + B 

n 
Yn(ar) 

+ A 

+ A, 

iKJnAßr) + A, 

-ßJSßr) ■B, 

-iKYn+Aßr) 

ßYSßr) 
(44) 

x sin nOe'^-^. 

If equations (26), (38), and (39) are substituted into equation (11), the axial displacement is 

written as 

12 



u2(r,0,z,(p,t) = — + — + ■ re Yr 

dz      r       dr      r d6 

A ik2Jn{ar) + BX -ik2Yn{ar) 

+ A, —J^{ßr) + ßJn«<ßr) 
\   r J 

+ Ä, '—^, (/*') +/»lW 
J 

xcosnOe-^-^. 
(45) 

The radial, circumferential, and axial stress components are written as 

r„ = Ä 
(dur     1 du»    ur    du A   n   dur —r- + 9- + ^- +—*-  +2ju—r- 
\dr     r dd     r      dz J dr 

du, \ 
= (ä + 2JU)\^-\ + [(ä + 2M)-2JU] 

1 du0    ur    du, 

r dd     r      dz (46) 

r 1 dur    du*    Uf, ^ 

r dB      dr      r 
(47) 

and 

Tn=M 
(du2    dur^ 
—- +—- 

{dr      dz 
(48) 

13 



Substituting equations (43), (44), and (45) into equation (46), one obtains the radial stress 

Trr(r,0,z,<p,t) = pc2
d 

14 

+ P fe-2c.2)| 
1 dua    ur    du. 
r 80     r     dz 

AApcl
d-a

2J„(ar) 

+ P (c
2

ä-2c>) 
r \2 
n 

+ k^Jn(ar) + yn(ccr) 

+ BApc2
d-aX{ar) 

+ P fc-2^2) + k-t\Ym(ar) + ^(ar) 

+ A2\pc2
d(-ikzßjli(ßr)) 

+ p{c2
d-2c2)[ikzßjl,(ßr) 



+ B,\pc2
d{-ik2ßYUßr)) 

+ p{c2
d-2c])\ik2ßYll{ßr) 

n n n r< 
+ MPC< -rJ.(ßr) + -ßJn<ßr) 

+ P [c]-2c]) nM(ßr)^Jn(ßr) 
r r 

+ B3\pc2I-^Y„(ßr) + -ßY'n(ßr) 
{      \   r r J 

+ P te-*i) —r:(ßr) + ^Yn(ßr) 
r r 

xcosnee-ilk'I-a"\ 
(49) 

Substituting equation (43) and (44) into equation (47), one obtains the circumferential stress 

Tre(r,0>z><P>t) = Pcl 
f 1    3Ur dUg Ug  ^ 

r dQ     dr      r 

A\pc': 
In 2na   . 

+ BApc\ 
In 2nav<       ' 
-rYn(ar)—— Y„(ar) 

+MP°1 
i(n + \)kz 

■J^(ßr)-iktßJlx(ßr) 

15 



+ B2\p^ 
'/(» +1) KYn+l(ßr)-iKßY„+l(ßr) 

+ JL p°: Jn(ßr)-ß2fn(ßr)-[-2-Jn<ßr) 

+ B, P
C

: 
rnV 

\rj 
Yn(ßr)-ß2Y;(ßr)-(-lY'n(ßr) 

\    r J 

xsmnOe-^2-"0. 
(50) 

Substituting equations (43) and (45) into equation (48), one obtains the axial stress 

Trz(r,0,z,<p,t) = pcl 
du,     du z    I r ■ + 
dr      dz 

PCS 2ikzaJ„ {ar) 

+BAP< -2ikzaYn(ar) 

+ AJpc 

+ B2iPC 

'(» + !) 

'(» + !)    h2 

Jn+i (ßr) ~ ^^-ßJ^ (ßr) - ß2fn+l {ßr) 
r 

Y„+l {ßr) - ^^ ßYl, {ßr) - ß%+l {ßr) 

+ MP
C

I -Z^J.ißr) r 

+ BApcl 
ink. 

Yn{ßr) 

(51) 

xcosnde-^"00. 

16 



The divergence of y/is an arbitrary function:9'10 

V.^^ + ^ + l^ + ^. (52) 
dr      r     r 00      dz K   J 

In the outside fluid medium (water), the acoustic pressure is given by the sum of the 

incident wave and the scattered wave pressures as follows: 

po(r,0,z,(p,t) = pi(r,O,z,9,t)+pt(r,0,z,9,t), (53) 

where p0(r,0,z,<p,t) is the total wave pressure, #(r,<9,z,^,/) is the incident wave pressure, and 

ps (r, 0, z,<p, t) is the scattered wave pressure. When a plane wave is incident at an angle cp with 

the normal to the cylindrical axis, the total pressure is written as 

/>o(r,0,z,p,O = i>e-'(^^ (54) 
n=0 

where Pt is the amplitude of the incident wave, A(
0
n) is the unknown coefficient to be determined 

for order n, and sn is the Neumann constant (s„ = 1 for n = 0 and£„ = 2 for n > 1). Note that the 

scattered outgoing wave that satisfies the radiation condition is given by the Hankel function of 

the second kind: 

H™ (V cos^?) = J„ (k0r cos<p) - iY„ (k0r cos<p). (55) 

Inside the coated cylindrical shell (air), the pressure field is written as 

p3(r,0,z,p,t) = Pt e-^-^Zi-iyeX^ fe'cos^) cos«0, (56) 
n=0 

17 



where/? (r, 6,z,(p,t) is the pressure field in the core of the cylindrical structure, B^n) is the 

unknown coefficient to be determined for order n, k3=a>/cs,c3 is the sound speed in the core, 

and cos^3 = [l-(k0sm<p/k3)
2]U2. 

To ensure consistency with equations (54) and (56), the scalar potential <f>(r, 6,z, <p,t) and 

the three components of the vector potential y/(r,9,z,<p,t) may be rewritten as 

<t>(r,e,z,<p,t) = Pt e-^-^{-iysn {A^J„ {ar)+B["X (ar)} cosnO, (57) 
n=0 

Vr (r, 6, z,<p, t) = P, e-^-^ (-iySn {A?J„+] (ßr)+B?Yn^ (ßr)} sin nd, (58) 
n=0 

^(r,0,z,p,O = />e-'(^-^ (59) 
n-0 

and 

Vz (r, 9, z, <p, t) = P, e"**-"^(-/)"sn {A^J„(ßr)+B^Y„ (ßr)} sin nO. (60) 
n=0 

If equations (57) through (60) are used, the radial displacement ur, the circumferential 

displacement ug, the axial displacement uz, the radial stress xn, the circumferential stress rr8, 
00 

and the axial stress rn, are preceded by the expression, P^l(-i)"£
n ■   These six quantities 

n=0 

include the six unknown coefficients: A™^™,^,B™,A?\ and B™. These coefficients 

should be determined for each order n by using the pertinent boundary conditions. 

18 



FORMULATION OF THE PROBLEM 

In this section, the unknown coefficients are determined by using the pertinent boundary 

conditions. The boundary conditions to be satisfied at the interface between the outer fluid and 

the outer surface of the coating (denoted by layer 1) of the cylindrical shell structure; i.e., r = R0, 

are written as 

L(»)l =f_n(»)l (61) 

2«W 

dt2 

Jr=R„ 

dp'o 
(») 

dr 
(62) 

r=R0 

tffiU=o, (63) 

and 

\z{n)\     = 0 (64) 

where [r^ \r=Ro is the normal stress of order n at the surface r = R0, and the subscript 1 refers to 

the layer 1 (coating). Similar notations are used for the total pressure, the radial displacement, 

and the shear stresses. Note that p0 is the density of the outer fluid. The boundary conditions to 

be satisfied at the interface between the cylindrical shell and the coating, i.e., r = Rl, are written 

as 

Vrr,\lr=Ri      l
Lrr,2\r=Rl 5 (65) 
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Loo 1     _ Loo 1 
L' r9,\ J r=J?!      r r9,2 J r=Ä, (66) 

r rr,l J r=J?!— 1^,2 J r=fi, (67) 

k?U=k?U (68) 

LW0,1 Jr=J?,~ LMÖ,2 Jr=A J (69) 

and 

Loo]     = Lool (70) 

The boundary conditions to be satisfied at the interface between the cylindrical shell and the core 

fluid, i.e., r=R.2, are written as 

r re,2 J »-=* ,=°> 

kü^2=o, 

\dxf 
dt2 _ 

r=Ä, 

1 

Sr _ 

(71) 

(72) 

(73) 
r=R, 

and 

teU=[-/*°L Ä,   » (74) 

where /?!"; is the pressure field in the core, and p3 is the density. Substituting equations (49) 

and (54) into equation (61) gives for order n 
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<4n) + <$d$ + *SW + a<?A<$ + a\?B$ + c$Ag + a\?B% = A«, (75) 

where the superscript (n) denotes the order », and the coefficients af^.aj?..., and ä,
W
 are 

given in appendix A. Note that A[f is the unknown coefficient A\ of order n for the layer 1 

(coating). Similar notations are used for other unknown coefficients. Substituting equations (43) 

and (54) into equation (62) gives for order n 

4">4"> + ag>4? + <2#> + a%A% + agBg + a$A$ + a«5« = W ■ (76) 

Substituting equation (50) into equation (63) gives for order n 

a$Ag + agB$ +aj?A<$ +ag>B<$ +<®A%> +a«*g> = 0. (77) 

Substituting equation (51) into equation (64) gives for order n 

W +«43)A(;) +flS)4") +ai«*8 +«i6")4") +fl47)4") = 0. (78) 

Substituting equation (49) into equation (65) gives for order n 

"52 -"1,1    ^ "53 "°1,1    + "54 A,l   + "55 "D2,l   + "56 -"3,1   + "57 ßi,\   + "58 A,2 

+ K59 Dl,2   + "5,loA,2  +a5,ll-ö2,2  + "5,12 A,2   + as,l3ß3,2   ~V- (79) 

Substituting equation (50) into equation (66) gives for order n 

"62 -"1,1    ^"63 -°1,1   +"64 A,l   + "65 -D2,l   +ö66 -"3,1   + "67 ßl,\   + "68 A,2 

-TU69 i»12   -r«610^l22 ^"6,ll-D2,2 +"6,12-"3,2   +"6,13-°3,2   _U- (oU) 

Substituting equation (51) into equation (67) gives for order n 
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"72 A,l   + u73 ^l.l   +"74 ^2,1   + "75 •D2,l   +"76 ^3,1   + "77 DZ,\   + "78 A\,l 

+ag>Sg> +aSJ04? +ag^J +a«> 4? +awÄw = 0. (81) 

Substituting equation (43) into equation (68) gives for order n 

"82 ^1,1   +"83 -°1,1   + u84 -^2,1   + "85 •D2,l   + u86 ^3,1   + "87 -°3,1   + "88  ^1,2 

+««JBg> +4-U2 + Og +<24S +fl.(?3Ä£) = 0. (82) 

Substituting equation (44) into equation (69) gives for order n 

"92 A,l    +"93 ^l.l    +"94 -^.l   +"95 -°2,1   +"96 ^3,1   + "97 Dl,\   + u98 -^1,2 

+a£>ag> +fl5Jo4? + a&&2 +«$4? + 02 = 0- (83) 

Substituting equation (45) into equation (70) gives for order n 

"l0,2^1,l    + w10,3-°l,l    + "l0,4^2,l   +"10,5-°2,1 

+ "l0,8A,2   +aW,9D\,2   +"l0,10^2,2  +"l0,ll-ö2,2  ~ U" (°4.) 

Substituting equation (50) into equation (71) gives for order n 

n(n)   An)   ,       (n) p(n)   ,       (n)     An) 
"ll,8-^1,2   "™l],9A'l,2   "•" "11,10-^2,2 

+ "ll,n-°2,2 + "ll,12^3,2  +"ll,13X33,2   ~U- (°->j 

Substituting equation (51) into equation (72) gives for order« 

"12,8-^1,2   T "l2,9-L'l,2   T "12,10-^2,2 

+ ai2,ll-D2,2 + «12,12-^3,2   + ai2,nß3,2   ~U- (»DJ 

Substituting equations (43) and (56) into equation (73) gives for order n 

n(n)   An)   ,   _(«) D(n)   ,   _(n)    j(«) 
"13,8^1,2   T "13,9-"],2   ""n.lO-^^ 

+ "13,11-D2,2  +"13,12^3,2   + "l3,13-°3,2   + ai3,14-°0      _U- t°'J 
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Substituting equations (49) and (56) into equation (74) gives for order n 

M14,8-al,2   T"l4,9-Ul,2   ™14,10/12,2 

^a\A,\\D2,2 + "14,12-^3,2   +ö14,13ß3,2  +«14,14ß0      _U- (88) 

Using equations (75) through (88), one may obtain a system of linear algebraic equations to be 

solved for the unknown coefficients for order n: A(
0
n\ A™, B™, A%, £<?, Ä$, B%\ A™, 

B™,A™, B™, 4J, £g, and B(
0
n) (shown in appendix B). After the coefficient A™ has been 

obtained by solving the algebraic equations shown in appendix B, the pressure field scattered 

from the coated cylindrical shell at distance r is written as 

ps (r,9,z,<p,t) = P^^Y {-i)nenA^H^\k0r cos^cosnO. 
n=0 

(89) 

Further, the farfield pressure can be obtained by using the asymptotic form of the Hankel 

function. Its asymptotic form (r->oo) is given by 

.1/2 

//^(Vcosp). 
y7tk0rco$(p 

exp 
nn    TU 

kQrcos<p  (90) 

If equation (90) is combined with equation (89), the farfield pressure is written as 

P,(0,<P) = Piexp k0rcos<p-kzz- 
7t 

>l/2 

^nk0r cosp 
Y.Sn^cosnO. 
n=0 

(91) 
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NUMERICAL CALCULATIONS AND DISCUSSION 

The numerical calculations for the scattered field from the coated cylindrical shell have 

been made using equation (91). The normalized farfield pressure level as a function of B for a 

given (p is expressed as 

¥(#,?>) = 20 log eio dB, (92) 

where 

vl/2 

*(*,?) = 3 
ynk0rcos(p 

*snAln)cosn0 
n=0 

(93) 

¥($#>) is the directivity pattern for the coated cylindrical shell, A[n) is obtained from the 

solution of the equation shown in appendix B, and $(0,?)^ is the maximum value of <$>(&,<p) 

calculated for 9 = 0 - 360° using equation (93). The directivity pattern for a rigid cylinder can be 

obtained from equation (92) provided that the coefficient A{
0
n) is given by 

(94) 

where R is the radius of a rigid cylinder 3,4 

In calculating the directivity patterns using equation (92), it is necessary to use the 

properties of the coating and cylindrical shell, as well as their dimensions. The major parameters 

required in the present study are the material density, the dilatational (compressional) and shear 

(transverse) wave speeds in the material, and the densities and acoustic wave speeds of the fluid 
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media in contact with the outer and inner surfaces of the cylindrical shell structure. Note that 

dilatational and shear wave speeds are given by equations (6) and (7). The Lame constants A and 

/u shown in both equations can be expressed in terms of elastic constants as follows: 

A = Ea/[(l + a)(l-2a)] and // = £/[2(l + cr)], (95) 

where E is Young's modulus and eis Poisson's ratio. The elastomer coating (rubber-like 
7 9 2 material) has the Young's modulus ranging on the order of 10 to 10 dynes/cm as a function of 

frequency. The Poisson's ratio a for the rubber material normally approaches 0.5. Rubber is a 

lossy material that has an imaginary part of the Young's modulus. The complex (dynamic) 

Young's modulus is given by E = Er + iE1,, where Er and Ei are the real and imaginary parts of 

the Young's modulus, respectively. Actual values of Er and Ei for a given material can be 

obtained from measurements. The ratio of Et to Er for rubber ranges from approximately 0.1 to 

1.0, depending on the frequency. As can be seen in equation (95), A cannot be defined for 

rubber-like materials because A is infinite when a= 0.5. Therefore, the dilatational wave speed 

(pa) cannot be obtained from equation (6), but the shear wave speed (cs) can be obtained from 

equation (7). An alternative expression for the dilatational wave speed in rubber is written as 

cd=[(B + 4ju/3)/pf2, (96) 

where B is the complex bulk modulus of material. Note that \B\ »\ju\-  The loss factor 

associated with the dilatational wave is normally very small and is weakly dependent on 

frequency. The complex dilatational and shear wave speeds for the layer 1 (coating) are now 

written as follows: 

cd,=cdM{\+Kj'2 (97) 

and 
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^^oiO + '^i)    > (98) 

where cd01 and cs0l are the dilatational and shear wave speeds in the coating, and C,d\ and Q\ are 

the loss factors associated with dilatational and shear waves, respectively. The cylindrical shell 

used in the present study is steel. The Lame constants X and ju for the cylindrical shell can be 

expressed in terms of E and <jas shown in equation (95). Normally, the Young's modulus of 

steel is real because it is not considered to be lossy material. However, all real structures possess 

some inherent structural damping. Thus, a frequency-independent small loss factor can be 

assigned in the numerical calculation. Then, the complex dilatational and shear wave speeds in 

the cylindrical shell can be directly obtained by using equations (6) and (7) in terms of the 

complex Young's modulus and Poisson's ratio and are written as follows: 

^2=crf(B(l+/C,2)
1/2, (99) 

and 

^2=^02(1 + /C2)
1/2, (100) 

where cd02 and cs02 are the dilatational and shear wave speeds in the layer 2 (shell), and £d2 and 

C,s2 are the loss factors associated with dilatational and shear waves, respectively. The baseline 

data used in the calculation of the directivity patterns are as follows: 

R2 (inner radius of cylindrical shell) 25.4 cm 

h2 (shell thickness) 5.08 cm 

/?! (coating thickness) 5.08 cm 

p0 (water density) 1.0g/cm3 

c0 (sound speed in water) 150 000 cm/s 

p3 (air density) 0.00121 g/cm3 

c3 (sound speed in air) 34 000 cm/s 
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p, (coating density) 

csQ1 (shear wave speed in the coating) 

cm (dilatational wave speed in the coating) 

£., (shear loss factor of the coating) 

gdl (dilatational loss factor of the coating) 

p2 (shell density) 

E2 (Yoimg's modulus of shell) 

cr2 (Poisson's ratio of shell) 

£s2 (shear loss factor of shell) 

C,dl (dilatational loss factor of shell) 

0.6 g/cm3 

5000 cm/s 

20000 cm/s 

0.3 

0.03 

7.8 g/cm3 

19.5 x 1011 dyn/cm" 

0.3 

0.01 

0.001 

Figure 3 shows a comparison between the directivity patterns calculated at/= 5000 Hz 

using the two- and three-dimensional analyses. The solid line shows the directivity pattern 

calculated using the two-dimensional model and that calculated using the three-dimensional 

model with cp= 0. As shown in this figure, the two results are identical because the three- 

dimensional model with cp= 0 degenerates to the two-dimensional model. The dotted line in 

figure 3 shows the directivity pattern calculated for a rigid cylinder with an equivalent radius. 

/=5000 Hz 

2-D model 
and 3-D model 
with <p = 0° 
{Two layer) 

Rigid cylinder 

P.^ 7.99 dB 

= 4.31 

Figure 3. Directivity Patterns at f =5000 Hz 
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To compare relative scattered pressure fields for different cases (figure 3), the normalized 

peak response amplitude scaling factor Paf is given in the legend for each case. This factor was 

calculated as follows: 

Pa/ = 201og10. 
<W,p), 0=0 

rr^ 1/2 

\R0J 

201og10 
Kk^ cos$? 

N 1/2 
+00 

J n=0 

dB. (101) 

Figures 4 through 12 present directivity patterns calculated for the coated cylindrical shell 

using the three-dimensional model. Figure 4 shows the directivity patterns calculated at 

/= 5000 Hz for various angles of incidence <p. In figure 4, the solid, dashed, and chain-dotted 

lines denote the results for (p = 0°, 30°, and 60°, respectively. As anticipated, the major lobe 

width of the directivity pattern becomes broader as the angle of incidence increases. In the limit, 

the directivity pattern becomes omnidirectional as the angle of incidence approaches 90°. 

Figure 5 shows the directivity patterns calculated for the angle of incidence <p = 45° for 

various frequencies. The solid, dashed, chain-dotted, and chain-dashed lines denote the results 

for/= 2500, 5000, 7500, and 10,000 Hz, respectively. It is shown in this figure that the major 

lobe width of the directivity pattern becomes broader as the frequency decreases. In the limit, 

the directivity pattern becomes omnidirectional as the frequency decreases. 

Figure 6 presents the effect of the coating thickness h\ on the directivity pattern. The solid, 

dashed, chain-dotted, and chain-dashed lines denote the results calculated at/= 5000 Hz and 

<p = 45° for hi = 2.54, 5.08, 7.62, and 10.16 cm, respectively. It is shown in figure 6 that the 

difference between the results is not significant, although the results show some different values 

for different coating thicknesses. Figures 7 and 8 present the results similar to those shown in 

figure 6. Figures 7 and 8 show the directivity patterns for/= 7500 Hz and/= 10,000 Hz, 
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respectively. It is observed in both figures 7 and 8 that the effects of the coating thicknesses on 

the directivity patterns are not significant. 

Figures 9 through 12 present the effects of the coating material parameters on the 

directivity patterns calculated for/= 5000 Hz and <p = 45°. Figure 9 shows the effect of the 

dilatational wave speed (QOI) in the coating on the directivity pattern. The solid, dashed, and 

chain-dotted lines denote the calculated results for the dilatational wave speed cm = 2000, 

20,000, and 200,000 cm/s, respectively. As shown in figure 9, the major lobe width becomes 

narrower as the dilatational wave speed becomes lower. Figure 10 shows the effect of the loss 

factor (Cd\) associated with the dilatational wave speed on the directivity pattern. The solid, 

dashed, and chain-dotted lines denote the calculated results for Qi = 0.03, 0.3, and 0.9, 

respectively. As shown in figure 10, the difference between the results obtained for different 

loss factors is not significant. Figures 11 and 12 present the results calculated for various shear 

wave speeds (csoi) and associated loss factors (£1), respectively. In figure 11, the solid, dashed, 

and chain-dotted lines denote the calculated results for the shear wave speed cs0\ = 2500, 5000, 

and 50,000 cm/s, respectively. In figure 12, the solid, dashed, and chain-dotted lines show the 

calculated results £1 = 0.3, 0.9, and 1.5, respectively. As shown in both figures 11 and 12, no 

substantial differences are noticed for various shear wave speeds and the associated loss factors, 

respectively. 
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/= 5000 Hz 

9>=0°       Pa,= 7.99dB 

= 30 = 7.49 

= 60 =5.74 
270 

Figure 4. Effect of Incident Angle cp on the Directivity Pattern atf= 5000 Hz 

<p = 45° 

 /= 2500 Hz Paf = 4.88 dB 

---     =5000 =6.81 
      =7500 =8.16 
      =10,000 =9.34 

Figure 5. Effect of Frequency f on the Directivity Pattern for Incident Angle <p = 45l 
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/=5000 Hz 

/i, =2.54 cm Paf=6.66dB 

= 5.08 = 6.81 
= 7.62 = 6.63 
= 10.16 =7.37 

270 

Figure 6. Effect of Coating Thickness hi on the Directivity Pattern atf= 5000 Hz for q> = 451 

<p = 45° 

/= 7500 Hz 

  fy = 2.54 cm Paf=7.75dB 

       =5.08 = 8.16 
        = 7.62 = 8.43 

= 10.16 = 8.67 
270 

Figure 7. Effect of Coating Thickness hi on the Directivity Pattern atf= 7500 Hz for <p = 45< 
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(p = 45° 

/= 10,000 Hz 

— »1 = 2.54 cm *v- 8.95 dB 
  = 5.08 = 9.34 
  = 7.62 9.48 
  = 10.16 9.72 

^^c\ 
90 

T~~7^>? 

$/ -3p ̂  

•uy^yK 
^ 

on | 

/^'V '   «.J^flSSA***1**- 

'"O -10 \&-~kzz #30^ ̂ ^O-^^-IO ,vo 

270 

Figure 8. Effect of Coating Thickness hi on the Directivity Pattern 
atf= 10,000 Hz for <p = 45° 

9 = 45° 

/= 5000 Hz 

ctf)1 = 2000 cm/s P« = 6.31 dB 
  = 20,000 = 6.81 
  = 100,000 = 7.23 
  = 200,000 = 6.04 

270 

Figure 9. Effect of Dilatational Wave Speed cd0i on the 
Directivity Pattern atf= 5000 Hz for cp = 45° 
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<p = = 45° 

/•■ 
= 5000 Hz 

— u = 0.03 Par = 6.81 dB 
              s 0.3 = 6.80 
           = 0.9 = 6.77 270 

Figure 10. Effect of Loss Factor £dl Associated with the Dilatational Wave on the 
Directivity Pattern atf= 5000 Hz for <p =45 ° 

(p = 45° 

/=5000 Hz 

Cgn = 2500 cm/s   Pgf = 6.81 dB 
= 5000 
= 50,000 

= 6.81 
= 7.78 

270 

Figure 11. Effect of Shear Wave Speed csoi on the Directivity Pattern 
atf= 5000 Hz for <p =45 ° 
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cp = 45° 

/= 5000 Hz 

     £s1 = 0.3 Par - 6.81 dB 
           =0.9 = 6.81 
           =1.5 = 6.81 

270 

Figure 12. Effect of Loss Factor Qi Associated with Shear Wave on the 
Directivity Pattern atf= 5000 Hz for (p =45 ° 

35/(36 blank) 



CONCLUSIONS 

A three-dimensional analysis has been made of the scattering from a coated cylindrical 
shell by a plane acoustic wave making an incident angle with the normal to the cylindrical shell 
axis. Based on the limited calculations of directivity patterns, the following conclusions are 
drawn: 

1. The major lobe width of the directivity pattern becomes broader as the angle of 
incidence (with the normal to the axial direction) increases for a given frequency. 

2. The major lobe width of the directivity pattern becomes broader as the frequency 
decreases for a given angle of incidence. 

3. The major lobe width of the directivity pattern becomes narrower as the thickness of the 
coating increases; however, the difference between various thicknesses of the coating is 
insignificant. 

4. The major lobe width becomes narrower as the dilatational wave speed in the coating 
becomes lower. The contribution of the loss factor associated with the dilatational wave to the 
directivity pattern is insignificant. 

Similar conclusions are drawn for the shear waves propagating in the coating. 
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APPENDIX A 
COEFFICIENTS OF EQUATIONS (75) THROUGH (88) 

<=^2)(«cos^) 
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dl -2c2
s). 

rn^ 

\RoJ 
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^(«A)+-^(aA) 

^ =Plc
2
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2X(alR,)+A(4 -24> 

rn^ 

v^y 
+* 

^0 

<ft =A4{-*XÄ^I(ä^O)}+A (4 -24)^-/Wl+1(A*o)} 
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n n 
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APPENDIX B 
SYSTEM OF LINEAR ALGEBRAIC EQUATIONS 
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