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THREE-DIMENSIONAL ANALYSIS OF ACOUSTIC SCATTTERING
FROM A COATED CYLINDRICAL SHELL

INTRODUCTION

In this study, a theoretical model is developed for evaluating the farfield pressure scattered
from an infinitely long, coated cylindrical shell by a plane acoustic wave incident at an angle
with the normal to the cylindrical shell axis (a three-dimensional problem). The model is a two-
layer-structure comprising an outer layer of microvoided elastomer (coating) that is perfectly
bonded to a cylindrical shell. The coating consists of an acoustically soft material that is

designed for reducing flexural wave noise.

BACKGROUND

The acoustic reflection from a solid cylinder in water is described by Morse' and Bowen
etal’ The scattering of sound by hollow elastic cylinders in water has been investigated by
Gaunaurd’ and Flax and Neubauer.* In these cases, the incident sound wave was taken as an
infinite plane wave normally incident to the cylindrical axis (a two-dimensional problem). This
wave excites the radial and circumferential modes. However, a plane wave incident at an angle
with the normal to the cylindrical axis excites modes of vibration of the cylindrical shell having

radial, circumferential, and axial dependence (a three-dimensional problem).

SPECIFIC OBJECTIVE

This report describes the three-dimensional analysis for the two-layer coated cylindrical
shell. An earlier two-dimensional problem’ has been extended to the three-dimensional case to
investigate the scattering of the plane acoustic wave by the coated cylindrical shell. Ko and
Sandman® presented a portion of the two-dimensional results. The formulation of the problem is

based on the theory of elasticity, acoustic wave equations, and pertinent boundary conditions.




The major accomplishment of this research is the numerical calculation of directivity patterns for

the coated cylindrical shell using the three-dimensional analysis.




THEORETICAL ANALYSIS OF ELASTIC WAVES
IN CYLINDRICAL COORDINATES

The geometry of the theoretical model in this study is depicted in figure 1. The outer
surface of the composite structure, which consists of the coating and the cylindrical shell, is in

contact with water. The core (cavity) of the structure contains air.
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COATING
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Figure 1. Geometry of Theoretical Model

It is essential to study waves propagating in elastic media. In this section, equations
necessary for the formulation of the present problem are developed. The vector differential

equation that governs the small elastic motion in the elastic medium is written as”*®

W



2 62u
KV u+(/1+,u)V(V'u)=p—a}z—, )

where A and u are the Lamé constants, u is the displacement vector, o is the material density, V

is the gradient operator, 7 is the time, and V' is the Laplacian operator. The solutions of

equation (1) are a combination of a vector potential y and a scalar potential function ¢, so that

u=Vg+(Vxy), @)
which is true provided that ¢ and y are the solutions of the elastic wave equations

1 0°¢

M ®
d
V3 =iaz_'// 4)
Vg
and
Viy=F, (%)

where F is an arbitrary function of the spatial coordinate and time.>'® The complex dilatational

(compressional) and shear (transverse) wave speeds are given by

¢, = [l + 2;1] ©)
P
and
¢, = [EJ . ©)
yo,




If equation (3) is written in cylindrical coordinates, then

26 106 1036 3¢ 105
Sl ST A A AP 8
o rer rod & &t ®)

where 7, 6, and z are the spatial coordinates in the radial, circumferential, and axial directions,

respectively. If equation (2) is used, then the radial displacement is written as

¢ (1dy, o
ur=(V¢+ny/)r=Er¢.+(;_a%__g_§_), o

where the radial displacement u, is shown in figure 2. Note that other components of the

displacement vector and related stress tensors are also shown.

Similarly, the circumferential and axial displacements are written as

10 0 0
e R (10)

Figure 2. Displacement Vector Components and Stress
Tensors in Cylindrical Coordinates




and

u, =(Vg+Vxy),
(11)
=%+(W_a+%_ 1@_,)

z Ur & r oo

Equation (4) can be decomposed in the radial, circumferential, and axial directions. In the radial
direction, one obtains

Oy, 10y, 1%, v\ v | 20y, _17%0y, (12)
o ror r*oe* ot ) r| rfoee & ot
In the circumferential direction, one obtains
VZ _ﬂ 2 al//r — _l__azl//e
ot oo ¢t ot
Oy, 10¥,  10%, Vo) v, |, 20y, _12%, (13)
o* ror o o) | rree et

In the axial direction, one obtains

: 1 1 . '
or* ror r*oe* o ot (14)




The solution of equation (8) is written as

$(r,0,2,0,1) = D(r)O(B)e™ 7, (15)

where k, =k, sing is the wave number in the z-direction, £, = @ /¢, is the acoustic wave

number,  is the frequency in radians/s, and ¢, is the sound speed in water. Substituting
equation (15) into equation (8) gives

2 2
0e 2,140, 140
dr r dr r° de

2
®-£200 =-2_00. (16)
Cq

Dividing equation (16) by ®, one obtains

[aﬂ@J
d 2
D=t o

-z
ar* rar 2 e ’

d’® 1do
+ ——

17)

where o = (kj -k} )”2, and k, = w/c, . Dividing equation (17) by ®/7* gives

d*® ao d*®
2 dr’ +r—d-Z—+a2r2=—-d92

® o 0 (18)

Let

(19)

Then, multiplying equation (18) by ®/r?, one obtains




2 2
2o 140 (2 Ky o
dar v ar

Equation (19) can be rewritten as

2
Z—e(;z-r—kj@-—-o.

The solution of equation (21) is written as
O(0) = Acos(k,0) + Bsin(k,0).

Single-valueness requirements on ®@(6) give
k, =n (aninteger).

Then, equation (20) becomes

2 2
d ?+l@+ o -Z lo=o0.
dr r ar

Note that equation (24) is the Bessel equation of order ».

Equation (15) is now written as
¢(r) 0,2, ¢, t) = @(r) Cosn9 e“‘i(k_.2~mt) )

Then, the solution of equation (8) is written as

(20)

3y

22)

(23)

24)

(25)



#(r,0,2,0,0)={ 4J (ar)+BY, (ar)}cosnd e * 0 26)
1¥'n 1

and J,(ar) and Y,(ar) are the first and second kinds of the Bessel function of order », with the

argument ar, respectively.

Similarly, the solutions of equations (12) and (13) are assumed:

v, (r,0,2,0,0) =¥, (r)sinn@ e | @7
and

W, (r,0,2,0,1) =¥, (r)cosn@e™ =" (28)
Substituting equations (27) and (28) into equation (12) gives

d*¥ 1qd¥ 1 2 2
LTt b — -0, - ¥ +2n¥, )+ Y. =0 29
ar* r dr rZ(n P Ay en 5) pY, =0, (29)

where B =k -k} and k, = w/c,.
Similarly, substituting equations (27) and (28) into equation (13) gives

d’Y, 1d¥, 1
——6172-"’—+; drg +;Z—(—n2‘1’9 -y, +2n‘P,)+,82‘I’9 =0. (30)

Subtracting equation (30) from equation (29) gives

a 1d e 04D G gyl
{dr2+rdr+l:ﬂ z ]}(‘I’r ¥,)=0. (31)



Adding equation (30) to equation (29) gives

A 1d g o) _
{drﬁr dr{ﬂ " }}(‘Pﬁ‘i’g)—o- (32)

The solution of equation (31) is written as

¥, -, =24,J,,(Br)+2B,Y, (). (33)
Similarly, the solution of equation (32) is written as

¥, +¥, =24,J, ,(Br)+2B,Y, ,(Br). (34)

The property of the gauge invariance™ ' can now be utilized to eliminate two of the integration
constants. It may be shown that any one of three potentials, @, (¥; - ¥s), and
(¥, + W), can be set equal to zero, without loss of the generality of solution. If (¥; + ¥e) =0,

one obtains
¥ =y, (35

which also means that 4, = B, = 0.

Substituting equation (35) into equation (33) gives
Y,(r)=4,J,..(Br)+B,Y,.,(Br). (36)
Note that ¥, () =-¥,(7);1e,

Yy (r) ==4J ., (Br) = B,Y,..(Br). G7)

10




If equation (36) is substituted into equation (27), then the radial component of the vector

potential is written as

v, (,6,2,0.0) ={4,J .., (B) + B,Y, . (Br)}sinnge 20
Similarly, the circumferential component of the vector potential is written as

Vo(1,0.2,0.0)=t[4,7,.,(B1) +B,Y,.,(Br)] }cosnge o0
Finally, the axial component of the vector potential is assumed to be

v, (r,0,2,0,8) =Y, (r)sin n@ e """
Substituting equation (40) into equation (14) gives

Y. (1) =4,J,(Br)+BY,(Br).

Combining equation (41) with equation (40) gives

v, (7,0,2,0,0) = {4,J, (B7) + B,Y, ()} sinn@ e *+-2"

If equations (26), (39), and (42) are substituted into equation (9), the radial displacement is

written as

(38)

(39)

(40)

(41)

(42)

11




p-00,13v. dv,

ul’ (r, 07 z’ ¢? ar r 69 az

=<4 {aJ ,', (ar)} + B, [aYn' (ar):l
# A kT (BP) |+ B, kY67

+ A

w

PEJn(ﬂr)}BsFYn(ﬂr)}
| 7 r

(43)

x cosn@ e k=1

If equations (26), (38), and (42) are substituted into equation (10), the circumferential

displacement is written as

u,(r.0.2,0.0)=220 0% _OV.

rod oz or

= AI{:—Z"Z'J’,((ZT‘):I‘FBI[— ;Yn(ar)}

# A =ik T (Br) |+ By = k7,87

+A3[— BJ, (ﬁr)}rB{— Bz, (ﬁr)}
(44)
—i(k.z-01) '

xsinnBe

If equations (26), (38), and (39) are substituted into equation (11), the axial displacement is

written as

12




dy, 10
e onen = Late et 10

= {A1 [— ik, J, (ar)} + B, [— ikY (ar):’

+A4

L]

—["“ (ﬁr)+ﬂJ,,+1<ﬂr>ﬂ

n+l
o5 -(Lr,.8r)+ ., (ﬁr)ﬂ
(45)
x cosnf e
The radial, circumferential, and axial stress components are written as
&u, 10u, u, Oou, ou,
T, = A —L+——L+ L4+ L
or r 08 r oz or
ou 10u, u, ou
=(A1+2 I+ (A+2u)-2 ——f ez
( ﬂ)( ar) [(2+2p) u]( %5 j “6)
1 0u, 6u U,
= =1, 47
fro = (r 0 o rj “7)
and
Oou, ou
T_= L4 —L . 48
- #( » 6zj (48)

13



Substituting equations (43), (44), and (45) into equation (46), one obtains the radial stress

Trr(r>97z:¢>t) = pcj(aaufj
y

= Al{pci-av;'(aﬂ

+ p(cf, - 2cf)[— {(1:-)2 +k? }Jn (ar)+ %J : (ar)J}

+ B, {pcﬁ . aZYn"(ar)

+ p(cj — 2cf){— {(%j + k2 }Yn (ar) + %Y,: (ar)}}

+ i petl-ik.p7..o1)

e plet -22) i 07,.060) |

14




+Bz{pcd( ik, Y, (57)

« plez -2¢2) ik ﬂ(ﬁr)}

4 pei( - 2.6+ 283,090)
<ol 2|2 1, r)+ 2, (ﬂr)}

+B3{pc;(_ Lr,(6r)+ 2160
r

+pled ~2¢] )[— 2Ly pn+27, (ﬁr)}}

(49)

x cosn@e =20

Substituting equation (43) and (44) into equation (47), one obtains the circumferential stress

7..(r,6,2,0,1) = pc’ (___ %_u_g]

Al{pcs @ - 22, (ar)

2—”Y( )—-2—’331/ (ar)

AN

+Bl{pc

z(n + 1Dk

“ N

+ Az{pc Dk ; (Br)-ikp, (ﬂr)}

15



[i(n+1)

k.Y,.(Br)-ik,BY,., (ﬁr)}

+A3{pcf —(2] J,(Br)- B (ﬂr)—(——?JL(ﬂr)ﬂ}

[ (nY? ’
+Bs{pcs2 —[gj Y,(Br)- BT, (Br) - ( Ly (ﬂr))}ﬂ

(50)
x sin n@e %=1
Substituting equations (43) and (45) into equation (48), one obtains the axial stress
T,f_(r, 6,z,¢,t)= pcf (%LITZ + %’—j
{Al{ - 2ik, al, (ar) }
+Bl{pc [ 2ik, aY (ar) }
+A2{pc [ 2+ kz T - B (1) - 52 +l<ﬂr>]}
+Bz{pc { (” Dk j 8- gy gy - p Y,,H(ﬁr)}}
+ Az{pc {8 e, (pr )}}
" Bs{pcf Iy )H
(1)

16

x cos n Qe k=on




The divergence of y is an arbitrary function:**°

=%+&+l%+% (52)

\ o
v or r r 06 oz

In the outside fluid medium (water), the acoustic pressure is given by the sum of the

incident wave and the scattered wave pressures as follows:

Do(7.6,2,0,6)=p,(r,0,2,0,t) + p.(7,6,2,0,1), (53)

where p,(r,60,z,0,1) is the total wave pressure, p,(r,6,z,¢,f) is the incident wave pressure, and
D, (7,0,z,0,1) is the scattered wave pressure. When a plane wave is incident at an angle ¢ with

the normal to the cylindrical axis, the total pressure is written as

P, (7,0,2,0,1) = Pe” 0% (<i)e, { J, (k7 cosp)+ A H D (k,r cos ¢)} cosn@, (54)

n=0

where P; is the amplitude of the incident wave, 4{" is the unknown coefficient to be determined

for order n, and &, is the Neumann constant (¢, =1forn=0ande, =2 forn>1). Note that the

scattered outgoing wave that satisfies the radiation condition is given by the Hankel function of

the second kind:
H® (kyrcosp)=J, (k,r cosp) —iY, (k,r cosp). (55)
Inside the coated cylindrical shell (air), the pressure field is written as

p,(1.0,2,0,1) = P& 7" (<iYy'g B (k,r cosp,) cosn@ (56)

n=0

17



where ps(r, 0z,¢,1) is the pressure field in the core of the cylindrical structure, B is the
unknown coefficient to be determined for order n, k, = w/c; , ¢, is the sound speed in the core,
and cosg, =[1-(k,sinp/k,)*]"%.

To ensure consistency with equations (54) and (56), the scalar potential ¢(7, 6z, ¢,7) and

the three components of the vector potential y(r,6,z,¢,f) may be rewritten as

$(r,0,2,0,1) = F,e7500%" (—i)"e, {Al(")J,, (ar)+B™Y, (ar)} cosné, (57)
n=0

v, (r,0,2,0,1) = Be 03" (<i)"s {4J  (Br)+B{Y, . (Br)} sinnb, (58)
n=0

v, (r.0,2,0,1)=F, e-"<"-z-m>2(-i)"g” {— AnT (Br)-BIY, ( ,Br)} cosné, (59)
n=0

and

v, (r,0,2,0,0) = B ®50y (i)' 5, {4 (Br)+ BYY, (Br)} sin né (60)

n=0 .

If equations (57) through (60) are used, the radial displacement u,, the circumferential

displacement u,, the axial displacement u,, the radial stress z,,, the circumferential stress 7,,,

and the axial stress 7,,, are preceded by the expression, 7, Z(—i)"gn . These six quantities

n=0

include the six unknown coefficients: 47, B, A" B A and B{”. These coefficients

should be determined for each order » by using the pertinent boundary conditions.

18




FORMULATION OF THE PROBLEM

In this section, the unknown coefficients are determined by using the pertinent boundary
conditions. The boundary conditions to be satisfied at the interface between the outer fluid and

the outer surface of the coating (denoted by layer 1) of the cylindrical shell structure; i.e., 7 =R,,

are written as

k] szl 2] r, (61)
) A
r, PoL O L,
Fo ] e= 63)
and
2], =0, (64)

where [T,(,"i ,-r, 15 the normal stress of order 7 at the surface r = R, and the subscript 1 refers to

the layer 1 (coating). Similar notations are used for the total pressure, the radial displacement,

and the shear stresses. Note that p, is the density of the outer fluid. The boundary conditions to
be satisfied at the interface between the cylindrical shell and the coating, i.e., 7 = R,, are written

as

0] =0 (65)

19




(n) )
[TrG,l r=R; ™ [Tr;z r=R; > (66)

0] =l ] s, (67)

53] I ] (68)

5] I ] (69)
and

k] = ] s, ' (70)

The boundary conditions to be satisfied at the interface between the cylindrical shell and the core

fluid, 1.e., r=R,, are written as

[ng)v r=R, ' (71)

[Tr(z'j)Z]rsz= 07 | (72)

Fun] 1 _65_’]

[ or* J pi o | . (73)
and

[(n)]r-Rz [ pgn)]mRz’ (74)

where p{” is the pressure field in the core, and p, 1s the density. Substituting equations (49)

and (54) into equation (61) gives for order »

20




(n) g4(n) (n) 4(n) (n) p(n) (n) 4(m) (n) p(n) (n) 4(m) (n) p(n) _ z(n)
a4 +ay; Al,l +a; Bl,l +ay, Az,r; +a; B2,1 + a6 AS,rl, +ay; Bs,'; =H", (75)

where the superscript () denotes the order 7, and the coefficients a(’,a%’..., and 4" are

given in appendix A. Note that 47 is the unknown coefficient 4; of order # for the layer 1

(coating). Similar notations are used for other unknown coefficients. Substituting equations (43)

and (54) into equation (62) gives for order »

APAD + DAY +aPBY +alP AT + DB + a4 + aPBE = B 76)
Substituting equation (50) into equation (63) gives for order n
aPAD +aPBY +aD AT +aPBY +a AT +aPBY =0, (77)
Substituting equation (51) into equation (64) gives for order »
alp A% +a§§’B{';) +alP A +a§;’)B§3) +a§§’A§3) +aBY) =0. (78)
Substituting equation (49) into equation (65) gives for order »
aPAD +aDBY + D AD + DB + D A + DB + A
+aPB + aDAT + ARBD +allAD + B =0 &
Substituting equation (50) into equation (66) gives for order n
aP AD +aDBY +all A +all B +aP AT +al B a4
+aB) +agy Ay +a By +agy AT +al Bl = 0. (80)

Substituting equation (51) into equation (67) gives for order »

21




(n) 4(n) (n) p(n) (n) 4(m) (n) p(n) (n) 4(n) (n) p(n) (n) 4(m)
an Al,l +as; Bl,l +ag Ay +a By +agg Ay +az Bsy +agg 47

(n) p(n) (n) 4(n) (n) p(n) (n) 4(n) (n) p(n) _
+ag, Bl,z +a; 04,5 +a7,uBz,z +a7,12A3,z +a7,1sBs,2 =0.

Substituting equation (43) into equation (68) gives for order n
(n) 4(n) (n) p(n) (n) g(n) (n) p(n) (n) 4(n) (n) p(n) (n) 4(n)
ag AY +agy By +ag Ay +ags By +ag’ AY +ag By +ag A
(n) p(n) (n) f(n) (n) p(n) (n) 4(n) (n) p(n) _
+ag By +agi 4y, +ag, By, a5, A +ag B, =0.
Substituting equation (44) into equation (69) gives for order »
(n) 4(m) (n) p(n) (n) 4(n) (n) p(n) (n) 4(n) (n) p(n) (n) 4(m)
dgs, Al,l +ag By +ag 4,7 +ags Byy +ag Ay +agy By +ag A5
(n) p(n) (n) g(n) (n) pn) (n) 4(n) (n) p(n) _
+a99 BI,Z +a9,10A2,2 +a9,11B2,2 +a9,12A3,2 +a9,13B3,2 - 0
Substituting equation (45) into equation (70) gives for order n
() 400 (1) R | () g(n) | (n) p(m)
oAy a3 By +aya Ay + a5 By
(M) g0 4 () RO L () () 4 () p(m) _
+al(;‘,8A1,; +alg,9Bl,2 +al(’)’,10A2,n2 +a]g,llB2,nZ —O
Substituting equation (50) into equation (71) gives for order n
(n) 4(n) (n) p(m (n) 4(n)
aysAy +an By +ai4;;
(n) plm (n)  4(m) (n) pln)y _
+ayn By a4 +anBs, =0.
Substituting equation (51) into equation (72) gives for order n
(n) 4(n) (n) p(n) (n)  4(n)
A5 + 5By + a4,
(n) p(n) (n)  g(n) (n) p) _
+ alZ,llBZ,Z + a12,12A3,2 + a12,13B3,2 - 0
Substituting equations (43) and (56) into equation (73) gives for order »
(n) 4(n) (n) p(n) (n)  4(m)
A3 Ay + 0B, +a3i04s,

(n) pim (n)  g(m) (n) p(n) (n) pn) _
+a13,11B2,2 +a13,12A3,2 +a13,1383,2 +a13,14Bo =0.
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(84)

(85)
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(87)



Substituting equations (49) and (56) into equation (74) gives for order »
(n) 4(m) (n) p(n) (n)y 4(n)
A Ay +al4,QBl,2 +ay04;5
(n) pn) (n) »(n) (n) R (n) (n) _
+ a14,nBz,z +ap, 457 +ay BT + a14B," =0. (88)

Using equations (75) through (88), one may obtain a system of linear algebraic equations to be
solved for the unknown coefficients for order n: AS”, A7, B, ALY, B, A, BR, A%,
B, A7), BT, AL, BY), and B{” (shown in appendix B). After the coefficient 4™ has been
obtained by solving the algebraic equations shown in appendix B, the pressure field scattered

from the coated cylindrical shell at distance 7 is written as

p,(r,0,z,0,0)= Pe™ %" ()" e, A H® (k,r cosp) cosnf . (39)

n=0

Further, the farfield pressure can be obtained by using the asymptotic form of the Hankel

function. Its asymptotic form (r-) is given by

1/2
H®(k,r cosp) ~ 2z exp| — i(kor cosp -~ E—j . (90)
rkyr cosp 2 4

If equation (90) is combined with equation (89), the farfield pressure is written as

1/2
p.(6,p)=F, exp[-— i(kor cosp—k,z— Zﬂ . (—E——] > &, 45 cosnd. (01
4 wkyrcosp ) o
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NUMERICAL CALCULATIONS AND DISCUSSION

The numerical calculations for the scattered field from the coated cylindrical shell have
been made using equation (91). The normalized farfield pressure level as a function of 8 for a

given ¢ 1s expressed as

D(6,p)
Y(0,p)=20l0g,,| ——==—| dB, 92
6,9) gloli(b(e:(o)max} (92)
where
2 1/2 oo
o0, 0)=P| ——M— AP al. 93
(6,9) '(nkorcosrpj ;6‘" o cosn (93)

‘¥(8 ¢) is the directivity pattern for the coated cylindrical shell, A4S is obtained from the
solution of the equation shown in appendix B, and ®(,¢),... is the maximum value of ®(6,¢)

calculated for & = 0 - 360° using equation (93). The directivity pattern for a rigid cylinder can be

obtained from equation (92) provided that the coefficient 4™ is given by

J, (k,R)

A = - LBl
H? (k,R)

(94)

where R is the radius of a rigid cylinder.>*

In calculating the directivity patterns using equation (92), it is necessary to use the
properties of the coating and cylindrical shell, as well as their dimensions. The major parameters
required in the present study are the material density, the dilatational (compressional) and shear

(transverse) wave speeds in the material, and the densities and acoustic wave speeds of the fluid
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media in contact with the outer and inner surfaces of the cylindrical shell structure. Note that
dilatational and shear wave speeds are given by equations (6) and (7). The Lamé constants A and

4 shown in both equations can be expressed in terms of elastic constants as follows:

A=Ec/[(1+0)1-20)] and u=E/[2(1+0)], (95)

where E is Young’s modulus and o is Poisson’s ratio. The elastomer coating (rubber-like
material) has the Young’s modulus ranging on the order of 10" to 10° dynes/cm2 as a function of
frequency. The Poisson’s ratio o for the rubber material normally approaches 0.5. Rubber is a
lossy material that has an imaginary part of the Young’s modulus. The complex (dynamic)
Young’s modulus is givenby E=FE +iE , where E and E, are the real and imaginary parts of
the Young’s modulus, respectively. Actual values of £ and E; for a given material can be
obtained from measurements. The ratio of £, to E_ for rubber ranges from approximately 0.1 to

1.0, depending on the frequency. As can be seen in equation (95), A cannot be defined for
rubber-like materials because A is infinite when o= 0.5. Therefore, the dilatational wave speed
(cq) cannot be obtained from equation (6), but the shear wave speed (c;) can be obtained from

equation (7). An alternative expression for the dilatational wave speed in rubber is written as

c, =[(B+4ul3)/p]"?, (96)

where B is the complex bulk modulus of material. Note that [B|>>|y|. The loss factor

associated with the dilatational wave is normally very small and is weakly dependent on
frequency. The complex dilatational and shear wave speeds for the layer 1 (coating) are now

written as follows:

Car = Caqn (1418 )"” (97)

and
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Ca =Cm 1+ iCsl )1/2 > (98)

where ¢,,, and ¢, are the dilatational and shear wave speeds in the coating, and {; and & are
the loss factors associated with dilatational and shear waves, respectively. The cylindrical shell
used in the present study is steel. The Lamé constants A and u for the cylindrical shell can be
expressed in terms of £ and o as shown in equation (95). Normally, the Young’s modulus of
steel is real because it is not considered to be lossy material. However, all real structures possess
some inherent structural damping. Thus, a frequency-independent small loss factor can be
assigned in the numerical calculation. Then, the complex dilatational and shear wave speeds in

the cylindrical shell can be directly obtained by using equations (6) and (7) in terms of the

complex Young’s modulus and Poisson’s ratio and are written as follows:

Car = Ca (1 +18,,)", (99)

and

csZ = csOZ (1 + i(sz )1/2 s (100)

where c,,, and ¢, are the dilatational and shear wave speeds in the layer 2 (shell), and £, and
¢, are the loss factors associated with dilatational and shear waves, respectively. The baseline

data used in the calculation of the directivity patterns are as follows:

R, (inner radius of cylindrical shell) 254 cm

h, (shell thickness) 5.08 cm

h, (coating thickness) 5.08 cm

p, (water density) 1.0 g/crn3

¢, (sound speed in water) 150 000 cm/s
p; (air density) 0.00121 g/cm’
¢, (sound speed in air) | 34 000 cm/s
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p, (coating density) 0.6 g/cm’

¢, (shear wave speed in the coating) 5000 cm/s

C4o: (dilatational wave speed in the coating) 20000 cm/s

¢, (shear loss factor of the coating) 0.3

£, (dilatational loss factor of the coating) 0.03

p, (shell density) 7.8 g/cm3

E, (Young’s modulus of shell) 19.5x 10" dyn/crn2
o, (Poisson’s ratio of shell) 0.3

{,, (shear loss factor of shell) 0.01

¢, (dilatational loss factor of shell) 0.001

Figure 3 shows a comparison between the directivity patterns calculated at /= 5000 Hz
using the two- and three-dimensional analyses. The solid line shows the directivity pattern
calculated using the two-dimensional model and that calculated using the three-dimensional
model with ¢ = 0. As shown in this figure, the two results are identical because the three-
dimensional model with ¢ = 0 degenerates to the two-dimensional model. The dotted line in
figure 3 shows the directivity pattern calculated for a rigid cylinder with an equivalent radius.

f=5000 Hz
—— 2-D model P,=7.99dB
and 3-D model
with ¢ =0°
{Two layer)
---------- Rigid cylinder =4.31
270

Figure 3. Directivity Patterns at f =5000 Hz
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To compare relative scattered pressure fields for different cases (figure 3), the normalized

peak response amplitude scaling factor P, is given in the legend for each case. This factor was

calculated as follows:

(O \V2
P, =20log, | 2&:Pex [ 7
P R, )

1

7k, R, cosg 0

172
=20 logw{(—z—-—j 364" } dB. (101)

Figures 4 through 12 present directivity patterns calculated for the coated cylindrical shell
using the three-dimensional model. Figure 4 shows the directivity patterns calculated at
J= 5000 Hz for various angles of incidence ¢. In figure 4, the solid, dashed, and chain-dotted
lines denote the results for ¢ =0°, 30°, and 60°, respectively. As anticipated, the major lobe
width of the directivity pattern becomes broader as the angle of incidence increases. In the limit,

the directivity pattern becomes omnidirectional as the angle of incidence approaches 90°.

Figure 5 shows the directivity patterns calculated for the angle of incidence ¢ = 45° for
various frequencies. The solid, dashed, chain-dotted, and chain-dashed lines denote the results
for f= 2500, 5000, 7500, and 10,000 Hz, respectively. It is shown in this figure that the major
lobe width of the directivity pattern becomes broader as the frequency decreases. In the limit,

the directivity pattern becomes omnidirectional as the frequency decreases.

Figure 6 presents the effect of the coating thickness /; on the directivity pattern. The solid,
dashed, chain-dotted, and chain-dashed lines denote the results calculated at f= 5000 Hz and
@=45° for hy =2.54, 5.08, 7.62, and 10.16 cm, respectively. It is shown in figure 6 that the
difference between the results is not significant, although the results show some different values
for different coating thicknesses. Figures 7 and 8 present the results similar to those shown in

figure 6. Figures 7 and 8 show the directivity patterns for = 7500 Hz and /= 10,000 Hz,
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respectively. It is observed in both figures 7 and 8 that the effects of the coating thicknesses on

the directivity patterns are not significant.

Figures 9 through 12 present the effects of the coating material parameters on the
directivity patterns calculated for /= 5000 Hz and ¢ = 45°. Figure 9 shows the effect of the
dilatational wave speed (c01) in the coating on the directivity pattern. The solid, dashed, and
chain-dotted lines denote the calculated results for the dilatational wave speed cqo; = 2000,
20,000, and 200,000 cm/s, respectively. As shown in figure 9, the major lobe width becomes
narrower as the dilatational wave speed becomes lower. Figure 10 shows the effect of the loss

factor ({a1) associated with the dilatational wave speed on the directivity pattern. The solid,

dashed, and chain-dotted lines denote the calculated results for £; = 0.03, 0.3, and 0.9,
respectively. As shown in figure 10, the difference between the results obtained for different
loss factors is not significant. Figures 11 and 12 present the results calculated for various shear
wave speeds (cs01) and associated loss factors (1), respectively. In figure 11, the solid, dashed,
and chain-dotted lines denote the calculated results for the shear wave speed ¢s; = 2500, 5000,
and 50,000 cm/s, respectively. In figure 12, the solid, dashed, and chain-dotted lines show the
calculated results {1 = 0.3, 0.9, and 1.5, respectively. As shown in both figures 11 and 12, no
substantial differences are noticed for various shear wave speeds and the associated loss factors,

respectively.
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£=5000 Hz

-—-- =30 =7.49
— =60 =574

Figure 4. Effect of Incident Angle ¢ on the Directivity Pattern at f=5000 Hz

@ = 45°
—— f=2500 Hz =4.8
---- =35000 =6.81
—— =7500 =8.1
=10,000 9.3

Figure 5. Effect of Frequency f on the Directivity Pattern for Incident Angle ¢ = 45°
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Figure 7. Effect of Coating Thickness h; on the Directivity Pattern at f = 7500 Hz for ¢ =45°
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p=45°
f=10,000 Hz

— hy=254cm P,=8.95dB

----  =5,08 =9.34
—— =7.62 =9.48
—— =10.16 =9.72

Figure 8. Effect of Coating Thickness h; on the Directivity Pattern
at f= 10,000 Hz for p=45°

@=45°
f=5000 Hz

°
—— Cy =2000 cmis P, =6.31dB

- =20,000 = 6.81
——  =100,000 =7.23
- =1200,000 = 6.04

Figure 9. Effect of Dilatational Wave Speed c 91 on the
Directivity Pattern at f = 5000 Hz for ¢ = 45°
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p=45°
f=5000 Hz
— £4=0.03 P,=6.81dB

-—-- =03 =6.80
—_ =0.9 =6.77

Figure 10. Effect of Loss Factor (i Associated with the Dilatational Wave on the
Directivity Pattern at f = 5000 Hz for ¢ =45°

@ =45°

f=5000 Hz
—— €, =2500 cm/s P,=6.81dB
-—— = 5000 =6.81
—— = 50,000 =7.78

270

Figure 11. Effect of Shear Wave Speed cyg; on the Directivity Pattern

at f= 5000 Hz for ¢ =45°




£=5000 Hz
— £4=03 P =681dB
=0.9 = 6.81
- =15 =6.81

@ =45°

Figure 12. Effect of Loss Factor {;; Associated with Shear Wave on the
Directivity Pattern at f = 5000 Hz for ¢ =45°
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CONCLUSIONS

A three-dimensional analysis has been made of the scattering from a coated cylindrical
shell by a plane acoustic wave making an incident angle with the normal to the cylindrical shell
axis. Based on the limited calculations of directivity patterns, the following conclusions are
drawn:

1. The major lobe width of the directivity pattern becomes broader as the angle of
incidence (with the normal to the axial direction) increases for a given frequency.

2. The major lobe width of the directivity pattern becomes broader as the frequency

- decreases for a given angle of incidence.

3. The major lobe width of the directivity pattern becomes narrower as the thickness of the
coating increases; however, the difference between various thicknesses of the coating is
insignificant.

4. The major lobe width becomes narrower as the dilatational wave speed in the coating
becomes lower. The contribution of the loss factor associated with the dilatational wave to the

directivity pattern is insignificant.

Similar conclusions are drawn for the shear waves propagating in the coating.
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APPENDIX A
COEFFICIENTS OF EQUATIONS (75) THROUGH (88)

a7 = H 2 (k,R, cos)

0 0

aff =pcaail @R+ p (el - 2csl){ {[ﬁj +k§}Jn(a1Ro)+%J;(alRo>}

al(sn) —_plcdlaly (a1R0)+pl(cdl zcsl){ [(']%J +kz2:|Yn(a1Ro)+%Yr:(a1Ro)}

1(:) —plcdl { ik.B\J .. (BR, )}'*‘,01 (cjl - zcszl ){"‘ ik.B\J 0 (BR, )}

(n) _plcdl{ ik :Bl n+1(ﬂ1R )}+pl (cdl 2csl){+lk ﬁl "*1(’31R°)}

a = p1c§1{~ ;f’g—J,,(ﬂlRaJr—I’;o-ﬁlJL(ﬂlRo)} +py(ck - 2c31>{—’%J; (BR,) +§§—Jn (ARO)}

(n) =P d]{ 2 Yn (IBIRO) + —}’g—ﬁlyn'(ﬁ]RO)} + P (0311 - chzl){" Z%ﬂ'l“yn' (ﬁlRO) + —I%Yn(ﬁlRo)}

al’ =—~k,cosp H flz)' (k,R, cosp)
a = po’en], (@ Ry)

(n) = Po@ aly (@R;)



(n) = —ip,® o’k Jn+l (IBIRO)

aé;) ==—ip,0 o’k Yn+l (:81 )

(n)_ o '—J 1
pro (BRy)

(n) = Py —Y (BR,)

R,
oy _ ., | 2n 2’70‘1
a3 = Py J(R)” J(R)
" 2n 2na
agB)—pl szl{'_zyn(alR )_ 1Y( R )}

o = p, ﬂ{’(”“)k J,a(B.R) k., ,,H(ﬂlRo)}

ag;') = pPC 51{1(7’14'1) Y, (B R,) ik, By n+1(ﬂ1R0)}
aig = p, sl{ J (B R, )+ b J L(BR)— BT, (BR, )}

o = pic { Y. 6.R) + ﬁ; Y.(B.R,) - BV, (AR, )}

a? = pc :1{ 2ikza'1J,,(a1Ro)}

A-2




ag) = p]cszl {— 2ik,a,Y, (alRO)}

aﬁZ)=Plcfl{(n+l Jm(ﬂlR) 2 BT (BR)~ BT s (BR, )}

[”R“Zl—kZJ 2(BR)- "’“/31 " (BR)- BT, (ﬁl&)}

(n) __
A

(n) =pHe sl{ RIZZ Jn (ﬂlRO)}

= pC sl

ink,
Rt (ﬂlRo)}

2
n " n a
agz) = pchIalz‘]n (alRl) + 5 (031 - 2031 ){— !:('E‘] + kzzl*]n (alRl) + —R%Jn (alRl )}
1 1

1 1

2
., n a
61;3) = plcdlal Y (alR )+ Py (cdl 2531 ){' ':(EJ + k22:|Yn (R)+ ']il“yn (R, )}

af) = plcdl{ ik, B i (/ARI)}+ pi (e, —2c31){ikzﬂ1J;ﬂ wlRl)}

agy) = pich, { ikleIYn'H (ﬂlRl)}+ pi(cy —2c;, ){ikzﬁlyn'ﬂ (BiR, )}



A-4

(n) _
ass” =

plcdl{ 7l BR)+ ﬂl.f;(ﬂlR])}

+p1(ch =26 >{— P BRY 2 (BR >}

1 1

(,.) = pxcdl{ 2 Yn(IBI‘Rl)_l-_;_ﬂlYn'(ﬂlRl)}

(n) _
A5y =

a™ =
59

(n) _
sy =

(n) _
as ) =

(ny _.
A5, =

+P1(031-2031){— 2y J(BR)+Y, (AR, )}

R R

{pzcdzazJ @R)+ (i, - 2039[‘[[}’5‘) +k:JJn<ale>+%—J;(ale>”
{pzcnazy (@R )+ (s, - 2c32>{—((;’;—] +k3JYn(a2Rl)+%Y;<a2Rl>}

{p2c§2 [— ikzﬁzj:m (B.R, )]+ p(ci, —2¢, )[ikzﬂZ']r'Hl (B,R )]}

{,02032 L ikzﬂ?.yn'ﬂ (BR )]+ P (Cjz - chzz)[ikzﬂzyr:ﬂ (B8R, )]}

{pzciz[ 7 BRI+ 2B, (ﬂzkl)}

+p0, (052 - chzz ){_ ngz J,.. (,Bsz ) + %Jn (ﬂle )J




ag,';)s == pzcjz[ Rz Y, (B,R, )+ :BzY;: (B8R, )]
R

+p0,; (cdz 2cs2 )li e Ly (B Ry )+ Y, (R ):|

R R

. 2na
ac(sz)_pl Ca J( R) - 1J( R)}

]

u 2n 2na
a§3)_pl sl{ Y, (x R)_ !

I

oy = 131{’("“)"2 Joa(BR) - kBT (BiR, )}

2 = p o z(n+ l)kz
65 1 Ca

w(BR) =ik, B Y, (BR, )}

(n) _
227

ag = py sl{ J (ﬂlR)+'H’J (BR)-BT(BR )}
pl sl{

Y (BR)+ L Y (BR)- BT (BR )}

. 2n 2na,
at(SS) == pzcszz |:an (,R) - Tan (xR, )}
1

1




™ - Y, (@R) - 2227 (R )}}

Ago” = { s2 Rz n R

p2c2 ks ”"z Kt DK,y (BR) =ik By s (BoR, )J}

a =
e1o =

pzcz ey, (BR) = BT, (PR, )}}
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A1 =

) _
Qg3 =

a«g’;)z = {pz Cs2 ( j J.(BR )'*'IBZJ (B.R) - IB J (ﬁzR ):”

L pac?, ( JY(ﬂzR)wBZY(ﬂzR) By, (ﬁzR)H

a = p.c 31{ 2ikza1J,',(a1R1)}

(n) = pc sl{ Zikzalyn'(alRl)}

n

al = pic? (”“—ki}JmmR}) “/53 Joa(BR)~ B2 (B.R, )}

(7’1 +1 —k:j}’nﬂ (ﬁl‘Rl) ntl ﬁl n+l (ﬂl‘R )- :BIZYMI (IBIR )}

(n) _

Q" = PiC sl




n kz
ay = p, sl{ R —+Y,(BR, )}
1
agy — {pzcszz [_ 2ik.0,J (R, )]}

o {p2 52[ 2ik.a,Y, (e, R, )]}

o) ﬂl__kzj R
Al = {pz 52!:( R w1 (B2 R)) —

. n+1
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a;;‘) = Ik Yn+l(ﬁlR)
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ap =—J,(BR)
1

a$=%nm&>

al = —{azJ,', (e,R, )}
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aly = ~{~ik.J,..(B.R)}

ol = —{-ik.Y,.(BR)}
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Qgs” =

(n) _
Ay, =

(n) _
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(n) _
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(ny __
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(n) _
A1y =

(n) _
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(n) _
Q2=
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aills = psc { ( = j n(BR)+ 2T (8 R) - 1] wm}
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2% n+l 2 22Jn+l 2
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n n
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al(::,)9 = pzcdzazy (azR'z)
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R
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a14 = (kst cos¢3)
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APPENDIX B
SYSTEM OF LINEAR ALGEBRAIC EQUATIONS
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