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Time-domain Deconvolution 

Removes the Effects of 

Near-field Scatterers 

1. INTRODUCTION 

This report studies the removal of interference caused, in linear propagation, by 
near-field scatterers. The report's numerical example is a schematic representa- 
tive for the removal of electromagnetic interference caused by a mast, wing tip, 
or fin that is in the near field of a ship or airborne receiving antenna [1]. 

The above problem will be shown to reduce to the deconvolution of the right- 
hand side of Eq. (1) below, which could be easily accomplished using Fourier or 
Laplace transforms. This report's goal, therefore, is to find what may be the best 
alternative time-domain algorithm. The best time-domain algorithm considered 
here is competitive with frequency-domain algorithms in that the t-domain algo- 
rithm feeds one-degree-smoothed data into a first-kind- Volt err a-equat ion solver 
[2] that is second-order accurate and stable, and for which Richardson extrap- 
olation yields a fourth-order-accurate method. Special care is taken to find 
a deconvolution algorithm that accommodates discontinuity-related numerical 
noise in finite-difference-time-domain (FDTD) data. 

The central equation for the preferred algorithm will be shown to be 

/ R(s)ds =  ( KE(t - s)f-mc(s)ds, (1) 
Jo Jo 

where R is the received signal that results from the corruption of the incident 
signal /inc by a near-field scatter. The identity Eq. (1) follows directly from 
the Duhamel theorem [3] concerning the Heaviside-step response KR of a linear 
system. The discontinuous kernel A'H will be computed here using an FDTD 
(finite difference time domain) method, despite the noise introduced by the FDTD 
propagation of a discontinuity. Indeed, this approach Eq. (1) was stimulated by 
an earlier paper [4], which established the usefulness of FDTD propagation of 
discontinuities in linear scattering. This report and [4] are complementary in 
that the central operator in [4] is a convolution and the central operator here is 
the deconvolution of Eq. (1). 
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A prototype problem will be defined in Section 2. Section 3 considers an 
infinite sequence of time-domain algorithms, each of which could solve the pro- 
totype problem. The best of these algorithms is found using two numerical 
criteria. Section 4 solves the prototype problem of Section 2 numerically. The 
conclusion (Section 5) describes the relation of the present work to an earlier- 
published paper [4], which together find two uses for the FDTD propagation of 
discontinuous functions. The potential use of laboratory data also is discussed 
in Section 5. The Appendix studies the only approximation (truncation of su- 
perluminal components) that is made in the best time-domain algorithm. 

2. A PROTOTYPE PROBLEM 

A prototype problem is denned here, and it will later be solved numerically in 
Section 4 as an example of a more general procedure developed in Section 3. 
This prototype problem involves the realistic parameters of an existing antenna 
[5], which is sketched in Figure 1. This section defines the problem, says what 
it represents, and then explains how this report's analysis applies to more com- 
plicated problems that involve multiple scattering. 
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Figure 1.   Scale drawing of a metal disk and the 32 locations (x) 
where the total field is received inside the computational domain. 

There is initially, for t < 0, no field in the rectangular domain in Figure 1. 
At £ = 0 a i-dependent field becomes incident uniformly from the right, with 
its electric-field component being always perpendicular to the page. This field 
represents a pulse that is incident from a distant source, known also as a soft 



source, and the incident pulse is therefore added, at each timestep, to the total 
field at each point on the right-hand edge of Figure 1. The incident field itself 
is never received; instead, it propagates through free space (e = 1) and scatters 
from a conducting (a < oo) object, which is drawn as a disk in Figure 1, and the 
total ^-dependent electric field is then measured at each cross-marked location 
in the figure. It is assumed that the measurements do not perturb the field. 
Let Rj(t) be the field that is measured at the ;th location. Then this report's 
prototype problem is as follows: Given the total field Rj(t) at a single known 
location, knowing that the field was produced by a soft-source plane-wave pulse 
incident from a known direction, and knowing also the location, shape, and 
composition (e and a) of the scatterer, one must then compute the time trace 
of the incident pulse. 

The prototype problem (above) is a schematic representative for the removal 
of electromagnetic interference with a ship or airborne antenna that is in the 
near field of a mast, wing tip, or fin [1]. In Section 4 the incident field will be . 
taken to be a 1-cycle sinusoid with a 5.45-GHz carrier frequency, whose free- 
space wavelength is approximately the diameter of the steel disk in Figure 1. 
Because the wavelength is also comparable to the length of two cross-marked 
intervals in Figure 1, this prototype problem represents a 32-element phased- 
array radar antenna [5] that has a wavelength-sized metal pipe located 40-cm 
in front of it. That pipe introduces a reasonably large amount of interference, 
which we seek to remove. 

One of the prototype problem's more idealized assumptions is that the 
antenna measures the field nonperturbatively. This assumption neglects the 
important practical effect of multiple scattering among the 32 elements, and 
it thereby conforms to the tradition that prototype problems be simple. One 
way to simulate multiple scattering, however, would be to have an imperfect 
absorber in a small area near each x-marked element, and perhaps to have a 
small conductor behind each imperfect absorber. In any case, the FDTD response 
would still be a linear operator with respect to the incident field, regardless of 
what reasonable conductors and absorbers are used. The analysis in this report 
would apply without change to any such reasonable linear system, including all 
linear systems that have multiple scattering. 



3. NUMERICAL METHODS AND THEIR PROPERTIES 

Because the deconvolution problem (Section 2) involves a linear system, it can 
be easily solved using Fourier or Laplace transforms. This section will consider 
infinitely many time-domain alternatives (Eqs. (2)) and will use two numerical 
criteria to select the best alternative. 

Linearity yields infinitely many integral equations for the incident field /jnc. 
The equations are 

R(t) = I Ks(t - s)/inc(s)ds (2a) 
Jo 

d-'Rit) = ( KE(t - 5)/inc(s)d5 (2b) 
Jo 

dr2R(t) = I Km(t - s)f-mc(s)ds, (2c) 
Jo 

where d^2 is the square of the antiderivative operator öt
-1i?(i) = JQR(s)ds, 

and where the subscripted kernels indicate the delta-function response, Ks-, the 
Heaviside response, K-R, and the ramp-function [iH(t)j response, KtK, at the 
location where the received signal R is measured. In linear hyperbolic systems, 
such as linear t-domain electromagnetics, a propagation-of-singularities argu- 
ment [3] shows that Ks has a nonzero delta-function component; however, [4] 
showed that a bounded (L^) approximation to S could be propagated usefully 
using FDTD. Assuming that Kg in Eq. (2a) would be computed using such an 
LQO computation, it follows that the sequence of Eqs. (2a), (2b), (2c), ... are all 
first-kind Volterra integral equations (for /inc) with convolution kernels; whence 
the word "deconvolution" was brought into the title of this report. 

We now consider a numerical property that will be used as a selection 
criterion for Eqs. (2): Linz [2] showed that if the left-hand side of a general 
first-kind Volterra equation 

L(t)= [ K(t,s)f(s)dt 
Jo 

(3) 

is perturbed by an amount AL then the resulting perturbation in the solution 
of Eq. (3) is, in what is probably the best case, 

A/ = 0 (A"1 AL). (4) 



That ill-posedness result in Eq. (4) favors equations that have smooth left-hand 
sides; consequently, Eq. (2a) is eliminated as a candidate. 

We still have infinitely many candidates — Eqs. (2b), (2c), ... — from 
which we will be able to extract the best candidate only after a method for 
solving first-kind equations is described. This method will be described as it 
applies to the eventually preferred candidate Eq. (2b), but the same method is 
easily adapted to suit all candidates in Eqs. (2). 

Direct methods for solving first-kind equations (Eq. (3)) follow immediately 
from discretization of the integral. The direct midpoint-rule discretization of 
Eq. (2b) yields 

/: 1" [ix* m 

fn, 
[A*H m 

n-1 

Mn-fcE^.»-^      ' 

(5a) 

(5b) 
i=l 

where 

fn = Zinc [(n - |) h] 

KH,n^KE[(n-^)h} 

Jo 

(6a) 

(6b) 

(6c) 

are stepsize-/i discretizations. Notice that if 

hKE(h/2)\ <min(|/n|, ([CT^LD (7) 

then the parenthetical numerator of Eq. (5b) would be a small difference of 
large numbers, which would cause a loss of significant digits. Candidate (2b) 
is therefore preferred because a propagation-of-singularities argument [3] shows 
that KR(0

+
) ^ 0, whereas candidates Eqs. (2c), (2d), et seq. have integral 

kernels that are continuous and zero at t - 0, with the zeros being first order for 
Km, second order for ÜL>H> 

and so forth. Indeed, numerical experiments have 
shown that the above-described loss of significant digits causes a rapid numerical 
blowup for the first-order-zero case (Eq. (2c)). Thus, Eq. (2b) is the best of the 
infinitely many algorithms in Eqs. (2). 



We turn now to the numerical properties of the best method, Eq. (2b). 

Linz [2] has shown that error in the the direct midpoint-rule solution of 
first-kind Volterra equations is 

/exact ~fn = ^en+0(h% (8) 

where en is independent of the stepsize h. Examining the algorithm (2b) in light 
of Eqs. (4) and (8), we see that smoothing the data reduces the algorithm's ill- 
posedness, and that the smoothed data d^xR are fed into an algorithm Eq. (5) 
that is stable and second-order accurate, and for which Richardson extrapolation 
[2], based on Eq. (8), would yield a fourth-order-accurate solution. For any- 
given error criterion, the h4 method would allow one to increase the stepsize 
and thereby further reduce the method's noise sensitivity according to Eq. (4). 

An obvious challenge in using Eq. (2b) is the accommodation of the large 
amount of numerical noise that is caused by the FDTD propagation of the discon- 
tinuous function H(<) when computing KB- The propagated discontinuity could 
have been avoided by instead propagating the ramp function tK(t) and then 
differentiating, as in KB = dtKm, but noise would then have been introduced 
by numerical differentiation. Therefore, for the sake of simplicity, the kernel KB 

is computed directly by propagating H(i), which is similar to a process whose 
usefulness has already been established [4]. The stepsize h is decreased until the 
/i-dependent, discontinuity-related noise is contained in a frequency band that 
is separated from the spectrum of the main physical features of KB- In practice 
(Section 4) the numerical noise consisted of oscillations whose periods varied 
from 10h to 20h, regardless of the value of h. A 40-point centered filter $ was 
then defined, using tm = 19h and TM = 20A in (Al). The Appendix uses $ to 
derive the identity 

ör1($*-R) = ($*üCH)*/inc, (9) 

in which * henceforth represents J_ -type convolution. Notice that both Eq. (9) 
and its unfiltered predecessor Eq. (2b) are exact for all t. The next, and final, nu- 
merical consideration will, however, lead to an approximate version of Eqs. (2b) 
and (9). 

The wavefront of an FDTD-computed field travels with the superluminal 
velocity C/CFL because of the nature of time stepping in a CFL-stabilized com- 
putation. The filtered fields ($ * R) and ($ * üfH) were therefore truncated as 



($*ä"H)    t-2-*    ($*üCH)H(*) (10a) 

(**Ä)       ^    ($*Ä)H(t), (10b) 

where £ is now measured with respect to the analytically determined wavefront- 
arrival time (ta) at each receiver. (That arrival time is the same for all receivers 
in Figure 1. For more complicated media, the arrival time can be computed 
using characteristics or the eikonal equation [3].) The quantities on the right- 
hand sides of Eqs. (10a) and (10b) are used, respectively, as the KB and R terms 
in Eq. (5). Notice that the truncation in Eq. (10a) of the necessarily superluminal 
FDTD-computed K-& assures that the right-hand side of Eq. (10a) will have an 
initial discontinuity, which is beneficial from the standpoint of Eq. (7). This 
may be the only known computational advantage of the superluminal feature of 
FDTD. If, however, KB had been computed exactly by analytical means then, 
because of a propagation-of-singularities argument [3], it would already have 
been discontinuous and, because exact computations have no noise, filtering 
would not have been necessary. Regardless of whether KB is computed exactly 
or with filtered-then-truncated FDTD, one does obtain a discontinuous integral 
kernel that, together with an exact or filtered-then-truncated R, can be fed into 
Eq. (5), with the same numerical benefits that Eqs. (4), (7), and (8) ordinarily 
yield. 

The main disadvantage of truncation is that the procedure of feeding Eq. (10) 
into Eq. (5) is inherently approximate, unlike Eq. (9) which uses filtered-but- 
untruncated data. The Appendix shows that the truncation errors in (10), 
however, will vanish in the h -> 0 limit, provided that the underlying FDTD 
computation is reasonable; and in that matter there is a fine point Eq. (A16) 
that arises from a discontinuity. 

This section has considered infinitely many — but not all — time-domain 
methods. Resolvent-kernel methods [10], for example, seem especially appealing 
for processing many received signals; for if one could solve ($ * KB) * p = 1 
for p, then (filtered) incident fields could be quickly inferred using $ * / = 
R *($*/?) - Ä(0+)9t

-1($ * p). A numerical experiment, however, showed that 
solving ($ * KB) * p = 1 can be ill conditioned, but many other resolvent-kernel 
methods remain unexplored. 

4. NUMERICAL SOLUTION 

This report's prototype problem was defined in Figure 1 and Section 2. The 
incident field was a one-cycle 5.45-GHz sinusoidal pulse. That carrier frequency 
had been chosen to be at the midpoint of the operating band of the existing 



antenna [5] that this problem models. The corresponding wavelength was 5.5 cm, 
which can be compared in Figure 1 with the 3-cm element (x symbol) spacing 
and the 6-cm disk diameter. The steel disk had a 107-S/m conductivity and its 
permittivity was that of free space, and the remainder of Figure 1 had free-space 
properties. 

Fields were computed with an FDTD program that was written [6] in accor- 
dance with an early manuscript version of [7], and whose absorbing boundary 
condition was later replaced [6] with a Berenger PML [8]. This FDTD program is 
second-order accurate in space and time. The program was run with CFL = 1/2 
and for several grid refinements. The discontinuity-related noise in the Kn com- 
putation decreased as the grid was refined, and the spectra of the noise and 
the main physical features of the computed signals were well separated on the 
finest spatial grid (2840 x 5232), which yielded 4735 points per carrier-frequency 
period. The same 2840 x 5232 grid was used to compute each one-cycle-sinusoid 
response Rj(t) in Figure 2 and to compute KR. 
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Figure 2. The total signal received at every other location in Figure 1. 
These 16 signals have different vertical offsets, with the largest and 
smallest offsets used, respectively, for the top and next-to-bottom x- 
marked locations in Figure 1. Note the disk's shadow and the delayed- 
wave components. 



The integral kernel KR and each received signal Rj were both convolved 
with the 40-point filter $, as described in Eqs. (9) and (Al). The filtered func- 
tions $ * Rj and $ * KB. were truncated as in Eqs. (10) and (A7), and then 
the time origin was shifted so that t = 0 represented the pulses' analytically 
determined arrival times (<a). The filtered, truncated, time-shifted pulses were 
fed into a second-order-accurate routine (Eq. (5)). Each received signal was 
deconvolved separately from the 31 other signals, resulting in 32 independent 
inferences of the incident field /inc. A typical reconstruction is shown in Fig- 
ure 3, which corresponds to the signal received at the 15th cross from the bottom 
of Figure 1. Figure 4 shows that each of the 32 second-order-accurate recon- 
structions of /inc (dash-dotted curve with circles) reproduces the L^ norm of 
the one-cycle sinusoid (flat, boldfaced curve) /inc within 2%. The L2 norm (not 
graphed), whose square is proportional to the energy of a free-space pulse, is 
reproduced to within 1.3% error. 

o o 
IXI 

1.2 

0.8   - 

E      0.4 h 

C    °-° 

-0.4   - 

-0.8   - 

-1.2 

  Incident Signal 
 Received Signal                                " 

\           RECONSTRUCTED Incident Signal  • 

ft 
•jl 
ft \           /"'V. 

»               /   / 
*              /   ' k                          / t- 
»                         I ' 
t                        / ' 
I                      / ' 
I                    / ' 
\                   1 I 
\                 I 1 
1                / ' 
%              1 1 \             1  I 

\         /   ' \      /   1 
l\/    ' 
\**    I 
\        I 

.—!—■   \    'x . 1 1 . 1 ■—1 1 1 1 1—I—i 1—i—i— 

4e-10 5e-10 1e-10 2e-10 3e-10 
Time (sec) 

Figure 3. Reconstruction of the incident signal /jnc, using the signal 
received at the 15th location from the bottom of Figure 1. The incident 
signal and its reconstruction almost overlap. 
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Figure 4. Restoration of the Loo norm for the 32 locations in Fig- 
ure 1. Note the shadow and diffractive foci of the received signals. The 
reconstructed signals' norms were within 2% of ||/mc||Loo> which was 1. 

The predominant error in these 0(h2) results is barely evident in Figures 3- 
4. To find the predominant reconstruction error in Figure 3, look along the 
left-hand vertical axis for a brief, diagonal segment near 0.15 V/m. Similar 
features in all 32 of the 0(/i2) reconstructions predominate the relative errors 
||/«constructed -Zinc||/||/inc|| that are illustrated in Figure 5. Richardson extrap- 
olation was used [2] to obtain the 0(/i4) results in Figure 5. We see there that 
the extrapolation reduced the Loo relative error from PS11% to «8%, but that 
the L2 error remained & 4%. A detailed inspection of each 0(hA) time trace 
showed that it differed from the corresponding 0(h2) graph mainly in the first 
extrapolated data point. It appears unlikely, however, that these small, brief re- 
construction errors would have any practical significance for the radar problem 
that these computations model. That model radar problem, after all, has a steel 
pipe (Figure 1) that causes a deep shadow and diffractive foci in the received 
signals (Figure 4), which both the 0(h2) and 0(h4) deconvolutions have largely 
removed (Figures 3-5). 
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Figure 5. Lp relative errors in the reconstructed signals. Richardson 
extrapolation decreased the L^ error considerably, but left the L2 error 
essentially unchanged. 

5. CONCLUSION 

This report is related to [4], which used FDTD to compute the Kronecker-delta- 
function response, Ks, which [4] then used to propagate other incident fields /jnc 

using Eq. (2a). Reference [4] considered other reference pulses as alternatives to 
Ks, but it concluded that Ks was the simplest reference pulse to use. Thus, Ks 

and Eq. (2a) are best for the (convolutional) forward-propagation problem of [4], 
and Kn and Eq. (2b) are best for the (deconvolutional) reconstruction problem 
in the present report. These two combined methods Eqs. (2a)-(2b) are useful 
despite their integral kernels being FDTD-computed responses to discontinuous 
fields. The i-domain-deconvolution method of Eq. (2b), for example, is stable 
and 0(h2) accurate — it is 0(/i4) accurate after Richardson extrapolation — 
and it consequently may compete with frequency-domain methods. 
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Significant work was required because of the numerical error in a computed 
Heaviside response ÜLH- Because a discontinuous integral kernel tends to con- 
serve significant digits, as shown by Eq. (7), it was best to truncate (T) the 
FDTD-computed K-R and then filter out ($) the large-amplitude, high-frequency 
noise that would otherwise have obliterated the T-restored discontinuity. Those 
steps would have been unnecessary were K-& known exactly. 

We finally consider what one could do in practice, using laboratory data. 
Heaviside-step pulses are problematical in the laboratory, so it is likely that ÜLH 

would have to be inferred from other measurements. For removing interference 
in an operating band [u;min, u;MAX], for example, one could presumably infer 
K-R by propagating a reference pulse /ref whose spectrum covers [u;min, CJMAX] 

and whose risetime is <27r/u;. To infer ÜTH one would then solve Eq. (2b) for 
KH using the received signals R resulting from the known /inc = /ref • If such a 
Kn were truncated, then the result could presumably be used to reduce inter- 
ference in the operating band [u>min, U;MAX]- There are two final observations: 
The response to a short-risetime /ref can be synthesized by superimposing the 
responses to several band-limited signals. Second, as long as the propagation re- 
mains linear, the techniques developed here apply regardless of whether multiple 
scattering is evident in that linear propagation. 
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APPENDIX (filter and truncation) 

This appendix derives the identities Eqs. (A4)-(A5), which are used in the devel- 
opment Eq. (9) of this report's numerical method. That numerical method also 
uses a truncation-related approximation that is studied here in Eqs. (A7)-(A16) 
and shown, under a reasonable assumption, to vanish as the stepsize h tends to 
0. The assumption is that the superluminal parts of the FDTD-computed R and 
KB. tend to 0 pointwise as h —> 0. 

The numerical example in Section 4 uses a centered filter 

-tM +*m J-tm 

for which tm differs from TM by at most one timestep (/i), and min(tm, TM) > 0. 
That filter is also a convolution on (-oo, oo) 

/oo 
$(t - s)f(s)ds (A2) 

-oo 

$(t) = (Tu + tm)_1 H(t + TM)H(im -1), (A3) 

for a generic function /. We also note that /inc(*) = /inc(*)H(<), R(i) = 
R(t)E{t-tc), and KE(t) = KR(t)B.{t-tc), where tc = iaCFL < ia is the (super- 
luminal) FDTD-computed pulse-arrival time and ta is the analytical (lightspeed) 
pulse-arrival time. We will assume that tc > TM, as is true for the computation 
in Section 4. Next we will show that 

$*(dr1R)=d^1($*R) (A4) 

$ * (ÜTH * Zinc) = ($ * ÄH) * Zinc (A5) 

identically for all t G (-oo, oo). 

To derive Eq. (A4), use Eq. (Al) and the obvious definition of the an- 
tiderivative df

-1, and use a change of variables, to establish 

i PTM rt+s 

dr1 (* * R) = m     ,  ,      /        d5'  /        dsR(S)> (A6) 
J-M + *m J-tm Js' 
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which is identifiable as Eq. (A4) because TM < tc and R(t) = R(t)H(t - tc). 
Equation (A5) merely asserts the elementary associative property of convolution. 
The identities (Eqs. (2b) and (A4)-(A5)) yield Eq. (9). 

Although Eqs. (A4)-(A5) are identities for any linear system, such as phys- 
ical scattering or its FDTD approximation, the computations in Section 4 used 
truncated quantities 

To/(i) = /(*)H(t-ta) (A7) 

fox f e {KE, R} as in Eq. (10). Such truncation introduces errors 

AÄ = dr1 [To ($ * R)] - dr\$ * R) (A8) 

Atf = [To ($ * KE)} * /inc - ($ * KE) * /ine (A9) 

because the FDTD-computed functions I<E and R are supported on [ic,oo] and 
because tc = iaCFL < ia. We will now estimate Aß and Aj*-, starting with AR. 

Equation (Al) implies 

$*/ = ($* /)H(t + Tu - *c) (A10) 

for / € {R, KE}. Evaluate Eq. (A8) using Eqs. (A7) and (A10) to show that 
AÄ = -//a_T ($ * R)ds, which is independent of t. Apply Eq. (Al) and a 
change of variables to the previous equation to establish 

AÄ=-—i— /      / R(s)dsds'. (All) 
J-M + Zm J-tm Jtc-TM+s' 

Use Eq. (All) and the triangle inequality to estimate |AÄ| by bringing the 
absolute value through the integrals, then integrating the result over the union 
of all s'-dependent intervals of integration in the inner integral of Eq. (All), 
and then using R(t) = R(t)R(t - tc) to obtain 

*ä|< R (A12) 
Li(*c>*a+TM) 

The previous norm is over an interval that is only slightly larger, by an amount 
TM, than the support of the superluminal part of the FDTD-computed R. The 
assumption in this appendix's first paragraph and the observation that TM —>• 0 
as h -> 0 (because TM = 20h in Section 4) then imply that AR -> 0 as h -» 0. 
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Now we estimate AK in the h —»• 0 limit. Use the Young theorem [9] and 
the identity To ($ * KB.) = H(t + TM -tc)H(<-*»)($ * ÄH) to evaluate Eq. (A9) 
and obtain 

&K < 
Ls( —00,00) 

$*UTH 
L(T[*C— 7M, *a] 

/i, 
M°<'a] 

(A13) 

for all 5, p € [1, oo], where a  1 =l + s  1 —p 1. We will use Eq. (A13) to show 
lim^-^o A A- = 0 by establishing that there is a a for which 

lim 
h-*o 

$ * KB 
L<r[<c— TM, *a] 

= 0. (A14) 

Indeed, we will show that Eq. (A14) applies for all a £ [1, oo), the exclusion of 
oo being notable. For a = oo one can proceed in the most straightforward way, 
using Eq. (Al) and ÄH(*) = ÄH(*)

H
(* - *c), to obtain 

$ * KB < 
hoo[0;b] 

KB 
Loo[a—<m, 6+TM] 

(A15) 

for any a < b. The cr = oo case is excluded from Eq. (A14) because Eq. (A15) 
would bound the Loo[tc — TM, <a] norm of $ * KB from above by the Loo[ic, ia + 
TM] norm of KB-, which cannot be forced to 0 as h —> 0 because of the h- 
independent discontinuity at t = £a of the exact, analytical KB', but Eq. (A15) 
will soon be used as a lemma. Because ÄH is discontinuous at t = ia, we now 
evaluate the La(tc — TM, <a) norm (a < oo) of $ * ä"H by estimating separately 

the Jf
a_T

M and Jt *_T components of the definition of that La norm. The 
result, after some straightforward manipulation involving Eq. (A15), is 

$ * KB 
L<T[*C— TM, 'a] 

<(*a ~ *c) KB. + 

'-M KB 

Loo[*c, *a] 

Loo[*a—TM—<m, <a+TM] 

(A16) 

for all a 6 [1, oo). The first term in the sum in Eq. (A16) vanishes as h —*■ 0 
because of the assumption in this appendix's first paragraph. Then lim^o TM = 
0 implies that the left-hand side of Eq. (A16) vanishes in the same limit; and 
AK —» 0, too, because of Eq. (A13). We have now shown, subject to the 
assumption at the beginning of this paragraph, that max(|A#|, |A#-|) —> 0 
as h —* 0. Thus, the error introduced by truncation in Eqs. (10) and (A7)- 
(A9) vanishes as h —> 0, provided the underlying FDTD method is reasonable, as 
defined in the first paragraph of this Appendix. 
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