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1 Introduction 
Space-Time Adaptive Processing using a high performance scaleable computer was demonstrated under a cooperative 

agreement with DARPA to establish the application of embedded HPSC technology to a real time radar problem. This effort 
advanced the HPSC technology through hardware and software development support. 

The program consisted of three parts followed by a no cost extension. 

The first consisted of an Architecture Study to determine metrics associated with implementation of two STAP radar- 

processing architectures. 

The second investigated the tools associated with application development. Given the immaturity of the HPSC technology at 
the time of the study, this effort also applied RASSP tools to predict processing performance in terms of efficiency and latency. 

The third part consisted of a hardware/software demonstration where by the Adaptive Array Processor was selected for 
implementation. The Recursive Modified Gram Schmidt algorithm was presented as the required algorithm with very strict 
update and low latency requirements. This processor application was developed and successfully demonstrated a real time 
radar confirming that all requirements were met and that the predicted performance from the modeling effort was realized. 

The HPSC demonstration was followed by a no cost extension that was comprised of three studies. 

The first study of the extension was an architecture study to evaluate emerging commercial processing technologies 
leveraging HPSC and their application to STAP. For the initial demonstration, the HPSC implemented Adaptive Array 
Proces°sor°was required to interface to an existing Digital Beamformer which dictated the latency of the adaptive solution. An 
implementation based on HPSC was investigated and compared to Field Programmable Gate Array (FPGA) based solutions. 

The second study of the extension was an investigation of a Switching Network to provide sensor data to a Myrinet™ 
network of processors. Here DARPA s Reconfigurable Transport Engine (RCTE) technology is being exploited to provide a 
low latency interface to a high performance network. 

The third study of the extension was to determine the latency of adaptive processing solutions based on Motorola's emerging 
PowerPC technology for real-time signal processing. Here, different communication approaches were explored and compared. 

2 Processing Architectures 
A Pre-Doppler and Post-Doppler processing architecture was evaluated for implementation consideration. The Pre-Doppler 

processing architecture performs a reduced dimension space-time adaptive nulling function through adaptive combination of 
the input" antenna element data. This processing architecture is classified as Pre-Doppler STAP since the Adaptive 
Beamforming is performed on the data prior to coherent integration, or Doppler Filtering. The high level functionality of this 
benchmark includes Adaptive Weight Computation, Beamforming, Pulse Compression, Doppler Processing, and CFAR 

Processing. 
The input data set designed for use with this benchmark consists of a three-dimensional data-cube, of 18 antenna elements x 

18 PRI's x 36000 range gates, to be processed within a target 73 ms Coherent Pulse Interval (CPI) time. 

The processing bandwidth that is required to implement this processing architecture is approximately 25 Gflops. 



Figure I illustrates the input data cube as well as the processing function chain for this architecture 
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Figure 1- Pre-Doppler STAP Architecture 

The second processing architecture considered performs a reduced dimension space-time adaptive nulling function through 
adaptive combination of the input beam space data and is classified as Post-Doppler STAP since Doppler Processing is the first 
function performed. 

The high level functionality of this benchmark includes Doppler Processing, Adaptive Weight Computation and 
Beamforming, Pulse Compression, and CFAR Processing. 

The input data set designed for use with this benchmark consists of a three-dimensional data-cube, 18 elements x 18 PRIs x 
36000 range gates, to be processed within the target 73 ms CPI time. 

The processing bandwidth that is required to implement this processing architecture is approximately 32 Gflops. 

Figure 2 illustrates the input data cube as well as the processing function chain for this architecture. 
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Figure 2 - Post-Doppler STAP Architecture 

3   Architecture Definition Methodology 
The hardware Architecture Definition Methodology is performed in two stages. The first stage is the Mapping and 

Partitioning Feasibility Study that maps selected Radar Processing architectures onto the processing platform. The second stage 
is the Detailed Modeling and Timeline Simulation that takes selected processing functions and performs a detailed analysis in 
order to refine estimates created in the first stage mapping. 

The mapping and partitioning task determines the number of processors required for performing the specified processing and 
also accounts for specified overhead requirements. As a result of this partitioning analysis, the following Technical 
Performance Measures (TPM's) are derived for each processing stage: 

• Number of Nodes/Processors required. 

• Number of simultaneous I/O connections required. 

• Processing Throughput (floating point operations per second: flops) 

• Efficiency (%) 

• Latency (seconds) 

The Detailed Modeling and Timeline Simulation task takes a portion of the overall processing architecture, namely the 
Recursive Modified Gram-Schmidt with Error Feedback (RMGSEF) QR Decomposition [3] function from the STAP 
processing, and performs a detailed timeline analysis to examine processor utilization and latency. This function was chosen 
because of the processing complexity and the desired requirement for a low latency solution. 



The real-time radar demonstration targeted the RMGSEF algorithm with stringent latency (< 15 milliseconds) and sample 
rate (42 KHz) performance requirements. This effort included: 

Detailed design of the overall architecture including inter-processor communication and interfaces. 

Application algorithm mapping. 

Detailed software design and code. 

System implementation, integration and test. 

Application demonstration of topology and architecture. 

AEWSC analysis including processor benchmarks. 

3.1 Mapping and Partitioning 
The mapping and partitioning task determines the number of processors required for performing the specified processing and 

also accounts for specified overhead requirements. The decision to utilize either COTS or Custom components is also 
established at this time. Factors such as size, weight, data I/O and processing load are factors that are used as a guide to 
selecting either a COTS or Custom implementation. As a result of this partitioning analysis, the following Technical 
Performance Measures (TPM's) are derived for each processing stage: 

Number of Nodes/Processors required. 

Number of simultaneous I/O connections required. 

Processing Throughput (floating point operations per second: flops) 

Efficiency (%) 

Latency (seconds) 

Size, Weight, Power 

3.2 Modeling and Simulation 
The Detailed Modeling and Timeline Simulation task takes a portion of the overall processing architecture, namely the 

Recursive Modified Gram-Schmidt (RMGSEF) QR Decomposition function from the Adaptive Weight Processing, and 
performs a detailed timeline analysis to examine processor utilization and latency. This function was chosen because of the 
processing complexity and the requirement for a low latency solution. 

The real-time radar demonstration targeted the RMGSEF algorithm with stringent latency (< 15 milliseconds) and sample 
rate (42 KHz) performance requirements. This effort included: 

Detailed design of the overall architecture including inter-processor communication and interfaces 

Application algorithm mapping 

Detailed software design and code 

System implementation, integration and test 

Application demonstration of topology and architecture 

AEWSC analysis including processor benchmarks 

4   Algorithm Partitioning 
Algorithm partitioning is the process whereby the target algorithms are examined for parallelism and the data is partitioned 

for data transfer balancing and node processor loading. The parallelism of an algorithm allows it to be computed by multiple 
processing nodes all operating in parallel on a specific portion of the total algorithm. The partitioning of the data is utilized in 
conjunction with the parallelism of the algorithm to determine the processing load for a node computing a specific portion of 
the algorithm. In addition, the data partitioning is used to balance the data throughput into and out of a processing node. 

Estimated processing times are considered in relation to the processing basis time for that function, e.g., a PRI or CPI, and an 
equivalent number of processors is computed by dividing the processing basis by the estimate after adjusting for setup times 



required for data input and other preprocessing. From these estimates, the processing efficiency and throughput may be 
estimated for each function using the basis times. From this a course number of processors are determined that will execute the 
algorithm in the time required. 

The next step is to examine the data to identify a processor network that fully utilizes the available computational bandwidth. 
This is accomplished by analyzing the data flow though the algorithm and determining the computational and data transfer load 
associated with each function in the algorithm. In this manner "packets" of data, which are sub-cubes of the entire data cube 
can be mapped to a specific processing node so that a balance between the computational bandwidth and the data transfer 
bandwidth can be achieved. Figure 1 and 2 depict packet shapes for the various processing stages, indicated by the shading on 
the data-cubes for each function. 

The processing timing for the SHARC processors was based on the ADSP2106x Share User's Manual [4] and the Ixthos 
lXLibs-21k DSP Libraries User's Manual [5]. These manuals provide timing estimates for various operations in numbers of 
instruction cycles and are converted to processing times. An overhead factor of 30% is used to account for processing code not 
included in the initial sizing estimates. It is assumed that the SHARC processors are running at 40 Mhz, which corresponds to a 
25 ns instruction execution time. 

The processing timing for the PPC processors was based on the PPC603e User's Manual and the Mercury DSP Libraries 
User's Manual. It is assumed that the SHARC processors are running at 200Mhz. 

The Myrinet™ data channels are assumed to be capable of data throughput rates of 160 Mbytes/sec but for purposes of this 
analysis, this number is reduced to 120 Mbytes/sec to provide an engineering margin. 

The RACE way™ data channels are assumed to be capable of data throughput rates of 160 Mbytes/sec but for purposes of 
this analysis, this number is reduced to 120 Mbytes/sec to provide an engineering margin. 

The SHARC Link Port interfaces are assumed to be capable of data throughput rates of 40 Mbytes/sec, however, for 
purposes of this analysis, this number is reduced to 30 Mbytes/sec to provide an engineering margin. 

5   Adaptive Array Processing Platform Architecture 
Space-time Adaptive Processing (STAP) algorithm architectures for Airborne Early Warning (AEW) Radar applications are 

evaluated for implementation based on three unique hardware platforms. These are the High Performance Scalable Computer 
(HPS'C) [1], Mercury Computer Systems SHARC VME module utilizing RACEway, and the Ixthos SHARC MCM VME 
module. 

All of the three platforms enable the design of a programmable, scalable, expandable hardware architecture using a multi- 
processor environment. The primary difference among the platforms is in the quantity/type of DSP per module and the 
available interface options for the movement of the data. Each platform is implemented using either Analog Devices 
ADSP2106x Super Harvard Architecture (SHARC) processors or Motorola PowerPC processors connected in a multi- 
processor environment. 

The HPSC architecture is implemented using 8 Analog Devices ADSP2106x Super Harvard Architecture (SHARC) 
processors connected in a multi-processor environment utilizing Myrinet™ switching technology. The Myrinet™ components 
provide a high-speed packet switching and routing capability using intelligent co-processors to perform data movement. This 
combination of SHARC processors for data processing and Myrinet™ LANai processors for data movement allows application 
code to be written which is scalable to different data-cube sizes and processing throughputs and allows the communications 
code to be de-coupled from the applications code. A processing node in the HPSC context is defined as a group of four 
SHARC processors, interconnected via a local bus to a common processing node storage memory and a LANai Myrinet™ 
interface chip. The LANai interface chips are then interconnected to a multi-port switch that provides interconnectivity to other 
processing nodes. 

The Mercury Computer Systems architecture is implemented utilizing a VME Motherboard that can accommodate multiple 
compute nodes (CNs). Mercury offers i860, PowerPC, and SHARC daughter cards, each available in multiple configurations. 
These CN's enable various processing components to be added to the motherboard resulting in a configuration that meets the 
need of the system. Concurrent RACEway connections allow input, inter-processor communication, and output to occur 
simultaneously. The PowerPC Compute nodes were utilized on this platform. This provided a total of 4 PPC processors per 
module. 



The Ixthos SHARC Muti-Chip Module (MCM) VME module contains 16 SHARC DSP's that are packaged utilizing MCM 
technology. Link ports are the interfaces that provide data transfer capability. In addition, the module provides two PMC 
locations for specialized I/O and or capability. 

6   Adaptive Array Processing 
The following section describes the architecture studies that were performed for the Adaptive Array processing. The 

architectures described here are based on the modeling and evaluation of the Recursive Modified Gram Schmidt algorithm for 
the generation of the Adaptive Weights. 

6.1   Adaptive Array Processing on the HPSC Platform 
The HPSC platform is based on the SHARC DSP as the compute engine and the Myrinet™ network as the data transport 

mechanism. The Myrinet™ network is a packet based communication network; data is sent as packets with header information 
including the packet destination and routing tables in the LANai processors determine the paths the packets take. The data 
partitioning into packets as described above further determines the network topology between processing stages, including the 
size in number of ports of the Myrinet™ switches and the number of connection paths to each processing node. 

Interconnect diagrams detailing required numbers of processing nodes and Myrinet™ communication channels are created 
for these Pre and Post Doppler architectures. These interconnect diagrams are then mapped onto the HPSC hardware 
architectures in order to determine the following hardware metrics: 

• Number of processor/communication boards 

• Size 

• Weight 

• Power; Mflops/Watt 

Figure 3 details the construction of an HPSC 3.3-volt multi-chip module (MCM), including eight SHARC processors, local 
memory and Myrinet™ interface units using Myricom LANai chips. 
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Figure 3 - HPSC 3V MCM Block Diagram 

These modules are a target for a future development of the HPSC program and will be used to construct a 32-processor 
arithmetic processor (APU) board. These boards will be used in conjunction with Myrinet™ switching boards (XBAR), 
consisting of Myrinet™ crossbar switches and I/O buffers as illustrated in Figure 4, to construct an HPSC chassis. 
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Figure 4 - HPSC Processor and Switching Boards 



A combination Pre/Post Doppier HPSC architecture is next examined that can handle either configuration that utilizes a 
single hardware solution. The dual functionality is accomplished via software programmabiiity of packet routing tables loaded 
into the LANai chips in each processing node which allow the data to be re-routed to implement one architecture or the other. 
This programmable functionality is an extremely desirable feature for next-generation radar systems since it demonstrates the 
flexibility in algorithm and architecture implementations possible in the entire radar processing chain following the A/D 
converters. Figure 5 illustrates the resulting combination Pre/Post Doppler architecture. 
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Figure 5 - Combination Pre/Post Doppler HPSC partitioning 

A total of 179 processing nodes are required, partitioned into functional stages as illustrated in Figure 5 and the number of 
simultaneous connections between stages are indicated. The Post Doppler architecture is the driver in terms of bandwidth, 
requiring 29 simultaneous connections between the coherent integrator and beamformer stages. Post Doppler functionality is 
achieved in a sequential left to right data flow as seen in Figure 5. The Pre Doppler configuration is achieved by routing 
element data around the coherent integrator stage into the beamformer and then routing packet data from the pulse compressor 
back through the coherent integrator and on to the final processing stages. 

Table 1 details the TPMs for each processing stage of the combination architecture. Included in the table is throughput in 
Gflops, processing efficiency (including overhead and margins), communication bandwidth (output) in MB/sec, and processing 
latency in PRIs. 



Table 1 - TPM's for HPSC Combination Pre/Post Doppler partitioning 

Function Gflops Proc Eff 
% 

Comm 
BW 

Latency 
(PRI) 

Input data 576 

Coherent Int 87 44.4 3410 1 

STAP 1.9 31.3 cl -4 

Beamforming 10.3 48.6 252 1 

Pulse Comp 88 731 252 18 

AMR 0.6 30.0 252 1 

CFAR 1.6 24.8 <40 1 

For this study, a chassis is considered utilizing 12 APU and 4 XBAR boards totaling 384 processors and 60 external 
Myrinet™ I/O connections with an estimated 3 ft3 volume and peak throughput of 46 Gflops. Two of these chassis are required 
to implement the combination Pre/Post Doppler architecture as depicted in Figure 6 by the shaded vertical bars. 
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Figure 6 - Concept HPSC Chassis and Combination Pre/Post Doppler Architecture 

The numbers of processing nodes allocated in each chassis for the processing functions is also shown, along with the 
Myrinet™ connections between APU boards. The numbers of simultaneous connections are labeled and the shaded circles 
represent crossbar switches on the XBAR boards as shown in Figure 4. 

6.1.1   HPSC Adaptive Array Processing Modeling and Simulation 
The modeling and simulation task was performed on a portion of the overall processing architecture, namely the Recursive 

Modified Gram-Schmidt (RMGSEF) QR Decomposition function from the Adaptive Array Processing, and performed a 
detailed timeline simulation to examine processor utilization and latency. This function was chosen because of the processing 
complexity and the requirement for a low latency solution. Because of the low latency requirement of 186 - 54x57 QR 
decompositions and three back-substitution solutions in 18 ms, the problem must be partitioned over a number of parallel 
HPSC processors that communicate through Myrinet™ and possibly additional SHARC link channels. 



The RMGSEF QRD processing is modeled using a Rapid Application Specific Signal Processing [6] (RASSP) discrete event 
timeline simulator tool (developed by Carl Hein) called CSIM. The CSIM environment allows behavioral models to be created 
for each hardware element in the HPSC processing architecture. In addition, a network interconnection topology is defined 
between each of the hardware elements. An application software generator is then written which defines the processing tasks to 
be performed on each processing element (PE) using the previously created hardware and topology descriptions. The 
definitions are in the form of processing delays, communication packet sizes and destinations, and the appropriate timeline 
sequencing of interdependent events. The generator creates a program for each PE describing the required sequence of 
processing and communication events. The CSIM environment then combines the hardware models with the topology and 
application software models and performs a timeline simulation as depicted in Fig. 7. 
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PE SE ME 
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Network Topology 

DO»«    □ 

Tli_t 
Simulation 

(HW/SW-co- 

Modify 

I 
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l 
Schedule 

I 
Application 

Software 

Programs 

for each PE 

Board1/CE1 
Recv 1024 
Compute 3.2-uS 
Send512,2 
Send 512, 3 
Recv 1024 

t 
Modify 

Figure 7 - CSIM Block Diagram 

The outputs of this simulation may then be examined and plotted for individual processor utilization, communication 
network utilization and the resulting latencies for the indicated processing functions. The RMGSEF QRD algorithm performs a 
QR-decomposition on an upper triangular matrix of data. For the applications considered here, an input data set of 3 PRIs of 18 
element data results in a 54x54 triangular matrix. This matrix has three augmented columns since weight solutions for Sum, 
Delta, and Omni channels are required, resulting in a 54x57 matrix. The RMGSEF data flow is illustrated in Fig. 8. 
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Figure 8 - RMGSEF Data Flow Diagram 

Depicted are the data inputs and outputs for diagonal computation elements and interior computation elements of the matrix. 
Input data vectors of 57 elements, [x;(t), d(t)], arrive at the top of the matrix and are processed resulting in a set of 1593 ky 
terms, which are used in back substitution operations to solve for the 162 adaptive weights. Depending on the desired PRF, a 
range of 106 to 186 input sample vectors are processed for each QR-decomposition. 

For this analysis, communication models were constructed of the HPSC SHARC PEs, the local bus interconnecting the PEs 
within a node, the LANai interface, and the Myrinet™ switches. Next, the RMGSEF algorithm was partitioned and mapped 
onto the proposed HPSC architecture in three configurations: block recursive using Myrinet™ only, sample recursive using 
Myrinet™ only, and sample recursive using SHARC links for matrix communications. These mappings were translated to 
application software processing and communication models for CSIM. Processing time estimates were created as described in 
the first mapping task using SHARC instruction cycle counts for the desired processing functions. Improved processing time 
estimates were obtained using benchmarks of optimized code for single diagonal and interior elements running on actual 
SHARC processors. These estimates were coded into CSIM processing delay instructions. Data packet sizes and routings were 
created for the proposed algorithm mappings and coded into CSIM data communication instructions. 

Three different processor mappings are considered in the simulation study. A target HPSC hardware subset of 16 processing 
nodes is allocated for this processing task. The first mapping implements a block recursive version of the RMGSEF algorithm 
in which all of the 106 to 186 input sample vectors are available simultaneously as a batch for concurrent processing. This 
mapping utilized a vertical partitioning scheme of the QR matrix elements into the 72 SHARC PEs to maximize the vector 
utilization of the data within the individual PEs. 

The second mapping strategy uses a sample recursive version of the RMGSEF algorithm in which input samples becomes 
available at periodic intervals to the top of the QR processing matrix. For this mapping, a horizontal PE allocation was used 
following the sequential data flow down through the QR triangle. Individual PEs do not have sufficient resources to process 
full rows at the top of the QR matrix, therefore, the top rows of the triangle are split into two PEs. Processing tasks are 
overlapped with bottom rows of the triangle which have fewer elements to perform load balancing within the PEs. This sample 
recursive mapping is a finer grain approach than the block recursive mapping since the processing tasks are performed on a 
sample basis. 

These first two mappings, however, involve relatively coarse grain message transfers between processors, occurring only 
after entire columns or rows of processing are completed. On the order of a few hundred or thousand messages are used to 
simulate one cycle of the QR decomposition. 

The third mapping also utilizes a sample recursive strategy, however, communications of data between individual QR matrix 
elements are allowed to occur using the SHARC link ports between PEs. In this model, data messages are sent horizontally and 
vertically as soon as they become available at an individual matrix element, rather than after a complete row has finished 
processing. This mapping also employs split rows at the top of the QR matrix, however, in this scheme, more sequential rows 
are grouped into single PEs near the bottom of the triangle to aid in load balancing. Figure 9 illustrates the QR matrix mapping 
onto the subset of PEs for the sample recursive with SHARC links case; each circle represents one of the two types of 
computation tasks as defined in Fig. 8. 
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Figure 9 - Block recursive Processing Timeline 

PE numbering starts at PE #6, accounting for processors which are reserved at the top and bottom of the triangle for pre and 
post-processing functions. This processing scheme is much finer grain than the previous two in terms of data flow, since each 
data message is sent to adjoining PE's as it becomes available. On the order of 500,000 messages were used to simulate one 
cycle of QR decomposition. 

The simulation was performed over one or more cycles of QR decomposition processing and the results were plotted on a 
timeline as a function of the individual processors from which the overall algorithm latency is measured. Figure 10 illustrates 
an example simulation output depicting the processing timeline for one parametric run of five cycles of the RMGSEF QRD 
algorithm. 
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Time (uS) 

Figure 10 - Block Recursive Processing Timeline 

While the HPSC hardware was under development; the CSIM environment allowed the RMGSEF QRD to be simulated as a 
parametric function of various processing and network time delays and efficiencies in order to evaluate the effects on the 
processing latency. Results are included as a function of various processing overheads and Myrinet™ transfer latency times. 
Figure 11 illustrates the RMGSEF algorithm latency for a specified combination of Myrinet™ and SHARC link parameters for 
the three mappings: block recursive and sample recursive (SR) using Myrinet™ only, and sample recursive using SHARC 
links. For each mapping, the latency is shown for three specified PRFs, which require processing of different numbers of 
sample vectors. 
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Figure 11 - Processing Latency Comparision 

6.1.2   HPSC Adaptive Array Processing Demonstration 
The demonstration effort focused on meeting firm requirements including real world design considerations including design 

margins, control and built-in-test. A set of hardware was developed and software tools were evaluated over the course of the 
demonstration. In addition, sets of benchmark metrics were developed from the results. 

The design included meeting the following key requirements: 

RMGSEF algorithm 

54 degrees of freedom with 3 desired responses 

Full-floating point arithmetic 

Sample rate of 41.667Khz (1 sample every 24us) 

Maximum latency of 18ms (15ms from last sample input) 

In addition, real system issues were addressed including staggered pulse repetition frequencies, E-Scan Update, built-in-test, 
and algorithm parameter control. 

The system design was performed with a goal of a minimum of 20% processing and communication margin. It was assumed 
that not all overheads could be accounted for in the system design phase prior to code, test and integration. 

Early in the program a decision regarding the processor was required in order to meet the lead times associated with 
procuring and developing hardware. The ADSP21062 was selected based on its relative maturity and availability as compared 
to the ADSP21060. The memory limitations of the ADSP21062 were considered lower risk than the anomalies associated with 
the ADSP21060. Development of the first Arithmetic Processing Unit indicated that the 40MHz processing cycle was not 
attainable due to loading on the Myrinet™ LANai chip. Thus the module operating frequency and therefore the processor 
frequency was downgraded to 33MHz (32.51 MHz to be more precise). This translated into a maximum of 792 instruction 
cycles in a 24ms sample interval. Incorporating the design margin resulted in a maximum of 634 cycles in a 24ms sample 
interval. The SHARC Link communication was also adjusted with the partitioning requiring only 80% of IX link port speeds. 
This resulted in 13Mb/s peak transfer rate on the SHARC Link or 317Bytes every 24ms sample interval. 

Based on the above processing limitations and baseline partitioning, it was determined that 14 nodes would be required to 
source intermediate calculations relating to weight back-substitution. The worst case update rate is 380Hz or every 2.6ms. This 
establishes 1376 Bytes as the worst case number of data bytes output by a processing node. Thus the Myrinet™ performance 
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requirement was to transfer 1376Bytes in (80% x 2.6mSeconds) / 14nodes or 1376Bytes in 148mSeconds.   (The best case 
transfer was 664Bytes and the average transfer was 9 lOBytes). 

The diagonal element of the RMGSEF algorithm was optimized to perform in 27 cycles. The internal elements of the QRD 
were optimized to 9 cycles each. The processing overhead was broken down into control, subroutine calls and buffer polling. 
This overhead processing was estimated to be 100 cycles, resulting in 534 cycles (634 - 100) for diagonal and internal element 
algorithm processing. 

The system hardware was designated as the Airborne Early Warning Scalable Computer (AEWSC). It consisted of a single 
enclosure and chassis containing cooling fans, power supplies, a seven slot VME backpanel and a thirteen (13) slot HPSC 
backpanel. The VME backpanel was populated with an embedded SPARC-10 single board computer from Force computers, 
two (2) custom interface cards to exchange data with the Digital Beamformer (DBF) and a MMV card from Sanders containing 
nine (9) ADSP21062s operating at 32.5MHz. The HPSC backpanel contained eight Discrete Arithmetic Processing Units 
(DAPUs) and a single Memory Topology Expansion Module (MTEM). A block diagram of the AEWSC is illustrated in Figure 
12. 
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Figure 12 - AEW Scalable Computer - Adaptive Array Processor 

The Discrete Arithmetic Processing Unit (DAPU) contains two processing nodes where each node consists of four 
ADSP21062 digital signal processors operating at 32.5MHz. Each node supports up to 64MBytes of DRAM and accesses the 
Myrinet™ network via a dedicated LANai processor with 1MByte of SRAM. The nodes or the DAPU are connected via a 
combination of SHARC Links and an 8-port Myrinet™ switch. The module supports four (4) Myrinet™ bidirectional links to 
the HPSC backpanel and a total of sixteen SHARC Links for interconnecting adjacent modules. See Figure 13 for a block 
diagram. 
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Figure 13 - HPSC Discrete Arthmetic Processing Unit (DAPU) 

The Myrinet™ Topology Expansion Module (MTEM) contains two Myrinet™ 8-port switches and provides for module-to- 
module and chassis-to-chassis communication. Each module supports thirteen (13) backpanel Myrinet™ links (1-meter 
protocol) and three chassis-to-chassis links (25-meter protocol). The MTEM provides a two-dimensional mesh packet 
switching network with flow control and cut-through routing associated with Myrinet™. See Figure 14 for a block diagram. 
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Figure 14 - HPSC Myrinet™ Topology Expansion Module (MTEM) 

The software environment employed to develop the adaptive computation and STAP control functions is outlined below: 

•     Host / STAP Controller Development Tools 

Force SPARC-10 Solaris 2.4 

GNU C Developers Tool Kit 

VME and RS232 Drivers 

Myrinet™ Software (Myrinet™ / SBus-Solaris 2.4) 

Motif Graphical User Interface 

Visual Data Analysis Software 

HPSC Development Tools 

ADI Tools (Version 3.2) 

Myrinet™ Communication Library 

SHARC Libraries 

SBUS Myrinet™ Driver 

HPSC Runtime Tools 

Debug Monitor (Version 1.0 Release 96.11) 

SHARC and Myrinet™ Profilers 

File Conversion Utilities 
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Note that no real time operating system was used in the development of this application. 

The STAP / HPSC software was subdivided into two: STAP Controller supporting operator control of operation and test, 
beamsteering processing and weights display, and the Adaptive Array Processing (AAP) consisting of QR decomposition of 
sampled data matrix and explicit evaluation of weights via back-substitution. Additional AAP consisted of screening of sample 
data, format conversions between fixed and floating point and summation with the beamsteering data. 

The AAP code was further partitioned into Summation, QRD, and Weight Back-substitution. The summation code resulted 
in four executable code segments running on seven processors. The QRD code was reduced to a single executable code 
segment running on fifty-six processors. The Weight Back-substitution code consisted of four executable code segments 
running on four (4) processors. 

The user interface to the STAP Controller consisted of a Motif Graphical User Interface (GUI). The GUI provided for a 
hierarchic set of windows providing prompts and data entry windows to the user. The STAP Control software was partitioned 
according to these user interface windows consisting of: 

• File 

• DBF (Digital Beamforming) 

• BSP (Beamsteering Processing) 

• AAP (Adaptive Array Processing) 

• RTP (Real-Time Plotting) 

• HELP (On Line Help) 

In all, 43 user screens were developed to provide the user with control and test of the entire STAP subsystem. 

6.1.3  Bechmark Metrics 
The measured benchmarks are listed in Table 2. 

Table 2 - Benchmark metrics 

QRD Weight NOTE 

Sustained Input Data Rate 20 MB/S 5 MB/S Bytes of data input per unfl time 

Sustained Computation Throughput 1,111.5MFLOPs/S 13.2 MaOPs/S Achieved results per unH time 

Peak Processing 56 Processors 3640 MFLOPs 1 Processor 65 MFLOPs # Processors x 32.5 MHz x 2 FLOPS 

Overall Efficiency 30.6% 20.3% Sustained / Peak 

Fixed Workload Speedup 162 N/A (Single Processor) Ratio of time lor a Single processor / Multiple 

Processor 

Computation-to-Communication 1 2.7 16FLOPs/16Bytes, 

34344FLOPs/12,744ByteS 

Local Memory Demand 20% 23% AOSP21062 = 65,536 Words 

Execution Time (Latency) < 7 milliseconds Measured wall time from first sample input to weight 

output 

Execution time or latency was a key driver in the mapping of the application to the architecture. The maximum latency 
required must be less than 15 milliseconds from the time the last sample arrived until the last weight was computed and ready 
to be transferred to the DBF. 

The Sustained Input Data Rate is 20 MB/S for the QRD portion of the processing function. The internal QRD processing 
was performed in 39 pipelined processing stages. Transfers internal to the QRD processing varied with an average input data 
rate of 12.8MBytes/Second, and the average output data rate of 12.3MBytes/Second at each of the 39 stages. 

The Sustained Computation Throughput was calculated for the QRD and Weight processing operations. The QRD 
processing required an inverse operation that was estimated at 12 FLOPs. Thus 135 samples times 26,676 FLOPs 
(=3.6GFLOPs) are performed in 3.24microseconds resulting in 1,111.5MFLOPs/Second. The screening and format conversion 
were not included in this benchmark. 
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Peak Processing of a single processor was determined by multiplying the processor clock rate by the number of operations 
applicable to the problem, which in this case were two: multiply and add. (FFTs were not being performed thus the third 
simultaneous operation could not be utilized.) 

The Fixed Workload Speedup is the ratio of the time needed for one processor to perform a fixed task to the time needed by 
the multiple processor. The Fixed Workload Speedup was obtained in three of steps. The first step involved optimizing the 
QRD code. The non-optimized QRD code on a single ADSP21062 required 591mSeconds to process 135 samples. After using 
Standard optimization (leveraging both Program Memory and Data Memory and using compiler switch -03) the QRD code on 
a single ADSP21062 required 362ms to process 135 samples. The second step involved development of a custom library 
routine optimized to perform the QRD. This effort resulted in a single ADSP21062 requiring 67.4ms to process 135 samples. 
The final speedup was obtained by distributing the code over 56 processors resulting in a time of 5.112ms to process 135 
samples. (The times are based on a 32.5MHz clock cycle). See figure 15 for a block diagram depicting this process. 
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Figure 15 - Fixed Workload Speed Up 

Note that the 5.1ms time includes the QRD pipeline delay and illustrates the latency. The QRD was performed on 135 
samples every 3.24ms across the 56 processors resulting in a 21X speedup. In other words, 1.9ms (5.1ms - 3.2ms) is required 
to fill and empty the QRD processing pipeline. The overall computation speedup resulting from the combined effort of 
software optimization and multiprocessing was 182X. 

The Computation-to-Communication for the QRD is based on the Internal Cell computation that is responsible for 95% of 
the QRD computation. The total computation within the cell is 16 FLOPs. Each internal cell receives a single complex element 
made up of 8 bytes and outputs a single complex element made of 8 bytes. 

The Local Memory Demand was not a driver given that the algorithm was so finely partitioned over many processors. The 
resulting load image was identical for all processors performing the QRD. 

6.1.4  AEWSC Components 
Figures 16 through 21 are pictures of the components utilized in the AEWSC. 
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Figure 16 - HPSC Lab Configuration 

Figure 17 - AEWSC Chassis 
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Figure 18 - HPSC APU Module 
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Figure 19 - HPSC MTEM Module 
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Figure 20 - Weight Interface Module 

Figure 21 - Radar Input Control Interface Module 

22 



6.2   Adaptive Array Processing on COTS Platforms 

6.2.1 Introduction 

The purpose of benchmarking the RMGSEF algorithm on COTS platforms was to determine the processing latency and 
minimum hardware requirements to implement the RMGSEF algorithm in the allotted time. Two benchmark programs were 
developed. The target processor for this trade study was a PowerPC (PPC) microprocessor. 

This report contains the following sections: 

• Description of algorithm to benchmark 

• Measurements required 

• Benchmark Implementation steps 

• Analysis/Summary of results 

6.2.2 Algorithm to Benchmark: 

The benchmark programs were implemented using the PPC on VME modules supplied by the vendors CSPI and Mercury 
Computer Systems. The major implementation differences between the vendor modules are found in the board interfaces. 
CSPI uses a Myrinet™ interface, while Mercury Computer Systems uses a Raceway interface. 

The algorithm to benchmark receives, as input, 135 frames of 54 elements and 3 channels every 3.2ms. The RMGSEF 
algorithm receives floating point input data. The input data labeled Rdata in Figure 22, received from RCIM is summed with 
data from the BSP table. Refer to Figure 22 for a description of this process. 

From RCIM Rdata Vector 

To RMGSEF 

BSP Table 
From STAP 
Contoller 

Figure 22 - Data Flow for Summation Process 

After the summation process is complete, the data passes through the QRD processors. The QRD function is the matrix 
computation used to calculate the 'K' values. Refer to figures 23 and 24 for the RMGSEF algorithm data flow. 

After processing all frames of data in a PRI, the K's are then compressed in a back substitution method to create the weights. 
These weights are then output to the Digital Beamformer for use in forming the beams. Refer to Figure 25 for the weight 
generation from the K's generated in the RMGSEF algorithm. 
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Figure 25 - Weight Generation 

6.2.3  Performance Measurements 
To accurately evaluate the performance of the RMGSEF algorithm on the PPC, measurements need to be recorded for each 

benchmark. The following are the measurements that were compiled. 

The Algorithm measurements include: 

• Process time for each sample through summation processing. 

• Process time for each row or QRD matrix. 
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• Process time of entire matrix per sample. 

• Process time to calculate weights from matrix. 

• Time to process all samples. 

• Overhead reduced by blocking samples together. 

• Latency through system. 

6.2.4  Measurement of Processing Latency 
Processing Latency through the system is defined as time from which the first input frame is received to the time the 

calculated weights are output for use. Multiple steps were taken to determine the number of processors required to compute the 
algorithm at the specified data rate and latency for the data to progress from start to finish. 

Each benchmark was implemented in three steps. The first step measures the performance utilizing a single processor. The 
second step utilizes four processors and the third step on more than four processors. 

6.2.4.1 Single Processor Performance 
Before deciding on any allocation of functions to processors, the RMGSEF algorithm was benchmarked on various PPC 
platforms. The platforms consisted of different speed processors and busses on Mercury Computer System and CSPI boards. 
The measurements were taken by running the function for 100 passes and the average time for each step was calculated. 
Tables 3 and 4 show the results of the measurements. 

Table 3 - Performance Set 1 

Function Mercury lOOMhz 
PPC 

Mercury 200Mhz 
PPC 

Mercury 300Mhz PPC - 750 
with 1MB External Cache 

Sum/sample 83.322 us 45.897 us 24.593 us 

QRD/sample 771.461 us 494.923 us 157.518 us 

Wts Compress 808.620 us 433.740 us 214.848 us 

Total Latency 119.086 ms 76.120 ms 25.388 ms 

Table 4 - Performance Set 2 

Function CSPI 200Mhz 
PPC w/ 33Mhz bus 

CSPI 200Mhz PPC 
w/ 66Mhz bus 

CSPI 300Mhz PPC w/ 66Mhz 
bus 

Sum/sample 54.0 us 43.0 us 34us 

QRD/sample 629.0 us 335.0 us 328us 

Wts Compress 490.0 us 377.0 us 291 us 

Total Latency 96.939 ms 52.548 ms 51.1ms 

After collecting the times for all functions, the implementation of the summation function was found to be inefficient. The 
function was receiving data as packed complex fixed point. This data was then unpacked, floated, and then summed. An 
assumption made here is that all data is received by the summation function as full 32-bit floating point. The summation 
function was modified and the test re-run on the 200Mhz PPC (Mercury board). Using the new implementation the timing of 
the summation function (9.3 us) showed a 5x improvement in speed. 
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6.2.4.2 Four Processor Performance 
Based on the measurements of each of the functions shown above, the following shows the functional allocation to 

processors for the full up multi-processor architecture. Each solid lined box in Figure 26 represents a PPC. 
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Figure 26 - Multi Processor Block Diagram 

The solid lines connecting the processors represent the interface (Myrinet™ - CSPI/ Raceway - Mercury). For this study 
only four processors were utilized due to limited hardware resources. Because of this, the summation function was combined 
with the data driver image to allow it to be executed by the available processors. In addition, step 2 only used 2 processors to 
run the QRD function. All of the interfaces were implemented and verified and timing measurements will be taken to 
determine overhead savings and latency. 

For step 3 (full up architecture) additional processors will be utilized so that the RMGSEF algorithm can be executed in the 
required time. At that time the full latency can be measured and compared between platforms. 

6.2.4.2.1 Data Flow and Processor Description 

6.2.4.2.1.1        Data Driver 
The flow of data through the processors starts at the data driver. The data driver reads in data from files containing the Sdata 

and Rdata. This data is floated and setup for transmission to the summation function. Parameters input to the data driver 
include: 

Sdata filename 

Rdata filename 

Timing results filename 

Number of samples to process 

Number of samples blocked together 

Number of passes (i.e. number of time to calculate weights) 

After formatting the data for the test, blocks of data are output to the summation function. Each time a sample (or block of 
samples) is output to the summation function a time stamp is recorded. The time stamp is compared to the time stamp taken 
when a weights complete notification is received. The data driver continues to output data until all passes (command argument) 
have been completed. At this time a "halt" command is sent through the pipeline of processors. The recorded time stamps are 
then output to a results file for inspection. 
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6.2.4.2.1.2 Summation Function 

Upon receiving data, the summation function records a time stamp. The data is then processed and sent to the first QRD 
processor. After the data transmission is started a second time stamp is recorded. These time stamps are used to calculate the 
total time it took to process the block of data input. Parameters input to the summation function are: 

• Timing results filename 

The summation processor continues to process data until the "halt" command is received. At this time the recorded time 
stamps are output to a results file for inspection. 

6.2.4.2.1.3 QRD Function 

Upon receiving data, the QRD function records a time stamp. If a "reset" command is received, the message is passed along 
to the next QRD processor and the intermediate values are reset. If a "compute QRD" command is received, the QRD function 
is processed and then the results are sent to the next QRD processor. If a "collect K" command is received, all the K's are 
output to the weight compress function. After the block of data is processed a second time stamp is recorded. These time 
stamps are used to calculate the total time necessary to process the block of input data. Parameters input to the QRD function 
are: 

• Start row to process 

• Number of rows to process 

• Timing results filename 

The QRD processor(s) continue to process data until the "halt" command is received. At this time the recorded time stamps 
are output to a results file. 

6.2.4.2.1.4 Weight Compression Function 

Upon receiving data, the weight compression function records a time stamp. When all the K's are received from all the QRD 
processors, the weights are calculated by compressing the K's matrix. After the weights are calculated, a notification is sent to 
the data driver. For the Mercury benchmark this notification is a mailbox interrupt. For the CSPI benchmark the notification is 
a message. The data driver then records the time the notification is received. This time is used for analysis later to determine 
the total latency throughout the entire function. After sending the notification, the calculated weights are compared with known 
good weights. Status of this comparison is recorded. Parameters input to the weight compression function are: 

• Timing results filename 

The weight compression function continues to process data until the "halt" command is received. At this time the 
comparison results and timing results are output to a results file. 

6.2.4.3 Performance Results 
Step 2 of this process was limited to 4 processors on each platform. The two QRD processors were setup to process about 

half the number of computations in the RMGSEF matrix. The first QRD processed the first 17 rows. The second processed the 
last 37 rows. The main objectives of this step were to measure overhead savings by blocking samples together and to prepare 
the code for expansion to the full set of required processors in step 3. Measurements were taken at the time of the first sample 
output, the start and end of each function processing data, and the time when weights were fully calculated. Table 5 shows the 
measurements collected for each platform. 
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Table 5 - Multi Processor Performance 

Platform Process 
Block 
Size 

Summation 
Time Per 

Block 

QRD0 Time Per 
Block 

(First 17 Rows) 

QRD1 Time Per 
Block 

(Last 37 Rows) 

Weight Time 
Per Block 

Total Latency 

Mercury 200Mhz 1 8,160 ns 157,925 ns 141,868 ns 466,500 ns 27,602,820 ns 

Mercury 300Mhz 1 72,720 ns 70,704 ns 257,280 ns 13,264,464 ns 

Mercury 200Mhz 2 16,685 ns 151,708 ns 137,808 ns 464,760 ns 25,230,180 ns 

Mercury 300Mhz 2 144,000 ns 140,304 ns 257,184 ns 12,246,288 ns 

Mercury 200Mhz 4 30,447 ns 589,035 ns 539,837 ns 465,300 ns 24,741,660 ns 

Mercury 300Mhz 4 303,600 ns 281,520 ns 256,992 ns 11,831,664 ns 

Mercury 200Mhz 8 60,013 ns 1,149,828 ns 1,063,595 ns 464,880 ns 25,152,060 ns 

Mercury 300Mhz 8 569,040 ns 559,488 ns 257,088 ns 11,808,816 ns 

Mercury 200Mhz 16 123,821 ns 2,143,636 ns 1,991,357 ns 465,060 ns 25,765,980 ns 

Mercury 300Mhz 16 1,133,952 ns 1,120,800 ns 257,232 ns 12,206,304 ns 

Mercury 200Mhz 32 332,819 ns 3,844,920 ns 3,556,872 ns 466,440 ns 28,067,580 ns 

Mercury 300Mhz 32 2,260,032 ns 2,244,480 ns 258,048 ns 13,235,808 ns 

Mercury 200Mhz 64 534,650 ns 6,376,880 ns 5,918,720 ns 465,900 ns 32,898,060 ns 

Mercury 300Mhz 64 4,507,536 ns 4,484,928 ns 258,048 ns 15,307,536 ns 

Mercury 200Mhz 135 1,620,999 ns 19,088,640 ns 17,669,100 ns 466,260 ns 61,154,100 ns 

Mercury 300Mhz 135 9,500,160 ns 9,433,680 ns 257,472 ns 39,943,344 ns 
■■     -  

Where: 

Total Latency is the time from the output of the first sample to summation to the time the "Weights Complete" notification is 
received by the data driver. 

6.2.4.4 Full-up Architecture 
Due to limited availability of hardware, this step of processing the data at full speed with a full compliment of processors has 

not been completed at this time. Table 6 contains the estimates of the number of processors needed and the approximate 
latency and execution time of the algorithm. The time per computation was calculated using the QRD time on one processor 
and the number of non-zero cells in the RMGSEF Matrix. 
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Table 6 - latency Estimates for 300Mhz Mercury PPC Module 

Estimated Latency 
4,445,707(ns) 

Sum Time per Sample QRD Time Per Sample Weight Time Number of 
Computations in RMGS 

Matrix 

Time Per Computation 

24593ns 157518ns 214848ns 1647 114.767213ns 

Interface Transfer Speed (50% 
 derated)  

Number of Samples Per Block Time available to process 
number of Samples/Block 

12.5ns/Byte 96000 

Processor number Number of Rows 
Processed 

Processing Time for 
Number of Rows 

Message Size Data Transfer Time 

1 3 77123.57ns 1832 22900ns 

2 3 72991.95ns 1736 21700ns 

3 3 68860.33ns 1640 20500ns 

4 4 86304.94ns 1544 19300ns 

5 4 78959.84ns 1416 17700ns 

6 5 89518.43ns 1288 16100ns 

7 5 78041.7ns 1128 14100ns 

8 6 79877.98ns 968 12100ns 

9 8 84468.67ns 776 9700ns 

10 13 89518.43ns 520 6500ns 

TOTALS 
54 805665.8ns 160600ns 

6.2.4.5 Summary 

The benchmark programs implemented on the PPC were done to determine the total latency incurred when running the 
RMGSEF algorithm on the CSPI and Mercury boards. Using the first two steps stated above, we are able to make a better 
estimate on number of processors required to process data through the RMGSEF and what the expected latency would be. 

The I/O load from processor to processor is minimal. Both interface types are capable of transferring up to 160MBytes/sec 
and all transfers are estimated to require no more than 25% of that peak. As samples are blocked together, the overhead of the 
transfer setup is less and therefore will reduce the I/O load even more. 
One problem found with the Mercury Raceway is that the console server periodically checks up on each board in the system. 
When this occurs we have noticed a difference in time to complete certain functions. For example when measuring the times 
for each sample being processed by the summation function, we would see an occasional 40-60us measurement. The normal 
time measurement of this function is about 7-8us. Unfortunately this can not be turned off. If the I/O scheme is not designed 
properly, this added time may cause the algorithm to miss some data. If the I/O scheme is not designed to accommodate this 
feature, the added time may cause the algorithm to miss some data and collapse the refined solution. 

Overhead savings and total latency decreases as samples are blocked together. After 8 samples the total latency starts to 
increase. Therefore blocking of samples should be limited to no more than 8. 

As shown in Table 5, 10 - 300MHz PPC-750 processors would be required to process the data at real time. The current 
estimate for the same benchmark on the CSPI 300Mhz board may require more processors since much of the speed of the 
algorithm is limited by the cache memory available in the processor. The limitation can be seen in the timing comparisons of 
the 200Mhz and 300Mhz times collected on the CSPI board. 
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The information in Table 6 supports this estimate and even shows that fewer processors would be needed. The latency 
measured when using 2 PPC processors for the QRD portion of the algorithm 12.5ms. 

6.3   Adaptive Array Processing on the Ixthos Platform 
The Ixthos platform utilizing the IXZ16 module is evaluated as an alternative solution for the Adaptive Array Processing. A 

reduction in size, weight and power consumption is the goal over the HPSC solution. 

A functional block diagram of the AAP utilizing the HPSC modules is given in Figure 12. The alternate AAP architecture 
utilizing the IXZ16 is shown in Figure 27. 

The functions of the MMV, such as data screening and format conversion, as well as weight calculations performed by APU 
boards are now handled by one IXZ16 board. In addition, the QR decomposition requires four IXZ16 boards as opposed to 
eight boards in the HPSC architecture. 

Each IXZ16 board has link port support in addition to VME and an optional IXI32D multi-drop interfaces. The link ports 
allow communication from processor-to-processor, node-to-node, and board-to-board similar to the HPSC. 

The QRD processing would be performed in a similar manner as is performed in the HPSC with the transfer of K's taking 
place over the IXI32D multi-drop interface. 

6.3.1   The Ixthos AAP Data Path 
The data flow and control remains largely the same in this architecture as in the HPSC architecture. The main difference is the 

absence of the Myrinet™ interface. The functions of the ROM and the STAP controller are explained in the following 
paragraphs which were taken from the AEW Scalable Computer Beam Steering Processor Baseline System Definition, revision 
I. 

Figure 27 shows the data flow between the hardware components of the AEWSC. This provides an overview of the 
AEWSC, and shows the partitioning between the hardware and the software. It also illustrates the interfaces between the 
various modules particularly the interface between the hardware and software. 

The STAP Controller module acts as the VME slot 1 controller. It interfaces to a User Interface in the form of a monitor, 
keyboard and mouse. The STAP Controller also accepts radar commands, including operating frequency and electronic 
steering angle, from the Radar Controller. The STAP Controller distributes radar commands and user commands to the 
appropriate modules over the VMEbus. The STAP Controller queries the various modules on the VMEbus for status. This 
module is an embedded SPARC-10 board from Force computers with a VME interface with master capability and a Myrinet™ 
interface. 

The STAP Controller receives user supplied Mode information and Commands and relays this to the AAP and DIU. The 
Modes consist of BIT Mode, Adaptive Mode with Periodic BIT, Adaptive Mode without Periodic BIT, Reset Adaptive with 
Periodic BIT and Reset Adaptive without Periodic BIT. 

Commands supplied by the STAP Controller consist of Initialization commands, Operation commands and an algorithm 
Reset command with the exception of the Initialization command which initializes the entire AEWSC, commands are issued to 
the DIU - RCIM module over the VME bus. 

The Parameters are RMGSEF algorithm parameters consisting of RMGSEF - Alpha, Gamma, QRD.PRI and Exponents for 
RDATA, and Weight data format conversions. Alpha and Gamma are values used directly in the RMGSEF algorithm. The 
QRD:PRI parameter forces a certain number of QRDs to be used in updating the weights. The exponents are used to convert 
the RDATA from 16-bit fixed point values to 32-bit full floating point values, and the Weights from 32-bit full floating point 
values to 16-bit fixed point values. Alpha, Gamma and Exponents are supplied to processors responsible for format conversion 
over the Myrinet™. The QRD:PRI is supplied to the RCIM so that proper control may be generated. 

The User may request Monitor and Status information to be gathered and displayed by the STAP Controller. The Monitor 
words indicate the current operation of the AAP and DIU. The Status Words indicate the occurrence of certain events in the 
AAP and DIU. The STAP Controller must query the various AAP / DIU modules over the VMEbus to determine the complete 
system status. 

The STAP Controller also supports various tests to insure proper operation of system hardware. Tests are aimed at the DIU - 
RCIM and WIM custom designs and the communication paths within the AAP. 
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The ROM is the RDATA Control Interface Module. This module receives RDATA vectors from the DBF. It also receives 
control information from the STAP Controller over the VMEbus. The RCIM meters out this data in an implementation specific 
format to the Arithmetic Processing Units for processing. It also generates timing and control signals. These timing and control 
signals are derived from the timing signals received from the DBF and the controls received from the STAP Controller. The 
RCIM is a custom module that contains a VME slave interface. 

The RCIM receives timing signals from the DBF, buffers them, and sends them on to yet undefined growth destination. 
These three signals are the Zero Range Pretrigger (DBFAAPPTRIG), the CPI Trigger (DBFAAPCPI), and the System Clock 
(DBFAAP8MHZ). The Zero Range Pretrigger signal marks the PRI boundaries. Using this signal, the RCIM can determine the 
QRD:PRI ratio if this is not specified by the STAP Controller. The RCIM counts 24msecond intervals to determine the number 
of samples to be processed as part of the QR-Decomposition. Whenever the RCIM detects a change in the PRF, it sends a 
Reset followed by BIT data for downstream processing. Two PRI's are reserved for this Periodic BIT. This is possible because 
these two PRIs are fill pulses where no weights are generated by the AAP. The System Clock is used to derive and align timing 
signals for the RCIM and the WIM. 

The RCIM receives RDATA vectors from the DBF interface. One hundred ninety RDATA vectors are always received from 
the DBF, even though only 186 or less will be used. It stores these vectors in a Dual Port RAM, and strobes this data into the 
APUs using the signals provided by the RCIM. The RCIM also has a RAM which contains BIT data (RDATA received from 
STAP Controller), which the RCIM may select instead of the Dual Port RAM data containing DBF RDATA. The RCIM also 
constructs and sends the Sample Header Word to the downstream processors. The Sample Header Word contains a command 
to the downstream processors. The commands are: NOP (No operation required - discard data) RESET the RMGSEF 
algorithm, perform a QRD, Collect Ks and generate adaptive weights, or Break processing. 

The RCIM also supports VME interrupts that are triggered from the CPI Trigger. This feature is required to support initial 
testing of the BSP when the transfer of CPI commands from the STAP Controller must be synchronized to the data stream in 
the absence of CPI timing from the radar system and Radar Controller. 

The Arithmetic Processing Units (APUs) are Digital Signal Processing modules (Ixthos' IXZ16) which contain the AAP 
Computer Software Configuration Item (CSCI). The AAP CSCI performs the RMGSEF algorithm on the data presented to it 
by the RCIM, and outputs the antenna element weights to the WIM. 

The MMV APU has been moved into one of the IXZ16 boards and provides an interface between the Link ports and the 
VMEbus. WTDATA will be supplied to the MMV over a Link port and relayed to the WIM via the VMEbus. 

The WIM is the Weight Interface Module. It receives the antenna elements from the MMV APU and outputs them to the 
DBF. The WIM is a custom module that contains a VME slave interface. 

The WIM also supports a DBF interface to supply message data in the form of initial weights and Range Sample Addresses. 
In addition the WIM supports a hard-wired reset to the DBF that can be commanded by the STAP Controller. 
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Figure 27 - Ixthos Adaptive Array Processor 
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7   Digital Beamforming 

7.1   Introduction 
This section describes the Digital Beamforming that is performed. In addition, various trade studies are included that 

indicate the possible implementations. 

The beamformer produces Sum, Delta and OMNI beams utilizing 18 input data channels. Figure 28 is the functional block 
diagram of the processing that is performed in the beamformer. 
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Figure 28 - Beamformer Functional Block Diagram 

7.2   DIGITAL BEAMFORMER FUNCTIONAL DESCRIPTION 
This section will describe the functions performed in the Digital Beamformer (DBF). 

7.2.1 Input Channel Data from the Receiver Subsystem 
The DBF accepts inputs from the Receiver Subsystem. Each of the 18 channels send complex I/Q data in 14 bit two's 

complement format. Each set of 18 channel samples represents one range cell of a PRI. 

7.2.2 Sample Processing for Beam Formation 
The DBF samples the input channel data of the Receiver. A sample is comprised of 18 complex data values, one from each 

channel. Samples per PRI are stored until they can be processed and transmitted to the AAP. 
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7.2.3 Sampling Criteria Definition 

The DBF maintains two distinct sampling criteria every PRI to process the channel samples necessary for the adaptive 
weight calculations in the AAP. Each channel sample contains 18 complex data points from a particular range cell in one PRI. 
The channel samples must be saved by the DBF for both sampling criteria used for each sector. The DBF transfers 18 channel 
samples from each sampling period to the AAP every PRI. 

7.2.4 Sample Transfer from the DBF to the AAP 

Three PRI's are required to form an rs data vector. Each rs vector consists of 54 complex channel samples, 18 channel 
samples during the last three PRI's. The number of data vectors sent from the DBF to the AAP is a function of the PRF. 

For a 300 Hz PRF, 14,580 (16 bit) words are transferred from the DBF to the AAP. This is an equivalent rate of 
4.81Mbytes/s. 

7.2.5 Input Data Storage 

The input data from the Receiver Subsystem must be delayed in the DBF until the adaptive weights can be applied to it. 
Memory corresponding to a length of 5 PRI's has been allocated in the DBF for data buffering. 

7.2.6 Weights 
An adaptive weight vector is a 54x1 complex vector with each complex weight component being a 16 bit two's complement 

value. Three such vectors are transferred from the AAP to the DBF every PRI, one for each beam. The DBF receives and stores 
the adaptive weights until they can be applied to the corresponding data vector, r. A new weight set could be applied to the 
complex multipliers every PRI. 

7.2.7 Beam Formation 
The DBF computes and outputs three primary beams, SUM, DELTA and OMNI. Each beam is a 24 bit two's complement 

complex vector. The DBF also outputs a single pulse Sum Environmental (SUMenv) beam, a Delta Bypass beam and an OMNI 
Bypass beam, each as a subset of their corresponding primary beam counterparts. The DBF uses the adaptive weights from the 
AAP along with un-delayed, one PRI delayed and two PRI delayed data vectors to form the beams. 

Construction of the three primary beams requires that the DBF perform inner product calculations of either the quiescent 
weights, b, or the adaptive weights, w, with the data vectors, r. The 54 inner products are summed to form the beam. Scaling 
is performed to convert the beam output to a 24 bit fixed point format. 

7.2.8 Beamforming Algorithm 

The DBF utilizes the following Beamforming algorithms to process the 18 input channel samples into the three primary 
beams (Sum, Delta, Omni). 
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Sn = 

x=18 

I 
x=1 

Vi (x) Rn(x) + V* (x+18) Rn-T(x)   +   \% (x+36) Rn-2T(x) 

Dn = 

x=18 

I 
x=1 

Wd(x) Rn(x) + Wd(x+18) Rn-T(x)    +   Wd(x+36) Rn-2T(x) 

On = 

x=18 

z 
x=1 

W0(x) Rn(x) + W0(x+18) Rn-T(x)    +   W0(x+36) Rn-2T(x) 

Sn equals sample n of the Complex Output Sum Beam, 
Dn equals sample n of the Delta Beam, 
0n equals sample n of the Omni Beam, 
x equals the input channel number, 

\fl& . Wtj. W0 represent the conjugate of the weight vector over 3 PRIs (54 complex 
weights per beam) calculated by the AAP. 

Rn(x), Rn-T(x), Rn-2T(x) represents the receive channel samples from the 3 
PRIs with n representing the range bin number within the PRI and T is the num 
berof rvectors (range bins) per PRI. 

Sn. Dn and On are formed by summing the weighted input signals over 3 phase centers 
(3 PRI). 

7.2.9 Sum Environmental Beam 

The fourth beam, Sumcnv is a by-product of the Sum Channel construction. Sumenv is formed from 18 of the 54 w and r 
values. The set of wr values are either the sum of the un-delayed inner products, or the sum of the one PRI delayed inner 
products or the sum of the two PRI delayed inner products of the Sum Channel. The selection is based on a control word from 
the STAP Controller. Scaling is performed to convert the beam output to a 24 bit fixed point format. 

7.2.10 Delta Bypass Beam 
The fifth beam, Deltabyp is a by-product of the Delta Channel construction. Deltabyp is formed from 18 of the 54 w and r 

values. The set of wr values are either the sum of the undelayed inner products, or the sum of the one PRI delayed inner 
products or the sum of the two PRI delayed inner products of the Delta Channel. The selection is based on a control word from 
the STAP Controller. Scaling is performed to convert the beam output to a 24 bit fixed point format. 

7.2.11 Omni Bypass Beam 
The sixth beam, Omnibyp is a by-product of the Omni Channel construction. Omnibyp is formed from 18 of the 54 w and r 

values. The set of wr values are either the sum of the undelayed inner products, or the sum of the one PRI delayed inner 
products or the sum of the two PRI delayed inner products of the Omni Channel. The selection is based on a control word from 
the STAP Controller. Scaling is performed to convert the beam output to a 24 bit fixed point format. 

7.3   DBF IMPLEMENTA TION TRADE STUDIES 
Two implementation solutions were studied for performing the beamforming. The first was based on utilizing the HPSC 

modules assuming 32 processors per module and the second was based on an FPGA solution. 

7.3.1   DBF Requirements Summary 
The following are the driving requirements in the implementation of the DBF algorithm. 

• 18 channels 

• 3-Pulse Temporal Delay 

• Sum, Delta, & Omni Beams 

• 9 x 18-weight Complex Inner Products (162-weights) 

• 8MHz Sample Rate 
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• 16-bit Fixed Point Multiplies 

• Accommodate Summation Bit Growth 

7.3.2 SHARC DSP Characteristics 
The following are the characteristics that are used to estimate the number of DSP processors required to implement the DBF 

processing using the HPSC modules. 

• CLOCK SPEED = 40Mhz 

• CYCLE TIME = 25 NANOSECONDS 

• 3 FLOPS/CYCLE = 120MFLOPS Peak 
*** Supported by FFT Instructions *** 

• 2 FLOPS/CYCLE = 80MFLOPS Peak 
*** Supported by Inner Products *** 

7.3.3 HSPC DBF Sizing Estimate 
Table 7 contains estimates of the number of operations required to implement the DBF. 

Table 7 - DBF Processing Load 

FUNCTION EQUATION MOPS EFFICIENCY #OF 
PROCESSORS 

Formatting &MHz(Smpls)*[(l8*2)](Assmb)+[(l&*2)](Mpys) 576 576/ 
(80Mflops*25% 
EFFICIENCY) 

29 

Complex Inner 
Products 

8MHz>(Smpls)*[[(54*6)](Mpys)+[(54~ 
l)*2](Adds)]*3(Beams) 

10320 10320/ 
(80Mflops*57% 
EFFICIENCY) 

226 

Control Overhead 255(# of processors) + 30% TOTAL = 331 

An HPSC node consists of four SHARC processors resulting (331 Processors / 4) = 83 Nodes 

7.3.4 DBF - Design Trade Study 
From this information it will be possible to evaluate several possible implementations. The following are the primary driving 

factors in the establishment of the DBF architecture utilizing the HPSC modules. 

• Distributing 576MB/s to 331 processors while minimizing the processing latency. 

• MTI Function dictates recursion. 

• Partitioning data by Beams - 576MB/s is tripled to 1.728GB/s. 

• Partition Data by Range (preferred approach). 

7.3.5 DBF - HPSC Implementation 
Figure 29 represents the system implementation showing the driving factors. 
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Figure 29 - DBF HPSC System 

As can be seen from Figure 29 above, the distribution of the data to the HPSC modules is a driving factor in the architecture. 
Figure 30 shows an implementation utilizing the HPSC modules and a Myrinet™ Network for the distribution of the data. 
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Figure 30 - HPSC DBF Architecture 

With this architecture, the following are the requirements for the data transfer. 

• 83 Range Data Sets are required to be transferred every PRI = 1 Range Data Set every 3 lus. 

The following are the measured HPSC Myrinet™ transfer and latency times. 

• Processor to Processor - Myrinet™ TRANSFERS 

Latency = 120us. Throughput = 25 MB/s. 

• Off board - Myrinet™ TRANSFERS 

Latency = 60us. Throughput = 50 MB/s. 
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If the data is gathered into large blocks, the Myrinet™ overhead can be reduced. For example gathering the data as follows 
allows the transfer requirements to be met. 

8x83 Range Data Sets are required to be transferred every 8xPRI or 21 ms = 8 Range Data Set every 253us 

8x21052 Range Bins*4 Bytes(I&Q) / 83 Data Sets = 8116 Bytes/Data Set. 

8116 Byte Myrinet™ message requires = 222us by each node. 

In addition to the data, 83 weight sets need to be transferred to the DBF from the AAP every 3 his. The time for transferring 
the data for a single node is as follows: 

162 Weights x 8 Bytes(I&Q) = 1296 Bytes/Weight Set 

1296 Byte Myrinet™ messages requires = 86us by each node. 

As can be seen a single node can not transfer the weights in the allotted time. 

By again grouping the data into 8 sets per transfer and re-computing the transfer time leads to the requirement of being able 
to transfer the weights in 8x31 us or 253us. From this the transfer times are re-computed as follows: 

162x8 Weights x 8 Bytes(I&Q) = 10368 Bytes/Weight Set 

10368 Byte Myrinet™ messages requires = 267us by each node. 

As can be seen, even with regrouping the data into a larger block it is still not possible to transfer the data in the allotted 
time. One solution to transfer the data would be to utilize 8 HPSC nodes and distribute the data in a serial to parallel approach. 
Figure 31 shows this method. 

18 Channels 
8MHz 
(576MB/S) AAP Samples 

MYRINET NETWORK 

18 NODES 
27 MODULES 

— i i 
AAP Weights 

INTF 83 NODES 
11APU32 MODULES 

Range Samples 

8 HPSC NODES 
1 MODULE 

Weights required to be distributed among nodes who in turn perform 
redistribution (similar to "chain letter") 

Figure 31 - Parallel Weight DistributionNew MCM Technology 

New 8 NODE (32 processor) MCM module would utilize 3V technology to reduce power and would also incorporate a 16 
way switch. In addition a new Myrinet™ Interconnect Module that incorporates a 16 way switch would be required to increase 
the number of buffered I/O's. Finally a new backplane design would required to support this new technology. Utilizing this 
new technology, the size of the new DBF can be estimated. 
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Table 8 - DBF Module Count using MCM's 

Function Module Type Quantity 

HOST COTS 1 

Data Distribution Custom I/O 

APU32 

MTEM,6 

19 

4 

4 

Beamforming APU32 

MTEM,6 

11 

4 

TOTAL=43 

From this a size/weight/power/cost comparison can be drawn and this is depicted in Figure 33. 

A large investment would be required to develop this level of packaging integration. Advances in processor technology 
would accomplish the same level of overall processing density. 

CUSTOM 

DBFw/Myrinet 
CUSTOM-ASIC 
me-is MHz 

WEIGHT (POUNDS) 150 
VOLUME (CUBIC FEET) 4.3 
POWER (WATTS) 800 
COSr(K$) 400 

COST'■ Material, Fabrication, Assembly 

vs 

HPSC-MCM 

3x 110 * 330 
3x 4.6 = 13.8 
3x 1275 = 3825 
3x ? = ? 

Figure 32 - CURRENT versus HPSC MCM comparison 

7.3.6   DBF SOLUTIONS 
The following sections describe various approaches that have been studied for the implementation of the beamformer. 

7.3.6.1  CURRENT DIGITAL BEAMFORMER DESIGN 
Figure 34 represents the current beamformer design 
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Figure 33 - Current Custom DBF Implementation 

The current DBF employs 26, 9Ux220 boards. The 9 receiver Sample Buffer Memory (RSB) boards receive data from the 
Receiver, 2 channels per board. The Receiver interface is RS422 using parallel, differential, twisted pairs. The received data is 
sampled, collected by the Sample Interface (SI), and sent to the AAP for weight generation. The weights computed by the AAP 
are received by the Weight Interface (Wl), and distributed to the Multiply Add (MA) boards. The sample and weight interfaces 
are the same as the Receiver interface: RS422 using parallel, differential twisted pairs. After the transient delay on the RSB, the 
receiver data is applied to the PRI Delay Buffers, which hold 6 channels per board. The PB boards generate the un-delayed, 
one delayed and two delayed data streams that are input to the Multiply Add boards. Each MA board contains 18 Butterfly 
chips that perform the complex multiply, and the adder tree that generates the part beam sums. The Beam Out modules sum the 
3 part beams to form the output beams which are sent to the Signal Processor. The Signal Processor interface is the same as the 
others: RS422 using parallel, differential twisted pairs. 

7.3.6.2 DBF II CONCEPT 1 

DBF II concept 1 employs 4 board types for a total of 10 boards. The Receive Sample Buffer memory and Delay (RSBD) 
board receives data from 4 receiver channels, and generates 4 sets of Undelayed, One delayed and Two delayed data streams. 
The Multiple Add and Beam Output (MABO) boards form the complex inner product and additions to generate 2 output beams 
per board. The Sample Interface Timing and Control (SITC) and Weight Interface and Micro Controller (WIUC) boards 
perform the same functions as they do in the current design. The Receiver and Signal Processor interfaces are Hewlett Packard 
high speed serial (HDMP), while the interface to and from the AAP is Myrinet™. Figure 35 depicts this concept. 
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Figure 34 - DBF Concept 1 

7.3.6.3 DBF II CONCEPT 2 

The DBF II concept 2 will consist of three board types with a total of 5 to 8 boards depending on the final requirements. The 
first board type will be a custom designed Partial Beamformer. This board will use the latest technolgy in FPGAs, and memory 
to perform the entire beamforming process for some subset of channels (2-6) on one board. The second board type will be a 
custom designed sample interface which will collect the sample data and send it to the AAP. The third board will be a COTS 
single board computer to simplify software development and simplify system control interfaces. 

DBF II will use high speed serial (HDMP) interfaces to cut the number of wires between the DBF and the receiver from over 
a thousand to less than 10. It will also use high speed serial (HDMP) interfaces to pass data between boards. This will avoid 
the large number of backplane interconnects, over two thousand on the existing DBF. DBF II will also utilize the VME bus to 
eliminate the custom backplane. Figure 36 represents this concept. 
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Figure 35 - DBF Concept II 

8   Receiver Switching Network Study 
A portion of the Receiver Switching Network study involved economizing interconnect in the overall string from Receiver 

through Digital Beamformer to Signal Processor. This section discusses an upgrade within the AEW Signal Processor to not 
only get Beamform data into the Signal Processor chassis more efficiently, but to also get selected samples of that data onto the 
Signal Processor's Myrinet™ network more promptly and straightforwardly. 

The present Digital Beamformer (DBF) connects to the Signal Processor using standard, circular 128-position plugs 
connecting to 128-position, bulkhead-mounted, circular receptacles. Within the Signal Processor, a cable harness assembly is 
used to route the incoming DBF data signals to Custom Input Channel cards. 

A single slot 6Uxl60 VME board, the Myrinet™ Custom Interface (MYCI) is under development which receives two 
channels of DBF data by way of front panel 128-pin (4-row by 32) connectors. The MYCI provides connectivity to a 
Myrinet™ network over two Myrinet™ "links" for two custom channels of data (where each custom channel has its own 
dedicated link) in the same single VME 6U slot. 

The MYCI is designed to interface at its front panel with two custom channels of 64-bit data (32-bit I and 32-bit Q values), 
updated at a 5 MHz rate. This equals 320 Mbps or 40 MB/s for each custom channel. Each custom channel has its own, 
dedicated byte-serial Myrinet™ Link, which is capable of 320 MBytes/sec or 160 MB/s full-duplex (i.e., 160 MB/s over each 
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of a Myrinet™ link's two "channels": Myrinet™ Channel In*, Myrinet™ Channel Out*). The two Myrinet™ links are routed 
to a single System Area Network (SAN) connection, which, physically, is the VME64 Extensions (VME64x) PO connector. 

The custom channel interface logic and its control of the custom channel side of the swing-buffered memory is implemented 
in a FPGA on a daughter card so that different interface options and media can be accommodated. For example, one custom 
interface could be parallel, differential receive, while the other could be parallel, differential transmit. Similarly, two custom 
channels of serial receive could be connected to the MYCI. 

Between each custom channel and its Myrinet™ link there is a swing-buffered and dual-ported memory bank. The depth of 
the buffer memory allows a queuing of one block of samples (up to 16,384) within a Pulse Repetition Interval (PRI). Reads of 
the memory are therefore accessing the prior PRI's collected samples. 

The two Myrinet™ link interfaces each have a custom VLSI chip from Myricom, Inc. to provide the physical interconnect 
with Myrinet™. The MYCI has an FPGA between the Myricom custom VLSI chip and the swing-buffered memory, in order to 
handle memory transfers and any chip-specific interaction. 

The MYCI also has a slave VME backplane interface for use in simple diagnostics, parameter loading, status access, custom 
channel enabling or disabling and Myrinet™ link enabling or disabling. 

* NOTE: To avoid confusion, 'channel' is meant to be synonymous with 'custom channel' in this document. The two 
channels that comprise a Myrinet™ 'link' will be called 'Myrinet™ Channel Out' and 'Myrinet™ Channel In' whenever it is 
necessary to mention them. The MYCI's output to Myrinet™ is called 'Myrinet™ Channel Out' and the MYCI's input from 
Myrinet™ is called 'Myrinet™ Channel In'. 

9 Evaluation of ISI RTExpress Tool 
RTExpress is a tool that translates/compiles MATLAB code to real time parallel code on embedded and high performance 

computers. This tool utilizes Message Passing Interface (MPI) the de facto industry standard for communications between 
nodes. It also provides a convenient suite of tool's which simplifies the generation of real time code. 

The target balancing tool provides simple methods of breaking code up into computational units or groups, assigning nodes 
to these groups and specifying the type of parallelism (data parallel, round robin, etc.). The user need only specify parallelism 
at a top level without reference to the extreme level of detail normally associated with the development of parallel applications. 

The compilation process links in the appropriate machine specific vector libraries, MPI, SCALAPACK and RTExpress 
parallel function libraries, resulting in vectorized code for the specific target architecture. 

Real Time Performance Monitoring provides detailed monitoring of processor loading and communications which facilitates 
balancing node assignments. A very convenient feature is the ability to change node assignments without recompilation. By 
iterating the process of node assignment and performance monitoring processor loading can be optimized in a convenient, 
straightforward and expeditious fashion. Although the use of dialog boxes for node assignment in the target balancing tool is 
straightforward, a graphical tool, Mapit, is under development which will produce a graphical display of the target architecture 
and allow graphical assignment of nodes to groups, further facilitating the development process. 

In addition to its primary application of producing real time mission code an immediate application of this tool is to take 
MATLAB simulation and analysis tools and transfer them to the target architecture resulting in a sophisticated data analysis 
capability which should further enhance the development process. Further evaluation of this tool is to be performed in the 
future to further explore these possibilities. 

10 Conclusions 
Initial mapping and partitioning studies determine that an HPSC hardware configuration employing 716 SHARC PEs can 

support simultaneous Pre and Post Doppler STAP processing architectures; the selection is accomplished through on-the-fly 
software re-programmability of data routing tables. It may be noted that this solution utilizes two identical chassis and only two 
board types. These algorithms represent sustained processing throughputs of approximately 32 Gflops. 

Further detailed algorithm mappings investigate the parametric latencies and efficiencies of three different mappings of the 
RMGSEF QRD portion of the STAP processing. This processing is relatively complicated and fine-grained in terms of data 
flow and interdependences between individual processing elements. For a particular data point in terms of Myrinet™ and 
SHARC latencies and throughputs, simulations revealed that the sample recursive Myrinet™ only solution offers better than a 
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2:1 computational latency advantage over the block recursive Myrinet™ only mapping. The addition of SHARC links to the 
mapping in order to create a much finer grained processing solution further reduces the computational latency due to the small 
message sizes and low communication latency, however, at the cost of additional hardware support for the SHARC links. The 
study also revealed that as the Myrinet™ overheads are paramerrically reduced and communication delays are improved, the 
three mappings offered approximately the same performance. 

The CSIM tool proved valuable as a system architecture development tool. Using the simulation outputs, a possible solution 
space of mappings is defined, in terms of network parameters, radar PRF, mapping approach (block versus sample recursive) 
and mapping granularity. As well, these results can further be used to tune the algorithm mapping as the Myrinet™ 
performance continues to improve. 

The demonstration proved that the HPSC architecture is highly flexible supporting high processing loads with minimal latency. 

The follow on Architecture study revealed that the CSPI SHARC based module (2316) does not incorporate the SHARC link 
ports, as did the HPSC. Thus CSPI does not offer a direct replacement for the AEW Adaptive Array Processor. The SHARC 
based Ixthos modules offers in addition to the link ports a multi-drop bus that is limited in terms of its scalability. While the 
SHARC has remained at 40MHz the processing world has seen the speed of the PowerPC grow to 300MHz with architecture 
enhancements translating into competitive processing alternatives to historical Digital Signal Processor application. 

Digital Beamforming however is an area where fixed-point arithmetic makes processor based solutions very inefficient. The 
processing density of Field Programmable Gate Arrays offers significant advantages in size, weight and power. VHDL based 
designs provides for portable solutions. 

CSPI offers a set of building blocks to support interfacing to sensor data. One approach is to bridge from a Front panel Data 
Port (FPDP) to Myrinet™ via a PCI bus. This solution presently occupies two card slots with single card slot solutions on the 
horizon. Leveraging RCTE, a more efficient solution with reduced latency and greater flexibility can be realized. 

The latency study is as yet inconclusive and will be continued under IR&D. Benchmarks indicate that for this algorithm the 
SHARC operating at 32.5MHz is comparable to the 200MHz PPC-603. The improvements in the next generation PPCs 
indicates that a fewer number of boards each containing four PPC-750s are required to support the data throughput. The 
realized latency is expected to be comparable to the HPSC solution. 

Continuation of this study will concentrate on the CSPI/Myrinet PPC technologies. 
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