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ABSTRACT 

Adapting the Naval Postgraduate School full nonlinear simulation model of coupled 

rotor/fuselage response to the H-3 Sea King, the concentration of this work rests on 

validating the rotor simulation against an actual rotorcraft. The parameters of the H-3 

from the characteristic equation of a modeled mass-spring-damper system are inputted 

into a five-bladed model initially utilizing MAPLE to process LaGrange's equation 

defining the helicopter's full set of nonlinear equations of motion. Results are converted 

to MATLAB and are then processed in SIMULINK returning time history plots of 

blade/fuselage motion. Conclusions are in accordance with literature of Coleman, 

Feingold and Deutsch. 
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I.        INTRODUCTION 

A.       DISCUSSION 

The helicopter is a complex system operating in several degrees of freedom. Should 

negative damping be present in the system, dynamic coupling between the rigid body 

motion of the fuselage and oscillations of the rotor blades in their plane of rotation can 

result in the self-excited vibration known as ground resonance. If not counteracted, this 

destructive phenomenon will destroy the aircraft in seconds. 

The sequence of events leading into the mechanical instability can be started if the 

helicopter is subjected to a hard one wheel landing, taxiing over an uneven surface, or 

any number of initial rates and/or displacements in primarily the roll and lateral 

movement of the hub. Blades are then placed out of pattern resulting in an unbalance of 

the centrifugal forces at the head. The aircraft now begins to roll more on its landing gear 

allowing further increases in the rates and displacements of the hub. This violent cycle, if 

uncorrected, will lead to increasing oscillatory amplitude of the helicopter about its 

landing gear until the ship tips over or breaks up. 

The corrective measure to suspected ground resonance is to immediately become 

airborne. This procedure alters the rigid body natural frequencies of the aircraft thereby 

changing the coupled modes between the fuselage and the rotor head. Once airborne, the 

helicopter oscillations dampen out as a result of lower roll and lateral natural frequencies. 

As power is brought on, the helicopter becomes "light on the skids". A rotorcraft's 

natural frequency depends upon its percent airborne condition primarily in part because 

the oleo has an air spring where the spring rate is dependent upon the deflection. 

Therefore, a stationary helicopter transitioning to hover may become susceptible to 

ground resonance as its natural frequency is changed while becoming partially airborne. 

Today, engineers design helicopters to avoid ground resonance by altering the 

parameters of the systems that govern the natural frequency and damping of the aircraft. 

The primary parameters available to the design engineer include blade damping, oleo 

damping, oleo spring rate, tire spring rate and landing gear tread width. Beside general 



knowledge of a helicopter's susceptibility to ground resonance, pilots as well as 

maintenance personnel should be familiar with their aircraft's potential reaction to blown 

dampers and improperly serviced landing gear struts. 

B.  BACKGROUND 

Remarkably, the 1940's gave birth to the study of ground resonance. Robert 

Coleman, the forefather in the field of helicopter mechanical instability was the first to 

address the problem of ground resonance [Ref. 1] and [Ref. 2]. He found the primary 

modes likely to be excited in the normal operation of the rotorcraft were the hinged 

deflection of the blades in their plane of rotation and rigid body fuselage modes 

contributing to horizontal deflection of the pylon. This meant the landing gear 

deflections that produced lateral motion at the top of the pylon were extremely important. 

Soon after, M. L. Deutsch consolidated the results of Coleman by developing a 

quantitative analysis of the damping required to keep the helicopter free of resonant 

modes [Ref. 3]. Both analyses were before their time and required the arrival of 

computerized techniques to more accurately evaluate ground and air resonance. 

At the Naval Postgraduate School (NPS), a full nonlinear simulation model of coupled 

rotor /fuselage interaction was created by LT Christopher S. Robinson in March of 1997, 

[Ref. 4]. The NPS modeler is an analysis tool that initially utilizes MAPLE to process 

LaGrange's equation defining the helicopter full set of nonlinear equations of motion. 

The equations of motion that result are returned as either FORTRAN or C and can be 

readily converted to the MATLAB programming language. The converted MATLAB 

result is incorporated into a SIMULINK S-function, producing time history plots of 

blade/fuselage motion. The fundamental difference between the NPS modeler and other 

dynamic modelers, such as the University of Maryland's UMARC, is the development of 

the complete set of nonlinear terms in the equations of motions. Formulated in full 

nonlinear form, there are no ordering schemes, no small angle assumptions, and no 

linearizing techniques or simplifying assumptions used in the development of the 

equations of motion utilized by the NPS modeler. 



The generic model presented in Robinson's thesis demonstrated a hypothetical 

aircraft's reaction to ground resonance. Building upon his three-bladed model, Robert 

King, a thesis co-advisor, developed a five-bladed model that required evaluation. 

Utilizing the data prepared by E. Roberts Wood, a thesis co-advisor, [Ref. 5], the H-3 Sea 

King helicopter was adapted to the NPS ground resonance modeler.1 A mass-spring- 

damper system of the H-3's landing gear was examined to obtain the parameters to enter 

into the NPS simulation. A thorough analysis of the natural frequencies (Op) in the 

lateral and roll modes at three power settings of 0/20/80 percent airborne were made with 

respect to the literature prepared by Coleman, Feingold and Deutsch. Stability charts 

were developed from the tailored data of the Sea King and compared with the modeler's 

results. 

Previously, the lack of a design tool that could predict both the linear and non-linear 

portion of the stability characteristic curves required expensive and time consuming wind 

tunnel tests to confirm rotor/fuselage stability. Beside verification of the NPS modeler to 

a well-known rotorcraft, continued development of this project may someday assist 

engineers in developing new airframes well clear of all ground resonance regimes. 

Further, amplifying information to Coleman, Feingold and Deutsch is presented for all 

Naval Postgraduate School students as well as others who wish to expand their 

knowledge in this field of study. 

1 Wood's report "Preliminary Report on Mechanical Instability of HSS-2 Helicopters" was prepared 
while at Sikorsky in 1958. The H-3 is a descendant of the HSS-2. 





II. MASS-SPRING-DAMPER MODEL 

A.       WOOD'S MODEL 

A helicopter is a complex structure that can be modeled as a mass-spring-damper 

system in several degrees of freedom. The landing gear structure is modeled as a spring- 

damper system by considering the spring rates in the tires, oleos and structural supports. 

Wood's system depicted below in Figure (1) was used to model the H-3 [Ref. 5]. It is a 

modified 2-DOF system specifically designed to assess the roll and lateral modes of the 

helicopter since they typically couple with the regressive lag frequency of the hub 

progressing into ground resonance. 

Kh= main landing gear tire lateral spring rate 
Kv= main landing gear vertical tire spring rate 
Kj= main landing gear structural lateral spring rate 
K2= main landing gear oleo spring rate 
Kht= tail landing gear lateral spring rate 
Kvt= tail landing gear vertical spring rate 
C s main landing gear oleo damping 

Figure 1. H-3 Mass-Spring-Damper System 



Table (1) is a list corresponding to the spring rates of the tires, oleos and landing gear 

structural support depicted above in Figure (1). 

Spring Rate (lbs/in) 
0% Airborne 20% Airborne      80% Airborne 

Kh 807 850 975 
Kv 1925 1875 1300 
Kd 18,500 18000 8000 
K2 2967 1860 116 
Kht 743 766 877 
Kvt 1500 1475 1050 
C (lb-sec/in) 30 30 30 

Table 1. H-3 Model Parameters 

Combining the spring and dampers in Figure (1) to simplify the system and then 

equating the appropriate horizontal and vertical reactions with their respective 

deflections, Wood solves for the roll spring rate and the roll damping from the complex 

value of the resisting moment of the aircraft through the angle 0. 

M = Mr+jMj 

0 
Ke=- 

Ce = W 

where W = ground resonance exciting frequency or Q±W(|)' 



The modified system along with the simplified values are depicted below in Figure (2) 

and Table (2). The reader is encouraged to reference Wood's derivation for 

amplification. 

Kh-   = combination of main landing gear tire lateral spring rates 
Kv-   = combination of main landing gear tire vertical spring rates 
Khhat - combination of main and tail landing gear lateral spring rates 
Ke    s real part of complex value of resisting moment rolled through angle 0 

Figure 2. Modified H-3 Mass-Spring-Damper System 

Spring Rate (lbs/in) 
0% Airborne 20%Airborne       80% Airborne 

Kh- 1485 1553 1568 
Kv' 3850 3750 2600 
Khhat 3712 3873 4013 
Ke (in-lbs/rad) 3.91 E+07 3.50E+07 2.80E+07 

Table 2. Consolidated Spring Rates 



The derivation of the coupled frequency equation of the H-3 model in Figure (2) is 

presented and also simplified by Wood [Ref.5]. 

Mx + (2KH. + Km)x + (2KH. + Km)ae = 0 

I© + (2KH, + Km)ax + 2Kvb
2Q + (2KH, + Km)a2© = 0 

allowing, 

2KH. + Kfrr = KH 

Mx + KHx + KHaQ = 0 

ie + KeQ + KHax = 0 

assuming harmonic motion where, 

X = Asin(ö)pt + 0,)    and    6 = Bsin(ö;pt + <p2) 

yields, 

(-Mo)p
2 + KH )A + (KHa)B = 0 

(KHa)A +(-Icop
2 + K6)B = 0 

The tabulated data in Table (1) and Table (2) is then entered into a MATLAB program 

called COUPLEDFREQ.m located in Appendix A. Besides confirming all the spring rate 

values in Wood's report, COUPLEDFREQ.m also calculates the natural frequencies ((Op) 

for both the lateral and roll modes of the H-3 at three different power configurations by 

solving the eigenvalue/eigenvector problem. 

Where, 

Ax = Äx 

M M 

{KHa)A +   {^)B = wp
2B 



Ai A12 AA 4 0 AA 

A-21 -^-22 B B o K B B 
where \, 7^ = wp in lateral and roll mode respectively 

AnA + A12B = ^A 

A21A + A22B = ^B 

M 

I 

KH -Z-a 
M AA \ 0 AA 

K0 
B B 0 X, B B 

I 

The natural frequencies for both the roll and lateral modes at their corresponding 

power settings are shown below in Table (3). 

0% Airborne 20% Airborne 80% Airborne 
Mode rad/sec cycle/min rad/sec cycle/min rad/sec cycle/min 

roll 17.78 169.79 17.30 165.20 16.79 160.33 
lateral 6.25 59.68 5.67 54.14 2.18 20.82 

Table 3. Natural Frequencies of Roll and Lateral Modes 

B. VIRTUAL POINT OF ROTATION 

The ratio B/A obtained from the eigenvector is equivalent to O/X without any phase 

shift considered in the evaluation. More specifically, the ratio of the roll displacement in 

radians to the lateral displacement in inches is known. With this ratio, normalized power 

charts based upon one inch of lateral movement, represented by the horizontal line, are 

then generated depicting the virtual point of rotation for the roll and lateral modes 

individually. 

1.        Roll Mode 

Evaluating the roll mode first in Figure (3), the primary result is that the point of 

rotation is above the center of gravity of the H-3 for all three power settings. As power is 

brought on the aircraft, the point of rotation will continue to increase along the vertical 



axis of the helicopter. In fact, Prouty [Ref. 6] mentions that once the helicopter breaks 

the ground, the point of rotation can be estimated at seven rotor lengths above the 

helicopter. 

co a> 
x: 
cj c 

Virtual Point of Rotation (Roll)-0% PWR Airborne 

-*e- 

-20 20 

Virtual Point of Rotation (Roll)-80%PWR Airborne 

 **©- 

-90- 

-60- 

-39- 

-20 20 

Figure 3. Virtual Point of Rotation-Roll Mode 0% and 80% PWR Airborne 
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Below in Figure (4), the H-3 is superimposed over the line of rotation for the 20% 

power case. In this scenario, as the aircraft is displaced 10 inches in the lateral direction, 

its roll angle will be 18.04°. Incidentally, this is greater than the 15 ° dynamic tipover 

angle of the H-3. 

-180 -160 -140 -120 -100  -80  -60  -40  -20   0   20   40  60   80  100  120  140  160  180 

inches 

Figure 4. Virtual Point of Rotation-Roll Mode 20% PWR Airborne 

2.        Lateral Mode 

Conversely, the lateral mode has its virtual point of rotation underground. As 

power is applied to the H-3, similar to the roll mode and in accordance with Prouty [Ref. 

6], the point of rotation begins to increase along the vertical line of the aircraft. 

11 



Virtual Point of Rotation (Lateral) -0% PWR Airborne 

-1 

-ee-L— 

inches 

Virtual Point of Rotation (Lateral)-80%PWR Airborne 

Efl 
0) 

0 

inches 

Figure 5. Virtual Point of Rotation-Lateral Mode 0% and 80% PWR Airborne 
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For comparison and ease of understanding, the H-3 is once again superimposed over 

the line of rotation in Figure (6) for the 20% power case. In the lateral mode, 10 inches 

of displacement in the X direction is equivalent to -5.21° of roll. 

180 

I80  -160  -140  -120  -100-80-60-40  -20 20   40   60   80   100  120  140  160  180 

Figure 6. Virtual Point of Rotation-Lateral Mode 20% PWR Airborne 

13 



14 



III.     NPS GROUND RESONANCE MODELER 

A.       DISCUSSION OF MODELER 

The NPS full nonlinear simulation of coupled rotor/fuselage interaction is a dedicated 

Coleman analysis tool that initially utilizes MAPLE to process LaGrange's equation 

defining the helicopter full set of nonlinear equations of motion.2 

d_ 
dt 

rdT\   dT    dU    dD 

dq, dqt     dqt     dqt 

= FS 

where T is kinetic energy, U potential energy, D the dissipation function, F; a generalized 

force and q; is a generalized displacement. 

The results are returned as either FORTRAN or C and can be readily converted to 

MATLAB. From this point, the MATLAB results are processed in SMULINK resulting 

in time history plots of blade/fuselage motion. Expanding upon the work previously 

performed at NPS, a five-bladed model was developed that adheres to the basic principles 

of Robinson's Simplified Model. The MAPLE program along with its SMULINK 

converted results can be found in Appendix B. 

All of the energy expressions in the LaGrangian equation were broken into two terms 

either due to blade motion or fuselage motion. 

k=l 

2  For a thorough understanding of the modeler, the reader is encouraged to reference either Robinson's thesis [Ref. 4] 

or Robinson, Wood, and King's paper "FULL NONLINEAR SIMULATION OF COUPLED ROTOR/FUSELAGE 

RESPONSE USING SYMBOLICALLY DERIVED EQUATIONS OF MOTION", May 1998 [Ref. 7]. 

15 



The essential standardization of the program lies in its synchronization of the 

coordinate systems. Five coordinate systems are utilized with transformations between 

the various systems based on Euler angle rotations. The coordinate systems are (1) 

inertial, (2) fuselage, (3) hub, (4) undeformed blade, and (5) deformed blade. The terms 

were eventually transformed to the inertial coordinate system and entered into a MAPLE 

worksheet designed to apply the LaGrangian equation [Ref. 4]. 

P = {pF_ll + {^H_Fl + (pBu_Hl + {PBd_Bul + (Pp_Bdl 

p is the sum of relative positions with respect to various coordinate systems 

transformed to the inertial system 

The generic simplified model presented in Robinson's thesis demonstrated a 

hypothetical aircraft's reaction to ground resonance. The task was to correlate the data 

prepared by Wood's report into the ground resonance modeler. The major obstacle 

presented was the fact the computer model provides translation at the rotor head in the 

lateral and longitudinal direction while Wood's model is a mass-spring-damper system of 

the landing gear in the roll and lateral modes only. The H-3 data had to be converted and 

manipulated to correspond to the inputs of the modeler. Therefore, all numbers initially 

given in Wood's report were solved for the landing gear model and then translated to the 

virtual point of rotation. 

Essentially, the versatile modeler was converted to a one DOF modeler that isolated 

the desired individual modes. By increasing the longitudinal spring constant to a value 

several orders of magnitude larger than the actual spring constant of the lateral mode, the 

hub was effectively constrained for lateral motion only. 

16 
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Sv 
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w- 

M(1) 

////W/M/// 

Figure 7. Block Diagram of Simulation Model 

Isolating the time history output of the rotor hub was then evaluated for frequency 

and damping.   The Hubert Transform method for determining damping was chosen over 

the Moving Block technique because it was found to be more accurate for time histories 

dominated by a single mode [Ref. 8]. Below is the Simulink diagram of the five-bladed 

model representing the H-3. 

Simulation Block Diagram for Roll Mode 20% PWR Airborne 

5 Bladad H3 Rotor Pylon - non-linaar analysis Demux 
Fuselage Displacement 

Lead-lag Displacements 

Demux 

Figure 8. Simulink Diagram of 5 Blade NPS Modeler 

To Hubert Transform 
Damping Analysis 

Hubert Transform 
Damping Analysis 

UB 
Roll Mode 
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B.       PARAMETER INPUTS 

Wood provides in his report many of the geometric values for the H-3. In order to 

conform all of the values to the modeler, some of the numbers required a simple 

conversion while others required a more complicated transformation about the point of 

virtual rotation. Table (4) is a list of all the parameter inputs necessary to run the 

Simulink block diagram [Ref. 4]. 

PARAMETER                                                         PARAMETER SETTINGS                                UNITS              | 

Rotor Blade Mass mb(1) mb(2) mb(3) mb(4) mb(5) mass 

Fuselage effective in x and y direction M(1)M(2) mass 

Distance from hinge to center of mass of blade R length 

Rotor Speed Omega rad/sec 

Hinge Offset e1 length 

Angle at which lead-lag stops engage z radians 

Azimuth phase angle of rotor blade Phi(1) Phi(2) Phi{3) Phi(4) Phi(5) radians 

Lead-lag linear damping coefficient Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) moment/(rad/sec) 

Lead-lag nonlinear damping coefficient Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) moment/frad/sec^ 

Fuselage linear damping coefficient in x and y direction c(1)c(2) force/(length/sec) 

Fuselage nonlinear damping coefficient in x and y direction v(1)v(2) force/(length/sec)'! 

Lead-lag linear spring coefficient Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) moment/rad 

Lead-lag nonlinear spring coefficient Kd(1)Kd(2)Kd(3)Kd(4)Kd(5) moment/radJ 

Lead-lag stop spring coefficient Ks(1)Ks(2)Ks(3)Ks(4)Ks(5) moment/rad 

Effective fuselage stiffness in the x and y directions K(1)K(2) force/length 

Fuselage states initial displacement conditions xXixYi length 

Fuselage states initial rate conditions xrXi xrYi length/sec 

Blade states initial displacement conditions x1ix2i x3i x4i x5i rad 

Blade states initial rate conditions xr1ixr2i xr3i xr4i xr5i rad/sec 

Table 4. Parameter Inputs 

The inputs that required special attention were the effective mass, the damping of the 

fuselage, the damping in the rotor head, and the spring constant of the fuselage. A short 

compilation of the conversion techniques is shown below. The reader is advised to 

reference Appendix C for a complete list of standard H-3 parameter values. 

18 



1. Fuselage Effective Mass in the x and y Directions - i.e. M(l) 

This is similar to the conversion for the rotor blade mass. Depending upon which 

mode we're testing, M(l) will be set to M(2) because we've chosen an isotropic head. 

2. Lead-Lag Linear Damping Coefficient - i.e. Czeta(l) 

The effective damping coefficient of the blade about the drag hinge is solved by 

applying either Deutsch's criteria or using the theoretical data provided by Wood [Ref. 

5]. Deutsch's criteria suggests the product of the damping in the pylon and blades must 

be essentially greater than or equal to A3 or essentially the ratio of the effective mass of 

the blades to the combination of the effective mass of the blades and the pylon. 

A3=i 3    2 
nm 'ml2' 

(M + nm) 

Deutsch's criteria will be addressed more thoroughly in section V. The Classics 

Revisited. Further, knowing the coefficient of damping in the pylon is equal to the 

coefficient of damping in the blades (Ce =CP) from the Wood's derivation simplifies the 

solution. 

^(Pl) 

L=- 
\®v 

\ = 
lfi>„ 

A,<yn 
2 r IxL 

ce \ip-m 
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Figure (9), included in Wood's report depicts the empirical blade damping data of the 

HSS-2 [Ref. 5]. 

Experimental Blade Damping of the H-3 

12000 

0.005 0.01        0.015        0.02        0.025        0.03 
Lag Angle Oscillation (radians) 

0.035 

Figure 9. Blade Damping of H-3 

3.        Fuselage Linear Damping Coefficient - C(1),C(2) 

The linear damping coefficient in the roll mode was obtained through Ce. The 

value at each power setting was transformed through the distance between the virtual 

point of rotation for the roll mode and the height of the hub. Lateral damping of the 

fuselage was calculated from a percentage of Ce. The lateral mode values of 0/X for the 

three power settings were used along with the damping results from the roll solutions to 

obtain the estimated lateral damping of landing gear tires, structure and oleo. 

20 



4. Lead-Lag Linear Damping Coefficient - i.e. Ke(l), Ke(2), etc. 

The linear lead-lag damping in the H-3 is zero because no springs are present in 

the rotor (Wo>=0). 

5. Effective Fuselage Stiffness in the x and y Directions - K(l), K(2) 

The fuselage stiffness for the roll mode at three different power settings was 

calculated from the conversion of K©. The value at each power setting was transformed 

through the distance between the virtual point of rotation for the roll mode and the height 

of the hub. K(l) assumed this value whereas K(2) was increased to a magnitude three 

orders of magnitude greater than K(l) to simulate the lateral motion only block model. 

For the lateral mode, the stiffness of the fuselage was taken from the original data given 

in Table (2) for IW 

6. Fuselage States Initial Displacement Conditions - xXi, xYi 

An initial displacement in the direction of the desired simulated motion served as 

an impetus to stimulated any possible divergence. xXi was set to 0.2 feet throughout the 

entire simulation. 
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IV.      SIMULATION RESULTS 

A.       DISCUSSION 

Once the simulation parameters for the H-3 were calculated, they were put into the 

Simulink block diagram H-3.mdl depicted in Figure (8). Located in Appendix C is a 

Parameter Setting and H-3 Value Chart listing all of the simulation parameter inputs. 

The output of the rotor hub becomes a Hilbert transform damping determination function 

which calculates frequency and damping from the time history plots. Simulink may also 

be used to visualize other information such as lead-lag response to fuselage perturbations 

as well as the dynamics of the model. 

B.       ROLL MODE 

The roll modes at the three power settings of 0/20/80 percent airborne were selected as 

the initial cases primarily because the uncoupled lateral mode has no damping in the 

Sikorsky report. At zero percent jpower, the modeler depicts the H-3 translation at the 

hub due to the fuselage roll as convergent with a frequency of 12.55 rad/sec. 
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Figure 10. Roll Mode - 0% PWR Airborne 

This frequency is similar to the regressive lag frequency calculated by Wood of 13.88 

rad/sec. The ground resonance exciting frequency W=£2±<% is the combination of the 

rotational speed of the main rotor plus and minus the natural frequency of a rotating blade 

about its drag hinge. Q+ay, the progressive lag mode, is well above any of the rigid 

body frequencies of the H-3, therefore as Coleman advises we can discard it and concern 

ourselves only with the modes likely to be excited, namely the regressive lag mode (Q- 

oy)- The damping ratio for the regressive lag mode in this case is was 0.015 showing no 

divergence. 

24 



Similarly, the modeler depicts the same stable trend in blade lag and lateral hub 

motion for the other two cases at twenty percent and eighty percent airborne power. 
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Figure 11. Roll Mode - 20% and 80 % PWR Airborne 
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Comparing the three power settings, it's evident by the increase in calculated damping 

ratios that the helicopter becomes a suffer platform as power increases. Further, as power 

comes on the aircraft, the frequency seen at the hub rises slightly above the amount 

calculated by Wood. 

Comparison of Three Roll Modes 

0% PWR 
20% PWR 
80% PWR 

1 1.5 
time (sec) 

Figure 12. Comparison of Three Power Settings -Roll Mode 

In agreement with Wood's results, the H-3 did not diverge in any of the normal 

operating cases. Therefore, as long as the H-3 is operating normally i.e. dampers 

operative, Nr in the normal operating range, and fuselage inertia within limits, the 

helicopter is free of ground resonance in the roll mode. 
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C.       LATERAL MODE 

Damping in the lateral mode for Wood's model results from the roll-lateral coupling. 

The HSS-2 is configured for the fictitious case where as the roll-lateral coupling 

approaches zero, the lateral damping also goes to zero. Realistically, minimal damping in 

the lateral direction is provided by the tires and the structure of the landing gear itself. 

Since the data in the roll mode includes motion in both the lateral and vertical directions, 

all the numbers needed to simulate the lateral case are provided. From the ratio of the 

roll motion to the lateral translation or 0/X, a percentage of damping of the lateral mode 

can be extracted from actual damping results in the aforementioned roll cases. Various 

models in each lateral mode case were run parametrically varying the damping value of 

the fuselage until the desired value of damping was achieved. 

At zero percent power, the helicopter converges with the frequency at the hub equal to 

the same value as in the roll. The damping of 0.002 is a percentage of the value 

calculated from the roll case damping value of 0.015. 
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The other two cases at twenty percent and eighty percent airborne power yield a 

similar trend as the zero percent airborne solution. 

Lateral Mode-20% PWR Airborne Lateral Mode-80% PWR Airborne 
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All three power settings demonstrated the stability of the H-3 throughout the range of 

the lateral mode. Similar to the roll mode, the three power settings show a trend toward a 

more stable platform. There is a small rise in the frequency of the hub in the eighty 

percent airborne calculation. 

From the beginning, it was doubtful the lateral mode would allow divergent coupling 

of the rotor and rigid body frequencies since its frequencies were so small. The only 

probable time that the lateral mode could play a significant role in the onset of ground 

resonance is if the rotor rpm is slow enough to be in the lateral frequency range i.e. 

hesitation during run-up. 
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V.       THE CLASSICS REVISITED 

A.       COLEMAN-FEINGOLD DISCUSSION 

1.        No Damping Case 

In the classical report by Coleman and Feingold, it is noted that different types of 

vibrations are identified by the nature of the root of their characteristic equation. 

Specifically, the self-excited motion or "odd frequency" as they refer to it, is a vibration 

characterized by a complex number whose negative imaginary root represents negative 

damping [Ref. 1]. By nature, damping requires an external source of energy to be 

negative. Similar to Prouty's case 3 in his Stability and Control analysis, negative 

modeling requires a slight disturbance that will enable the helicopter to gain increasing 

energy with respect to time from the rotation of the rotor [Ref. 6]. Where, 

mx + ex + kx = 0 

and 

n    k    fc/2t 
c<0, —>   

m    ^ m 

Coleman introduces a general model of a rotor with rigid blades free to hunt about the 

lag hinge that can be applied to any hinged aircraft with three or more blades. The 

purpose of the theory, as he points out, is to predict the occurrence of and show how to 

avoid self-excited vibrations. The theory teaches how to predict the natural frequencies 

and the unstable speed ranges in terms of certain physical parameters such as mass, 

stiffness, and length. 

The characteristic equation obtained using LaGrange's equation is quite complicated 

with C0f to the fourth power and co to the second power. Recommendations are to first 

choose values for (Of and solve for co2 without damping. Damping solutions can be added 

in later. The real part of the equation is plotted against (D for selected values of Ai, A2, 

A3, and s. 
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Where, 

e Kr 
1     R        2      I 

A3 = 
nml 

2(Mp+nmb) 
s=- hi 

K. 

Figure (15) below, is a typical Coleman stability plot of C0f versus Co for the real part 

of the characteristic equation without damping. The horizontal straight lines correspond 

to pylon bending and the slanting hyperbolas correspond to hinge deflection. A3 is 

essentially the ratio of the effective mass of the rotor blades to the effective mass of the 

pylon. Naturally, a larger value of A3 signifies an increase in energy of the rotor blades 

with relation to the pylon. Conversely, if A3 were equal to zero, the blades have no effect 

on the pylon and the characteristic equation factors into equations yielding straight lines 

and hyperbolas, depicted as dash-dot lines below. Therefore, ground resonance is easier 

to attain as A3 increases in value. In Figure (15), as A3 increases, the intersections at the 

hyperbolas and straight lines begin to break off. The missing roots are complex 

conjugates and one of them has a negative imaginary part, which implies negative 

damping or a self-excited vibration [Ref. 1]. 

Effect of coupling between pylon and hinge motions-no damping 

t  0 

Figure 15. Typical Coleman Stability Plot 
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Point (A) represents the beginning of the self-excited range because the value of Of 

becomes complex at the value of Co where a vertical line is tangent to the plotted curve. 

At point (B), the motion again becomes stable only to become unstable again at point (C). 

Figure (16) is a corner plot specifically tailored to the H-3. It depicts the same trends as 

Coleman's stability plot in Figure (15). 
Effect of coupling between pylon and hinge motions-H3-no damping 
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Figure 16. Corner Stability Plot of H-3 

Since the most important information to obtain is the critical values of CO for the self- 

excited vibration range, Coleman prepared three charts that correspond to the three 

stiffness ratios (s=0,s=l,s=<») that cover most rotorcraft. Instead of copying the stability 

charts themselves and depending upon a small deviation from Coleman's numbers, we've 

generated our own chart specific to the roll mode of the H-3 in Figure (17). Knowing the 

values of Ai, A2, A3, and s, Coleman's stability charts are generated by uncovering the 

critical ranges from the previous figures. The three lines in order of ascent are the lower 

limit of instability, the center of instability, and the upper limit of instability. Together, 

they bound the self-excited range or region of instability that the rotor head should avoid 
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without damping. Standard procedure is to draw a sloped line equal to l/coAi+ A2 similar 

to the one drawn in Figure (17). The line passes through all of the contours at the critical 

points of instability where p=Q2/cOjp2. According to Wood, who used Coleman's generic 

curve, these p values in ascending order are 1.11,1.31, and 1.60 [Ref. 5]. The p values in 

Figure (17) specific to the H-3 point to 1.0,1.30 and 1.57. 
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Figure 17. Coleman Stability Plot tailored to H-3 

In Table (5), the corresponding critical H-3 rotor speeds at the three power settings for 

the roll mode are tabulated. The lateral mode was not considered in this exercise because 

its frequency was greatly below the regressive lag mode of the H-3. 

Center of Instability (rpm) 
Mode 0% Airborne 20% Airborne     80% Airborne 

roll 221 215                       208 
Range of Instability (rpm) 

Mode 0% Airborne 20% Airborne     80% Airborne 
roll 170-267 165-259                160-252 

Table 5. Critical Rotor Speeds 
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The NPS modeler was used to check the regions of instability for a case with no 

damping at the twenty percent airborne condition. Eliminating damping in the rotor head 

and body simulates Coleman's theory that there exists a range of rotor head speeds where 

divergent coupling occurs. Conversely, without damping, rotor speeds outside the ranges 

tabulated in Table (5) should converge. 

At the H-3's normal operating rpm of 203 rpm, the helicopter was seen to diverge 

within seconds. Here, the damping ratio became negative allowing the instability to grow 

to catastrophic proportions after 3 seconds. 

Coleman Analysis for zero damping-Omega=203 rpm Hubert Transform 
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Figure 18. Center of Instability Test-Q=203 rpm 
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Once the rpm of the main rotor is increased above the upper limit of the instability 

range (Q=280 rpm), the helicopter becomes neutrally stable. 

Coleman Analysis for zero damping-Omega=280 rpm Hubert Transform 
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Figure 19. Upper Limit of Instability Test-Q=280 rpm 

Checking the lower limit of instability at Q=140 rpm, the helicopter once again shows 

a neutrally stable tendency. Of interesting note, the dominant frequency drops below the 

standard modeler output of 12.55 rad/sec. In both the upper and lower limit range cases, 

the damping ratio becomes so significantly small varying between negative and non- 

negative numbers that a neutrally stable effect is seen in the time history plots. 
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Coleman Analysis for zero darrpingOmega=140 ipm Hilbert Transform 
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Figure 20. Lower Limit of Instability Test - Q=140 rpm 

2.        Damping Case 

Once an appreciation of the no damping scenario was obtained, the cases 

involving damping were evaluated. Coleman includes the effect of damping for two of 

his characteristic equations. The explicit form for the computation in the simplest case of 

isotropic supports with damping in the pylon and the hinges, but not in the rotating shaft 

(A,a=0) is chosen from Coleman's equation (32) rearranged as follows [Ref. 1]: 

For the real equation :    co2 - 2BRco + CR=0    or    co = BR ± ^Bg -CR 

where     BR = 
cof 

1-A, 
1 + - P    9 

2       A/ 
CO,   + — 

M   , 
v J 

and CB = ■ 
cot 

1-A, 
-1 + 

A2     A3fi>f  +XpX$ 

(of 2       Kf 

f      M 
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For the imaginary equation :    co2 - 2B,a> + C, - 0    or    co = B, ± ^JB, -C, 

where     B, = 
1-A, 

( 
(o< 

2\(of \ 

2    Kf -eo{  + — and C, =- 
1-A, 

XJ 2       ^/ 
-ÖJ,   H i- 

\ J 

(-co(
2+A2) 

Damping enters into the characteristic equation through the parameters A-p^pylon 

damping and A«p blade damping. With the addition of damping, the problem is much 

like the one without damping except now the frequency equation has complex 

coefficients. This makes it impossible to plot the natural frequencies. The limits of the 

stability range are therefore found similar to that used in the subsonic flutter analysis. At 

a limit point between the stable and unstable regions C0f is real. Therefore, the 

characteristic equation is broken into real and imaginary parts with (Of considered real. 

So, the intersections of the real and imaginary equations give the rotor speeds and 

frequencies corresponding to the beginning and the end of the unstable band. A short 

program titled COLEMAN.m, located in Appendix D, shuffles through various C0f 's 

using the simplified equation while solving for co. The results for the H-3 with the 

damping product purposely reduced (^=.059 and X^=1.19) are plotted in Figure (21).   A 

close up of the imaginary line crossing the center of instability at point B is shown in 

Figure (22). P'ot °*real anc* imaginary cases for the H-3 
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Figure 21. Real versus Imaginary Roots of Underdamped H-3 
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Figure 22. Close-up of Imaginary Root crossing at B 

The three points (A,B,C) where the real and imaginary lines intersect one another in 

Figure (21) correspond to the lower, center and upper limits of instability for the H-3 with 

no damping. If a plot of the no damping case in Figure (16) was overlayed Figure (21), 

there would be very little difference between the two. Hence, Coleman's desire to 

present the easier no damping cases for general ground resonance usage. 

B.       DEUTSCH'S CRITERIA 

In their paper, Coleman and Feingold briefly touched upon how to eliminate the 

instability range of a helicopter. However, it was Deutsch who clarified and simplified 

the results of Coleman with respect to increasing the amount of damping until the gap 

between the limits of stability of the unstable region are finally eliminated. No matter 

what the values of damping are, the imaginary part of the equation will pass through the 

center of instability [Ref. 3]. This was evidenced in Figure (22) as the imaginary line 

crosses the center of instability at co=1.3. 

The real part of the characteristic equation behaves as in the case with no damping. In 

Figure (15) and Figure (16), as the coupling between the pylon and the hinge increased 

i.e. A3 is increased, the hyperbolas began to break away from the straight lines increasing 

the gap or instability region. Conversely, Deutsch claims as the product of the hub and 
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blade damping is increased, the real equations behave as the frequency curve without 

damping. When the coupling is decreased, the hyperbolas begin to move back toward the 

straight lines decreasing the instability region.   Since the imaginary part will continue to 

cross at the center of instability, that means the real part will move toward the center of 

instability until the two lines intersect. Essentially, in order to remove the region of 

instability, the quantity of damping in the real part of the characteristic equation must 

allow for the real line to cross the center of instability. 

The damping in the pylon and the hinge required to remove the region of instability is 

defined by Deutsch as follows: 

/L=—*-:        A=    p 

ib<»p '       p   H 

yUL>7^H 

where 

= (1 + A/A1+A2-A1A2) 
P (1-A.) 

Knowing the values of Ai, A2, A3, and p, the damping product of the H-3 based upon 

Deutsch's criteria (^^=0.147) is tabulated in Table (6). 

Pet           (Op           W            A3            Ce            C(J)         Xp        A4     Damping 
airborne (rad/sec) (rad/sec) (ib-in-sec)    qb-sec/in) product 

0% 17.78 12.55 0.044 116079 1155839 0.045 3.305 0.147 
20% 17.30 12.55 0.044 162377 782264 0.064 2.299 0.147 
80%       16.79      13.35      0.044     327405    365429   0.133  1.107    0.147 

Table 6. Damping Product in the Roll Mode 
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Adjusting the product values of the damping ratios in COLEMAN.m, a test of 

Deustch's criteria is made. Figure (23) is a corner plot of the real and imaginary lines of 

the H-3 similar to Figure (21), however, this time the pylon damping is increased from 

Ap=.059 to Xp=.09 while the hub damping remained constant at A,pl.l9. The gap is 

beginning to close as the real frequency curves move toward the center of instability. 

Although not plotted, the same results are evidenced if the hub damping is increased 

while the pylon damping remains constant. 
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Figure 23. Test of Deutsch's Criteria for the H-3 
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The next plot Figure (24), is the result if the damping product is further increased.   In 

this case, the pylon damping remained steady at Ap=.09 while the hub damping increased 

to A-<j,=1.25. The actual damping product (Xp^=.l 13) has now closed the instability gap 

in advance of Deutsch's criteria presented in Table (6). This minimal product of 

damping in the pylon and the hinge, will theoretically free the H-3 of ground resonance in 

the roll mode. Therefore, the damping products in Table (6) are conservative values 

incorporated as a factor of safety by the designers. 
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Figure 24. Approaching the Deutsch Criteria of the H-3 
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This point is further emphasized when a plot from Robinson's work is included [Ref. 

5]. Figure (25) is a parametric plot of a simple model with an isotropic pylon and rotor. 

The damping ratio from the moving block result is plotted versus uVcOf for various 

Deutsch numbers. At a Deutsch number equal to one, the lowest point of the line does 

not touch the where the damping ratio is equivalent to zero. Robinson, therefore, also 

discovered a buffer or factor of safety prebuilt into Deutsch's criteria. 

Moving Block Results Parametized with Deutsch Criteria 

Figure 25. Robinson's Moving Block Results Parametized by Deutsch Number 
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Finally, the H-3 with its actual damping product (Xp^=0.147) is presented in Figure 

(26). Increasing the damping has actually forced the real line to split suggesting that the 

coupling between the pylon and hinge is well damped. 
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Figure 26. Plot of Real vs. Imaginary for the H-3 

44 



VI.      CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUSIONS 

General insight into any ground resonance analysis can be obtained by examining the 

roll, lateral and in some cases the pitching mode of a rotorcraft. Just by the shear length 

of the H-3, the stable pitching mode was quickly eliminated permitting us to concentrate 

on the roll and lateral modes. For a generic five bladed rotorcraft, the pendular frequency 

of the blade transmits a force in to the fixed system at Q.-1/3Q or 2/3Q..  This critical 

frequency, the regressive lag mode, can be close to the natural frequency in the 

helicopter's rigid body roll mode, as it is with the H-3. The natural frequency in the 

lateral mode was too low to couple with the rotor hub to cause any destabilizing motion. 

Nevertheless, we thoroughly examined the roll and lateral mode of the H-3 to link the 

classical work of Coleman, Feingold and Deutsch in the coupled rotor/fuselage field to 

the modern day computational techniques presented in this thesis. 

Wood's H-3 model proved a valuable asset in formulating the correct parameters to 

enter into the NPS modeler. From the model, the virtual points of rotation for both 

modes were discovered. The coupled roll mode pivots about a point above the center of 

gravity whereas the coupled lateral mode rotates about a point underground. As power is 

brought on the aircraft, the points of virtual rotation increase until the helicopter breaks 

the ground and the rotation point climbs several rotor lengths above the helicopter. The 

virtual points of rotation were also used as a reference point about which the input 

parameters were calculated to correlate with the simulator. 

The three power settings examined by Wood that were entered into the simulation 

model displayed the H-3 showed no tendency toward ground resonance in either the roll 

or lateral mode as its rigid body natural frequencies were changed while becoming 

partially airborne. The only possibility of the "light on the skids" analysis causing 

complications would be if an oleo strut or tire were improperly serviced by ground 

personnel or blown during a hard landing. Since the H-3 operates normally within the 

limits of instability at Q=203 rpm, any reduction in damping could lead to a situation 
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similar to the divergent behavior depicted in Figure (18). For this reason, pilots and 

maintenance personnel should possess a general knowledge of ground resonance as well 

as an understanding of the aircraft's self-destructive potential. 

The H-3 was designed to remain well clear of ground resonance by altering the 

parameters of the systems that govern the natural frequency and damping of the aircraft. 

A large portion of these calculations are thanks to the theoretical data published by 

Coleman, Feingold and Deutsch. Coleman and Feingold developed characteristic 

equations to define the instability envelope of a helicopter's rotor system with its rigid 

body modes. Wood's system placed into the NPS modeler defined the H-3's limits of 

instability similar to Coleman's own analysis. As previously stated, the normal operative 

rotor speed of the H-3 is within the band of instability. Above and below the limits of the 

band, the respective modes become neutrally stable. Due to the low rigid body natural 

frequency of the lateral mode, it is inconceivable that any coupling between the pylon 

and hinge would progress into ground resonance. The only possible time conceivable the 

two might destructively couple is if there is hesitation in increasing the rotor rpm during 

run-up. 

At the disposal of the ground resonance designer, the proper manipulation of the 

product terms in Deutsch's criteria brings the real line back to the intersection of the 

imaginary line. The crossing occurs at the center of instability eliminating all ranges of 

divergence. Although it's a conservative value, increasing the damping to Deutsch's 

criteria also forces the real line to split suggesting that the coupling between the pylon 

and hinge is no longer unstable as when hyperbolas and straight lines where evidenced in 

the no damping case of Figure (15). Knowing Deutsch's criteria, the designer is free to 

choose blade dampers based upon the value of A^ whereas oleo damping is opted by 

considering ?ip. Other parameters in the designer's "toolbox" such as oleo spring rate, tire 

spring rate and landing gear tread width are also functioned into the damping product. 

Basically, as long as the product of the calculated damping parameters remain above the 

minimum to create an instability gap (k^kp=0.l 13), the H-3 will be free of ground 

resonance at all rotor rpms. 
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With regard to NATOPS procedures, the corrective measure to suspected ground 

resonance is to immediately takeoff or if unable, shutdown [Ref. 9]. Since the H-3 is 

equipped with a rotor brake, both procedures instantaneously alter the natural frequency 

of the aircraft thereby changing the coupled modes between the fuselage and the rotor 

head. Considering the shutdown procedure may take a timely coordinated effort that the 

airframe just can't afford, the former procedure is the more preferred since it would only 

take a split second for either pilot to recognize the destabilizing mode and then apply 

collective to break the deck. 

Previously, the lack of a modeler that could predict both the linear and non-linear 

portion of the stability characteristic curves required continued expensive and time 

consuming wind tunnel tests to confirm rotor/fuselage stability. Beside demonstrating 

the widespread applicability of the NPS modeler to a well known rotorcraft, continued 

development of this thesis may someday assist engineers in developing new airframes 

well clear of all ground resonance regimes. 

B.       RECOMMENDATIONS 

1.        A user-friendly simulation that eliminates the cut and paste procedure of 
the current modeler. For example, a modeler that is written strictly in 
MATLAB code vice MAPLE to Fortran to C etc. 

2. Ground resonance modeling of more recent aircraft especially ones 
currently in the developmental stage i.e. RAH-66 or CH-60. 

3. Examination of more degrees of freedom i.e. allow for flap in the blades. 

4.        A detailed study on the design of helicopter damping based upon 
Deutsch's work. 

5.        A study examining the air resonance of a modern day aircraft. 
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APPENDIX A. SPRING RATE AND 8/X SOLUTION 

1.        COUPLEDFREQ.M 

%coupledfreq.m 
%    The following program inputs the spring rate data from %Wood's 
HSS-2 Report and then inputs that data into an %equation for Ktheta or 
the spring in the roll mode.  An %eigenvalue/eigenvector problem is set 
up that returns the %results for natural frequencies in the lateral and 
roll %modes at three power settings of 0/20/80% airborne to the %file 
naturalfreqs.txt. 
% 
close all 
clear all 
delete diary naturalfreqs.txt 

diary on naturalfreqs.txt 

Kh=[807 850 975];     % spring rate inputs 
Kv=[1925 1875 1300]; 
Kd=[18500 18000 8000]; 
K2=[2967 1860 116]; 
Kht=[743 766 877]; 
Kvt=[1500 1475 1050]; 
omega=203; • 
Wphiprime=70.4; 
W=omega-Wphiprime; 
W=W*2*pi/60; 
W=[WWW]; 
b=78; 
a=[70.8 71.4 80.4]; 
C=[30 30 30]; 
Ml=42.06; 
M1=[M1 Ml Ml]; 
I=[146376 146376 146376]; 
Khprime=(2*Kh.*Kd)./(2*Kh+Kd) 
Kvprime=2*Kv 
Khhat=2 *Khprime+Kht 

Ktheta=2*Kvprime*bA2.*((K2.A2+K2.*Kvprime+C.A2.*W.A2))./((K2+Kvprime).A 

2+ C.A2.*W.~2)... 
+(2*a.A2.*Khprime+a.^2.*Kht) 

Wpr2=0.5*(Khhat./Ml+Ktheta./I)+ 0.5*sqrt((Khhat./Ml- 
Ktheta./I).A2+(4*Khhat.A2.*a.A2)./(I.*M1)); 
Wpl2=0.5*(Khhat./Ml+Ktheta./I)- 0.5*sqrt((Khhat./Ml- 
Ktheta./I).A2+(4*Khhat.A2.*a.A2)./(I.*Ml)); 

disp('The natural frequencies for roll at 0/20/80 percent power') 
Wproll=sqrt(Wpr2) 
dispCThe natural frequencies for lateral motion at 0/20/80 percent 
power') 
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Wplateral=sqrt(Wpl2) 

disp('Setting up the eigenvector/eigenvalue problem') 

All=(Khhat./Ml); 
A12=(Khhat./Ml). *a; 
A21=(Khhat./I). *a; 
A22=(Ktheta./I); 
A=[A11,A12;A21,A22]; 

disp('Breaking up the A matrix into respective power settings') 

PWR0=[A11(1) A12(l);A21(1) A22(l)]; 
disp('EV0 refers to the eigenvectors of the 0% power setting or ratio 
of roll to lateral motion') 
dispf'eigenO refers to the eigenvalues of wpA2 in roll and lateral 
mode') 
[ EVO, eigenO]=eig(PWRO) 

PWR20=[A11(2) A12(2);A21(2) A22(2)]; 
disp('EV20 refers to the eigenvectors of the 20% power setting') 
disp('eigen20 refers to the eigenvalues of wpA2 in roll and lateral 
mode') 
[EV20,eigen20]=eig(PWR20) 

PWR80=[A11(3) A12(3);A21(3) A22(3)]; 
disp('EV80 refers to the eigenvectors of the 80% power setting') 
disp('eigen80 refers to the eigenvalues of wpA2 in roll and lateral 
mode') 
[EV80,eigen80]=eig(PWR80) 

diary off 

2.   NATURALFREQS.TXT 

Khprime = 

1.0e+003 * 

1.4845    1.5533    1.5678 

Kvprime = 

3850       3750       2600 

Khhat = 

1.0e+003 * 
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3.7120    3.8726    4.0127 

Ktheta = 

l.Oe+007 * 

3.9095    3.5038    2.7986 

The natural frequencies for roll at 0/20/80 percent power 

Wproll = 

17.7843   17.3002   16.7887 

The natural frequencies for lateral motion at 0/20/80 percent power 

Wplateral = 

6.2495    5.6698    2.1758 

Setting up the eigenvector/eigenvalue problem 
Breaking up the A matrix into respective power settings 
EV0 refers to the eigenvectors of the 0% power setting or ratio of roll 
to lateral motion 
eigenO refers to the eigenvalues of wpA2 in roll and lateral mode 

EV0 = . 

-1.0000   -0.9993 
0.0079   -0.0365 

eigenO = 

39.0560        0 
0  316.2819 

EV20 refers to the eigenvectors of the 20% power setting 
eigen20 refers to the eigenvalues of wp"2 in roll and lateral mode 

EV20 = 

-1.0000 
0.0091 

-0 
-0 

9995 
0315 

eigen20 = 

32.1466 
0 299 

0 
.2984 

EV80 refers to the eigenvectors of the 80% power setting 
eigen80 refers to the eigenvalues of wpA2 in roll and lateral mode 
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EV80 = 

-0.9999   -0.9997 
0.0118   -0.0243 

eigen80 = 

4.7341 
281.8613 
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APPENDIX B. MAPLE AND SIMULINK WORKSHEETS 

1. MAPLE PROGRAM 

EQUATIONS OF MOTION FOR GROUND RESONANCE 
CONSIDERING ONLY INPLANE DEGREES OF FREEDOM 

£  
[ DEFINE COORDINATE TRANSFORMATIONS 
I  
[ Blade undeformed axis — Hub: 
[ >   restart: 

>' with(linalsr) s 
Warning,   new definition  for norm 
Warning,   new definition  for  trace 
> psii=Omosa*t+Ph.i[k] j 

> Tlr=alpha->ma-tjrix(3,3, [1,0,0,0,cos(alpha),s±a(alpha),0,-sxn(alpha) 
,cos(alpha)])i 

Tl .-= a —» matrix(3,3, [ 1,0,0,0, cos(oc), sin(a), 0, -sin(a), cos(a)]) 
> T2:»alplia->JBa'fcX'ix(3,3> [cos (alpha) ,0,-«in (alpha) ,0,1,0, sin (alpha) , 0 

,cos(alpha)]); 

72 := a—» matrix(3.3, [cos(a),0, -sin(a), 0,1, 0. sin(a), 0,cos(a)]) 
> T3 :»alpha->jaa-tr-lx(3,3, [cos(alpha),sin(alpha),0,-sin(alpha) ,COB (alp 

ha),0,0,0,1])» 

73 := a—» matrix(3,3, [cos(a), sin(a), 0.-sin{cc), cos(a),0,0,0, 1]) 
> äif£lr-ar-ff->aiap(diff,axrg,£}; 

diffl := arg -» ma.p(diff, arg, t) 
> Ml: stransposa (T3 (psi ) ) j 

cos( €11 + <&t)    -sin(Q / + <Dt)    O" 
Ml:=  sin(iif + *t)     cos(£l* + *t)    0 

0 0 1. 
> M2:-tr«n»pos«(T3(zeta[kj(fc> > ) ; 

'cos{^.(0)    -sin(^(/))    0" 
M2:=  sin(Ct(/))     cos(£t(*))    0 

0 0 1. 
£  
[ Energy of rotor blades 
[  
[ Kinetic energy of kth rotor blade (TBk) 
I  

> rhoHt_3:s»v»ctor(tuIl] (t) ,u[2] (t),0] ) j 

rhoHlJ := [«,(*). u2(r), 0] 
> rhoBuH:=vectoir< to 1,0,0] ); 
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rhoBuH:= [el, 0,0] 
> rhoBuH_I:=multiply(Ml,rhoBuH); 

rhoBuHJ := [cos(fi I + <bt) el, sin(Q t + 4>t) el, 0] 
> rhoPBd:«vector([R,0,0]); 

rhoPBd:=[R,0,0] 
> rhoPBcl_I t =»nxltiply (Ml, M2, rhoPBd) ; 

rhoPBdJ := [(cos(ßr+ *,)cos«;t(0) -sin(Q f + OJ sin^O)) Ä, 

(sin(Q t + <Pk) cos(i^(0) +cos(Q r+ <J>t) sin(^(0))/?, 0] 
> rho:-map(8ia9lify,natadd{rhoEI_X,matadd{rhoBaH_I,rhoPBd_X))); 

p:=[«i(f) + cos(ß'+*t)e/+Äcos(nf + <l>i)cos(^it(/))-Äsm(nt + 4>l)siii(^(/)), 

ttj(0 + sin(ft / + Ot) e7 + R sin(Q f+ *4) cos(£t(0).+ R cos(£i f+ <Pk~) sirtf^O). 0] 
> V:=ai££l(rho); 

V:= sin(£21 + <t>k) €1 el -Jfsin(Q r + *t) Qcos(^(0) 

r9 " 
-«cos(n/ + *t)5111(^(0)1^^(0  -/?cos(Qt+*t)Qsin(^(0) 

-Ä sin(Qr + *J cos(^(0) 

df 

fa fa     "I + cos(nt + ^)QW 

+ R cos(£l/ +<&t) £2 cos(^(/)) - Ä sin(ß/+*t) sin(^t(0) 

-Ä sin(£ir + *t) Q sin(^t(0)+ Äcos(Q f+ *t)cos(^(0 

>  TBkt=l/2*mb[k)*(Vtl]*2+Vt2]*2)} 

i   rrrs   ^ 
TBk:=-mbk      T«](0  -si^Qf + ^JQe/-/?sindiZ + ^^aco^^O) 

-Äcos(Q* + «>,)sin(£t(0)—Ci(0  -«««(Qf + O^Qsin^O) 

-Rsin(a/+*t)cos(;]t(o)h;^(o]J+ (^"20 +cos(a*+*l)nej 

+ Äcos(0/ + «I>jfe)ßcos{^(0)-i?sin(fif+Ofr)sin(;(t(/)) 

-Äsin(n» + 4>t)Qsin(^(/)) + Äcos(Q/ + *t)cos(^(0) 

ra    ^ 

M) [  
[ PotentiaJ energy for kth blade (UBk) 
[  
|" > OBklt=l/2*Ketk]*z«»ta£kl (t)A2; #Linear Elastic Forces 
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UBkl :=-KetC,t{t)
2 

> TJBk2:=l/4*Kd[k]*zeta[k] (t)A4;   #Du£finsr Elastic Forces 

1 4 
UBk2 :=-KdkC,k<it) 

> UBk3:=l/4*Ks[k]*sisrmra(zeta[k] (t)-2>*<2efca[k] <t) *2*z*2-2*zefca[k] (t 
)*z)+l/4*Ks[k]*sigMum{zetatk](t)+z)*(-zeta[k](t)*2-z*2-2*zeta[k](t 
)*z)+l/2*Xs[k]*zeta[k](t)*2+l/2*Ks[k]*z*2; 

UBk3 :=^Ksk signum(^/) - z) (^(tf + i - 2 £,(*) z) 

+-fctsignum(^(0 + z)i-Ut) -z--2^{t)z)+-KskKik{tf+-Ksiz
2 

4 2 2 
DBk: -TJBkl+UBk2+TJBk3 ; 
> TJBks=UBkl+UBk2; 

Dissapative function for kth blade (DBk) 

>  DBks=l/2*CzetaIk]*(diff<zeta[k](t),t))*2+Vzeta[k]*(diff<zeta[k](t> 
,fc>)*2*abs{diff(zeta[k]<t),t)); 

1 
DBk:=~Czetat 

[  
[ Energy of hub 
[  

|«oJ+«^(s«oJ||«o 

[ Kinetic energy of hub (TH) / Potential energy of hub (UH) / Dissapative function of hub (DH) 

> TF:=l/2*M[l]*<aiff(u[l](t),t))*2+l/2*M[2]*(diff(xiE2](t>,t})*2; 

TF~\M%t
u^\ + MiW 

> WF:=l/2*K[l]*uIU(t)*2*l/2*K[21*u[2](t)A2; 

UF:=^K,Uj(,t)2+^K2U2(t)
2 

> DF:=l/2*c[13*(diff(u[ll(t),t))*2+l/2*cI2]*{diff(u[21(t),t:))*2*l/2* 
v[ll*{diff(Ti[lJ(t>,t))*2*abs(diff{Ti[l](t:)rt))+l/2*v[2]*{aiff(TiI21( 
t),t))*2*abs<diff<u[2](t),t)); 

DF:4cIgU](oJ + ^2(|^0j4vl(|ai(0j 3r «,(0 
1 

dr %(0 9f 
«2<0 
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Generalized forces on generalized displacements 

> F[1]:=0; 

F,:=0 
> F[2]s=0; 

> P[3]s=nIUj 

> F[4]:=u[2]; 

> F[5]:=u[3]; 

> F[61s=u[4]; 

> F[7]s«ut5]; 

?2 :=0 

F* :=«, 

F< :=«2 

F* :=«3 

F6 :=«4 

F7 := u5 

Derivation of equations of motion using Lagrange's equation 

> DOFFs=[u[l]<t),u[2](t)]: 
> DOFBs=*[zefca[l] (t),zeta[2] (t),zeta£3] {t),zeta[4] (t>,zeta[5] <t) ] 
> DOF flop (DOFF), op ( DOFB) 1 i 
> dDOFt=dif£l<DOF)s 
> adDOFs=diffl{dDOF): 
> setA:={>ssetB:={}:setC:={>: 
> sotD;={}:sotE:=C):setF:»{): 
> DOFqri=[l :dDOF<i: = [] :ddDOFq:=[] : 
> for  i  from 1  to vectdizi(DOF)   do 
> DOFq:=[op(DOFq),<i[i]]: 
> dDOFq:-[pp(dDOFa),dq:ri]] : 
> ddDOFq: = [op(ddDOF<z) , dd<j[i] 3 : 
> aefcAs=setA union   {ddDOF[i]=adIX>Fq til>: 
> setB:»setB union   {dDOF[i]=aDOFq[i])s 
> setC:=setC -union  {DOF[i]=DOFq[i]}: 
> setDi-setD union  {ddDOFq[il=ddDOF[il}s 
> setE:=aetE union  {dDOF<j[i] =dDOF[i] } : 
> setF:=setF union   {DOFq[i]=DOF[i]}: 
> ods 
> setl;=setA union setB union setC; 
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setl := {1^(0 = ^,^(0 = ^1:1 £WO \=ddq. 1(<L wo 3d9* "92V"' J *4' 8f 13''a3W r*^5' "2(/) = <?2' WO=tfs» 
3 a a fa      ^a fa1! 3 
-^(0=^5,-«l(0=^,,-^«l(0j=rf^,,^^^(0j=da?6,^(0=g6,^U0 = rf96, 

a fa      ^3 J3 fa       ^ 
"|W = ffi« ^[^ Ci(0 J= <£%. - WO = dq7, C5(0 = 97,-| - WO j= da?7, WO = <?3> 

3 3f3 ^ 
u2(t) = dg2, — C,(0=<% —1-«2(0 l=^?2 -«2(/) = rfg2, —^(0 = ^3, —1-«2(0  |=^,2 

>  set2j=setD union, sets union setF; 

3 3f3 ^ 3f3 ^ 3(3 "l 

3^ 3 3(3 S 3 
^5=^C3(0,9s = ^(0,^2=^«,(0,^ = "2(0.^?6=^I^C4(0j^6 = -U0,^ = C5(0, 

3 3(3 > 3f3 ^ 
9l = «1(0.^1=^«,(0,-?6 = ?4(0,^^7 = -|^;C5(0j^,=^l^"1(0J 

3_ 
3/ ^3=^[f WOJ^7=^WO,<?3 = WO,d<Z3 = ^:WO} 

[ > T:=TFs 
> U:=UFs 
> Dls=DFi 
> fox- i from 1 to vectdim(DOFB) do 
> T:«T+subs<k«i ,TBk): 
> U:=U+subs<k=i,UBk) : 
> Dli-Dl+subs(k=i,DBk): 
> od* 

£ > Te*rp:=subs{setl,T): 
> for  i  from 1  to vectdim(DOF)   do 

tempi:=di£f (Temp,dDOF<x[i] > s 
temp2:«subs(set2,tempi) : 
temp3:»dif£(temp2, t) : 
£•1:-subs ( set l,temp3): 
L2x=dx£ f (Temp,XX>F«x[i] ) s 
I<3:=dif£(subs{setl,U),IX)FQ:ti] ) : 
L4:=diff (subs (setl,Dl) ,dDOF<x[i] )s 
BOH[i11»simplify d,l-L2+L3+)>4-F[iJ ) : 

> 
> 
> 
> 
> 
> 
> 
> 
> od: 
> setS:-{siffnum(l,q[3]-z)=0,signum(lJ,<a[4]-2)=0,signum(l,(3[5I-2)=0,si 

gnumCl,«[63 -z) =0, sign»m{lr q[7] -z) =0,sigmoi(l,o;[3 ] +z> =0, signum{l,(j£ 
4]+z)=0,signum{l,qr5]+z)»0,sigTmm(l,q[6]+z)=0,signum(l,q[7]+z)=0,a 
bs(l,do:[l])»0,abs(l,d<3[[2])=0,abs(l,d<z[3]}=0,abs(l,do:[4])=Orabs(l,d 
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q[5])=0fabs(l,da[6I)=0.abs(l,aa[7])=0}: 
> A:=aatrix(vectdim{DOF),vectdim(DOF)); 

j4:=aray(1..7.1..7.[ ]) 
' > for i from 1 to vectdim(DOF) do 
> for j from 1 to vectdim(DOF) do 
> A[i,j] :=coeff (KOM[i],ddDOFq;[j]>: 
> A[i,j]:-subs(BetS,A[i,3l): 
> od: 
> od: 
> Ax2doti=multiply(A,ddD0Fq): 
> f:=array(l..vectdim(DOF)); 

/:=array(1..7>[]) 
> for i from 1 to vectdim(DOF)  do 
> f [i]:—simplify (ROM [i]-Ax2dot[i]): 
> f[i]:-subs(sets,f£il)s 
> od: 

; > xldot:»[]:xl:«n: 
> for i from 1 to vectdim(DOF)   do atldot:=[op{xldot),x[i]]   od: 
> for i from vectdim(DOF)+1 to 2*vectdim(DOF)   do xl:=[op(xl),x[i]] 

od: 
> setX:={}: 

'> for i from 1 to vectdim(DOF) do 
> setX:EsetX union {dDOFq[il=xldot[i]}: 
> s«tI:=setX union {DOFqtiJ=xl[i]>: 
> od: 

' > interface(labelling-falso); 
> Al:-subs(setX  ,op(A)>; 

Al:= 

[mbl + mb2+mbi + snb4 + mbi + M] . 0, 

-mbiÄcos(fi t + <*>,)sin(arl0)-mfc, R sin{Q t + <!>,) cos(il0), 

-mb2Rcos(Q r+ *2) sin(jr,,) -mb2R sin(Q ( + *2) cos(xn), 

-mb3 Rsin(Q / + *3)cos(jr12)- mb3 R cos(Il i + 03) sin(x|2), 

-rm&4Rcos(fl t + <I>4) sin{.r,j)-mbt R sin(ß t + *4) cost*, 3), 

-m&5Rcos(ß/ + *,)sin{j:14)-mfes/?sin(Qr + <I)j)cos(jr,4)] 

[0, mbi + mb3 + mbA + mbs + mb-, + M,, 

-mbx R sin(ß t+<t>,) s"m(jrIB) + mbl R cos(Q t+<t>,) cos(x10), 

-m£>2Äsin{fi/ + *2)sin(x1,) + mfcjÄcos(n/+*2)cos(jt1,), 

mbJ R cos(ft t + <t>3) cos(jt|2) - mb3 R sin(£l * + <J>3) sin<x12), 
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mb< R cos(Q t+4>4) cos( xl3) - mbt R sin(Q f + ®A) sin{xu ), 

-mfts R sio(Q f + *5) sin(x]4) + mb5 R cos(ß f+*s) cos{x,4)] 

[-mbi Rcos(ßf + *t) sin(xl0) -mfc, Rsin{ß f+*t) cos(x10) , 

-ia*, Rsin(ß f+<!>,) sin(x10) + m&, Rcos(ß r+ $,) cos(x10) ,mb, R2,0,0,0,0] 

[-mfc2Rcos(ß t + $2) sinfj:,,) -mb2R sin(ß r + 4»2) cos(xn) , 

-nrf>2R sin(Q <+*,) sinC^^ + wiijÄcostQ f+4>2) cos(x„) ,0, ^if2.0,0,0] 

[-*n&3Äsin(Ql+$3)cos<x1,)-mft3Rcos(n( + 4>j)sin(xl,), 

mfc3Rcos{fi r+ *3)cos(xl2)-fftijR sin(ß* + *3) sin(x12) ,0,0,mb3R
2,0,0] 

[-*«fc4Rcos(ß < + <J>4) sin(xI3)-/n*4R sin(ß t+ «&4)cos(x13) , 

mb4R cos(ß t+*4) cos(xl3) -mfc4 R sin(ß f+*4) sin(x)3),0,0,0, mb4 R
2,0] 

l-mbs R cos(ß t+«t>5 ) sin(xu ) - mb5 R sin( ß t+$5) cos(x]4), 

-»i!>sAsin(Qf+*s)sin(xM) + OTft5Acos(Q/+*s)cos(xM),0,0,0,0,mfe5R
2] 

> fl:=subs{s«tX ,qp(f)); 

// := [mb5cos(Qt+*s)Q
2cJ + »1^ cas(ß/+ 4>,)ß2e/ +mÄ2cos(ßf+<E>2)ß

2C/ 

+ m&3 cos(ß /+*3) fi2 el + mbA cos( A l + *4) ß
2 el+mbsR cos(ß /+*5) ß2 cos(xI4) 

+ 2 mfc4Rcos{ß < + *4) ß cos(xl3)x6-m£4Rsin(ß /+*4) sin(x13)x6 

-m£>4R sin(ß r+4»4) ß
2 sin(xl3) -c, x, + »i*4 Rcos(ß t+ *4) cos(x13)x6 

-2/n*4Äsin(n/ + *4)Qsin(xl,)x6 + mi4Äcos(ß/+*4)Q
2cos(x)3) 

+ 2 OT&3 R cos(ß f + <t>3) ß cos(x]2) x5 - 2 »rf>3 R sin(ß f+ *3) ß sin(xl2) % 
2 

-mb3 R sin(ß/+*3) sin(x12)x5 +2m£2Rcos{ß t + 4>2) ß cos(Xn)x4 

-2 I»Iä2 R sin(ß t + *2) ß sin(xn ) x4 + 2mb^ R cos(ß f + 4>,) ßcos(x1D) Xj 

-m&3Rsin(ßl+*3)ß
2sin(x12) + m63Rcos(ßf+<&3)cos(x]2)xs -^,Xg 

+ mb3 R cos(ß t+*3) ß2 cos(x12) -mb2R sin(ß f + <I>2) sin(xj,) x4 

-mb2R sin(ß 1 + 02) ß2 sin(x,,)+ mi, Äcos(ß r + <t>2) cos(x,,)x4" 

+ mb2Rcos(ß*+*,) ß2cos(Xj,) - 2 m^ R sin(ß r + *t) ßsm(x10)Xj 

-mbjR sin(ß « + *,) sia(x,0)x3 -mb, Rsm(ß/+*,) ß2sin(x,0) 

+ 2m&sR cos(ß t + 4>5) ß cos(x14)x, + mfrj R cos(ß J + *,)cos(x10)x3
2 

-2mb5R sdn(ß t + *5) ß sin(x14)x7 + OT£J R cos(ß /+ *,)ß2 cos(xl0) 

-mfejRsin(ßi+*5)sin(xl4)x, -m/>5R sin<ßt+Os)ß
2sin(xI4) 
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2 i      I 2 
+ mb5Rcos(Qt + 4>5)cos{xu)Xj - v, x, |x, |,-K2x9-c2x2 + m&3Rsin(ßf+«J>3)cos(x12)x5 

+ mbt Rcos(ß t + *,) sin(xJ0) X3 + mbt Rcos(ß t + *,) ß2 sin<x10) 

+ 2m*,Rcos(Qt + 4>2)ßsin(x,,)x4 + m/>, Rsin(fl»+*,)cos(xI0)Xj 

+ mfc, Rsin(fl f+*,) ß2cos(xI0)+ 2 m&3 R sin(ß t+ <J>3) ß cos(x12)x5 

+mb2Rcos(Qt+®2)sm.{xu)xt + /n&,Rcos(ßf + $2)ß
2sin(x1J) 

2 2 
+mb2Rsm(Sl < + *2)COS{JT1I)J:4 + m£3 Rcos(ß f+*3) sin(x12) x5 

+ mfe, R cos(Q t + Oj) ß2 s'm(xl2) + 2 w£4 R sin(ß t + 4>4) ß cos(x„) x6 

+ 2 mfc4Rcos(ßf + *4)ß sin(xn)x6 + 2 mk,Rcos(ß f+ <J>3) ß sin(x,2)x5 

+ m*4 R cos(ß r + *4 ) Q2 sin( xl3 ) + mht R sin( ß t + <I>4) cos(xI3 ) x6 

+ mb4 R sin( ß t+<J>4) ß2 cos(x13 ) + 2 mbi R sin(ß / + <&5 ) ß cos(x14 ) x7 

+ mA, R sin{ß t + 4>2) ß2 cos(x„) + 2 «i>5 R cos(Q t + <J>5) ß sin<x]4) x7 

+ m*3 R sin(ß < + <J>3 ) ß2 cos(x12 ) + mfe5 R cos(ß /+*5 ) sin(xI4) x, 

+ 2 mb1 R sin{ß X + *,) ß cos(x|0) x3 + 2 mb, R cos(ß / + <E>,) ß sin(x,0) x3 

+ m*sRcos(ßl + *s)ß
2sinUM) + mfc5Rsin(ßr + 4>5)cos(xI4)x7 

+ mbs Rsin(ß/ + <J>s)ß
2 cos(xl4) + 2 mb2 R sin{ß t + *2) ß cos(x,,) x4 

+ mfr4Äcos(ß f + *4) sinCxtj)^"-v2x,|x2| + /n*4 sin(ß f+ *4) ß2«V 

+«&2sin<ßf + <&2)ß
2e/ + ro&5sin(ß/ + C>5)ß

2e/ + m63sin(ßf + *3)ß
2«i 

+ mi>1sin(ßf+4>J)ß
2e/, 

«, - Czefa, Xj - wA, ß e/ R sin(x)0) - Kex x10 - Kd, x10 - 2 Vzeta, x, | Xj (, 

itj - AT<r2 x„ - K&t x,,  - Cze/flj x4 - 2 Vzeta2 x41x41 - mb2 ß2 e J R sin(x,,), 

2 3 I      l 
-mb3 ß el R sin(x12) - Czeta3 x5 + u3 - Ke3 xl2 - Krf3 xl2 - 2 Vz«ta3 x51 x51, 

-2 Vzera4xfi|x6| - /nA4 ß2 el R sin(x13) - Czeta4 x6 -ite, xI3 - Kd4xI3 + II4, 

-mb^ ß2 ei R sin(xl4) + us - Ke$ xl4 - 2 Vzcta5x, |x71-Kd5x14 - Czeta5 x7] 
[ > realib(£ortran): 
[> B:>*augment{Al,fl): 
[ >  fortras(B,optimized); 
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2.        SIMULINK 

The following program Blade5.m is the Matlab compatible cut and paste result 

from the above Maple program. It is the state space representation of the H-3 from the 

LaGrangian equation and is represented by the Simulink block diagram in figure (8). 

function [sys, xO] = blade5(t,x,u,flag,II,12,13,14,15,16) 
% 
%  S-function arguments: 

% t = time 
% x = state vector 
% u = input vector 
% flag = switch used by numerical integration (simulation) 
% routine to access certain parts of the s-function 
% 
% S-function input parameters: 

%  II    =  [mb(l),mb(2),mb(3) ,mb{4),mb(5) ,K(1) ,M(2)] 
% 
%  12    =  [R,Omega,el,z] 
% 
%  13    =  [Phi(l),Phi{2),Phi(3),Phi(4),Phi(5)]] 
% 
%  14    =  [c{l),c(2),v(l),v(2), 
% Czeta(l),Czeta(2),Czeta(3),Czeta(4),Czeta(5), 
% Vzeta(1),Vzeta(2),Vzeta(3),Vzeta(4), Vzeta(5}] 
% 
%   15     =  [Ke(l),Ke(2),Ke{3),Ke(4),Ke(5) , 
% Kd(l),Kd(2),Kd(3) ,Kd(4),Kd(5), 
% Ks(l),Ks{2),Ks(3),Ks(4),Ks(5), 
% K(1),K(2)] 
% 
%   16     =  txrXi/xrYi,xrli,xr2i,xr3i,xr4i,xr5i, 
% xXi,xYi,xli,x2i,x3i,x4i,x5i] 
% 
% S-function to represent dynamics of 5 bladed coupled rotor- 
% fuselage model which considers only inplane degrees of 
% freedom, i.e., x and y translational fuselage degrees of freedom 
% and lead-lag rotor blade degrees of freedom. 
% 
% Explaination of variables: 

% 
% mb -> mass of blade 
% M -> effective mass of fuselage 
% R -> distance from lead-lag hinge to blade center of mass 
% el -> blade hinge offset 
% Omega -> rotor speed 
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% z -> 
% Phi -> 
% c -> 
% V -> 
% Czeta -> 
% Vzeta -> 
% K -> 
% Ke -> 
% Kd -> 
% Ks -> 
% xr_ _i -> 
% x   i -> 

angle at which blade hits stops 
blade phase angle w.r.t. azimuth postion 
fuselage linear damping 
fuselage hydraulic damping 
blade linear damping 
blade non-linear dry friction damping 
effective stiffness of fuselage (landing gear stiffness) 
blade elastic spring constant 
blade duffing spring constant 
blade stop effective spring constant 
initial rate 
initial displacement 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Define input parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

mb=Il(l:5); 
M=I1(6:7); 
R=I2(1); 
Omega=I2(2); 
el=I2(3); 
z=I2(4); 
Phi=I3; 
c=I4(l:2); 
v=I4(3:4); 
Czeta=I4(5:9); 
Vzeta=I4(10:14); 
Ke=I5(l:5); 
Kd=I5(6:10); 
Ks=I5(ll:15); 
K=I5(16:17); 
xrXi=l6(l);xrYi=I6(2); 
xrli=l6(3);xr2i=I6(4);xr3i=I6(5);xr4i=I6(6),-xr5i=I6(7); 
xXi=I6(8);xYi=I6(9); 
xli=I6(10);x2i=I6(ll);x3i=I6(12);x4i=I6(13);x5i=I6(14); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S-function flag conditionals 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if flag == 0 

sys=[14,0,14,5,0,0]; 

x0=[xrXi,xrYi,xrli,xr2 i,xr3 i,xr4i,xr5 i,xXi,xYi,xli,x2 i,x3 i,x4i,x5 i]; 

elseif flag == 1 

t2 = mb(l)*R; 
t3 = Omega*t; 
t4 = t3+Phi(l) 
t5 = cos(t4); 
t6 = sin(x(10) 
t7 = t5*t6; 
t9 = sin(t4); 
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tio = cos(x(10)); 
til = t9*tl0; 
tl3 = -t2*t7-t2*tll; 
tl4 = mb(2)*R; 
tl5 = t3+Phi(2); 
tl6 = cos(tl5); 
tl7 = sin(x(ll)); 
tl8 = tl6*tl7; 
t20 = sin(tl5); 
t21 = cos(x(ll)); 
t22 = t20*t21; 
t24 = -tl4*tl8-tl4*t22; 
t25 = mb(3)*R; 
t26 = t3+Phi(3); 
t27 = sin(t26); 
t28 = cos(x(12)); 
t29 = t27*t28; 
t31 = cos(t26); 
t32 = sin(x(12)); 
t33 = t31*t32; 
t35 = -t25*t29-t25*t33; 
t36 = mb(4)*R; 
t37 = t3+Phi(4); 
t38 = cos(t37); 
t39 = sin(x(13)); 
t40 = t38*t39; 
t42 = sin(t37); 
t43 = cos(x(13)); 
t44 = t42*t43; 
t46 = -t36*t40-t36*t44; 
t47 = mb(5)*R; 
t48 = t3+Phi(5); 
t49 = cos(t48); 
£50 = sin(x(14)); 
t51 = t49*t50; 
t53 = sin(t48); 
t54 = cos(x(14)); 
t55 = t53*t54; 
t57 = -t47*t51-t47*t55; 
t58 = OmegaA2; 
t59 = t49*t58; 
t63 = t!4*tl6; 
t65 = Omega*t21*x(4); 
t67 = t36*t42; 
t69 = Omega*t39*x(6); 
t71 = t2*t5; 
t73 = Omega*tlO*x(3); 
t75 = t27*t58; 
t78 = t31*t58; 
t81 = t31*t28; 
t82 = x(5)A2; 
t85 = t20*tl7; 
t86 = x(4)A2; 
t89 = t20*t58; 
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t92 = tl6*t58; 
t95 = t9*t6; 
t96 = x(3)A2; 
t99 = t5*tlO; 
tl02 = t47*t53; 
tl04 = Omega*t50*x(7); 
tl06 = t5*t58; 
tl09 = t53*t50; 
tllO = x(7)"2; 
tll3 = t53*t58; 
tll6 = t49*t54; 
tl20 = t58*el; 
tl22 = t47*t59*t54-K(l)*x(8)+2*t63*t65-2*t67*t69+2*t71*t73- 

t25*t75*t32+t25*t78*t28+t25*t81*t82-tl4*t85*t86- 
tl4*t89*tl7+tl4*t92*t21-t2*t95*t96+t2*t99*t96-2*tl02*tl04+t2*tl06*tl0- 
t47*tl09*tll0-t47*tll3*t50+t47*tll6*tll0+mb(l)*t5*tl20; 

tl31 = t42*t39; 
tl32 = x(6)A2; 
tl35 = t36*t38;. 
tl37 = Omega*t43*x(6); 
tl39 = t42*t58; 
tl45 = t38*t58; 
tl48 = t25*t31; 
tl50 = Omega*t28*x(5); 
tl52 = t38*t43; 
tl55 = t25*t27; 
tl57 = Omega*t32*x(5); 
tl60 = t27*t32; 
tl63 = tl4*t20; 
tl65 = Omega*tl7*x(4); 
tl67 = t2*t9; 
tl69 = Omega*t6*x(3); 
tl71 = t9*t58; 
tl74 = t47*t49; 
tl76 = Omega*t54*x(7); 
tl78 = tl6*t21; 
tl81 = 

mb(5)*t49*tl20+mb(2)*tl6*tl20+mb(3)*t31*tl20+mb(4)*t3 8*tl20- 
t36*tl31*tl32+2*tl35*tl37-t36*tl39*t39- 
v(l)*x(l)*abs(x(l))+t36*tl45*t43+2*tl48*tl50+t36*tl52*tl32-2*tl55*tl57- 
c(l)*x(l)-t25*tl60*t82-2*tl63*tl65-2*tl67*tl69- 
t2*tl71*t6+2*tl74*tl76+tl4*tl78*t86; 

tl86 = -t2*t95+t2*t99; 
tl89 = -tl4*t85+tl4*tl78; 
tl92 = t25*t81-t25*tl60; 
tl95 = t36*tl52-t36*tl31; 
tl98 = -t47*tl09+t47*tll6; 
t233 = 

Inb(4)*t42*tl20+t25*t33*t82+2*t71*tl69+t47*t51*tll0+t47*t59*t50+t47*t55* 
tll0+t47*tll3*t54+t36*t40*tl32+2*tl63*t65- 
C(2)*x(2)+t25*t29*t82+mb(2)*t20*tl20+mb(5)*t53*tl20+mb(3)*t27*tl20- 
K(2)*x(9)+mb(l)*t9*tl20+t2*tl06*t6+t2*t7*t96+t2*tll*t96; 

t265 = 
2*t63*tl65+t2*tl71*tl0+2*tl55*tl50+tl4*tl8*t86+tl4*t92*tl7+tl4*t22*t86+ 

66 



t25*t78*t32+2*tl35*t69+2*t67*tl37+2*tl48*tl57+t36*tl45*t39+t36*tl39*t43 
+t3 6*t44*tl32+2*tl02*tl76+tl4*t89*t21+t25*t75*t28+2*tl74*tl04- 
v(2)*x(2)*abs(x(2))+2*tl67*t73; 

t267 
t271 
t275 
t284 
t3Ql 
t317 
t329 

RA2; 
el*R; 
x(10) 
x(ll) 
x(12) 
x(13) 
x(14) 

B (1 1) 
B (1 2) 
B (1 3) 
B (1 4) 
B (1 5) 
B (1 6) 
B (1 7) 
B (1 8) 
B (2 1) 
B (2 2) 
B (2 3) 
B (2 4) 
B (2 5) 
B (2 6) 
B (2 7) 
B (2 8) 
B (3 1) 
B (3 2) 
B (3 3) 
B (3 4) 
B (3 5) 
B (3 6) 
B (3 7) 
B (3 8) 

d(l)*t275*x 
B (4 1) 
B (4 2) 
B (4 3) 
B (4 4) 
B (4 5) 
B (4 6) 
B (4 7) 
B (4 8) 

*Vzeta (2 *x 
B (5 1) 
B (5 2) 
B (5 3) 
B (5 4) 
B 5 5) 
B 5 6) 
B (5 7) 
B (5 8) 

mb (1)+mb(2)+mb(3)+mb(4)+mb(5)+M (1) 
0; 
tl3; 
t24; 
t35; 
t46; 
t57; 
tl22+tl81; 
0; 
mb(l)+mb(3)+mb(4)+mb(5)+mb(2)+M(2) 
tl86; 
tl89; 
tl92; 
tl95; 
tl98; 
t233+t265; 
tl3; 
tl86; 
mb 
0 
0; 
0; 
0; 
u(l) 

l)*t267; 

■Czeta(l)*x(3)-mb(l)*t58*t271*t6-Ke(l)*x(10)- 
D)-2*Vzeta(l)*x(3)*abs(x(3)) 
t24; 
tl89; 
0; 
mb(2)*t267; 
0; 
0; 
0; 
u(2)-Ke(2)*x(ll)-Kd(2)*t284*x(ll)-Czeta(2)*x(4)- 

*x<4)*abs(x(4))-mb(2)*t58*t271*tl7; 
t35; 
tl92; 
0; 
0; 
mb(3)*t267; 
0; 
0; 
-mb(3)*t58*t271*t32-Czeta(3)*x(5)+u(3)-Ke(3)*x(12) 

Kd(3)*t301*x(12)-2*Vzeta(3)*x(5)*abs(x(5)); 
B(6,l) = t46; 
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B(6,2) 
B(6,3) 
B(6,4) 
B(6,5) 
B(6,6) 
B(6,7) 
B(6,8) 

Czeta(4)*x(6) 
B(7,l) 
B{7,2) 
B(7,3) 
B(7,4) 
B(7,5) 
B(7,6) 
B(7,7) 
B(7,8) 

2*Vzeta(5)*x( 

tl95; 
0; 
0 
0 
mb 
0; 

4)*t267; 

= -2*Vzeta(4)*x(6)*abs(x(6))-mb(4)*t58*t271*t39- 
-Ke(4)*x(13)-Kd(4)*t317*x(13)+u(4); 
= t57; 
= tl98; 
= 0; 
= 0; 
= 0; 
= 0; 
= mb(5)*t267; 
= -mb(5)*t58*t271*t50+u(5)-Ke(5)*x(14)- 
7)*abs(x(7))-Kd(5)*t329*x(14)-Czeta(5)*x(7) 

% Calculate derivatives 

[m,n]=size(B); 
Al=B(:,l:n-l); 
fl=B(:,n); 
sys=zeros(1,2 *m); 
sys(l:7)=Al\fl; 
sys(8:14)=x(l:7); 

% Output states 

elseif flag == 3 

sys(1:14)=x; 

else 

sys = []; 

end 
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APPENDIX C. H-3 PARAMETER VALUES 

PARAMETER SETTING AND H-3 VALUE CHART 

a.        Roll Mode- 0% PWR Airborne 

PARAMETER SETTINGS H3 VALUE UNITS        I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1) M(2) 504 slugs 

R 8.75 feet 

Omega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 

Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 
0,2pi/5,4pi/5,6pi/5,8pi/5 

radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 96320 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 ft-lbs/frad/secf 

c(1)c(2) 254 lbs/(ft/sec) 

v(1)v(2) 0 \bs/(Wsecf 

Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) 0 ft-lbs/radian 

Kd(1) Kd(2) Kd(3) Kd(4) Kd(5) 0 ft-lbs/radian3 

Ks(1) Ks(2) Ks(3) Ks(4) Ks(5) 0 ft-lbs/radian 

K(1)K(2) 85690/2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1ix2i x3i x4i x5i 0 radians 

xr1ixr2i xr3i xr4i xr5i 0 radians/sec 

b. Roll Mode-20% PWR Airborne 

PARAMETER SETTINGS H3 VALUE UNITS       I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1) M(2) 504 slugs 

R 8.75 feet 

Omega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 

Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 
0,2pi/5,4pi/5,6pi/5,8pi/5 

radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 65189 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 ft-lbs/frad/secf 

c(1)c(2) 410 lbs/(ft/sec) 

v(1)v(2) 0 lbs/(ft/sec)2 
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Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) 0 ft-lbs/radian 

Kd(1)Kd(2)Kd(3)Kd(4)Kd(5) 0 ft-lbs/radianJ 

Ks(1)Ks(2)Ks(3)Ks(4)Ks(5) 0 ft-lbs/radian 

K(1)K(2) 88653/2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1ix2i x3i x4i x5i 0 radians 

xrti xr2i xr3i xr4i xr5i 0 radians/sec 

Roll Mode-80% PWR Airborne 

PARAMETER SETTINGS H3VALUE UNITS       I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1)M(2) 504 slugs 

R 8.75 feet 

Omega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 

Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 
0,2pi/5,4pi/5,6pi/5,8pi/5 

radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 30452 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 ft-lbs/frad/sec)' 

c(1)c{2) 1504 lbs/(ft/sec) 

v(1)v(2) 0 Ibs/fft/sec)' 

Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) 0 ft-lbs/radian 

Kd(1) Kd(2) Kd(3) Kd(4) Kd(5) 0 ft-lbs/radianJ 

Ks(1) Ks(2) Ks(3) Ks(4) Ks(5) 0 ft-lbs/radian 

K(1)K(2) 131895/2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1ix2i x3i x4i x5i 0 radians 

xrli xr2i xr3i xr4i xr5i 0 radians/sec 

d. Lateral Mode-0% PWR Airborne 

PARAMETER SETTINGS H3 VALUE UNITS       I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1)M(2) 215 slugs 

R 8.75 feet 

Oniega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 
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Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 
0,2pi/5,4pi/5,6pi/5,8pi/5 

radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 96320 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 ft-lbs/frad/secf 

c(1)c(2) 80 lbs/(ft/sec) 

v(1)v(2) 0 \bs/(WsecY 

Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) 0 ft-lbs/radian 

Kd(1)Kd(2)Kd(3)Kd(4)Kd(5) 0 ft-lbs/radian3 

Ks(1) Ks(2) Ks(3) Ks(4) Ks(5) 0 ft-lbs/radian 

K(1)K(2) 44544/2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1ix2i x3i x4i x5i 0 radians 

xr1i xr2i xr3i xr4i xr5i 0 radians/sec 

Lateral Mode-20% PWR Mode 

PARAMETER SETTINGS H3 VALUE UNITS        I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1)M(2) 215 slugs 

R 8.75 feet 

Omega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 

Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 
0,2pi/5,4pi/5,6pi/5,8pi/5 

radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 65189 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 ft-lbs/frad/sec)* 

c(1)c(2) 106 lbs/(ft/sec) 

v(1)v(2) 0 \bs/(Wsecf 

Ke(1) Ke(2) Ke(3) Ke(4) Ke(5) 0 ft-lbs/radian 

Kd(1) Kd(2) Kd(3) Kd(4) Kd(5) 0 ft-lbs/radian3 

Ks(1) Ks(2) Ks(3) Ks(4) Ks(5) 0 ft-lbs/radian 

K(1)K(2) 46471 /2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1i x2i x3i x4i x5i 0 radians 

xr1 i xr2i xr3i xr4i xr5i 0 radians/sec 
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Lateral Mode-80% PWR Airborne 

PARAMETER SETTINGS H3 VALUE UNITS      I 

mb(1) mb(2) mb(3) mb(4) mb(5) 10 slugs 

M(1)M(2) 215 slugs 

R 8.75 feet 

Omega 21.25 rad/sec 

e1 1.05 feet 

z pi/12 radians 

Phi(1) Phi(2) Phi(3) Phi(4) Phi(5) 0,2pi/5,4pi/5,6pi/5,8pi/5 
radians 

Czeta(1) Czeta(2) Czeta(3) Czeta(4) Czeta(5) 30452 ft-lbs/(rad/sec) 

Vzeta(1) Vzeta(2) Vzeta(3) Vzeta(4) Vzeta(5) 0 . ft- 
lbs/(rad/sec)2 

c(1)c(2) 350 lbs/(ft/sec) 

v(1)v(2) 0 lbsf{WsecY 

Ke(1)Ke(2)Ke(3)Ke(4)Ke(5) 0 ft-lbs/radian 

Kd(1)Kd(2)Kd(3)Kd(4)Kd(5) 0 ft-lbs/radianJ 

Ks(1)Ks(2)Ks(3)Ks(4)Ks(5) 0 ft-lbs/radian 

K(1) K(2) 48152/2e7 lbs/ft 

xXixYi xXi=0.2 ft 

xrXi xrYi 0 ft/sec 

x1 i x2i x3i x4i x5i 0 radians 

xr1ixr2i xr3i xr4i xr5i 0 radians/sec 

g.        Coleman Test 

For the remaining simulations, the only variance from the above parameters 

for each case was the change in Q. representing rotor speed and the zeroing out of pylon 

i.e. c(i) and rotor hub damping i.e. Czeta(i). 
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APPENDIX D. COLEMAN PLOTS 

1.        COLEMAN.M 

a.        No Damping Scenario-H-3 
% nodampl.m 
% This program uses equation 31 introduced by Coleman and Feingold to 
%represent how w and wf can be found specifically for the H-3.  This 
%program plots only the real values of the answer for a no damping 
%scenario.  The effect of lamda3 is shown in the plots. 

close all 
clear all 

%real equation 
lamda=0; 
lamdal=0.05624; 
lamda2=0; 
lamda3=0; 

K=l;    %stiffness s=l 

wf=-5:.01:5; 

wreal=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))+... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 

(wf. A2. /(1-lamdal)).*(-1+(lamda2./wf. A2) - 
(lamda3.*wf.A2+lamda)./(-wf.A2+K))). A.5; 

wreall=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))-... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)-(lamda3.*wf.A2+lamda)./(- 

wf.A2+K))).A.5; 

lamda3=0.022; 

wreala=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))+... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 

(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)- 
(lamda3.*wf.A2+lamda)./(-wf.A2+K))).A.5; 

wrealla=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))-... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)-(lamda3.*wf.A2+lamda)./(• 

wf.A2+K))).A.5; 

lamda3=0.44; 

wrealb=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))+... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
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(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)- 
(lamda3.*wf.A2+lamda)./{-wf .A2+K))).A.5; 

wreallb=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))-... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)-(lamda3.*wf.A2+lamda)./(• 

wf.A2+K))).A-5; 

hold on 
plot(wreal,wf,'b--',wreall,wf,'b--',wreala,wf,'r-.',wrealla,wf,'r- 
.',wrealb,wf,'r',wreallb,wf,'r')   %like a charm 1-8 
hold off 
axis([-l 4-13]) 
grid 
ylabeK'wf') 
xlabel('w') 
title('Effect of coupling between pylon and hinge motions-H-3-no 
damping') 
%legend('lamda3=0','lamda3=0.2','lamda3=0.4') 
gtext('lamda3=0') 
gtext('0.2') 
gtext('0.4') 
%gtext('stable region') 
%gtext('unstable region') 
gtext('A') 
gtext('B') 
gtext CO 
gtext('zero coupling') 
%gtext('hinge deflection') 
%gtext('pylon bending') 

b.        Damping Scenario-H-3 

%  dampl.m 
% The following program uses Coleman's equation(31)to calculate w and 
%wf for a damped case specific to H-3. 
close all 
clear all 

%real equation 
lamdap=.059; 
lamdaphi=l.19; 
1amda=1amdap *1amdaphi; 
lamdal=0.05624,• 
lamda2=0; 
lamda3=0.044226; 
K=l;     %stiffness s=l 

wf=-5:.01:5; 

wreal=(wf./(1-lamdal)).*(1+(lamda./(2*{-wf.A2+K))))+... 
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(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
(wf.A2./(l-lamdal)).*(-1+(lamda2./wf.A2)- 

(lamda3.*wf.A2+lamda)./(-wf.A2+K))).A.5; 

wreall=(wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))-... 
(((wf./(1-lamdal)).*(1+(lamda./(2*(-wf.A2+K))))).A2+... 
(wf.A2./(1-lamdal)).*(-1+(lamda2./wf.A2)-(lamda3.*wf.A2+lamda)./ 

wf.A2+K))).A.5; 

%imaginary equation 

wimag=(l/(1-lamdal)).*(wf-(lamdaphi./(2.*lamdap.*wf)).*(-wf.A2+K))+. 
sqrt(((1/(1-lamdal)).*(wf-(lamdaphi./(2.*lamdap.*wf)).*(- 

wf.A2+K))).A2+... 
(1/(1-lamdal)).*((lamdaphi/lamdap).*(-wf.A2+K)+(- 

wf.A2+lamda2))); 

wimagl=(l/(1-lamdal)).*(wf-(lamdaphi./(2.*lamdap.*wf)).*(-wf.A2+K))- 

sqrt(((1/(1-lamdal)).*(wf-(lamdaphi./(2.*lamdap.*wf)).*(- 
wf.A2+K))).A2+... 

(1/(1-lamdal)).*((lamdaphi/lamdap).*(-wf.A2+K)+(- 
wf.A2+lamda2))); 

%gtext('stable region') 
%gtext('stable region') 
%gtext('unstable region') 
%gtext('hinge deflection') 
%gtext('pylon bending') 

hold on 
figure(1) 
plot(wreal,wf,'r',wreall,wf,'r') 
plot(wimag,wf,'b--',wimagl,wf,'b--') 
hold off 
axis([-l 4-13]) 
grid 
ylabeM'wf') 
xlabeK'w') 
title('Plot of real and imaginary cases for the H-3') 
legend('r','real','b--','imaginary') 
%gtext('A') 
gtext('B') 
%gtext CC ) 
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