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ABSTRACT 

Nonlinear effects on the dispersion relation of waves in shallow water are 

examined with measurements collected on a mild sloping sandy beach during the recent 

Sandy Duck experiment. Four arrays of bottom pressure sensors were deployed in depths 

ranging from 3 - 6 m during August-November, 1997. For each of these arrays, a root- 

mean-square average wavenumber was estimated as a function of frequency from the 

cross-spectra of one-hour-long pressure records. The observed wavenumbers are 

compared to linear finite depth theory predictions and to predictions based on a stochastic 

formulation of weakly nonlinear Boussinesq equations that incorporate both frequency 

and amplitude dispersion effects. The observed wavenumbers are generally in agreement 

with the nonlinear theory predictions and deviate significantly (maximum errors averaged 

over the spectrum of about 25%) from the linear theory predictions. In high energy 

conditions with breaking or nearly breaking waves, the effects of amplitude and 

frequency dispersion tend to cancel, and all components of the wave spectrum travel with 

approximately the shallow water wave speed. These results are consistent with previous 

studies. 
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I.        INTRODUCTION 

As surface gravity waves approach the beach their characteristics change 

dramatically. During shoaling, wave heights increase, wavelengths decrease, and 

propagation directions refract toward normal incidence to the beach. These linear 

propagation effects are well understood. In very shallow water strong nonlinear effects 

dominate the wave shoaling evolution. The nonlinear interaction between two wave 

components with frequencies and (vector) wavenumbers (f\,k\) and if 2, A2) can transfer 

energy to a wave component with the sum frequency and wavenumber (/i +fi, k\ + ki). 

Whereas these so-called triad interactions are non-resonant in deep water, the mismatch 

from resonance is small in shallow water, causing large energy transfers over distances of 

only a few wavelengths. Subsequent interactions involving the newly formed waves can 

transfer energy to even higher frequencies. As a result the wave spectrum typically 

broadens during shoaling (e.g. Freilich & Guza, 1984). Furthermore, phase-coupling 

effects between the interacting wave components causes the characteristic steepening and 

pitching forward of wave crests that leads in to wave breaking (Elgar & Guza, 1985). 

The basis for wave shoaling theory are equations for weakly nonlinear and weakly 

dispersive waves derived by Boussinesq in 1871. This theory has turned out to be 

suprisingly accurate even for nearly breaking waves. Peregrine (1967) extended the 

Boussinesq theory to a sloping bottom, and the resulting equations were used by Freilich 

and Guza (1984) to model the shoaling evolution of irregular ocean waves on a gently 

sloping beach. This model predicts accurately the evolution of both the wave spectrum 



E(f) and wave shape characteristics observed on natural beaches (Freilich & Guza, 1984; 

Elgar&Guza, 1985). 

Nonlinearity affects not only the spectral properties of waves but also the 

dispersion relation between the wave frequency/and the wavenumber k= (| k |). In the 

linear approximation 

(2nf)2=gktznh(kh) (1) 

where h is the water depth and g is gravity. Equation 1 is valid in any depth h, but 

neglected nonlinear effects may distort the dispersion relation. In deep (kh»l) and 

intermediate (kh=0(\)) water depths, observed dispersion relations are generally in 

excellent agreement with (Eq. 1) at the dominant wind wave frequencies, whereas at 

higher frequencies observed spectra are often dominated by bound waves excited by 

nonresonant triad interactions that have wavenumbers k much smaller than predicted by 

(Eq. 1) (e.g. Donelan et al., 1985; Herbers & Guza, 1992,1994). Freilich and Guza 

(1984) examined nonlinear deviations from (Eq. 1) in shallow water (kh «1) by 

comparing wave phase evolution across the beach with linear theory predictions, based 

on (Eq. 1) and nonlinear predictions based on Boussinesq models for uni-directional 

waves. In low energy conditions with a broad-banded wave field, linear phase prediction 

was more accurate than the Boussinesq model predictions, possibly because the latter are 

inaccurate in deep water and neglect directional effects. However, in energetic wave 

conditions with narrow spectra, large errors were noted in the linear phase predictions at 

frequencies corresponding to harmonic peaks in the spectra, whereas the nonlinear model 



predictions are in good agreement with the observations. Elgar and Guza (1985) 

compared wave phase speeds, estimated from measured phase differences between 

closely spaced sensors in a cross-shore array, to predictions of linear finite depth theory 

and a nonlinear Boussinesq model. As in the Freilich and Guza (1984) study, the 

nonlinear model predictions assume uni-directional waves. The nonlinear model 

predictions are generally in closer agreement with the data than the linear model, and 

demonstrate that high-frequency harmonic components in narrow banded wave fields 

travel with the same (or slightly larger) speeds than the dominant swell components 

In a weakly nonlinear wave field, the wavenumber of each spectral component is 

affected by nonlinear triad interactions with other components of the spectrum. As a 

result there is no unique dispersion relation between/and k. However, the root-mean- 

square average wavenumber of all wave components with frequency/can be expressed 

in terms of the spectra E (/) and En (/) of the sea surface slopes r/x and rjy in two 

orthogonal (x,y) directions (e.g. Herbers & Guza, 1994). 

kms (/) = 
(E(f) + E(f) 

1/2 

 n 
(2) 

E(f) 

A theoretical expression for krms(f), that is generally valid for directionally spread waves 

propagating over a beach that is uniform in the alongshore direction, can be derived from 

a stochastic formulation of Boussinesq equations (Herbers & Burton ,1997, Herbers et 

al., 1999, manuscript in preparation). 

*„. (/) = k„ (/)[l + *, (/) - eam if)}'2 (3) 



The lowest-order term of (Eq. 3), ksw(f)=irf I yfgh , is the well-known shallow water 

limit of (Eq. 1), that describes a nondispersive wave field in which all components of the 

wave spectrum travel with the shallow water wave speed yfgh . The small correction 

terms sfr(f) and eam (/) represent the effects of frequency dispersion and amplitude 

dispersion. The frequency dispersion correction is obtained by expanding the tanh (kh) 

term in (Eq.l) in a Taylor series for small kh 

stA/) = &ptJL (4) 

that describes the linear dispersion effect of wave speeds to decrease with increasing 

frequency The amplitude dispersion correction is given by: 

eam (/) = 2^
3
(/)jjRe {£(/',/ - f')}df'+ 2 JRe {B(f',f)}df\    (5) 

where Re{ } indicates the real part. The bispectrum Bifxfi) describes in a statistical sense 

the nonlinear interaction between triads of wave components with frequencies f\, fi and 

f\+fi, and the associated nonlinear phase changes of the three components (e.g. Elgar & 

Guza, 1985; Herbers & Burton, 1997). The net nonlinear changes in the wavenumber of 

components with frequency/are obtained by integrating the contributions of all triad 

interactions that involve a component with frequency/ In general, larger amplitude 

waves propagate faster (i.e. have smaller wavenumbers) than smaller amplitude waves, 

and thus the amplitude dispersion term s^, (/) tends to negate the frequency dispersion 

term sfr(f). Equations 3 - 5 are based on the standard Boussinesq assumption that 



dispersion (kh)2 and nonlinearity afh are both weak and of the same order (that is, the 

Ursell number Ur=fl/A2/z3=0(l)). Hence the frequency £yr(/)and amplitude 

8am (/) dispersion correction terms in (Eq. 3) are formally of the same order. 

In the present study the dispersion properties of waves in shallow water are 

examined with field data acquired during the SandyDuck experiment near Duck, NC. 

Four arrays of bottom pressure sensors were deployed for four months along a cross- 

shore transect on a sandy beach. These measurements provide unique detailed 

wavenumber estimates both inside and outside the surf zone. The field experiment and 

data analysis techniques are described in Chapter II. Comparisons of the predicted and 

the observed wavenumbers for four case studies, including both breaking and non- 

breaking waves are carried out in Chapter III. Statistical analysis of the entire data set is 

performed in Chapter IV. The results are summarized in Chapter V. 





II.       FIELD EXPERIMENT AND DATA ANALYSIS 

Detailed measurements of the shoaling evolution of waves across the beach were 

collected during the SandyDuck experiment at the U.S. Army Corps of Engineer's Field 

Research Facility located near Duck, NC, on a straight barrier island that is fully exposed 

to the Atlantic Ocean. An extensive 2-dimensional array of pressure sensors, 

electromagnetic current meters, and sonar altimeters (to determine seafloor location) 

were deployed on the beach between the shoreline and about 6 m depths (Elgar et al; 

manuscript in preparation). High quality wave data were collected during a four-month 

period (August - December 1997) spanning a wide range of conditions. 

Bathymetry at the site is characterized by a gently sloping («1:250), nearly planar 

inner shelf and a slightly steeper («1:100) beach with a steep (1:20) beach face (Fig. 1). 

Daily bathymetric surveys of the nearshore region indicate that the beach changes over 

the course of the experiment were small. A shore-parallel sand bar located 300 m 

offshore remained relatively stationary with its crest submerged about 5 m below sea 

level, and did not strongly affect the wave shoaling process. Close to shore, the 

morphology was more dynamic, with the development of transient bars and alongshore 

depth variations. 

The present study uses data from four compact arrays, each consisting of six 

bottom-mounted pressure sensors (Fig. 1) arranged in two-dimensional formations. The 

arrays were positioned at offshore distances of 210,260, 385, and 500 m in nominal 



depths of 3, 3.5,4, and 5 m, respectively with sensor spacings ranging from 4 - 12 m 

(Fig. 2). The shortest lags in the arrays are small compared to the wavelengths of the 

dominant waves, and thus allow for accurate estimates of surface slopes in two 

orthogonal directions rjx and ^(Herbers & Guza, 1994). The sample frequency of the 

pressure sensors was 2 Hz. 

The data analysis is based on 1-hour-long detided bottom pressure records. 

Spectra, cross-spectra, and bispectra were estimated in the frequency range of 0 - 0.5 Hz 

with a bandwidth of 0.0098 Hz. 

A 

An estimate oikms{f) 
IS obtained from a linear combination of the normalized 

cross spectra (Herbers, Elgar, & Guza, 1995) 

Kms  (/) = lSLa
Pq \u    ,"      ,^h/2 (6) H„uw„(f)i,: p=\ q=\ l"pp\J /—qq 

where H  (f) is the cross spectrum of a pair of sensors with indices/? and q and Nt is the 

number of sensors in the array. The method, valid for arbitrary directional wave spectra, 

is based on an expansion of the cross spectra Hpq{f)fox small values of kD, where D is 

the sensor spacing (see Herbers et al, 1995 for details). The optimal coefficients apq are 

evaluated a priori through a least-squares fit of the expanded right-hand-side of (Eq. 6) to 

the theoretical expression for krms(f), (Eq. 2). 

Boussinesq model predictions of kms(f), (Eq. 3-5), were obtained by substituting 

measured spectra (E(f)) and bispectra (B(f \fi)), extracted from the bottom pressure time 



series, in (Eq. 5). To enhance the stability of the estimates, both E(f) and B(f\fi) were 

averaged over the six sensors of each array. The weak (in the Boussinesq approximation) 

vertical attenuation of wave pressure over the water column is neglected in these 

calculations. The frequency range for comparisons of wavenumber estimates was 

restricted to 0.05 - 0.25 Hz because both the Boussinesq model and the data analysis 

techniques do not account for the typically strong reflections of lower-frequency (< 0.05 

Hz) infragravity waves from shore, and higher frequency (> 0.25 Hz) waves are 

significantly attenuated over the water column at the deeper arrays. 
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III.     OBSERVATIONS 

In this chapter, example comparisons of observed and predicted wavenumbers are 

presented. Four case studies were selected from a wide range 6f conditions encountered 

during the four month-long experiment (Fig. 3). Three of the selected data runs, (cases 

II-IV), were collected during the passage of major storms through the region. In these 

case studies with energetic (significant wave heights Hs >2 m) waves propagating and 

breaking across the instrumented transect, the nonlinear effects on the dispersion relation 

are expected to be pronounced. The results are contrasted with one data run (case I) 

collected in generic calm conditions. 

Observed spectra (E(f)) and observed and predicted root-mean-square average 

wavenumbers &„,„(/) are shown for each individual case study in Figs. 4-7. In 

particular, the observed kms(f) (Eq- 2) are compared to both the linear dispersion 

relation (Eq. 1) and thekms(f) predicted by the nonlinear Boussinesq model (Eq.3). To 

examine the relative importance of the frequency (efr(f)) and amplitude (sam(f)) 

dispersion correction terms in the nonlinear Boussinesq model prediction, the 

wavenumbers predicted by the shallow water dispersion relation approximation (ksw(f) 

i.e. excluding both efr(f) and £am(f) in Eq. 3) and by the dispersion relation of the 

linearized Boussinesq model (excluding only s^ (/) in Eq. 3) are included in Figs. 4-7. 

11 



In each of the four case studies, one of the arrays had one or more malfunctioning 

instruments and was not included in the comparisons presented in Figs. 4-7. 

Case I. NOVEMBER 20 

The conditions on November 20 are characterized by light winds (speeds < 5 m/s) 

and a fairly broad spectrum of low amplitude swell with a peak frequency fp« 0.07 Hz 

(Fig. 4a), The surf zone was confined to the region shoreward of the shallowest array. 

The offshore significant wave height was 0.3 m and the mean wave direction was 12° 

south of normal incidence (both measured with a Datawell Directional Waverider in 20 m 

depth, 5 km from shore). The small increases in variance observed between arrays 7 and 

5 (9%) and between arrays 5 and 4 (19%) in Fig. 4a are consistent with the theoretical 

(oc h~   ) energy increase of nonbreaking waves expected during shoaling (e.g. Kinsman, 

1965). Observed wavenumbers are generally in good agreement with linear finite depth 

theory (Figs. 4b-d), but there is a slight but systematic discrepancy at higher frequencies 

at all arrays. The nonlinear Boussinesq model predictions agree well with the 

observed kms(f) frequencies. Whereas the nonlinear Boussinesq model prediction of 

kms(f) is close to the linear Boussinesq predictions (i.e. eam{f) is small compared to 

SfXf) > Eq. 3) at array 7, at array5 the nonlinear Boussinesq prediction is close to ksw(f) 

(i.e. sam{f) and £/r(f) approximately cancel). Although these results demonstrate 

primarily the linearity of the wave motion in benign conditions, amplitude dispersion 

effects are detectable at the shallowest array where nonlinearity is enhanced. Whereas 

predicted kms(f) 
vary smoothly with frequency, the observed kms(f) show some scatter 

12 



at low frequencies. These discrepancies are possibly caused by errors in the observed 

wavenumbers. Previous observations at the same field site have shown that wave 

reflection from shore is significant at low swell frequencies when incident wave 

amplitudes are small (Elgar et al., 1994). The resulting partial standing wave patterns 

likely contribute significant errors to kms(f) estimates that are based on the assumption 

of a progressive wave field. 

Case II. NOVEMBER 7 

A much more energetic and narrower swell spectrum (fp » 0.08 Hz) was observed 

on November 7 (Fig. 5a). At the deeper arrays, (6, 7), the observed spectra have a 

distinct 2nd harmonic peak at 2fp «0.16 Hz. The offshore significant wave was 2.28 m 

and the mean-direction was close to normal incidence. Local winds were variable with 

speeds less than 10 m/s, indicating that the swell arrived from a remote source. Observed 

swell variances decreased by 17% between arrays 7 and 6 and by 43% between arrays 6 

and 5, indicating that significant dissipation took place in the instrumented region with 

surf zone conditions extending seaward of array 5 (Fig. 5a). At all three arrays, the 

observed kms(f) are in good agreement with the linear finite depth theory at the 

dominant swell frequencies but diverge gradually from the linear dispersion relation for/ 

> 0.15 Hz. At the highest frequency considered (0.25 Hz) the observed kms(f) 
are about 

25% smaller than the wavenumbers predicted by the linear finite depth dispersion relation 

(Figs. 5b-d). These discrepancies at high frequencies (>2fp) are consistent with harmonic 

components with smaller wavenumbers. The nonlinear Boussinesq model predictions 

13 



(that account for the harmonic components) are in excellent agreement with the observed 

wavenumbers over the entire frequency range. Both the observed £„,„(/) and the 

nonlinear Boussinesq prediction are close to the shallow water-dispersion relation, 

indicating that the frequency dispersion term £/r(f) 
an^ me amplitude dispersion term 

sam (/) in Eq. 3 are of almost equal magnitude and cancel, yielding a nondispersive 

wave field in which all components travel with the shallow water wave speed (ghj   . 

Caselll. OCTOBER 19 

The October 19 case (Fig. 6), the most energetic of the four cases, was collected 

at the height of a severe nor'easter storm with strong winds from the north (speeds up to 

18 m/s). The offshore significant wave height was 3.64 m, with a mean propagation 

direction about 10° north of normal incidence. The observed spectra are characterized by 

a narrow peak centered at^,« 0.1 Hz, accompanied by a pronounced 2nd harmonic peak 

at 2fp « 0.2 Hz (Fig. 6a). Wave breaking is again evident in the strong attenuation of 

spectral levels. Observed swell variances decreased by about 32% between the offshore 

buoy and array 7,45% between arrays 7 and 6, and by 50% between arrays 6 and 5 (Fig. 

6a), indicating that all arrays are located well inside the surf zone. There is still excellent 

agreement between the observed &„,„(/) and the linear finite depth dispersion relation at 

the spectral peak frequency, but at^, the observed kms(f) are consistently smaller than 

the linear wavenumber. At the highest frequency (0.25 Hz) the discrepancies at the 

deeper arrays (6,7) exceed 30% (Figs. 6c, d). Note that at arrays 6 and 7 the nonlinear 

14 



predictions of kms(f) exceed ksv{f) at high frequencies, that is, high-frequency 

components travel with a speed slightly faster than the (ghf 2 speed of the spectral peak 

components (Fig. 6c). The nonlinear Boussinesq predictions generally agree well with 

the observed wavenumbers, but tend to slightly over-predict the observed wavenumbers 

at higher frequencies. Similar to Case II, the nonlinear Boussinesq prediction of krms(f) 

is close to the shallow water dispersion relation, indicating canceling frequency and 

amplitude dispersion effects. 

Case IV. SEPTEMBER 4 

On September 4 during a short-lived but intense storm a broad spectrum of 

energetic, relatively high frequency seas (fp « 0.15 Hz) were observed (Fig. 7). Wind was 

from the north with speeds up to 14 m/s. The offshore significant wave height was 2.38 

m, with an oblique mean wave direction of about 38° north of normal incidence. 

Observed variances decreased by 30% between arrays 7 and 6 and by 40% between the 

arrays 6 and 5, again indicating a wide surf zone that spans the instrumented region (Fig. 

7a). As in the previous case studies, there are large discrepancies between the observed 

krms(f) an(i the linear finite depth dispersion relation, which tends to over-predict the 

wavenumber most notably at high frequencies (Figs. 7b-d). In contrast to the other 

studies, the nonlinear Boussinesq model prediction is in poor agreement with the 

observed &„„,.(/) at high frequencies. The nonlinear and linear Boussinesq predictions 

are nearly equal, indicating that the predicted amplitude dispersion is weak. The failure 

of the nonlinear Boussinesq model to predict the observed large deviations of kmis(f) 

15 



from the linear dispersion relation in this case may be explained by the relatively high 

spectral peak frequency. The Boussinesq approximation is formally valid only for kh«\ 

while observed values of ^(/p)/z vary between 0.5 and 0.7. The observed small 

^rmXf) at high frequencies suggest that the high-frequency tail of the spectrum is 

dominated by bound waves generated in non-resonant sum, triad-interactions (e.g. 

Herbers & Guza, 1994). 

Interestingly, at frequencies below^,, the observed kms(f) at the deeper arrays 

(6, 7) are about 5-20% higher than the linear wavenumber (Figs. 7c, d). The same 

tendency, although less pronounced, is also present in the nonlinear Boussinesq 

prediction. These larger wavenumbers and the observed enhancement of low frequency 

spectral levels between arrays 7 and 4 (Fig. 7a) are qualitatively consistent with 

theoretically expected nonlinear energy transfers in difference triad interactions from the 

spectral peak to lower frequency bound waves (e.g. Herbers et al., 1994). 

16 



IV.      ACCURACY OF LINEAR AND NONLINEAR MODELS 

The limited validity of the linear finite depth dispersion relation in shallow water 

and the improved accuracy of wavenumbers predicted by a Boussinesq model that 

accounts for nonlinear amplitude dispersion effects are evaluated here through 

comparisons with observed wavenumbers for the entire data set. In order to examine the 

accuracy of the models in relation to incident wave conditions, the data for each array 

were binned in 10 equal log-spaced classes of wave variance. For each class the mean 

and standard deviations were computed of the ratio between the observed and predicted 

wavenumber £„,„.(/) (at a fixed frequency f). Results for all four arrays at the peak 

frequency^, and harmonic frequencies 2fp and 3 fp are shown in Figs. 8-11, with 

predicted kms(f) based on the linear dispersion relation (left panel) and the nonlinear 

Boussinesq model (right panels). 

At the peak frequency^,, the linear and nonlinear predictions agree about equally 

well with observations. The bias is small (i.e. the mean observed/predicted ratio is close 

to 1) and increases only very slightly with increasing variance for the linear model. 

These comparisons show that amplitude dispersion effects are weak at the spectral peak 

frequency. For both the linear and nonlinear models, the standard deviation of 

observed/predicted wavenumbers are larger at arrays 4 and 5 (close to shore) than at 

arrays 6 and 7 (farther from shore), and appears to decrease with increasing wave 

variance (Figs. 10a, b; 1 la, b). As discussed in Chapter III, a likely cause of this scatter 
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are errors in observed wavenumbers caused by partial standing wave patterns that are 

most pronounced for smaller amplitude waves closer to shore. 

At the harmonic frequencies 2fp and 3fp, marked differences are noted between 

the performance of linear and nonlinear models. The nonlinear model predictions of 

kmx(2fp) and kmsQfp) have very small bias (less than a few percent) and low scatter 

(Figs. 8-11, panels d, f). Although small, the discrepancies (both bias and scatter) are 

notably larger for array 6 (Fig. 9d, f) than for the other three arrays. Possibly the 

observed wavenumbers at high frequencies at array 6 are degraded by unknown errors in 

the sensor positions (surveyed from shore while the instrument frames were jetted in the 

bottom). 

The importance of amplitude dispersion at high frequencies is evident in the large 

discrepancies (up to 40%) between the observed kms(2fp) and kms(3fp) and the linear 

wavenumber predictions (Figs. 8-11, panels c, e). At all four arrays the linear 

wavenumber is consistently larger than the observed wavenumber, and this bias increases 

with both increasing frequency and increasing wave variance. 

The overall agreement of observed and predicted wavenumbers is summarized in 

Fig. 12. An observed energy weighted root-mean square wavenumber kms 

(     0.25 

0.05 Hz 

(f)E{f)df 

0.25 

JE(f)df 
0.05 Hz 

1/2 

(7) 
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is compared to bulk kms predictions based on the linear finite depth dispersion relation 

(Fig. 12a, c, e, g) and the nonlinear Boussinesq model (Fig. 12b, d, f, h). The linear 

wavenumbers are consistently biased high. For low energy conditions, the bias is less 

than 10% at all arrays. For high energy conditions the bias varies between 10% at array 4 

to about 20% at the deeper arrays 6 and 7. The nonlinear Boussinesq predictions have 

biases less than 5% that do not vary with variance levels. Interestingly, the bias and 

scatter in the nonlinear model comparisons varies between the four arrays from very 

small values (a few percent) at array 5 to more significant discrepancies (0(5%)) at array 

6. These differences that appear to be insensitive to incident wave conditions are, as 

mentioned earlier, possibly the result of small errors in the observed wavenumbers 

resulting from uncertainties in the sensor positions. Overall, results of the present study 

show that wave nonlinearity in shallow water causes significant (0(20%)) deviations 

from the linear dispersion relation, and that these amplitude dispersion effects are 

described accurately by a weakly nonlinear Boussinesq model. 
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V.       SUMMARY 

Nonlinear effects on the dispersion relation of waves in shallow water were 

examined with measurements collected on a sandy beach at the U.S. Army Corps of 

Engineer's Field Research Facility during the recent SandyDuck experiment. The barrier 

island field site is characterized by a straight coastline with a gently sloping, nearly 

planar, inner shelf and beach. Four arrays of bottom pressure sensors were deployed in 

depths ranging from 3 - 6 m during August-November, 1997 (Fig. 1). 

A detailed analysis is presented of wavenumbers observed at the four arrays in 

four one-hour-long case studies that were taken from major storms as well as a calm 

period, and span the range of conditions encountered during the four month long 

experiment (Fig. 3-7). A root-mean-square average wavenumber kms(f)
was estimated 

as a function of frequency (Eq. 6) from the array cross-spectra. These estimates are 

compared with the linear finite depth dispersion relation (Eq. 1) and a nonlinear theory 

prediction of &rai(/) based on Boussinesq equations. In the latter model, kms(f) is 

given by the shallow water dispersion relation with 2nd order correction terms that 

account for the competing effects of frequency dispersion (i.e. decrease in wave speed 

with increasing frequency) and amplitude dispersion (i.e. increase in wave speed with 

increasing amplitude) (Eq. 3). The observed wavenumbers are generally in excellent 

agreement with the nonlinear theory predictions over a wide frequency range. In low 

energy conditions, amplitude dispersion is weak and the observed wavenumbers remain 
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close to the linear dispersion relation, consistent with the model predictions (Fig. 4). In 

high-energy conditions with actively breaking or nearly breaking waves, amplitude 

dispersion causes significant deviations from the linear dispersion relation. The effects of 

amplitude and frequency dispersion tend to cancel and as a result all components of the 

wave spectrum travel with approximately the shallow water wave speed yjgh (Figs 5, 6). 

In some cases with steep high-frequency seas, deviations from the linear dispersion 

relation are larger than those predicted by the Boussinesq model (Fig. 7), possibly 

because the Boussinesq shallow water approximation is violated. 

Analysis of the entire data set shows systematic deviations from the linear finite 

depth dispersion relation that increase with both increasing frequency and increasing total 

wave energy (Figs. 8-12). Wheras the linear dispersion relation overpredicts 

wavenumbers of high-frequency wave components by as much as 20-40%, the nonlinear 

Boussinesq model predictions are typically within ±5% of the observed wavenumbers. 
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APPENDIX 

Figure 1. Plan view of the four bottom pressure sensor arrays (numbered 4 -7) 

used in this study. Filled circles represent all sensor locations. Associated depth contours 

(relative to mean sea level) at 1 m intervals (based on a survey conducted on 16 

September 97 are indicated by dotted lines. 

Figure 2. Detailed plan view of the four bottom pressure sensor arrays. 

Figure 3. Wave variance observed at the four arrays versus time for the duration 

of the entire experiment. The four case studies analyzed in Figs. 4 -7 are indicated with 

vertical dotted lines. 

Figure 4. Comparison of observed and predicted wavenumbers for case I data 

collected on 20 November, 02:00 - 03:00 EST. (a) Observed wave pressure spectra 

(E(fj) at each array. The corresponding wave variances (in the range of 0.05 - 0.25 Hz) 

are indicated, (b -d) For each array, the observed root-mean-square average 

wavenumber, as a function of frequency k^f) (asterisks) is compared to predictions 

based on the linear finite depth dispersion relation (solid line, Eq. 1) and the nonlinear 

Boussinesq model (circles, Eq. 3). Also included are the linear shallow water dispersion 

relation (dotted line) and the dispersion relation of the linearized Boussinesq model 

(dash-dotted line). 

Figure 5. Comparison of observed and predicted wavenumbers for case II data 

collected on 7 November 02:00 - 03:00 EST (same format as in Fig. 4). 
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Figure 6. Comparison of observed and predicted wavenumbers for case III data 

collected on 19 October 16:00 - 17:00 EST (same format as in Fig. 4). 

Figure 7. Comparison of observed and predicted wavenumbers for case IV data 

collected on 4 September 02:00 - 03:00 EST (same format as in Fig. 4). 

Figure 8. Comparison at array 7 of observed and predicted kms(f) at the peak 

frequency^, (upper panels) and the harmonic frequencies 2fp (middle panels) and 3fp 

(lower panels). The ratio between the linear finite wavenumber and the observed 

wavenumber (left panels), and the ratio between the nonlinear Boussinesq wavenumber 

and the observed wavenumber kms(f) (right panels) are shown versus total wave 

variance. The data are binned in 10 equal log-spaced classes of wave variance containing 

between 12 and 534 data records. Each vertical bar represents the mean and ± one 

standard deviation of the ratio data. 

Figure 9. Comparison at array 6 of observed and predicted kms{f) at frequencies 

fp„ 2fp, 2>fp records collected with same format as in Fig. 8, (each bar represents between 8 

and 417 data records). 

Figure 10. Comparison at array 5 of observed and predicted £,„,(/) at 

frequencies^,,, 2fp, 3fp records collected with same format as in Fig. 8, (each bar 

represents between 20 and 453 data records). 

Figure 11. Comparison at array 4 of observed and predicted kms(f)
at 

frequencies^,,, 2fp, 3fp records collected with same format as in Fig. 8, (each bar 

represents between 18 and 381 data records). 
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Figure 12. Comparison of observed and predicted the bulk krms (Eq. 7) at all four 

arrays. The ratio between the linear finite depth prediction and the observed kms (left 

panels), and the ratio between the nonlinear Boussinesq prediction and the observed k^ 

(right panels) are shown versus total wave variance. The data are binned in 10 equal log- 

spaced classes of wave variance containing between 21 and 534 data records. Each 

vertical bar represents the mean and ± one standard deviation of the ratio data. 
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