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Abstract 

Research into improved calibration targets for measurement of radar cross-section 

has created a need for the ability to accurately compute the scattering from perfectly 

conducting bodies of revolution. Common computational techniques use moment-method 

codes that employ subdomain basis functions to expand the unknown current density on 

segments of the surface. This approach has its shortcomings. Large numbers of basis func- 

tions are required to accurately describe the behavior of the induced current density. Also, 

increasing the number of basis functions to improve accuracy after an initial computation 

requires re-computation of previous results and lost processing time. 

This research involves using basis functions to expand the unknown currents that 

have as their domain the entire length of the surface. Entire-domain basis functions are 

better able to model the current density on a smooth surface, and functions can be chosen 

that closely model the functionality of the expected current. Fewer modes are required 

resulting in smaller matrix sizes. In addition, accuracy can be increased by incrementally 

adding entire-domain modes while retaining previously computed results saving significant 

computation time. 

Electric-field integral equations are developed and solved by an entire-domain im- 

plementation of the Method of Moments for a perfectly conducting sphere. Comparison 

is made to the exact Mie series. Convergence in fewer modes is demonstrated over an 

equivalent application of subdomain pulses. Matrix fill time saves as much as hours over 

subdomain discretization. 

IX 



COMPUTATION OF SCATTERING FROM BODIES OF REVOLUTION 

USING AN ENTIRE-DOMAIN BASIS IMPLEMENTATION 

OF THE MOMENT METHOD 

/.   Introduction 

Throughout history, many military operations, large and small, have been successful 

due to efforts to ensure surprise and improve survivability. In modern times, this has not 

changed. Stealth technology is essential in both of these areas. Incorporating stealth on 

today's complicated, hi-tech battlefield, however, requires technically advanced and costly 

equipment and weapons. Although achieving military stealth involves many scientific 

and non-scientific disciplines, one area of intensive research centers on reducing the radar 

cross-section (RCS) of aircraft and other weapon systems. In the process of design, test, 

modification, and use of these systems, measurement of the systems or components of 

the systems on controlled ranges is required. The RCS must be determined with extreme 

accuracy, ensuring that the RCS measured is that of the system and not of the system 

interacting with the background of the measurement range. Any effects of the measurement 

chamber or background must be subtracted out. Calibration involves a transfer process 

whereby the corrections for the radar measurement errors are transferred from a known 

calibration target to the target under test. Measurements are made of the fields scattered 

by the target and its mount, Ej-, the target mount alone, E^M, a calibration object and 

its mount, EQ, and the calibration object mount alone, ES
CM. A calibrated measurement 

of the target, aj is obtained with vector background subtraction using the formula, 

&T = 
ET ~ ETM 
EC ~ ECM 

2 

Ocal, (1-1) 

where acai is the calculated RCS of the simple calibration target used. The quantity 

Ej> — EjM is assumed to be a clean measurement of the target alone. Likewise, the 

quantity EQ — EQM is assumed to be a clean measurement of the calibration object alone. 
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A perfectly conducting sphere with its Mie series solution is commonly used as a 

calibration object. Other perfectly conducting bodies of revolution (BOR) may also be 

used—and may produce a better calibration. For example, the geometry of a right-circular 

cylinder eliminates certain interactions between the itself and the pylon on which it is 

mounted. Use of other BORs, however, is dependent upon the ability to calculate, or 

otherwise determine, the expected scattering to within a specified tolerance. 

Current computer codes which calculate the scattering from bodies of revolution 

implement the Method of Moments. They subdivide the scattering surface into sections 

and use piecewise expansions of the unknown current density in an integral equation that 

describes the scattering while satisfying boundary conditions. The method of expanding 

the current on sub-sections of the surface results in two deficiencies. First, a prohibitively 

large number of these expansion functions are required to accurately describe the current 

density on electrically large bodies. Second, if sufficient accuracy is not obtained, a re- 

sectionalizing and re-calculation of the current density on the surface is required, resulting 

in lost computational time. 

The approach proposed here is to expand the unknown current in the equations using 

functions which have the entire length of the surface as their domain. Functions are chosen 

that better represent the expected current density on the surface. The continuous nature 

of entire-domain functions allows them to better describe the current density on a smooth 

surface such as that of a BOR. Also, since re-discretization is not required to add additional 

expansion terms, accuracy can be improved without discarding previous calculations. Both 

of the shortcomings described for subdomain sectionalization are avoided. 

The goal of this research is to demonstrate the utility of entire-domain basis func- 

tions in computing the scattering from bodies of revolution. Chapter II briefly outlines the 

Moment Method which is used to solve the radar scattering equations. It also describes 

subdomain basis functions that are commonly used to expand the unknown current density 

in the Moment Method solution. Entire-domain basis functions are introduced and the 

Chebyshev polynomials are chosen as a suitable family of expansion functions. Advan- 

tages and disadvantages are discussed for each type of function. An electric-field integral 

equation is developed in Chapter III for scattering from an arbitrary body of revolution. 
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The Chebyshev polynomials are then used in Chapter IV as the basis for expanding the 

unknown current density induced on a perfectly conducting sphere by plane wave exci- 

tation. The resulting matrix equations are implemented in a computer code and solved. 

The data reported in Chapter V demonstrates that the RCS can be computed in fewer 

entire-domain basis expansion modes than subdomain basis functions under the same con- 

ditions. An analysis of solution matrix fill time and potential savings is also performed. 

Chapter VI summarizes the results. Although it is shown that fewer entire-domain modes 

are required for the RCS computation, the singular nature of the integrals adds to the 

complexity of their robust implementation. The method of equivalent separation of the 

testing functions and basis functions used in subdomain methods did not yield an accurate 

solution for spheres of small electrical size. A more rigorous handling of the singularity 

and other recommendations for further research are suggested. The computer code and 

additional data are included in Appendix A and B, respectively. 
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II.   Background 

The problem of improving the accuracy and computation time of calculating the scattering 

from bodies of revolution centers on the numerical solution. An important step in a 

numerical solution is the choice of an appropriate basis function set by which to expand 

the unknown quantity. This chapter discusses the numerical method that will be used to 

solve the integral equations that describe the scattering from a body of revolution caused by 

an incident plane-wave. It also outlines in some detail the various types of basis functions 

and reasons for their consideration. Finally, justification for the choice of entire-domain 

basis functions is given. 

2.1    Numerical Solution by the Method of Moments 

While several methods exist for determining an asymptotic, or high frequency, ap- 

proximate solution to a scattering problem, the task here is to find a solution that converges 

to the exact solution in regions where the asymptotic methods fail. One such method, the 

Method of Moments, produces a solution that can converge to the exact solution. This 

method is the foundation for many variants of differing names. 

The Method of Moments was first developed to solve elastodynamic problems and 

later generalized to a method of solution for a wide variety of problems involving linear 

integral and differential operations [14]. Also called the Moment Method, it is a numer- 

ical technique by which a linear operator equation—one in which the unknown quantity 

is imbedded in an integrand or the argument of a differentiation and cannot be solved 

for analytically—can be solved approximately by transforming the operator equation into 

a system of linear equations. Once the problem is formulated by this method, the solu- 

tion comes by computing the inverse matrix and performing a matrix multiplication. An 

integro-differential equation such as the one that will be developed for plane-wave scatter- 

ing from bodies of revolution can be written as a linear operator acting upon the unknown 

current density to produce a functional effect. Such an operation is written mathematically 

as 

/ = ![«], (2-1) 
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where L is the linear operator, u is the unknown function, and / is the effect which is often 

called the forcing function. The unknown quantity is expanded into a series of terms. Each 

term is one of a set of linearly independent functions—called basis functions—multiplied 

by a coefficient which describes that term's relative importance to the total sum. However, 

even with computers, an infinite number of terms cannot be handled computationally, so 

the series is truncated to a finite series of terms plus a final term which represents all 

remaining terms (the error, «), 

oo 

n=—oo 

+N2 

=      £   Ini>n + e- (2-3) 
n=-Ni 

Or, writing as a one-sided sum, 
+N 

Substituting the above expression for u into Equation (2.1), the constants can pass through 

the operator because of its linearity giving 

£ friert + « 
n=0 

f (2-5) 

+N 
£Ml#n]) + r£ = /, (2-6) 
n=0 

where re is called the residual. The residual is then minimized by taking an inner product 

with a family of testing functions, 0m, and forcing it to be orthogonal to the testing 

function. Galerkin does this by choosing ißn = 0m [11]. For many functions involving 

complex calculations, a suitable inner product is 

(Om^n) = fJse*m-i>nds. (2.7) 
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Applying this inner product to Equation (2.6) and choosing to enforce (0m,r£) = 0 results 

in a system of linear equations, 

N 

Y/In(L[Om,i>n])-(0m,f) = O,     ™ = 0,   1, 2, . . ., N. (2.8) 
n=0 

The choice of N testing functions and iV basis functions leads to a system of N equations 

with N unknowns, In. Rearranging gives 

N 
(9m,f)=^2ln(L[9mM),   m = 0, 1,2,...,JV, (2.9) 

n=0 

which can be easily written in simple, block matrix notation 

W]NXI = [Z]NXN MJVXI, (2-10) 

where 

[V]m     =     (0m,f) 

[Z]mn   =   (WrnM) 

[I]n     =     In 

for   m=   0, 1, 2, ..., N 

n=    0, 1, 2, ..., N. (2.11) 

When solved for the unknown, 

[Ihxi = [Z]-N\N [V]Nxl, (2.12) 

where the elements of [/] are the coefficients of the expansion terms of the unknown quantity 

in the original operator equation. The accuracy of the numerical expansion is limited by 

the number of expansion terms, N. 
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2.2    Choosing a Basis Function 

Although there are infinitely many functions which could be used as basis func- 

tions, an illogical choice of functions may limit the accuracy that can be obtained from 

the solution or may demand a prohibitively large number of functions for convergence. 

An appropriate basis set for calculating the scattered electromagnetic fields from a body 

contains functions that approximate the suspected current density on the surface of the 

body (rapid convergence), and have inter-function relationships that offer numerical ad- 

vantages in the computation process (saved computation time). It should be noted that 

some functions may meet the requirements for a basis set, but may never be able to ap- 

proach the exact solution with accuracy. This situation would occur, for example, if one 

were to attempt a solution by using basis functions that have smoother properties than the 

unknown being represented [1]. Factors affecting the choice of a basis function set involve 

the desired solution accuracy, the relative complexity of the resulting matrix entries, and 

the computational constraints (resources and time) that limit the ultimate matrix size [11]. 

2.2.1    Subdomain Basis Functions. One of the simplest, and therefore most 

common, basis sets that are used are sets of subdomain functions. That is to say they are 

functions that are defined only over the domain of consecutive sections of the structure. 

A surface is discretized by dividing it into N sections. The sections need not be of equal 

size but commonly are for computational simplicity. A function is defined over the limits 

of each segment. Simple functions may be a pulse (constant amplitude), a triangle, an 

arc of a sinusoid, etc. The unknown current or other quantity being calculated is then 

approximated by multiplying each piecewise function by an amplitude factor. This is 

described mathematically by the Equation (2.13) where f(x) is the unknown function 

being approximated, n is an index for each section, an is the amplitude factor and gn{x') 

is the basis function, 

f(x)~J2an9n(x'). (2.13) 
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Given the subdivision of an axis shown in Figure 2.1, pulse-or piecewise constant-basis 

functions are placed on each section. The pulse function is defined by 

9n{x') = < 
1     <-!<*'<<    _ (214) 

0   elsewhere 

The height of each pulse corresponds to the an for that section. The curve, f(x), repre- 

sented by the semi-circle is approximated by the pulses. An example is Glisson's use of 

pulse basis functions to expand the current in his body of revolution solution [4]. 

Triangular—or piecewise linear—basis functions are similarly used, but they are usu- 

ally defined with a domain that covers two consecutive segments. They are used in an 

overlapping fashion as shown in Figure 2.2 so that, when summed, the amplitude approx- 

imates the desired curve. Triangular expansion functions are useful in that they generally 

simplify the evaluation of the integro-differential operator by approximating the curve over 

each segment as linear. Both Mautz' formulation [8] and Rogers' JRMBOR [13] are exam- 

ples of the use of triangular basis functions. The triangle basis functions approximate the 

unknown curve with straight lines whose derivatives are constants. Many moment method 

based computer codes use triangular basis functions because they produce a continuous 

approximation to the current. 

Subdomain expansion functions are not advantageous when it comes to adding more 

terms to the expansion to increase accuracy. Prior results based upon an N-segmented, 

equal-interval domain must be discarded to re-discretize the domain into greater than N 

segments. 

2.2.2 Entire Domain Basis Functions. Basis functions may also be defined over 

the entire length of a surface under consideration. Such functions are appropriately called 

entire domain basis functions. Equation (2.13) is still valid with an appropriate entire- 

domain definition of gn(x'). Since the structure is not segmented as in the case of sub- 

domain basis functions, each expansion term, n, is referred to as a mode rather than a 

section or a segment. 
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Figure 2.1     Pulse (piecewise constant) subdomain basis functions. 

2-6 



m 

4. 

a! 

xO 

/ 

si           x2 xN 

\ 

a3     ^-"""/"T                ^^^~"^~^^ 
a2          _^\          >:■     i                                  \ 

r '    f     '\ ;:'':         >.. 

■/■     Va3g2(x);v               
v 

/            A              ■'   i,                    \ 

'      \   .'.        ■               \ 

xO xl           x2 xN 

Figure 2.2     Triangular (piecewise linear) subdomain basis functions. 

2-7 



A familiar example of entire domain basis functions is the Fourier series in which a 

function is expanded in terms of exponentials (or sines and cosines), 

oo 

n——co 

cn   =    fx(^-j"*#. (2.16) 

An electrical pulse can be approximated in this way by adding together higher and higher 

orders of sinusoids from an oscillator until the edges of the pulse are sufficiently steep and 

the center ripple is sufficiently small for a given application. Balanis [2] points out that an 

entire domain sine is an appropriate basis for the current on a dipole antenna because the 

current is known to be zero at the ends and to oscillate approximately as a sine between 

the ends according to the frequency of the excitation. Poulsen [12] has experimented with 

sine and cosine basis functions for computing the fields induced on a frequency-selective 

surface of crossed-dipole arrays. While no evidence of any other use of entire-domain basis 

functions for computing the scattering from bodies of revolution was found, Kitazawa [7] 

and Butler [3] used Chebyshev polynomials to solve for the fields resonant in illuminated 

rectangular slots and waveguides. 

Unlike subdomain basis functions, which when the interval is divided into sufficiently 

many intervals can approximate an arbitrary curve with the appropriate amplitudes ap- 

plied, entire-domain modes can only be used effectively when the general nature of the 

curve is known a priori allowing choice of a basis that exhibits similar features [1]. This 

can be a disadvantage or an advantage depending upon the extent of information known or 

assumed about the problem at hand. A clear advantage of entire-domain basis functions 

is that if accuracy is not sufficient for an initial finite number of modes, additional modes 

can be added to the expansion while retaining the sum of previous modes. 

2.2.3 Physical Basis Functions. One subset of entire domain basis functions is 

physical basis functions. These functions are unique in that they are based upon knowledge 

of current components that have actual physical interpretations. For example, some bodies 

exhibit scattering currents that can be traced to actual physical features or properties of 
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the body. Kent [6] found them useful in reducing matrix size in the solution of scattering 

from a dielectric coated strip. Physical basis functions are particularly useful for bodies of 

larger electrical size because they can reduce the order of the system to be solved. 

2.2.4 Hybrid Basis Functions. Some methods may use several different types of 

basis functions simultaneously. One hybrid method involves using basis functions which 

represent the current as determined by a high frequency asymptotic approach such as 

Physical Optics or Geometrical Theory of Diffraction and combining it with subdomain 

basis functions near edges or other singularities [15]. This approach also has as its goal 

reducing the order of the system of equations to be solved which has benefits for solutions 

to problems involving electrically large bodies. 

Combining physical basis functions with other basis functions may also be useful. A 

large body may be analyzed with physical basis functions and subdomain basis functions, 

for example. Physical basis functions are used to reduce the number of unknowns over 

electrically large regions, and subdomain basis functions are used to increase accuracy 

near edges or other smaller features. 

2.2.5 Vector Basis Functions. The subdomain and entire-domain basis functions 

as described above have only employed a scalar representation which can be used in the so- 

lutions to three-dimensional problems by separately expanding the coordinate components 

of the unknown function. Under some conditions, this may not be desirable. If a problem 

centers on the solution at interfaces between different media, a boundary condition can 

be difficult to impose on an expansion that does not naturally separate into components 

along the boundary. Also, scalar expansions tend to be continuous, while with some vector 

quantities, enforcing this characteristic can introduce additional errors. Peterson shows 

that vector basis functions provide not only a function amplitude in a region, but a di- 

rection as well [11]. Figure 2.3 shows a notional example of directional functions within 

a triangular, multi-dimensional, subdomain cell. The vector basis functions can be de- 

fined appropriately at medium interfaces to satisfy continuous or discontinuous boundary 

conditions. 

2-9 



Figure 2.3     A notional example of a directional (vector) basis function on a surface cell. 
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2.3    Testing Functions 

In order to determine the electromagnetic scattering from a body of revolution, the 

body is illuminated by an incoming wave and measurements are made at various points 

around the body to determine the scattering pattern. Accuracy depends upon the number 

of measurements made as well as the type of measuring device used. This measurement is 

accomplished numerically by means of testing functions placed around the body. Just as in 

the case of the basis functions used to expand the unknown current, the testing functions 

can be subdomain or entire-domain functions. The measurement of the scattering by each 

testing function mode can be thought of as a passive measurement of the scattering of the 

basis function modes which is induced by the incident wave. Electromagnetic reciprocity 

also allows thinking about this as the same problem in reverse. In this case, the body 

is excited by each test function which results in scattering by each basis function. The 

resulting fields are then measured. It is from this point of view that the numerical solution 

is developed. The reaction of the basis functions to each testing function is computed via 

an inner product. 

Any number of kinds of testing functions exist. However, two kinds are commonly 

used because of the numerical advantages they offer. The first, and possibly the most 

commonly used, type is the Dirac delta distribution. In an integral equation, these func- 

tions allow elimination of one dimension of integration for each dimension in which they 

are used, thereby simplifying the numerical computation. For this simplicity, a trade-off 

is made by relaxing the boundary conditions so that they are only enforced at discrete 

points. Therefore, proper placement of the points is important. 

Another possible choice of testing functions is a set of functions identical to the expan- 

sion basis functions. This is known as Galerkin's method. For certain integral equations, 

choosing testing functions equal to the basis functions allows an orthogonal projection of 

the unknown quantity onto the basis functions resulting in numerical convergence in the 

limit as the number of basis functions goes to infinity. The integral operators that arise 

in electromagnetics are generally not quite so ideal. However, Galerkin's method is of- 

ten chosen for other reasons, one being that its use with electrical field integral equations 

produces matrices with diagonal symmetry.  This permits an approximately 50% reduc- 
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tion in matrix fill computation time. This choice is acceptable in electromagnetic integral 

equations because even in the case where orthogonality is possible, an infinite number of 

functions can never be used. An error always exists and is monitored and controlled by 

the number and type of functions used [11]. 

2-4    Summary and Implications to Bodies of Revolution 

The types of basis functions that exist are as varied as the types of problems to 

be solved. The categories include subdomain functions, entire-domain functions, hybrid 

basis functions, and directional (vector) functions. The problem of interest here is one of 

computing the scattering from a body of revolution in free space. While subdomain basis 

functions are commonly used, they are not the most time-efficient choice for a desired 

accuracy. In this development, the surface shape of the body is kept arbitrary throughout 

the solution, eliminating the usefulness of physical basis functions. Also, since this problem 

is posed as a free-space problem (constant medium), vector basis functions are not necessary 

or helpful. Choosing entire-domain basis functions offers several desired advantages. Using 

entire-domain basis functions results in a smoother approximation to the actual current 

density than using subdomain basis functions. An accurate approximation of the current 

density is also possible in fewer modes assuming an appropriate entire-domain function is 

used (exact convergence is only possible if the basis function is also an exact solution). 

Lastly, computational time is saved due to the ability to incrementally monitor and add 

modes as required without re-computation of previous modes. In using entire-domain basis 

functions, proper placement of delta testing functions is not obvious and Galerkin's method 

is used. The integral equation derived in Chapter III is written as a matrix equation in 

Chapter IV for an arbitrary choice of basis and testing functions. Chebyshev entire-domain 

basis functions and Galerkin testing are used to generate the results in Chapter V. 
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///.   Theory 

In this chapter, the geometry for an arbitrary perfectly electric conducting (PEC) body 

of revolution is established. For a PEC body, the electric field componenets tangential to 

the surface must vanish at every point on the surface. Using this boundary condition, an 

electric field integral equation is formed to describe the scattering from the body. Also, 

the Chebyshev polynomials that will be used as basis functions in the numerical solution 

of the integral equation are described. The conventions, notation, and overall development 

follows that of Mautz and Harrington [9]. 

3.1    Definition and Geometry 

A body of revolution is created by rotating a generating arc around an axis. Consider 

a generating arc defined by a continuous function in the XZ-plane whose endpoints are 

on the z-axis. The function may be defined in piecewise fashion, and does not need to 

be differentiable in the sense that the resulting curve can have corners. This function is 

then rotated axially around the z-axis to create a closed surface that is symmetric in the 

cylindrical direction <j>. The surface and the volume it encloses is called a body of revolution 

because it is created by revolving a function around an axis, not because of any motion 

of the body itself. Such a body of revolution is depicted in Figure 3.1. Although the 

body is depicted as being defined entirely in the positive-z half-space, this is not necessary. 

However, the equations used herein to define the geometric parameters of the body are 

written assuming positive-z and may not be valid for other conventions. 

It is convenient to write the generating arc as a parametric equation of a curvilinear 

coordinate system on the surface of the body of revolution. In Figure 3.1, p, <j>, and z are 

the ordinary cylindrical coordinates and i and <j> are orthogonal unit vectors at a point, 

S, on the surface which satisfy <£ X i = h. Letting t0 be the zero arclength point of the 

generating arc (located at the origin), i points in the direction of increasing arclength, 

and <f> points in the direction of increasing cylindrical <j>. This leads to choosing n as 

the outward normal unit vector to the surface S. The body of revolution is excited by 

an incident plane wave as shown in Figure 3.2.  The vector kt indicates the direction of 
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Figure 3.1     Geometry of the body of revolution 
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Figure 3.2     A plane wave incident on the body of revolution 
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plane wave propagation. The coordinates <j)t and 6t indicate the transmitter location. The 

vectors 4>t and 0t are unit vectors in the <f>t and 0t directions, respectively. The resulting 

scattered field components will be measured in the monostatic (backscatter) direction. It 

will be assumed for the purposes of this problem that the body of revolution has a perfect 

electrically conducting surface. 

3.2   Integral Equations 

The problem of scattering from the body of revolution is solved as an electromagnetic 

boundary value problem by forming either an electric field integral equation or a magnetic 

field integral equation. It has been shown by Mautz and Harrington [9] that the solutions 

to the E-field and H-field integral equations deteriorate near internal resonances of the 

conducting surface, but a solution involving a weighted linear combination of the E-field 

and H-field integral equations does not. However, they also show that although the error in 

current density near the resonances using the E-field integral equations can be tremendous, 

the error in scattering cross-section is quite small compared to that of the H-field solution 

and is comparable to that of the combined field solution. Using both E-field and H-field 

integral equations in a combined equation effectively doubles the computation time for 

each element in the solution while giving minimal improvement in the scattering cross- 

section data. For this reason, development and use of the E-field integral equation for 

this concept demonstration is considered sufficient. The H-field integral equation can be 

similarly derived and used to trade computation time for increased accuracy. 

Maxwell's equations require that the tangential electrical fields at the surface of a 

perfect electrical conductor sum to zero. This boundary condition is written as 

EZn + Es
tan = 0, (3.1) 

where Etnc is the incident electric field and Es is the field scattered from the surface. The 

subscript tan denotes the tangential component on S. The incident field is defined to be 
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either 6 or cj> directed and is written as 

Efc = 9kr)e-j%t-f (3.2) 

or 

Efc = ^krje-j'kt-\ (3.3) 

where k is the propogation constant, rj is the intrinsic impedance (377fi for free-space), 

and r is the radius vector from the origin to a point on the surface. The scattered field is 

found via the magnetic vector potential, Ä and the electric scalar potential, $e, 

Es = -juÄ{J) - V$e(J). (3.4) 

The magnetic vector potential, Ä, and the electric scalar potential, $e, written in terms 

of the free-space Green's function are [2] 

u    t r -      ei
A;l'r-f'l 

^ = s///(f'»F^|rfs (3'5) 

$e(J) = --ri— / /  [V • J{r')] ,_     _t.dS'. (3.6) ev  '        juATteJ Js | r-r'| 

Here, f and f' are vectors to the measurement and source points, respectively. The quantity 

J(f') is the electric current density on 5, k is the propagation constant, and ß and e are 

the permeability and permittivity, respectively.  The operator V- is the divergence.  The 

quantity | r — f' \ can be written in terms of the cylindrical coordinates as 

R =\ f - r' |= J(p - p'Y + (z- z'Y + App'sin2 (^y^) (3-7) 

where p, z, and v are functions of arclength, t as shown in Figure 3.1. Similarly, p', z', 

and v' are functions of t'. Substituting Equation (3.4) with (3.5), (3.6) and (3.7) into 

Equation (3.1) gives 

EZ, - i^IIm—äs' + _ jjs [V • 7M] -g-tf = 0, (3.8) 
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which is an electric field integral equation describing the tangential electric fields at the 

surface. This is a complicated integro-differential equation where J is the unknown quantity 

which can be determined numerically using the Method of Moments. Once J is known, it 

can be used to compute the scattered electric fields. 

3.3    Chebyshev Polynomial Basis Functions 

There are many entire-domain functions that could be used as a basis to expand the 

unknown current density on the surface of the body. Some common orthogonal functions 

to which the entire-domain of the generating arc could be mapped are sinusoids, Jacobi 

polynomials, Chebyshev polynomials, Legendre polynomials, Maclaurin series, Laguerre 

polynomials, and Hermite polynomials [10]. 

Since one of the purposes in using an entire-domain basis is to reduce the number 

of modes or terms required to approximate the current density when expanded as a se- 

ries, the shape of the basis functions themselves should closely model the functionality of 

the expected current density. The function must also have higher modes that exhibit a 

sufficient degree of oscillatory behavior or other fluctuation in its derivatives to define the 

changes in the current density across the length of the body. The current density should 

be systematically improved by increasing the number of basis functions. 

The Chebyshev polynomials of the first kind are found to have the required char- 

acteristics in the domain of -1 < s < 1. An additional advantage of this choice is that 

the positive and negative ends are symmetric and finite. Table 3.1 gives the functional 

form of the first nine polynomials which are illustrated in Figure 3.3. The polynomials 

are easily referenced in a computer code by a lookup table of the coefficients. The higher 

order polynomials can be generated by a recursion relationship [10], 

Tn (x) = 2xTn-l (x) - Tn_2 (x). (3.9) 
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Figure 3.3     The first nine modes of the Chebyshev polynomial of the first kind (T0-Ts). 

To 

2i 
T2 

T4 

T5 

T6 

T7 

T8 

= 1 

= x 

= 2a;2 - 1 

= 4x3-3x 

= 8z4-8a;2 + l 

= 16s5 - 20a;3 + 5a; 

= 32a;6 - 48a;4 + 18a;2 - 1 

= 64a;7 - 112a;5 + 56a;3-7a; 

= 128a;8 - 256a;6 + 160a;4 - 32a;2 + 1 

Table 3.1     Chebyshev polynomials of the first kind. 
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The Chebyshev basis functions are orthogonal with respect to a weighting function, w(x) = 

1/(1 -x2Y'\ 

j   T^aOTnfcKl-iF2)-1/2 dx=< 

0,       m^n 

TT/2,   m = n^0   • (3-10) 

7T,       m = n = 0 

However, the weighting is not necessary for convergence if the operator, L, is self-adjoint 

with respect to the inner product, (La,b) = (a, Lb), and is positive definite, (a, La) > 0 

for all nonzero a [11]. The linear independence of the Chebyshev polynomials is sufficient 

to force the residual error of the inner product to zero and establishes the convergence of 

the finite expansion. In practice, Galerkin testing is used with the electric-field integral 

equation without regard to true orthogonality because it produces matrices with diagonal 

symmetry reducing the required computations. 

In summary, an electric-field integral equation, Equation (3.8) was formed as a func- 

tion of the unknown current density. The equation applies on the surface and is based on 

the vanishing tangential electric fields. Also, the Chebyshev polynomials were defined and 

will be used to expand the current density in the numerical solution outlined in Chapter IV. 

3-8 



IV.   Application to the Integral Equation 

In this chapter, the electric field integral equation given in Equation (3.8) is solved for the 

unknown current density by means of the Method of Moments using entire-domain basis 

functions. 

Equations (3.1) and (3.4) are rewritten in terms of the tangential component of the 

incident field, JE", znc 
(an! 

■pine            jps 
'-'tan ß4on 

=   -[-V*,(J)-iwÄ(J)]taB. (4.1) 

Define a linear operation on the unknown current density, J, as 

L(J) = \juÄ(J) + V*( j)]«„„. (4.2) 

The current density is written in a series expansion of linearly independent basis functions 

J = EWr (4-3) 
3 

Because the unknown currents J are periodic in <j> (body of revolution), each ipj can be 

represented as a Fourier series in <f>. The Fourier series is an entire-domain expansion where 

the domain is 0 < <j> < 2K and the basis is the complex exponential e-7"^ which represents 

a Fourier mode indexed by n. Now, 

J(i',0') = EE/"i^(O^'- (4-4) 
n      3 

Primes are used here and in the remainder of this document to denote association with 

a source (surface scattering) point. Unprimed quantities refer to field points where the 

electric field is measured or tested. The current density at each point, t, along the gen- 

erating arc is completely described by the sum of the current densities in two orthogonal, 

curvilinear component directions, i and 4>.  Separately expanding InjJj in each direction 
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gives 

IfijJj   — p'. p.' + T# p' 

Km+VnM')' (4.5) 

where t' is a point on the generating arc, 0 < t' < t^ and fj(t') is the j'th basis function. 

The current expansions are, therefore, defined as 

t>\p3m 

(4.6) 

Substituting Equation (4.4) and (4.5) into Equation (4.3) gives a final expression for the 

current density, 

(4.7) J=EEK^+^ ejn4 

The integral equations now can be written as 

Etan = L Erf p'. , v T"0' 7 ' -0' 
nj 

n,3 n,3 

(4.8) 

The linearity of L allows interchanging the order of summation and integration/differentiation, 

for finite sums, to produce 

% = £,[&{%) + &(%)]• (4.9) 
n,3 

Since each Fourier expansion mode is linearly independent from and orthogonal to every 

other, the above formulation is separable in n and involves a separate solution to determine 

the current coefficients for each Fourier mode. Rewriting as a separate equation for each 

n permits simplification of the notation by dropping the subscript n, 

#' = £[^ (•?)+#*(#)].    Vn. (4.10) 
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Testing functions are chosen equivalent to the basis (current expansion) functions 

according to Galerkin's method, 

' r rr ifi(t)i ,3™<t 

Ki   =   4>fi{4>)e 
,jm4> (4.11) 

Multiplying both sides of the integral Equation (4.10) by the testing functions and using 

the inner product of Equation (2.7) results in 

Y^WmuE, mc 
tan E^-EWi) (4.12) 

Because of the Fourier orthogonality, the inner product is zero for m ^ n and non-zero for 

m = n. From now on, only the subscript n is used. Equation (4.12) expanded in matrix 

form is 

_ (WN,E™) \ [{WNIZJIMJJ)) 

(WuZjIjLÜ)) 

(WuhHJ!))    (WX,I2L{J2)) 

{W2,hL{Ji))    (W2,I2L(J2)) 

(W1:INL(JN)) 

(W2,INL(JN)) 

(WN,hL(Ji))   (WN,I2L(J2))   ■■■   (WNJNL(JN)) 

(WuL{Jx))    <m,£(J2)>    •••    (WUL(JN)) 

{W2MJ1))    (W2,L(J2))    ■■■    (W2,L(JN)) 

<WJv,L(Ji)>   (WN,L(J2))   •••   (WN,L(JN)) \    [IN 

h 

h 

Mn     =     P]»Wn- (4.13) 
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Equation (4.13) represents, for each Fourier mode, N equations and N unknowns, In. 

Recall that Wi and Jj both have i and ^ terms. This further expands Equation (4.13) into 

a pair of N equations for each component. Instead of doing this, however, the mathematics 

of linear algebra and the matrix notation, allow simultaneous solutions for the t and <j> 

component equations by vertically stacking the equations. The impedance matrix, [Z], 

contains the (wf + wf) ■ (j] + Jf) cross-terms, 

where, 

= 
7,4><l> 

V* {WlElTn) 

V*   =   (Wf,Etn) 

,  Vn (4.14) 

(W!,L(Jj)) 

(W!,L(J})) 

Z&     - (wtMfy) 
'7<t>4>     — (W?,L(Jf)) 

P     = A 
I*     = if. (4.15) 

4-1    The Impedance Matrix 

Performing the inner products for [Zn] in Equation (4.15) results in the expressions 

given in Equations (4.16) through (4.19) below. The integration in <f) has been performed 

analytically. The equations are found to match those given in by Mautz [9] if the operator, 

L, and the incident field, Emc, are scaled by I/77, where TJ is the intrinsic inpedance. The 

integrations in <j)' can be written as integrations over half a period due to the even and odd 
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symmetry of their integrands, 

n 

«J 

*J 

*J 

/ / 3 {k2pfi(t)p'fj (?) [G2 sn(v) sin(t/) + G1 CQB(V) COS(I/)] 

-^ !>/*(')] I/W-^G!}*'* (4-16) 

jf jf -pfi(t) {*V/i(OG3rin(«0 + ^ [//#)] öi} <#* (4-17) 

lJ/fi(^{k2Pfi(t)G3^v) + ~\pfi(t)]G1^dlfdt (4.18) 

/ / 3Pfi{t)p'W) (k2G2 - —,0t) dt'dt, (4.19) 

with the following definitions, 

G2 

G3 

=   / Jo 

= / 

= / Jo 

ir g-j'fcB 

ifeÄ 
o-jkR 

~k~R 
■K e-jkR 

kR 

cos(n<j)')d<f>' 

■ cos(^>') cos(n<t>')d<f>' 

sin(</>') sin(n4>')d<ft 

R   =    J(p-f/)* + {z-z')* + 4pp'sin*(^). 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

The quantities />, z, and w are functions of arclength, i as shown in Figure 3.1. Similarly, p', 

z', and v' are functions of t'. The <j>—<t>' functionality in the expression for R is written as <f>' 

only because of the rotational symmetry. This is shown by a simple change of variables in 

the integrals involving R. Note that replacing ij by ji in Equations (4.16) through (4.19) 

implies replacing t dependent quantities by t' dependent quantities, and vice-versa. The 

following symmetries are apparent (a result of Galerkin testing) and will reduce the number 

of computations required. 

[zZ]tj   =    [ 
[zi% =-  [#] 
[z^]..   =    [zt+ 

3* 

■ ji 
(4.24) 
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4-2    The Voltage Matrix 

The inner products of Equation (4.15) for the voltage matrix, [Vn], give Equa- 

tions (4.25) and (4.26). The voltage matrix represents the incident excitation of the system, 

tF4   =   //W.-(0(*-Ä*BC)e-*'r*-B^M (4-25) 

[V*\.   =   JJkpfi(t)(4>-Vnc)e-k-*-n+d<l>dt, (4.26) I 
where u%nc is the polarization of the incident electric field, 6mc or 9inc 

4-3   Scattered Field Equation 

The current density induced on the surface of the body re-radiates to create the 

scattered field. Using the current density determined by the Moment Method solution, an 

equation can be derived based on reciprocity which describes the scattered field. A row 

matrix can be itentified in the equation that parallels the voltage matrix of the previous 

section allowing it to be filled using the same computer subroutines. For this it is useful 

to rewrite the scalar potential in Equation (3.4) in terms of the magnetic vector potential, 

$e = — V-Ä. (4.27) 
jufie 

The expression for Es becomes 

E» = _j_i_v(V • Ä) - juÄ. (4.28) 

Balanis [1] notes that the first term in Equation (4.28) contains only variations of the order 

1/r2, 1/r3, 1/r4, etc. The variation of order 1/r is contained in the second term and is the 

dominant variation. In the far-field (large r), the first term is neglected and the remaining 

radial component becomes negligible compared to the 9 and <f> components. 

The field radiated in the far-zone is due to the current density on the surface. By 

reciprocity, this is equivalent to saying that the field on the surface is due to radiation from 

an infinitesimal current element in the far-zone. The field at the surface, S, is determined 
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by Equation (4.28) and is shown by Harrington [5] to be 

Er
s(Iou) = ~Jk

A
Ve3krri0ne-^-r-, 

4nrr 
(4.29) 

where IQU is the current element vector pointing in the 9 or <f> direction, rr is the distance 

from the far field point to the origin, r is the distance from the origin to a point on 

the surface, and kr is the propagation vector of the plane wave coming from the current 

element. Taking the inner product of Er
s and the current density expansion gives the 

magnitude of the scattered field due to J in either the 0 or 0 direction, 

47rrr        t-*
1 

Rt 

P 

1+ 

cWPr (4.30) 

where the superscript T signifies matrix transpose and the elements of the row matrix, 

[Rn] = [Ri Rt] are given by 

[fljj.   =    f f kpft (t) (t ■ ur) e'^+^d^dt 

[Rt].   =   JJkpfiWty-u^e-^+^dWt, 

(4.31) 

(4.32) 

where ur is the receiver polarization unit vector, 0r or <j>r. Comparison of Equations (4.31) 

and (4.32) with Equations (4.25) and (4.26) show that when the measured field unit vector 

is replaced by the incident field unit vector, the only difference is the sign on n. The 

following unit vector dot products are derived from the geometry and are tabulated here 

for use in the equations for [Vn] and [Rn], 

i • 0r'* 

t ■ ft'* 

-¥'* ■ f 

- sin(0r,i) cos(u) + cos(0r'') sin(v) cos(<ji>) 

- cos(ör'i) sm(<f>) 

sin(u) sin(<^>) 

cos((/>) 

kzcoa^'*) + fc/>sin(0r'*) cos(^), (4.33) 
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where 6r,t is the transmitted and received electric field elevation angle, respectively (Fig- 

ure 3.2). The angles <f> and v are as shown in Figure 3.1. 

4-4    Three-dimensional Scattering Cross-section 

A useful measure of the scattering properties of a body is the scattering cross-section. 

This quantity describes the area that would be required to intercept the amount of power 

that a source would have to scatter isotropically to create the same power density at 

the receiver as does the actual scattering body [2]. Once the scattered electric field, Es, 

is determined, this scattering cross-section can be calculated and is useful to compare 

the scattering of bodies of various sizes and shapes. For a three-dimensional body, the 

scattering cross-section, <r, is defined for plane-wave incidence as a ratio of the power 

in the scattered field to the power in the incident field [2]. Noting that the power is 

proportional to the field magnitude squared, 

a = lim 47rr 
Es 

Ev (4.34) 

Writing the expression for scattered field in Equation (4.30) as a one-sided sum in 

n using the even and odd symmetries of the real and imaginary components of ejn^r and 

allowing <f>r to equal zero (monostatic measurement) gives, 

jkrr   ( -1    00 "^ 
ES{J) = Z2^r—   [*M + [RM] + 2 E (töM + [*M)    • (4-35) 

71=1 

Also, as an aid in the comparison of objects of different sizes at different frequencies, a can 

be normalized with respect to the wavelength, A = 2n/k, of the incident field. Substituting 

in \Emc\ = kn from Equation (3.3), the normalized far field (r —> 00) cross-section reduces 

to 
o 

Ä2 

1 2wrrE
s(J) 

471-3 V 
(4.36) 
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4-5    Summary 

The boundary condition on the tangential electric fields at the surface of the PEC 

body was used in Chapter III to develop an integral equation to which the Moment Method 

was applied in this chapter. Matrix elements were defined in terms of an inner product with 

Galerkin testing functions for a voltage matrix and an impedance matrix. The elements of 

a scattering matrix were also defined. These elements were computed using a computer 

and the system of equations was solved. The results are reported in Chapter V. 
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V.   Results 

Both perfectly electrically conducting spheres and closed right-circular cylinders are used 

as calibration objects on radar ranges. An exact solution exists for the scattering from 

spheres. Desire for the ability to accurately calculate the scattering from cylinders is, in 

part, the motivation for this research. The equations of the previous chapter are derived 

for arbitrary body of revolution geometries and choice of expansion function. However, 

since the exact solution is known for a sphere, it is chosen for the proof of concept data 

presented in this chapter. 

The impedance matrix and the voltage matrix were created for spheres of various 

radii by implementing the equations of the previous chapter in a computer code written for 

Matlab 5. The computer code was executed on a Sun Microsystems Sparc 20 workstation 

running the Solaris 2.6 operating system. A function is called by the main program to 

generate the body of revolution and compute an array of i and $ current density expansion 

coefficients given input parameters of sphere radius, maximum sub/entire-domain mode, 

fourier mode range, backscatter angle, and specification of sub- or entire-domain method. 

The far-field scattering cross-section is also computed. The source-code is included in 

Appendix A of this document and can be easily modified for other geometries and basis 

functions. 

In this chapter, computed results are presented for the scattering from spheres rang- 

ing in electrical size from ka = 1 to ka = 71. The scattering is calculated for subdo- 

main current expansions using pulse functions and entire-domain current expansions using 

Chebyshev polynomials of the first kind. Galerkin testing is used in both cases. The data 

shows that the entire-domain expansions converge more accurately and in fewer modes 

than the subdomain expansions. A comparison showing the potential computation time 

savings of the entire-domain method over the subdomain method is also presented. It was 

found that phase approximations used in the discretization and numerical solution limit the 

accuracy of the computed scattering for spheres of small electrical size. Recommendations 

for improving the computations are given. 

xk = 2K/\ and a = sphere radius. 
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5.1    The Computer Code 

The main routine of the computer code, MAINSPHERE, is written in modular fash- 

ion for clarity. The subroutines MAKET, MAKEZV, COMPRCS, MAKELIMITS, and 

PLOTRCS are written separately only for readability. MAINSPHERE initiates all vari- 

ables and calls the subroutines. MAKET creates a 25 X 25 matrix of the polynomial 

coefficients of the Chebyshev polynomial of the first kind to be used as an entire-domain 

basis. MAKEZV computes the impedance matrix, the voltage matrix, and the measure- 

ment matrix. The current coefficients are determined by computing the inverse of the 

impedance matrix and performing a matrix multiplication. COMPRCS computes the far- 

field scattering cross-section which is plotted by PLOTRCS. MAKELIMITS creates an 

array of integration limits used if the subdomain method is chosen. A flowchart of the 

code is shown in Figures 5.1 through 5.3. 

The integrands of Equations (4.16) through (4.19) for \ZU\., [z^].., [z**].., and 

Z^      of the impedance matrix are written as functions of their variables, t, t', and 
L       J ij 

4>'. These functions are ZTTARG2, ZTPARG2, ZPTARG2, and ZPPARG2, respectively. 

Integration is performed by the functions similarly named (without the suffix ARG, i.e., 

ZTT2, etc.) which call GQUAD3D to create a three-dimensional array of integration 

points according to a Gaussian quadrature rule and evaluate the integrands at those points. 

Matlab allows a "simultaneous" function evalution (2-3 sec total CPU time for a Z integral 

evaluation) of all points in the array using built-in matrix operations. An early draft of 

the code attempted to evaluate the integrand by stepping through each point separately. 

This took the same CPU time per integration point and was prohibitive. Mautz [8] used 

20 integration points for the <j>' integration and a four-delta amplitude approximation per 

subdomain segment with satisfactory results. Since MAINSPHERE is used to compute 

the solution using either subdomain or entire-domain basis functions, Gaussian quadrature 

is used to integrate with respect to t and t' as well as <$>'. Using 20 integration points 

for all three variables produced integral convergence to at least eight significant digits. 

Convergence to more than ten significant digits was obtained using 30 integration points. 

Since computation time was comparable, 30 integration points for each variable is used 
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Figure 5.1     Flowchart of MAINSPHERE 
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Figure 5.3     Flowchart of COMPRCS 
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for all results presented here. The symmetries expressed in Equation (4.24) are exploited 

thereby cutting computation time roughly in half. 

The integrands of equations for [V^] and [V^- ] are similarly written as functions of 

their variables, t and <j>. Integration is performed by a two-dimensional, 30 point Gaussian 

quadrature method. The measurement vectors, [R*] and [R,f ] are produced by integrating 

[V/J and [Vf ] with the Fourier mode index negated, — n. 

The function GEO returns the parameters rho, zee, and vee which define the body of 

revolution generating arc as a function of arclength, t or t' as appropriate. The parameters 

rho and zee represent the lengths of the p(t) and z(t) components of a vector from the 

origin to a point on the generating arc defined by t as shown in Figure 3.1. The parameter 

vee represents the angle between the rotational axis, z, and the tangent vector to the 

generating arc at t, pointing in the direction of increasing t. The sign of vee is defined and 

used as a positive number if the tangent at t points away from z and a negative number if 

the tangent at t points toward z. The parameters that define a sphere in positive z are, 

p   =   a sm(t/a) 

z   =    —a cos(t/a) + a 

v   =   sin"1/"   .    y        V (5.1) 

where a is the radius and Ap and Az are increments in p and z due to an infitesimally 

small increase in the arclength, t, at the point on the generating arc specified by a given t. 

The function BASIS takes a mode and an arclength as inputs and returns the value 

of the requested basis function mode at that arclength. This is done via a mapping of 

the arclength domain in t' to the Chebyshev basis function domain of— 1 < s < +1. For 

impedance integral calculation, the functions DERIVTP and DBASIS are used to com- 

pute the value of the derivative of the quantity p'fj(t'). The companion functions TEST, 

DERIVT, and DTEST compute similar quantities with respect to the testing functions. 

Since Galerkin testing is used, these routines are exactly the same as the basis function 

routines and can be combined. The code was written to call them separately, however, for 

readability and demonstration purposes. 
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5.2    The Currents 

The subroutine MAKEZV fills the [Z] matrix and the [V] matrix. The current density 

expansion coefficients J, from Equation (4.15) are determined by the inverse impedance 

matrix, [I] = [Z]*1 [V], where [I] is the transpose of [/< /*]. The elements of both [/*] 

and [1^] are the coefficients of the corresponding terms in the current expansions in the t 

and <f> directions for a given Fourier mode, n. The total currents are determined by (using 

function and variable names from the computer code), for each n, 

edmax 

Z   =   i>   Y,  It(j)*basis(j,t') 
3=0 

edmax 

Jf    =   $    Y,  Ip(J)*basis(j,t'), (5.2) 
i=o 

where t' is a vector of samples across the arclength, 0 < t' < tmax. Edmax is the maximum 

number of entire-domain modes used. Adding across all n gives, 

/max 

?' = i'   Y Jn * exP(J *n *<]>'), (5.3) 
n=0 

where fmax is the maximum number of Fourier modes. It is convenient to evaluate the 

currents along the <j>' = 0 longitude (in the XZ-plane), because the exponential becomes 

unity. Figure 5.4 shows the «^ directed current densities represented by each entire-domain 

mode for a sphere of ka = 4.0 excited by a ^ directed incident electric field when n = 2 

evaluated at broadside (9 = n/2). There is a similar set of currents for every Fourier 

mode used in the current expansion. The top two subplots show the contribution to the 

current density of each of the T0-T5 entire-domain modes. The modes are recognizable 

as the function of Figure 3.3 scaled by the corresponding element of [/*]. The scaling for 

some modes is very small or zero, minimizing their effect on the overall current. Only the 

modes that serve to accurately represent the functionality of the actual current density 

as described by the integral equation are selected by the method. The bottom subplot of 

Figure 5.4 shows the sum of each entire-domain mode above. The solid line here represents 

the current density magnitude for the n = 2 Fourier mode. The total current density is the 
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Figure 5.4     <j> directed current density for the n = 2 entire-domain modes for ka = 4.0 
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Total current density over all ed/f modes, 9=90 deg, ka=4 
T 

Figure 5.5     Total t and <f> directed current densities (n = 0-5) for ka = 4.0 illuminated 
by Efc at 0 = 90° 

sum of all entire-domain contributions for all Fourier modes. The total (j) directed current 

density for a sphere of ka = 4.0 evaluated at broadside (0 = 7r/2) is shown in Figure 5.5. 

A sphere of radius a = 4.0/k has a circumference of four wavelengths. The current density 

around the sphere exhibits more oscillations than does a sphere of smaller radius. Consider 

the smoother total current density for a sphere of radius a = 3.1/k as shown in Figure 5.6. 

The circumference is now approximately three wavelengths. More Fourier series expansion 

terms of higher oscillation orders, ejn^ , are required to accurately describe the current 

density for spheres of larger electrical size. 

The <j> directed current density coefficients for each entire-domain mode are plotted 

in Figure 5.7 for sphere sizes of ka = 0.9, ka = 2.1, and ka = 4.0. The coefficients are 

grouped by Fourier mode in sequential order of Inj = Ino through In\Q. The vertical axis of 
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Total current density over all ed/f modes, 9=90 deg, ka=3.1 

Arclength, t 

Figure 5.6     Total $ directed current density (n = 0-5) for ka = 3.1 illuminated by E™ 
at 6 = 90° 
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Figure 5.7     (f> directed current density coefficients for the To-Tio entire-domain modes, 
grouped by Fourier mode 

each plot is scaled to show the appropriate detail for each sphere size. It is easily seen that 

as the sphere size increases, more Fourier modes are required to capture the total energy 

of the current density. In other words, more Fourier modes must be considered before the 

current density coefficients decrease sufficiently in amplitude. Also, for a given Fourier 

mode, it is obvious that most of the energy is captured in the To through T5 entire-domain 

modes. 

Figure 5.8 shows the t directed current densities represented by each entire-domain 

mode for a sphere of ka = 4.0, n = 2 when excited at broadside [6 = w/2) by a 4> polarized 

incident electric field. There is a similar set of currents for every Fourier mode used in 

the current expansion. Note that as in the <j> directed current, some entire-domain modes 

are emphasized while others are minimized. As before, this serves to represent the actual 
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current density functionality in this direction. The sum of the entire-domain modes is 

represented in the bottom plot of Figure 5.8 where the functionality is seen to be near 

zero across most of the arclength. The total i directed current density for the sphere of 

ka = 4.0 evaluated at broadside (9 = TT/2) is shown in Figure 5.5. The i directed current 

density coefficients for each entire-domain mode are plotted in Figure 5.9 for sphere sizes 

of ka = 0.9, ka = 2.1, and ka = 4.0. The trends are similar to those of the § directed 

current density coefficients. The current densities for all modes of the ka = 4.0 sphere in 

both the t and <j> directions are given in Appendix B. 

Wood's subdomain analysis of the current density excited on the surface of a spherical 

cavity finds that, with the exception of the n = 1 Fourier mode, both the t and <j> current 

density vanishes at the poles [16]. The amplitude coefficient for each term in the current 
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density expansion is determined by the Moment Method computation based on the need 

for the frequency content that term offers. Emphasis of a particular term is based on a 

weighted average over the domain of the portion of the generating arc to which the term 

applies. In a subdomain method, the coefficient for the function which represents the 

current density amplitude at the poles can be zero without respect to any other segment 

of the generating arc. In an entire-domain method, the domain of each mode is the 

entire length of the generating arc, and the amplitude coefficient of each mode is the best 

choice across the domain of the arc. In choosing Chebyshev expansion functions, there is a 

potential disadvantage in that each mode has a positive or negative finite amplitude at both 

ends. The only way for the current to vanish at the poles is by cumulative addition of many 

modes scaled by their coefficients. This is not a disadvantage of using entire-domain basis 

functions, but rather, an indication that another entire-domain family of functions may be 

more appropriate for this specific geometry. Given enough Chebyshev modes, however, it 

is expected that the current would approach the anticipated value across the entire domain 

of the sphere, including at the poles. Because of the decreased amplitude of the higher 

order modes, many more may be required than that necessary for determining the current 

density at points away from the poles. Had the fact that the current should vanish at the 

poles been considered at the beginning of this research, a Fourier expansion (exponential 

basis functions) may have been chosen for the expansion of the current density along the 

arclength as well as in <j>. This would have allowed a build-up of the needed frequency 

content satisfied by the lower order modes without adversely affecting the current density 

at the poles. 

When the sphere is excited by a plane wave incident at an angle other than broadside, 

the poles shift and are no longer at the ends of the generating arc. A corresponding shift 

in the current density distribution along the arclength is expected. Figure 5.10 shows 

the accumulation of current density for ka = 4.0 and E1!10 incident at 8 = 7r/3. Each 

entire-domain mode for the n = 1 Fourier mode of the <j> component of current density 

is plotted in the top two subplots. A different weighting of the entire-domain modes 

is seen when compared to the broadside case of Figure 5.4. This weighting serves to 

enhance the current density on the generating arc near the 6 = 7r/3 region and contains 
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Total current density over all ed/f modes, 6=60 deg, ka=4 

Figure 5.11     Total t and <j> directed current densities (n = 0-5) for ka = 4.0 illuminated 
by Efc at 6 = 60° 

the appropriate frequency content for this excitation. Note that there is still a rise in the 

current density near the ends of the arclength due to the finite sum of the Chebyshev 

functions. The cumulative total over all entire-domain and Fourier modes (5 modes in 

each case) is plotted in Figure 5.11. The expected shift in the pattern is seen with a peak 

at t = 1.33 corresponding to the illumination angle, 6. 

5.3    The Scattering Cross-Section 

5.3.1 Assessment of Accuracy. The solution to the integral equations given in 

Chapter IV is the vector [/] which contains the coefficients to the expansion of the cur- 

rent density, J. The accuracy of the solution, therefore, is best measured by comparison to 

known currents. Production codes (subdomain basis) such as CICERO and JRMBOR that 
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are currently in use calculate the current internally and output only the electromagnetic 

field components or the scattering cross-section as the quantity of interest. Although the 

currents computed in these codes are also an approximation limited by the smallness of the 

subdomain discretization used, they would serve as a useful check of what is obtained here. 

Without modification to the codes themselves, however, the currents are not available to 

the user. Mautz [9] assesses accuracy by defining a metric that relates the currents result- 

ing from his magnetic- and electric-field integral equations to his combined-field integral 

equation (a linear combination of the two). His purpose is to show a deviation from an 

assumed norm of stray data points resulting from physical resonances of the body. This 

is suitable for showing how well the combined-field integral equation discriminates against 

the resonances. 

Accuracy in the computation of the current is paramount to obtaining an accurate 

scattering cross-section. The averaging effect of the scattering cross-section calculation, 

however, allows for some variation in current quantities without largely affecting the scat- 

tering cross-section itself. It will here suffice to use the far-field scattering cross-section as 

the figure of merit and compare that computed by MAINSPHERE using both subdomain 

and entire-domain expansions of the current density to that produced by the Mie series [5] 

which is an exact solution. 

5.3.2 Subdomain Data. The code MAINSPHERE and its supporting subroutines 

and functions listed in Appendix A were used to compute the scattering cross-section of a 

perfectly electrically conducting sphere of electrical size ranging from ka = 0.5 to ka = 5.0. 

Approximately 30 data points were computed in this range. For this formulation, the 

surface current density was expanded in the t' and ^>' directions using unit amplitude 

pulses as basis functions. The current was expanded additionally by a common Fourier 

series exponential in <j). MAINSPHERE was run in the subdomain ('sd') mode. The 

resulting quantities are normalized with respect to electrical size and wavelength so as to 

oscillate about a constant value. Comparison is made to the exact normalized scattering 

cross-section calculated by means of the Mie series given by Harrington [5]. 
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Backscatter from PEC Sphere 

JUT' 

Figure 5.12     Backscatter from a PEC sphere using 5 subdomain segments, illuminated 
at 0 = 90° by Efc. 

The first data set shows the scattering cross-section computed with five subdomain 

segments on the generating arc for the selected range of electrical sizes. Five Fourier modes 

were used in the <j> expansion for this and all other data presented. The data points are 

shown in Figure 5.12 as discrete points (circles). The data points are connected by a 

dotted line to make the sequence more apparent where neighboring points follow the same 

pattern. The line is not, however, intended to indicate an accurate interpolation between 

points. An occasional stray point gives the impression that addition of another point near 

it would result in nearly the same magnitude, but this is not necessarily the case. Although 

data points in the ka = 2.25 to ka = 2.75 region approach the exact solution and points 

in the ka = 3.5 to ka = 4.0 approach the exact solution to a lesser degree, the data overall 

is somewhat erratic. It is clearly obvious that five subdomain segments are insufficient 

to accurately represent scattering cross section. A large number of data points differ by 
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Backscatter from PEC Sphere 

Figure 5.13     Backscatter from a PEC sphere using 5 entire-domain modes, illuminated 
at 9 = 90° by Efc. 

±3-10dB. The largest deviation is a cross-section of 0.001 at ka = 3.1 which differs from 

the Mie series by -27dB. Mautz shows that at least fifteen subdomain sections are required 

to model the current density with accuracy sufficient to match the Mie series [9]. 

5.3.3 Entire-Domain Data. The next data set shows the scattering cross-section 

computed with five entire-domain modes on the generating arc for the selected range 

of electrical sizes. The data points are shown as circles connected by a dotted line in 

Figure 5.13. It is readily apparent that five entire-domain modes result in a much closer 

conformity to the Mie series than do an equivalent number of subdomain segments. The 

entire-domain basis functions are better able to accurately represent the smoothness and 

functionality of the surface current density. The data points in the ka = 3.0 to ka = 5.5 

region closely follow the Mie series curve with less than 0.5dB error.   The region from 
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ka = 1.75 to ka = 3.0 exhibits an error of 2dB to 3dB. Electrical sizes smaller than 

ka = 1.75 differ by an almost constant -4dB. 

At larger electrical sizes (ka > 5.5) the data begins to fall away from the Mie series 

curve. This is due to the fact that as the sphere gets larger, the current around the surface 

becomes more varied and, as a result, requires more and more Fourier expansion modes 

(higher values of n) to accurately represent the current oscillations (see Figure 5.7). The 

current density at smaller electrical sizes is more constant around the sphere circumference, 

and is adequately covered by a few Fourier modes (2 or 3 for ka < 2) [9]. 

The inaccuracy in normalized cross-section seen in this data for smaller ka is intro- 

duced by an approximation made in the integrands of MAINSPHERE to allow integration 

through the singularity which occurs when the difference between the radial distance be- 

tween the far-field observation point and the testing/basis functions, R in the equations, 

goes to zero. In subdomain methods, the only time this occurs is when the testing func- 

tion coincides with the basis function. When entire-domain basis functions are used, the 

domain of every mode coincides with every other. The value of R is zero when t equals 

t' and <f>' equals zero. It is also zero at any value of <ff when t and if are both at their 

minimum or maximum value. This behavior of R is shown in Figure 5.14. The radial 

projection in the XY-plane of the vector to a point on the generating arc, p, also goes to 

zero at the ends of the generating arc causing a singular behavior in the impedance matrix 

integrands. The effect of the p related singularity is lessened by the fact that the Gaussian 

quadrature integration does not involve a function evaluation of the integrand exactly at 

the endpoints. Also, the higher density of integration points at the ends of the integration 

domain allow a more accurate integration in those regions. To keep R from going to zero 

in the integrations, an incremental distance, skosh, is added to R. This method is called 

the method of equivalent separation and has been used in scattering problems [9]. The 

distance fi is kept slightly above zero allowing integration without extraction and separate 

handling of the singularity. However, since R represents a path of phase accumulation, 

a phase error is introduced into the integrands. The smaller the sphere gets in electrical 

size, the larger this phase error gets relative to the sphere size. It was found that using 

this equivalent separation for spheres of ka < 2, the integrals converge to an approximate 
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INTEGRAL OF ZTT2 VS. Rmin 
for: ka=4, n=2, test/basis=3, variable # integration points 

1.65 
0.002      0.004      0.006 0.008        0.01        0.012       0.014      0.016      0.018        0.02 

Minimum R (skosh) 

Figure 5.15     The integral of Ztt as a function of minimum R for various orders of Gaussian 
quadratrue integration. 

solution, but not to the Mie series curve. Re-computing with additional entire-domain or 

Fourier modes did not improve the results in this region. Reducing the minimum phase 

distance, skosh, brought the cross-section points slightly closer to the Mie series curve, but 

did not solve the problem. Also, increasing the order of Gaussian quadrature quickly be- 

came computation time inhibitive. Figure 5.15 is a plot of the integrated amplitude of Ztt 

versus minimum phase distance for a sphere of ka = 4.0, the n = 2 Fourier mode, and the 

T3 testing and basis modes. Data is plotted for 20, 30, 40, and 50 point Gaussian quadra- 

ture integration. As the Gaussian quadrature order is increased, there is less variation in 

number given by the integration. This is seen by the curves getting closer together as the 

order is increased. As the minimum R is varies, the integration yields a result that does 

not converge. A similar behavior is also seen when the testing function and basis function 
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are not the same although ,in general, the variation is less pronounced. It is concluded 

that accuracy is only improved by a more rigorous handling of the singularity by means 

of singularity extraction and separate evaluation of the integrals in the region surrounding 

the singularity. 

5-4    Computation and Matrix Fill Time 

It is seen that increasing the number of modes used to compute the system of ma- 

trices results in a more accurate solution for the unknown current and, therefore, a more 

exact calculation of scattering cross-section. A major advantage of using entire-domain 

basis functions to expand the current density is that additional modes can be added by 

superposition without complete re-computation of each matrix element. The integration 

limits on the inner product for the entire-domain method remain the same for every com- 

bination of testing and expansion mode, i and j. In other words, each mode has as its 

domain, the entire length of the generating arc. Higher order modes are simply added in 

parallel to lower order modes. This is not true for subdomain basis functions. The inte- 

gration limits on the inner product for the subdomain method correspond to the length 

of each segment. Each segmental subdomain mode adds to the others in series. In order 

to increase the number of segments in the subdomain discretization, the length of every 

segment must change. This requires complete re-computation of all matrices. As a result, 

increasing the order of the discretization to improve the accuracy of the solution wastes 

all computation time up to that point. A comparison of matrix fill times and computation 

times for the entire-domain method and the subdomain method is shown below. 

Elapsed computer processor time was tracked through all trials for the following 

computations: [Z%], [ZJf], [Zff], [V*], [V% and [Z] inversion. The time to add an addi- 

tional mode was also tracked. These times are shown in Table 5.1. The majority of the 

total computation time is in the evaluation of the integrals to determine the elements of 

the impedance matrix, [Z]. Processor time averages 3.0 seconds per integration. Slightly 

more than half of the elements of [Z] must be computed to fill [Z] because of symmetries. 

Because the fill time for [Z] dominates, proper choice of basis function (entire-domain vs. 

subdomain and actual function) offers an important advantage. 
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Element Time 

TO 3.5 sec 

[Z*f] 
[Zff] 

3.0 sec 

2.5 sec 

[V] 0.5 sec 
[vp] 0.5 sec 
[z]-1 0.5 sec 

Table 5.1     Average integration times 

Based on the computation time observations, the additional time required to add 

a mode to the impedance matrix given an initial number of modes is determined and is 

shown in Tables 5.2 and 5.3. 

Consider an example of overall computation time to fill [Z]. Starting with an initial 

choice of five entire-domain expansion modes, 2.75 minutes (165 seconds) are required to 

compute the N(2N + 1) = 55 symmetric elements of [Z]. Suppose that after determining 

the current and checking it against a specified tolerance, more modes are added. This is 

repeated until ten modes are used to achieve an accurate solution. Every time a mode is 

added, a new row is added to [Ztt] and [Z^] and a row and a column are added to [Z^] 

as shown in Equation (5.4) for a total of 4N + 3 new computations, where N is the initial 

number of modes. The x's represent elements of previously calculated modes, o's represent 

new elements that must be computed, and «'s represent new elements filled by symmetry. 

[Z] = 

XXX» 

XXX» 

XXX» 

o    o    o    o 

XXX» 

XXX» 

XXX» 

•    •    »    • 

X X X o 

X X X o 

X X X o 

o o o o 
-1 

X X X • 

X X X • 

X X X • 

o 0 0 o 

(5.4) 

This additional computation time is added to the initial matrix fill time to get the overall 

computation time. Doubling the number of entire-domain modes to ten adds 7.75 minutes 
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ENTIRE-DOMAIN 

Initial Elements Fill Elements req'd Add Total Computation 

modes to fill time to add mode time CPU time overhead 

1 3 9 7 21 30 0 
2 10 30 11 33 63 0 
3 21 63 15 45 108 0 
4 36 108 19 57 165 0 
5 55 165 23 69 234 0 
6 78 234 27 81 315 0 
7 105 315 31 93 408 0 
8 136 408 35 105 513 0 
9 171 513 39 117 630 0 

10 210 630 43 129 759 0 
11 253 759 47 141 900 0 
12 300 900 51 153 1053 0 
13 351 1053 55 165 1218 0 
14 406 1218 59 177 1395 0 
15 465 1395 63 189 1584 0 
16 528 1584 67 201 1785 0 
17 595 1785 71 213 1998 0 
18 666 1998 75 225 2223 0 
19 741 2223 79 237 2460 0 
20 820 2460 83 249 2709 0 
21 903 2709 87 261 2970 0 
22 990 2970 91 273 3243 0 
23 1081 3243 95 285 3528 0 
24 1176 3528 99 297 3825 0 
25 1275 3825 103 309 4134 0 

Based on average integration time of 3 sec. 
All quantities in seconds unless specified otherwise. 

Table 5.2     Additional time required per Fourier mode to add an entire-domain mode 
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SUBDOMAIN 

Initial Elements Fill Elements req'd Add Total Computation 

modes to fill time to add mode time CPU time overhead 

1 3 9 10 30 39 9 sec 

2 10 30 21 63 93 30 sec 

3 21 63 36 108 171 1.05 min 

4 36 108 55 165 273 1.8 min 

5 55 165 78 234 399 2.75 min 

6 78 234 105 315 549 3.9 min 

7 105 315 136 408 723 5.25 min 

8 136 408 171 513 921 6.8 min 

9 171 513 210 630 1143 8.55 min 

10 210 630 253 759 1389 10.5 min 

11 253 759 300 900 1659 12.65 min 

12 300 900 351 1053 1953 15 min 

13 351 1053 406 1218 2271 17.55 min 

14 406 1218 465 1395 2613 20.3 min 

15 465 1395 528 1584 2979 23.25 min 

16 528 1584 595 1785 3369 26.4 min 

17 595 1785 666 1998 3783 29.75 min 

18 666 1998 741 2223 4221 33.3 min 

19 741 2223 820 2460 4683 37.05 min 

20 820 2460 903 2709 5169 41 min 

21 903 2709 990 2970 5679 45.15 min 

22 990 2970 1081 3243 6213 49.5 min 

23 1081 3243 1176 3528 6771 54.05 min 

24 1176 3528 1275 3825 7353 58.8 min 

25 1275 3825 1378 4134 7959 1.0625 hr 
Based on average integration time of 3 sec. 
All quantities in seconds unless specified otherwise. 

Table 5.3     Additional time required per Fourier mode to add a subdomain segment 
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(465 seconds) to the fill time for a total of 10 minutes (630 seconds), 

CPU time    =   (165)5 initial modes + 69 + 81 + 93 + 105 + 117 

=   630 seconds to compute 10 modes. (5.5) 

The same calculation is made for an initial choice of five subdomain segments. It 

takes the same 2.75 minutes (165 seconds) to fill the subdomain [Z] as it does for entire- 

domain. Doubling the number of segments to ten adds 35 minutes (2100 seconds) to the 

fill time for a total of 37.75 minutes (2265 seconds). This is 387% more time to fill, 

CPU time      =    (165)5 initial segments + 234 + 315 + 408 + 513 + 630 

=   2265 seconds to compute 10 segments. (5-6) 

A more realistic situation, however, is that because of the smoothness and appropriate 

functionality of the entire-domain basis functions, many more subdomain segments will be 

required to achieve the same accuracy. The processing time for ten entire-domain modes 

is 10.5 minutes (630 seconds), whether ten are chosen initially or additional modes are 

added to make ten. Since ten entire-domain modes achieves the accuracy desired, let the 

subdomain comparison start with ten segments. Suppose that to achieve accuracy in this 

case, the number of segments is incrementally doubled to twenty. This results in 4.27 

additional hours (15,375 seconds) for a total of 4.45 hours (16,005 seconds) to fill [Z]. This 

is 3.76 hours more (551% longer) than if twenty segments were initially chosen and 4.32 

hours more (2440% longer) than it took to achieve the same results as in the entire-domain 

case! The time difference is even worse than this because it is also compounded by the 

number of Fourier modes, 

CPU time    =   (630) i0 + 759 + 900 + 1053 + 1218 + 1395 + 1584 + 1785 + 1998 + 2223 + 2460 

=   16005 seconds to compute 20 segments. (5.7) 
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A summary of the savings in computation time for the above examples is presented 

in Table 5.4. 

Add time Total time 
SUBDOMAIN 
Initial modes = 5 
Final modes =10 35 min 

2.75 min 
37.75 min 

Initial modes =10 
Final modes = 20 4.27 hrs 

10.50 min 
4.45 hrs 

ENTIRE-DOMAIN Savings over subdomain 
Initial modes = 5 
Final modes =10 7.75 min 

2.75 min 
10.5 min 4-32 hours saved 

Table 5.4     Summary of CPU time savings per Fourier mode 
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VI.   Conclusions and Recommendations 

This chapter discusses the achievements of this research.  The impacts of this work are 

summarized and recommendations are made for future work in this area. 

6.1    Conclusions 

The primary motivation for this research involved improving the numerical methods 

used to obtain the electromagnetic scattering from perfectly electrically conducting bodies 

of revolution. Such bodies are used to calibrate the measurement systems of radar ranges 

using a background subtraction method. Current approaches use Method of Moments 

based computer codes which employ subdomain basis expansion functions to calculate 

an approximate solution to the current density induced on the surface of the body by 

an incoming plane-wave. The accuracy of the approximation is limited by the number 

of subdomain segments used in the expansion. A large number of these segments are 

required to accurately represent the current density. Computation time becomes inhibitive 

for an accurate solution, particularly for a body of large electrical size. Incrementally 

increasing the number of subdomain segments used in order to increase accuracy requires 

re-discretization and loss of previously calculated results. Entire-domain basis functions 

can solve both of these problems. Although many texts make reference to the possibility 

of using entire-domain basis functions for expansion of the current density, they all default 

to the apparent simplicity of subdomain basis functions. A search of the literature also 

yields few examples of the use of entire-domain basis functions. 

As a proof of the concept of using entire-domain basis functions to compute the 

scattering of a body of revolution, the unknown current density on a perfectly electrically 

conducting sphere was expanded using Chebyshev polynomials of the first kind. The 

Method of Moments was then used to solve for the current density. Galerkin's method 

of testing allowed an approximate 50% reduction in required computations. A sphere 

was chosen to enable comparison to the Mie series, a known exact solution. The entire- 

domain solution using the Chebyshev basis was shown to be a better approximation of the 

6-1 



scattering cross-section in many fewer modes (about 5) than an equivalent trial using a 

subdomain pulse basis. 

Since the current density is a smooth variation over the surface, the Chebyshev 

basis functions were a better approximation than discontinuous subdomain pulses. This 

was a significant factor in reducing the number of modes required in the approximation 

and the matrix size of the solution. Computation time was dramatically decreased. The 

computational time required to obtain an initial solution and then double the number of 

entire-domain modes used in order to increase the accuracy of the solution was found to 

be the same as if the final number of modes were used initially. Using subdomain basis 

segments took hours longer—clearly an advantage of entire-domain basis functions that 

overcomes the initial complexity of their implementation. 

6.2    Recommendations for Future Research 

Although the results presented in this report accomplish the goal of the research 

effort by showing the obvious computational advantages and time savings of using entire- 

domain basis functions for the given problem, there are several areas in which further work 

could follow. 

First, an accurate solution was not obtained for spheres of smaller electrical sizes. 

This was due to the handling of the weak singular nature of the three-dimensional free-space 

Green's function by means of imposing an equivalent separation in the minimum distance 

between the testing functions and the current expansion functions—an approach that has 

been successful in other similar problems. The small phase approximation introduced was 

found to be unacceptable for spheres of smaller electrical sizes. Methods exist for extracting 

the singularity and evaluating the integrals in the region surrounding the singular point 

separately. Future research would use such a method to handle the singular behavior of 

the integrands more rigorously. The Chebyshev weighting factor for true orthogonality 

could also be implemented. 

Second, a sphere was chosen in this effort to demonstrate the advantages of entire- 

domain basis functions because an exact solution exists for comparison.   Real interest 
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in this method lies in the ability to accurately calculate the scattering from bodies of 

revolution to which no exact solution is known. Applying appropriately chosen entire- 

domain basis functions to the solution of scattering from more complex and advantageous 

geometries would be useful. Examples of such geometries might be elliptical bodies of 

low cross-section, the right-circular cylinder used in cylindrical calibration methods for 

radar ranges, and other bodies of revolution with discontinuities (such as corners) in their 

generating arc. Investigation might be made into the appropriateness of the method for 

bodies with concave and/or convex regions. Additionally, it would be useful to study the 

effects of using various entire-domain basis functions on a given body of revolution. 

Third, actual range measurements could be made under the best of controlled con- 

ditions following computation of the scattering by this entire-domain method for various 

bodies of revolution. Quantification of the actual number of entire-domain modes required 

to achieve given tolerances could be done. 

Fourth, an error analysis study could be performed based on the fact that the entire- 

domain functions contain frequency content information, and thus, the expansion coeffi- 

cients are related to the frequency content of the unknown current. The study would show 

the relationship between the error and the number of entire-domain basis functions used 

(something that cannot be done with subdomain basis functions). 
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Appendix A.   The Computer Code 

This appendix contains MATLAB 5 computer code for computing the scattering cross- 

section from a body of revolution. The function GEO defines the geometry for a sphere 

and can be rewritten to return similar parameters for another geometry. The code is 

initiated by a call to MAINSPHERE with the appropriate inputs as outlined in the code. 

The other functions are called by MAINSPHERE. 

V •/ V •/ V V •/ •/ •/ V V •/ V •/ •/ •/ V V V V V •/ V •/ •/ V V •/ •/ V V •/ •/ •/ •/ •/ V V V V •/ •/ V '/ V V •/ •/ V •/ •/ «J 

function [sdout] = mainsphere(pl, p2, p3, p4, p5, p6) 

'/«usage:  [sdout] = mainsphere(a_samples, sdmax, fmin, fmax, theta, 'ed' or 'sd') 
1/ </•/•/•/•/•/•/•/•/'/•/•/'/•/•/'/•/•/•/•/•/•/•/'/'/'/ •/'/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/VVVVVVVVVVVVVVVVVVVVi 

XX This in the main program for the entire (or sub) domain analysis •/,'/, 
•/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ V •/ •/ •/ •/ •/ V «/ V V V •/ •/ •/ •/ V •/ V V •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ V •/ V •/ •/ •/ •/ V •/ V •/ •/ •/ •/ V •/ •/ V •/ •/ •/ •/ V V V V V V «i 

XXXXX INITIALIZE VARIABLES XXXXX 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
global k a skosh X geo and other constants 

global fidd X output control, l=display 

global n ntest nbasis X mode indices 

global tlo thi tplo tphi X integration limits 

global theta_t X monostatic angle 

global T X basis polynomial table 

global bpx bpy wfxy X 2d gaussian roots and weights (for v) 

global bpx3 bpy3 bpz3 wfxyz X 3d gaussian roots and weights (for z) 

if p6=='sd' 
T = zeros(25,25); 

T(:,25) = [i]; X pulse basis polynomial coefficient 

else 

T = maket; X make the Chebyshev basis lookup table 

end; 

fidd  = 1; X display 

lambda = 1; X wavelength (1 = normalized) 

k    = 2*pi/lambda; X wave number 

xxxxxxxxxxxxxxxxxxxxxxx 
XXXXX CHANGEABLES XXXXX 
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xxxxxxxxxxxxxxxxxxxxxxx 
a_samples = pi; '/, sphere radii vector 

sdmax   = p2; X initial max sub-domain mode 

fmin    = p3; X min fourier mode (set "0 for partial computation) 

fmax    = p4; X max fourier mode 

theta   = p5; '/, increments in theta 

zpoints  = [30 30 30]; X # of integration points for z-matrix 

vpoints  = [30 30] ; '/, # of integration points for v-matrix 

Xfname (below) X save filename.mat 

Xfdir (below) '/, save directory 

•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/'/•/VW V V WWW WW'J 

XXXXX ENTIRE DOMAIN, MOMENT METHOD XXXXX 
wwwwwwvwwwwwwwwwwwwwv 

for aindex=l:length(a_samples) 

a    = a_samples(aindex)/k; X sphere radius 

tmax = pi*a; X total arclength of generating curve 

skosh = .01; 

fname = ['sp' num2str(floor(k*a*10)) p6 num2str(sdmax) 'f num2str(fmax)]; 

fdir = '"/outfiles/'; 
eval(['save ', fdir, fname, ' a sdmax fmin fmax theta zpoints vpoints;']); 

if p6=='sd'X make array of integration limits 
limits = makelimits(tmax, sdmax); 

else 

tlo = 0; 

thi = pi*a; 

tplo = tlo; 

tphi = thi; 

end; 

[bpx bpy wfxy]       = grule2d(vpoints(l), vpoints(2)); 

[bpx3 bpy3 bpz3 wfxyz] = grule3d(zpoints(i), zpoints(2), zpoints(3)); 

for nfourier = fmin:fmax X fourier mode loop 

makezv; X make Z, V, R, I 

X a test In for convergence here 

X Store variables 

ns = num2str(nfourier); 

eval(['Rt' ns ' = transpose(Rt);']); 
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eval(['Rp' ns ' = transpose(Rp);']); 

eval(['I' ns '=In;']); 

eval(['z' ns '=z;']); 

eval(['v' ns '=v;']); 
eval(['save ', fdir, fname, ' Rt' ns ' Rp' ns ' I'... 

ns ' z' ns ' v' ns ' -append;']); 

end; '/, for nfourier 

if fmin==0 

comprcs; '/, compute res 

eval(['save ', fdir, fname, ' sigma_lam2 sigma_db -append;']); 

plotrcs; '/, plot res 

sdout = sigma_db; 

else 

dispC'Partial series of f-modes computed, no sigma calculated.'); 

sdout = 9999; 

end; '/, if 

end; */, for aindex 

'/, Procedure: makezv.m 

'/, Makes the z and v matricies and computes I 

'/, Also makes the Rt and Rp matricies 

t_0 = cputime; 

n = nfourier; 
A = zeros(sdmax+1); 

B = A; 

C = A; 

D = A; 

E = zeros(sdmax+1, length(theta)); 

F = E; 

y.y.y.y.y.y.y.y.y.y.y. 
'/, Compute for initial number of sd modes 

for ntest = Orsdmax 

for nbasis = 0:sdmax 

if p6=='sd' 

tlo = limits(ntest+l,l); 
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thi = limits(ntest+1,2); 

tplo = limits(nbasis+1,1); 

tphi = limits(nbasis+l,2); 

end; '/, if 

fprintf(fidd,'\n ztp \n'); 

tc=cputime; B(ntest+l,nbasis+l) = ztp2; t_cpu=cputime-tc; 

fprintf(fidd,'\nElapsed cpu time: */,f seconds.\n' ,t_cpu); 

if nbasis <= ntest 

fprintf(fidd,'\n ztt \n'); 
tc=cputime; A(ntest+l,nbasis+l) = ztt2; t_cpu=cputime-tc; 

fprintf (fidd,'\nElapsed cpu time: */,f seconds. \n' ,t_cpu) ; 

fprintf (fidd, '\n zpp \n') ; 

tc=cputime; D(ntest+i,nbasis+l) = zpp2; t_cpu=cputime-tc; 

fprintf (fidd, '\nElapsed cpu time: */tf seconds. \n' ,t_cpu) ; 

end; '/, if 

end; '/, for nbasis 

for th = l:length(theta); 

theta_t = theta(th); 

fprintf (fidd, '\n vt \n') ; 
tc=cputime; E(ntest+1, th) = vt; t_cpu=cputime-tc; 

fprintf (fidd,'\nElapsed cpu time: '/,f seconds. \n',t_cpu) ; 

fprintf (fidd, '\n vp \n') ; 

tc=cputime; F(ntest+1, th) = vp; t_cpu=cputime-tc; 
fprintf (fidd,'\nElapsed cpu time: '/,f seconds.\n' ,t_cpu) ; 

n = -n; 
Rt(ntest+1, th) = vt; 

Rp(ntest+1, th) = vp; 

n = -n; '/, restore 

end; '/, for th 

end; '/, for ntest 

A = tril(A) + transpose(tril(A, -1)); '/, exploit symmetries 

D = tril(D) + transpose(tril(D, -1)); 

C = -transpose(B); 

z = [A, B; C, D]; 

v = [E; F]; 

A-4 



fprintf (fidd, '\n Invert \n'); 

tc=cputime; In = inv(z) * v; t_cpu=cputime-tc; 

fprintf (fidd,'\nElapsed cpu time: */,f seconds. \n' ,t_cpu); 

t_tot=cputime - t_0; 

disp(['Total runtime:  ' num2str(t_tot)]); 

%%%%%%%%%%%%%%%%%%%%%%%% 
'/, Procedure: comprcs.m 

fprintf (fidd, '\n Compute RCS \n') ; 

for th = l:length(theta) 

theta_t = theta(th); 

nsum = 0; 
for n = i:fmax 

fprintf (fidd, '\nAdd n=y.d\n', n) ; 

ns = num2str(n); 

eval(['In = I' ns '(:, th);']); 

len = length(In); 

mid = len/2; 

It = In(i:mid); 

Ip = In(mid+l:len); 

nsum = nsum + eval(['Rt' ns '(th, :) * It + Rp' ns '(th, :) * Ip']); 

end; '/, for n 

In = I0(:,th); 

len = length(In); 

mid = len/2; 
ItO = In(l : mid); 

IpO = In(mid+1 : len); 
sigma_lam2(th) = l/(4*pi~3) * ( abs(.5 * Rt0(th, :) * ItO + ... 

.5 * RpO(th, :) * IpO + nsum) )~2; 

end; '/, for th 

if exist('aindex')==l 
sigma_db(aindex) = 10*logl0(sigma_lam2); 

else 

sigma_db=10*logl0(sigma_lam2); 

end; 
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,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.7.,/.,/.,/. 
'/, Procedure: plotrcs.m 

figure; 

plot(theta*180/pi, sigma_db); 

title({'Scattering Cross-Section', ['Date: ', date, ' Datafile: ', 

fdir, '  ', fname]}); 

sdata   = num2str([sigma_db(l:10); sigma_db(ll:20)]); 

xlabeK-C'Theta (deg)', sdata}); 

ylabel('Sigma/lambda~2 (dBsm)'); 

grid on; 

xxxxmmxnmmmxx 
function [A] = makelimits(tmax, sdmax) 

'/, makes an n x 2 array of integration limits 

'/, for the subdomain analysis 

'/, as in entire domain, the modes include the O-mode 

delta = tmax / (sdmax + 1); 

lo(l) = 0; 

hi(l) = delta; 

for index = 2:sdmax+l 

lo(index) = hi(index-l); 

hi(index) = lo(index) + delta; 
end; 

A = [lo\ hi']; 

x%x%xxxxxxx%xxxxxxxxx%%x 
function [A] = maket 

'/, returns the vector of coefficients 

'/, of the Chebyshev polynomial of mode "mode1 

hi=25; 

t=zeros(hi); 

t(l,hi) = [1]; 

t(2,hi-i:hi) = [10]; 
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for nn=3:25 
s = conv([2 0],t(nn-l,:)); 
t(nn,l:hi) = s(2:hi+l) - t(nn-2,:); 

end;  '/, for 

A = t; 

%%%%%%%%%%%%%%%%%%%%%%%% 
function  [bpx,bpy,wfxy]  = grule2d (nquadx.nquady) 

[bpxv,wfxv]=grule(nquadx); 
[bpyv,wfyv]=grule(nquady); 
Cbpx,bpy]=meshgrid(bpxv,bpyv); 
[wfx,wfy]=meshgrid(wfxv,wfyv); 
wfxy=wfx.*wfy; 

7.7.,/.7.7.,/.,/.,/.y.,/.,/.y.y.,/.r/.,/.,/.,/.,/.7.y.y.y. 
function  [bpx,bpy,bpz,wfxyz]  = grule3d (nquadx,nquady,nquadz) 

[bpxv,wfxv]=grule(nquadx); 
[bpyv,wfyv]=grule(nquady); 
[bpzv,wfzv]=grule(nquadz); 
[bpx,bpy,bpz]=meshgrid(bpxv,bpyv,bpzv); 
[wfx,wfy,wfz]=meshgrid(wfxv,wfyv,wfzv); 
wfxyz=wfx.*wf y.*wfz; 

m%mm%%%%%%%%%%%%%% 
function [bp,wf]=grule(n) 
'/, This function computes Gauss base points and weight factors 

'/, using the algorithm given by Davis and Rabinowitz in 'Methods 

'/,. of Numerical Integration', page 365, Academic Press, 1975. 

'/, by Howard Wilson of the University of Alabama, 1990 

'/, included in the Numerical Integration Toolbox* 

'/, *duplicated here for convienence of the reader 

bp=zeros(n,l); wf=bp; iter=2; m=fix((n+l)/2); el=n*(n+l); 

mm=4*m-l; t=(pi/(4*n+2))*(3:4:mm); nn=(l-(l-l/n)/(8*n*n)); 

xo=nn*cos(t); 

for j=l:iter 

pkml=l; pk=xo; 

for k=2:n 
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tl=xo.*pk; pkpl=tl-pkml-(tl-pkml)/k+tl; 

pkml=pk; pk=pkpl; 

end 

den=l.-xo.*xo; dl=n*(pkml-xo.*pk); dpn=dl./den; 

d2pn=(2.*xo.*dpn-el.*pk)./den; 

d3pn=(4*xo.*d2pn+(2-el).*dpn)./den; 
d4pn=(6*xo.*d3pn+(6-el).*d2pn)./den; 

u=pk./dpn; v=d2pn./dpn; 

h=-u.*(l+(.5*u).*(v+u.*(v.*v-u.*d3pn./(3*dpn)))); 
p=pk+h.*(dpn+(.5*h).*(d2pn+(h/3).*(d3pn+.25*h.*d4pn))); 

dp=dpn+h.*(d2pn+(.5*h).*(d3pn+h.*d4pn/3)); 

h=h-p./dp; xo=xo+h; 

end 

bp=-xo-h; 

fx=di-h.*el.*(pk+(h/2).*(dpn+(h/3).*(... 

d2pn+(h/4).*(d3pn+(.2*h).*d4pn)))); 

wf=2*(1-bp.~2)./(fx.*fx) ; 

if (m+m) > n, bp(m)=0; end 

if ~((m+m) == n), m=m-l; end 

jj=l:m; nlj=(n+l-jj); bp(nlj)=-bp(jj); wf(nlj)=wf(jj); 

7. end 

,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.7.,/.,/,,/.,/.,/,,/,7.,/.,/.•/.,/.,/.,/. 
function vol = gquad2d(fun,xlow,xhigh,ylow,yhigh,bpx,bpy,wfxy) 

'/.based on a routine by Bryce Gardner, Purdue University, Spring 1993 

'/.Map to x 

qx=(xhigh-xlow)/2; 

px=(xhigh+xlow)/2; 

x=qx*bpx+px; 

'/.Map to y 

qy=(yhigh-ylow)/2; 

py=(yhigh+ylow)/2; 

y=qy*bpy+py; 

fv = feval(fun,x,y); 
vol = sum(sum(wfxy.*fv))*qx*qy; 

fprintf(1,'The '/.d point integration of "*/.s" gives\n */.20.15f ... 

+ i'/,20.15f\n', length(bpx), fun, real(vol), imag(vol)); 
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xx%xx%x%xxxxxxxxxxxxxxxx 
function vol = gquad3d(fun,xlow,xhigh,ylow,yhigh,zlow,zhigh,bpx,bpy,bpz,wfxyz) 

'/based on a routine by Bryce Gardner, Purdue University, Spring 1993 

'/Map to x 

qx=(xhigh-xlow)/2; 

px=(xhigh+xlow)/2; 

x=qx*bpx+px; 

'/.Map to y 

qy=(yhigh-ylow)/2; 

py=(yhigh+ylow)/2; 

y=qy*bpy+py; 

'/Map to z 

qz=(zhigh-zlow)/2; 

pz=(zhigh+zlow)/2; 

z=qz*bpz+pz; 

fv = feval(fun,x,y,z); 

vol = sum(sum(sum(wfxyz.*fv)))*qx*qy*qz; 

fprintf(1,'The '/d point integration of '"/,s" gives\n'/,20.15f ... 
+ i'/,20.15f\n' ,length(bpx) ,fun,real (vol) ,imag(vol)) ; 

•/ •/•/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ >i •/ v •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ v •/ •/ •/ •/ •/ •/ ij 

function [A] = basis(mode, tp) 

'/, Returns the value of the basis function 

'/ of mode 'mode' evaluated at tp. 

global T tphi 

s = 2 * tp ./ tphi - 1; '/, scales domain to +-1 

'/ workaround for 3d (nul, nu2 are not needed) 

Al=polyval(T(mode+i,:),s(:,l,l)); 

[nul, A, nu2]=meshgrid(Al, Al, Al); 

%%%mm%%%m%%%%m%%%%%%%%%%%n%%% 
function [A] = derivtp(mode, tp) 

'/, Computes the partial derivative with respect to tp 
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'/, of rho(tp) * basis (tp) 

'/, assumes sphere 

global a 

A = cos(tp/a) .* basis(mode, tp) + a*sin(tp/a) .* dbasis(mode, tp); 

•/ •/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ V V •/ «/ •/ V •/ •/ V •/ V •/ •/ •/ •/ V •/ V V •/ V •/ V •/; 

function [A] = dbasis(mode, tp) 

'/, returns the value of the derivative 

'/, of the basis function @ mode, tp 

global T tphi 

s = 2 * tp ./ tphi - 1; '/, scales domain to +-1 

'/, workaround for 3d (nul, nu2 are not needed) 
Al = polyval(polyder(T(mode+l,:)),s(:,1,1)); 

[nul, A, nu2]=meshgrid(Al, Al, Al); 

function [rho, zee, vee] = geo(t) 
'/, Computes the geometric parameters for a 

'/, *** SPHERE *** 

'/, all positive z 

global a skosh 

next_t = t + .00001; 

rho = a * sin(t/a); 

rho_next = a * sin(next_t/a); 

zee = -a * cos(t/a) + a; 
zee_next = -a * cos(next_t/a) + a; 

drho = rho_next - rho; 

dzee = zee_next - zee; 

hyp = sqrt(drho.~2 + dzee."2); 

vee = asin(drho./hyp); 

,/.,/.,/.,/.,/.•/.,/.'/.'/.,/.,/.'/,,/.,/.7.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.,/.'/.,/. 
function [A] = test(mode, t) 

'/, Returns the value of the testing function 

'/, of mode 'mode' evaluated at t. 
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'/, Galerkin (basis = test) 

global T thi 

s = 2 * t ./ thi - 1; '/, scales domain to +-1 

if length(size(s)) == 3 

'/, workaround for 3d (mil, nu2 are not needed) 

Al=polyval(T(mode+l,:),s(l,:,1)); 

[A, nul, nu2]=meshgrid(Al, Al, Al); 
else 

A=polyval(T(mode+l,:),s); 
end; 

>/•/'/'/V'/'/VV'/'/•/•/«/•/•/•/•/•/•/•/•/«/'/•/•/'/•/•/•/•/</•/•/•/•/•/•, 

function [A] = derivt(mode, t) 

'/, computes the partial derivative with respect 
•/. to t of rho(t) * test(t). 

'/, assumes sphere 
global a 

A = cos(t/a) .* test(mode, t) + a*sin(t/a).*dtest(mode, t); 

•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•/•J 

function [A] = dtest(mode, t) 

•/, returns the value of the derivative 

'/, of the test function @ mode, t 

'/, galerkin: test = basis 
global T thi 

s = 2 * t ./ thi - 1; '/, scales domain to +-1 

'/, workaround for 3d (nul, nu2 are not needed) 

Al = polyval(polyder(T(mode+l,:)),s(l,:,l)); 
[A, nul, nu2]=meshgrid(Al, Al, Al); 

V V •/ V V V V V •/ V V V •/ V •/ V V •/ V V V V V V V •/ •/ •/ •/ •/ •/ •/ •/ V V V •/ >i 

function [A] = ztt2 

'/, Computes an impedance matrix element of ztt 

global tplo tphi tlo thi 

global bpx3 bpy3 bpz3 wfxyz 
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A = gquad3d('zttarg2', tlo, thi, tplo, tphi, 0, pi, bpx3, bpy3, bpz3, wfxyz); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [A] = zttarg2(t,tp,phip) 

'/, Argument for ztt integration 

global k n skosh ntest nbasis 

[rho_t, zee_t, vee_t] = geo(t); 

[rho_tp, zee_tp, vee_tp] = geo(tp); 

R = sqrt( skosh."1  + (rho_t-rho_tp).~2 + (zee_t-zee_tp)."2 + ... 

4*rho_t.*rho_tp.*(sin(phip/2))."2 ); 

arg4 = exp(-j*k*R)./(k*R) .* cos(n*phip); 

arg5 = exp(-j*k*R)./(k*R) .* cos(phip) .* cos(n*phip); 

Al = j*k~2*rho_t.*test(ntest,t).*rho_tp.*basis(nbasis,tp).* ... 

( arg5.*sin(vee_t).*sin(vee_tp) + arg4.*cos(vee_t).*cos(vee_tp) ); 

A2 = -j.*derivt(ntest,t).*derivtp(nbasis,tp).*arg4; 

A = Al + A2; 

•/1/ •/ •/1 •/ •/ V •/ V •/ •/ V V V V •/ V V •/ V V V V V V V •/ •/ •/ V V V •/ •/ •/ V >l 

function [A] = ztp2 

'/, Computes an impedance matrix element of ztp 

global tplo tphi tlo thi 
global bpx3 bpy3 bpz3 wfxyz 

A = gquad3d('ztparg2', tlo, thi, tplo, tphi, 0, pi, bpx3, bpy3, bpz3, wfxyz); 

•/ •/ V •/ •/ V •/ •/ •/ •/ •/ V V •/ V V •/ •/ V V1/ V V •/ •/ V V •/ V V •/ V V V V •/ V »i 

function [A] = ztparg2(t,tp,phip) 

'/, Argument for ztp integration 

global k n skosh ntest nbasis 

[rho_t, zee_t, vee_t] = geo(t); 

[rho_tp, zee_tp, vee_tp] = geo(tp); 

R = sqrt( skosh."2 + (rho_t-rho_tp)."2 + (zee_t-zee_tp)."1  + 
4*rho_t.*rho_tp.*(sin(phip/2))."2 ); 
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arg4 = exp(-j*k*R)./(k*R) • * cos(n*phip); 

arg6 = exp(-j*k*R)./(k*R) .* sin(phip) .* sin(n*phip); 

Al = rho_tp.*basis(nbasis,tp).*k~2.*rho_t.*test(ntest,t).*arg6.*sin(vee_t); 

A2 = rho_tp.*basis(nbasis,tp).* n./rho_tp .*derivt(ntest,t).*arg4; 

A = Al + A2; 

•/ V V V •/ V •/ V •/ •/ •/ V •/ •/ •/ V •/ V •/ •/ V V V V V •/ V •/ •/ V V •/ V'/ •/ •/ V «i 

function [A] = zpt2 

'/, Computes an impedance matrix element of zpt 

global tplo tphi tlo thi 

global bpx3 bpy3 bpz3 wfxyz 

A = gquad3d('zptarg2', tlo, thi, tplo, tphi, 0, pi, bpx3, bpy3, bpz3, wfxyz); 

%%%%%%%%%%%u%t%%%%%%%%i%%u%%%%%%n%% 
function [A] = zptarg2(t,tp,phip) 

'/, Argument for zpt integration 

global k n skosh ntest nbasis 

[rho_t, zee_t, vee_t] = geo(t); 

[rho_tp, zee_tp, vee_tp] = geo(tp); 

R = sqrt( skosh."2 + (rho_t-rho_tp). ~2 + (zee_t-zee_tp)."1  + ... 
4*rho_t.*rho_tp.*(sin(phip/2)).~2 ); 

arg4 = exp(-j*k*R)./(k*R) .* cos(n*phip); 

arg6 = exp(-j*k*R)./(k*R) .* sin(phip) .* sin(n*phip); 

Al = -rho_t.*test(ntest, t).*k~2.*rho_tp.*basis(nbasis,tp).*arg6.*sin(vee_tp); 

A2 = -rho_t.*test(ntest, t).* n./rho_t .*derivtp(nbasis,tp).*arg4; 

A = Al + A2; 

•/ V V'/ V V •/ V V •/ V V V •/ V V V •/ V V •/ •/ •/ V •/ •/ V V V V •/ •/ •/'/ •/ •/ •/ «i 

function [A] = zpp2 

'/, Computes an impedance matrix element of zpp 

global tplo tphi tlo thi 

global bpx3 bpy3 bpz3 wfxyz 

A = gquad3d('zpparg2', tlo, thi, tplo, tphi, 0, pi, bpx3, bpy3, bpz3, wfxyz); 
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V •/ V V V V •/ V •/ V •/ •/ •/ •/ •/ V •/ V •/ •/ V V •/ V V V V •/ V •/ V •/ V V V •/'/ >i 

function [A] = zpparg2(t,tp,phip) 

'/, Argument for zpp integration 

global k n skosh ntest nbasis 

[rho_t, zee_t, vee_t] = geo(t); 

[rho_tp, zee_tp, vee_tp] = geo(tp); 

R = sqrt( skosh."2 + (rho_t-rho_tp)."2 + (zee_t-zee_tp)."2 + 

4*rho_t.*rho_tp.*(sin(phip/2))."1  ); 
arg4 = exp(-j*k*R)./(k*R) .* cos(n*phip); 

arg5 = exp(-j*k*R)./(k*R) .* cos(phip) .* cos(n*phip); 

A = j*rho_t.*test(ntest,t).*rho_tp.*basis(nbasis,tp).* ... 

( k~2.*arg5 - n~2./(rho_t.*rho_tp) .* arg4 ); 

•/ •/«/ •/ •/ •/ •/ v •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/'/ v v •/ •/ •/ »i 

function [A] = vt 

'/, Computes a voltage matrix element of vt 

global tlo thi 

global bpx bpy wfxy 

A = gquad2d('vtarg', tlo, thi, 0, 2*pi, bpx, bpy, wfxy); 

function [A] = vtarg(t,phi) 

'/, argument for vt integral. 

global k n ntest theta_t 

[rho, zee, vee] = geo(t); 

dphi = sin(vee) .* sin(phi); 

'/.dtheta = sin(vee(t)) .* cos (phi); 

minus_kr = k * zee .* cos(theta_t) + k * rho .* sin(theta_t) .* cos(phi); 

preA = k * rho .* test(ntest.t) .* exp(j.*(minus_kr - n.*phi)); 

A = preA .* dphi; 
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function [A] = vp 

'/, Computes a voltage matrix element of vp 

global tlo thi 

global bpx bpy wfxy 

A = gquad2d('vparg', tlo, thi, 0, 2*pi, bpx, bpy, wfxy); 

•/ •/ •/ •/ V •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ •/ V •/ •/ V •/ V V •/ V •/ •/ V V •/ V V V V •/ V V «i 

function [A] = vparg(t.phi) 

'/, argument for vp integral, 

global k n ntest theta_t 

[rho, zee, vee] = geo(t); 

dphi = cos(phi); 

'/.dtheta = -sin(phi) ; 
minus.kr = k * zee .* cos(theta_t) + k * rho .* sin(theta_t) .* cos(phi); 

preA = k * rho .* test(ntest.t) .* exp(j*(minus_kr - n.*phi)); 

A = preA .* dphi; 
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Appendix B.   Current Densities by Mode 

This appendix contains the current density components for all modes of the ka = 4.0 

sphere in both the i and <£ directions for E™c incident at 0 = 90°. The total current 

density over accumulated over the T0-T5 Chebyshev modes and the n = 0-n = 5 is also 

included. 
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(^-Component of Current Density for 6=90 deg and ka = 4, n=1, E1 
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<|>-Component of Current Density for 0=90 deg and ka = 4, n=3, E|"c 
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^-Component of Current Density for 6=90 deg and ka = 4, n=4, E1 
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<|>-Component of Current Density for 9=90 deg and ka = 4, n=5, E1 
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t-Component of Current Density for 9=90 deg and ka = 4, n=1, E inc 
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t-Component of Current Density for 6=90 deg and ka = 4, n=2, E'"c 

<B 

1   1 
Q. 

I     0 
DC 

<D 
T3 

Q. 

I     0 
en     k 
E 

10 

CO 
<D I   o 
Q. 

I     -5 

-10 

1                   1                  1 

 •<•...: :...^.v 

1                     1                    1 i i 

/    /T     N :          : 
/    / :     I/-N 

•\                                    ^-   "~   "~~ *N 

'  .        edO. x       ....... -. .-reap'S' '  : " 

1". :. ...^. >ecJ3... 

6CW 

 y.Bdö--- "/ : : :  
'          :           :           : I                            s 

i i 

0        0.2       0.4       0.6       0.8         1         1.2       1.4       1.6       1.8        2 
Arclength, t 

1                     1                    1 

• "r^:           : —* 

1                    1 

"-S 

/ 
/     / 

/ /        eau   ^ 
:    ~~ ^ed3^ >1odS 

■ 

0        0.2       0.4       0.6       0.8         1         1.2       1.4       1.6       1.8        2 
Arclength, t 

llll 1 1                    1 

 [.../ 
^—Fteol _^x/ 

/      ■ 

pH^ag - ■_!.■ * ■■?    ■ ■ .'.>■ ■ ■ ~ 

/         :          :          :          : 
i                    i                    i                    i ' '                  i i      i 

0        0.2       0.4      0.6       0.8        1 1.2       1.4       1.6       1.8        2 
Arclength, t 

B-9 



t-Component of Current Density for 0=90 deg and ka = 4, n=3, E 
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t-Component of Current Density for 6=90 deg and ka = 4, n=4, E ■inc 
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t-Component of Current Density for 6=90 deg and ka = 4, n=5, E 
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Total current density over all ed/f modes, 8=90 deg, ka=4 
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