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Chapter 1 

Code Validation: Numerical Simulation of Flow 

Transition in a Mach 4.5 Flat-Plate Boundary Layer 

1.1    Introduction 

Recent advances in supersonic and hypersonic aerospace technology have revived the interest in 

boundary layer transition for high Mach number flows. A thorough understanding, prediction, and 

control of boundary layer transition at high Mach number is crucial in the design of aerodynamic 

vehicles. For example, skin friction and aerodynamic heating are considerably lower for laminar 

flows at high speed than turbulent flow. However, the mechanism of transition in high speed 

boundary layer is still poorly understood. On the contrary to a relatively comprehensive picture of 

transition scenarios in incompressible flows, nonlinear effects responsible for transition at high speed 

are still very much a mystery (Erlebacher & Hussaini, 1990). Owing to the enormous difficulties 

of controlled experiments for high-supersonic flows, experimental results revealing detailed flow 

phenomena at the nonlinear stage of supersonic transition are hardly found in literature. Instead, 

they have been mostly restricted to the domain of linear disturbance growth. Because of lack 

of experimental data there is a strong interest in numerical simulation techniques for studying 

transition, direct numerical simulation (DNS) and large eddy simulation (LES) are now major 

tools to play an important role on providing understandings to high-speed flow transition. 

The investigation of supersonic transition by experimental measurement has been proved to 

be very difficult. Uncertainty of data obtained using hot-wire anemometry is considerably higher 

than that obtained in subsonic flow. It is also very difficult to obtain accurate measurement near 

the wall due to lack of spatial resolution. Alternatively, the investigation can be launched through 

theoretical and computational study. 

The theoretical and computational tools for analysis of stability and transition include: com- 

pressible linear stability theory (LST)(Mack, 1984); secondary instability theory (SIT) (Herbert, 

1988; Ng & Erlebacher, 1991); parabolized stability equation (PSE) methods (Herbert & Bertolotti, 

1987; Chang & Malik, 1993); temporal direction numerical simulation (DNS) (Erlebacher & Hus- 



saini, 1990; Pruett & Zang, Adams & Kleiser, 1996); spatial DNS (Thumm et al., 1990; Pruett 

et al, 1995a, 1995b); temporal large eddy simulation (LES) (El-Hady & Zang, 1995); spatial LES 

(Ducros et al., 1996); 

In the linear stability theory, the base flow is assumed to be parallel in the streamwise direction. 

The Navier-Stokes equations are linearized by formulating the disturbance quantities in the normal 

mode form. This leads to a set of ordinary differential equations. The system has been transformed 

to an eigenvalue problem. The first-mode instability is analogour to the T-S instability in incom- 

pressible flow. At Ma > 3.8, the first-mode instability is purely inviscid(Pruett et al, 1991). Unlike 

T-S instability, the first-mode instability in supersonic flow are most unstable when oblique, while 

in incompressible flow, according to Squire's theorem the two-dimensional mode is more unstable 

than the three dimensional mode. 

In the secondary instability theory, the base flow is defined as the sum of mean flow and the 

superimposed primary instability wave. Onset of secondary instability is quite sensitive to the 

amplitude of the imposed primary disturbance. There are three types of secondary instability, 

fundamental (K-type), detuned, and subhamonic (H-type). At large primary amplitude, the fun- 

damental secondary instability is more favored (Pruett et al, 1991), where the A-shaped vortices are 

aligned along their peaks in the streamwise direction, repeating every primary wavelength. Small 

to moderate amplitudes of the primary disturbance often bring out the subharmonic secondary 

instability (Pruett et al, 1991), where the A-shaped vortices are staggered in the streamwise di- 

rection, repeating at a distance equal to twice the primary wavelength. The situation of detuned 

instability is between the fundamental and the subharmonic one. 

In the parabolized stability equations (PSE) approach (Herbert & Bertolotti, 1987), one at- 

tempts to construct an approximate solution of the full Navier-Stokes equations, where the nonpar- 

allel effects are taken into account. Though the parabolized stability equation method can be served 

as an alternative for DNS in some range, the cost of PSE increase much faster than that of DNS 

as the number of spanwise modes increases. Therefore, PSE is limited in practice to investigations 

of narrow-band focing (Pruett et al., 1995a). 

The compressible linear stability theory (LST), the secondary instability theory (SIT), and 

the parabolized stability equation (PSE) methods can only provide limited information for flow 

transition, and they are far away from practical application. 

Direct numerical simulation is a technique that all the flow scales are accurately resolved. DNS 

of flat-plate boundary layers over a wide range of Mach numbers (e.g., up to Mach 8 or higher) 

have resulted in some encouraging quantitative comparisons accurate to several digits with theories 

(Pruett et al., 1995a). However, being limited by the capacity of modern computers, most DNS are 

limited to temporal simulation of transition, in which a spatially periodic computational domain 

travels with the disturbance and the temporal evolution of the disturbance is computed. This 

enabled simulations into the later stages of transition (Zang & Hussaini, 1990; Laurien & Kleiser, 

1989; Pruett & Zang, 1992). A temporal subharmonic transition in a Mach 4.5 flat-plate boundary 



layer has been simulated successfully by Adams & Kleiser (1996) using direct numerical simulation. 

An approach has been developed by Liu et a/, (1996a, 1996b) to simulate the whole process of 

transition in the incompressible boundary layer of flat-plate and of airfoils. For compressible flow, 

some of the techniques from their previous works, are combined with the explicit schemes, which 

is efficient especially for supersonic flow with high Mach numbers. In addition, the explicit code 

is easy to be vectorized and parallelized. With this approach, the spatial transition of boundary 

layer flow of flat-plate and airfoil is investigated by direct numerical simulation (Zhao et al, 1997). 

However, the computational cost is high and the skin-friction coefficients and velocity profile are 

not accurate for fully developed turbulent flow. 

Large eddy simulation (LES) is a technique that has been successfully applied to the study of 

turbulent flows, and has become a very important method of simulation. In LES only the large 

energy-carrying scales are resolved, while the influence of small or subgrid scales must be modeled 

appropriately. A filtering process is usually used to separate the large- and small-scale motions, 

large-scale structures are resolved by the filtered equations, but a model is employed to formulate 

the contributions from the subgrid-scale fluctuations, such as the subgrid scale stress and heat flux 

terms. Compared with DNS, LES is more affordable at present stage. LES is capable to solve 

problems with complex geometry using spatial approach (Berlin, 1994; Ducros et al, 1996). 

In the present work, the spatial transition of a Mach 4.5 flat-plate flow is investigated by 

LES. A pair of oblique first-mode perturbation is imposed on the inflow boundary. The numerical 

method is based on the three-dimensional time-dependent compressible Navier-Stokes equations 

in the curvilinear coordinate system. A compact sixth-order central difference scheme(Lele, 1992) 

is applied to the wall-normal direction and streamwise direction. In the spanwise direction, the 

pseudo-spectral method is used based on the assumption that the periodic condition is satisfied. 

The compact storage third order Runge-Kutta scheme (Wray, 1986) is applied for time-integration. 

The similar approach has been used by us (Zhao et al, 1997) in direct numerical simulation. The 

major objective of this work focus on the LES of supersonic flow. The numerical results that are 

comparable to the DNS are obtained by LES with less grid numbers and less CPU-hours. In the 

present work, the filtered structure function model (Ducros et al., 1996) is adopted. 

The paper is organized as follows. Section 2 contains the governing equations and the LES 

model. In Section 3, some of the computational details are presented. The computational results 

and discussion are in Section 4. 

1.2    Mathematic Model 

1.2.1    Governing Equations 

In large eddy simulation of fluid flow the large scale structures are simulated exactly while the 

effect of the small scale structures is modeled. The large scales are extracted from the dependent 



variables by applying a filtering operation to the continuity, the Navier-Stokes, and the energy 

equations. To account for large density fluctuations in high-speed compressible flows, the Favre- 

filtering operation is employed, where the resolved velocity and temperature fields are written in 
«Hop"'"""' 

terms of Favre-filtered quantities, which are defined as ^ 

F = 2 (L1) 
P 

where the "—" denotes the spatial filtering. The nondimensional Favre-filtered governing equations 

of continuity, momentum, and temperature are described as follows: 

| + ^(«) = 0 (1.2) 

dpük      d  dp       1 däki     drkl 

-dT+d^ (pUkT) = ~7(7- 1)M-PÖ^ + Re ^ + ^P^Re^} + dx~k   
(L4) 

where p is the density, uk is the velocity component in the kth direction, p is the pressure, and 

T is the temperature. The viscous stress is 

°ki = P 
fdük     dv£\ _ 2düms 
\dxi     dxk)     3 dxm 

(1.5) 

In the nondimensionalization, the reference values for length, density, velocity, and temperature are 

^ini Poo C^ooi and Too, respectively. 8{n is the displacement thickness of inflow. The Mach number, 

the Reynolds number, the Prandtl number, and the ratio of specific heats, are defined respectively 

as follows: 

where R is the ideal gas constant, Cp and Cv are the specific heats at constant pressure and constant 

volume. Through this work, Pr = 0.7, and 7 = 1.4. The viscosity is determined according to 

Sutherland's law, in dimensionless form 

_ T3/2(l + S)      c_ 110.3/f 
/'~      T + S     '    b~     TTO 

In Eq.(1.3) and (1.4), the subgrid scale stress and heat flux are denoted by 

Tki =-P {ukui - ükü,) (1.6) 

qk =-p fät - ükf) (1.7) 

which are needed to be modeled. 



1.2.2    Filtered Structure Fuction Model 

The filtered structure-function model is developed by Ducros et al. (1996). The subgrid scale shear 

stress and heat flux can be modeled as 

--v      dük      dü> \     2 düm 5 
dxi     dxkJ     3dxm 

■ypvt dT 

(1.8) 

(1.9) 
Prt dxk 

Here, Prt is the turbulent Prandtl number taken equal to 0.6 as in isotropic turbulence, vt is the 

turbulent kinetic viscosity defined as 

1/2 
ut{x,t) = 0.0014CA-3/2A [F2

(3)
(X,£) (1.10) 

M3) ; where F2 is the filtered structure function. In the case of flat-plate boundary layer flows with 

meshes flattened in the wall-normal direction, F2
V takes the four-neighbor formulation proposed 

by Normand & Lesieur (1992). 

=.(3) + ,-,(3) (3) 
Ui-U ~ U^ + - (3) - (3) 

U-     ii   — U-  ■ + Ui,j-1       Ui,j (1.11) 

where 

A = (AxAy) ' is used to characterize the grid size. CK is the Kolmogorov constant taking the 

value of 1.4. HP^3' is a discrete Laplacian filter iterated 3 times, which is served as a high-pass 

filter before computing the structure function. The first iteration of the Laplacian filter HP^ is 

defined by 

ü[y = HpW(üitj) = üi+itj - 2üij-+ ü,-_i,j + üij+i - 2ü,-j + üi,j-\ (1.12) 

1.2.3    Boundary Conditions 

Non-slip boundary condition for velocity components is imposed on the wall, where an adiabatic 

condition is also sited. The inflow condition is composed of the two-dimensional Blasius-like profile 

resulting from the resolution of the similarity equation and a pair of oblique first-modes, as it will be 

described in detail in next section. At the far-field boundary, we adopt the nonreflecting boundary 

condition proposed by Thompson(1987). A sponge section occupying 2 primary wavelengths in the 

streamwise direction is settled near the outflow boundary, which is similar to the sponge condition 

used by Collis & Lele(1996). A source term is added to the right hand side of equations as 

W(Q) = -fd(x)(Q) 



where the sponge function is given by 

fd{x) = J   A'\^l)       Xe ^"^ 
M ..->,- [0 otherwise 

where a;s and x0 stand for the streamwise coordinate of the starting and ending points of the 

sponge section, respectively. As and Ns are used to control the amplitude and strength of the 

sponge function. Here, As = 10 and Ns = 3 are set. 

1.3    Computational Procedure 

The numerical simulation is performed using a spatial approach to solve a full compressible Navier- 

Stokes system in the curvilinear coordinates. A compact sixth-order central difference scheme 

(Lele, 1992) is applied to the wall-normal direction and streamwise direction, the pseudo-spectral 

method is used in the spanwise direction. The compact storage third order Runge-Kutta scheme 

(Wray, 1986) is adopted for time-integration. The computational domain is displayed in Figure 

1.1. We designate x as the streamwise direction, y as the spanwise direction, and z as the wall- 

normal direction. The flow parameters and computational details have been collected in Table 1.1, 

where the inflow displacement thickness is denoted by J;n, x,„ is defined as the distance between 

the leading edge of the flat-plate and the upstream boundary of the computational domain. The 

Reynolds number is based on the displacement thickness at the inflow boundary and the free-stream 

velocity. 

The computation domain covers a streamwise region between x = 91.33<5in and x = 510.21(5tn, 

thus a streamwise dimension of Lx = 418.88<5,„, which equals to 32 streamwise primary wavelength 

Ar. The spanwise dimension is Ly = 7.57<$jn covering 1 spanwise primary wavelength Xy. The 

wall-normal dimension at the upstream boundary is 22<5;n. The number of grid points in each 

direction is Nx = 1024, Ny — 33, and Nz = 61, respectively. The grid, uniformly distributed in the 

streamwise and spanwise direction, is stretched from the wall in the wall-normal direction. 

A pair of the most unstable oblique first modes with wave-number of (1,1) and (1,-1) and equal 

amplitude are imposed as the inflow perturbation. The frequency of the disturbance is u = 0.3878. 

The streamwise and spanwise wavenumbers are ar = 0.48 and ß = 0.83 respectively, corresponding 

to the streamwise and spanwise wavelength of 13.09 and 7.57, thus the oblique angle is 60°. The 

maxima of the streamwise velocity disturbance amplitude is about 2% of Uoo. 

The time step is set to be 0.0162 (1000 time steps are used per period of the forced perturbation). 

With the number of grid points listed in Table 1.1, the CPU time of each time step is 8.2 seconds 

running on a single processor of Cray-T90. For this simulation we used 30000 time steps which 

amounts to 70 CPU hours. 



Figure 1.1: Computational domain of flat-plate boundary layer flow 

1.4    Results and Discussion 

1.4.1    Mean flow behavior 

In this section, the characteristics of the mean flow is discussed. The Fourier transformation is 

carried out in time- and spanwise-direction to obtain spectral components (kt, ky) in Fourier space, 

where kt and ky stand for the temporal and spanwise wavenumbers, respectively. The mean flow 

is characterized by the spectral component (0,0). 

The skin friction coefficient calculated from the time- and spanwise-averaged velocity profile 

is displayed in Figure 1.2. The spatial evolution of skin friction coefficient of laminar flow is also 

plotted out for comparison. It is observed from this figure that the sharp growth of the skin-friction 

coefficient occurs after x « 180<5,n (i.e. Rex = 1.8 x 106), which will be defined as the 'transition 

point'. The skin friction coefficient after transition is in good agreement with the flat-plate theory 

of turbulent boundary layer by Van Driest(1956). 

The thickness of boundary layer obtained from the simulation has been plotted in Figure 1.3. 

The boundary layer thickness are calculated based on the time- and spanwise-averaged velocity 

profile. The boundary layer thickness is defined as the distance from the wall where the mean 

velocity reaches 99% of the free-stream velocity. A sudden growth in the boundary layer thickness 

after x « 200<5;n is observed as a result of the transition to turbulence. No sudden adjustment can 

be observed from the curve of the displacement thickness and momentum thickness. 

Time- and spanwise-averaged streamwise velocity profiles for various fixed values of the stream- 

wise coordinate x = 91.33£:n, 221.63<5in, 243.38£„, 265.13<5in and 286.88<S,-„ are shown in Figure 1.4. 

The inflow .velocity profile at x = 91.33<S,„ is of a typical laminar flow. Starting from x = 243.38^n, 

the mean velocity profiles resemble that of turbulent flow. 



Moo 4.5 
E>c     P<x>Uoo$in 

Moo 
1.0 x 104 

Pr 1.0 

&in inlet displacement thickness 

•Ein 91.33<5tn 

61.11ÜT 

267.66Ä' (Tw = 4.38) 

u 0.3878 

ß 0.83 

ar 0.48 

OLi -1.35586 x 10~2 

\     _  2TT 13.09 
\     _  2-K 
Ay —  ß 7.57 

J->x 418.88<5!n 

Ly 7.57<Si7l 

■L'zin 22.0Sin 

Grids : Nx x Ny x Nz 1024 x 33 x 61 

Table 1.1: Flow parameters and computational details 

, In Figure 1.5, we show the time- and spanwise-averaged velocity profile, plotted in terms of 

logarithm scaled wall unit, where the friction velocity and the friction length are defined as uT = 

(TW/PW)
1
 and zT = R£?u , respectively. The linear law near the wall has been marked by the 

cross symbol. The log law curves of both incompressible and compressible turbulent flow are also 

plotted as comparison. The wall law of compressible turbulent flow displayed here is based on 

the effective velocity concept of van Driest (1951) and the first-order theoretical law of wall given 

by White and Christoph (1972). Actually the curves of two theories coincide very well, one can 

hardly distinguish them from each other on this figure. There is evidently a log region on the 

profile at x = 243.38<5,n, from where the mean velocity profile resembles that of fully developed 

turbulent flow, see also Figure 1.4. In the log region, our results are in good agreement with the 

theory of Van Driest(1951) and White h Christoph(1972). The lower of the velocity profile, in the 

log range, compared with that of incompressible turbulent flow, can be explained as the effect of 

compressibility. 

1.4.2    Linear and nonlinear disturbance evolution 

In Figure 1.6, we show the maxima amplitude of streamwise velocity perturbation of selected modes 

as a function of streamwise coordinate. The wavenumbers of these modes are denoted as (fc<, ky), 

where kt refers to the temporal wavenumber, ky is the spanwise wavenumber. Here and after, the 
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Figure 1.2: Streamwise evolution of skin- 

friction coefficient obtained from the time- 

and spanwise-averaged streamwise velocity 

profile 

Figure 1.3: Thickness of boundary layer as a 

function of streamwise coordinate 

modes with an even sum of kt + ky are called the even modes, those with an odd sum of kt + ky are 

termed as the odd modes. In Figure 1.6, the even modes are plotted with solid line, and the odd 

modes with dashed lines. It is apparent from the figure that the disturbance growth is dominated 

by even modes. 

As can be seen from Figure 1.6, at the inflow boundary (a; = 91.33£m), the superimposed 

primary wave (l,l)-mode is visibly well standing out above all other modes. Before x w 1705in, 

the (l,l)-mode grows with its linear growth rate, which is approximately a,- = -1.35 X 10-2. 

The linear growth of the primary wave covers almost 6 primary wavelength in the streamwise di- 

rection. It is noticeable that the (0,2)-mode is rapidly amplified and it overtakes the primary 

wave mode at i a 1508in. Since the primary wave is composed of a pair of oblique modes 

(1,1) and (1,-1), the weakly nonlinear interaction of the oblique couple can excite the (0,2)and 

(2,0)-modes. The further interaction of (l,l),(l,-l),(0,2),(2,0)-modes results in the generation 

of (l,3),(3,l),(2,2),(3,3),(0,4),(4,0),(2,4),(4,2)-modes, etc. Thus, the weakly nonlinear interaction 

among the even modes can only excite the even modes. The sharp growth of the odd modes, 

which are evoked by the strong nonlinear interaction, is observed after x « 1505;n. It is also very 

interesting to see that the linear growth of primary wave extends into the nonlinear region. At far 

downstream, both the even modes and the odd modes are saturated, as the maxima amplitude of 

velocity perturbation stays near a certain level. 

The linear and nonlinear disturbance growth before x « 180<$,n can be regarded as the first 

stage of transition. Up to this point, because the amplitude of disturbance is too small to make 

evident change to the mean flow velocity profile, the skin-friction coefficient stays at its laminar 

flow value. The study of the growth of separated Fourier spectral modes may provide some insights 

into the description of organized motion during the transition process, as it will be described in 



Figure 1.4: Time- and spanwise-averaged 

streamwise velocity profiles at different 

streamwise locations 

Figure 1.5: Log-linear plots of the time- 

and spanwise-averaged velocity profile in wall 

unit. The log law of incompressible flat-plate 

boundary layer flow, and the log law given 

by Van Driest(i951), and a first-order theo- 

retical law of the wall given by White and 

Chrisoph(1972) are also plotted for compari- 

son. 

detail in the next section. 

1.4.3    Organized motions 

Identification of A-vortices 

During the post-processing of our LES database, there are several possible ways to identify the 

large-scale vortical structures. The alternative choices include the low pressure, the negative value 

of the second invariant of velocity gradient tensor, and the peak value of vorticity. It is reported by 

Sandham & Kleiser (1992) that second invariant appears to be a good measure when the vortices 

are very weak, and the low pressure can get better results for strong vortical structures. The 

vorticity has been proved to be problematic, since it can not distinguish between shear layers and 

vortices. It is also shown by Kleiser & Laurien (1985) that the A-vortex does not necessarily consist 

of a bunch' of vortex line. The results of Robinson (1991) demonstrated that vortex lines can give 

the illusion of hairpin vortices, even when there are no such vortices in a flow. Thus low pressure 

10 



Figure 1.6: Spatial growth of the maxima amplitude of streamwise velocity perturbation modes, 

the even modes are drawn in solid line, and the odd modes in dashed line. 

turns out to be the most useful for the identification of vortices than other criteria, especially at 

highly nonlinear stages(Adams & Kleiser, 1996). In our work, the large-scale vortices are identified 

by the iso-surface of low pressure. The iso-surface of streamwise vorticity component ux is also 

used as a creteria for comparison. We find out that for large-scale vortical structures, low-pressure 

tube usually appeared in the core of the vortex. The large-scale vortical structures can be identified 

precisely through both the low pressure criteria and the concentration of streamwise vorticity. But 

the results obtained from these two methods diversify when weakly disturbed flow is concerned, 

where there is no actually physical vortical structure. In this case, although the iso-surface of 

streamwise vorticity component comes out to be tube-shaped, they can't be interpreted as vortical 

structures. For example, in our spatial simulation, an oblique wave was imposed at the inlet 

boundary. Near the inflow boundary, the disturbance experiences a linear and weakly nonlinear 

growth. In the region between x « 91<5;„ and 2 « 180^n, the iso-surface of the streamwise vorticity 

component appears to be tube-shaped, shown in Figure 1.7. But the low pressure area indicated 

by iso-surface of pressure in this figure is much different from the vorticity tubes. The conclusion 

is that the streamwise vorticity component originating from the initially imposed perturbation can 

not be regarded as the physical vortical structures. It is also quite clear from this figure that the 

axis of these u>x iso-surface is parallel to the streamwise direction. So the low-pressure method is 

by and large superior compared with the vorticity method. Hence, the low pressure will be used to 

identify the vortical structure. 

A further confirmation of the low-pressure method in our results is depicted in Figure 1.8, where 

the iso-surface of low-pressure (p = 0.032poof/^:)) is plotted. The low-pressure tubes are cut by two 

cross-section planes. On each plane, the streamline of cross-flow is drawn as well as the contours of 

streamwise vorticity. The vortex core marked by the streamline just sites inside the low-pressure 

tube. In this figure, the concentration of vorticity coincides with the low-pressure part. 

11 



Figure 1.7: Iso-surface of streamwise vortic- 

ity and low-pressure near the inflow bound- 

ary (u>x = ±0.06£/oo/<5j'n, dark; p = 

0M5PooUl,\ight) 

Figure 1.8: Cross flow streamline on a slice 

normal to the streamwise direction. Iso- 

surface(wire form) of low pressure p = 

0.032/)oo[/^D. Contour of streamwise vortic- 

ity plotted on the planes of cross-section 

Evolution of A-vortices 

The Y-shaped shear layers are observed in temporal simulation of subharmonic breakdown (Adams 

k. Kleiser, 1996) and oblique breakdown (Guo et al., 1994). In our results of LES using the spatial 

approach, the Y-shaped shear layer being displayed by the iso-surface of spanwise vorticity, clearly 

appears after a: ~ 170<5,„. The spatial distribution of these Y-shaped shear layers and the A-vortices 

is depicted by a top view in Figure 1.9. The Y-shaped shear layers are staggered in the streamwise 

direction. On the cross-section it is observed that the rolling-up of the Y-shaped shear layers 

generates the open-tip A-vortices. Looking from the upstream, the right branch of a Y-shaped 

shear layer rolls down while the left branch of the staggered Y-shaped shear layer downstream rolls 

up, thus a clockwise rotation of fluid is formed, i.e., a right tail of an open-tip A-vortex. Similarly, 

the left tail of the open-tip A-vortex comes from the rolling down of a left Y-branch and rolling 

up of a downstream staggered right Y-branch. Thus the resulted open-tip A-vortices also form a 

staggered system in the streamwise direction. Because of the deformation and break-up, the stalk 

of the Y-shaped shear layers disappear after x « 207<$in, while the remnant of the Y-branches 

evolves into the shear layers surrounding the tail of the A-vortices. 

The appearance of A-vortices indicates the start of the second stage of transition. A series 

of open-tip A-vortices between a; = 200<5in and x = 228<$;„ are displayed in Figure 1.10. These 

A-vortices are staggered in the streamwise direction.   The staggered system of these A-vortices 
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Figure 1.9: Iso-surface of low pressure p — 0.0315/>oo£^o> an<^ iso-surface of spanwise vorticity 

uy = 0.68f/oo/5!n. (data duplicated periodically in the spanwise direction). 

resembles the scenery of subharmonic secondary instability (H-type) in a flat-plate boundary layer 

flow, the H-type breakdown is characterized by the appearance of the staggered A-vortices. In 

the case of a subharmonic secondary instability, the inflow perturbation is composed of a two- 

dimensional primary wave of second-mode and random noise. The wavenumber (kt)ky) of the 

primary mode is (0,2). Then the subharmonic mode with a wavenumber of (1,1) grows from 

the random noise. The strongly nonlinear interactions between the dominant mode lead to the 

generation of a staggered system of A-vortices, whose streamwise repeating distance equals to 

twice the primary wavelength. Thus streamwise repeating distance is the same as the wavelength 

of the subharmonic mode. 

In our simulation, a pair of oblique first-modes with wavenumber (kt,ky) of (1,1), (1, -1) and 

equal amplitude are imposed on the upstream boundary to serve as the inflow perturbation. The 

instability is evoked first by the linear and weakly nonlinear interactions between the oblique modes 

and the even modes, then by the strongly nonlinear interactions, as a result the odd modes are 

brought out. As the onset of the strongly nonlinear interactions between the dominant modes, 

the staggered A-vortices appear. The streamwise repeating distance of the A-vortices is close to 

the oblique primary wavelength. Here, the wavenumber of the primary wave is comparable to the 

wavenumber of the subharmonic mode in H-type instability. Therefore, the A vortical structure 

coming out from the subharmonic secondary instability and from the oblique instability bear some 

similarity, as it is described by Adams & Kleiser (1993). In their temporal direct numerical 

simulation for an oblique transition at Mach number 4.5, the building-up of a staggered system 

of streamwise vortices and Y-shaped shear layers is observed to be similar to the subharmonic 

transition (Guo et al, 1994). Although the mechanism by which the A-vortices are generated is 

different for the subharmonic instability and oblique instability, the resulted A vortical structure is 

quite similar. It is presumable that after the stage of A-vortices, the further development of these 

two types of transition is similar to each other. 

Now we zoom out to include the downstream region of the A-vortices (see Figure 1.11). As we 

have seen before, from x = 2025!n to x = 227<5,„, the tip of the A-vortex is lifted by the motion 
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Figure 1.10: Iso-surface of low pressure p — O.OSpooU^. (data duplicated periodically in the 

span wise direction). 

induced by the other tail of the same vortex. Although the lifting angle is quite small (approximately 

15°) in this region, the downstream velocity difference caused by the mean shear drives the vortex 

to stretch considerably in the streamwise direction. As the tip of A-vortex sticks out of the strong 

mean shear layer, the decrease in the wall-normal derivative of the streamwise velocity enhances 

the inclination of the tips of A-vortices. (e.g., x « 234<5in, x « 242<5tn, x « 249<S,„). The A-vortices 

undergo deformation between x « 22751Tl and x » 242<5in. It is observed from the side-view of 

Figure 1.11 that the tips of the A-vortex lifts dramatically near x R* 234<S!n, and the vortex breaks 

into two parts with the tip and tail of the same vortex separating each other. The original tail of 

the A-vortex becomes weak as the the iso-surface of low pressure shrinks. The broken tails can be 

regarded as the weak vortex torn off from the original A-vortex, but they are still visible downstream 

near x « 244<Sjn. The connection of remnant open-tips of the original A-vortex makes it look like 

the head of a hairpin vortex (near x « 2345in on Figure 1.11). Near x w 240<5i„ on Figure 1.11, 

the vortical structure is more like hairpin vortex rather than the A-vortex. At x « 248<5tn, the A- 

vortices have eventually evolved into the hairpin vortices. The head of the hairpin vortex becomes 

strong, as the iso-surface of low pressure grows. The legs of the hairpin vortex are now still broken 

with the head, they seem to be the remnant of the broken tails of the A-vortices at x « 230<S,n and 

are still weak. The enclosed angle of the hairpin vortex head is about 53°. The appearance of the 

hairpin vortex is regarded as the third stage of supersonic boundary layer transition. 

Looking from the upstream, the left leg of a hairpin-vortex is corresponding to negative stream- 

wise vorticity, i.e., counterclockwise rotation (e.g., x AS 240#,„, y m 25,n; x « 248<5in, y « 5£,-„; and 

a; « 248<5;n, y « -25,n on Figure 1.11). The right leg with a positive streamwise vorticity indicates 

a clockwise rotation (e.g., x w 240<$i„, z K, -28in; x « 2485in, y « 26in; and x äJ 248^n, y « — 5<5,-n 

on Figure 1.11). The small vortices staying close to the leg of hairpin vortices have an opposite 

sign in streamwise vorticity. 
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Figure 1.11:   Iso-surface of low pressure p = 0.03/9oo^-    (data duplicated periodically in the 

spanwise direction). 

Both vortices and shear layers are interesting flow structures of the transitional and turbulent 

flow. The A-vortices and the evolving hairpin vortices are discribed before this paragraph. Now 

let us take a look at the shear layers associated with the vortical structures. In Figure 1.12, the 

contours of the spanwise vorticity uy is plotted on a plane cutting through the vortex-tube and a 

symmetrical plane of the vortex structure. Here the spanwise vorticity uy is a good measure to the 

shear. The shear layers locating away from the wall are produced by the induced motion of the 

vortical structures. 

In order to study the three-dimensional relationship between the shear layers and the vortical 

structures, the contours of spanwise vorticity is plotted on several cross-sections through x « 2005,n 

and x R3 245<5;n in Figure 1.13. It is observed that each tail of a A-vortex is wrapped by two high 

shear regions, i.e., one top layer and one bottom layer. Both the upper and lower shear layers are 

the branches of the original Y-shaped shear layer shown before in Figure 1.9. 

The interactions between the shear layers and the vortical structures are very complex. Gen- 

erally speaking, the first appearance of the A-vortices can be explained as a result of shear layer's 

rolling up. And new shear layers are generated around the vortices by a process of vortex stretch- 

ing and convection (Stuart 1965). Usually two types of shear layers are generated by the quasi- 

streamwise vortical structure, the detached and the attached shear layer. Only the detached shear 

layer is discribed in the previous paragraph, the attached shear layer is mixed with the mean shear. 

The attached high-shear layer is visible by plotting the contours of the wall shear stress, as seen in 

Figure 1.14, where the wall shear stress distribution on the wall in the region between x = 2005jn 

and x = 2b06in is displayed. High wall shear rate corresponding to the attached shear layer can be 

found close to the outside of the A-vortex tail, e.g., x w 222<5,n, y « -5, —3,3,5£jn, or x w 228J,n, 
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Figure 1.12: Iso-surface of low pressure p = 0.03/9OO^TO, contours of instantaneous spanwise vorticity 

on the streamwise-sections. (data duplicated periodically in the spanwise direction). 

2S0 

Figure 1.13: Iso-surface of low pressurep = O.OSpooU^, contours of instantaneous spanwise vorticity 

on the cross-sections, (data duplicated periodically in the spanwise direction). 
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y « -7, -1,1,76{n. The attached shear layer is generated by the down-wash motion of fluid toward 

the wall induced by the vortex tail. The opposite position of these high shear region with respect to 

the vortex tail is controlled by the up-wash motion, where the wall shear rate is low. The strongest 

wall shear is discovered between the two tails of the open-tip A-vortices or the two legs of the 

hairpin vortices. 

1.50E-CM   363E-04   5.76E-04  7.B9E-04   1.00E-O3   1.22E-03   1.43E-03 

Figure 1.14: Iso-surface of low pressure p — O.OSpooU^, contours of the wall shear stress, (data 

duplicated periodically in the spanwise direction). 

The further development of these hairpin vortices is displayed in Figure 1.15. In this region, the 

spanwise expansion of the hairpin vortex is quite evident, since the low-pressure areas of adjacent 

hairpin vortices tend to merge together. Actually the vortices have an opposite rotating direction. 

A deformation of the hairpin vortices comes out to be visible in this figure, and the legs of the 

hairpin vortices are stretched in the streamwise direction, as the vortical structure continues to 

expand in the spanwise direction. The spanwise distance between the left and right legs of the 

vortex at x « 320<5,„ reaches 6.4J!n. The legs of the hairpin vortices are almost parallel to each 

other, and also parallel to the wall. Besides the deformation, these hairpin vortices also become 

weaker as the low-pressure areas shrink. The head of the vortical structures are almost invisible. 

The broken of these hairpin vortices may lead to the generation of some small scale structures near 

the head of the former hairpin vortices. But they are not observed clearly in our simulation, which 

may be blamed to lack of resolution in this region. Further high-resolution DNS may be required. 

The visible structures left after the breakdown are the streamwise vortices which are located very 

close to the wall. They evolve from the legs of the former hairpin vortical structure. 

1.5    Conclusions 

The transition process in a Mach number 4.5 flat-plate boundary layer is investigated by large eddy 

simulation using the spatial approach. A pair of oblique first-mode perturbation is imposed at the 

inflow boundary, and the initial field is a laminar boundary layer flow. 
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Figure 1.15:   Iso-surface of low pressure p 

spanwise direction). 

0.03/9OO^TO-    (data duplicated periodically in the 

The linear and weakly nonlinear growth region covers from x « 91<5,„ to x « 1705,„. The spatial 

growth rate of the primary wave remains at the linear value until x « 170<Stn. Because the primary 

wave is composed of a pair of oblique modes (1,1) and (1, -1), only the 'even' modes(with an even 

sum of wavenumbers kt + ky) can be excited through the weakly nonlinear interaction. 

The strongly nonlinear interaction occurs after x « 1705in, which is characterized by the ap- 

pearance of a staggered system of A-vortices and Y-shaped shear layers. The 'odd' modes (with an 

odd sum of wavenumbers kt + ky) are evoked by the strongly nonlinear interaction. 

Shear layers and vortices are the two major structures in the transitional and turbulent flow. 

Typical A-vortices are visible between x « 180J,„ and x « 2265in. The vortex core of the A- 

vortices are wrapped by the branches of the Y-shaped shear layers. The induced motion of each 

tail working on the other gives the inclined nature of the vortices. In the downstream part of this 

region, the deformation of the A-vortices and the Y-shaped shear layers are observed. As a result 

of the interaction between the self induced motion and the mean shear, deformation occurs to the 

A-vortices and the Y-shaped shear layers. 

The next stage of transition is characterized by the appearance of the hairpin vortices, which 

first appear at a; « 248<5i„. The hairpin vortices are evolved from the deformation of the open-tip 

A-vortices. The further growth of the hairpin vortices is observed downstream, where the spanwise 

scale of the hairpin is extended with increased inclination. The hairpin vortices are matured near 

x fa 300<5,„ where the strength of the vortex reaches a maximum. After x « 310<S,-n, the hairpin 

vortices experience a considerable deformation, the legs stretch in streamwise direction and evolve 

into the streamwise vortices parallel to the wall. The heads of the hairpin vortices become weak, 

which is denoted by a thin or discontinued strand of low pressure. 
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The tails of the A-vortices and the legs of the hairpin vortices generate detached shear layers 

as well as high wall shear. The detached shear layers roll up into new vortices. 

The above results are in good agreement with the direct numerical simulation both with a 

temporal approach (Adams & Kleiser, 1996) and a spatial approach (Zhao el, 1997). Compared 

with our previous DNS work (Zhao el, 1997), fewer grid nodes and computational time are required 

by LES, but the transitional process is simulated accurately. The mean flow features including the 

skin friction coefficient, log law distribution of mean velocity are agreed well with the theoretical 

results. Most of the important organized structures are also observed in the LES data base, which 

is helpful to the understanding of the basic mechanism of the flow transition. This approach has 

also been applied to the LES of supersonic and subsonic flow around airfoils, as it will be reported 

later. 
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Chapter 2 

Compressible Flow Around Two-Dimensional Airfoil 

2.1    Two-Dimensional Grid Generation 

An elliptic grid generation method first proposed by Spekreuse (1995) is used to generate 2D 

grids. The elliptic grid generation method is based on a composite mapping, which is consisted 

of a nonlinear transfinite algebraic transformation and an elliptic transformation. The algebraic 

transformation maps the computational space C onto a parameter space V, and the elliptic trans- 

formation maps the parameter space on to the physical domain V. The computational space, 

parameter space, and the physical domain are illustrated in Figure 2.1. 

E2 

0 E3 

Computational 
Space 

t—4 

El E2 

0 E3 1 

Parameter 
Space 

9- 

Physical  Domain 

3) 

Figure 2.1: Computational space C, Parameter space P, and Physical domain D 

The computational space C is defined as the unit square in a two-dimensional space with Carte- 

sian coordinates (£, 77), and f € [0,1], 77 € [0,1] (see Figure 2.1). The grids are uniformly distributed 

on the boundaries and in the interior area of the computational space. The mesh sizes are jjl—r 

in the f direction and j^^—^ m tne V direction, where N% and Nv are the grid numbers in the 

corresponding direction. The parameter space V is defined as a unit space in a two-dimensional 

space with Cartesian coordinate (s, t), and s £ [0,1], t 6 [0,1]. The boundary values of s and t are 

determined by the grid point distribution in the physical domain. 

20 



• s = 0 at edge E\ and s = 1 at edge £2 

• s is the normalized arclength along edges £3 and £4 

• t = 0 at edge £3 and £ = 1 at edge £4 

• i is the normalized arclength along edges E\ and £2 

An algebraic transformation s : C —> P is defined to map the computational space C onto 

the parameter space V. The grid distribution is specified by this algebraic transformation, which 

depends on the prescribed boundary grid point distribution. The interior grid point distribution 

inside the domain, generated by the algebraic transformation, is a good reflection of the prescribed 

boundary grid point distribution. Let SE3(£) = s(£,0) and S£4(£) = s(£, 1) denote the normalized 

arclength along edges £3 and £4, ^(T?) = i(0,77) and tE2{rj) = t(l,rj) denote the normalized 

arclength along edges E\ and £2. The algebraic transformation s : C —> V is defined as 

S     =     sE3(0{l-t)+SEi(0t 

Equation (2.1) is called the algebraic straight line transformation. It defines a differentiable one- 

to-one mapping because of the positiveness of the Jacobian: s^tv - snt^ > 0. 

The elliptic transformation x : V —> V, which is independent of the prescribed boundary grid 

point distribution, is defined to map the parameter space V onto the physical domain V. The 

elliptic transformation is equivalent to a set of Laplace equations 

(2.2) 
*xx   v ^yy     —     ^* 

The elliptic transformation defined by the above equations is also differentiable and one-to-one. 

Till now we have defined two transformations, i.e., the algebraic transformation s :C -^V, and 

the elliptic transformation x : V —> V. Because both the algebraic transformation and the elliptic 

transformation are differentiable and one-to-one. The composition the two transformation is also 

differentiable and one-to-one, so as to the inverse transformation. 

In physical domain, the curvilinear coordinate system satisfies a system of Laplace equations: 

Ar = 0 (2.3) 

where r = (x,y)T.  The inherent smoothness of the Laplace operator makes the grids smoothly 

distributed in the physical domain.  Being transformed to the computational space, this Laplace 

21 



system becomes a set of Poisson equations. The control functions is determined by the composed 

transformation according to the following procedures. 

First, Eq.(2.2) is transformed into the computational space C: 

As   =   gns^ + 2g12siri + g22sriv + A^si + Ar)sn 

At   =   gnt^ + 2g1\r, + g22trin + A^ + AVtri 

(2.4) 

where gn,g12,g22 are the components of the contravariant metric tensor, which can be calculated 

from the covariant metric tensor 

1 
J2 911    =    -72*722 = (*,„rI?) 

,12 

,22 

1 
=    -j2"5i2 = (rZ>rn 

J is the Jacobian:s^,j — svt^. From Eq.(2.2) and (2.4), we have 

where 

A-q 
gnPn + 2gnPn + g22P22 (2.5) 

P11 

12 

P22   — 

■Ml 
p(2 
•»11 

Pi 
p(l 

p(2 
■»22 

-T" 

= -T" 

kv 

^777) 

17) 7) 

(2.6) 

and the matrix T is defined as 
s(   s, 

k     tr) 
(2.7) 

Then the Laplace system Eq.(2.3) is transformed to the computational space C: 

gnr^ + 2gurin + g22rm + A^ + Ar}rv = 0 (2.8) 

Substitute Eq.(2.5) into Eq.(2.8), A£ and Ar] are replaced by the control functions on the right- 

hand-side of Eq.(2.5), and we obtain the Poisson equations for the grid generation as follows: 

g»VK + 2gl2r,n + g22rm + (g»pM + 25
12P1? + g^P^r, + (g^ptf + 2g12P$ + ff

22P<2
2))r< = 0 

(2.9) 
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where the control functions PXj , P|2 , P^2 , PX1 , P12 > ^22   are determined by the algebraic trans- 

formation, as defined previously in Eq.(2.6). 

The elliptic transformation is carried by solving a set of Poisson equations. The control functions 

are specified by the algebraic transformation only and it is, therefore, not needed to compute the 

control functions at the boundary and to interpolate them into the interior of the domain, as 

required in the case for all well-known elliptic grid generation systems based on Poisson systems. 

The computed grids are in general not orthogonal at the boundary. The algebraic transformation 

can be redefined to obtain a grid which is orthogonal at the boundary. 

We developed a numerical grid generation code based on this method. Any structured grid with 

four boundary edges can be generated, the orthogonality condition can also be imposed at any edges. 

The continuity of grid intervals in the interior area is guaranteed by the elliptic equations, while 

the continuity of grid intervals on the boundary edges is set by users. In order to achieve the best 

results, the boundary grid distribution usually should be smooth (continuous up to second order 

of derivative). Here we provide some examples of 2D numerical generation. Figure 2.2 shows the 

C-grid around a Joukowsky airfoil. The grids near the leading edge and trailing edge are displayed 

in Figure 2.3, which shows that the smoothness and orthogonality are well maintained. The grid 

number is 741 in streamwise (f) direction and 121 in wall-normal (77) direction. 

Figure 2.2: C-grid around a Joukowsky airfoil. 

In Figure 2.4, the C-grid around a NACA 0012 airfoil is displayed. The grids are orthogonal 

at the boundaries. The distribution of the grids near the leading-edge and trailing-edge are also 

depicted by Figure 2.4(c) and (d), where good orthogonality has also been achieved, even though 

there are two singular points at the trailing-edge. The number of the grids is 601 in the streamwise 
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(a)    grids near the leading edge (b)    grids near the trailing edge 

Figure 2.3: C-grid near the leading edge and trailing edge of a Joukowsky airfoil.  (The grids are 

orthogonal on the airfoil surface) 

(£) direction and 121 in the wall-normal (77) direction. 
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(a) overview of the grids (b) grid near airfoil surface 

ML   ■ 

(c) grids near the leading-edge (d) grids near the trailing edge 

Figure 2.4: C-grid around a NACA 0012 airfoil 
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2.2    NACA 0012 Airfoil with a 20° Angle of Attack 

The situation of an airfoil with a high angle of attack occurs in many aerodynamic applications 

which are of particular interest. In these cases, the fluid flow around the airfoil becomes very 

unstable and eddy structures are formed in the vicinity of the airfoil. These eddy structures lead to 

modification of the airfoil aerodynamic coefficients which can produce noises. In order to reproduce 

the unsteady development of the eddy structures in the vicinity of airfoils, a large eddy simulation 

has been launched for the compressible flow around a NACA 0012 airfoil at a 20 degree angle of 

attack. The Reynolds number Re = 5 x 105, based on the chord length and freestream velocity. 

The Mach number is M - 0.4. A C-grid is generated using the method introduced in the previous 

section. The grid number is 601 in the ^-direction and 121 in the ^-direction. 

The results are shown in Figure 2.5, where the contours of spanwise vorticity at different time 

are displayed. In the first frame (Figure 2.5(a)), a separation bubble is observed near the leading 

edge. The leading-edge separation bubble is formed when the laminar boundary layer separates 

from the surface as a result of the strong adverse pressure gradient downstream of the point of 

minimum pressure. This minimum-pressure point moves upstream as the angle of attack increases, 

while the length of the separation bubble decreases (Arena and Mueller, 1980). In our case, the 

angle of attack is 20 degree, the separation bubble near the leading-edge is very short. Because the 

separation bubble is very unstable, eddies keep shedding from the leading-edge. Three large scale 

eddy structures can be observed in Figure 2.5(a). in frame (b) of Figure 2.5, the most downstream 

eddy reattaches on the airfoil surface. A new shear layer is formed near the surface as a result of 

the eddy reattachment. In frame (c) the reattached eddy merges with the second and the third 

eddy, the three vortices is rolling into one big vortex. The induced shear layer evolves into a strong 

vortex with an opposite rolling direction. The vortex-couple with opposite rolling direction can 

be observed clearly in frame (e) of Figure 2.5. In the same time, new eddy structure is shedding 

from the leading-edge separation bubble. The vortex-couple is rolling downstream as shown in 

frame (e)-(g), until it hits the wake, where some small eddy structures exist. In Figure 2.6, a 

zoom-in area near the trailing edge is displayed, each frame is corresponding to the same frame in 

Figure 2.5. In frame (a) of Figure 2.6, instability is observed near the trailing edge. As a result 

of wake instability, alternate eddy structures are generated in frame (d) and (e). The interaction 

between the large scale eddy structure, e.g. the vortex-couple and the small scale vortices inside 

the wake, is displayed through frame (h) to (i) of Figure 2.6. As a matter of fact, the large scale 

eddy structures overtake the small scale vortices, which disappeared after the interaction, and new 
large scale vortex is induced. 
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Figure 2.5: Contours of spanwise vorticity at different stage 
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Figure 2.6: Contours of spanwise vorticity near the trailing edge at different stage 
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Chapter 3 

Flow Around Three-Dimensional Airfoil 

3.1    Three-Dimensional Grid Generation 

The basic idea of three-dimensional grid generation is similar to that of the two-dimensional case. 

The computational space is a unit cubic with f € [0,1], TJ 6 [0,1], C € [0,1]. The parameter space is 

a unit cubic with s G [0,1], t £ [0,1], u e [0,1], see Figure 3.1. 

• s = 0 at face Fi and s = 1 at face F2 

• s is the normalized arclength along edges E\, £2, £3 and £4 

• t = 0 at face £3 and t = 1 at face F4 

• t is the normalized arclength along edges £5, EQ, £7 and Es 

• u = 0 at face £5 and t = 1 at face £e 

• t is the normalized arclength along edges £9, £K), En and £12 

Let s£l(£) = stf.O.O), S£2(0 = s(£,l,0), s^tf) = s(£,0,l), and S£4(0 = s(£,l,l) denote 

the normalized arclength along edges £1( £2, £3, and £4; ££5(77) = t(0,77,0), £E6(T?) = i(l, 77,0), 

tE7{f]) = t(0,r), 1), and iEgC??) = i(l, 7?, 1) denote the normalized arclength along edges £5, £6, £7 

and£8;uE9(C) = u(0,0,C), tt£10(C) = t(l,0,C). «£„(0 = u(°> liC). and u£i2(0 = «(l.M) denote 
the normalized arclength along edges £9, £jo, £n and £12- The algebraic transformation from 

computational space to parameter space is defined as 

S     =     SEl{0{l-t){l-u) + SE2{Ot{l-u) + SE3{0{l-t)u + SE4(OtU 

t   =   tE5{v){l-s){l-u) + tE6(T])s{l-u) + tE7{ri){l-s)u + tEa{v)su (3.1) 

u   =   uft(C)(l-s)(l-tj + «£1o(CMl-t) + «Bii(0(l-s)* + «Bia(C)s* 
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Figure 3.1: Computational space C, Parameter space P, and Physical domain D 

Equation 3.1 is called the algebraic straight line transformation. 

The Poisson equations for the grid generation are as follows 

9nra + g22rnri + 033rcc + 2g12rin + 2g13r^c + 2g23r^ 

+    (9llP}i + 922PL + 933Pk + 2512P12 + 2<?
13P1

13 + 25
23P2

1
3)^ 

+    (9U P2n + 922P222 + 933Pi3 + 2912Ph + l913Ph + t923Ph)rn 

+    (9UP?i + 922Ph + 933Pls + l912P3n + 2<713P1
3
3 + 2ff23P2

3
3)rc = 0 (3.2) 

where gll,g22,g33,012,013,023 are contravariant metric tensor, which are calculated through the 

covariant metric tensor 

,n 

,22 

-33 

,12 

,13 

,23 

_1_ 

1 

(022033 - 523) 

=     -70(011533-013) J2 

1 
J2 

J2 

j2-(ffl2023-5l3Ö22) 

Ja(512013- 023011) 

(011022-012) 

(013023 - 012033) 

where control functions are defined as 

P11    =    -T-1 

V u« J 

P22 = -T -1 
/ s     \ {*«\ 

P33 = -T- Hi 

\ ucc / 
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(stA 
Pl2     =      -T tfr 

\ uin j 

and the matrix T is defined as 

Pis = -T- 

( HA 
he 

V ux J 
P23 = -T- (3.3) 

S(,   Sn   s( 

t$   tn   t( 

\ 

\ H 
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H ) 

Figure 3.2 shows the C-H-grid around a 3D delta wing, where the grids on the wing surface and 

on a £ - ( plane are displayed. We choose C-type for the streamwise direction and H-type for the 

spanwise direction. 

Figure 3.2: C-H-grid around a 3D delta wing. 

A set of H-C-grid around a 80° delta wing is generated with the same method. In this case, we 

choose H-type for the streamwise direction, and C-type for the spanwise direction. The grids are 

also required to be orthogonal at the boundaries. The grids on selected £ — 77 sections are displayed 

in Figure 3.3(a). The grids are orthogonal on delta wing surface and boundaries. Both coarse and 

fine grid are generated, and the fine grid (141 x 70 x 70) is shown in Figure 3.3(b). 

3.2    3D Delta Wing with a 20° Angle of Attack 

Some preliminary results of the large eddy simulation of compressible flow around a 3D delta wing 

with a 20° angle of attack are obtained. The Reynolds number based on the maximum chord length 

and the freestream velocity is 5 x 105. March number is M = 0.4. The grid number along the £-, 77- 

and C-direction are 221, 111 and 71, respectively. Here the streamwise, spanwise, and wall-normal 
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(a)   coarse grid (b)   fine grid 

Figure 3.3: H-C-grid around a 80° delta wing 

directions are denoted by f, r], and £ respectively. The computational domain only contains half of 

the delta wing and symmetric condition is imposed on the symmetric plane. 

In Figure 3.4, the contours of instantaneous pressure on selected £ — £ sections are displayed. 

The low pressure areas are generally corresponding to flow separation and eddy structures shedding 

from the wing surface. 

\/   \ 

vil  
&£ 

Figure 3.4: Contours of instantaneous pressure on selected £ — £ planes. 

Three dimensional streamlines starting from the leading-edge of the delta wing are displayed in 
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Figure 3.5. From this figure, several vortex system can be recognized. A strong streamwise vortex 

starts from the middle of the wing. This vortex system comes from the separation near the wing 

surface, and it tends to move outward to the symmetric plane. The wing-tip vortices can also be 

observed, and it tends to move toward the symmetric plane. 

Figure 3.5: 3D streamline starting from the leading-edge 

Three components of the vorticity are displayed in Figure 3.6. Again, the separation and 

shedding of eddy structures near the wing surface can be read from this figure. It is also observed 

that the vortex system near the wing-tip is very complex and it may require more resolution than 

we have in this case. The strong streamwise vortices observed in Figure 3.5 is also quite clear by 

looking at the contours of streamwise vorticity in Figure 3.6(a). 
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(a) Contours of streamwise vorticity 

(b) Contours of spanwise vorticity 

(c) Contours of wall-normal vorticity 

Figure 3.6: Contours of vorticity on selected £ — £ planes. 
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Figure 2.5: Contours of spanwise vorticity at different stage 



Figure 2.6: Contours of spanwise vorticity near the trailing edge at different stage 
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(c) Contours of wall-normal vorticity 

Figure 3.6: Contours of vorticity on selected £ - C plane 


