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Abstract 

Infinite periodic structures have been studied heavily because of their efficient filter- 

ing capabilities. They generally exhibit sharp frequency roll-offs at the frequency band of 

interest. In the RF region of the electromagnetic spectrum, periodic structures find appli- 

cations such as radomes where they allow a certain band of frequencies to pass through, 

andphotonic bandgap materials that block transmission at selected frequency bands. Most 

studies have been done with infinitely periodic arrays because it is convenient to collapse an 

infinite array into one representative period using Floquet Analysis. In reality, infinite arrays 

are not physically realizable. However, truncating an infinite array introduces an edge and 

invalidates Floquet analysis over the entire array. 

This thesis formulates a Finite Element Method (FEM) solution of a semi-infinite 

periodic array consisting of infinitely long cylinders. The array elements sufficiently far 

from the edge are implemented using the concept of a Physical Basis Function (PBF). The 

PBF concept is based on an a priori knowledge that the amplitudes of the currents in the 

periodic elements that are sufficiently far from an edge are constant. Implementation of the 

PBF concept allows the solution domain of the FEM to be bounded by introducing a periodic 

boundary that represents the truncated portion of the periodic array. 

The periodic boundary is implemented by relating the fields there with a Floquet phase 

factor based on one periodic element external to the FEM domain. Performance of the pe- 

riodic boundary at normal incidence is promising. At off-normal incidence, the performance 

of the implemented boundary is below expectations. Implementation of a periodic boundary 

by relating the fields there with a Floquet phase factor with one interior periodic element is 

the next stage in the pursuit of improving off- normal incidence performance. 

xv 



APPLICATION OF THE FINITE ELEMENT METHOD TO THE 

SCATTERING OF A TWO-DIMENSIONAL, SEMI-INFINITE 

PERIODIC STRUCTURE 

/.   Introduction 

Frequency selective surface (FSS) design and analysis, especially in the microwave re- 

gion of the electromagnetic spectrum, has been studied heavily during the last three decades. 

Interest in the exploitation of periodic structures technology occured because FSSs exhibit 

very desirable filtering characteristics. For example, enclosing an electromagnetic scatterer 

or radiator within an FSS provides the means for restricting transmission in and out of the 

enclosure to a sharply defined band of frequencies. This effectively "hides" an active ra- 

diator and the cavity enclosed within the FSS from being detected at any other frequency 

outside of the designed transmission band. Shaping the FSS to conform to its environment 

also helps minimize specular reflections. Thus, aircraft designers are given more options in 

developing low radar cross section (RCS) platforms. These important FSS characteristics 

provide avenues for the implementation of the modern version of an ancient military strategy 

of attacking the enemy without warning or very minimal indication of an impending attack. 

This effective way of concealing objects behind a periodic structure is part of the modern 

warfare strategy we now call "stealth" technologies. 

1.1    Background 

Although the science of periodic structures can be traced back to the end of the last 

century, accurate calculations were not achievable until the introduction of digital comput- 

ers [20]. Faster calculations thus enabled the deeper study of these structures and imple- 

mentation of new technologies such as complex radomes, photonic bandgap materials and 

phased array structures, to name a few. 

1-1 



Figure 1.1     Typical Response of a Frequency Selective Surface [20]. 

Frequency selective surfaces behave as filters of electromagnetic waves. Their transmis- 

sion and reflection properties vary with frequencies and incident angles. A typical response 

of an FSS is shown in Figure 1.1. In the figure, it shows that at a certain band of fre- 

quencies, the FSS acts as either a bandpass or a bandstop filter, depending on the physical 

characteristics of its periodic elements. 

Periodic structures can be considered as one of two types. The first type consists 

of apertures of arbitrary shape "punched out" from a conducting sheet. The second type 

consists of conducting elements of arbitrary shape sandwiched inside a dielectric slab. Finite 

length dipoles are the simplest example for the second type [11]. 

The usual way of analyzing periodic structures is to take a representative period and 

designate it as a reference cell. For plane wave incidence, Floquet's periodicity condition 

stipulates that the amplitude of the field at any point in the array is equal to the field 

in the reference cell except for a phase factor. Essentially, Floquet analysis reduces an 

infinite domain problem to a finite domain one. Numerical techniques can then be utilized 

to calculate the structure's transmission 
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Traditionally, most "open region" or unbounded domain problems are numerically 

solved using the method of moments (MoM). The moment method provides a logical first 

step in the analysis of the scattering of periodic structures because the MoM is capable 

of determining the scattered fields by using an integral equation containing the free space 

Green's function that satisfies Sommerfeld's radiation boundary conditions. Integral equa- 

tion techniques in their purest form, like the MoM for instance, are often restricted to 

computing the scattering from a limited number of geometries because implementation of 

the free space Green's function is often restricted to simple canonical forms. That makes 

the MoM computationally intensive when calculating complex geometries and geometries 

immersed in non-homogeneous dielectric materials without resorting to hybrid techniques. 

More recently in the computational electromagnetics (CEM) field, partial differential 

equation (PDE) methods have come into greater use in scattering problems because of their 

ability to account for more complex geometries and inhomogeneous dielectric materials [10, 

21]. The finite element method discretizes the problem domain into finite cells, also called 

grid or "mesh" elements. These mesh elements may be assembled from non-overlapping 

irregularly sized triangles or quadrilateral elements for two-dimensional space; tetrahedra 

or rectangular "bricks" for three- dimensional space. On the other hand, finite difference 

methods normally discretizes the problem domain with a uniformly spaced grid, preferably 

Cartesian [10]. 

PDE methods however require their problem domain to be finite. In order to character- 

ize an infinite region normally associated with radiation and scattering problems, the PDE 

methods implement a fictitious boundary. Mathematically, this boundary allows incident 

energy to penetrate at the same time maintaining the the scattered field characteristics of 

outward propagation to infinity. The boundary must also prevent reflections back into the 

solution domain. 

In real world applications, it is not possible to have infinitely long periodic surfaces. In 

the case of a radome, the surfaces have finite dimensions creating edges. With the advent of 

low observable large RCS contributors have been reduced to such an extent that edge effects 
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now become a major scattering source. Thus, edge effects become an increasingly important 

part of the analysis of the overall scattering of objects. 

1.2 Problem Statement 

In his dissertation, Collins [4] proposed an extension to Munk's [11] work to accommo- 

date edges by using the concept of a "physical basis function" (PBF). Collins concluded that 

at some distance from an edge of a sufficiently long finite periodic structure, the perturba- 

tions in the amplitude of the currents induced by an incident field would approach a steady 

state. At this "central" location where a steady state amplitude is attained, Floquet analysis 

can be used to determine the impedance or admittance of the elements. Then, the central 

portion of the array is coupled to the edge element basis functions in a moment method 

solution. 

The large computational expense of the moment method in calculating the scattered 

fields of complex scatterers and inhomogeneous materials prompted this research. FEM's 

ability to compensate for the MoM's shortfalls in the areas described above made it the likely 

candidate for this investigation. Thus, the objective of this research is to devise a Finite 

Element Method formulation for modeling a semi-infinite periodic array by incorporating 

the concept of a physical basis function as a model for array elements sufficiently far from 

edges. 

1.3 Scope 

The focus of this thesis is to establish the validity of the finite element method to solve 

truncated periodic structures. Thus, in order to perform a proof-of-concept, the simplest 

cases were considered. In this case it is appropriate to confine the solution domain to two- 

dimensional space. Confining the geometry to two dimensions makes it sufficient to use the 

scalar wave or Helmholtz equations without worrying about spurious modes1. 

1 Spurious modes are artifacts of numerical calculations that often appear in the solution when using the 
vector Finite Element method. They have no physical meaning and are wrong answers [19]. 
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The structure used to develop the concepts of this research consists of perfect electrical 

conducting (PEC) cylinders. Dielectric materials are not used other than the perfectly 

matched anisotropic (PMA) absorbing layers [15] on the boundary of the solution domain. 

PMA layers are used to enclose the solution domain as opposed to an analytic boundary 

condition [2] in order to minimize the number of finite elements in the solution domain. 

The PMA absorbing boundary turns out to be a better choice for implementing a periodic 

boundary of a planar semi-infinite periodic structure since it allows a rectangular boundary. 

Rectangular boundaries enclose long slender objects without leaving a lot of free space in the 

solution domain. In contrast, the analytic boundary method requires a circular boundary. 

1.4    Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 provides the electromag- 

netics background for the Finite Element Method applied to periodic structures. Chapter 3 

explains the methodology used in completing the research. The results of the simulations and 

its validation are shown in Chapter 4. Conclusions from this FEM research, including pro- 

posed areas for future study are stated in Chapter 5. Appendix A includes all the field plots 

from the geometries of interest. They include contour and surface plots. In Appendix B, the 

modifications to the codes formulated by Pelosi, et al. [12] are included, as well as the mesh 

construction file of the structure used to test the hypothesis in this thesis. 
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77.   Summary of Current Knowledge 

2.1 Overview 

The digital computer allows the computational electromagnetics (CEM) practitioner 

to add the Finite Element Method to his portfolio of numerical tools because of its greater 

potential in solving more complex, real-world engineering problems. 

This chapter presents the summary of current knowledge leading to the finite element 

method formulation of the solution to the scattering of a semi-infinite periodic structure in 

two dimensions. 

2.2 Literature Review 

2.2.1 Infinite Periodic Structures. The study of FSS or infinitely periodic struc- 

tures begins by finding a method of reducing the entire array into one representative element 

or reference cell. Floquet's Theory provides the methodology. When a plane wave is inci- 

dent on an infinitely periodic array, the induced fields at the elements in the array are also 

periodic. In other words, the amplitude of the fields generated by every cell in the array are 

identical to the reference cell except for a linear phase shift factor [11]. For an incident plane 

wave of the form 

EJ'(R)   =   e^e^^^ 

=   ^iE
ie-jß{sxX+Sl'y+SzZ\ (2.1) 

where: e,- is the polarization vector 

s is the propagation vector, 

the total electric field at a point on the qmth cell (the cell in the qth row and mth column 

of the array) can be expressed as a function of the field at the equivalent location on the 

reference cell at the origin as [11] 

E(rqm) = E{r00)e-mqD*s*+mD*s*\ (2.2) 
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Figure 2.1     An Array of Hertzian Dipoles in Free Space [11]. 

or the magnetic field as 

M(rqm) = M(r0Q)e-jß{,lD*s*+mD*s*\ (2-3) 

where: Dx is the period in the x direction 

Dz is the period in the z direction 

ß is the wave number. 

For an infinite array of Hertzian dipoles (of differential length, dl) as shown in Fig- 

ure 2.1, antenna theory gives us the magnetic vector potential at an arbitrary observation 

point a distance R from the dipole at the qth row and mth column as [11] 

dA qm P- 
^Iqmdl e-^R^ 

Air R 
(2.4) 

■qm 

where p is the unit vector in the direction of the current elements. Note that the observation 

point could also be out of the plane where the dipoles are located. 
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Taking all the contributions from every element in the array, and relating the Floquet 

currents with respect to the current in the reference element gives 

oo oo // T    dl p-ißRi™ 
d& =   E  E v——s— 

g=-oo m=-oo */l -""?™ 
oo oo ^     ^     ß(Ie-iß*D*s*e-jßmD*Sz)dle-jßR*m 

=     ^     ^   P S i?  9=-oo m=-oo *n -"-gm 

oo 

9=—oo 

_      V^   p-jßqDxSx 

*"     m=-oo      Jl?™ 
(2.5) 

The electric field directly obtained from Equation (2.5) is a very slowly converging 

series. However, using the Poisson sum formula 

oo oo 

£   ejm^F(mto0) = T  £   f(t + nT), (2.6) 
m=—oo 

and Fourier transforming the electric field to the spectral domain, Munk [11] derived the 

far-field electric field of an array of Hertzian dipoles in a lossless medium, with the reference 

element shifted a distance R' from the origin, as 

nidi      °°      °°    e-i/3(R_R')-f 

dE(x,y,z) = j£-  £     £ [{r-p)f-p}. (2.7) 

For finite length dipole elements, the electric field is 

00 °°       f>-Jß'R--r± 

(*>y'Z) = WV   S     E   S—[(^ • ^ - ^] X f M     W*^/ (2.8) IL>XL)Z ,_   „„_ , ru JRef.Elem. 

where:  p is the unit vector along the dipole's length 

[(r± • p)r± — ]3] is the polarization vector 

r± = x(sx + ^)±yry + z(sz + £z) 

ry = J\ — (sj. + |p)2 — (sÄ + -gp)2 whose root is either positive real 

or negative imaginary 

k, n are the new row and column indices in the spectral domain. 
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Having found the electric field radiated by the dipoles in the array, the mutual coupling 

(or impedance matrix) between them can be calculated. Since the excitation vector entries 

are known from the incident field, the system's response can be solved [9,18]. 

2.2.2 Semi-Infinite Periodic Structures. Semi-infinite periodic structures present 

a different problem. Although the available literature remains relatively sparse, several 

approaches have been published. 

Wasylkiwskyj [22], in 1973, analyzed the mutual coupling effects in a semi-infinite 

array where he used the Weiner-Hoph factorization procedure to to solve an infinite order 

difference equation of the currents formulated at the antenna ports. 

Cwik and Mittra [6] investigated curved and truncated strip arrays. Their technique 

requires two piecewise approximations. The first approximation assumes the induced cur- 

rents in every element to be identical as if belonging to an infinite array. Then they replaced 

the edge element currents with currents found from the solution of a very small finite array. 

Unfortunately, this method does not perform well when the angle of incidence is near grazing 

because it fails to take into account the increased significance of the coupling between the 

edge elements and the inner elements. 

Collins' approach to the edge problem involves a modification to the Poisson Sum 

Formula used in the analysis of infinite periodic arrays. The one-sided Poisson Sum Formula 

that he developed specifically for semi-infinite periodic arrays is derived by defining F(mu0) 

in Equation (2.6) 

.. .to be the product of an infinite domain continuous function G(u)0) and the 
Heaviside unit step function shifted by ^ to capture the entire ra = 0 term [5]. 

Following an inverse Fourier transformation, the one-sided Poisson Sum Formula can be 

expressed as 

<J=U K——O0   \ J 
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Figure 2.2     A Semi-Infinite Array of Long Thin Wires in Free Space 

Note that the second term in the right hand side is a principal value integral and can be 

evaluated using residue calculus. 

In the two dimensional case where the test geometry was an array of infinitely long 

thin wires which are periodically spaced extending all the way to infinity (see Figure 2.2), 

Collins showed that there will be some distance amplitudes will be approximately Over this 

section, the array where Munk's periodic characteristics, to the edge 

An analog in the Finite Element Methods to the technique just described is what 

motivated this research. 

2.2.3 The Finite Element Method Model of a Periodic Structure. Like all numerical 

computation algorithms, the finite element method requires a problem domain that is finite. 

For the FEM however, this requirement is due to the physical discretization of the domain. 

In order to fully enclose a structure that is infinitely long but periodic, Floquet analysis is 

utilized. Floquet theory serves as the tool for collapsing an entire array into a representative 

cell, similar to the one previously described in the method of moments. 

Implementation of the FEM on periodic structures has already been accomplished by 

others. Gedney, et al. [8] characterized periodic gratings, while McGrath [10] applied the 

FEM to phased array antennas. 

Referring to Figure 2.3, a unit cell representing a periodic element of an infinite array 

is enclosed by an imaginary rectangular boundary, du. The top and bottom boundaries, 

d£lu and dup, represent radiation boundaries. The two side walls, 80,^ and <90R, represent 
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Figure 2.3     Representation of a Periodic Element for FEM Implementation 

periodic boundaries. In order to account for the interaction between cells, McGrath compares 

the periodic boundary to "open-circuit" waveguide side walls [10]. The mesh elements in 

the computation region, however, must be symmetric. That is the left and right halves of 

the cell must be a mirror image of each other. This further implies that the nodes on the 

left boundary of the cell must have the same vertical coordinates as the nodes on the right 

boundary. In effect, the procedure amounts to a "wrapping around" of the left boundary 

into the right boundary, analogous to performing a circular convolution in digital signal 

processing. 

The method used by McGrath combines the Finite Element Method with Floquet 

Modal Expansion. Hybrid methods, especially the ones in combination with integral methods 

like the MoM, essentially model the exact representation of the electromagnetic fields outside 

the domain of the problem. Like in the "pure" MoM [9], this makes a point on the FEM 

boundary, 50, interact with all other points on the boundary. This non-local behavior 

essentially creates a dense coupling matrix, thereby requiring more computational resources. 
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The other type of FEM boundary problem implements an absorbing boundary enclos- 

ing the domain. With this method, test points (or nodes) in the the domain, 0, interact only 

with local or neighboring points. This implementation produces a sparse coupling matrix, a 

big plus when computational efficiency is a big factor in solving a problem. This is one area 

where the FEM is superior to the MoM or other integral methods. 

2.2.4 Soßware Implementation for a Two-Dimensional, Semi-Infinite Periodic Struc- 

ture. McGrath developed a three-dimensional finite element code called Phased Array 

Antenna Analysis (PARANA) to solve infinite periodic structures as phased array antenna 

geometries. This code is very versatile and can handle different types of problems such as 

two-port waveguide devices, array radiation, reflection and transmission from infinitely pe- 

riodic structures, and array scattering. However, downgrading PARANA in order to handle 

a two-dimensional case would be counter-productive. 

Pelosi, et al., in their book [12], released a finite element code specifically for two- 

dimensional problems. Therefore, it is the belief of this author that it would be simpler 

to modify this code to present a proof-of-concept problem involving two-dimensional, semi- 

infinite periodic geometries. 

2.3   Development Approach 

Figure 2.4 illustrates the geometry of interest in this research. It involves a semi-infinite 

periodic geometry in two-dimensional space. The problem domain consists of cylinders 

enclosed in Perfectly Matched Anisotropie (PMA) absorbing layers. 

The analysis of a semi-infinite periodic structure begins by considering Collins' imple- 

mentation of a physical basis function. The FEM model consists of an edge element or cell 

followed by a finite number of similar cells extending to the right of the edge element. The 

finite number of cells, together with enclosing the geometry with PMA absorbing layers, 

takes care of the problem of having an infinite calculation domain or an infinite number of 

unknowns. 
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Figure 2.4     Five-Cylinder Periodic Array Enclosed in PMA and a Periodic Boundary 

To take into account the fact that the structure actually extends indefinitely to the 

right, a boundary there must be one that simulates a infinitely extending periodic bound- 

ary. McGrath provides a hint as to how to characterize this boundary. The "open-circuit" 

boundary method previously described provides the means for taking into account the other 

cylinders to the right of the boundary. However, instead of folding it over onto the left-hand 

side boundary of a periodic cell within the geometry, the wrapping-over occurs with a cell im- 

mediately to the right of the periodic boundary, a periodic cell not within the bounds of the 

problem domain, ft. Periodicity at the boundary takes into consideration the contribution 

of more periodic scatterers outside the region fL 

Using an absorbing boundary in the FEM formulation accounts for the fact that the 

enclosed region, 17, as a whole, is not a periodic one although its cells are. 

2.4    Summary 

This chapter presents the chronological development leading to the solution of the 

semi-infinite array problem using the method of moments and some hybrids of the MoM. 
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This chapter also presents a parallel solution to the infinite array problem using the finite 

element method. The next chapter details the FEM approach to solving the semi-infinite 

array problem. 
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III.   Methodology 

3.1    Introduction 

The solution of a boundary value problem using the Finite Element Method can be suc- 

cessfully implemented by stepping through a very structured procedure. After the definition 

of the boundary value problem, the solution can be solved in five steps [12,21], namely: 

1. Discretize the problem domain into finite elements. 

2. Apply the functional (Wave or Helmholtz equation) over each element in the region. 

3. Apply the boundary conditions and collate the contribution from each finite element 

in the region to form a global or coupling matrix. 

4. Solve the system of equations. 

5. Process the data to extract the pertinent information and create a visual representation 

of the quantities of interest. 

The first step, preprocessing, is to mesh the region where the solution is desired. This 

can be accomplished by using graphic design or Computer-Aided Design (CAD) software. 

This is a mandatory step for all numerical solutions. This step is where the coordinates of 

nodes or points in the region are passed on to the numerical algorithm. 

The second, third and fourth steps belong to the finite element method algorithm. 

This is where the differential equation is mapped into a discrete system so that it can be 

numerically processed in a digital computer. In the second step, the integro-differential 

equation is discretized into a set of linear equations so that it can be converted into matrix 

format. It is also in this step where the integro-differential equation is enforced on every 

element of the grid. 

The third step is required if a boundary condition must be explicitly enforced. For 

example, a Dirichlet boundary condition occurs when at the surface of a Perfect Electrical 

Conductor (PEC), the tangential electric fields are zero. This type of condition must be 

explicitly enforced in the algorithm.  A Neumann boundary condition, on the other hand, 
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specifies the normal derivative at the boundary. For an incident plane wave with a transverse 

magnetic (TM) polarization, the normal derivative of the magnetic fields on the surface of a 

PEC are zero. 

The fourth step is choosing a solving mechanism for the system. Galerkin's method is 

the preferred method in the finite element method. This mechanism converts a differential 

equation into a set of linear equations for numerical computation. It essentially comes down 

to solving a matrix equation of the form 

[A][x] = [b]. (3.1) 

The matrix [A] is the called the coupling matrix where its elements depend on the inter- 

relationships of the nodes in the grid. The vector [x] is the set of unknown parameters, and 

the vector [b] is a vector of forcing or excitation functions. Solvers then essentially invert the 

matrix [A] and multiply it by [b] to get the solution vector [x]. 

The final step is the post-processing step where the solution vector is processed and 

presented in a visual format that is conducive to analysis. 

3.2    Theoretical Background 

Throughout this document, the fields indicated herein are assumed to be time-harmonic 

with an e3wt dependence which is suppressed. Also, the analysis assumes a transverse mag- 

netic TMZ polarized incident plane wave illumination so that the electric fields are the 

unknown quantities. If the magnetic field equations are desired, the duality principle can be 

used on the equations presented here. 

In two-dimensional space, where a cylindrical scatterer is illuminated by a plane wave of 

transverse magnetic (TM) polarization as illustrated in Figure 3.1, the fields in the scatterer's 

vicinity can be obtained by the two-dimensional wave equation 

Vt ■ (-VtEz(x, y)) + k2
0erEz{x, y) = f(x,y), (3.2) 

3-2 



Fictitious 
Finite Element 

Boundary 

da 

a 

Figure 3.1     Two-Dimensional Scattering Configuration for Cylindrical Scatterers 

where:   V, = x£ + yg, 

k0 is the free space wave number, 

tT is the relative permittivity of the medium, 

f/,r is the relative permeability of the medium, and 

f(x,y) is the forcing function or external excitation. 

Equation (3.2) is considered as a strong form of the wave equation because the differ- 

ential operating on the unknown is second order. In order to apply the finite element method 

to Equation (3.2), the order of the differential operator must be reduced to one. This results 

in the weak form of the wave equation. 

If we let a function Ez approximate the unknown function Ez, the equality in Equa- 

tion (3.2) no longer holds but instead results in a non-zero residual, 

r(x,y) 
,Mr 

VtEz{x, y)   + k2
0erEz(x, y) - f(x, y). (3.3) 

The ideal value for Ez is one that reduces the residual to zero over the entire domain, 0. 

However, that is usually not numerically achievable all over the points in the domain. Instead 

it is more practical (and can be more easily implemented) to find an approximation Ez that 

would reduce the residual to a minimum value at all points in 0. The minimization process 
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can be done by weighting the residual over M subdomians. Geometrically, the residue must 

have no projections onto each of the M weighting functions. Mathematically, taking the 

inner product of the weighting functions with the residue gives the best approximation to 

the solution. Thus, 

W(x,y)r(x,y)du = 0. (3.4) 
J JQ 

Substituting Equation (3.3) into Equation (3.4) and dropping the functional notation of 

dependency in x and y, the wave equation becomes 

J JQ 

1 
WVt ■ I —VtEz   + WkierEz - Wf 

Q \ \fir        J 
ds = 0. (3.5) 

It is usually the case in Galerkin's method that the weighting functions and the basis 

functions are the same. 

Applying the vector identity (Green's theorem or integration by parts), 

V • (qA) = qV ■ A + Vtf • A, (3.6) 

on the first term on the left-hand side of Equation (3.5) results in 

WVt ■ —VtEz = Vt • (—WVtEz) - —VtW ■ VtEz (3.7) 

Substituting Equation (3.7) into Equation (3.5) results in 

J JQ 
V4 • (LwVtEz) - —VtW ■ VtEz + k2

0erWEz - W 
\(JLr I fir 

ds = 0. (3.8) 

Application of the Divergence Theorem, 

J Jn 
V, • (—WVtEz) ds= i   —W{VtEz ■ h)dl, 

Q \fjLr I JdQ /J,r 

(3.9) 
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on the first term of the left-hand side of Equation (3.8) results in the weak form the the wave 

equation. 

//   -—VtW-VtEg + k2erWEz-Wfds+i   —W(h-VtEz)dl = 0, (3.10) 
J JQ  [     Hr J JdU flr 

where dQ, represents a closed contour enclosing the domain, and n is the outward pointing 

unit normal vector on the contour. 

In free space and in the absence of excitation sources, the weak form of the wave 

equation reduces to the weak form of the Helmholtz equation 

J JQ 
-—VW-VEz + k2erWEz ds+ I   —W(h ■ VEz)dl = 0. (3.11) 

JdQ fir 

3.2.1 Formulation of a Circular Absorbing Boundary. The finite element method, 

as its namesake implies, requires a geometric domain that is finite. However, that does not 

mean that the domain of the problem must also be finite [17]. This important distinction 

enables the FEM to solve problems with unbounded regions, such as scattering and radiation 

problems. Typically, propagation problems are solved by seeking the solution to the wave 

equation or the Helmholtz equation. 

The physical interpretation of the solution to the wave equation or the Helmholtz equa- 

tion is an outward traveling wave, where the fields asymptotically decay to zero at infinity. 

Applying the FEM to such problems already imposes difficulties in its implementation. The 

biggest hurdle is that the domain must be finite. The next hurdle is how can an infinite do- 

main problem be simulated by a numerical algorithm that requires a finite solution domain 

and still capture the characteristics of an outwardly expanding solution. 

In order to overcome both difficulties, an absorbing boundary condition (ABC) must be 

specified. Absorbing boundaries accomplish the task of absorbing all scattered energy from 

the enclosed scatterer (similar to a black body) and effectively preventing reflected energy 

back into the interior region or the solution domain. It also acts as a bounding surface for 

the mesh elements. 
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Figure 3.2     Cylindrical Scatterer Enclosed in a Fictitious Circular Absorbing Boundary 

Generally, analytic absorbing boundaries represent the Green's integral at the bound- 

ary with an a priori approximation. For instance, Bayliss and Türkei applied the a pri- 

ori knowledge of the Hankel function approximation for cylindrical wave propagation. In 

hybrid methods, however, the Green's integral on the boundary is numerically evaluated 

directly [17]. This distinction explains why absorbing boundary conditions preserve the 

sparsity of the coupling matrix. On the other hand, one important disadvantage of the ab- 

sorbing boundary condition is that its accuracy drops off when the a priori approximation 

is no longer satisfied. 

The development of absorbing boundaries in FEM is generally credited to Engquist 

and Majda(see [7]) who introduced the basic concepts using a planar boundary. Bayliss and 

Türkei [2] built on Engquist and Majda's ideas and proposed a circular absorbing bound- 

ary. Bayliss and Türkei developed a second order differential operator by starting from the 

assymptotic Hankel expansion approximation of an outward traveling electromagnetic field. 

Since the Hankel functions characterize cylindrical wave propagation, Bayliss and Turkel's 

model requires a circular absorbing boundary. Figure 3.2 illustrates such implementation. 
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Incorporating the second-order Bayliss and Türkei ABC model into the weak Helmholtz 

functional, Equation (3.11), and decomposing the total field into its scattered and incident 

field components results in (see [12,13,21] for derivation) 

r r   1 t r r 8W8FS 

li J?>w ■ v'E'da ~ li h^WE'ia + LWaME' - M-gf-gj-W 

= -Ji^'w-v'E'^+Jik^WE'da+Lw^ <3-12) 
where:   a(p) =jk + ^-^$- 

From this point on, the V operator indicates two-dimensional differentiation and the un- 

known function Ez represents the approximating function introduced in the previous section 

without the tilde notation. 

Discretizing Equation (3.12) above would result in a linear equation of the form shown 

previously in Equation (3.1). Note that the right hand side of Equation (3.12) is associated 

with the incident field, which from a scattering problem point of view is a known parameter. 

3.2.2 Formulation of a Perfectly Matched Anisotropie Absorbing Boundary. The 

circular absorbing boundary is a major development in the implementation of the FEM to 

electromagnetic scattering analysis. The only restriction in its application is that it must be 

strictly circular in shape. That could be a drawback when the scatterer being enclosed is 

elongated. For elongated scatterers, a circular boundary requires a larger radius, creating a 

larger area with nothing but free space. Although the coupling matrix remains sparse due 

to the "nearest neighbor" or local nature of the coupling between the nodes on the grid, its 

size would require computation on free space areas which are not of interest. 

For problems regarding slender or elongated bodies, such as aircraft, a rectangular 

boundary is a logical geometry. A computational boundary analogous to that of absorbers 

used in anechoic chambers was formulated. Berenger [3] first proposed the idea of a rect- 

angular enclosure for an absorbing boundary for use in the Finite Difference, Time-Domain 
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Figure 3.3     Cylindrical Scatterer Enclosed in a Fictitious PMA Boundary 

(FDTD) numerical method. Berenger's technique, however, modifies Maxwell's equations to 

accommodate FDTD's time stepping routines. Sacks, et al. [15] then modified Berenger's 

formulation and used anisotropic materials in order to implement the formulation in FEM 

without the modifications to Maxwell's equations. 

The idea is to enclose the scatterer with a rectangular boundary located in the near 

zone similar to the circular boundary (see Figure 3.3). The artificial absorbing materials 

used are anisotropic and usually implemented with layers of absorbers above a conducting 

surface, much like the absorber configurations in an anechoic chamber. A perfectly matched 

anisotropic (PMA) absorber features perfect absorption of any arbitrarily polarized plane 

wave of infinite frequency bandwidth and any angle of incidence. Although the interface 

between free space and the anisotropic material is reflectionless, the conducting surface which 

backs the finite set of PMA layers would certainly produce a reflection. However, careful 

selection of the layer thickness and e and /J of the material reduces reflections back into the 

computational domain to the point where they don't perturb the solution significantly. 
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Starting from Equation (3.11), the fields in the interior region, 0, can be decomposed 

into two subregions, the free space region and the PMA region. In the free space region the 

weak Helmholtz equation is 

/ /       —VW ■ VEJÜ -if       k2
0erWEs

zdÜ + I W(h ■ VEz)dl = 0,      (3.13) 
J  Jü-ÜA  fJ.r J  Jn-SlA Jd(Q-üA) 

where:   O — O^ denotes the free space computational region 

CIA is the computational region in the PMA absorber. 

Similarly, the Helmholtz equation characterizing the fields in the PMA absorber region is 

//   ^VW-VEJtt- 11   k2
0[z\WEs

z<m+I     W(h-VEz)dl = 0, (3.14) 
J   JÜA   [/^J J   J&A JdüA 

where p] and [f| are tensors characterizing the PMA and are of the form [15] 

fJ-c 

and 

[e] = t0 

a 0 0 

0 b 0 

0 0 c 

a 0 0 

0 b 0 

0 0 c 

(3.15) 

(3.16) 

The diagonal elements a, 6, and c in the permittivity and permeability tensors are complex 

numbers. For perfect impedance matching between free space and the anisotropic medium 

\l>o t0 

= [A] 

a 0 0 

0 b 0 

0 0 c 

(3.17) 

Referring to Figure (3.3), the contour integral in Equation (3.14) includes two bound- 

aries, the PEC backing and the interface between free space and the PMA. The contour 
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integral at the PEC vanishes because of the tangential electric fields there are zero. The 

other part of the contour integral in Equation (3.14) is the same as the contour integral of 

Equation (3.13). However, since their surface normals are opposite in direction, they cancel 

out. Hence, Equation (3.13) becomes 

/ /        — VW ■ VtE
s

zdÜ -II       k2
0erWEs

zdÜ 
J Jn-QA \iT J Ju-aA 

= -[[     —vtw-vtEidti+11    k2
0erWEidn, (3.18) 

J Jü-aA Hr J Jü-ÜA 

after decomposing the total field into its scattered and incident components. Similarly, the 

field equation in the PMA region is 

r r     dWdEi 7^ t f   ,dWdE'z 7^      /" /•   ,o „,™ ,« 
/ /    a- -±dü   +    / /    6———z-dÜ - / /    k2

0cWEs
zdü 

J JQA    ay   oy J JüA    OX   OX J JnA 

=    11   VtW-VtEidtt+ 11   k2
0WEidü, (3.19) 

J JQA J JQA 

where a, 6, and c are the diagonal elements of the complex permittivity and permeability 

tensors characterizing the PMA material. Note that the material parameters on the right 

hand side of Equation (3.19) are set to unity because the PMA exists only for the scattered 

field and not for the incident field. 

3.3   Finite Element Grid Generation of the Problem 

Discretizing or meshing the problem domain is usually done by Computer-Aided Draft- 

ing (CAD) packages. The software package that was utilized [12] was not sufficiently au- 

tomated, nor was it enclosed in a graphical user interface (GUI). The problem domain is 

constructed with a set of non-overlapping quadrilateral blocks. A block is defined as a four- 

sided object in two-dimensional space whose sides can be characterized by second-order 

curves [12,16]. A side can be specified by a set of two end points and an intermediate point. 

As seen in Figure 3.4, a block can thus be defined with a total of eight points. The blocks 

are further subdivided into smaller triangular mesh elements in the mesh generator. 
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Figure 3.4     Generic Quadrilateral Block Description [12] 

The geometry input file to the mesh generator requires three sections to fully define the 

domain of the problem. The first section describes the set of non-overlapping quadrilateral 

blocks, their node numbering sequence based on a global node numbering system for the 

whole geometry, and the material assignment of each block. Description of the block requires 

the sequential order of nodes around the block in a counterclockwise direction. The second 

section specifies the Cartesian coordinates of each node in the region. The last section 

describes how each particular block is to be subdivided into finer sections. The geometry 

input file used in this research is included in the Appendix B. 

The output of the mesh generator is the file that the FEM code reads. This file consists 

of a header and four sections. The first section specifies the list of the mesh elements, either 

triangular or quadrilateral, the nodes that make up the element (three for first-order triangles 

and four for first-order quadrilaterals), and a flag indicating which material the mesh elements 

belong to. The second section specifies the nodes and their Cartesian coordinates again, as 

they may have been renumbered by the optimization routine (i.e. Delaunay regularization) 

in the mesh generator [12].   The third and fourth sections list the edges and edge labels 
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Geometry 
Boundary 

Type 
Cylinder 
Diameter Incident Angles 

5-Cylinder Periodic 1A 0° -90°; 5° increments 
PMA 1A 0° -90°; 5° increments 

15-Cylinder PMA 1A 0° - 90°; 5° increments 

Table 3.1     Geometry Descriptions for the Analysis of a Semi-Infinite Periodic Structure 

of each element in the grid. The third and fourth sections are particularly useful when 

using vector finite elements for computing three-dimensional scattering. However, since this 

research is confined to two-dimension scattering, edges and edge labels are not particularly 

used. 

Table 3.1 shows the geometries of interest which consist of three sets, each made up of 

two-dimensional cylindrical scatterers. The first set is a semi-infinite periodic array of five 

cylinders shown in Figure 2.4. The solution domain is bounded by a rectangular enclosure 

consisting of Perfectly Matched Anisotropie (PMA) absorber layers on three sides and by a 

periodic boundary on one side. The PMA boundaries enclose the domain on the top and 

bottom sides and on the left side of the periodic structure. The periodic boundary is located 

on the right side of the structure. The cylinders are periodically spaced 2A apart. There is 

also a five-cylinder finite array that is fully enclosed by a rectangular PMA boundary. Both 

geometries have cylinders that are 1A in diameter. 

The other geometry set is a finite array of fifteen cylinders, shown in Figure 3.5. The 

cylinders are also periodically spaced 2A apart. The fifteen-cylinder array is fully enclosed 

by a rectangular box of PMA absorbing layers. 

The fields that are scattered by the 5-cylinder and the 15-cylinder finite arrays are 

used for comparison with the fields scattered by the 5-cylinder periodic array. By comparing 

the fields in the vicinity of the edge cylinders with the fields in the vicinity of the cylinder 

next to the periodic boundary, a measure of the effectiveness of the implemented periodic 

boundary is obtained. 

To mesh each one of the specified geometries, intermediate grid points are defined 

and the problem domain divided into blocks.  Intermediate grid points are usually defined 
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Figure 3.5     Geometry Description for 15-Cylinder Finite Array Fully Enclosed in a Rect- 
angular PMA Boundary 

on interfaces between two materials, like the interface between the PMA and the free space 

inside the problem domain, or on PEC boundaries. This graphical description of the problem 

domain is the required input to the mesh generator. 

The grid or mesh generator can mesh the domain with elements that are either triangles 

or quadrilaterals. Triangles are usually preferred because they can readily approximate any 

complex shape. The degree of approximation can be adjusted by increasing or decreasing the 

number of triangles in the mesh. For example, to accurately render an arbitrarily complex 

shaped domain, smaller triangles, and therefore more of them, are required. More triangles 

mean more nodes (or vertices of the triangles) which translate to more unknowns required to 

compute the solution to the fields in the domain. Alternatively, a coarser approximation to 

the same domain requires fewer triangles, which translates to a smaller number of unknowns. 

The decision to increase or decrease the number of mesh elements depends on several factors. 

These are the computational resources available, the desired accuracy of the solution, and 

the time it takes to obtain the solution. 

In the finite element method applied to electromagnetic field problems, a rule of thumb 

is to have the lengths of the sides of triangles about ^ [16,21]. For this research, the domain 

is meshed with triangle side lengths of |.   This decision is based on consideration of the 
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Figure 3.6     Shape Functions and Linear Approximations of Fields Inside a Triangular Mesh 
Element [12] 

time it takes to mesh the problem domain, especially with the fifteen-cylinder finite periodic 

array. The other factor affecting the 

or unknowns in the problem domain. 

array. The other factor affecting the decision to use | is to minimize the number of nodes 

3.4    Discretization of the Weak Form of the Wave Equation 

Discretizing the weak Helmholtz or wave equations by representing them as a linear 

system of equations comes after meshing the problem domain. This can be done by approxi- 

mating the fields inside each mesh element with a set of linear basis functions, also commonly 

known as shape functions. For first-order triangles, the approximating function is 

EM = £aie)E|e> (3.20) 

where the a8- s are the basis functions or shape functions for each of the nodes of the eth 

element in the mesh (see Figure 3.6). The triangles used throughout this reaseach are first 

order, meaning they have a total of three nodes. E\e' are the yet unknown coefficients of 

the basis functions and they represent the values of the fields at each node of the eth mesh 

element. 
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Shape functions approximate geometrical patterns with polynomial expressions. For 

triangular mesh elements, the basis or shape functions are usually expressed in what Silvester 

defines as simplex coordinates. Simplex coordinates transform shape functions defined in the 

Cartesian coordinate system to a coordinate system that is independent of position. This 

is important since the triangular elements that make up the grid do not, in general, have 

the same aspect ratios or are similarly collocated in space. For example, one triangle in the 

mesh may have a different orientation compared to another one in the mesh. The simplex 

coordinate transformation equations are [16] 

Oil 

&3 

1 

2Ä 

(x2y3 - x3y2) (j/2 - 2/s) {x3 - x2) 

(x3yi - X1J/3) (2/3 - 2/1) (xi - x3) 

(x1y2 - x2y-i)   (yi - y2)    (x2 - Zi) 

where the area of the triangle is: 

A = 2^2 ~ xi)(!/3 - Vi) - (xs ~ Xi)(y2 - yi)]. 

Further, the shape functions have the following property 

1 

x 

y 

(3.21) 

a-, 
Uj,vj) 

1   if i = j 

0   iii^j 
(3.22) 

The matrix formulation can be achieved by defining a weighting or testing function and 

taking its inner product with the basis functions. The most preferred method, Galerkin's 

method, requires the weighting function to be equal to the basis functions. 

Note that the only reason for discretizing an integro-differential equation is to obtain 

N linearly independent algebraic equations so that it can be implemented numerically [14]. 

Galerkin's method of applying weighting functions to the differential equation, and making 

it equal to the basis function exactly does that process. 
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Discretizing the Helmholtz equations in the the PMA-enclosed free space and inside 

the PMA material is implemented simply by substituting the approximating functions of 

Equation (3.20) into Equations (3.18) and (3.19). Doing so results in 

1[5W][£*>] + l[Sj«>p*)] - ^[rWp'M] = [4;Uace] (3.23) 

in the free space portion of the computational region and 

a[sMp*>] + AßWp'M] - klc[T^][E^) = [B&A] (3.24) 

inside the PMA material. The right hand side of both Equations (3.23) and (3.24) above are 

associated with the incident fields so that they are usually known quantities. The coefficient 

matrices are 

w=IL94d4dS <"•> 
lrWl=IL a^)ds- <3-27) 

The fields in each element of the mesh are calculated individually. Generally, inter- 

actions or coupling between nodes occur only between immediate neighbors. If a hybrid 

method is utilized, however, coupling may occur between nodes other than its immediate 

neighbor. Thus, when assembling the coupling or global matrix, the field value of a node 

from a triangle is summed up only with field values from neighboring nodes, resulting in a 

sparse matrix. The neighboring nodes may either belong to adjacent triangles or from the 

same triangle. 

Part of the assembly process for the coupling matrix is the incorporation of any bound- 

ary conditions. A Dirichlet boundary condition exists in a problem domain when field values 

are prescribed for nodes on the boundary. For instance Ez = /(£), where f(t) = 0 on the 

surface of a PEC for transverse magnetic (TM) polarization.   Another type of boundary 
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Figure 3.7     Two-Dimensional Periodic Structure [12]. 

condition is the Neumann boundary condition where ^- = git).  For Transverse Electric 

(TE) polarization, the magnetic field on the surface of a PEC vanishes so that -^ = 0. 

3.5   Implementation of the Periodic Boundary 

The main objective of this research is to find a way to mimic the fields generated by a 

semi-infinite periodic structure illuminated by a plane wave in free space with a substitute 

geometry that is finite. The technique proposed is by hybridizing the FEM with a Floquet 

modal expansion. Briefly, Floquet analysis takes advantage of the periodicity in an array 

and designates a periodic element or unit cell in an array to represent the entire array. 

For a two-dimensional, infinitely periodic structure (one that is uniform in one direction 

and periodic in the other) as shown in Figure 3.7, the total fields induced by an incident 

TMj-polarized plane wave on the array can be expressed as [12] 

Ei(x + d,y) = El(x,yy
kdcos^\ (3.28) 
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where d is the spatial period, k is the propagation constant in the medium, and fc is the 

incident angle. 

Equation (3.28) says that the amplitudes of the fields in a periodic structure are es- 

sentially the same as that of some reference cell located at an arbitrary reference frame (say 

the origin in Cartesian coordinates) except for a phase factor. 

For the periodic structure in Figure 3.7, Equation (3.11) applies to the region inside the 

fictitious boundary. The contour integral for a rectangular enclosure comprises four segments, 

dtiu, dÜL, duz», and 8ÜL. The weak Helmholtz equation inside the region is [10,12] 

/ /   -— VW ■ VEZ + k2erWEz  ds+ [     —W(h ■ VEz)dl 
J JU  l     ßr J Jdüu ßr 

+ [     —Win ■ VEz)dl + I     —Win ■ VEz)dl 
JdQD ßr JdüL ßr 

+ /     —W(n ■ VEz)dl = 0. (3.29) 
JdQjR   fly 

The top boundary, dtiu, and the bottom boundary, dYo, enforce the continuity of the 

tangential fields between the bounded region and free space above and below the structure, 

respectively. These are sometimes referred to as Floquet Harmonics [10]. The left boundary, 

dui, and right boundary, 8QR, enforce the periodic boundary and are related to each other 

by a Floquet phase factor. 

/     —Win ■ VEz)dy = [     —W(h ■ VEz)e
jkdcos^'Uy. (3.30) 

JdUR ßr JdüL /J,r 

In order to easily impose the periodic boundary conditions as described previously, 

there must be a one-to-one correspondence of nodes on each side of the periodic boundaries. 

For the 2-D geometry shown in Figure 3.7, this essentially means that each node on the right 

boundary must have the same y-coordinates as a corresponding node on the left boundary 

[10,12]. This procedure is viewed as what McGrath calls "folding over the boundaries onto 

each other [10]." 

A semi-infinite periodic structure can be similarly implemented. The top and bottom 

boundaries are terminated by PEC-backed PMA layers. The side boundary where the edge is 
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located is also terminated with PEC-backed PMA layers. On the right boundary, however, a 

periodic boundary is implemented. This is a necessary condition to account for the cylinders 

extending forever to the right. 

As can be seen in Figure 2.4, the folding over of the right boundary onto the left 

boundary can not be accomplished on this particular domain because the array elements 

are not representative of a "unit cell" described in the infinite periodic array formulation. 

Periodicity at the right boundary was initially thought to be implemented by multiplying 

the amplitudes of the fields there by the Floquet phase factor, ei
kdcos(<t>i)m 

Periodic 
Boundary 

\ 

Periodic 
Cell 

1 
Ö Ö Ö b   b" O 

-   

d 

Figure 3.8     Implementation of a Single Periodic Boundary 

This is equivalent to attaching a fictitious unit cell of period d, similar to the one 

previously described in the infinite array case, adjacent to the right boundary of the semi- 

infinite structure. Figure 3.8 illustrates the boundary implementation. The left boundary 

of the fictitious unit cell is related to its right boundary by Equation (3.28). To enforce the 

continuity of the fields across this boundary, the left hand boundary of the fictitious unit 

cell is made equal to the right boundary of the semi-infinite geometry. The right periodic 

boundary is then implemented in Equations (3.18) and (3.19) where they become 
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/ /       —VtW ■ VtEldtt -it       k2
0trWEldtt + I     —Win ■ VEs

z)e
iMcos^dy 

J JQ-üA fir J JO.-ÜA JdQR fir 

= - 11       —VtW • VtE[dü + / /       k2
0erWEidtt 

J Jü-üA Hr J Jü-QA 

+ (     —W(h • V£*)eiMcos^y(3.31) 

and 

J JQA    ay   ay J JnA    ox   ox J JuA 

+ /     —W(n ■ S7Es
z)e

jkdcos^dy 

= 11   VtW ■ VtEidn + f f   k2
0WEzdtt 

+ /     — Wih-VEiy^'^Uy. (3.32) 
JdQjl fJir 

It is important to note that the periodic boundary conditions in Equations (3.31) 

and (3.32) only apply to the boundary and not to the entire interior region in the domain, 

£2. The discretization of Equation (3.31) and Equation (3.32) can be converted into matrix 

format by using Galerkin's method previously discussed. 

3.6    The Finite Element Solution 

Using Galerkin's method, Equations (3.31) and (3.32) can be discretized. The resulting 

equations are similar to Equations (3.23) and (3.24), 

L[S(°)][E'W] + — [S^][ES^] - k2
0er[TM][E'M] = r/?(e)      i L    FreeSpacel 

Jkdcoe(<l>i) 
ejkdcos(4>i) 

(3.33) 

and 

{«[4e)ps(e)] + &[#>][£*>] - klc[T^][E^]}\e3kdco3W = [4eL]U^t) •        (3-34) 
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Figure 3.9     Node Interactions in an Element Matrix 

The difference is when the node being considered is on the periodic boundary. The elements 

of matrices [Sjfi], [S^\, and [T^] that interact with the boundary node will be multiplied 

by the phase factor e^kdcos^. For example, in Figure 3.9, if node 1 in the first element 

belongs to the periodic boundary, then the element matrix [5^e=1^] is 

[5(e=l)] 

eJkdcos{<t>i)g        ejkd cos(4>i) a tikdcos(4>i)g 

ejw «,.(*) s31 532 S33 

(3.35) 

The matrices [T^] and [B^] are implemented similarly to the procedure shown for [S^] 

above. 

All the processes described in the previous section are incorporated in one subroutine 

in the code provided by Pelosi, et al. [12]. The rest of the code remained unmodified. Based 

on the flowchart shown in Figure 3.10, the modified subroutine only involves the branch 

where the absorbing boundary is made up of PMA layers. The flowchart for the modified 

subroutine for implementing the single periodic boundary is shown in Figure 3.11.   Code 
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modification allowing for the incorporation of a semi-infinite periodic structure using the 

analytic ABC (circular boundary) is not implemented. 

The FEM software utilizes subroutines from the freely available mathematical libraries 

of the Linear Algebra Package (LAPACK) program [1]. The LAPACK subroutines are 

mainly used for solving the linear equation shown in Equation (3.1) to obtain the fields in 

the solution domain. 

3.7 Post-processing and Data Visualization 

The output of the FEM consists of the value of quantities that are of interest in each 

node specified on the grid. In this research, the quantity of interest is the electric field since 

we were interested in the Transverse Magnetic (TM), or E-polarization scattering from a 

two-dimensional body. However, the mesh grid is usually not uniformly spaced. In order for 

graphical interfaces to display a coherent plot, the data points must be uniformly spaced. 

Thus, a graphical post-processor performs the function of interpolating between the data 

obtained in the FEM solution and extracting uniformly incremented data points. The post- 

processor provided in the software package is utilized without any modifications to the code 

other than changing the parameters to accommodate more nodes and mesh elements. 

A Matlab code is written to take advantage of its powerful graphical environment. The 

output of the post-processor is converted to Matlab format to produce the contour map and 

the 3-dimensional surface plot of the fields. The Matlab code is shown in Appendix B.3. 

3.8 Summary 

This chapter shows the formulation used to modify the FEM solution for regions en- 

closed by PMA absorber layers to include semi-infinite periodic structures. The modifications 

involve removal of a PMA boundary on the opposite side of the edge where the semi-infinite 

structure is "cut" and substituting a periodic boundary in its place. The periodic bound- 

ary is formulated from the hypothesis that the periodic fields are produced from a spatially 

periodic structure. The next chapter shows the results of the formulations described in this 

chapter. 
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Figure 3.10     Flowchart for the FEM Code. 
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IV.   Analysis of Results 

The previous chapter outlined the theory leading to the calculation of the fields scattered by 

a semi-infinite periodic structure. This chapter compares the FEM results from a periodic 

structure with two finite arrays of different lengths. The objective is to establish the validity 

of substituting a periodic boundary in place of the truncated part of a semi-infinite array. 

The concept of the physical basis function is used to verify this. 

4-1    Comparison of a Fifteen-Cylinder Finite Periodic Array With A Five-Cylinder Finite 

Periodic Array at 90° Incidence. 

The total field magnitude map generated by a plane wave illuminating the 15-cylinder 

array at 90° incidence is shown in Figure 4.1. Looking at the contour plot, 90° incidence 

is coming from the top, in the plane of the paper. Visually inspecting the contour map, 

the uniformity of the fields at the central portion of the array is evident. It also shows the 

perturbations at the edges. Further inward from the edges, the fields gradually approach a 

uniform pattern in the central portion of the array. The bottom plot of Figure 4.1 shows a 

surface plot of the fields. 

To show the PBF concept, we start by taking the fields in the vicinity of the central 

cylinder (cylinder 8) and subtracting the fields from the adjacent cylinders (7 or 9, cylinder 

1 is the left edge). The difference in field magnitudes between cylinders 8 and 7 is shown 

in Figure 4.2, and the difference in field magnitudes between cylinders 8 and 9 is shown in 

Figure 4.3. The difference plots show that the field values vary by no more than 1% of the 

field magnitudes in the vicinity of cylinder 8. This comparison is done by taking the highest 

magnitude of the field in the vicinity of cylinder 8 and the difference in field magnitudes 

between cylinder 8 and the the other cylinders, 

max[Cyh-Cylx] 
 7-^-rz  x 100%. (4.1) 

max[Cyls\ 
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Outlying 
Periods 

Max. Field 
Difference 

Percent 
Difference 

Cylinder 7 0.021 1.0 
Cylinder 6 0.043 2.0 
Cylinder 5 0.070 3.3 
Cylinder 4 0.093 4.4 
Cylinder 3 0.130 6.2 

Table 4.1     Percent Difference in Field Magnitudes Between the Central Period of the 15- 
Cylinder Finite Array and its Outlying Periods 

Table 4.1 shows the percentage differences between the central cylinder (cylinder 8) 

and the outlying cylinders. For an arbitrary cutoff of 5% difference, it is safe to say that 

the fields after cylinder 3 can be defined as the "steady state" portion of the fields in the 

array. Therefore, in order to implement a semi- infinite cylinder, the truncation point or 

the placement of the periodic boundary must occur after 4 periods. To further provide a 

margin for numerical error as well as a "convenient" round number ratio between the number 

of the semi-infinite array is modeled with an additional of 5 periods before the truncation 

point. Figures 4.4 and 4.5 show the differences in field values between cylinders 8 and 6, and 

cylinders 8 and 5 respectively. 
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Pixels 0     0 
Pixels 

Figure 4.2     Difference in Field Values Between Cylinders 8 and 7 of the Fifteen-Cylinder 
Finite Array at 90° Incidence 

Figure 4.6 shows the fields from a five-cylinder finite array. It is obvious that the fields 

are also nearly symmetric with respect to the center cylinder. It should be obvious that 

subtracting the fields of a five-cylinder array from the fields of a fifteen-cylinder array, with 

the left edges aligned, would result in a large variation in the difference plots at the fifth 

cylinder. Figure 4.7 shows the difference in field values for the first five cylinders of the 

15-cylinder finite array and the 5-cylinder finite array. Figure 4.8 shows the difference in 

field values at the fifth cylinder. Note the scale difference from the previous plots. 

4-2    Comparison of a Fifteen-Cylinder Finite Periodic Array With A Five-Cylinder Semi- 

Infinite Periodic Array at 90° Incidence. 

The purpose of implementating a periodic boundary on the truncated part of a periodic 

array is to simulate a physical continuity of periodic elements. It should also eliminate the 

edge diffraction that would otherwise occur at the discontinuity. As seen from the previous 

section, the right boundary of the 5-cylinder array showed huge differences in the fields. 
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Figure 4.3     Difference in Field Values Between Cylinders 8 and 9 of the Fifteen-Cylinder 
Finite Array at 90° Incidence 

E -0.05 

Pixels 0     0 

Figure 4.4     Difference in Field Values Between Cylinders 8 and 6 of the Fifteen-Cylinder 
Finite Array at 90° Incidence 
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0      0 

Figure 4.5     Difference in Field Values Between the Areas of Cylinders 8 and 5 in the 15- 
Cylinder Finite Array at 90° Incidence 

Wavelengths 

Wavelengths 

Figure 4.6     Contour Plot and Total Field Map of a 5-Cylinder Finite Array at 90° Incidence 
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Figure 4.7     Contour Plot and Difference in Field Values Between the First Five Cylinders 
of the 15-Cylinder and 5-Cylinder Finite Arrays at 90° Incidence 

Figure 4.8     Cylinder 5 Field Differences Between the 5-Cylinder Finite Array and the 15- 
Cylinder at 90° Incidence 
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Figure 4.9     Difference in Cylinder 5 Field Values for Both 15-Cylinder Finite and 5-Cylinder 
Semi-Infinite Arrays at 90° Incidence. 

Taking the 5-cylinder finite array and replacing the right edge with a periodic boundary 

converts the geometry into a semi-infinite geometry as far as FEM is concerned. 

Figure 4.9 shows the total fields of the semi-infinite array. Visually inspecting the 

fields, one can see the significant change in the field behavior near the periodic boundary. 

Figure 4.11 shows the difference in field values between cylinder 5 of the 15-cylinder fi- 

nite array and cylinder 5 of the simulated semi-infinite array. Comparing Figure 4.11 with 

Figure 4.8, the periodic boundary performs effectively. 

4-3    Other Incidence Angles 

The results presented thus far involved 90° incidence. For off-normal incidence, the 

periodic boundary does not perform as well as at normal incidence. This is evident in the 

field plots of the semi-infinite array. Taking the 75° incidence as an example, the contour 

and field map from the semi-infinite array is shown in Figure 4.12. The field and contour 

map from the finite array is shown in Figure 4.13. 

Looking at the field patterns in the vicinity of the cylinder next to the periodic bound- 

ary (right edge) in Figure 4.12, and comparing that with the field pattern one can see the 
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Figure 4.10     Difference in Field Values for Both 15-Cylinder Finite and 5-Cylinder Semi- 
Infinite Arrays at 90° Incidence. 

Figure 4.11     Difference in Cylinder 5 Field Values for Both 15-Cylinder Finite and 5- 
Cylinder Semi-Infinite Arrays at 90° Incidence. 
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Figure 4.12     Contour Plot and Total Field Map of a 5-Cylinder Semi-Finite Array at 75° 
Incidence 

discrepancies in the implemented periodic boundary. Comparing fifteen-cylinder array shown 

in Figure 4.1 with the five-cylinder can immediately recognize the disturbance in periodic 

boundary. The fields do not with a periodic array. 

The difference in the field values between the first five periods of the fifteen-cylinder 

finite array and semi-infinite array is shown in Figure 4.14. The difference in the field 

values between the fifteen-cylinder finite array and the five-cylinder finite array is shown in 

Figure 4.15. is apparent that the periodic boundary does not perform as expected. 

Several factors may contribute to the failure of the periodic most likely explanation is 

that the boundary is the solution domain. The phase factor, at the periodic boundary would 

At normal incidence and therefore While at other incident angles, reflection at the boundary 

occurs and energy would be added into the solution. 

4-4    Alternative Implementation of the Periodic Boundary 

The periodic boundary implementation presented here suggests that the performance 

of an "open-circuit" boundary is not sufficient in fully characterizing the fields in a semi- 

infinite periodic array. The next logical step, given enough time, would be to implement a 

4-10 
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Figure 4.13     Contour Plot and Total Field Map of a 5-Cylinder Finite Array at 75° Inci- 
dence 
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Figure 4.14      Contour Plot and Field Difference Plot for the First Five Periods of the 15- 
Cylinder and 5-Cylinder Finite Arrays at 75° Incidence 

4-11 



5 7 
Wavelengths 

9     10 

8     0.5 r 

0.25 

8 
§ -0.25 

I 
5   -0.5 

Wavelengths 
10 

Figure 4.15     Contour Plot and Field Difference Plot for the First Five Periods of the 15- 
Cylinder Finite Array and the Semi-Finite Array at 75° Incidence 

"folding over" of the periodic boundary with the opposite side of the unit cell containing 

cylinder 5 (the cylinder next to the periodic boundary). Referring to Figure 4.16, the field 

values at the nodes in the periodic boundary are related to the field values a distance of one 

period from the boundary. 
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Figure 4.16     Implementation of a Single Periodic Boundary by Relating the Fields in the 
Interior One Periodic From the Periodic Boundary 
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V.   Conclusion and Recommendations 

5.1 Conclusion 

The objective of this thesis is to provide a framework for developing a Finite Element 

Method solution to semi-infinite periodic arrays by utilizing the concept of a physical basis 

function. It is known beforehand that the amplitude of the currents induced on the elements 

far enough from the edge of a semi-periodic array are constant. Based on that pretext, a 

periodic boundary using a Floquet expansion is implemented at a sufficient distance from 

the edge of a semi-infinite periodic array. However, as seen in the previous chapter, the 

implementation was only effective at normal incidence. 

5.2 Recommendations for Further Study 

A next logical step is to implement the periodic boundary by relating the fields there 

with the fields one interior period from the boundary (the truncation point). This amounts 

to performing the same procedures as in the implementation of an infinitely periodic array. 

However, the interior "quasi-boundary" exhibits coupling with other interior nodes outside 

the unit cell (see Figure 4.16). 

Another approach might be implemented by using the vector finite element method 

(VFEM) on the "open-circuit" boundary implementation. VFEM is primarily implemented 

to fix the problem of spurious modes, but could be used here since the periodic boundary 

may be contributing anomalous solutions at off-normal incidence. 

Although the length of the periodic array used is sufficiently long, the central portion of 

the array where the field amplitudes are "constant" is narrow. A longer steady state region 

would ensure that the edge effects are fully "damped" by the time it reaches the central 

portion of the array. A longer array would mean more nodes and elements in the finite 

element solution domain. Meshing usually takes a long time, and larger problems would 

mean longer mesh times. Thus, a more efficient or optimized mesh generator needs to be 

developed. 
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Usually in scattering and radiation problems, the RCS is one quantity of interest. 

RCS calculations can be done by taking a contour integral around the solution region and 

projected into the far field. 

Finally, once the problem of calculating off-normal incidence is fixed, several applica- 

tions can be implemented. Since the FEM accommodates dielectrics handily, application of 

material treatments for metallic edges can be studied. 
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Appendix A. 

A.l    Field Plots for the Fifteen-Cylinder Finite Periodic Structure 
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A.2   Field Plots for the Five-Cylinder Semi-Infinite Periodic Structure 
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Wavelengths 

Figure A.20     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 0° Incidence. 
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Figure A.21     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 5° Incidence. 
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Figure A.22     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 10° Incidence. 
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Figure A.23     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 15° Incidence. 
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Figure A.24     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 20° Incidence. 
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Figure A.25     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 25° Incidence. 
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Figure A.26     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 30° Incidence. 
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Figure A.27     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 35° Incidence. 
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Figure A.28     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 40° Incidence. 
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Figure A.29     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 45° Incidence. 
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Figure A.30     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 50° Incidence. 
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Figure A.31     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 55° Incidence. 
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Figure A.32     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 60° Incidence. 
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Figure A.33     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 65° Incidence. 
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Figure A.34     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 70° Incidence. 
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Figure A.35     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 75° Incidence. 
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Figure A.36     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 80° Incidence. 
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Figure A.37     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 85° Incidence. 
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Figure A.38     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Semi-Infinite Periodic Array at 90° Incidence. 
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A.3   Field Plots for the Five-Cylinder Finite Periodic Structure 
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Figure A.39     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 0° Incidence. 
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Figure A.40     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 5° Incidence. 

A-33 



Wavelengths 
9 10 

Wavelengths 

Figure A.41     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 10° Incidence. 
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Figure A.42     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 15° Incidence. 
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Figure A.43     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 20° Incidence. 
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Figure A.44     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 25° Incidence. 
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Figure A.45     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 30° Incidence. 
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Figure A.46     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 35° Incidence. 
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Figure A.47     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 40° Incidence. 
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Figure A.48     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 45° Incidence. 
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Figure A.49     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 50° Incidence. 
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Figure A.50     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 55° Incidence. 
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Figure A.51     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 60° Incidence. 

Wavelengths 
9 10 

Wavelengths 

Figure A.52     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 65° Incidence. 
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Figure A.53     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 70° Incidence. 
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Figure A.54     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 75° Incidence. 
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Figure A.55     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 80° Incidence. 
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Figure A.56     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 85° Incidence. 
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Figure A.57     Contour Map and Three-Dimensional Map of the Total Fields of a 1 
Diameter, 5-Cylinder Finite Periodic Array at 90° Incidence. 
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Appendix B. 

B.l    Finite Element Method Sofiware Modification 

subroutine EMBEDB  (UPLO,MAXNODE,MAXNXE,MAXELE,MAXDIEL,MAXBAND, 
& ELE,xy,NLAB,ELAB,LPMAX,LPMAY,LPMAXY,APMA,LDIR, 
& DIRC,COEFFP,COEFFQ,nele,nnode,A,B, ku, 
k kl.kd.phi.Ndie) 

C 
C    ===================================================================== 

C EMBEDS LOCAL MATRIX SL OF THE ELEMENT IE INTO THE GLOBAL MATRIX 

C A OR INTO THE RIGHT HAND SIDE, AS APPROPRIATE. THIS EXPLOITS 

C PMA TYPE ABC. 

C DUMMY ARGUMENTS ARE COMMENTED IN THE CALLING MODULE 

C QUICK.FEM (C) 1997 PELOSI - COCCIOLI - SELLERI 

C This code allows the inclusion of a periodic boundary on one side 

C and PMA layers on the other three sides. This enables computation 

C of a HALF-INFINITE periodic cylinders. 

C 
C Modified to accommodate the Right Hand Side Boundary not enclosed 
C by PMA. Also hard coded to run on a specific geometry: 

C —> fivepecyl_ren.fem 

C 
C Modification only occurs in the subroutine: EMBEDB 

C 

C 
C PERRY N. VILLANUEVA 

C Air Force Institute of Technology 

C 6 January 1999 

C 
C ======== 

C    [IN] 

IMPLICIT NONE 

CHARACTER*1 UPLO    ! 'U' Stores only Upper Triangle 

! 'L' Stores only Lower Triangle 

! 'T' Stores all matrix 

integer MAXNODE,MAXNXE,MAXELE,MAXDIEL,MAXBAND,ELE(0:MAXNXE.MAXELE) 

integer NLAB(MAXNODE),ELAB(MAXELE) 

integer LPMAX,LPMAY,LPMAXY ! Label of elements on the PMA 

integer LDIR 

integer DIRC 

Label of nodes on Dirichlet boundary 

Coefficient of scattered field 

at Dirichlet boundary (Uscat=DIRC*Uinc) 
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complex CoeffP(MAXDIEL),CoeffQ(MAXDIEL),APMA,AA,BB,CC 
integer Nele,NNode,Ndie,ku,kl,kd,ie 

real   xy(2,MAXN0DE),SXE(8,8),SYE(8,8),TE(8,8),phi 

C    [IN/OUT] 

complex A(3*MAXBAND+1,MAXN0DE)    ! Left hand side matrix 

complex B(MAXNODE) ! Right Hand side vector 

C    [LOCAL] 

integer I,J ! indices 

integer IR0W,IC0L ! indexes to entries global FEM Matrix 

complex caux 
real   PI.K0.K02 

C    [EXTERNAL FUNCTIONS] 

complex CBGET 

complex EINC 

parameter (PI = 3.141592653589793238) 

KO = 2. * PI 

K02= KO * KO 

do ie=l,nele 

call ELEAMAT(MAXNODE,MAXNXE,MAXELE,XY,ELE,IE,SXE,SYE,8,TE,8) 

DO I = 1,3 

IROW = ELE(I.IE) 

IF (NLAB(IROW) .EQ. LDIR) THEN 

C     — ENFORCE DIRICHLET BOUNDARY CONDITIONS 

call CBPUT((1.,0.), 
& A,IROW,IROW,ku,kl,kd,3*MAXBAND+l,NNODE,'U') 

if (ELAB(ie).ne.LPMAX.and.ELAB(ie).ne.LPMAY.and. 

&        ELAB(ie).ne.LPMAXY) then 
B(IROW) = DIRC * EINC(Xy(l,IROW),xY(2,IROW),PHI) 

endif 

ELSE 

DO J = 1,3 

ICOL = ELE(J,IE) 

IF (ELAB(IE).le.NDIE) THEN 

C    — -AUGMENT THE GLOBAL MATRIX A 

C 

C     >N0DES ARE IN AIR (INTERIOR) 

caux = CBGET(A,irow,icol,ku,kl,kd,3*MAXBAND+l, 

& NNODE,'U') 
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if  (   (icol.eq.1895) .or. (icol.eq.1897) .or 
(icol.eq.1911) .or. (icol.eq.1913) .or 
(icol.eq.1926) .or. (icol.eq.1939) .or 
(icol.eq.1952) .or. (icol.eq.1966) .or 
(icol.eq.1981) .or. (icol.eq.1995) .or 
(icol.eq.2010) .or. (icol.eq.2026) .or 
(icol.eq.2042) .or. (icol.eq.2057) .or 
(icol.eq.2073) .or. (icol.eq.2077) .or 
(icol.eq.2078) ) then 

caux = caux + Coeffp(ELAB(IE)) 

* (SXE(i.j) + SYE(i.j)) 

* exp(-(0., I.)*k0*cos(phi)) 

- k02 * COEFFQ(ELAB(IE)) * TE(i,j) 
else 

caux = caux + Coeffp(ELAB(IE)) 

* (SXE(i.j) + SYE(i.j)) 
- k02 * COEFFq(ELAB(IE)) * TE(i,j) 

endif 

call CBPUT(caux, 

A,IR0W,IC0L,ku,kl,kd,3*MAXBAND+l,NN0DE,'U') 

-AUGMENT THE RIGHT HAND SIDE 

if ( (icol.eq.1895) .or. (icol.eq.1897) .or. 

(icol.eq.1911) .or. (icol.eq.1913) .or. 

(icol.eq.1926) .or. (icol.eq.1939) .or. 

(icol.eq.1952) .or. (icol.eq.1966) .or. 
(icol.eq.1981) .or. (icol.eq.1995) .or. 

(icol.eq.2010) .or. (icol.eq.2026) .or. 

(icol.eq.2042) .or. (icol.eq.2057) .or. 
(icol.eq.2073) .or. (icol.eq.2077) .or. 

(icol.eq.2078) ) then 

B(IROW) = B(IROW) - (coeffp(ELAB(IE))* 

(SXE(i.j) + SYE(i.j)) 

*exp(-(0., I.)*k0*cos(phi)) 

- K02*COEFFQ(ELAB(IE)) * 

TE(I,J)) * EINC(Xy(l,IC0L),xY(2,IC0L),PHI) 

else 

B(IROW) = B(IROW) - (coeffp(ELAB(IE))* 

(SXE(i.j) + SYE(i.j)) - K02* 
COEFFQ(ELAB(IE)) * 

TE(I,J)) * EINC(Xy(l,IC0L),xY(2,IC0L),PHI) 
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endif 

ELSE 

C     AUGMENT THE GLOBAL MATRIX A 

C 

C     > NODES ARE IN PMA 

if(ELAB(IE).EQ.LPMAX) then 

AA=APMA 

BB=1./APMA 
CC=APMA 

else if(ELAB(IE).EQ.LPMAY) then 

AA=1./APMA 

BB=APMA 

CC=APMA 

else 

AA=1. 

BB=1. 

CC=APMA*APMA 
endif 

caux = CBGET(A,irow,icol,ku,kl,kd,3*MAXBAND+l, 

NNODE.'U') 

if ( (icol.eq.1880) .or. (icol.eq.1894) .or. 

(icol.eq.2082) .or. (icol.eq.2085) ) then 

caux = caux + 

(SXE(i,j)/BB + SYE(i,j)/AA) 
* exp(-(0., i.)*kO*cos(phi)) 

- k02 * CC * TE(i.j) 

else 
caux = caux + 

SXE(i,j)/BB + 

SYE(i,j)/AA + 

- k02 * CC * TE(i,j) 

endif 

call CBPUT(caux, 

A,IR0W,IC0L,ku,kl,kd,3*MAXBAND+l,NNODE.'U') 

if (nlab(ele(i,ie)).eq.O) then 

if ( (icol.eq.1880) .or. (icol.eq.1894) .or. 

(icol.eq.2082) .or. (icol.eq.2085) ) then 

B(IROW) = B(IROW) - 

((SXE(i.j) + SYE(i.j)) 
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& *exp(-(0., I.)*k0*cos(phi))) 
& - K02* TE(I.J)) 

& * EINC(Xy(l,IC0L),xY(2,IC0L),PHI) 
else 

B(IROW) = B(IROW) - 

& (SXE(i.j) + SYE(i.j) - K02* TE(I,J)) 

& * EINC(Xy(l,IC0L),xY(2,IC0L),PHI) 
endif 

endif 

ENDIF 

ENDDO 

ENDIF 

ENDDO 

enddo 

RETURN 
END 
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B.2   Five-Cylinder Periodic Array Mesh Description File 

fivepecy] ._open.fem 
133 33 
1 3  1 2 3 15 23 22 21 14 55 
2 3 101 102 103 115 123 122 121 114 55 
3 3  3 4 5 16 25 24 23 15 5 
4 3  5 6 7 17 27 26 25 16 5 
5 3  7 8 9 18 29 28 27 17 5 
6 3  9 10 11 19 31 30 29 18 5 
7 3 11 12 13 20 33 32 31 19 5 
8 3 21 22 23 60 103 102 101 59 50 
9 3 103 104 105 116 125 124 123 115 5 

10 3 105 106 107 117 127 126 125 116 5 
11 3 107 108 109 118 129 128 127 117 5 
12 3 109 110 111 119 131 130 129 118 5 
13 3 111 112 113 120 133 132 131 119 5 
14 3 23 24 25 35 46 45 44 34 
15 3 25 63 105 92 78 62 46 35 
16 3 105 104 103 91 76 77 78 92 
17 3 103 60 23 34 44 61 76 91 
18 3 25 26 27 37 49 48 47 36 
19 3 27 66 107 94 81 65 49 37 
20 3 107 106 105 93 79 80 81 94 
21 3 105 63 25 36 47 64 79 93 
22 3 27 28 29 39 52 51 50 38 
23 3 29 69 109 96 84 68 52 39 
24 3 109 108 107 95 82 83 84 96 
25 3 107 66 27 38 50 67 82 95 
26 3 29 30 31 41 55 54 53 40 
27 3 31 72 111 98 87 71 55 41 
28 3 111 110 109 97 85 86 87 98 
29 3 109 69 29 40 53 70 85 97 
30 3 31 32 33 43 58 57 56 42 
31 3 33 75 113 100 90 74 58 43 
32 3 113 112 111 99 88 89 90 100 
33 3 111 72 31 42 56 73 88 99 
1 -5.375 -1 L.37E > 1 

2 -5.1875 - ■1.375 1 

3 -5.0 -1.375 1 
4 -4.0 -1.375 1 
5 -3.0 -1.375 1 
6 -2.0 -1.375 1 
7 -1.0 -1.375 1 
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8 0.0 -1.375 1 

9 1.0 -1.375 1 
10 2.0 -1.375 1 

11 3.0 -1.375 1 

12 4.0 -1.375 1 

13 5.0 -1.375 1 

14 -5.37E -1.1875 1 

15 -5.0 -1.1875 0 

16 -3.0 -1.1875 0 

17 -1.0 -1.1875 0 

18 1.0 -1.1875 0 

19 3.0 -1.1875 0 
20 5.0 -1.1875 0 

21 -5.37E -1.0 1 

22 -5.1875 -1.0 0 

23 -5.0 -1.0 0 

24 -4.0 -1.0 0 

25 -3.0 -1.0 0 

26 -2.0 -1.0 0 

27 -1.0 -1.0 0 

28 0.0 -1.0 0 

29 1.0 -1.0 0 

30 2.0 -1.0 0 

31 3.0 -1.0 0 

32 4.0 -1.0 0 

33 5.0 -1.0 0 

34 -4.65 -0.65 0 

35 -3.35 -0.65 0 

36 -2.65 -0.65 0 

37 -1.35 -0.65 0 

38 -0.65 -0.65 0 

39 0.65 -0.65 0 

40 1.35 -0.65 0 

41 2.65 -0.65 0 

42 3.35 -0.65 0 

43 4.65 -0.65 0 

44 -4.35355339059327373 -0 35355339059327373 1 

45 -4.0 -0.5 1 

46 -3.64644660940672627 -0 35355339059327373 1 

47 -2.35355339059327373 -0 35355339059327373 1 

48 -2.0 -0.5 1 

49 -1.64644660940672627 -0 35355339059327373 1 

50 -0.35355339059327373 -0 35355339059327373 1 

51 0.0 -0.5 1 

52 0.35355339059327373 -0 35355339059327373 1 

53 1.64644660940672627 -0 35355339059327373 1 

54 2.0 -0.5 1 
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55 2.35355339059327373 
56 3.64644660940672627 
57 4.0 -0.5 1 

58 4.35355339059327373 
59 -5.375 0.0 1 

60 -5.0 0.0 0 

61 -4.5 0.0 1 

62 -3.5 0.0 1 

63 -3.0 0.0 0 

64 -2.5 0.0 1 

65 -1.5 0.0 1 

66 -1.0 0.0 0 
67 -0.5 0.0 1 
68 0.5 0.0 1 

69 1.0 0.0 0 

70 1.5 0.0 1 

71 2.5 0.0 1 
72 3.0 0.0 0 

73 3.5 0.0 1 
74 4.5 0.0 1 

75 5.0 0.0 0 

76 -4.35355339059327373 
77 -4.0 0.5 1 
78 -3.64644660940672627 
79 -2.35355339059327373 
80 -2.0 0.5 1 
81 -1.64644660940672627 
82 -0.35355339059327373 
83 0.0 0.5 1 

84 0.35355339059327373 
85 1.64644660940672627 

86 2.0 0.5  1 

87 2.35355339059327373 

88 3.64644660940672627 
89 4.0 0.5 1 

90 4.35355339059327373 

91 -4.65 0.65 0 

92 -3.35 0.65 0 

93 -2.65 0.65 0 

94 -1.35 0.65 0 

95 -0.65 0.65 0 
96 0.65 0.65 0 

97 1.35 0.65 0 
98 2.65 0.65 0 

99 3.35 0.65 0 
100 4.65 0.65 0 
101 -5.375 1.0 1 

-0.35355339059327373 1 

-0.35355339059327373 1 

-0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 
0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 

0.35355339059327373 1 
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102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 

119 
120 
121 
122 
123 

5.1875 
5.0  1 
4.0 
3.0 
2.0 
1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
5.375 
5.0 1 
3.0 

117 -1.0 
118 1.0 

3.0 
5.0 
5.375 
5.1875 
5.0  1 

124 -4.0 
125 -3.0 
126 -2.0 
127 -1.0 
128 0.0 

1.0 
2.0 
3.0 
4.0 
5.0 

1.0 
0 0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 
.0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.1875 1 
1875 0 
1875 
1875 
1875 
1875 
1875 
1.375 1 
1.375 1 

375 1 

0 
0 
0 
0 
0 

129 
130 
131 
132 
133 
1 3 

,375 
,375 
,375 
,375 
,375 
,375 
,375 
,375 
,375 
,375 

3 
1 
1 
3 
1 
1 

16 3 
111 
1  1 
16 3 
111 
1  1 
16 3 
111 
1  1 

111111111111 

111111111111 

111111111111 
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6 16 3 
1 1 1 1 1 1 11111 1 1111 
111 
7 16 3 
111 1 1 1 11111 1 1111 
111 
8 3 16 
111 
111 1 1 1 11111 1 1111 
9 16 3 
111 1 1 1 11111 1 1111 
111 
10 16 3 
111 1 1 1 11111 1 1111 
111 
11 16 3 
1 1 1 1 1 1 11111 1 1111 
111 
12 16 3 
1 1 1 1 1 1 11111 1 1111 
1 1 1 
13 16 3 
111 1 1 1 11111 1 1111 
111 
14 16 4 
111 1 1 1 11111 1 1111 
111 1 
15 16 4 
111 1 1 1 11111 1 1111 
111 1 
16 16 4 
111 1 1 1 11111 1 1111 
111 1 
17 16 4 
1 1 1 1 1 1 11111 1 1111 
111 1 
18 16 4 
111 1 1 1 11111 1 1111 
111 1 
19 16 4 
111 1 1 1 11111 1 1111 
111 1 
20 16 4 
111 1 1 1 11111 1 1111 
111 1 
21 16 4 
1 1 1 1 1 1 11111 1 1111 
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1111 
22 16 4 
1111111111111111 
1111 
23 16 4 
1111111111111111 
1111 
24 16 4 
1111111111111111 
1111 
25 16 4 
1111111111111111 
1111 
26 16 4 
1111111111111111 
1111 
27 16 4 
1111111111111111 
1111 
28 16 4 
1111111111111111 
1111 
29 16 4 
1111111111111111 
1111 
30 16 4 
1111111111111111 
1111 
31 16 4 
1111111111111111 
1111 
32 16 4 
1111111111111111 
1111 
33 16 4 
1111111111111111 
1111 
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B.3   Matlab Plotting Script 

function [matrix_file] = gnu2mat(gnufile, rows, cols) 

'/, This function converts a GNU file generated by the output of the 

code found in the book "Quick Finite Elements for Electromagnetic 

Waves" by Pelosi, Coccioli, Selleri to a matrix format readable 

by Matlab. 

Syntax: 

filename = gnu2mat(GNU_file, #row, #cols); 

Perry N. Villanueva 

1 December 1998 

'/. 
index = 1; 

for i = l:rows 

for j = l:cols 

matrix.file(i,j) = gnufile(index); 

index = index + 1; 

end 
end 

figure 

set(gcf, 'Position', [152  289  946  542]) 

subplot 211 

set(gca, 'Units', 'inches') 

'/.FOR FIVE CYLINDER CONFIGURATION (PBF) , UNCOMMENT NEXT LINE 

set(gca, 'Position', [0.75 3.5 9.55 2.0]) 

'/.FOR ELEVEN CYLINDER CONFIGURATION, UNCOMMENT NEXT LINE 

'/. set(gca, 'Position', [0.75 3.25 9.55 2.0]) 

contour(matrix.file, 8) 

grid 

axis equal 

axis([0 cols 0 rows]) 

'/.title('Contour Map') 

xlabelC Pixels') 

ylabelC Pixels') 

subplot 212 

waterfall(matrix_file) 

B-12 



'/colormap (gray) 
axis([0 cols 0 rows 0 3]) 
'/.setCgcf,   'Position',   [10      396      945      340]) 
set(gca,   'Units',   'inches') 
setCgca,   'Position',   [0.75 0.55 9.55 2.0]) 
set(gca,   'Position',   [0.8500        0.7500        9.5500        2.25000]) 
view(-4,72) 
•/.title('Field Map') 
xlabelC Pixels') 
ylabelC Pixels') 
rotate3d 

'/figure 
'/waterfall (matrix_f ile) 
'/axis([0 728 0 88 0 4]) 
'/set(gcf,   'Position',   [10      396      945      340]) 
'/set(gca,   'Units',   'inches') 
'/set(gca, 'Position', [0.8500   0.7500   9.5500   2.25000]) 

•/view(-4,65) 

'/title('Waterfall Plot of Fields') 
'/xlabelC Pixels') 
'/ylabelC Pixels') 
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