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Abstract 

A second-generation fully asynchronous Fast Fourier Transform (FFT) processor 

for space applications is developed in this thesis. A high-performance patented FFT 

architecture invented by Suter and Stevens was used as the basis for a 16-point FFT 

(FFT-16) processor design. A brief derivation of the architecture, the asynchronous 

design methodologies used and space-based integrated circuit issues are presented. The 

Synopsys VLSI CAD system and a radiation tolerant design library developed by the Air 

Force Research Laboratory were used to implement the design. A critical building block 

of the FFT-16, the FFT-4, was fabricated as a cost-effective method to validate the cell 

library and the applied asynchronous design methodologies before larger point sizes are 

fabricated. 

Results from high-fidelity simulations show that the FFT-16 design has an 

efficiency of 28 nJ/Unit-Transform and has a worst case throughput of 760 ns. 

Extrapolating these results to an FFT-1024 gives an estimated efficiency of 120 nJ/Unit- 

Transform and worst case throughput of 2 |is. These results demonstrate that current 

space-based FFT processors can be replaced with a design that improves performance 

and efficiency by two orders of magnitude. 
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AN IMPROVED ASYNCHRONOUS IMPLEMENTATION 
OF A FAST FOURIER TRANSFORM ARCHITECTURE 

FOR SPACE APPLICATIONS 

1.   Introduction 

1.1       Introduction 

The goal of this research is to investigate, design and implement an asynchronous 

very large scale integrated (VLSI) circuit targeted for space applications that calculates a 

Fast Fourier Transform (FFT) using the Suter and Stevens architecture [1]. The research 

presented in this thesis is the continuation of work performed in a previous thesis [2]. An 

improved design of a 16-point FFT (FFT-16), from initial concepts to the simulation test 

results is presented. A subset of the design (an FFT-4) was fabricated using the Hewlett- 

Packard 0.5 |J,m commercial process for future analysis. 

1.2      Problem Statement 

There is an identified need for a fast, low power FFT processor for space 

applications. Theoretically, the implementation of the Suter and Stevens architecture in 

an asynchronous fashion should result in an extremely fast, low power FFT processor. 
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Such a design can also be used in the space environment by replacing the standard VLSI 

cells with radiation tolerant cells. 

The Suter and Stevens architecture inherently lends itself to an asynchronous 

implementation. However, current VLSI design tools are not capable of asynchronous 

circuit synthesis. Consequently, a large portion of this research covers the asynchronous 

design methodology. Asynchronous design implies that the global clocking strategy used 

in synchronous design is removed and replaced with a self-timing scheme, which lowers 

the energy requirement of the circuit [3]. The FASST (Fully Asynchronous Suter 

Stevens Transform) acronym used throughout this thesis refers to the asynchronous 

implementation of the Suter and Stevens architecture. 

The space application requirement is met by using a VLSI design library, 

developed jointly by the Air Force Research Laboratory (AFRL) and Mission Research 

Corporation (MRC) [4]. This unique library enables a circuit design for space application 

to be fabricated in a commercial foundry. The tradeoff for using this library is that both 

the overall die area and energy requirement is increased for the design. 

1.3      Methodology 

The first step in a VLSI design is to define the top-level function of the circuit. 

Then, initial design constraints are chosen, including the CMOS technology and the data 

word format. Goals are established for area, power and performance. The architecture of 

the design is then selected. The next step is to break down the architecture into 

manageable blocks, with well-defined interfaces and specifications. Each block is 
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developed from the behavioral level to the physical layout and simulated at each level for 

verification. When all blocks are complete, they are tested together to verify top-level 

operation. Circuit extractions from the physical layout are used to test the circuit in a high 

fidelity simulation in order to evaluate the function, performance and efficiency of the 

design. The design and verification process is repeated until the established design goals 

are met. Once the design is fabricated, it can be tested and compared to the simulation 

results [5]. 

1.4      Overview 

This thesis is organized into six chapters. The chapters are organized in a logical 

manner beginning with the problem statement and concluding with results. Chapter One 

introduces the problem, the design methodology used and includes an overview of the 

thesis. 

Chapter Two provides an overview of asynchronous circuit design methodologies, 

FFT theory and the radiation hardening of electronics. The chapter concludes with a 

presentation of other work related to this research area. The chapter highlights the 

significance of the problem and gives the motivation for this thesis. 

Chapter Three presents an overview of the FFT-16 design. The theory presented 

in Chapter Two is applied to the development of a working solution. The function of the 

top-level design and the major components are discussed. 
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Chapter Four is a presentation of the design implementation of each functional 

block. Each block introduced in Chapter Three is revisited in detail. The final design of 

each block, as well as other possible designs, are presented. 

Chapter Five is a presentation and analysis of the simulation results. Results are 

given at each level of design for the individual components as well as the results of the 

top-level design. 

Chapter Six concludes the thesis by comparing the results of this research with the 

research efforts presented in Chapter Two. Lessons learned during the design process are 

presented. Recommendations for future work in this area are also given. 
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2.   Literature Review 

2.1      Introduction 

The purpose of this chapter is to present applicable research in the subject areas of 

asynchronous design, FFT theory, and radiation hardened electronics. A literature search 

failed to identify a single design or any research, which combines these areas other than a 

previous student's thesis on the same topic [2][6]. There are a few examples of designs, 

which overlap two of these areas [7]. The chapter concludes with a presentation of other 

FFT processors that are comparable to this effort. A table is presented in Section 2.5 

summarizing the performance of these designs. 

2.2      Asynchronous Design 

Asynchronous circuit design is not a new concept in electronic circuit design. In 

fact, asynchronous circuits have been used since the 1950's but have not been widely 

adopted by modern industry [8]. Asynchronous circuits have the potential to out-perform 

synchronous circuits. However, the tools and support community are still not as mature 

as those used in the mainstream development of synchronous circuits. The following 

sections contrast the synchronous and asynchronous design methodologies [3] [9]. 
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2.2.1 Asynchronous Versus Synchronous Design 

Synchronous design implies that a global clock is used to synchronize the 

exchange of data between components in a design. Logic blocks are typically surrounded 

by latches, which save the state of the block during each clock cycle. The clock rate is 

defined by the critical path through the system [5]. 

Asynchronous design removes the global clock and replaces it with a self-timed 

protocol. Interconnected blocks communicate and exchange data with a sequence of 

handshakes [3]. 

2.2.2 Synchronous Design Flow 

Traditional synchronous VLSI circuits are designed using modern synthesis tools. 

A hardware description language (HDL) is used to describe the behavior of the circuit. 

The Very High Speed Integrated Circuit Hardware Description Language (VHDL) is the 

DoD standard and consequently was used in this effort [10]. 

Typically, a high level behavioral description of the circuit under development is 

written in VHDL. The behavioral VHDL is then translated into structural VHDL with a 

tool such as the Synopsys Design Analyzer [11]. This essentially translates the design 

from a logical algorithmic behavior to a realizable gate level structural design. Once the 

structural design is verified, a layout netlist, which describes the component connections, 

is generated from a tool such as the Synopsys Graphical Environment [12]. The circuit 

netlist is then used with a standard cell library to produce a final layout with a place and 

route tool such as the Lager Octtools [13]. Figure 2-1 summarizes the typical 

synchronous design flow. 
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Behavioral 
VHDL 

Synopsys 
Design 

Analyzer 

Structural 
VHDL 

Synopsys 
Graphical 

Environment 

Layout 
Netlist 

Plaoe&Route 
Tool Layout 

Figure 2-1. Synchronous Design Flow 

2.2.3   Asynchronous Design Flow 

While an established design flow exists for synchronous circuits, the same is not 

true for asynchronous design. No suite of design tools exists that allows an easy flow 

from behavioral VHDL to an automated layout. Similar to synchronous design, the 

asynchronous design process begins with a behavioral VHDL description. However, the 

automated process ends here and is replaced with a combination of manual design and 

partial automatic synthesis to arrive at a structural VHDL description. The design flow 

continues as normal once the structural VHDL is validated. The methods used in the 

design phase between behavioral and structural VHDL are described in this section. 

The components designed in this effort fell into several design categories. The 

fundamental mode bounded delay methodology is used for blocks with relatively fixed 

completion times. The delay insensitive design methodology applies to functional blocks 

with widely varying completion times. Burst mode design methodology applies to 

components that serve as controllers or asynchronous finite state machines (AFSMs). 

Finally, the speed independent model specifies the handshaking protocols between major 

functional blocks. These issues are presented in the following sections [3]. 

2.2.3.1      Fundamental Mode Bounded Delay Methodology 

The fundamental mode bounded delay methodology was used for functional 

blocks that had little variation in completion time [14]. This methodology assumes that 
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the delay time through a functional block is known and constant. Worst-case delays are 

used similar to a clocked circuit. The best example of this type of functional block is a 

latch. The easiest way to determine when data is fully latched is through a delay element. 

The delay element should have a slightly greater delay than the completion time of the 

logic block [3]. 

Difficulty arises in synthesizing this structure since timing information cannot be 

synthesized from behavioral VHDL. The delay element must be described at the 

structural level. The length of the delay element is determined through a layout-level 

simulation of the logic block. The results of the simulation are then back annotated into 

the structural VHDL design. Figure 2-2 shows a delay element used to model the latch 

completion time. An acknowledge (ACK) signal is asserted when the data is latched 

after the request (REQ) is generated. 

IDATA   IN> ^ATA   OUT> 

ACK> 

Figure 2-2. Fundamental Mode Bounded Delay Applied to a Latch 

2.2.3.2     Delay Insensitive Methodology 

A delay element is not suitable for functional blocks with widely varying 

completion times, since the benefit of an average delay throughput is not realized. 
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Additional logic can be added to this type of block to detect when it execution is 

complete [3]. 

VLSI synthesis tools do not have the capability to generate the completion 

detection circuit for a particular functional block. For example, they do not know how to 

synthesize the completion detection circuit for an adder. Figure 2-3 shows a typical one- 

bit adder without completion detection. 

A dual-rail adder scheme similar to the Manchester adder can be used to 

implement completion detection, as shown in Figure 2-4 [15]. The dual rail adder works 

on the principle that each stage will have either a carry out (COUT) or no carry out 

(NOCOUT) condition based on the inputs to the stage. Adding 0 and 0 will never result 

in a carry out, even if there is a carry in. Likewise, adding 1 and 1 will always result in a 

carry out, even if there is a carry in of 0. Therefore, the carry condition in these cases can 

be determined by the data to be summed alone and gives an early completion detection. 

Adding a 0 and 1 or 1 and 0 may or may not have a carry out depending on the carry in 

condition. In this case, the stage must wait for either a carry in (CTN) or no carry in 

(NOCIN) value. The end result is the completion detection circuit simply becomes the 

NOR of the COUT and NOCOUT values. Whenever one of these conditions exist, it 

indicates that all input values necessary for evaluating the sum are present and DONE is 

asserted. 
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IftDD   SUB> 

|BIN> 

lftIN>- 

ICINV 

-±L 
4^ 
it HSUM> 

COUT> 

Figure 2-3. One-Bit Adder without Completion Detection 

fcOUT> 

DONE > 

4NOCOUT> 

|NQCIN> 

Figure 2-4. One-bit Adder with Completion Detection 

2.2.3.3     Burst Mode Methodology 

The burst mode design methodology is used to design asynchronous controllers or 

finite state machines. Synchronous finite state machines are easily synthesized by using 

latches, flip-flops and clock circuitry. Asynchronous controllers or AFSMs must be 
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synthesized using a specialized design tool. Unfortunately, no commercial tools exist 

with this capability [3]. 

AFSMs can be designed by hand, but is a very tedious and error-prone process. 

Tools have been developed by universities and corporate laboratories that automatically 

synthesize AFSMs. The Most Excellent Asynchronous Tool (MEAT) is an early example 

of such a tool [16]. A more recently developed tool called 3D took the basic principles of 

MEAT and further refined them. The 3D tool was used in the design phase of this effort 

because it is kept up to date and maintained by UC San Diego [17]. 

A state table of entry and exit conditions for the state machine is provided to 3D 

by the user. An example state table is shown in Table 2-1 for a Johnson counter 

(00-»01->l 1—>10). 3D converts the state table to positive logic equations. These 

equations are then manually converted into behavioral VHDL. The Synopsys Design 

Analyzer (with structuring and Boolean optimization disabled) is used to convert the 

positive logic behavioral VHDL into negative logic structural VHDL. After the 

structural VHDL is generated, reset circuitry and corrections for fanout are added 

manually to the controller circuit. The final two-bit Johnson counter circuit is shown in 

Figure 2-5, which includes the reset circuit. Once the structural VHDL is complete, it is 

tested using a VHDL simulator. 

Depending on the complexity of the AFSM, 3D may not be able to synthesize the 

controller. The controller must then be broken down using Shannon decomposition and 

resynthesized. Once an AFSM has been synthesized and validated in VHDL, it can be 

used in a physical layout. 
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Table 2-1. 3D State Table of a Two-Bit Johnson Counter 

Present State 
0 

Next State 
1 

0 

Entry Conditions 
COUNT+ 
COUNT- 
COUNT+ 
COUNT- 
COUNT+ 
COUNT- 
COUNT+ 
COUNT- 

Exit Conditions 

BIT0+ 

BIT1+ 

BJTO- 

BJT1- 

mm^j-y,,^ 

^y-^^^^y^^yy-t>-^ 
Figure 2-5. Gate Level Schematic of a Synthesized Two-Bit Johnson Counter 

The two-bit Johnson counter example is used to illustrate how asynchronous 

synthesis tools work, but it highlights how automated AFSM synthesis does not always 

produce the optimal solution [9]. A better implementation of the two-bit Johnson counter 

is accomplished by using two D-registers, as shown in Figure 2-6. This type of counter is 
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used throughout the design. The Johnson counter was selected due to the fact that it 

changes only one bit each clock cycle, thus avoiding possible data hazards. 

BIT0> 

BIT1> 

Figure 2-6. Improved Two-Bit Johnson Counter 

2.2.3.4     Speed Independent Methodology 

Functional blocks in an asynchronous design must have a standard handshaking 

protocol in order to be compatible with other blocks. A generic functional block in an 

asynchronous design is shown in Figure 2-7. The input and output signal names shown 

here are used throughout this research effort. The REQIN signal represents the external 

request to the block to input new data. The ACKIN signal is asserted when the new input 

data is fully latched or accepted. The REQOUT signal represents the request of the 

functional block to send processed data out. The ACKOUT signal is the external 

acknowledgement from the next block that the processed data was latched or accepted. 
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REQIN 

FUNCTIONAL 
BLOCK 

REQOUT 

-4 

 . ^. 

ACKIN *ACKOUT 

Figure 2-7. Asynchronous Functional Block 

The speed independent methodology describes two standards for handshaking 

between connecting blocks. It does not assume any pre-defined delays but relies on a set 

of handshaking signals between the blocks. The two-phase model is illustrated in Figure 

2-8. It is a scheme that senses signal transitions to complete the handshake cycle. The 

first exchange is signaled by a low to high transition on REQ (1). ACK (2) responds by 

acknowledging the request. The second cycle uses the complementary set of transitions 

to complete the cycle [3]. 

1 1 

REQ 
/ 

/ 

2 
\   : 

2 : 

ACK 1 
4                             k 

i  

Cycle 1 *   Cycle 2   *; 

Figure 2-8. Two-phase Model 

The four-phase model is illustrated in Figure 2-9. It has a four-cycle handshake 

for each data exchange. Although the four-phase model appears to be more difficult to 

implement, its detection circuit is actually smaller than the two-phase model [3]. The 

four-phase model is the primary interface standard used throughout this design. 
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REQ 

ACK 

Cycle 1 

Figure 2-9. Four-phase Model 

Cycle 2 

2.2.3.5     Asynchronous Design Flow Summary 

Figure 2-10 illustrates the asynchronous design flow used in this research. 

Comparing Figure 2-10 with Figure 2-1 highlights the additional manual intervention 

necessary to arrive at a complete asynchronous design compared to a synchronous 

design. 
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Figure 2-10. Asynchronous Design Flow 

Research using the asynchronous design methodology presented additional 

challenges over those present in synchronous design. Prototype design tools and manual 

circuit design involving an iterative trial and error process were used to bridge the gaps 

between the asynchronous tools and the VLSI design tools. 
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2.3      FFT and FASST Theory 

Computing an FFT is a very efficient way to digitally convert a time domain 

signal into a frequency domain signal. A short explanation of the FFT and FASST are 

provided in this section. 

2.3.1 The Fourier Transform 

The Fourier Transform is a mathematical operation that is used to convert data in 

the time domain to the frequency domain. The basic equation is shown in Equation 2-1 

where x(t) is the time domain signal, X(f) is the transformed frequency domain 

component, and the exponential represents the Fourier series components [18]. 

X(f)=]x(t)e-J7*dt (2-1) 

To solve the Fourier Transform using a computer, the input data and calculations 

must be broken into finite segments of a given size and processed using a slightly 

different formula. This modified formula is called the Discrete Fourier Transform (DFT) 

and is introduced in the next section. 

2.3.2 The Discrete Fourier Transform 

Once can apply numerical integration to Equation 2-1 to create a problem that is 

more amenable to implementation on a computer as a trapezoidal formula since 

x(tt) = x(tn) as shown in Equation 2-2. 

JV-l 

X 
i=0 

X(fk) = J,x(ti)e-j2^,k = 0,...,N-\ (2-2) 
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Typically, one will analyze a problem where there are N data points of the 

function, which are assumed to be represented by no more than TV different sinusoids. 

Equation 2-2 reveals a complexity of TV where each operation requires a multiplication. 

Thus we can approximate the continuous Fourier transform using a discrete 

representation of the transform by letting tt = nSt and fk = mdf where — = NSt. With 

these substitutions, the discrete Fourier transform can be represented as in Equation 2-3. 

/y_l ,2mm 

X(m) = ^x(n)e~J~ (2-3) 
n=0 

N represents the number of samples of the finite sequence (which is commonly 

referred to as the point size of a DFT), x(n) represents the time domain values of the 

sequence, X(m) represents the frequency domain components of the Fourier Transform of 

x(n). There are N complex multiply operations required to solve the equation, which 

translates to 4N real multiply operations on a computer (this makes a total of N x4N or 

4N2 operations which is expressed as 0(N2)). By taking advantage of complex conjugate 

symmetry, the DFT can be solved in less than 0(N2) operations. This concept is the 

premise of the Fast Fourier Transform (FFT) [18]. 

2.3.3    The Fast Fourier Transform 

The FFT was developed in the 1960's when signal processing was becoming an 

interesting research tool. Limited computational resources sometimes prohibited using 

the DFT to evaluate large point sizes. An algorithm, which simplified the computation of 
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the DFT, was developed and was later called the Fast Fourier Transform [19]. This 

transform is briefly described in this section. 

,2K 

The first step in simplifying the DFT is to use the substitution WN = e   N . The 

DFT can be expressed as shown in Equation 2-4. 

AT-l 

X(m) = Ydx(n)Wj 
nm 

N (2-4) 
«=o 

By taking advantage of the complex conjugate symmetry of WN, the number of 

overall computations is reduced from 0(N2) down to 0(Nlog2N) which classifies the 

algorithm as a "fast" Fourier Transform or FFT. This is an extremely advantageous 

property as such a reduction before implementing an algorithm in software or hardware 

will realize a substantial performance increase. The comparison of the number of 

multiplication operations required by the FFT and DFT is clearly shown in Figure 2-11 

[18]. 

DFT vs. FFT Compuatational Demand 

M    60000 
c o 
'S    50000 
«0 

16 32 

Point Size 

64 

Figure 2-11. FFT vs. DFT Computational Comparison 
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2.3.4    The Suter and Stevens Fast Fourier Transform Architecture 

The Suter and Stevens FFT architecture is pipelined, extremely local and 

eliminates the need for shared memory. It utilizes a small number of logic blocks that are 

replicated throughout the architecture and operate in parallel [20]. 

A simple derivation is given here of the architecture. Referring to Equation 2-4, 

the substitution N = NjN2 is made. Using the division theorem for integers, m = ni2Ni + 

mi and n = niN2 + n2 where mh m = 0,l,...,Ni-l and m2, n2=0,l,...,N2-l. The polyphase 

components [21] of x(n) are defined as xk(n) = x(Mn + k), k = 0,...,M-1- The FFT can be 

broken into interdependent equivalent classes of calculations, or similar types of 

calculations, by letting XmI(m2) = X(m2N] + mi) and xn2(nj) = x(n2N2 + n2). This 

polyphase notation is used to represent Equation 2-3 as Equation 2-5 

N2-lNl-l . In (m2Nx+ro,)(«, Af2 +n2) 

xmiK)=22X("i)e~7        N (2-5) 
«2=0 «1=0 

which is equivalent to Equation 2-6. 

N2-lN1-l _ .2ron2JV1n1Af2        ,2nrn2JV1n2        .2nrniniN2        .2mnxn2 

^K^XiXC«,)^     N     e1    »    e'~^~e''^r      (2-6) 
n2 =0 «j =0 

Equation 2-7 is the result of factoring and simplifying the first exponential term to 

unity. 

_ .2mnxn2 N,-1 .2ianxnx N7-\ 

*miK)=X 
»2 =0 

e     N 

n,=0 

-1    „ 
(2-7) 

Using the WN substitution, Equation 2-8 mathematically describes the FASST 

architecture. 
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AT,-1 

^K)=I 
n,=0 

#i 

/>i=0 

BIjIIi Wm2"2 
"JV2 

(2-8) 

Finally, Equation 2-8 is expressed in hardware by Figure 2-12. 
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Figure 2-12. FASST Generic Point Size Block Diagram [20] 

Figure 2-12 implies that there are several basic components of the architecture. 

The iiV2 blocks are decimators, which break down the TV input values into N} concurrent 

streams at a frequency of 1/ Nj. The Ni and N2 FFT blocks are the foundational FFT 

components. The ® components are the complex multipliers. The Nj constants store the 

appropriate constant values depending on the point size. The large boxes are routing 

areas for post-multiplied values before they are processed by the N2 FFT. The final 

component is an expander, which is shown as tiV; in the figure. The expanders compose 
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the output values of the N2 FFT into the correct output order and reduce the frequency by 

a factor of N2. An overview of these components is provided in Chapter Three and a 

detailed presentation of how they were implemented is presented in Chapter Four. 

2.4      Radiation Hardening of Electronics 

The term radiation hardening originated from a class of military electronics that 

had to operate through and survive the most severe radiation environments. Although 

many applications require protection from radiation, they do not require the highest level 

of protection attainable. Cost factors dictate that application specific electronics only be 

radiation tolerant. A variety of methods can be used to protect a circuit from the effects 

of radiation and several of them are described in this section [22]. 

The need has been demonstrated for a high performance FFT processor designed 

for the space environment and has driven the requirement to make the product of this 

research radiation tolerant. The space environment introduces many hazards not present 

on earth. Additional design measures must be taken to prevent these hazards from 

impacting the operation of this design. 

2.4.1    The Need for Radiation Hardening 

The United States Air Force has an interest in circuits that are able to perform in a 

radiation environment. Circuits used in space must have some degree of radiation 

tolerance. This effort explores two categories of radiation exposure: long term total 

ionizing dose and short lived single event effects [22]. 
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2.4.1.1     Total Ionizing Dose 

Complementary metal oxide semiconductor (CMOS) circuits account for a 

significant majority of the world's electronic circuits [5]. They degrade in a radiation 

environment due to the total accumulated dose of radiation. This degradation is seen as a 

negative shift in the transistor threshold voltage and decrease in gain. With enough 

voltage threshold shift, the circuit will start consuming power even when not switching. 

The decrease in gain causes the transistors to become harder to switch. After extended 

exposure to radiation, the circuit will cease to function [23]. 

The main source of degradation comes from the interaction of ionizing radiation 

with the gate and field oxides (Si02) in the device structure. The gate oxide is a thin 

high-quality oxide used to insulate the gate contact from the transistor channel. The field 

oxide is a thick low-quality oxide used to isolate metal traces from one another [22]. 

Ionizing radiation causes the formation of electron-hole pairs in the gate oxide. 

Electrons have a much higher mobility than holes in Si02 and are attracted to and swept 

out of the gate in a nMOS transistor. The holes become trapped and migrate toward the 

transistor channel. This results in the eventual buildup of positive charge above the 

transistor channel and acts like the charge that is present when voltage is applied at the 

gate. As more charge is trapped, the voltage threshold of the nMOS transistor becomes 

more negative, which means it becomes easier to turn on. With enough shift in threshold 

voltage, the transistor will be turned on without a gate voltage applied. Conversely, a 

pMOS transistor becomes more difficult to turn on. Figure 2-13 shows how the gate 

voltage versus drain current curve changes resulting from exposure to radiation in a 

nMOS transistor [23]. 
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Figure 2-13. I-V nMOS Curve [23] 

The field oxide also traps charge due to ionizing radiation. The trapped positive 

charge along the edges of the nMOS transistor creates a leakage channel. Leakage paths 

can also form between transistors through the field oxide. This constant leakage 

contributes to increased power consumption [22]. 

Figure 2-14 illustrates how a circuit exposed to a radiation environment slowly 

increases power consumption and reduces the operating frequency. Eventually, the 

circuit will cease functioning when the power required by the degraded electronics 

exceeds the output capability of the power supply. Premature failure can also occur when 

the output voltage swing of the transistors becomes insufficient to drive successive stages 

or when the timing is degraded to the point where the circuit does not operate properly 

[23]. An important thing to note about an asynchronous space design is that it will 
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automatically adjust its operating frequency which can potentially extend the life of the 

circuit. 
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Figure 2-14. Total Dose Effects [23] 

2.4.1.2     Single Event Effects 

When a high-energy particle passes through a circuit and causes a disruption in 

circuit operation, it is classified as a single event effect (SEE). For example, a proton or 

ion passing through a latch could change the value of a stored bit. This event is called a 

single event upset (SEU) [24]. 

Protons and high-energy heavy ions typically cause SEUs. Space vehicles 

passing through the South Atlantic anomaly, where there is a high concentration of 

protons can experience SEU activity in that region. These particles create a temporary 

presence of an abundance of free carriers in the transistor channel region. The free 

carriers in effect turn the channel on [24]. 

2-20 



If a channel is turned on in a combinational logic circuit, the effect is seen as a 

spike in the output data and usually does not affect system operation. However, if a 

channel is turned on that is part of a memory structure, such as a latch, it can upset the 

state of the latch. Upset can only occur if enough carriers are present in the transistor 

channel to turn it on strongly enough to change the state of the latch. SEU can be 

corrected by refreshing memory locations on a periodic basis [24]. 

Another effect seen in CMOS is single event latchup (SEL). SEL describes the 

phenomenon that occurs when inactive parasitic transistor regions (pnpn structure) are 

turned on by a high-energy particle. These pnpn regions are formed in CMOS layouts 

due to the close placement of nMOS and pMOS transistors and have the characteristics of 

a silicon controlled rectifier (SCR). If a particle with enough energy passes through the 

controlling pn junction of the SCR, it can switch the SCR on. The only way to turn the 

SCR off is with a power cycle [24]. 

2.4.2    Methods of Radiation Hardening 

Radiation hardening was first used by the military to ensure that critical systems 

would be operative during a nuclear war [22]. However, this technology has become 

applicable to commercial systems as more satellites are being placed in orbits with 

elevated radiation levels. There are many ways of achieving radiation hardness. Each 

can be used individually or combined to achieve the highest level of radiation tolerance. 

Shielding, fabrication process, and design layout techniques are typical methods used to 

achieve radiation hardness [22]. 
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2.4.2.1 Radiation Hardening through Shielding 

The most intuitive way to protect a circuit is by enclosing it in a metal box thick 

enough to shield against all radiation. This is impractical, especially if it is to be used on 

a spacecraft where weight is a concern. Shielding usually involves surrounding 

electronics with 200-300 mils of aluminum, which is usually provided by the satellite 

body. This shielding will block out low-energy particles, but does little to stop high- 

energy particles. Additional protective measures to ensure radiation tolerance are 

discussed in the next sections [24]. 

2.4.2.2 Radiation Hardening through Fabrication 

The most sophisticated but costly way to harden a circuit is to alter the fabrication 

process. The thickness and growth method of the gate oxide is altered. Thinner gate 

oxides are more resistant to total ionizing dose. High quality oxides also increase total 

ionizing dose resistance. Both of these methods work by reducing the amount of charge 

trapped in the oxide. These methods drive up the cost, as thin oxides require precise 

controls and high quality oxides require more time to grow [22]. 

Another fabrication technique used to increase radiation hardness is to grow the 

transistor structures on a high quality insulating material. This method reduces the 

frequency of single event effects. By growing devices on an insulator, the parasitic 

transistor region is eliminated, thus preventing SEL. SEU is also reduced, as line charge 

formation from an ion strike is minimized [24]. 
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2.4.2.3     Radiation Hardening through Layout 

Another method for increasing radiation tolerance of a VLSI circuit is to change 

the design rules by which the circuit is laid out. Usually this results in a larger area due 

to high drive strength devices, implying a loss of power efficiency [22]. 

Radiation hardening through layout is the only viable method of producing a 

radiation tolerant design for a thesis, as the design can be fabricated on an inexpensive 

commercial process line. The only additional cost comes from the increased area 

requirement. The gate and pad library designed jointly by AFRL and MRC used in this 

effort achieves maximum radiation tolerance from a commercially fabricated circuit. The 

library is designed for fabrication using the HP 0.5 urn process [4]. 

Anooarn-FETtisnsistorgeometiy 

Figure 2-15. Radiation Tolerant Layout of an Inverter [4] 

Radiation tolerance to total ionizing dose and single event effects is achieved 

through layout. A radiation tolerant inverter is shown in Figure 2-15. Total ionizing 

dose effects are minimized by the use of annular geometry nMOS transistors. This 

geometry minimizes the shift in V, by preventing the buildup of trapped charge near the 
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active region. The transistors are surrounded with highly doped guard rings, which 

prevent leakage through the field oxide separating the transistors and reduce SEL. High 

drive strength transistors reduce SEU and lengthens the life cycle at the cost of some 

efficiency [4]. A benefit of using the HP 0.5 (Xm process is that it demonstrates a higher 

tolerance to total ionizing dose than other similar processes. Due to the smaller feature 

size, its SEU tolerance is lower than larger technologies [25]. 

2.5      FFT Comparison 

There are numerous FFT solutions from single board computers to application 

specific integrated circuits. However, there is no single chip that has all the qualities 

discussed in this chapter, except for the previous thesis effort. This section presents data 

found on FFT processors designed for space, low power, speed and a short summary of 

the previous thesis effort. 

2.5.1    General Purpose FFT Processors 

The most common method of computing an FFT in space is through a general 

purpose radiation hardened microprocessor. One such processor is the RAD 6000, which 

is the IBM R/S 6000 processor fabricated by Lockheed Martin's radiation hardened 

fabrication process [26]. 

General-purpose machines are a poor example for comparison of power versus 

speed, as they are generally not optimized for FFT calculations and use a significant 

amount of power. For example, the RAD 6000 in a low power configuration consumes 

2.5 Watts when running at 2.5 MHz, which translates to about 2 MIPS [26]. 
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A radiation hardened processor optimized for Digital Signal Processing (DSP) is a 

better comparison. Texas Instruments has fabricated a radiation-hardened version of their 

C40 DSP chip. Specifications on the commercial version are published. The assumption 

should be made that the space bound version has a lower performance than the 

commercial version [27]. 

2.5.2 Low-Power FFT Processors 

An outstanding research effort in low power FFT processors is ongoing at 

Stanford University. An FFT-1024 processor, called Spiffee, was designed and 

fabricated with low power in mind [28]. It has a high efficiency of 24.7 nJ/Unit 

Transform. The design is based on a clocked radix-2 decimation in time form of the FFT 

with a core butterfly processor and uses low Vt transistors. The core of the chip operates 

at a lower voltage than the I/O circuitry. This design is very sensitive to radiation and 

noise and is not suitable for space application. 

2.5.3 High-Performance Processors 

A processor designed for speed alone, called COBRA, was investigated to get an 

idea what the high-end computational speed is for computing a 1024-point FFT [29]. 

The COBRA architecture implements a clocked radix-4 decimation in time form of the 

FFT. It uses multiple butterfly processors connected through a switch matrix. A single 

COBRA chip can only execute an FFT-64. Sixteen chips are used in parallel to compute 

an FFT-1024. This design is also not suitable for space, due to the custom multiple chip 

implementation of the FFT-1024. 
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2.5.4 Previous Thesis Research 

The previous thesis research developed the first implementation of the FASST 

architecture [2]. The design style used was different than the one that is presented in this 

thesis. An effort was made to produce a small implementation, which used core ALUs 

connected to memory banks and coordinated with one-hot style controllers [3]. A 6-bit 

FFT-4 test chip was fabricated, however the chip unfortunately had design errors which 

prohibited the determination of any performance data. Simulation data was available 

detailing the performance of the FFT-16 and extrapolations to an FFT-1024. 

2.5.5 Performance Comparison 

Table 2-2 gives a comparison of the FFT processors discussed in the previous 

sections. This data was obtained from an FFT comparison Internet site maintained by 

Stanford University [30]. Background papers were checked to verify the published data. 

The data necessary to verify the Spiffee throughput time and the COBRA efficiency was 

not available. These two results should be considered unreliable estimates [31]. 

Table 2-2. A Comparison of FFT Processors 

Processor 
Name Design Feature 

Dataword 
Size & Type 

Supply 
Voltage (V) 

FFT-1024 
throughput 
time (us) 

Efficiency 
(nJ/Unit 

Transform) 

C40 Space 
32-Bit 

Floating 
Point 

5.0 1298 5704 

Spiffee Low Power 
20-bit 

Fixed Point 3.3 30 24.7 

COBRA Speed 
23-bit 

Fixed Point 5.0 9.5 71.4 

FASST 
Asynchronous, 
space & low 
power 

16-bit 
Fixed Point 3.3 10 120 
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2.6      Conclusion 

The goal of this thesis is to design a fast, efficient FFT processor suitable for 

space. This chapter covered the basics of asynchronous design, FFT theory and radiation 

hardening of electronics to support the goal of the thesis. The final section compared 

FFT processors that are the best in their category with the results from a previous thesis. 

The results of the previous thesis demonstrated that the efficiency and performance 

achieved using the FASST architecture is exactly what was desired. The estimated FFT- 

1024 performance and efficiency shows an improvement of two orders of magnitude. 

This comparison motivates the development of an improved functional FFT using the 

FASST architecture. 
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3.   Design Overview 

The goal of this design is to implement a functional FASST design in silicon. A 

16-point FFT was chosen as the base-case to prove that the FASST architecture works 

and to measure the performance of this implementation. It also utilizes all of the 

necessary components which are used in arbitrarily large FFTs. 

This chapter discusses what the design constraints are and how they impacted the 

VLSI design. The functionality of the top-level design is described, as well as the 

functionality of the major components. Chapter Four revisits these components in greater 

detail down to the gate level. 

3.1      Design Constraints 

This section covers design constraints imposed on the selection of the cell library, 

data type and point size. The thesis sponsor recommended these constraints. 

3.1.1    Cell Library 

The use of a radiation tolerant VLSI cell library was the method chosen to meet 

the space application requirement. The radiation tolerant library cells provided by AFRL 

were designed for fabrication on the commercial HP 0.5 |im foundry process line [4]. 

The size of the radiation tolerant cells is a notable feature. Consider the example 

of the difference in size between a radiation tolerant minimum-sized inverter and a 

standard minimum-sized inverter in the Lager IV distribution [13]. A comparison is 
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illustrated in Figure 3-1. The Lager inverter measures 68?ixl6A, while the MRC cell 

measures 124tac40A, [4]. 

Vdd! Vdd! 

GND! 

0* 
GND! 

Vdd! 

GND! 

Vdd! 

Figure 3-1. Inverter Size Comparison [13][4] 

Several design features were engineered into the radiation tolerant library to 

enable them to be densely packed. The cells are symmetrical and the rings around the 

cells are allowed to overlap the rings of the nearest neighbors. All of the routing within 

the cells is at the lowest level metal, which allows routing of multiple traces of higher 
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level metals directly over the cells. These design features allow the overall design size to 

be roughly twice as large as a minimum sized design, provided that a high performance 

router is used [4]. 

The cells are not optimally power efficient because they are not minimum sized. 

The choice of using the asynchronous design approach was not only to achieve a faster 

design, but also to compensate for the additional power consumption of the radiation 

tolerant library. The HSPICE [32] plot of power versus time in Figure 3-2 indicates that a 

single radiation tolerant inverter (dashed line) uses more power (area under the curve) 

than a minimum sized inverter (solid line) by a factor of two. This additional power 

consumption is necessary to overcome the SEU effects in memory structures discussed in 

Chapter Two. 
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Figure 3-2. Inverter Power Use Comparison 

3.1.2   Data Type and Size 

The data types used in a DSP processor are integer, fixed point, block-float or 

floating-point. The size and type of the data greatly affects the design size and 
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complexity. Typically, a commercial processor will use a floating-point or block-float 

format to enable a wide product application. If the input and output data are properly 

scaled, floating point format is not necessary and more efficient designs can be realized. 

A 16-bit word size for the real and imaginary components was chosen. This data format 

is shown in Figure 3-3. 

15 12 11 0 

< >« ->"«- 
+/-      Ordinate   ' ' Mantissa 

Figure 3-3. 16-bit Data Word Format 

This data format chosen allows twelve bits of resolution in the mantissa. This 

implies that the data word can represent a value of 1000.0000000000002 (-8.O10) to 

0111.1111111111112(7.999755859375io). 

3.1.3   Project Point Size 

A 16-point FFT (FFT-16) is the minimum size used to demonstrate the FASST 

architecture. The basic building blocks for this base-case are the 4-point FFT (FFT-4) 

and the complex multiplier [20]. The FFT-4 proved to be an appropriate building block 

for proving the concept of this thesis design and was fabricated. The FFT-16 may be 

fabricated in the future by AFRL depending on the success of the FFT-4 fabricated chip. 

3.2      FFT-16 Design 

The FASST architecture can be applied to any point size, provided that N=N!N2. 

To demonstrate the functionality of the FASST architecture, an FFT-16 (N=16) 

3-4 



implementation with Ni = N2 = 4 was chosen. This implies that the FFT-4 will comprise 

the basic building block of the design. 

The W^1"1 matrix must be used to determine the constants used in the FFT-16. As 

stated previously, for an FFT-16, N=16 and m\,m will be 0,1,2,3. The W^"2 matrix is 

shown in Equation 3-1. 

Wmi"2 
"16 

KK16       "16 

w, 
w    w    w    w 
"16       KK16       VK16       "16 

(3-1) 

Using the N=16 vector constant map in Figure 3-4, W^1"2 can be represented with 

complex constants as shown in Equation 3-2. 

W8< + W° 

Figure 3-4. FFT-16 Vector Constant Map 
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Now that all the components are derived and defined, the overall generic block 

diagram in Figure 2-12 applied to the FFT-16 (with N2=N2 = 4) results in a data flow 

block diagram (with simplified constants) as shown in Figure 3-5. It is interesting to note 

that other texts have presented this data flow block diagram with no implication made 

that can be implemented in an asynchronous nature, as in the FASST architecture [33]. 
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x(14)—► -jW2 >X(9) 
 » —+X(13) 

1 

x(5}-+ 

FFT-4 (2) 

0       0 
1     1 
2 2 
3 3 

FFT-4 (6) 

0       0 
1     1 
2 2 
3 3 

W \-+X(2) 

W2 —*X(8) 

W3 -^X(W) 
i ► —*X(14) 

1 
FFT-4 (3) 

0       0 
1     1 
2 2 
3 3 

FFT-4 (7) 

0       0 
1     1 
2 2 
3 3 

x(3)—» 

x(7)—+ 
x(11)—► 

W3 —+X(3) 

-jW2 ~^X(7) 

X(15)—► -W —*X(11) 
—*X(1S) 

Figure 3-5. FFT-16 Data Flow Block Diagram 
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The data flow block diagram in Figure 3-5 implies that an FFT-16 will require 

eight FFT-4 components (0 through 7) and only three complex multipliers because the 

outputs of FFT-4 (0) are multiplied by one. 

Additional components are needed to route the control signals and store the 

constant values. The decimator and expander are responsible for routing incoming data 

and ordering outgoing data, respectively. The crossbar is responsible for handling the 

interconnection between the input and output FFT-4 units. 

Sections 3.2.1 through 3.2.6 give an overview of the composition and function of 

each major component of the FFT-16. Section 3.2.7 combines the components and 

describes the FFT-16 operation at the top level. 

3.2.1    FFT-4 

The FFT-4 computes the four-point FFT of the input sequence. The derivation of 

this base-case FFT is presented to illustrate how the math correlates to a physical design. 

Using Equation 3-3, the FFT-4 is described as in Equation 3-3. 

X(m) = WAx{n) (3-3) 

Equation 3-1 can be expanded into matrix format to show the values of the W4 

coefficients. This expansion is shown in Equation 3-4. 

X(0) w4°  w?  <  wf ~x(0) 

XQ) <   wl   w4
2  wl 41) 

X(2) w?  wl   w4
4  w4

6 
x(2) 

X(3)_ _w°  wl  w?  w4
9_ _x(3)_ 

(3-4) 
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By using the W4 vector map in Figure 3-6, the ^constants can be evaluated (i.e. 

W = 1, W = -j, etc. where j = v-1 .)■ The vector map is periodic, which means, for 

example, W° = W4. The new expression is shown in Equation 3-5 with lvalues replaced 

with constants. 

Figure 3-6. FFT-4 Vector Constant Map 

X(0) 1111 x(0) 

X(l) 1   -j   -1     j x(l) 

X{2) 1-11-1 x{2) 

X{3) 1     j     -1   -j x(3) 

(3-5) 

Separating the matrix into individual equations yields Equations 3-6 though 3-9. 

X (0) = x(0) + JC(1) + x(2) + JC(3) (3-6) 
X(l) = x(0)-jx(l)-x(.2) + jx(3) (3-7) 
X(2) = x(0)-x(Y) + x(2)-x(3) (3-8) 
X (3) = x(0) + jx{\) - x{2) - jx{3) (3-9) 

Inspection of these equations reveals that there are twelve complex add operations and 

four complex multiplies. The complex multiplies are eliminated by substitution giving 

16 additions or subtractions. By letting a = x(0) + x{2), b = x(l) + x(3), c = x(0) - x(2), 
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and d = x(l) - x(3), Equations 3-6 through 3-9 are represented by Equations 3-10 through 

3-13. 

X(0) = a + b (3_10) 

X(l) = c-jd (3-11) 
X(2) = a-b (3_12) 
X(3) = c+jd (3.13) 

Expressing the complex variables as real and imaginary components yields Equations 

3-14 through 3-17. 

Re{X(0)} + jIm{X(0)} = Re{a} + jIm{a} + Re{b} + jIm{b} (3-14) 
Re{X(l)} + jIm{X(l)} = Re{c}+ jlm{c}- j(Re{d} + jlm{d}) (3-15) 
Re{X(2)} + jlm{X(2)} = Re{a} + jlm{a}-(Re{b}+ jlm{b}) (3-16) 
Re{X(3)} + j!m{X(3)} = Re{c} + jlm{c} + j(Re{d} + jlm{d}) (3-17) 

Finally, expressing Re{Z} and Im{Z} separately with; factored through, the final 

Equations 3-18 through 3-25 are realized. 

Re{X(0)} = Re{a} + Re{6} (3-18) 
Im{X(0)} = Im{a} + Im{fc} (3-19) 
Re{X(l)} = Re{c} + Im{flf} (3-20) 
Im{Z(l)} = Im{c}-Re{J} (3-21) 
Re{X(2)} = Re{a}-Re{fc} (3-22) 
Im{X(2)} = Im{a}-Im{Z>} (3-23) 
Re{X(3)} = Re{c}-Im{tf} (3-24) 
Im{X(3)} = Im{c} + Re{rf} (3_25) 

The FFT-4 can then be accomplished with only 16 individual add or subtract 

operations and no complex multiplies. No complex multiplies makes the FFT-4 an ideal 

base-case. Figure 3-7 illustrates the final layout of addition and subtraction operations. 
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Re{d} 

>   Re{X(0)} 

>   lm{X(0)} 

>   Re{X(1)} 

*   lm{X(1)} 

>   Re{X(2)} 

>   lm{X(2)} 

►   Re{X(3)} 

►   Im {X(3)} 

Figure 3-7. FFT-4 Block Diagram For 16 Add/Subtract Operations 

3.2.2    Complex Multiplier 

The hardware implementation of a complex multiply must model Equation 3-26, 

which is the mathematical definition of the multiplication of two complex values X and Y. 

Equation 3-27 gives the equivalent method for multiplication in hardware that has 

separate real and imaginary data buses, as in this design. 

XY = (Re{X} + jIm{X})(Re{Y} + jIm{Y}) (3-26) 

XY = (Rc{X} + jIm{X})(Rc{Y} + jlm{Y}) 

= Re{Z}Re{7}-Im{X}Im{y} + ;(Re{X}Im{7} + Re{7}Im{Z}) 
(3-27) 

The design pursued in this research uses asynchronous building blocks to produce 

a fully asynchronous complex multiplier. The complex multiplier block diagram is 

shown in Figure 3-8. 
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Re{Xin} —f- 

Re{Yln} -» 

Re{Z0Ut} 

lm{Z0Ut} 

lm{Xln} —* 

"»<Yln> 

Figure 3-8. Complex Multiplier Layout 

3.2.3    Decimator 

The decimator is a functional block that takes the ordered input data (;t(0) through 

x(15)) and routes them to the respective FFT-4 blocks shown in Figure 3-5. The values 

JC(0), x(4), x(8) and x(12) are sent to the first FFT-4. The values JC(1), x(5), x(9) and JC(13) 

are sent to the second FFT-4. The next two groups of values are sent to the third and 

fourth FFT-4 blocks, respectively. 

This block is implemented with a two-bit Johnson counter that routes the FFT-16 

REQIN and ACKIN signals to the REQIN and ACKIN lines of the first four FFT-4s. 

The connections are shown in Figure 3-9. The data is transferred from the input bus to 

the FFT-4s through a shared input bus corrected for fanout. This design would require 

modification if it were used in a high-speed design. 
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REQINO 

ACKIN3 

Figure 3-9. Decimator Control Signals 

3.2.4   Expander 

The expander performs the exact opposite operation of the decimator described in 

the previous section. It takes the output stream from the final set of FFT-4 blocks and 

orders the values so they appear as X(0) through Z(15) on the output. When X(0) becomes 

available from FFT-4 (4), it is sent out first. When X(l) becomes available from FFT-4 

(5), it is sent out next. The sequence is repeated until all 16 values are sent out. 

Components similar to the ones used in the decimator are used in the expander to 

route the control signals. The control signals are shown in Figure 3-10. The data is 

routed through a mux controlled by the expander hardware. 

REQOUT4 

ACKOUT4 
REQOUT5 

ACK0UT5 
REQOUT6 

'ACKOUT6 
REQOUT7 

ACKOUT7 

Figure 3-10. Expander Control Signals 
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3.2.5    "Crossbar" 

The "crossbar" is responsible for handling the interconnections between in the 

input FFT-4s and the output FFT-4s, as shown in Figure 3-5. Output values from the 

input FFT-4s are handled using the same method as the expander. In effect, the four pairs 

of REQOUT/ACKOUT signals are reduced to a single pair of REQOUT/ACKOUT 

signals. Then, according to Figure 3-5, the first four available values are sent to FFT-4 

(4). The next four are sent to FFT-4 (5), and so on. 

The crossbar is implemented with an expander coupled to a divide by four 

element. The data is passed on a shared bus with tristate buffers that the crossbar 

controls. The signals are shown in Figure 3-11. 

REQOUTO^ REQIN4^ 

'ACKOUTO 'ACKIN4 

REQOUT1 

CROSSBAR 

BEDING 
i * 

■4 1 4 
ACKOUT1        '  'ACKIN5 

RFOOIIT? REQIN6 
<*  

ACKOUT2 ACKIN6 

REQ0UT3^ REQIN7^ 

ACKOUT3 'ACKIN7 

Figure 3-11. Crossbar Control Signals 

3.2.6    Constant Banks 

There are three constant banks, which store the values of the complex constants 

for multiplication with the first stage FFT-4 results, as shown in Figure 3-5. These 

constant banks are created with combinational logic controlled by an AFSM. 
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3.2.7   Putting the FFT-16 Together 

Now that each component has been described, the top-level picture can be 

presented. The components interconnected by the control and data paths are shown in 

Figure 3-12. 

DATA_IN(31:0)- 

D 
E 
c M 
i 

M 
A 
T 
0 
R 

FFT-4 
0 

DATA_BUS(31:0] 

CONSTANTS 1 

FFT-4 
1 

CPLXMULT 

1 > 

CONSTANTS 2 

FFT-4 
2 

CPLXMULT 

2 > 

CONSTANTS 3 

FFT-4 
3 

CPLXMULT^ 

3 > 

FFT-4 
4 

FFT-4 
5 

FFT-4 
6 

FFT-4 
7 

Figure 3-12. FFT-16 Components 

-► DATA_OUT(31:0) 

3.3       Design Conclusion 

This chapter outlined the hardware required for an FFT-16 using the FASST 

architecture. The FASST architecture produces a layout that is highly localized and 

reuses major components, as seen in Figure 3-12. This lays the groundwork for the 

detailed discussion of each component in Chapter Four. 
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4.   Design Implementation 

This chapter presents the design details of each component discussed in Chapter 

Three. The chapter begins by looking at the FFT-16 top level design and then discusses 

the top-level operation. Other designs considered for each component are also presented. 

4.1      FFT-16 

The FFT-16 executes the FFT on an input data stream. The top-level block 

diagram is shown in Figure 4-1. The complex values x(0) through x(15), are fed in order 

on the DATA_INR (real component) and DATA_INI (complex component) input buses. 

The transformed values X(0) through X(15) appear on the output buses DATA_OUTR 

and DATA_OUTI in order as evaluated by Equation 2-8 for N=16 and N!=N2=4. Each 

data input and output cycle takes place with a four-cycle handshake. 

REQIN 

FFT-16 

REQOUT 

ACKIN 

DATA INR 

ACKOUT 

DATA OUTR 

DATAJNI DATA_OUTI 

Figure 4-1. FFT-16 Top Level 
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The FFT-16 is composed of six major components, as shown in Figure 4-2. The 

FFT-4, complex multiplier, decimator, expander, crossbar and constant banks are 

discussed in detail in the following sections. 

DATA_IN(31:0)- 

D 
E 
C   l-J 
I 

M 
A 

FFT-4 
0 

OATA_BUS(31:0) 

CONSTANTS 1 

FFT-4 
1 >-; 

CONSTANTS 2 

FFT-4 
2 >  .= 

CONSTANTS 3 

FFT-4 
3 

> 

FFT-4 
4 

FFT-4 
5 

FFT-4 
6 

FFT-4 
7 

-► DATA_OUT(31:0) 

Figure 4-2. FFT-16 Components 

4.2      FFT-4 

Previous research efforts have explored several architectures of the FFT-4. The 

most recent effort used 16 registers and 2 ALUs (add/subtract units) [2]. The author's 

recommendations for continuation suggested that there might be more simple approach to 

the one that was implemented. The design suggested was to use 16 dedicated add and 

subtract units to accomplish the 16 add and subtract operations for the FFT-4 instead of 

two ALUs. 
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The idea of simplification was taken a step further in this research. A design was 

pursued that used only 8 latches to latch the inputs and 8 ALUs. The reduction from 16 

to 8 adders was possible by realizing that Equations 3-16 through 3-23 can be reduced to 

four equations by simply switching the operator in the matching equations. For example, 

Equation 3-16 is identical to 3-20 with the exception of the operator. The control for the 

design proved to be more complex than the 16 element option, but it produced a design 

that had several advantages. The area was reduced by over 50% and the large fan-outs 

present were also reduced by 50%. The energy efficiency does not change much as the 

same number of switching operations takes place although a small gain is realized due to 

the decreased circuit fan-out. Figure 4-3 illustrates the interconnection of the eight ALUs 

used to accomplish the FFT-4 calculation. 

Re {x(0)} 
Re {x(2)} 
Re{x(1)} 
Re {x(3)} 
lm{x(1)} 
Im {x(3)} 
Im {x(0)} 
Im {x(2)} 

> Re {X(0)} 
Re {X(2)} 
Re{X(1)} 
Re {X(3)} 

Hm{X(1)> 
Im {X(3)} 

-* Im {X(0)} 
- Im {X(2)} 

Figure 4-3. FFT-4 Block Diagram Using 8 ALUs 

This design is much smaller in area than the one previously reported [2]. Table 

4-1 highlights the difference in area between the previous design and the one developed 

in this research effort. The area of the 2-ALU/16-Register design is extrapolated from 

the original size of 6 bits to 16 for comparison. 

4-3 



Table 4-1. FFT-4 Area Comparison 

Design Dimensions Total Size 
2-ALUs, 16-Registers 9242k x 8925^ 82.5xl06 X2 

8-ALUs, 8-Latches 6148^x 5942k 36.5xl06?i2 

The major components of the FFT-4 are the input latches, ALUs, output 

multiplexor (mux), and the control units as shown in Figure 4-4. A test mux is included 

on the fabricated FFT-4 to incorporate design for testability. The test mux is not included 

in the FFT-4 design used in the FFT-16. 

Re{x(0)}- 

Re{x(2)}- 

Re{x(1)}- 

Re{x(3)}- 

Im {x(1)}- 

lm{x(3)}- 

lm{x(0)}- 

Im {x(2)}- 

LATCH 
16 

LATCH 
16 

LATCH 
16 

LATCH 
16 

LATCH 
16 

LATCH 
16 

LATCH 
16 

LATCH 
16 

> 
ALU 
16 

>ALU 
16 

> 
ALU 
16 

> 
ALU 
16 

>ALU 
16 

ALU 
16 > 

CONTROL"! 

>" 
ALU 

16 

>ALU 
16 

MUX 
64x16 

Re {X(0)J 

Re {X(2)} 

Re {X(1)} 

,Re {X(3)} 

Im {X(1)} 

Im {X(3)} 
Im {X(0)} 

Im (X(2)} 

Figure 4-4. FFT-4 Initial Design 
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The input latches are the only memory structures in the FFT-4. They latch the 

input data as it is appears on the input bus. The ALUs are 16-bit asynchronous 

add/subtract units. Instead of a traditional ALU which is clocked at the worst-case rate, it 

has completion detection circuitry which enables a better than worst case flow of data 

through each ALU. The output mux is an array of simple 2x1 mux cells that route the 

results of the four output ALUs to the output bus. The test mux is also an array of muxes 

that route internal control and data signals to test ports. 

4.2.1    Input Latches 

The input latches shown in Figure 4-4 are composed of 16 one-bit latches as 

shown in Figure 4-5. 

|LREQ>- 

IDATA   IN>- 
HDATA   OLTT> 

Figure 4-5. One-bit Latch Cell 

The delay through the latches is nearly constant. The ideal asynchronous design 

methodology is the fundamental mode bounded delay model. A simple delay element is 

used to signal LACK at a safe time after the LREQ signal is asserted. HSPICE was used 

to determine the correct number of inverters needed to represent the delay necessary for 

each latch. The HSPICE simulation is shown in Figure 4-6. For this element, the 

simulation showed that it took a worst-case delay of 1.13 ns to latch the input data. To 
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model this delay, 14 inverters are needed, as each inverter has a delay of 0.08 ns. Two 

additional inverters are used to provide a margin of safety. 

3 

2.5 

I        2 
h es 
S       1.5 
> 

1 

50Qm 

2$ » 

1   I ' '  ' '  M '  ' '  I ' '  ' ' I  ' '  ' ' I  ' '  ' M  ' '  ' ' I  ' '  ' ' I  i ' '  ' I   ' ' '  I I  i ' i  i |  ' I I   I I '  I I   I | I   I '  ' I I   I I   I | I  I I 
4n 6n 8n        10n       12n       14n       1 Bn       16n       20n       22n       24n       26n       28n       30n       32n 

Time (lln) (TIME) 

Figure 4-6. HSPICE Simulation of Register Latch Time 

rfec  \S"^      DATA   INl 

\s^      PATA_INi 

\ .^p<vrft_iNi 

-tec      _ 
\y^   tlATA__IN 

PATA_tN 

DATA_OUT 

DATA_OUT 

DATA_OUT 

DATA_OUT 

DATA_OUT 

OATA_OUT  PATA_OufÄ5> 

DATA_OUT 

DATA-OUT 

DATA_OUT 

DATA_OUT 

DATA_OUT 

DATA_OUT 

DATA_OUT 

PftTA_OUTA3 > 

PATA_Oljf57> 

bATA_OUTA8 > 

CATA   OUTA»> 

PATAOUTA11> 

PATA.OUTAia> 

-M>J>WM>l>D><i>lX^ 
Figure 4-7. LATCH 16 Schematic 
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Only one delay element is necessary and is included in the top level LATCH 16 

component. Inverters with a fanout of eight were used to correct for fanout of the LREQ 

signal. The LATCH16 schematic is shown in Figure 4-7. 

4.2.2   Asynchronous ALU 

The asynchronous ripple-carry ALU has an execution time that can vary widely 

from a minimum to a maximum case. The ripple-carry design was chosen due to its 

small size and simplicity when compared to other adder schemes. If one assumes that a 

random distribution of data is processed by the ALU, the average computation time will 

lie somewhere between the minimum and maximum time. If this were a synchronous 

circuit, the computation time would be fixed at the worst-case time. Therefore, the delay 

insensitive design methodology was applied and completion detection circuitry was 

added. 

Implementing completion circuitry adds complexity, size, and increases the 

required power. The initial 1-bit ALU design used in the previous research was the 

starting point for this design [2]. It is based on a dual-rail asynchronous adder unit design 

developed at the University of Manchester [15]. The principle of operation defines that 

each 1-bit stage (shown in Figure 4-8) of the adder will either have a carry out or no carry 

out. These signals are designated as COUT and NOCOUT. When either of these lines is 

raised, the stage can be considered "done." The ALU reports completion with an ACK 

signal when all stages are done. 

The ALU developed in the previous effort relied on a ripple type reset of the 

circuit after each calculation to clear out the COUT and NOCOUT values for each stage 
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[2]. In this design, an alternative was chosen, which resets the COUT and NOCOUT 

signals with a pair of NOR gates that are tied to ALU 16 REQ signal after each 

calculation to improve the overall execution time of the ALU. 

E>DD_SUB> 

NQCIH> 

lflREa> 

»IQCOUT > 

PQNE> 

Figure 4-8. Final ALU 1-bit Stage 

Three additional components are necessary to complete the design of the ALU. 

To make the unit capable of subtracting, the exclusive OR function (XOR) is applied to 

one of the input lines (B was arbitrarily chosen) with the ADD/SUB line being the other 

input line. Adding the XOR gate simply inverts the B value. Coupled with the 

component described in the next paragraph, the ALU can execute the subtract function. 

An initialization stage was necessary to set the first stage CIN or NOCIN values 

according to the ADD_SUB and REQ values. The truth table is shown in Table 4-2 and 

the corresponding circuit is shown in Figure 4-9. 
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Table 4-2. ALU Initialization Truth Table 

REQ ADD SUB COUT NOCOUT 
0 X 0 0 
1 0 0 1 
1 1 1 0 

l?CH> 
IADD_SUBV 

-iÖÜT> 

\^3D^ IQCQUT > 

Figure 4-9. ALU Initialization Stage Circuit 

The ALU 16 consists of one ALU initialization stage along with 16 1-bit ALUs. 

The NOCOUT and COUT from each stage is connected to the next stage's NOCIN and 

CIN. A NOR-NAND tree is used to combine the done signals from each stage into the 

ALU16 ACK signal. 

4.2.3    Output Multiplexor 

To control which output of the second stage of ALUs is seen on the FFT-4 output, 

a mux is used. A basic 4x1 mux is constructed from three library cell 2x1 muxes. 

Sixteen of these muxes are combined to handle all the output values. Figure 4-10 shows 

the 4x1 mux design. 
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|DATA_INÄ~> 

IDATAINB> 

IDATA   INC> 

IDATA   IND> 

[SEL0> 

ISELl>- 

|2x 

r 

2x: 

2x1 ^DATA   OUT> 

Figure 4-10. 4x1 Mux 

Similar to the input latches, a delay element is used to implement the ACK signal 

for the output multiplexor. This type of delay scheme is appropriate because there is very 

little variation in completion time when switching between the four mux states. Although 

a delay element is used in the fabricated FFT-4 design, later investigation found that a 

delay element on a mux could be eliminated. Changing the states early enough in the 

control sequence assures that the proper values are seen on the output when the REQOUT 

signal is given for the FFT-4. 

4.2.4    FFT-4 Control Units 

Development of the AFSMs necessary for the FFT-4 was an iterative process. 

Originally, an input and an output controller were designed in behavioral VHDL. They 

were coupled so that new input data could not overwrite output data not yet sent out. 

These controllers turned out to be too large to be synthesized by 3D. The controllers 

were broken up using Shannon decomposition until they could be synthesized and 

simulated successfully at the structural VHDL level. The final design has nine small 

controllers, which are all interconnected. 
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4.2.5 Test Multiplexor 

For the fabricated FFT-4 design, a test mux was added to the design to allow 

probing of internal signals by selecting a bank of test signals and viewing the output 

through bi-directional pads. Sixteen 4x1 multiplexors were used to allow testing of 64 

internal signals. 

The selection of the test signals was based on what would be needed to isolate a 

problem if the test chip failed. All of the AFSM control signals were included to test for 

any control path problems. Two output data bits and their complete upstream paths were 

included to test any data path problems. The signals that can be observed are listed in the 

specification sheet of the FFT-4 chip in Appendix B. 

4.2.6 Final FFT-4 Design 

It became apparent when assembling the components for the FFT-16 that the 

design of the FFT-4 had to be changed. Although this resulted in a difference between 

the fabricated chip design and the final design used in the FFT-16, the test chip still 

effectively serves the purpose of confirming that the controllers, ALUs and radiation 

tolerant library function properly. 

The new FFT-4 design used in the FFT-16 is the same basic structure that was 

presented in Figure 4-4. However, several modifications were made for better integration 

into the FFT-16 design. The control sequence was modified to allow the in order input of 

data. The output mux was split in half to make two 32x16 muxes, allowing the output of 

the real and imaginary results at the same time. To handle the changes, four simpler 

controllers replaced the original nine controllers. The AFSM descriptions of the 

controllers are given in Appendix C. One of the controllers was reused while three new 
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Controllers were developed. The only drawback to these modifications is that the output 

order becomes X(0), X(2), X(l), X(3) to achieve minimum switching. Both the crossbar 

and the reorder register handle this out-of-order sequence. 

Another enhancement made was additional fanout corrections throughout the 

circuit. The final FFT-4 design is almost exactly the same area as the original FFT-4 

shown in Figure 4-4. Figure 4-11 shows the layout of the final FFT-4 design. 

Re {x(0)} —► 
LATCH 
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Re {x(2)} ► 
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Re{x(1)} ► 
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ALU 
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ALU 
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>ALU 
16 
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MUX 
32x16 

CONTROL 

ALU 
16 

>ALU 
16 

MUX 
32x16 

Re {X(0)} 

_^Re{X(2)} 

Re {X(1)} 

Re {X(3)} 

Im {X(0)} 

_Jm {X(2)} 
Im {X(1)} 
Im {X(3)} 

Figure 4-11. Final FFT-4 Design 
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The overall throughput time of the final FFT-4 design is 75% faster than the first 

design in this effort due to the availability of the real and complex components at the 

same time. The area of the final design is slightly smaller due to the reduced number of 

controllers and muxes. 

4.3      Complex Multiplier 

The design of the complex multiplier used in the previous research was based on a 

design developed at AFIT [2] [34]. The design is based on the Booth multiplication 

algorithm, which is suitable for asynchronous implementation [35]. 

The design pursued in this effort employs a radix-4 Booth encoded scheme in the 

real multipliers and has no component reuse. This design is twice as fast as the radix-2 

implementation with a trivial impact to area, due to a slightly more complex controller. 

The complex multiplier also has a provision for directly forwarding the input to the 

output for a fast multiply by one, which saves power and gives a higher throughput. This 

was implemented because one of the four constants in each constant bank (described in 

Section 4.4) is one. The complex multiplier is composed of four 16-bit real multipliers, 

one subtract unit, one add unit and a multiply by one mux to accomplish the complex 

multiply operation in Equation 3-27. Figure 4-12 shows the components of the complex 

multiplier. 
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Figure 4-12. Complex Multiplier Block Diagram 

The radix-4 Booth encoding was chosen over the baseline radix-2 encoding 

because it reduces the maximum possible ALU operations from 16 to 8 for 16-bit data. 

Higher order radix algorithms are possible, but make the design more complex [35]. 

Multiplying two 16-bit words together produces a 32-bit result. Realizing that 

this complicates the design by doubling the data width of components downstream from 

the multiplier, the output of the multiplier was normalized.   Normalization is achieved by 

selecting the 16 output signals that represent the original data format shown in Figure 

3-3. Overflow is not a concern, as the inputs are always fractional in an FFT producing a 

result less than the input magnitude. 
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The main components of the complex multiplier are the 2's complement radix-4 

Booth multiply units, the add unit and the subtract unit. These three components are 

described in detail in the next sections. 

4.3.1 Multiply by One Mux 

A set of muxes on the output of the complex multiplier allows the direct 

forwarding of the Xin value to the output under a multiply by one condition. This 

condition is set by the constant bank, which occurs once every fourth multiply. 

4.3.2 Add and Subtract ALUs 

Two dedicated ALUs were modified for use with the complex multiplier. They 

are identical to the ALU 16 design in the FFT-4. Because each ALU performs an add or 

subtract, useless gates were removed from each ALU to quicken its operation and reduce 

its size. 

4.3.3 Radix-4 Booth Encoded Fixed-Point Multiplier 

The heart of the complex multiplier is an arrangement of four fixed-point multiply 

units which multiply two 2's complement 16-bit numbers and produce a single 16-bit 

result. The radix-4 Booth encoded multiplier is composed of six basic units. There is a 

34-bit shift register, a modified ALU, a modified latch, a 2x multiply unit, a Booth 

decoder and three controllers. These components are connected as shown in Figure 4-13. 
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Figure 4-13. Booth Multiplier Block Diagram 

4.3.3.1      34-bit Shift Register 

The 34-bit shift register is composed of 20 resetable and 14 non-resetable D flip- 

flops. Additional logic was added to allow the reset or loading of the top 17 bits and 

loading of the lowest 17-bits. A shift signal causes the register to do an arithmetic shift 

(with MSB sign extension) right by two. The resetable D flip-flops are used to initialize 

the multiplier to a known state upon reset. They also zero the value of the top 17 bits for 

each new multiply. Figure 4-14 shows the interconnection of a few D flip-flops, as the 

entire schematic is too large to show here. 
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Figure 4-14. 34-Bit Shift Register Block Diagram 

4.3.3.2     Booth Decoder 

A Booth decoder was designed to implement the radix-4 Booth algorithm. It is a 

logic block that asserts 2X, ADDSUB and SHIFTONLY signals by looking at the least 

significant three bits of the 34-bit shift register. The truth table for the radix-4 algorithm 

is shown in Table 4-3 and logic is shown in Figure 4-15 [35]. 

Table 4-3. Radix-4 Booth Algorithm 

Bit 2 Bitl BitO Operation 
0 0 0 Shift only 
0 0 1 Add 1 x multiplicand, shift 
0 1 0 Add 1 x multiplicand, shift 
0 1 1 Add 2 x multiplicand, shift 
1 0 0 Subtract 2 x multiplicand, shift 
1 0 1 Subtract 1 x multiplicand, shift 
1 1 0 Subtract 1 x multiplicand, shift 
1 1 1 Shift only 
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Figure 4-15. Radix-4 Booth Decoder 

The MUL2X signal controls the operation of the 2X multiply. The ADDSUB 

signal, which goes to the ALU, is simply Bit 2. The SHIFT signal serves as a masking 

signal to the controllers in a SHIFT only condition (000 or 111) to simplify the controller 

design. It was found in the design process that without masking the control signals in this 

case, the controllers would have to handle this exception, which increases the size of the 

controllers. 

4.3.3.3 Modified ALU 

The basic asynchronous ALU 16 used in the FFT-4 was modified for use in the 

multiplier. An additional stage was added to make the adder a 17-bit adder (ALU17). 

This additional bit was needed to handle sign extensions, which occurs in Booth 

multiplication. 

4.3.3.4 Modified Latch 

Similar to the modified ALU in the previous section, the LATCH 16 used in the 

FFT-4 was extended by one bit to make a LATCH17 (stores 17-bits). This was necessary 

to latch the data from the upper 17 bits of the shift register. 

4-18 



4.3.3.5 2X Multiply Unit 

This unit executes a multiply by 2 depending on the output of the Booth decoder. 

The multiply by two is done through 17 muxes with a wired sign extension. 

4.3.3.6 Multiply Control 

The multiply control is divided into three simple control blocks. The top 

controller interfaces with the external MULTREQ and MULTACK signals. From these 

external signals, the two remaining controllers are driven to complete the Booth 

multiplication. In the case of the "shift only" condition, the ALU operation of the 

controller is masked by minimum delay elements to allow for a quick shift by two. The 

AFSM state tables are shown in Appendix C. 

4.4       Constant Banks 

There are three constant banks that store the values of the W^ matrix presented in 

Equation 3-2. Each bank produces four constants. Due to the symmetry of FFTs, many 

of the constants are the same or are the negative of other values. The values in the 

constant banks are listed in Table 4-4, 4-5, and 4-6. The decimal values shown are the 

closest representation of the irrational values given 12-bit precision. 

The constant banks were implemented with combinational logic controlled by the 

two-bit Johnson counter shown in Figure 2-6. The COUNT signal is fed by the 

ACKOUT signal of the FFT-4 that supplies the complex multiplier data. When the first 

number to be multiplied comes through, the counter has a value of 00. The counter value 

determines what constant will be fed into the complex multiplier. Figure 4-16 shows the 
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logic for determining the constants fed into CPLXMULT1, CPLXMULT2, and 

CPLXMULT3, respectively. The output values represented as A through K and 

MULBY1 are wired to the inputs of the complex multiplier to form the appropriate 

constant values. Logic was not necessary to represent all 16 combinations, as 10 

combinations were enough to express the constants. 

Table 4-4. Constant Bank One Values 

Binary Equivalent Decimal Equivalent 
Constant Real Imaginary Real Imaginary 

1 1000 oooo 1.000000000000 0.000000000000 
w* 0B50 F4B0 0.707031250000 -0.707031250000 
w 0EC8 F9E1 0.923828125000 -0.382568359375 w 06 IF F138 0.382568359375 -0.923828125000 

Table 4-5. Constant Bank Two Values 

Binary Equivalent Decimal Equivalent 
Constant Real Imaginary Real Imaginary 

1 1000 0000 1.000000000000 0.000000000000 
-./' 0000 F000 0.000000000000 -1.000000000000 
w' 0B50 F4B0 0.707031250000 -0.707031250000 

-jW2 F4B0 F4B0 -0.707031250000 -0.707031250000 

Table 4-6. Constant Bank Three Values 

Binary Equivalent Decimal Equivalent 
Constant Real Imaginary Real Imaginary 

1 1000 0000 1.000000000000 0.000000000000 
-jW2 F4B0 F4B0 -0.707031250000 -0.707031250000 
W 06 IF F138 0.382568359375 -0.923828125000 
-w F138 061F -0.923828125000 0.382568359375 
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Figure 4-16. Constant Banks 

4.5      Decimator 

The decimator is a controller which interfaces the external FFT-16 

REQIN/ACKIN to the first stage FFT-4 input request signals. Initially, an AFSM was 

synthesized from 3D that handled the control signals. The AFSM was discarded for a 

more simple design that uses a two bit Johnson counter as shown in Figure 4-17. The 

COUNT signal of the counter is fed by the ACKTN signal. Each full ACKTN transition 

increments the count after every four-cycle handshake. The count controls the MUX4X1 

and selector circuit which enables the passing of the FFT-16 REQIN/ACKIN signals to 

the appropriate FFT-4. Data is passed to the input state FFT-4s through a shared bus 

corrected for fanout. 
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Figure 4-17. Decimator Gate-Level Schematic 

4.6      Expander 

Similar to the decimator, the expander interfaces the output stage FFT-4s output 

request signals to the FFT-16 output request signals. The COUNT signal of the two-bit 

Johnson counter is fed by the FFT-16 ACKOUT signal. The counter bits control a 

MUX4X1 and selector circuit which connects the correct output stage 

REQOUT/ACKOUT pair to the FFT-16 REQOUT/ACKOUT external signals. The SEL 

bits also control an output mux which routes the data from the appropriate output stage 

FFT-4 to the output. The expander schematic is shown in Figure 4-18. 
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Figure 4-18. Expander Gate-Level Schematic 

4.7       "Crossbar" 

The "crossbar" handles the interconnection between the input stage output request 

signals and the output stage input request signals. The crossbar collects one data word 

from each input stage FFT-4 (0 through 3) and sends them in order to the first output 

stage FFT-4 (4). The cycle is repeated for the remaining output stage FFT-4s (5 through 

7). 

The first component designed for the crossbar was a divide by four circuit as 

shown in Figure 4-19. This divider was used to handle the difference in sampling 

frequency per FFT-4 between the input stage and output stage.   The divider signaled the 
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change in routing signals to the output stage FFT-4s once for every four input stage FFT- 

4 output requests. 

RESET > ► 

CLQCK_INV c> 
D 
NRES 

D 
NRES 

-CLOCK._QOT> 

Figure 4-19. Divide By Four Schematic 

A control circuit similar to an expander control circuit is used to funnel down the 

input stage control signals to a single REQOUT/ACKOUT pair. This expander also 

drives four write enable lines that are connected to tri-state buffers that control which 

FFT-4 is allowed to write its post-multiplied data to a shared bus. The output of the 

divide by four block, which is driven by the ACKOUT signal of the re-used expander, is 

fed into another two-bit Johnson counter which facilitates the four value input into each 

output stage FFT-4. 

Because the outputs of the FFT-4 appear out of order, the crossbar is used to 

correct the order of the data by switching the FFT-4 (5) and FFT-4 (6) request lines. This 

eliminates the need to correct the output sequence from the input stage FFT-4s. The next 

section covers the reorder register, which is used to correct the output sequence of the 

output stage FFT-4s. The crossbar schematic is shown in Figure 4-20. 
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Figure 4-20. Crossbar Schematic 

4.8      Reorder Register 

The reorder register is a necessary component to correctly order the output of the 

FFT-4s on the output stage. As mentioned previously, the crossbar handles the output 

order sequence problem of the input stage FFT-4s. The reorder register is simply a pair 

of registers and muxes coupled to a small controller. The controller allows the first data 

word (X(0))to pass straight through. The second REQIN latches the input data (X(2)), but 

does not give a REQOUT signal. The third REQIN along with the input data (X(l))is 
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passed straight though as in the first case. The fourth REQIN triggers the mux to output 

the value in the register, which is X(2). The controller then requests that the data on the 

input bus, X(3) be passed through. This way the final output sequence of the FFT-4 is 

changed to X(0), X(l), X{2), X(3). The component level schematic is shown in Figure 

4-21. 

DATA INR 

*► DATA OUTR 

Figure 4-21. Reorder Register Schematic 

4.9      Design Implementation Conclusion 

Each major component was described in detail in this chapter, along with other 

designs considered for each component. The FFT-4, complex multiplier, decimator, and 

expander all work together to achieve the top-level FFT-16 functionality as shown in 

Figure 4-2. A reorder register was added to correct the output order of the FFT-4. The 

next chapter analyzes the components at all levels of simulation. 
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5.   Results 

5.1      FFT-4 Test Chip 

The FFT-4 test chip did not return from fabrication in time for the test results to 

be included in this thesis. The purpose of the test chip was to validate that the 

asynchronous design methodologies chosen and the radiation tolerant library performed 

as expected. The FFT-4 test chip will be evaluated at a later date to determine if any 

corrections need to be made to the design of the FFT-16 before it is fabricated. 

5.2      Simulation Results 

This section presents the simulation results of each major component and the top- 

level FFT-16 design. VHDL simulation was used to verify proper operation and derive 

rough estimates of component timing information. Back-annotated timing data obtained 

from HSPICE simulations of each logic gate was used to describe gate delays to the 

VHDL simulator. IRSIM was used to simulate the performance of the layout and verify 

proper operation [13]. IRSIM is a mixed-mode simulator, which analyzes circuit 

extraction data and gives a good functionality check as well as more realistic timing 

information. Finally, the HSPICE results give the most accurate results possible, 

including power information, which is not available from either VHDL or IRSIM. 

High-efficiency and performance were the end goals for the FFT-16. However, 

correct circuit operation and more importantly, correct results, was an implied 
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requirement. To demonstrate that the FFT-16 did indeed correctly transform a time 

domain sequence into a frequency domain sequence, multiple test cases were used for 

validation. One simple test case is the input of an impulse function. Mathcad [36] was 

used to calculate the expected output stream. The same impulse function was given to 

the FFT-16 and simulated in VHDL and IRSIM. Both VHDL and IRSIM produced the 

same results, as shown in Figures D-27 and D-28. Table 5-1 shows the input time- 

domain sequence x(n). Table 5-2, Figure 5-1 and Figure 5-2 show the comparison of the 

output frequency-domain sequence X(m). This test sequence clearly demonstrates that 

the FFT-16 does produce the correct X(m) for a given x(n) with a small error generated 

due to the selected fixed-point data format. 

Table 5-1. Impulse Function Input Sequence 

n x(n) 
0 0 
1 1 

2 through 15 0 

Table 5-2. Mathcad vs. Simulation Results 

Mathcac Results Simulation Results Maximum 
Error (%) m Re{X(m)} Im{X(m)} Re{X(m)} Jm{X(m)} 

0 1.000000000000 0.000000000000 1.000000000000 0.000000000000 0.00000 
l 0.923879532511 -0.382683432365 0.923828125000 -0.382568359375 -0.00556 
2 0.707106781187 -0.707106781187 0.707031250000 -0.707031250000 -0.01068 
3 0.382683432365 -0.923879532511 0.382568359375 -0.923828125000 -0.00556 
4 0.000000000000 -1.000000000000 0.000000000000 -1.000000000000 0.00000 
5 -0.382683432365 -0.923879532511 -0.382568359375 -0.923828125000 -0.00556 
6 -0.707106781187 -0.707106781187 -0.707031250000 -0.707031250000 -0.01068 
7 -0.923879532511 -0.382683432365 -0.923828125000 -0.382568359375 -0.00556 
8 -1.000000000000 0.000000000000 -1.000000000000 0.000000000000 0.00000 
9 -0.923879532511 0.382683432365 -0.923828125000 0.382568359375 -0.00556 
10 -0.707106781187 0.707106781187 -0.707031250000 0.707031250000 -0.01068 
11 -0.382683432365 0.923879532511 -0.382568359375 0.923828125000 -0.00556 
12 0.000000000000 1.000000000000 0.000000000000 1.000000000000 0.00000 
13 0.382683432365 0.923879532511 0.382568359375 0.923828125000 -0.00556 
14 0.707106781187 0.707106781187 0.707031250000 0.707031250000 -0.01068 
15 0.923879532511 0.382683432365 0.923828125000 0.382568359375 -0.00556 
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FFT-16 Theoretical vs. Simulation Data (Real Component) 

Figure 5-1. Theoretical vs. Simulation Data (Real Component) 

FFT-16 Theoretical vs. Simulation Data (Imaginary Component) 

Figure 5-2. Theoretical vs. Simulation Data (Imaginary Component) 
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Table 5-3 gives a summary of the FFT-16 design statistics and the performance 

obtained through simulation. Component latencies are given for the worst-case 

propagation time through the component. The throughput is given for the FFT-4 and 

FFT-16. The energy measurement for each component is the energy required for that 

component in a single FFT-16 calculation. The computational resources were not 

available to run a top-level FFT-16 HS PICE simulation, so the FFT-16 energy 

requirement was determined by the sum of the energy required for each component 

multiplied by the number of instances. This energy measurement gives an efficiency of 

28 nJ/Unit Transform for the FFT-16. Appendix D contains the simulation waveforms 

used to obtain the data in Table 5-3. 

Table 5-3. FFT-16 Design and Simulation Results 

Design Statistics 
Component Latency 

(ns) 
Throughput 

(ns) 
Energy 

(nJ) 
Component Area (|im2) Transistors VHDL IRSIM HSPICE IRSIM HSPICE 

Decimator 41,000 271 1.0 1.0 1.0 - 0.26 
Crossbar 110,000 1,143 1.0 1.0 2.0 - 3.0 
Expander 43,000 271 1.0 1.0 1.0 - 0.25 
Reorder Reg. 340,000 2,014 13 16 9.0 - 1.4 
FFT-4 3,400,000 20,340 80 180 180 180 17 
Complex Mult. 5,300,000 33,149 85 110 134 - 98 
FFT-16 45,000,000 271,908 585 980 - 760 440 

The area and transistor count is also given for each component and the top-level 

circuit. Because a two-metal channel router was used to route the circuits, the actual area 

that can be realized from a high performance three-metal over-the-cell router will reduce 

the area by 50%. A simulation of the re-routed circuit will also show a slight decrease in 

the energy consumption of the circuit due to the optimized routing which lowers the trace 

capacitance throughout the circuit. 
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The worst case throughput time of 760 ns and efficiency of 28 nJ/Unit transform 

of the FFT-16 must be extrapolated to an FFT-1024 for comparison with the FFT 

processors presented in Chapter Two. The throughput time of the FFT-1024 is derived 

by dividing the latency of the slowest block in the FFT-1024 (complex multiplier) by the 

decimation at the top level (64). This gives a throughput of 2 (j,s. The efficiency is 

calculated by summing the energy of the components required for calculating a single 

point of an FFT-1024. This gives an extrapolated FFT-1024 efficiency of 120 nJ/Unit 

Transform. Table 2-2 is presented again here with the new FASST extrapolated data as 

Table 5-4. 

Table 5-4 shows that the design produced in this thesis effort has roughly the 

same performance when compared to the previous thesis effort. However, the results of 

this research should be considered more reliable, as the results of the previous thesis were 

extrapolated from a 6-bit design. 

In conclusion, the FASST architecture combined with asynchronous design and a 

radiation tolerant library indeed produced a design that is acceptable for space, as it offers 

two orders of magnitude improvement over typical space-based FFT processors in both 

throughput time and efficiency. 
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Table 5-4. Final Comparison of FFT Processors 

Processor 
Name Design Feature 

Dataword 
Size & Type 

Supply 
Voltage (V) 

FFT-1024 
throughput 
time (u.s) 

Efficiency 
(nJ/Unit 

Transform) 

C40 Space 
32-Bit 

Floating 
Point 

5.0 1298 5704 

Spiffee Low Power 
20-bit 

Fixed Point 3.3 30 24.7 

COBRA Speed 
23-bit 

Fixed Point 5.0 9.5 71.4 

FASST 
(previous) 

Asynchronous, 
space & low 
power 

16-bit 
Fixed Point 3.3 10 120 

FASST 
(new) 

Asynchronous, 
space & low 
power 

16-bit 
Fixed Point 3.3 2 120 
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6.   Summary and Conclusions 

6.1      Summary 

This thesis has presented the steps taken to develop an energy-efficient high- 

performance asynchronous FFT-16 designed for space. Lessons learned from previous 

research were used as a starting point. New concepts and designs were developed. 

Finally, all of the components were integrated to achieve the top-level FFT-16 design and 

simulations were used to validate correct operation and to evaluate performance. 

6.2       Conclusions 

The results presented in Chapter Five clearly demonstrate that an asynchronous 

implementation of the FASST architecture can potentially facilitate the design of large- 

point FFT processors suitable for the space environment. The estimated throughput time 

of 2 |j,s and efficiency of 120 nJ/Unit-Transform for an FFT-1024 offers an improvement 

of two orders of magnitude over existing space-based FFT processors. It is even more 

impressive to realize that this design is highly competitive with similar terrestrial designs! 

The significant efficiency and performance improvements are justification alone to 

continue this area of research and build larger point size FFT processors. 
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6.3      Lessons Learned 

Throughout the course of the design process, many lessons were learned. 

Specifically, some valuable lessons were learned by using the MRC library and the 

MOSIS [37] service. 

The use of the MRC library presented some interesting design challenges. The 

only available component of the library at the time of design was the physical layout of 

the cells. HSPICE simulation data of the cells and generic symbols were used to build a 

VHDL library for structural simulation with timing information. Fanout had to be 

manually compensated for throughout the design, as no library file was available for the 

Synopsys Design Analyzer, although one could have been developed. An interface also 

had to be built to the Lager Octtools layout tool for the place and route phase of the 

design. 

Future design efforts with the radiation tolerant cells will benefit from the library 

files produced by MRC when they are available. The VLSI lab will also greatly benefit 

from using an advanced cell router to take advantage of the ability of the radiation 

tolerant cells to be densely packed. 

An interesting lesson learned by using the MOSIS service was discovering the 

difference between technology layout rules and process specific fabrication rules [37]. 

Upon first submittal to the MOSIS service, the test chip design was rejected due to 

"oversized features on the contact layer." Discussing the problem with the MOSIS 

representative revealed that the HP 0.5 |im process requires that any feature on the 

contact layer (meaning poly contacts or metal vias) be no larger or no smaller than the 
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minimum size. The design rule check (DRC) feature of MAGIC [13] only checks if a 

feature is too small or too closely spaced, not if it is too large [13]. This is due to the fact 

that some fabrication processes take oversized contact features and break them up 

automatically into minimum sized contacts. Correcting the oversized contacts resulted in 

a successful submission. 

6.4      Recommendations for Future Research 

Clearly, the next step for research in this area is to implement larger point sizes 

with the FASST architecture. There is also a need to improve the asynchronous design 

flow. 

The next logical point size to be developed is the FFT-256. With the FFT-16 

building block developed in this research, a FASST FFT-256 can be developed with 

Ni=N2=l6. The complex multiplier design should be resized to meet the performance 

criteria of the FFT-256. New decimator, crossbar and expander elements would have to 

be developed also. The physical area of the FFT-256 will be much larger than the FFT- 

16 and will require the use of a high performance router to get the greatest cell density 

possible and reduce long metal trace issues present in larger designs. 

An improved asynchronous design flow has been the goal of the growing 

asynchronous design community [3]. This field of research is wide open for new design 

concepts, implementations and tools. One facet of the design process that could be 

improved upon with the tools available in the AFIT VLSI lab is the interface with the 3D 

tool. A simple interface program could be developed to convert behavioral VHDL 
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written in a pre-defined format to the input file format of the 3D asynchronous tool. 

Then, from the output of the 3D tool, another translator program could be written to 

convert the output file (which is in positive logic) into a VHDL format. The Synopsys 

Design Analyzer or other such tool could then convert the positive logic VHDL into 

negative logic structural VHDL and correct for fanout. This design process was 

manually repeated throughout the work of this thesis. Such a set of interface programs 

would have been of great benefit and would have allowed rapid prototyping of new 

designs. 
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Appendix A. Layout of the Fabricated FFT-4 Design 
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Appendix B. FFT-4 IC Specification Sheet 

Table B-l. FFT-4 Test Chip Specifications 

Package Type: PGA65 
Supply Voltage: 3.3 VDC 
Average Power (Simulated): 41.5 mW 
Core Transistor Count: 21,951 
Total Chip Area: 2934x2934 um 
Data Input Sequence: A: Re{jc(0)} 

B: Re{x(2)} 
A: Re{jc(l)} 
B: Re{x(3)} 
A: Im{;t(l)} 
B: Im{;c(3)} 
A: lm{;t(0)} 
B: Im{;c(2)} 

Data Output Sequence: Re{X(0)} 
Re{X(2)} 
Re{X(l)} 
Re{X(3)} 
Im{X(l)}* 
Im{X(3)}* 
Im{X(0)}* 
Im{X(2)}* 

*Note: Im values should be mul 
get the correct value. 

tipliedby (-1) to 

Testing Procedure: 

1. 
2. 
3. 

4. 

5. 
6. 

Refer to Table B-2 for pin names. 
Apply power, control and data connections to the chip. 
Apply RESET signal with REQ_INA=0, REQ_INB=0, ACKOUT=0, BIDIR_SEL=1, 
TEST_SEL=00 and DATAJN values set to zero until ACKJNA, ACKJNB and 
REQOUT all stabilize to zero. 
Input data with alternating REQ_INA and REQ_INB signals, as shown in Table B-l. 
Leave REQ_TN signal high and keep data stable until appropriate ACK_IN signal is 
asserted then lower REQ_IN. Do not REQ_IN again until ACK_IN goes low. 
When REQ_OUT goes high read data, then pulse ACK_OUT. 
Use BIDIR_SEL=0 and desired TESTJSEL value to view test signals at any time 
during testing, except for when REQJNA or REQJNB is high. Refer to Table B-3 
for viewable test signals. 
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Table B-2. Fabricated FFT-4 Pin List 

PIN SIGNAL IN DATA OUT 
1 PAD VDD - 
2 - ACKJNB 
3 - DATAJ3UT0 
4 - DATA_OUT2 
5 - DATA_OUTl 
6 - PAD_TEST_OUT 
7 PAD_TEST_IN _ 
8 CORE GND _ 
9 CORE VDD _ 
10 DATA_IN5 TEST_OUT2 
11 DATAJN4 TEST.OUT1 
12 DATAJN3 TESTOUT5 
13 DATAJN2 TEST.OUT6 
14 DATA_IN1 TEST_OUT8 
15 DATAJNO TEST.OUT7 
16 PAD GND _ 
17 PAD GND _ 
18 ACK_OUT _ 
19 REQJNB - 
20 TEST_SEL1 _ 
21 CORE VDD _ 
22 CORE GND . 
23 TEST.SEL0 . 
24 RESET . 
25 BIDIR_SEL (1= normal, 0= view test signals) - 
26 REQJNA - 
27 CORE VDD _ 
28 CORE GND _ 
29 DATAJN6 TESTJDUT4 
30 DATA_IN7 TEST_OUT0 
31 DATAJN14 TEST_OUT3 
32 PAD VDD _ 
33 PAD VDD _ 
34 DATAJN15 TEST_OUT9 
35 DATAJN12 TEST_OUT10 
36 DATAJN13 TEST_OUTll 
37 DATAJN8 TESTJDUT14 
38 DATAJN11 TEST_OUT15 
39 DATAJNIO TEST_OUT13 
40 PAD VDD - 
41 PAD GND _ 
42 DATAJN9 TESTOUT12 
43 - DATA_OUT10 
44 - DATA_OUT9 
45 - DATA_OUTll 
46 - DATA_OUT8 
47 - DATA_OUT12 
48 PAD GND - 
49 PAD GND _ 
50 - DATA_OUT13 
51 - DATA_OUT14 
52 - DATA_OUT15 
53 CORE GND . 
54 CORE VDD - 
55 - ACK_INA 
56 - DATA_OUT7 
57 - DATA_OUT6 
58 - DATA_OUT5 
59 CORE GND - 
60 CORE VDD _ 
61 - DATA_OUT4 
62 - REQ_OUT 
63 - DATA_OUT3 
64 PAD VDD - 
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Table B-3. Test Signals 

Test Pin TEST_SEL Internal Test Signal 
TESTJDUTO 00 AREQO 

01 AREQ2 
10 LREQO 
11 REQOUTOP 

TEST OUT1 00 AACKO 
01 AREQ3 
10 LACKO 
11 ACKREQOUTOP 

TEST.OUT2 00 AREQ1 
01 AREQ7 
10 LREQ1 
11 MUXSTATE 

TEST_OUT3 00 AACK1 
01 AACK2 
10 LACK1 
11 MREQ 

TEST_OUT4 00 AREQ4 
01 AACK3 
10 LREQ2 
11 MACK 

TEST_OUT5 00 AACK40 
01 AACK7 
10 LACK2 
11 AREQSTATE 

TEST_OUT6 00 ADD SUBO 
01 ADD SUB2 
10 LREQ3 
11 AACKSTATE 

TEST_OUT7 00 ADD SUB1 
01 ADD SUB3 
10 LACK3 
11 SELO 

TEST_OUT8 00 ADD SUB4 
01 ADD_SUB7 
10 REQREG 
11 SEL1 

TEST_OUT9 00 BUS0A15 
01 BUS2A15 
10 ACKREG 
11 ADDSTATE 

TESTJDUTIO 00 BUS0B15 
01 BUS2B15 
10 GETREG 
11 AREQ4P 

TEST_OUTll 00 BUS1A15 
01 BUS3A15 
10 AREQ5 
11 AREQ5P 

TEST_OUT12 00 BUS1B15 
01 BUS3B15 
10 AACK5 
11 AREQ6P 

TEST_OUT13 00 AC15 
01 FH15 
10 AREQ6 
11 AREQ7P 

TEST_OUT14 00 EG15 
01 BD15 
10 AACK6 
11 RESETCIN 

TESTJ3UT15 00 BUS415 
01 BUS715 
10 ADD SUB5 
11 ADD SUB6 
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Appendix C. AFSM Descriptions 

Table C-l. FFT-4 CONTROLIN AFSM 

input reqin 0 
input reqdata 0 
input  lack     0 

output ackin 0 
output lreq 0 
Output reqdataout 0 

;;;  Current Next Input Burst Output Burst 
State State 

0 1 reqin+ reqdata+ lreq+ 
1 2 lack+ ackin+ 
2 3 reqin- ackin- 
3 4 reqm+ lreq- 
4 5 lack- ackin+ 
5 6 reqm- ackin- 
6 7 reqint lreq+ 
7 8 lack+ ackin+ 
8 9 reqm- ackin- reqdataout+ 
9 10 reqm+ reqdata- lreq- 
10 11 lack- ackin+ 
11 0 reqin- ackin- reqdataout- 

;;;   3D Synthesized Equations: 

ackin = 
reqin lack' reqdataout + 
reqin lack zzzOl + 
reqin lack reqdataout' zzzOO + 
reqin lack' zzzOO' zzzOl' 

lreq = 
reqin' lreq + 
ackin lreq + 
reqdata reqdataout + 
reqin reqdataout' zzzOO 
reqin reqdata zzzOl 

reqdataout = 
reqin reqdataout + 
lack reqdataout + 
reqin' lreq zzzOO 

zzzOO = 
reqin zzzOO + 
reqdata zzzOO + 
lreq zzzOO + 
reqin' reqdata lreq' zzzOl' 

zzzOl = 
reqin zzzOl + 
lack' zzzOl + 
reqin' reqdata' lreq' 
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Table C-2. FFT-4 CONTROLGETREG AFSM Description 

input getreg 0 
input lackO 0 
input lackl 0 
input lack2 0 
input lack3 0 

output ackreg 0 
output IreqO 0 
output lreql 0 
output lreq2 0 
output lreq3 0 

;;;  Current Next Input Burst Output Burst 
. . . 3tate State 

0 1 getreg+ lreq0+ 
1 2 lack0+ IreqO- 
2 3 lackO- ackreg+ 
3 4 getreg- lreql+ 
4 5 lackl+ lreql- 
5 6 lackl- ackreg- 
6 7 getreg+ lreq2+ 
7 8 lack2+ lreq2- 
8 9 lack2- ackreg+ 
9 10 getreg- lreq3+ 
10 11 lack3+ lreq3- 
11 0 lack3- ackreg- 

3D Synthesized Equations: 

ackreg = 
lackl + 
lack3 + 
lackO' lack2' zzzOl 

IreqO = 
getreg lackO' zzzOO ' zzzOl' 

lreql = 
getreg' lackl' lack3' zzzOO' zzzOl 

lreq2 = 
getreg lack2' zzzOO zzzOl' 

lreq3 = 
getreg' lackl' lack3' zzzOO zzzOl 

zzzOO = 
lackl + 
lack3' zzzOO 

zzzOl = 
lackO + 
lack2 + 
lackl' lack3' zzzOl 
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Table C-3. FFT-4 CONTROLOUTA AFSM Description 

input  reqdataout 0 
input done 0 
input reset 0 

output areq03 0 
output areql2 0 
output reqdata 0 
output sei 0 

Current Next Input Burst 
State State 

0 1 reset+ 
1 2 reqdataout+ 
2 3 reqdataout- 
3 4 done+ 
4 5 done- 
5 6 done+ 
6 1 done- 

Output 1 3urst 

reqdata+ 
areq03+ reqdata- 
areql2+ 
areq03- areql2- sel+ 
areq03+ areql2+ 
areq03- areql2- sei- 
reqdata+ 

3D Synthesized Equations: 

areq03 = 
reqdataout + 
done' areq03 + 
done' sei 

areql2 = 
done' sei + 
reqdataout' done1 areq03 

reqdata = 
reqdataout' done' reset areq03' sei' 

sei = 
done' sei + 
done z z z 0 0' 
sei zzzOO' 

zzzOO = 
done' sei + 
done zzzOO + 
sei zzzOO 
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Table C-4. FFT-4 CONTROLOUTB AFSM Description 

input aacksl 0 
input aacks2 0 
input ackout 0 

output areqs2 0 
output reqout 0 
output addsubs2 0 
output done 0 

Current  Next Input Burst Output Burst 
State   State 

0      1 aacksl+ areqs2+ 
1      2 aacks2+ reqout+ 
2      3 ackout+ reqout- 
3      4 ackout- areqs2- addsubs2+ 
4      5 aacks2- areqs2+ 
5      6 aacks2+ reqout+ 
6      7 ackout+ reqout- 
7      8 ackout- areqs2- addsubs2- 
8      9 aacks2- done+ 
9      0 aacksl- done- 

;; 3D Synthesized Equations: 

;; areqs2 = 
; ;   ackout + 

aacks2' addsubs2 + 
;;   aacksl zzzOO 

;; reqout = 
;;   aacks2 ackout' zzzOO 

addsubs2 = 
ackout addsubs2 + 
addsubs2 zzzOl1 + 
aacks2 ackout' zzzOO' zzzOl' 

done = 
aacksl aacks2' addsubs2' zzzOO' 

zzzOO = 
aacksl1 + 
aacks2' addsubs2 + 
ackout' zzzOO 

zzzOl = 
ackout addsubs2 + 
aacks2 zzzOl 
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Table C-5. Booth Multiplier CONTROLMULT AFSM Description 

input multreq 0 
input lackA 0 
input boothack 0 

output multack 0 
output IreqA 0 
output boothreq 0 
output zero    0 

Current Next Input Burst 
State State 

0 1 multreq+ 
1 2 lackA+ 
2 3 lackA- 
3 4 boothack+ 
4 5 boothack- 
5 0 multreq- 

Output Burst 

lreqA+ zero+ 
lreqA- zero- 
boothreq+ 
boothreq- 
multack+ 
multack- 

3D Synthesized Equations: 

multack = 
multreq boothack' zzzOO 

IreqA = 
multreq lackA' boothack' zzzOO' zzzOl' 

boothreq = 
lackA' boothack' zzzOl 

zero = 
multreq lackA' boothack' zzzOO' zzzOl' 

zzzOO = 
boothack + 
multreq zzzOO 

zzzOl = 
lackA + 
boothack' zzzOl 
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Table C-6. Booth Multiplier CONTROLCALC AFSM Description 

input calcreq 0 
input  alulack 0 
input aack 0 
input lackB 0 
input sack 0 

output alulreq 0 
output areg 0 
output IreqB 0 
output sreq 0 
output calcack 0 

; ; ;  Current Next Input Burst Output Burst 
;;;   State State 

0 1 calcreq+ alulreq+ 
1 2 alulack+ alulreq- 
2 3 alulack- areq+ 
3 4 aack+ lreqB+ 
4 5 lackB+ lreqB- 
5 6 lackB- areq- 
6 7 aack- sreq+ 
7 8 sack+ sreq- 
8 9 sack- calcack+ 
9 0 calcreq- calcack- 

;;; 3D Synthesized Equations: 

;;; alulreq = 
;;;   calcreq alulack areq' zzzOO' zzzOl' 

;;; areq = 
;;;   lackB + 
;;;   calcreq alulack zzzOO' zzzOl 

;;; IreqB = 
;;;   aack lackB' zzz n 

;;; sreq = 
;;;   calcreq aack' sack' zzzOO zzzOl' 

;;; calcack = 
;;;   calcreq sack' areq' zzzOO zzzOl 

;;; zzzOO = 
;;;   lackB + 
;;;   calcreq zzzOO 

;;; zzzOl = 
;;;   alulack + 
;;;   sack + 
;;;  calcreq lackB' zzzOl 
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Table C-7. Booth Multiplier CONTROLBOOTH AFSM Description 

input boothreq 0 
input calcack 0 

output boothack 0 
output calcreq 0 

;;;  Current  Next    Input Burst    j Output Burst 
;;;   State    State                            j 

0          1          boothreq+   | calcreq+ 
1          2          calcack+  | calcreq- 
2          3          calcack-    | calcreq* 
3          4          calcack+  | calcreq- 
4         5         calcack-   | calcreq* 
5          6          calcack*  | calcreq- 
6          7          calcack-    | calcreq* 
7         8         calcack*  | calcreq- 
8          9          calcack-    | calcreq* 
9          10         calcack*  | calcreq- 
10         11         calcack-    | calcreq+ 
11        12        calcack*  [ calcreq- 
12         13         calcack-    | calcreq* 
13         14         calcack*  | calcreq- 
14         15         calcack-    | calcreq+ 
15         16         calcack*  | calcreq- 
16         17         calcack-    | boothack+ 
17         0          boothreq-   j boothack- 

;;; 3D Synthesized Equations: 

;;; boothack = 
;;,-  boothreq calcack" zzzl2 zzzl3 

;;; calcreq = 
;;;   calcack' zzzl3' + 
;;;   boothreq calcack' zzzl2' 

; ; ; zzzOO = 
;;;   boothreq zzzOO + 
;;;   calcack" zzzl3' 

;;; ZZZOl = 
;;;  calcack zzzOO + 
;;;   calcack' zzzOl + 
; ; ;   ZZZOO ZZZOl 

; ; ; ZZZ02 = 
;;;   boothreq zzz02 + 
;;;   calcack' zzzOl ZZZ13' 

; ; ; ZZZ03 = 
;;;   calcack ZZZ02 + 
;;;   calcack' ZZZ03 + 
;; ;   ZZZ02 ZZZ03 

;;; ZZZ04 = 
;;;   boothreq zzz04 + 
;;;   calcack' ZZZ03 ZZZ13' 

;;; ZZZ05 = 
;;;   calcack ZZZ04 + 
;;;   calcack" zzz05 + 
;;;   zzz04 zzz05 

;;; ZZZ06 = 
;;;   boothreq zzz06 + 
;;;   calcack" zzzOS zzzl3' 

;;; ZZZ07 = 
;;;   calcack ZZZ06 + 
;;;   calcack' ZZZ07 + 
;;;   zzz06 ZZZ07 

;;; zzzOB = 
;;;   boothreq zzz08 + 
;;;   calcack' zzz07 zzzl3' 

;;; zzz09 = 
;;;   calcack zzz08 + 
;;;  calcack" zzz09 + 
;;;   zzzOB zzz09 

;;; ZZZlO = 
;;;   boothreq zzzlO + 
;;;   calcack' zzz09 zzzl3' 

;;; ZZZll = 
;;;   calcack ZZZlO + 
;;;   calcack" ZZZll + 
;;;   ZZZlO ZZZll 

;;; ZZZ12 = 
;;;   boothreq zzzl2 + 
;;;   calcack' zzzll zzzl3' 

;;; zzzl3 = 
;,-;   calcack ZZZ12 + 
;;;  calcack' zzzl3 + 
;;;   ZZZ12 ZZZ13 
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Appendix D. Simulation Results 
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Figure D-2. IRSIM Simulation of Decimator Timing 

Figure D-3. HSPICE Simulation of Decimator Timing 
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Figure D-6. IRSIM Simulation of Crossbar Timing 
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Figure D-7. HSPICE Simulation of Crossbar Timing 

Figure D-8. HSPICE Simulation of Crossbar Power 
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Figure D-9. VHDL Simulation of Expander Timing 

Figure D-10. IRSIM Simulation of Expander Timing 
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Figure D-11. HSPICE Simulation of Expander Timing 
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Figure D-12. HSPICE Simulation of Expander Power 
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Figure D-16. HSPICE Simulation of Reorder Register Power 
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Figure D-18. IRSM Simulation of FFT-4 Timing 
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Figure D-23. HSPICE Simulation of Complex Multiplier Timing 
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Figure D-24. HSPICE Simulation of Complex Multiplier Power 
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Figure D-25. VHDL Simulation of FFT-16 Timing 
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