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ABSTRACT

This paper investigates the use of risk-sensitive filtering for state and param-
eter estimation in systems with model uncertainties. Modelling uncertainties
arise from imperfectly known input process and noise characteristics as well
as system model errors such as uncertain or time varying parameters of the
system description. No new convergence results are given in this paper but
simulation examples demonstrate that, in some situations, risk-sensitive fil-

tering and estimation techniques allow for system uncertainties better than
optimal techniques such as Kalman filtering.
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Risk-Sensitive Filtering and Parameter Estimation

EXECUTIVE SUMMARY

In control applications, including the control and guidance loops of modern guided mis-
siles, filtering and system identification are two techniques for estimating unknown system
information. Filtering provides information about dynamic missile states such as posi-
tion and velocity, while system identification provides information about approximately
constant quantities (known as the system model) that describe the missile's behaviour.

Traditional filtering techniques, such as Kalman filters, rely on assumptions about the
system's structure. It is well known that a Kalman filter's performance can be dramatically
reduced by errors in the system model on which the Kalman filter design is based. For

example, if a missile is damaged or a missile is operating away from its nominal flight
conditions than the system model for the missile will be incorrect and this may result
in poor performance by the Kalman filter. This paper is concerned with techniques for
relaxing some of the system model assumptions in a way that allows the performance of

filters to degrade gracefully when faced with system modelling errors.

The main technique investigated in this paper is risk-sensitive filtering. It has been argued
in the literature that, as the name suggests, risk-sensitive filters are sensitive to the risk
(or uncertainty) in a system model and are better able to allow for system uncertainty
(or possible errors in the system model) than so called "optimal" methods such as the
Kalman filter.

This paper concludes that risk-sensitive filtering offers advantages over more traditional
methods such as the Kalman filter when the system is not known with complete certainty
(which is commonly the case). Additionally, this paper suggests that a new system identi-
fication technique known as risk-sensitive parameter estimation may offer advantages over
existing system identification techniques. A more complete investigation and theoretical

basis for risk-sensitive parameter estimation is required.

In a defence context, this paper suggests that risk-sensitive filters and risk-sensitive pa-
rameter estimation techniques may improve the robustness of a missile's control loops.

Improved control loop robustness may enable reasonable missile performance when a mis-
sile is damaged or the missile is operating away from its nominal flight condition.
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1 Introduction

In control applications, filtering and system identification axe two techniques for estimating
unknown system information. System identification provides estimates of model param-

eters whilst filtering provides estimates of dynamic quantities such as state variables. A
typical problem would involve using system identification to estimate the system model

and then implementing filters based on the estimated system model. Filtering and sys-
tem identification can therefore be seen as complementary techniques that can be used in
tandem to achieve a desired objective.

Both system identification and filtering rely on assumptions about the system's structure.

In filtering problems, system characteristics are assumed known (ie. the true system model

is assumed known). While system identification can provide estimates of the unknown
system dynamics, it is not possible to know the system with complete certainty. Likewise,
system identification itself relies on assumptions such as: the true model is in the restricted
class of models over which the identification is performed[22]. This paper is concerned
with a technique for relaxing some of the assumptions made in both filtering and system
identification.

The objective of the standard filtering problem is to find the state estimate for which the

expected variance of the estimation error is minimized[l]. This minimum variance estima-
tion is appealing in control (and other applications) because it can be seen as minimizing
the "energy" in the estimation error. Unfortunately techniques which are designed as-

suming complete system knowledge, such as the Kalman filter, do not necessarily provide
optimal estimates when there is system uncertainty[23].

Similarly, when system identification is used to reduce system uncertainty, it should be
remembered that many simplifying assumptions underlie the identification process[22].
It should be noted that system identification is always performed over a restricted class
of models, eg. linear systems of fixed order[22]. It is also often assumed that the true
model is a member of the identification model set. In many applications, the objective of
identification is to estimate the system model in the model set closest to the true system
in an output error sense.

In control applications, the measure of "closeness" generally used is the prediction error
variance[22]. That is, the estimated model is the model whose outputs (predictions of the
system outputs) are closest in a variance sense to the real system outputs. In this way,
system identification has an analogous performance index to the filtering problem.

This paper considers an alternative filtering problem known as risk-sensitive filtering[8].
Although this paper is motivated by control problems, the discussion is limited to zero
input systems and this paper is a preliminary step towards applying risk-sensitive tech-

niques to filtering for control problems. Risk-sensitive filters minimize an exponential of
the error cost, which penalizes the higher order moments in the estimation error, that
is, moments other than the variance[5]. It has been argued that system uncertainty ap-
pears in these higher moments and hence it is argued that risk-sensitive filters are more
"robust" to system uncertainties than minimum variance estimators[5, 8] . This can be
interpreted as meaning that the risk-sensitive filter can provide estimates that are better,
in an error variance sense, than a Kalman filter, when both axe based on the same model
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assumptions [23]. A complete understanding of the type of uncertainties that lead to this
situation has not yet been completed, but is the subject of continuing research[23].

One application relevant to defence is the design of control loops for missiles. Kalman
filters are commonily used in the control and guidance loops of modern guided missiles.

Risk-sensitive filters and other techniques may improve the robustness of a missile's control
loops. Improved control loop robustness may enable reasonable missile performance when
a missile is damaged or the missile is operating away from its nominal flight condition.

This paper also proposes a risk-sensitive parameter estimation problem. When the true

model is not in the model set we suggest that there is important information in the higher
error moments of the prediction error (analogous to the risk-sensitive filtering problem).
It is suggested in this paper, without proof, that a risk-sensitive parameter estimation

approach allows for the inability of the model class to perfectly represent the true system.

Many of the definitions and results given in this paper are well known in the established
literature on risk-sensitive filtering and control. We have tried to reference the sources of
results as they appear in this paper.

The paper is organized as follows: In Section 2 the risk-sensitive filtering problem is
presented. The risk-sensitive filter for linear systems is given and an example is presented
which compares the Kalman filter with the risk-sensitive filter when the system is not
known with complete certainty. This section is a review of existing results. In Section

3 a new research problem is proposed which we call risk-sensitive parameter estimation.
An parameter estimation example is given that compares the use of Kalman filter state
estimates with the use of risk-sensitive filter state estimates. Finally, in Section 4 some
conclusions are presented.

2 Risk-Sensitive filtering

2.1 Minimum Variance Estimation

We proceed with the notation used in [6, 8]. Consider the following stochastic, discrete-
time state space system (also known as a Gauss-Markov linear system) defined on a prob-

ability space (E, .F, P):

Xk+1 = Axk BWk+1, x 0 E RN×I

Yk = CXk + DVk, Yk E RPxl (2.1)

where k E Z+; Xk,B E RNxi; yk,D E RPxl; Wk,vk E R; A E RNxN; and C E RP×N.

Here, Xk denotes the state of the system, Yk denotes the measurement, and Wk and vk are
the process noise and the measurement noise, respectively. It is assumed that the noises are
independently and identically distributed (iid), zero mean unit variance Gaussian random
variables, ie Wk, Vk - N[O, 1]. We denote sequences by bold face letters subscripted by
the index range, for example the sequence {wO,. . . , Wk} is denoted by wO,k. It is assumed
that WO,k, VO,k and xO are mutually independent. We also assume that x0 (or an a priori
distribution for x0 ) is given. For simplicity we have not considered time-varying matrices
but these are not excluded by the theory.

2
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The conditional mean estimate is defined as follows

ki = E[XkIYO,k, XO], (2.2)

where E[.I.] denotes conditional expectation on the probability space (E, _T, P) and k4nv
denotes the conditional mean estimate at time k. The conditional mean estimate is equiv-
alent to the minimum variance estimate given as follows

,nv = argmin {Vk(w) = E[(xk - W)'(Xk - w)IYO,k, xO}. (2.3)

where arg minF (w) is the value of the argument w that minimizes the cost F (w) and the

prime symbol ' denotes the transpose.

It is well known [1] that for Gauss-Markov linear systems, eg. (2.1), when the system is

known, that the optimal filter for conditional mean estimates is the Kalman filter which
happens to be a finite-dimensional filter.

When the true model is not known, the Kalman filter implemented assuming a model

estimate ,, gives estimates
Xkf = E[xklYO,k, xO, A] (2.4)

where 5 kf1 denotes the Kalman filter estimate at time k based on the assumed model ,.kjýf

When A is not the true system, the Kalman filter estimates kfj are generally not minimumkIA
variance estimates[23].

2.1.1 Estimator Performance Index

The performance analysis of estimators given below follows the presentation given in [23].

To enable comparison of different filters (or estimators) we introduce a cost associated
with a filter, termed the expected estimator cost, as follows,

W(O) = EA[W(O)] (2.5)

where

[ E(Xi - i)'(Xk - k'-ji) YO,k i X0 (2.6)

Here 0 is a particular filter and ? denotes the estimate of x from the filter 0 at time k

k~i
based on an assumed model A. The cost W(O() is termed the estimation cost and for large
k, if the system is ergodic, converges to the measured estimation cost,

1T

k= Z( )'(Xk -_ ). (2.7)

The symbol EA[.] denotes expectation on the probability space (A, .FA, PA) where A is
the set (or space) whose elements a denote the possible dynamics of the system, FA is a
a-algebra on A, and PA is a probability function on 7 A which denotes the probability of
particular dynamics a C A. This probability space provides a probabilistic description of

3
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the unknown system dynamics and enables comparison of different filters or estimators. It
should be noted that we consider the unknown but fixed model, A, as a random variable.
This is a different approach used in [23].

The minimum cost estimator is defined as

- arg min W(() (2.8)
OE41

where 0 denotes the minimum cost estimator and D denotes the set of possible estimators.

When A has one member, a Gauss-Markov linear system of the form (2.1), then the
Kalman filter is the minimum cost estimator as defined by (2.8).

The key point of this paper is that for other A, a filter other than the Kalman filter
may be the minimum cost estimator[23]. In [23], examples are given where the measured
estimation cost of the risk-sensitive filter is less than the measured estimation cost of the
Kalman filter.

2.2 Risk-Sensitive Filtering

The following description of risk-sensitive filtering comes from [8]. The results were first
established in [5]. Motivated by the desire to improve filter performance when system
uncertainties exist we consider a filtering problem which seeks to minimize an exponential
of the error performance index.

Analogous to the minimum variance estimate definition, the risk-sensitive filter estimate,
based on an assumed model, is defined as[8],

,ý"- = arg min Jk(w), (2.9)

JA WERn

where
Jk(w) = E [eXl)(04,k(w)) IYOkix1,AI 1 0>0. (2.10)

Here, 1

(O,k(W) = (o,k-1 + 1(xk - w)'Qk(xk -w), (2.11)

where 1n
m,n =2 1= (,Xk ^)'Qk(Xk . k (2.12)

where 0 > 0 is the risk sensitivity parameter and Qk > 0 is a weighting matrix. Here , is
the assumed model and is not necessarily equal to the true model A.

The risk parameter can be thought of as describing the amount of uncertainty in the
system description. The larger the 0 value the greater the model, A, is believed to be in
error. Conversely, as 0 -+ 0 the model is believed with more certainty and the risk-sensitive
filter approaches the Kalman filter, see [8] for details.

We do not go into details here but finite dimensional solutions to the risk-sensitive problem
for linear systems have been presented previously [6, 8]. We present the risk-sensitive filter
for linear systems in a later section.

4
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Remarks

1. The risk-sensitive state estimate does not have an interpretation as a conditional
mean estimate.

2. This is perhaps not the obvious risk-sensitive cost but it is shown in [8] that

xkI = argmin E [exp ((Xk -W)'Q(Xk-W)) YO*k7Xo0 (2.13)

results in the same solution as the minimum variance (or risk-neutral) problem.

2.2.1 The Risk-Sensitive Cost does Penalize Higher Moments

To see how risk-sensitive estimation penalizes higher moments consider a scalar system
model and set Qk = 1. In this case we can write the cost as

Jk(w) = E [exp (IO(w-Xk)2 +04o,k-)l YO,kiXOA]

= E [Fkl,O x exp (o(w -Xk)2) YO,k,xOX ] 0>0

where Fk-1,0 := exp (o40,k-1) is a factor independent of w. Now writing the second

exponential as an infinite series we get

1 [F( W - Xk)2  1 02(w - Xk )4  1 O3 (w - X0)6
Jk W = 2 X + 2 + 2 22 +3 23 +.. YO,k, X,.

The terms (w - xk) 2P for p > 1 axe the higher order moments that are not considered in
minimum variance estimation. That is, the risk-sensitive cost penalizes error contributions
from these higher moments whenever 0 > 0.

2.2.2 Risk-Sensitive Filtering for Linear Systems

Consider the Gauss-Markov linear system given earlier (2.1). The following theorem holds.

Theorem 1. The optimal risk-sensitive estimate, F'., defined in (2.9), can be expressed
as

Xkj = A. k-l8 , + (Rk1 + C'D 1 C)- C'D-(Yk - CAkS-,) (2.14)

where (RA1 + C'D-1 C - OQ) > 0 for all k and Rk satisfies the following Riccati equation

Rk+1 = B + A(Rk 1 + C'D-1 C - OQ)-'A', R0 > 0 (2.15)

Proof: This was first proven in [5]. It is also shown in [8]. 0

5
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Remarks:

1. The risk-sensitive filter for Gauss-Markov linear systems is finite dimensional.

2. Note that the risk-sensitive filter is equivalent to the Kalman filter when 0 = 0.

3. Unlike the Kalman filter, the a priori and a posteriori estimates (or one-step-ahead
predictions) for the risk-sensitive filtering problem are not simply related through

A. See [3] for details of the predictive risk-sensitive filter.

Example 1. (Risk Sensitive Filtering.)

To demonstrate the possible improvement in state estimation consider the linear system,

given earlier (2.1), with A, C, B, D = 1 and xO = 0. The state sequence XO,k is measured

indirectly via the observations YO,k.

The parameters B and C are known correctly, but A and D are not known. Consider

the filtering problem where A is the set of three possible models with (A = 0.8, D = 1.2),

(A = 0.9, D = 1.2) and (A = 1, D = 1.2) respectively. Assume that the a priori probability

of these models is equal.

We compare the performance of the Kalman filter and a risk-sensitive filter (0 = 0.5, Q = 1)

on the basis of the expected estimator cost, ie. (2.5), and measured estimation cost, ie.
(2.7).

Figure 1 shows both the risk-sensitive (0 = 0.5, Qk = 1) and Kalman filter estimates

against the true state value using the assumed model A = 0.9,/5 = 1.2. The risk-sensitive
filter has smaller measured estimation cost than the Kalman filter. That is, V'm (RS)

0.002442 while W7Vm (KF) = 0.002480.

M...... RMin Var.

RS

18 
True

17

~16 J"

13''

• I' "I. " I

• 1 I' • : , ,

15: •I I \: I " " :! \ I

850 855 860 865 870 875 880 885 890 895 900
Time

Figure 1 (U): Comparison of risk-sensitive filter and kalman filter estimates

We compared the performance of the filters is two ways. Firstly, we compare the measured
estimator cost of the two filters for three different model assumptions when filtering data

6
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from one unknown system (A, B, C, D = 1). Secondly, we compared the estimator cost of
the two filters (based on one model assumption (A = 0.9, b= 1.2)) when filtering data
generated from the three systems in A.

The first comparison examines the effect of varying model assumptions on the performance
of the filters while the second comparison examines the ability of one fixed filter of each
type (Kalman filter and risk-sensitive filter) to filter data generated from a variety of
systems.

Table 1: The performance of filter for different assumed models when true model is
A, C,B,D = 1.

Model (C,D known) W m (KF) W m (RS)

A = 0.8, B = 1.2 0.002515 0.002505

A = 0.9, B = 1.2 0.002480 0.002442
A = 1.0, B = 1.2 0.002618 0.002529

Table 2: The performance of filters on different systems when assumed model is A =

0.9,Bf, -= 1,Db = 1.2
Model (B,C,D = 1) W m (KF) W m (RS)

A = 0.8 0.002550 0.002531
A = 0.9 0.002480 0.002442

A = 1.0 0.004887 0.003923

W(W) 0.003306 0.002965

Table 1 shows the results of the first comparison while Table 2 shows the results of the
second comparison

The risk-sensitive filter performs better than the Kalman filter in all the situations pre-
sented in the tables. From Table 2, and using the fact that the systems are ergodic, a
value for the expected estimator cost of the filters can be calculated and for this example
the risk-sensitive filter has the lower expected estimator cost.

Risk-Sensitive Filtering Solutions Summary

Finite dimensional solutions for this problem have be found in particular situations includ-
ing: linear systems [5, 8], bilinear systems [7] and zero process noise case (wk = 0) [7]. It
has also been shown that finite-dimensional filters exist for a class of discrete-time nonlin-
ear systems[10]. Finite dimensional solutions can been obtained for more general nonlinear
systems by using a generalized risk-sensitive cost index which is chosen to absorb the con-
tribution from the nonlinear terms[9]. Solutions for the corresponding continuous-time
problem are also available for linear systems [11].

The foundations for the risk-sensitive problem where introduced in the following papers
that focus on the risk-sensitive control problem[15, 18, 19], see the remark below. Ap-
plications for the technique are described in [2, 13]. Recently, a book on risk-sensitive

7
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control has been published[20]. Later work on the risk-sensitive problem can be found in

[5, 16, 211.

Remark:

1. The risk sensitive control, uRS, is defined as minimizing the risk-sensitive control
cost:

J(u) = E 0[exp ( E(QkXk + u'RkUk) + TQTXT),
I (k=1 )]

where u = {uI, .. UT-1} is a control sequence, 0 > 0 is the risk parameter and T is

the input length. It is generally assumed that Qk > 0 and Rk > 0 for all k.

3 Risk-Sensitive Parameter Estimation

In this section we discuss parameter estimators and propose a risk-sensitive parameter
estimation problem. Before introducing the parameter estimation problem we will discuss

the sources of model uncertainty that effect parameter estimation.

3.1 Model Uncertainty

Parameter estimation or system identification can be viewed as a technique to allow for
model uncertainty. In the broadest sense, the objective of system identification is find
the system that created the observed data. However, in practice, the class of models over
which the search is performed needs to be restricted for computational and complexity
reasons. Assumptions about the underlying system need to be made. The objective of

system identification then becomes to find the model within the model class that best
describes the observed data. To enable searching, model classes are parameterized and
the system identification problem becomes a parameter estimation problem.

3.2 Adaptive Estimation

The need to use adaptive estimation arises in situations where all the quantities needed
to estimate a parameter are not directly available, but the required quantities themselves

can be estimated. For example, consider again the linear system,

Xk+1 Axk+Bwk+l, xo E R N

Yk = CXk + Dvk, Yk E R (3.1)

where k E Z+; xk, B G RNx1; yk,D,Vk and Wk E R; A E RNxN and C E R1×N. Also, the
sequences WO,k and VO,k are sequences of lid, zero mean, unit variance Gaussian random
variables. It is assumed that WO,k, VO,k and x0 are mutually independent random variables.
Also, it is assumed that x0 is given. Here, Xk denotes the state of the system which is

observed via the observations, Yk.

8
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Assume A, B and D are known and that we are interested in estimating C.

The recursive least squares algorithm for estimating C requires that Xk is known (which in
this problem it is not). However, Xk can be estimated via a Kalman filter. If the estimates
xk from a Kalman filter are substituted into the least squares algorithm in lieu of Xk

kjA
then we have an adaptive estimation algorithm known as Extended Least Squares (ELS).
That is,

Qk+1 = Ck + kPk(Yk--Ckxký)

k = k - 1 -1 + 1 ý,^kf2 (3.2)
-- -;k k-1 kXkkJ)

where ,kjý are Kalman filter estimates.

In general, convergence results for ELS algorithms can not be established; however, there
are many adaptive estimation algorithms for which strong convergence results have been
established.

Consider again the linear system (3.1). Assuming that B and D are known, it is possible
to estimate A and C as follows:

Ak = jk0k-, Ao E RNXN

Ok = tkk 1 , 0 E R N (3.3)

when O6k1 exists, where A0 and C0 are initial guesses for the parameters and

jk = E[JkiYo,k,X0, Ao,k-1, (O,k-1],

Ok = E[OklYO,k, XO, AO,k-, (O,k-1] and

Tk = E[TkIYO,k, xo, Ao,k-1, 'CO,k-1]- (3.4)

Here,

k k

Jk := ExtHiXf, Ok := and

k
Tk :E ytX'. (3.5)

Note the notation A0,k-1 denotes the sequence f A0,-A,,..., ,-k-l}- Filters for 3k, k and

Tk are given in [12].

It has been shown in [14] that if the output data was generated by (3.1) and the model
order, N, is known then the estimates Ak and Ck almost surely converge to the true A
and C model parameters.

3.3 Risk-Sensitive Parameter Estimation

There are two situations in which a risk-sensitive approach may be appropriate, firstly,
when the true model, A, is not in the model set, A, and secondly, from poor initializations

9
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A0- The adaptive estimation algorithm (3.3),(3.4) assumes that the true system model
is in the model set. If the model is not in the model set and the state sequence is not
measured then estimation may not be optimal in a prediction error sense.

Even if the true model is in the model set, convergence close to the true model may

be slow from poor initial guesses. It has been suggested from simulation evidence that
a risk-sensitive approach to estimating the quantities Jk, Ok and Tk may improve con-
vergence from poor initializations[17]. These two situations motivate an investigation of

risk-sensitive parameter estimation.

3.3.1 Risk-Sensitive Adaptive Estimation

In this subsection we propose a risk-sensitive estimation algorithm without study. Consider

again the linear system (2.1).

Assuming that B and D axe known, it is possible to estimate A and C as follows:

A R JS S R~SERNxN

^R = S ,RS (6S , RoRS e RlxN (3.6)

when (6 ) exist, whereA0 and ^ are initial guesses for the parameters and JkS,

6RS and ýRs are risk-sensitive estimates for the quantities Jk, Ok and Tk respectively.

The following example examines the use of risk-sensitive filter estimates in a parameter

estimation problem.

Example 2. (Using Risk-Sensitive Filter Estimates for Parameter Estimation.)

Consider the following linear system

Xk+1 = Axk + BWk+l, xo E R

Yk = Cxk + DVk, Yk E R

where A = 0.9, C = 1; B,D = 0.1; x0 = 0 and wk,vk are iid, zero mean unit variance

Gaussian random variables. Here, the state sequence XO,k is measured indirectly via the
observations YO,k and we are interested in estimation of A.

The true model is not known and the following system parameters are assumed: B = 0.1,
0 = 0.6 and D = 0.1. Our initial guess for A is A 0 

- 0.6. Here, estimation of A is

performed over the model set (B- = 0.1, C = 0.6 and/D = 0.1) which does not contain the

true system.

If the state sequence XO,k was measured then the least squares estimate of A would be

A (T 2_

where T is the number of data points.

10
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However, when the state sequence is not measured then a multi-pass missing data approach
[14, 24] can be used. Here filter estimates of the state are used in lieu of the true state
and A estimated on pass t as follows:

(k= ( kie_)k lIAU._) / ( kf= lIel).

where XklA'-I is a estimate of the state at time k based on model assumptions (B = 0.1,

C = 0.6 and D = 0.1) and Ae-1, either from the Kalman filter or from a risk-sensitive
filter. Passes though the data are performed until A' converges to some value.

We compare parameter estimation using Kalman filter estimates kfj with estimation usingkIA
risk-sensitive filter estimates :l.sS

kIA'

A data set of 1000 points was generated with the above parameter values. First, Kalman
filter estimates were used and after 10 passes A was estimate as 0.9474. Then risk-sensitive
filter estimates (0 = 35, Q = 1) were used and after 10 passes A was estimated as 0.9049.
This corresponds to an improvement in model performance, as measured by filtered output
error (that is, E[(yA - 9k")'IYOkx] XI ; I =k i(yj - from 0.002964 for the Kalman
filter estimate to 0.001879 for the risk-sensitive filter estimate.

Convergence to these values occurred for a range of choices for A0 . Similar improvements
in estimation of A occurs using risk-sensitive filters if the assumed model had C = 0.8 or
0=0.9.

Remarks

1. The parameter estimation problem and the approach presented in the above example
is admittedly contrived and unlikely to occur in practice. Estimation of both A and
C using standard techniques would be an obvious approach and would result in
a better model estimate. However, the success of the risk-sensitive approach in
this artificial problem motivates investigation of risk-sensitive approaches in more
complicated problems.

2. The more usual measure of model performance is the prediction error but the risk-
sensitive filter shown in this paper can not be used to generate predictions (see
early comment and see [3] for the risk-sensitive predictor). Hence, for convenience
the filtered output error has been used for comparison instead. There is a similar
improvement in the prediction error of the risk-sensitive predictor over the Kalman
filter predictor when they are based on the models estimated in this example.

3. The missing data approach used in this problem can be considered an example of
an adaptive estimator (3.6) where JLS = Z•=I _rs.X 1s etc. Convergence results or

properties have not yet been established for the presented risk-sensitive estimation
algorithm.

11
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4 Conclusion

Unknown model dynamics can make the control problem difficult. Filtering and system

identification are two techniques used to handle system uncertainties.

This paper repeated the known risk-sensitive filtering problem and the known solution for

Gauss-Markov linear systems. An example was presented which compared the Kalman
filter with a risk-sensitive filter in a situation where the system parameters were not known
completely.

The key contribution of this paper is the proposal of the risk-sensitive parameter estimation

problem. An example was presented which demonstrates a possible application of a risk-
sensitive approach to the parameter estimation problem. In this example, it was shown
that a better model (in an output error sense) could be found by using risk-sensitive state

estimate than by using Kalman filter state estimates. This suggest that a more theoretical

and complete investigation of risk-sensitive parameter estimation may be worthwhile.
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