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Abstract 

An unstructured grid Large Eddy Simulation (LES) methodology has been developed for compressible high 
speed flows. The filtered compressible Navier-Stokes equations are solved on an unstructured grid of tetrahe- 
dra. The inviscid fluxes are obtained from an exact locally one-dimensional Riemann solver using Godunov's 
method. The viscous fluxes are obtained using a discrete analog of Gauss' Theorem. The reconstruction 
is performed using a Least Squares technique. The temporal integration is a Runge-Kutta method. The 
algorithm is overall second order accurate in space and time. Four flowfields have been computed: decay of 
isotropic turbulence, channel flow, supersonic flat plate boundary layer and supersonic compression corner. 
The first and second cases are effectively incompressible, while the third and fourth cases are supersonic 
(Mach 3). The computed results show close agreement with experiment and Direct Numerical Simulation, 
and validate the unstructured grid LES methodology. 
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Introduction 

The effective design of high speed aircraft and missiles depends critically upon accurate prediction of aerody- 
namic and aerothermodynamic performance which are strongly affected by flow turbulence under most flight 
conditions. From an engineering standpoint, the aircraft or missile aerodynamicist needs the capability for 
accurate prediction of the mean and rms fluctuating surface pressure (pw and p'w) and surface heat transfer 
(qw and q'w), mean surface skin friction (f„,), and locations of primary and secondary separation. 

Table 1      RANS Capability for 3-D Shock Wave Boundary Layer Interaction 

Quantity Satisfactory Unsatisfactory No ca pabili 
Pw V 
K V 
qw V 
& V 
Primary Separation V 
Secondary Separation V 

The current methodology for prediction of compressible turbulent flows is based on the Reynolds-averaged 
Navier-Stokes (RANS) equations (Knight 1993). This approach has yielded a hierarchy of turbulence models 
extending, from zero-equation to full Reynolds Stress Equation models. While these models have generally 
been capable of predicting the engineering quantities of interest in weakly perturbed boundary layers, they 
have been unable to accurately predict the complex 3-D flows which are encountered in highly maneuvering, 
high angle-of-attack flight. Two recent extensive reviews have documented the capabilities and deficiencies 
of a wide range of RANS models for prediction of complex 3-D flows with shock wave-turbulent boundary 
layer interactions (Knight 1997, Knight and Degrez 1998). The results, summarized in Table 1, indicate 
that a significant number of critical engineering quantities are not capable of prediction by current RANS 
models. Therefore, more advanced turbulence models are needed which have the ability to simulate the 
complex physics of turbulence with greater generality. 

Large Eddy Simulation (LES) is an alternative to RANS hich may be capable of predicting more (or all) 
of the aerodynamic and aerothermodynamic quantities of engineering interest described above. In LES, the 
governing equations are spatially filtered on the scale of the numerical grid. The large, energy-containing 
eddies are directly computed. These eddies are strongly influenced by the physical geometry and configura- 
tion of the flow. Thus, the direct computation of the large eddies by LES, as opposed to the modeling of the 
large eddies by RANS, gives greater generality, in principle, to LES. The influence of the unresolved scales 
of motion is simulated using a subgrid-scale (SGS) model (Smagorinsky 1963, Lilly 1967, Deardorff 1970, 
Germano et al 1991, Piomelli et al 1991, Ghosal et al 1995) or by the inherent dissipation in the numerical 
scheme (Boris et al 1992, Oran and Boris 1993, Porter et al 1994, Grinstein 1996, Ansari and Strang 1996). 
Because the statistics of the small scale turbulence are expected to be more homogeneous and isotropic than 
those of the large scales, a general model of the small scales seems more plausible than a general model of 
the entire spectrum of turbulent motions. 

LES has been shown to be both a useful research tool for understanding the physics of turbulence, and 
also a predictive method for flows of engineering interest. Recent compendia and reviews include Galperin 
and Orszag (1993), Mason (1994), Lesieur and Metais (1996) and Moin (1997). Many models have been 
developed for the subgrid-scale stress tensor. These include the conventional Smagorinsky eddy viscosity 
model (Smagorinsky 1963, Lilly 1967, Deardorff 1970), the spectra eddy viscosity model of Kraichnan (1976), 
the dynamic SGS model of Germano et al (1991), the scale similarity model of Bardina et al (1980), and the 
localized dynamic SGS model of Ghosal et al (1995) and more recently of Menon and Kim (1996), and many 
others. Although most research has focused on incompressible turbulent flows, there has recently emerged a 
growing interest in applications of LES to compressible turbulent flows. Examples include Yoshizawa (1986), 
Speziale et al (1988), Moin et al (1991), Erlebacher et al (1992), Zang et al (1992), El-Hady et al (1994), 
Jansen (1997), Spyropoulos and Blaisdell (1996), and Haworth and Jansen (1996). Nearly all compressible 
LES has employed spectral methods or structured grids, with the exception of Jansen and Haworth. 



Apart from the complexities of the flowfield, the complicated geometries of high speed vehicles is also a 
challenge. To enable treatment of complex geometries and also achieve high resolution of the flowfield 
dynamically, we employ an unstructured grid. There are two important advantages of unstructured grids. 
First, algorithms have been developed to facilitate automatic generation of unstructured grids for a complex 
geometries (see, for example, the discussion in Barth (1990, 1992). These grid generation methods can be 
substantially more efficient (in terms of user time) than some of the multi-block structured grid generation 
methods used. Second, local mesh refinement, either adaptive or fixed, can been performed much more 
readily for unstructured grids. 

The report summarizes the research in Large Eddy Simulation of compressible turbulent flows using unstruc- 
tured grids. Two methods for simulation of the subgrid scale stresses have been examined. The first method 
is the Monotone Integrated Large Eddy Simulation (MILES) technique. The second method is a hybrid 
technique combining MILES with a Smagorinsky eddy viscosity model for the subgrid scale stresses. These 
two methods, together with different algorithms for the inviscid fluxes and function reconstruction, have been 
evaluated for four turbulent flows: the decay of isotropic incompressible turbulence, channel flow, supersonic 
boundary layer and supersonic compression corner. The results are in overall good agreement with the 
experiment and Direct Numerical Simulation (DNS), thereby validating the accuracy of the methodology. 

Governing Equations 

The governing equations are the three-dimensional filtered Navier-Stokes equations. For a function /, its 
filtered form / is 

where G is the filtering function, and its Favre-averaged form / is 

P 

where p is the density. From the Navier-Stokes equations for the instantaneous flow variables density (p), 
velocity in the ith coordinate direction («,-), pressure (p) and temperature (T), Favre-averaging and spatial 
filtering yield the filtered Navier-Stokes equations (here written using the Einstein summation notation where 
repeated indices denote summation) 

dp     dpük _0 

dt       dxk 

dpüi     dpüiük _     dp      d%k 

dt dxk dxi      dxk 

where 
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Two different Sub-Grid-Scale (SGS) models are employed. The first model is Monotone Integrated Large 
Eddy Simulation (MILES) wherein the numerical algorithm itself provides the requisite dissipation associated 
with the subgrid scale motions. The second model is the classical constant-coefficient Smagorinsky method 

c   _ i (dü<   ,düA 

Tij = 2CnpA  ySmnSmn ISij — ^SkkSij) 
—       ~ 

where CR = 0.00423 and A is the length scale which is related to the local grid size. For boundary layer 
flows, A is multiplied by the Van Driest damping factor 

D = 1 - e~n*lA 

where A = 26, n+ = nuT/vw is the normal distance to the (nearest) solid boundary normalized by the 
viscous length scale vw/ur where vw is the kinematic viscosity evaluated at the wall and UT is the local 
friction velocity. 

We simplify the notation by hereafter dropping the tilde ~ and overbar ~. The flow variables are nondi- 
mensionalized using the reference density />«,, velocity Uoo, static temperature T^ and length scale L, with 
Mach number M^ = Ux/\/^(RTZ. The governing equations are therefore 

dp     dpuk _0 

dt      dxk 
dpui     dpujUk 

dt dxk 

dp  { 8Tik 

dxi      dxk 
doe       d , . 
Ot OXk dxk 

_pT_ 
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Numerical Algorithm 

The governing equations are expressed in finite volume form for a control volume V with surface dV 

dt 
I QdV + f   (Fi + Gj + Hk) -hdA = 0 

Jv JdV 

where Q is the vector of dependent variables 

Q={ 

and the flux vectors are 

pu pv pw 
pu2 +p-Txx pUV-TXy puw - TX2 

puv -Txy f '    G= 1 PV2+P~   Tyy 
r'   H= l 

pvw-Tyz 
puw — Txz pVW   -TyZ pw2+p- Tzz 

[ (pe + p)u - Qx - ßx ) [ (pe + p)v -Qy-ßy  ) [ (pe+p)w- Qz-ßz ) 



with 
ßx = %XU + %yV + %ZW 

ßy — Txyu + Tyyv + %>zw 

ßz =TX2u + Ty,v + Tzzw 

An unstructured grid of tetrahedra is employed, with a cell-centered storage architecture. The cell-averaged 
values, stored at the centroid of each tetrahedron of volume VJ are 

Qi ViJVi 
QdV 

The inviscid fluxes are computed using Godunov's method which is an exact one-dimensional Riemann solver 
(Gottlieb and Groth 1988) applied normal to each face. The inviscid flux computations require the values 
of each variable on either side of the cell faces. These values are obtained from the cell-averaged values 
by second-order or third-order function reconstruction using the Least Squares method of Ollivier-Gooch 
(Ollivier-Gooch 1997). The second-order function reconstruction method of Prink (1994) was employed in 
some of the earlier LES studies, but was found inferior to the method of Ollivier-Gooch (Okong'o and Knight 
1998). More details on the reconstruction schemes are given in Okong'o and Knight (1998). 

The viscous fluxes and heat transfer are computed by application of Gauss' theorem to the control volume 
whose vertices are the centroids of the cells which share each node. The second-order accurate scheme (in 
2-D) is given by Knight (1994) and the extension to 3-D is straightforward. 

Parallelization 

The code is parallelized using domain decomposition and 
Message Passing Interface (MPI). Domain decomposition is 
performed in a pre-processing step. The domain is decom- 
posed in a single direction with equal number of tetrahedra 
in each domain. A halo of cells is added in each domain 
to provide data on the adjacent domain, and the halo cell 
data is updated at every subiterate of the time integration. 
An example is shown in Fig. 1 for the LES of decay of 
isotropic turbulence. The numerical algorithm achieves ex- 
cellent parallel performance. For example, the speed-up on 
four processors of the SGI Power Onyx with R-10000 pro- 
cessors is 3.7 for 93% efficiency (Knight et al 1998). 

Results 

Fig. 1    Example of domain decomposition 

Four different configurations have been examined: decay of isotropic turbulence, channel flow, flat plate 
boundary layer and supersonic compression corner. The first and second cases are effectively incompressible, 
while the third and fourth cases are supersonic (Mach 3). 

Decay of Isotropic Turbulence 

The benchmark experiment by Comte-Bellot and Corrsin (CBC) (1971) of the decay of isotropic turbulence 
was selected to examine the following specific issues of the unstructured grid LES code: the MILES vs 
hybrid SGS models, the method for reconstruction of the flow variables to the cell faces, the demonstration 
of achieving consistent results using two different grids, the type of Riemann solver, regular vs random grids, 
the convergence parameter in Godunov's method, and the number of Fourier intervals used in the initial 
spectrum. In the experiment, turbulence was generated using a biplane, square rod grid with mesh size 
M = 5.08 cm and solidity of 0.34 in a uniform mean flow of velocity U0 = 10 m/s. The Reynolds number 
based on the grid spacing is Re = 34000. The measurements were performed downstream of the grid at three 
locations, U0t/M = 42, 98, and 171 where t is the dimensional "time" in the experiment. The computation 
was performed in a periodic box. Details are presented in Knight et al (1998). 



Ten different computations, as summarized in Table 2, were performed to evaluate the issues described 
below. Cases 1 through 7 and 10 use the MILES model (i.e., no SGS model), while Cases 8 and 9 use the 
hybrid model (i.e., MILES plus the Smagorinsky SGS model). Case 1 employs a) second-order least-squares 
reconstruction with 8 cells in the stencil, b) a regular grid, c) Godunov's method, d) a convergence parameter 
of 10-10 in Godunov's method, and e) Nk = 26 in the initial energy spectrum. Cases 2 through 7 in succession 
modify one of these five choices. For example, Case 2 employs Frink's method for reconstruction. Cases 8 
and 9 use the hybrid (MILES plus Smagorinsky models) with different length scale A. The Smagorinsky 
constant CR is chosen to be 0.012. Cases 1 to 9 employ Grid 1, and Case 10 employs Grid 2. 

Table 2      Decay of Isotropie Turbulence 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Grid SGS 
Model 

MILES 
MILES 
MILES 
MILES 
MILES 
MILES 
MILES 
Hybrid 
Hybrid 
MILES 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 

n/a 

Reconstruction 
Method 
LS2nd 
F2nd 
F2nd 
First 
F2nd 
F2nd 
F2nd 
F2nd 
F2nd 
F2nd 

Legend 

Grid 
Type 
Reg 
Reg 
Reg 
Reg 
Ran 
Reg 
Reg 
Reg 
Reg 
Reg 

26 
26 
26 
26 
26 
26 
52 
26 
26 
26 

Riemann 
Solver 

Godunov 
Godunov 

Roe 
Godunov 
Godunov 
Godunov 
Godunov 
Godunov 
Godunov 
Godunov 

Toler 

10-io 
10-io 

10-io 
10-io 
10-i2 

10-io 
10-io 
10-io 
10-io 

Gridl 
Grid 2 
MILES 
LS2nd 
F2nd 
First 
Reg 
Ran 
Nk 

Toler 

No. of tetrahedra = 163,840 
No. of tetrahedra = 1,310,720 
Monotone Integrated Large Eddy Simulation (Boris et al 1992) 
Second order least-squares reconstruction method 
Second order Frink's reconstruction method 
First order reconstruction method 
Regular grid of tetrahedra 
Grid obtained by random perturbing the nodes of the regular grid 
Number of Fourier intervals used for initial energy spectrum 
Tolerance employed in iteration solution for p* 

The decay of the resolved turbulence kinetic 
energy for Cases 1 to 9 is compared with the 
filtered experimental data of CBC in Fig. 2. 
The MILES method using either second order 
reconstruction method (Cases 1 to 3, and 5 to 
7) accurately predicts the turbulence decay. 
This remarkable result implies that the inher- 
ent numerical dissipation in the numerical al- 
gorithm (due to the finite order accuracy of 
the reconstruction and quadrature) provides 
a reasonable model of turbulent energy dissi- 
pation. The computations employing the hy- 
brid (MILES plus Smagorinsky models) ex- 
hibit only a small difference compared to the 
MILES simulations, since the dissipation of 
turbulence energy is almost entirely a conse- 
quence of the numerical algorithm (MILES). 
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Fig. 2    Filtered turbulent kinetic energy 
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The computation using the second order least-squares method (Case 1) shows a lower decay rate than 
those using Frink's method (Cases 2, 3, and 5 to 7). The second order least-squares evidenlty has a lower 
inherent numerical dissipation than the second order Frink's reconstruction. An SGS model may be needed 
to compensate the reduced inherent numerical dissipation in order to achieve the best agreement with 
experiment. The computation using the first order reconstruction (Case 4) shows poor agreement with 
experiment as anticipated. 

The MILES approach yields consistent results when the grid is refined (Knight et al 1998). The results using 
either Roe's method (Case 3) or Godunov's method (Case 2) are essentially identical. This is expected since 
the velocity fluctuations are small compared to the speed of sound. 

The choice of regular vs random grids has no significant effect on the accuracy of the computation as seen in 
Fig. 2. where the turbulence energy for Cases 2 and 5 are essentially identical. Moreover, the variation in 
the convergence parameter used in Godunov's method (Cases 2 and 6), and the number of Fourier intervals 
in the initial condition (Cases 2 and 7) have negligible effect. 

s 
"E u 
S 

U.IAI-M(CSC) 
U.VM ■ M. FiW^a (2nd wdw} 
U.VM-M.LS (2nd *■«•!•) 

u,t/M.171(CSq 
U.t/M . 171. Frtnlrt<2nd Mow) 
U.1AI. 171.13 (2nd ♦ ■ eat*) 

Fig. 3    Energy spectrum at U0t/M = 98 Fig. 4    Energy spectrum at U0t/M = 171 

The effect of the functional reconstruction method on the turbulence energy spectrum is shown in Figs. 3 and 
4 where the experimental data and computed results using the second order least-squares and Frink's method 
are shown at Uot/M = 98 and 171, respectively, for Grid 1. The least-squares reconstruction is observed to 
be more accurate than Frink's method. Since the CPU time for the two methods is approximately the same, 
the least-squares reconstruction is preferable. A "pile-up" of energy at lower wave numbers is noted. This 
was also observed by Haworth and Jansen (1996) who employed a similar grid resolution. 

Channel Flow 

The Reynolds number based on the channel height and bulk velocity is 5600. The Mach number is 0.5; 
however, the static temperature variation across the channel is small (less than 4%) so the flow is effectively 
incompressible. The mean flow is in the x— direction, with y and z representing wall normal and spanwise 
directions, respectively. 

Computations have been performed using the constant-coefficient Smagorinsky sub-grid scale model (CR = 
0.012, Prt= 0.4). The coefficient CR is multiplied by the van Driest damping factor 1 - e~y+/26 to integrate 
to the walls. The length scale A for the SGS model is the nodal spacing in the y-direction. A body-force 
is applied in this direction and is adjusted at each timestep to keep the bulk velocity constant. Using the 
global z-momentum conservation for fully developed flow, fi = -2u2

T. The bulk velocity is also the reference 
velocity and so is set equal to 1. The boundary conditions are periodic in the streamwise (x) and spanwise 
(z) directions with no-slip boundaries in the wall-normal (y) direction, with isothermal walls. 

The grid size is 2ir x 1 x 2x/3, where the lengths have been non-dimensionalized by the channel height. The 
grid has 65 x 65 x 65 nodes (274,625 nodes), 1,310,720 cells, and 2,646,016 faces. The grid is stretched in the 
y-direction, with minimum spacing (at the walls) of 0.00278 and a maximum spacing (in the channel center) 
of 0.0457. The initial condition is obtained from interpolating the fully-developed solution on a grid with 



33 x 65 x 33 nodes with the same wall-normal (y) spacing but double the streamwise and spanwise spacing. 
The flow has been simulated for about twenty-two flow-through times, with statistics accumulated over the 
last twelve flow-through times. (One flow-through time is the domain length in the ai-direction divided by 
the bulk velocity, i.e., 27r.) The results are compared with the experimental results of Eckelmann (1974) and 
Kreplin and Eckelmann (1974) and Direct Numerical Simulation of Kim et al (1987). In the presentation of 
results, statistics are accumulated at all grid points. Planar averages are obtained by averaging at all points 
on planes parallel to the walls, thus making the statistics functions of the wall-normal (y) direction only. 

The computed friction velocity, normalized by the bulk velocity, is uT = 0.0594 which is within 8% of the 
DNS and experimental values of 0.0643. The planar average of the time-averaged streamwise velocity U is 
shown in Figs. 5 and 6. The centerline velocity is 1.155 which is within 0.6% of the experimental value of 
1.162. The LES is close to the DNS in the near-wall region, but overshoots it slightly in the core of the 
channel, consistent with the lower shear stress of the LES. Notably, the LES has excellent agreement with 
the experimental data of Eckelmann (1979), whose log-law of u+ = 2.65 Iny+ + 5.9 is based on data at Rec 

of 5600 and 8200. The LES Rec of about 6470 is between these values. The experimental data points shown 
in Fig. 6 are for Rec = 5600. 

■ DNS 
  LES 
  II-.y 
  II'. 2.5 Iny' +5.5 (DNS) 
 u'-2.65lny* + 5.g(Exp) 

#        Eck»lm»nn(1»74) 

Fig. 5    Mean velocity in entire channel Fig. 6    Mean velocity in wall units 

Figs. 7, 8 and 9 compare the root-mean-square velocity fluctuations from the LES with the DNS results of 
Kim et al and the experimental results from Kreplin and Eckelmann (1979). In the experiment, Rec = 7700 
and Rer = 388, which are slightly higher that the DNS Rec = 6600 and Rer = 360 and the LES Rec = 
6470 and ReT = 330. The velocity fluctuations from the LES, DNS and experiment show generally good 
agreement. The streamwise fluctuations (Fig. 7) of the LES compare favorably with the experiment, but are 
slightly higher than the DNS. The LES wall-normal fluctuations to be lower than those of the experiment and 
DNS (Fig. 8); however, the DNS is also significantly lower than the experiment. The spanwise fluctuations 
(Fig. 9) show comparable agreement with experiment for the LES and DNS. The computed Reynolds stress, 
shown in Fig. 10, compares very well with the DNS. 
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Fig. 7    Rms streamwise velocity fluctuations Fig. 8    Rms normal velocity fluctuations 
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Fig. 9    Rms spanwise velocity fluctuations Fig. 10    Reynolds stress 

The higher-order velocity statistics based on the resolved velocities are shown in Figs. 11 to 16. The skewness 
   3/2 

for the streamwise velocity is defined by S(u') = u'u'u'/u'u' and likewise for v' and w', where the bar 
denotes the time-average and the prime denotes fluctuation relative to the time-average. Fig. 11 shows the 
streamwise skewness from the LES to be larger than the DNS, particularly in the center of the channel. The 
reasons for the disagreement with DNS are under evaluation. However, the agreement for the wall-normal 
and spanwise skewness, Figs. 12 and 13, is excellent. The flatness for the streamwise velocity is defined by 
F(u') = u'u'u'u/u'u' and likewise for v' and w'. The streamwise statistics of the LES deviate from the 
DNS (Fig. 14), while the normal and spanwise flatness profiles, shown in Figs. 15 and 16, agree very well 
with the DNS. 

DNS 
LES 

Fig. 11    Streamwise velocity fluctuation skewness Fig. 12    Normal velocity fluctuation skewness 
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The channel flow LES simulation is effectively MILES, im- 
plying that the SGS dissipation is attributable to the nu- 
merical algorithm. This is evident in Fig. 17 which shows 
the Smagorinsky eddy viscosity normalized by the molecu- 
lar viscosity. The peak value of the Smagorinsky is less than 
10% of the molecular viscosity and occurs in the middle of 
the channel. Thus, the Smagorinsky eddy viscosity does 
not significantly contribute to the energy dissipation which 
is due almost entirely to the numerical algorithm. This is 
a particularly important result and the first observation of 
this type for an unstructured grid computation of turbulent 
channel flow. Fig. 17   Smagorinsky eddy viscosity 

It is recognized that the above comparison between the DNS and the LES is not precise because the DNS 
has not been filtered onto the LES grid. However, for this case most of the energy is in the resolved scales, 
as shown by Fig. 17. 

Supersonic Flat Plate Turbulent Boundary Layer 

An adiabatic flat plate turbulent boundary layer at Mach 3 and Reynolds number Res = 2 x 104 (based 
on the incoming boundary layer thickness 6) has been computed. The Reynolds number based on the 
momentum thickness 82 and wall viscosity fiw is Res2 = 600. The Reynolds number is sufficently high to 
achieve turbulent flow. 

x=o 

:    RESCAI.F.  ! 

T: 1.16 1.32 1.48 1.64 1.80 1.96 2.12 2.28 2.44 2.60 2.76 

Fig. 18    Computational domain Fig. 19   Instaneous plot of T 

The inflow conditions are obtained using a compressible extension of the method of Lund et al (1998). The 
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simulation generates its own inflow conditions through a sequence of operations where the velocity field at 
a downstream station is rescaled and reintroduced at the inflow boundary (Fig. 18). Defining x,y and z 
to denote the streamwise, transverse and spanwise directions, respectively, the size of the computational 
domain is Lx = 14.86, Ly = 3.4(5 and L2 = AAS. The spanwise width Lz is approximately six times the 
experimental spanwise streak spacing (assuming the compressible turbulent boundary layer streaks scale 
in accordance with incompressible experimental results). The streamwise length Lx is approximately three 
times the mean experimental streamwise streak size. The height Ly is based on the requirement that acoustic 
disturbances originating at the upper boundary do not interact with the boundary layer on the lower wall. 
The grid resolution is 1,600,000 tetrahedral cells. The grid at the wall uses 101 x 65 nodes. The nodal grid 
is stretched uniformly in the y using a geometric factor of 1.088. The height An of the first cell adjacent 
to the boundary is less than one wall unit (Anur/vw < 1 where i/w is the kinematic viscosity at the wall, 
tir = \/TW/pw is the friction velocity, TW is the wall shear stress and pw is the density at the wall). The 
initial condition is a turbulent mean profile with random fluctuations. The simulation is run first for 90 
inertial timescales 6/Uoo in order to eliminate starting transients (Lund et al 1998). 

Fig. 19 shows the instantaneous temperature contours within the boundary layer. Large turbulent streak-like 
structures eject high temperature fluid outward the inner layer. 

For a function /, its average in time form < / > is defined by 

1       t*' 
</>=: T      fdt 

tf - '•' Jti 

and its time fluctuating part is 

/" = /-</> 

In order to provide converged data, the primitive variables are averaged in spanwise direction and the 
statistical evaluations are perfomed on a period longer than tf — <,• = 406/Uoo- The notation for the 
combined temporal and spanwise average is 

</>=7~: -/      /    fdtdz Lz tf - ti JQ      Jt. 

A simplifying notation is used for the velocity, temperature and pressure 

The predicted friction velocity is uT/Uoo = 0.053 (the friction coefficient is cf = 2.10 x 10-3) which is within 
3% of the theoretical value of 0.0544 based on the friction law obtained from the combined Law of the Wall 
and Wake (using the classical coefficients K = 0.41; C = 5.0; II = 0.55). The uncertainty in the experimental 
data of skin friction is typically ±5%, and the accuracy of the correlation is typically ±10% as discussed by 
Hopkins and Inouye (1971). 

The computed adiabatic wall temperature is Taw/Too = 2.68 which is within 3% of the theoretical value of 
Taw/Too = 2.602 obtained from the empirical formula 

where Prtm = 0.89 is the mean turbulent Prandtl number. 
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Fig. 20    Mean temperature vs velocity Fig. 21    Mean velocity 

In Fig. 20 the temperature-velocity relationship is evaluated. The data fit closely to the classical quadratic 
profile originally due to Walz (1969). 

The log-linear plot of the mean streamwise velocity profile is shown in Fig. 21. The velocity is rescaled 
according to the Van-Driest transformation and the wall friction velocity. The height y+ is in wall units. 
The logarithmic regions appears in the range 30 < y+ < 150. In this representation the velocity appears to be 
over-predicted when compared with the empirical and classical approximation UVD/UT = 2.51og(i/+) + 5.1. 
The predicted profile fits more accurately with the equation UVD/UT = 2.9log(y+) + 5.7 (dashed line). In 
fact, the difference is not as large than it first appears. The representation is very sensitive with the exact 
friction velocity value (y is measured in wall units, which is wall friction function). If UT is assumed to be 
equal to 0.0598 then the logarithm region will fit perfectly with the classical equation. One explanation of 
this difference could be the inflow regeneration method that needs to be adjusted accurately (Lund et al 
1998). Further tests are in progress in order to evaluate the convergence of the constants 2.9 and 5.7 with 
mesh refinement as well. 

Table 3      Flat Plate Boundary Layer Experimental Data 

Name Mach No. Ree 
LES 3.0 20 x 103 

DNS Adams (1997) 3.0 25 x 103 

Johnson & Rose (1975) 2.9 1000 x 103 

Konrad (1993) 2.9 1590 x 103 

Konrad & Smits (1998) 2.87 1900 x 103 

Muck et al (1984, 1985) 2.87 1638 x 103 

Zheltovodov et al (1986) 1.7-9.4 up to 2000 x 103 

All cases are adiabatic wall 

The mean streamwise resolved turbulent kinematic normal stress <C u"u" >, normalized using the local mean 
density -C p > and wall shear stress TW, is shown in Fig. 22. As discussed in Zheltovodov and Yakovlev 
(1986) and Smits and Dussauge (1996), the scaling < p >< u"u" > /rw provides an approximate self- 
similar correlation of experimental data for supersonic fiat plate zero pressure gradient adiabatic boundary 
layers, although the measurements close to the wall are subject to considerable uncertainty. In Fig. 22 
data are displayed from Konrad and Smits (1998), Johnson and Rose (1975), Muck et al (1984, 1985), 
Konrad (1993), as well as upper and lower bounds of an extensive set of experimental data for the Mach 
number range M = 1.72 9.4 in accordance with generalizations of Zheltovodov and Yakovlev (1986). 
The characteristics of the different experiments are displayed in Table 3. The computed results show good 
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agreement with experiment for the main part of the boundary layer (y/S > 0.2), despite a significantly 
higher experimental Reynolds number. The decreasing slope corresponds precisely to Johnson and Rose 
(1975) data. For y/6 < 0.2 the presence of the typical high level peak in the near wall region is supported by 
experimental data of Konrad (1993) and the Direct Numerical Simulation data from Adams (1997), which 
is nearly at the same Reynolds number as the LES. However, no conclusion can be drawn about the precise 
y position and the width of this peak without further experimental data or DNS. 

0.6 0.8 
y/5 

Fig. 22    Reynolds normal stress Fig. 23    Reynolds shear stress 

In Fig. 23 the Reynolds shear stress distributions are shown for the same experiments and the DNS. Again, 
the data fit well in the outer part of the boundary layer. The maximum value and the decreasing slope are 
again well predicted. 

Compression Corner 

Supersonic flow past a compression corner is an important problem in aerodynamics. It represents, for 
example, the deflection of a control surface on a wing. The shock can cause a boundary layer separation 
upstream of the point of impingement of the primary shock, with a secondary shock forming near the 
separation (Andreopoulos and Muck 1987, Dolling and Or 1983, Horstman et al 1977, Settles et al 1979, Smits 
and Muck 1987, Zheltovodov et al 1983, Zheltovodov and Yakolev 1986, and Zheltovodov 1996) Reynolds- 
averaged Navier-Stokes simulations have failed to accurately predict the flow characteristics (Knight and 
Degrez 1998) such as fluctuating pressure and heat transfer. 

Table 4      Compression Corner Experimental Data 

Name a Mach Re» Ren 
LES 8° 3.0 20 x 103 600 
DNS Adams (1997) 18° 3.0 25 x 103 n/a 
Muck et al (1984) 8° 2.87 1638 x 103 40800 
Zheltovodov et al (1990) 8° 2.95 75 x 103 2430 
Zheltovodov et al (1990) 8° 2.8 110 x 103 3950 

All cases are adiabatic wall 

David (1993) performed the first LES of a compression corner which successfully reproduced the Taylor- 
Görtier vortices downstream of the shock. Nevertheless, the use of a pseudo-compressible subgrid-model did 
not permit accurate quantitative results. The second and most recent LES was Hunt and Nixon (1995) who 
investigated the role played by turbulence, and showed a direct correlation between the shock motion and 
the incoming velocity fluctuations. They also demonstrated that the size of the separation bubble has, to 
some extent, a weak effect on the shock motion. Despite the lack of detail in the inner layer (a log-law wall 
function was used on a rough grid resolution), it displayed the qualitative features of the shock oscillation 
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observed experimentally (Dolling and Or 1983). 

A computation of an adiabatic turbulent boundary layer flow past a 8° compression corner at Mach 3.0 and 
Ret = 2 x 104 was performed. As indicated in Table 4, the configuration corresponds to the experiments of 
Zheltovodov and his colleagues except that the Reynolds number is lower for the LES. Table 4 also includes 
the flow conditions for other experiments and DNS which are referencee 
LES results. 

The computational domain is —6.06 < x < 6.06 where 6 is the 
incoming boundary layer thickness and x is measured from the 
corner (Fig.   24).   The height and width of the computational 
domain are Ls = 3.46 and Lz = 4.46 (i.e., the same lengths as 
previous flat plate configuration). The grid is 1,600,000 tetrahe- 
dral cells. The nodal grid is stretched in the y using a geometric 
factor of 1.088.  The height An of the first cell adjacent to the _..     „ .    _, .      , , 
,,.,,, ii     •. Fig. 24    Computational domain boundary is less than one wall unit. ° r 

Inflow data are extracted from the previous flat plate boundary layer LES (Fig.   18).  At each time step, 
the velocity, pressure and temperature fields at the downstream station are rescaled and stored in a datafile. 
Storage is performed over a period equal to 3Lx/Uoo (equivalent to 366/Uoo), which yields about 14 GWords. 
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Fig. 27    Mean wall pressure Fig. 28    Mean wall pressure 

The incompressible shape factor Jff,- is displayed in Fig.  25 together with the corresponding result for 
supersonic flat plate boundary layer.   The initial evolution is identical as expected, indicating that 

the 
the 
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upstream boundary is located sufficiently far from the corner to simulate an incoming equilibrium two 
dimensional turbulent boundary layer flow. 

In Fig. 26 the temperature-velocity relationship is evaluated at different stations upstream and downstream 
of the shock. The simulation data fit well with the classical quadratic profile originally due to Walz (1969). 

Fig. 27 displays the mean surface pressure on the wall. The value of Res for the LES and the experiments of 
Zheltovodov are sufficiently close that the Reynolds number effect should not be significant, and therefore, 
since the mean flow is unseparated, scaling the distance x by the boundary layer thickness 6 is reasonable. 
Downstream of the shock, the value of the surface pressure reaches the level predicted by the experiments 
and inviscid theory. Additionally, the slope of the pressure rise seems to be correctly predicted. 

A indirect check can be also be performed on the wall pressure. A compression corner at the same Mach 
number and Reynolds number but higher ramp angle a should provide a smoother pressure gradient, as 
observed experimentally (Zheltovodov et al 1990). The compression corner DNS from Adams (1997) uses 
the same Mach number, nearly the same Reynolds number, and a different corner angle a = 18° (Table 
4). Fig. 28 compares surface pressure along the wall. The data are here normalized with the downstream 
pressure level (maximum pressure) in order to take into account the difference in shock strength. The LES 
using a = 8° effectively predicts a sharper slope than the DNS using a = 18°. 
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The mean velocity at x/6 = —3.3 and 3.5 is shown in Fig. 29. The computed profile displays close agreement 
with the experimental data of Zheltovodov et al. The decrease in velocity due to the shock is well reproduced 
in the computation except in the immediate vicinity of the wall where the difference between the computed 
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and experimental Reynolds number is likely to have an effect. The mean static temperature at x/6 = —3.3 
and 3.5 is shown in Fig. 30. The agreement between computation and experiment is very good. 

The mean streamwise resolved turbulent kinematic normal stress •< u"u" », normalized using the local 
mean density <C p >• and upstream wall shear stress Tref, is shown in Fig. 31. The reference wall shear 
stress is constant and measured at x = —26. Comparisons are presently shown with Muck et al (1984) 
(a = 8°; M = 3; Reg = 1.6 x 106). In Fig. 32 the Reynolds shear stress distributions are shown for the same 
experiment. The deformation of these quantities associated with the unfavorable pressure gradient is evident 
in the vicinity of the corner. Their evolutions show a qualitative agreement. The Reynolds normal stress is 
amplified by a factor as high as 4. This maximum increase appears at y/S = 0.3, which is consistent with 
experiment. The similarity of the experimental data between 0.6 < y/6 < 1.0 for different x is also evident in 
the LES. Similar tendencies and qualitative agreement with the computations are found with the Reynolds 
normal stress data of Zheltovodov and Yakovlev (1984, 1986), and Zheltovodov et al (1990). It is likely 
linked with the deformation of the large scale structures in the boundary layer. No conclusion can be drawn 
for the evolution of the typical peak in the near region due to its lack even in upstream experimental data. 
Essentially the same holds for the Reynolds shear stresses. Their amplifications correspond to experimental 
predictions. 

Fig. 33   Instantaneous density at z = 2.26 Fig. 34   Instantaneous temperature at z = 2.26 

Figs. 33 and 34 show the instantaneous density and temperature contours within the boundary layer in an 
x — y plane. Large turbulent structures can clearly be seen, both upstream and downstream of the corner 
where the shock appears. 
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