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CHAPTER 1 

TRAILING EDGE NOISE 

AT LOW MACH NUMBERS 

SUMMARY 

A review is made of the diffraction theory of the trailing edge noise generated by a 

flat-plate airfoil of zero-thickness and non-compact chord, according to which the sound 

is attributed to the scattering of a 'frozen' pattern of turbulence wall pressure swept over 

the edge in the mean flow. Extension is made to determine the sound produced by very 

low Mach number flow over the edge of an airfoil of finite thickness. In applications it is 

desirable to represent the noise in terms of a surface integral over the airfoil involving a 

Green's function and a metric of the edge flow that can be calculated locally using the 

equations of motion of an incompressible fluid. It is argued that the appropriate metric 

for a rigid airfoil is the incompressible 'upwash' velocity (determined by the Biot-Savart 

induction formula applied to the boundary layer vorticity outside the viscous sublayer), 

and not the surface pressure. Formulae for calculating the noise are given when the airfoil 

thickness is acoustically compact, and for both three and two-dimensional edge flows. 

The theory is illustrated by a detailed discussion of a two-dimensional vortex flow over 

an airfoil with a rounded trailing edge.   The problem is simple enough to be treated 

analytically, yet is also suitable for validating computational edge noise schemes. 
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1. INTRODUCTION 

The 'self-noise' generated by an airfoil in a nominally steady, high Reynolds number flow 

is attributed to the instability of the airfoil boundary layers and their interactions with the 

trailing edge [1-3]. The edge is usually a source of high frequency sound associated with 

smaller scale components of the boundary layer turbulence. Low frequency contributions 

from a trailing edge, that may in practice be related to large scale vortical structures shed 

from an upstream appendage, are small because the upwash velocity they produce in the 

neighborhood of the edge tends to be cancelled by that produced by vorticity shed from 

the edge [4, 5]. If the surface S of the airfoil is rigid, and is at rest in a mean stream, the 

far field acoustic pressure p'(x, t) = p(x, t) — p0 at position x and time t (p(x, t) being the 

pressure and p0 its mean value in the acoustic far field) is given formally by Curie's [6, 7] 

formula 

<i ,i     &    i r„ i   <Py       a /■ r. l dS*(y)    , , vM = 3^JMl^^\-^jM^V\' |xH°°'       (1) 

where the first integral is over the volume V occupied by the fluid, the surface element dSj 

is directed into V, 

p'ij = {p-Po)5ij-<?ij, (2) 

and Oij is the viscous stress tensor. The square brackets [ ] in (1) denote evaluation of the 

contents at the retarded time t — |x - y|/c0, where c0 is the speed of sound. The direct 

sound generated by the turbulence quadrupoles [8, 9] is represented by the first integral in 

(1). At low Mach numbers (e.g. underwater) T^ « p0ViVj per unit volume (p0 and v being 

respectively the mean fluid density and the velocity), and the quadrupole noise is usually 

negligible compared with that from the edge. The latter is contained in the surface integral 

in (1), and for an acoustically compact surface (for example, an airfoil whose chord is much 

smaller than the typical acoustic wavelength), the edge noise is equivalent to that generated 

by a distribution of dipoles on S, whose strength per unit area is the unsteady surface 

pressure [8, 9]. In that case the ratio of the acoustic powers generated by the edge and the 

volume quadrupoles ~  0(1/M2), where M ~ v/c0 <C 1 is the characteristic Mach number 

[6]. At high frequencies, when it is not permissible to assume the chord to be compact, the 

relative efficiency of the edge noise is increased to 0(1/M3) [10]. 

For the compact chord airfoil the dipole strengths can be determined to a sufficient 

approximation for use in (1) by a preliminary calculation of the flow near the edge in which 

the influence of compressibility is ignored. However, although (1) is exact for a non-compact 
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airfoil, it is not permissible to neglect compressibility when specifying the dipole strengths 

in the surface integral. Therefore, edge noise predictions have traditionally been made by 

one of two alternative procedures. In the first, it is assumed that the trailing edge is well 

approximated by a semi-infinite, rigid plate. A calculation is then performed in which the 

free field hydrodynamic pressure pi, say, generated by the boundary layer turbulence is 

diffracted by the edge. If p\ were known exactly this procedure would yield an accurate 

prediction of the edge generated sound.  Hitherto it has not been possible to prescribe 

with sufficient accuracy the influence of the edge on the hydrodynamic pressure, and it has 

usually been assumed that the turbulence is swept past the edge by the mean flow as a 

frozen distribution of vorticity [1, 11 - 15]. In the second method, the noise is calculated by 

the acoustic analogy theory of Lighthill [8, 9] using a compact Green's function tailored to 

the trailing edge geometry [16, 17] (as opposed to the free-space Green's function used in 

Curie's equation (1)). The sound can then be expressed directly in terms of the vorticity in 

the edge flow (calculated as if the flow is incompressible); this approach also enables the 

frozen approximation of the first method to be extended to more complicated trailing edge 

geometries [17]. 

Modern computational procedures will soon yield accurate predictions of the high 

Reynolds number hydrodynamic motion near a trailing edge, and it is appropriate to 

re-evaluate the kind of numerical data that will be required to make confident predictions 

of the far field sound.  We have suggested above that an incompressible approximation 

to the surface pressure is not sufficient when the surface is not compact. This is because 

a non-compact body extends into the acoustic far field, and any representation of the 

sound as a Curie (or Kirchhoff) type of surface integral must ensure that the boundary 

conditions on the surface continue to be satisfied in the far field. This can be done either 

by using a Green's function tailored to the airfoil characteristics or (as in (1)) by using the 

free space Green's function, but with p\■ known to the required precision in the acoustic 

domain. In the latter case the dipole strength must be prescribed with full account taken 

of compressibility, which is not normally possible because it presupposes a knowledge of the 

acoustic field at the surface [18]. In fact, the dipole strength can safely be estimated from 

an incompressible edge flow model only when the airfoil is acoustically compact. In general, 

the surface source strength turns out to depend on the upwash produced by the unsteady 

flow. When this is known (in an incompressible approximation) the edge noise can be found 

by using an acoustic Green's function whose normal derivative vanishes on the rigid surface 
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of the airfoil. 

In this chapter the thin-plate diffraction theory of trailing edge noise is first reviewed (§2), 

and predictions are used to exhibit explicitly the failure of approximations based on (1). 

The general edge noise problem at low Mach numbers is then formulated in terms of the 

theory of vortex sound, and it is demonstrated how the the sound can be determined from 

an incompressible approximation to the 'upwash' velocity (§3). The theory is illustrated by 

a detailed application (§4) to determine the noise produced in a low Mach number vortex 

flow past the rounded trailing edge of a thick airfoil. 
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2. THIN-PLATE MODEL OF TRAILING EDGE NOISE 

2.1 Diffraction theory [11, 12] 

Consider turbulent trailing edge flow over the upper surface x2 = +0 of the rigid 

half-plane x\ < 0, x2 = 0, where the main stream outside the boundary layers has low 

subsonic speed U in the zx-direction (Figure 1).  The calculation of the edge noise is 

formulated as a scattering or diffraction problem, in which the pressure p\, say, that would 

be produced by the same turbulent flow if the surface were absent, is scattered by the edge. 

The scattered pressure p' includes both acoustic and hydrodynamic components, the latter 

accounting for the modification of the near field pressure by the surface. The condition 

that the normal velocity vanishes on the half-plane is taken in the high Reynolds number 

approximation 

dpi/dx2 + dp'/dx2 = 0,     on S, (3) 

where S denotes the 'upper' and 'lower' surfaces (xi < 0, x2 = ±0). In turbulence-free 

regions, and when the mean stream Mach number M = U/c0 is very small, pressure 

fluctuations p(x, u) of frequency u) (with suppressed time factor e_KJt) satisfy the Helmholtz 

equation 

(V2 + KDP = 0, (4) 

where K0 = OJ/C0 is the acoustic wavenumber.  The presence of the boundary layer and 

the turbulence are ignored except insofar as they are responsible for the pressure p\\ in 

particular p'(x, OJ) is assumed to satisfy (3) everywhere, and the scattering of sound by the 

shear flow is neglected. This approximation is not valid at very high frequencies when the 

acoustic wavelength is comparable to the thickness of the boundary layer. 

The pressure pi(x, to) must be an outgoing solution of Helmholtz's equation in x2 < 0, in 

the region 'below' the boundary layer sources; on x2 = 0, p\ is equal to half the boundary 

layer blocked pressure ps that the same turbulence would exert on an infinite plane wall at 

x2 = +0, and we can write 

pi(x,w) = - /    PsiKuj^-x-^^dhdh,   x2<0,   k= (ku0,k3), (5) 
Z  J — 00 

where j(k) = JK
2

0 — k2 is either real with sign sgn(w) or positive imaginary. The problem 

of calculating p' now reduces to the determination of the scattered pressure (from (3) and 

(4)) produced by the interaction of each Fourier component |ps(k, a))e^kx_7^^X2^ of pi with 

S. 
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The calculation can be performed by the Wiener-Hopf procedure [19], which supplies the 

following representation of the total perturbation pressure (which is finite at the edge of the 

half-plane) 

L J—oo 

47d      7-oo ^(«2_Jfc2)l/2 + ^1(^1 _kl+ JO) 

where K = JK
2
 + k\. The first integral represents the direct pressure p\ (generated by the 

boundary layer 'in the absence of S'), and is strictly valid only outside the boundary layer 

in x2 < 0 or x2 > 5, where 6 is the boundary layer thickness. 

The integration with respect to K\ can be performed explicitly when x2 ->■ ±0. It is zero 

in the wake {x\ > 0), where the scattered pressure vanishes. For x\ < 0 the integration 

contour is displaced to —zoo in the ifi-plane, capturing the residue contribution from the 

pole at Ki = ki — iO and an integral along the branch cut of \J{K
2
 

— H)1^2 + -^i> which 

extends from — (K2
0 — fcf)1/2, just below the real axis, to —ioo.  The branch-cut integral 

can be expressed in terms of the error function erf(x) = (2/0?) J0
xe_A dX [20]. The total 

surface pressure is then found to be 

p(xl,±0,x3,uj) = \JJ°° PsOt,u) [l±erf(e-T|x1|^(^-fc32)i/2 + fc1)] e
ikx d2k,   xx < 0. 

(7) 

The argument of the error function has positive real part for all real values of ki, so that the 

error function w 1 as'Xi —> —00. Thus, p —> 0 on the lower surface (x2 = —0) far upstream 

of the edge, whereas p —> ps on the surface x2 = +0 exposed to the turbulent stream. This 

occurs at distances upstream of the edge exceeding the characteristic eddy dimension. If 

the impinging boundary layer turbulence is assumed to be frozen during convection over the 

edge, measurements of the blocked pressure ps several boundary layer thicknesses upstream 

of the edge can be used in the second integral of (6) to predict the edge noise. 

At large distances from the edge the integrations with respect to K\ and &3 in the second 

integral of (6) may be performed by the method of stationary phase [19, 21]. This yields 

the edge-scattered acoustic pressure in the Chase-Chandiramani [11, 12] form 

V2 x 7-oo {K0XI/\X\ - hi) 
(8) 
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where the angles 6, ip defining the radiation direction x/|x| are indicated in Figure 1. 

The integrand in this formula is singular at k\ = K0XII\X\, where the stationary phase 

approximation breaks down. However, this occurs when k\ lies in the acoustic domain, 

i.e., for a blocked pressure Fourier component ps(ki,K0cos^,u) that actually represents 

a sound wave generated by the boundary layer quadrupoles in the absence of the edge. 

Such contributions can be neglected at small Mach numbers. When the blocked surface 

pressure is regarded as entirely hydrodynamic, the remaining integral in (8) is dominated by 

wavenumbers kx ~ u/U 3> K0, and (8) reduces to 
i      j 

.,      .      -K§ sinä -i/)sin(i9/2)eiKo|x|   r™ ps(ki,0,u)dki 
pM* 7^\   —L   Vkl + io  ■   |x|-*°°' (9) 

This representation is suitable for expressing of the edge noise in terms of the hydrodynamic 

(i.e., incompressible) component of the blocked pressure measured upstream of the edge. 

This is usually done by referring ps(ki, 0,co) to the blocked surface pressure wavenumber- 

frequency spectrum P(k, u>) [22]. It is assumed that a finite section —\L < £3 < |L, say, of 

the trailing edge is wetted by the turbulent flow, where L is much larger than the boundary 

layer thickness 5. Then, for statistically stationary turbulence 

(ps(h, 0,u)p*{k[, 0, u/)) « ±-8{u - J)5{h - Äi)P(A;1,0, u),    L > 6, (10) 

where the angle brackets ( ) represent an ensemble average, and the asterisk denotes 

complex conjugate.  The acoustic pressure frequency spectrum $(x,a>) of the edge noise 

(defined such that (p'2(x, £)) = J0°°$(x,a;)da;) is then calculated from (9) to be given by 

,,      .      uL sin2(0/2)sini/> /■«> P(ki,0,w) dkx ,     .   . 

The peak acoustic pressures are radiated in the 'forward' directions 9 = ±TT. Numerical 

predictions are made by introducing a convenient empirical model for P(k, u) (see, e.g. [22, 

23]), although this will not be discussed here. 

2.2 Application of Curie's equation 

To derive these results from Curie's representation (1), the first, quadrupole, integral on 

the right is discarded, and p'^ is approximated by (p — p0)Sij at high Reynolds numbers. 

Then for each component of the sound of frequency u> 

Q       roo rQ ei«o|x-y| 

^'^"-^/-oo^L^'^i^jx-rTi^'  y = (vi.o,*3)       (i2) 
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where 

\p(xi,x3)] = p(xi, +0, x3,u) - p{xu -0, x3, u) (13) 

is the pressure jump across the half-plane. 

At large distances from the wetted edge 

ß   ( ei*co|x-y| \      iKox2e
iK°M 

*«oS2e'~°" e_«oX.y/|x| 

8x2 \47r|x — yI/ 47r|x|: 

so that (because [p(j/i, 2/3)] = 0 for yx > 0) 

,,      ,          -m0sin?/>sin6,eiKo|a'|   r°°  .     f°°.  .        ., _iK x.v/bd , 
p'x,w)   «          /     : [        dy3       [p(yi,y3)]e 

lKoXy/|x|dy1 
47T|X| J-00 J-00 

=    "^^^^^^(/CoXi/lxl.ieo^/I^Dle^W,     |x|->oo, (14) 

where 
1 /-OO /-OO 

[p{ku h)] = (2^ /-codm j_Jp^y^e~i{km+km) fa- (15) 

The first line of (14) implies that the principal contribution to the integral is from those 

components of [p(y\, 2/3)] with length scales ~ 0(l/«0)- In other words, a correct evaluation 

of the integral requires the retention of phase information in \p] characterizing fluctuations 

in the surface pressure over distances of the order of the acoustic wavelength, which typically 

exceeds the scale of the hydrodynamic motions by a factor l/M >• 1.  In this integral 

phase interference with the exponential factor e~IKoX'y/lxl is responsible for correcting the 

directivity of the sound from that of a free field dipole ~ sin ip sin 9 = cos © (6 being the 

angle between x/|x| and the x2-axis) orientated normal to the airfoil, to sin 2 ipsin(6/2), 

which conforms to the rigid body surface condition {dp'/dxn = 0) in the far field. 

If an attempt is made to approximate the surface pressure jump \p{yi,y3)} in Curie's 

formula (12) by its value for incompressible flow, it would be equivalent to setting 

1     r°°        r° F(UJ) 
[p(/vri/|x|,K0Z3/|x)D] ~ [P(0,0)] = j^ J_00

dy3J_JP^yuy3^dyi ~ T^p' 

in (14), where F(u) is the net normal force exerted on the fluid by the half-plane. This 

force may be determined exactly from the solution (6) to be given by 

y ./-co      Jaiih -id) v    ' 
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It is unbounded in the incompressible limit in which K0 -» 0, and cannot be reliably 

computed at low Mach numbers by a numerical simulation of the flow, being determined 

by the unsteady surface pressures over a distance from the edge of the order of the acoustic 

wavelength. 

A correct prediction of the edge noise from Curie's formula is possible only when the 

surface pressures are known within the acoustic domain. To use (14), [P(K0£I/|X|, K0:T3/|X)|)] 

must be evaluated from the exact formula (6), in the form 

-1 f°°  S/K0 sin iß + ki -1 f°°  V«oSiny> + fci 
n  ■—  . ,  i— —— /     7 7j-j—TT Ps{h,K0x3/\x\,w)dki, 
2y/2i^irismiipcos{6/2) •/-«> («0zi/|x| - h) 

(17) 

whose use in (14) leads directly to (8). 

2.3 Kirchhof! integral representation 

The scattered pressure p'(x, to) of §2.1, satisfies the Helmholtz equation (4) everywhere. 

By introducing a Green's function G(x, y, u), which is any solution of 

(V2 + KI)G = 6(x - y) (18) 

with outgoing wave behavior, p'(x, u) may be represented by the following Kirchhoffintegral 

over S [24] 

j/(xlW) = jf (G(x,y,u,)|^(y,u,) -p'(y,o;)g(x,y,a;)j dS(y), (19) 

where the normal derivatives d/dyn are directed into the fluid. This equation determines the 

scattered sound provided p' and dp'/dyn are known on S. However, for an arbitrary choice 

of the Green's function G(x, y, u), and for the reasons discussed above for Curie's equation, 

acceptable predictions of the sound are possible only if the variations of p' and dp'/dyn on 

S are specified correctly over length scales comparable to the acoustic wavelengths. 

For example, one might attempt to express the radiation entirely in terms of 

the surface pressure (already determined, say, by means of a subsidiary calculation 

valid in the neighborhood of the edge) by using a 'pressure release' Green's function 

that vanishes on S. The first term in the integrand of (19) is then absent, and 

p'(x,u)) = — §sp'(y,oj)dG(x, y,to)/dyndS(y) would be an exact representation of the sound. 

But, if p'{y,uj) in the integrand is known only in an incompressible approximation, the 

9 
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predicted behavior of p'{x.,u) at large distances from the edge would be governed by the 

behavior of G(x, y, u) as |x| -¥ oo, and the far field scattered pressure would therefore be 

predicted to vanish on S, whereas for a rigid surface |p'(x,u;)| actually assumes its largest 

values there! In order for this latter behavior to be predicted, sufficient phase information, 

characterizing changes inp'(y,u)) on S over distances of the order of the acoustic wavelength, 

must be included to ensure that a correct estimate is obtained for the asymptotic behavior 

of the integral (19) as |x| —> oo. This requirement is equivalent to the correction of the free 

field dipole directivity (cos© = sinT/Jsin6) of (14) brought about by the use of the exact 

formula (17) for [p] in (12). 

The need for such detailed phase information in the prescribed boundary values of p' 

and dp'/dyn can be avoided by using a Green's function that already satisfies the relevant 

boundary conditions on S. It can then be expected that surface values calculated from an 

incompressible model of the flow will be sufficient to determine the far field sound at low 

Mach numbers. For the rigid half-plane the Green's function should have vanishing normal 

derivative on S (reciprocity actually implies that dG/dxn = 0, dG/dyn = 0 respectively 

on x\ < 0, x2 = 0 and y\ < 0, y2 = 0). Then the second term in the integrand of (19) is 

absent, and condition (3) gives 

p'(x,w)   =   - j>sj
1(yu0,y3,uj)G{x,y;u)dS(y). 

s dyn 

=   ~ r dy3 f°   ^-{yu0,y3,u)\G(x,y,u)}dy1 (20) 
J—oo      J-oo oy2 

L J 

where 

[G(x, y, w)] = G(x, yu +0, y3, u) - G(x, yu -0, y3,u) (21) 

is the jump in the value of G across the half-plane. 

The integrals in (20) may be evaluated by taking dpi/dy2 to have its value when 

compressibility is ignored, provided that those turbulence eddies responsible for 

the edge noise are always very much closer than an acoustic wavelength from the 

edge, which is always the case at sufficiently small Mach numbers.   It then becomes 

appropriate to expand Green's function in terms of the nondimensional source distance 
Ko\Jyi + y2 (~ yVi + y2/acoustic wavelength) from the edge. When the observation point 

x is in the acoustic far field we find [25] 

G(x,y,u>) = Go(x,y,w) + Gi(x>y,a;) + ..., (22) 

10 
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where, for |x - y3i3| ->• oo and K0\Jy\ + y\ < 1, 

G0(x,y,u,) =  .   ,  ^    . ,e^l^'3l,    Gl(Xjy>w) =     -^f^f^^-^. 
47TJX - J/3I3I 7TV27TZ     |x - y3i3|^ 

(23) 

i3 is a unit vector parallel to the a^-axis (the edge), and the function 

p*(x) = y/fsm{e/2) = y/\x\ sin 2 if, sin(0/2) (24) 

is equivalent to the velocity potential of incompressible flow around the edge (in the 

anticlockwise direction) expressed in terms of polar coordinates {xi,Xi) = r(cos0, sin0). 

The component Go represents the radiation from a point source at y when scattering by the 

half-plane is neglected. The component G\ provides the first correction due to the presence 

of the half-plane, and (since [Go] = 0) gives the leading approximation to the edge noise 

when used in (20). 

By introducing the representation (5) of pi in terms of the blocked pressure, we find, 

using (23) in (20), 

,.      .       ^/2^sin^sin(0/2)eiK°lxl   /•«>        yo        , dPl 
p(x,w)«        " '     /     dy3 /     I2/112 —— (j/x,0,2/3)^2/3 

TT\/Tn\x\ J-oo J-00 oy2 

-V^sin2i/>sin(0/2)eiKolxl   f™    ,M    ,,      x ,2i   A00   »*,W,J     f°   1    \l «ivu 
= ^— /=-,  ,  /     j{k)ps(k,Lü)d2k       elksy3dy3        \yx\^

lkiyidyx. 
7Tv27r|x| J—oo J—oo J—oo 

(25) 

The 2/3-integral equals 2ir5(k3); the j/i-integral must be treated as the Fourier transform of 

a generalized function [26], and evaluated by integration by parts, when it is found to be 

equal to 
—1    /    7ri 

2|A;i| \j h + i0' 

When compressible effects in the specification of the blocked pressure are neglected, it may 

be assumed that K0 <C k\ for all relevant values of k\ in the wavenumber integral. Then 

7(fc) —> i\ki\ and (25) reduces to precisely the low Mach number approximation (9) obtained 

previously by diffraction theory. 

11 
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3. ARBITRARY TRAILING EDGE GEOMETRY 

3.1 Vortex sound theory 

The diffraction theory of §2.1 is conveniently extended to an airfoil of finite thickness 

(Figure 2) by means of the theory of vortex sound [25], in which the total enthalpy B, 

rather than the pressure or density, is taken as the fundamental acoustic variable. When 

the mean flow Mach number is small enough that the convection of sound may be ignored, 

and when the mean fluid density is constant, 

(^-V2)ß = div(OAv), (26) 

where fi(x, t) = curl v is the vorticity.  In those regions where the unsteady motion is 

irrotational (f2 = 0) yet still, perhaps, predominantly nonlinear, it can be described by a 

velocity potential </>(x, t), say, which satisfies B = —d(j)/dt. In the acoustic far field the 

small amplitude pressure fluctuations are determined in terms of B by the linear relation 

p'(x,t) _    d<f> 

Po dt 
B(x,t). (27) 

Equation (26) relates fluctuations in B to the vorticity and velocity.  The radiation 

condition requires the solution to have outgoing wave behavior, and for each Fourier 

component of frequency u it can be expressed as the sum of a Kirchhoff integral 

representing a contribution from the surface S of the airfoil (as in (19)) plus the direct 

radiation from the vortex sources: 

B(x,u,) = jf (|^(y,u,)G(x,y,u,) - B(y,u;)^-(x,y,u>)"j dS(y) 

- |G(x,y,a;)(div(nAv)(y,a;))d3y) (28) 

where G(x,y,u) is an outgoing solution of (18). 

Let the Green's function satisfy the rigid surface condition dG/dyn = 0 on S, 

and use the divergence theorem to transform the volume integral in (28) as follows: 

/ Gdiv(ft A v)d3y =-fs G(fl A v) • ndS(y) - /(O A v) • VGd3y, 

where the unit normal n on S is directed into the fluid. Then 

B(x,L>) = fsG{x,y,aj)l — + (f2Av)-nj(y,o;)o!S(y) + y — (x,y,u;) • (ft Av)(y,u;)o!3y 

(29) 

12 
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Very close to S viscous effects are dominated by shear stresses, and the momentum equation 

can be taken in Crocco's form 

dv/dt + VB = -n A v - v curl ft 

where u is the kinematic viscosity. But v = 0 on S when the airfoil is rigid and at rest. 

Hence (29) becomes 

£(x, w) = ] ^-(x, y, u) ■ (p A v) (y, u)d3y -uj^ G(x, y, w)curl Q ■ ndS(y), 

and the identity Gcurl £1 = curl (Gfl) + ft A VG and the divergence theorem then yield 

r BC c BC 
B(x,u>) = J y (x,y,uj)-(nAv)(y,Lü)d3y- uj^ fi(y, u) A — (x,y, u) ■ ndS(y).   (30) 

The surface integral is the contribution to the radiation from the unsteady skin friction on 

S, and is usually ignored when the Reynolds number is large. 

The remaining integrals can be evaluated at low Mach numbers by expanding the Green's 

function in the form (22), provided the characteristic acoustic wavelength is much larger 

than the airfoil thickness. The principal contribution is from Gi(x, y, u) which, however, 

must now be taken in the form [17] 

Gl(*,y,^)=   "I   ^•W^W-^, (31) 
7rV27rz    |x-y3i3|

3/2 

where the potential (p*(y) = y*(2/1,2/2) of (23) is replaced by $*(y) = $*0/i, 2/212/3), which 

describes incompressible potential flow around the edge of the airfoil, such that 

$*(2/i,2/2,2/3) -> ^*(2/i,2/2),     as <Jy\ + y\ ->• 00. 

We now find, in the acoustic far field, 

-poK!sin^sin(0/2)eiK°lxl / fd$*{y)    / N 3 
P(x>^)~ /ö-^i   1          /        w •(»Avj(y,o;)dV 

-  Z/£n(y,o;)A^^-ndS(y)},     |x| -> 00. (32) 

The radiated sound automatically satisfies the rigid surface boundary condition on the 

distant parts of the airfoil, so that the vorticity Q and the velocity v in the integrands can 

be approximated by their values calculated for incompressible flow near the edge of the 

airfoil. The term in the brace brackets of (32) is proportional to the net normal force F(co) 

13 
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exerted on the fluid by the airfoil. As noted in §2.2, this force increases in proportion to the 

square root of the acoustic wavelength; in the present notation it is given by [17] 

FH^2p0^{/^^-(fiAv)(y,o;)d3y- ^ n(y>W) A 2^M ■ n dS(y)}. 

3.2 Diffraction theory 

The evaluation of (32) requires the vorticity and velocity fields to be known in the 

neighborhood of the edge. An alternative representation of the sound, which is analogous 

to (9) for the flat-plate airfoil, can be derived by consideration of the diffraction theory of 

§2.1. We shall not, however, assume the boundary layer turbulence to be frozen during 

convection past the edge, but will introduce an 'incident' disturbance B\ which is defined 

to be the exact solution of equation (26) in the absence of the airfoil when the vorticity Cl 

and velocity v on the right of (26) have their exact values. 

To calculate Bi the interior of the airfoil is imagined to be replaced by fluid with no 

acoustic sources, wherein the actual motion is determined by the source distribution f2 A v 

outside S. Then, for each component of frequency u, 

where V is the fluid volume outside S.  When compressibility is neglected in the source 

region near the edge 

and therefore, because v vanishes on S, the acoustic pressure p\ « p0B\ in the far field 

corresponds to the quadrupole field 

Pi(x,<") ~     4° ,,     ( CT ~ 3%j yvfl>i*Jj)(y,u)d3y,    |x| -> oo, (35) 

which is negligible compared to the edge generated sound. 

The effect of the airfoil is calculated by setting 

B(x,t) = B'(x,t)+BI(x,t), (36) 

where B' satisfies the homogeneous form of (26) (no sources). B' and B\ are related by the 

no-slip boundary condition on S, which the momentum equation gives in the form 

VB' + V#i = -i/curl n   on S. (37) 

14 
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Thus, when Kirchhoff's formula (19) is used (with p' replaced by B'), we find 

£'(x, u>) = - jf G(x, y, u) (jj^ + ucm\ ft ■ nVy, w)dS(y), (38) 

provided dG/dyn = 0 on S. 

Taking the low Mach number expansion of the Green's function, the leading order term 

of which is given by (31), we find 

;/      ,     poKlsin2^sin(0/2)eiK°lxl / /  „    ftBi,      ,       „,      N     d$*(y)     \  fn, , 
P' x,w  « ^ \—      ; f   $* y —L(y,o;) + i/O y,w A -—^ • n   dS(y), 

7rv2«|x| vs \ ay„ ay        ) 

|x| -»• oo, (39) 

where the integrand is to be evaluated using incompressible approximations for dBi/dyn 

and ft. 

This prediction of the far field sound is identical to that given by (32). Indeed, because 

d$*/dyn = 0 on S, the following relations are readily seen to transform the first term of the 

integral of (39) into the corresponding term in (32): 

div(<l>*V£i - BjVQ*) = $*V2#i - £iV2$* = $*V25i « -$*div(ft A v), 

where the final approximation follows from the incompressible limit of equation (26). 

By setting K0 = 0 in (33) we derive a local incompressible representation of B\, from 

which it is readily deduced that 

i-,r,     ^ ,   r curl(ftAv)d3y ,   r (dft       „,   \      d3y 
Vßj + ftAv^curl /  —-^ ^-Jl = _curl  /     — - ^V2ft    A   .   y    .-, 

Jv      47r|x - y| Jv \ dt J 47r|x - y| 
(40) 

where use has been made of the curl of the incompressible momentum equation: 

dv/dt + VB = —ft A v — z/curl ft. In the viscous sublayer, close to the surface of the airfoil, 

the motion becomes linear and 

^ - iA72ft « 0. 

Outside the sublayer viscous diffusion is negligible, and uV2Ct may be discarded from the 

integrand. Hence, we can introduce an 'upwash velocity' vi by means of the Biot-Savart 

formula [27] 

vlM = curi/   ^V (41) 
Jvs 47rx-y 
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where the integration is confined to the boundary layer vorticity in the nonlinear region V^ 

outside the viscous sublayer. On S and within the volume of the airfoil, dvi/dt = -VBh in 

terms of which the far field sound becomes 

j/(x,u) « H  Z-,  , * $ (y)fin(y,w)dS(y),    |x| -»■ oo, (42) 
7rv27r|x| -'S 

where vin = vi • n.  Note that in applications to problems in which, for the purpose of 

calculation, the whole motion is regarded as inviscid, the definition (41) makes it clear that 

in calculating vj the bound vorticity on S must be excluded from the integral. 

Equation (42) generalizes the Chase-Chandiramani formula (9) for the flat plate airfoil, 

to which it reduces when S is a semi-infinite half-plane. To see this it is necessary to note 

that, in an incompressible approximation of the flow near the edge, the incident pressure pi 

of (5) is the solution of 

v2"'=-^S"-p°div(nAv)-ftV2(^) 
when the presence of the airfoil is ignored. Hence B\ = p\/p0 + \^l-l where v is the fluid 

velocity, which vanishes on and within S where, accordingly, 

^ = -VBj = —Vft. (43) 
at p0 

When vin in (41) is replaced by (l/ip0uj)dpi/dyn the first line of (25) is recovered, leading 

to our previous result (9). 

For a time-stationary random flow past the edge we can introduce a frequency correlation 

function 7?.w(y,y',a;) that satisfies 

(vln(yiu)v;ntf,u,))=Kvv{y,y',u))5{u>-u'). (44) 

The acoustic pressure frequency spectrum (defined as for (11)) then becomes 

w ^3sin^sin2(^/2)   r )g*(y)y(y/)ds(y)riS(y'),    u> > 0.       (45) 
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3.3 Two-dimensional source distributions 

We record here the modifications of formulae given above when the aeroacoustic sources 

and trailing edge can be regarded as two-dimensional, with no dependence on the spanwise 

coordinate x3.  At very small Mach numbers, the dominant component of the Green's 

function whose normal derivative vanishes on S is obtained by integrating (31) over 

-co < 2/3 < co. When x lies in the acoustic far field the integration can be performed by 

the method of stationary phase, which yields [5] 

Gl(x,y,„)«-y'(x)t:(y)e^" 
-sin(»/2)<i>'(y)   ,„oM 

7T|X| 7T|X|2 

where now x = (xi, x2), y = (yi, 2/2)- 

Thus, the two-dimensional analog of (32) is the cylindrically spreading wave field 

-posin(0/2)eiK°lxlf fd$*(y) 

(46) 

p'(x,o;) 
7T X 2 {/ dy 

(pAv){y,u)d2y 

v fsn(y,u)A?-^-nds(y)}, 
dy 

00, 

where ds > 0 is the line element on the airfoil profile in the rria^-plane. This has the simple 

time-domain form 

p'(x,t) 
-p0 sin(0/2) 

7T X 2 

d$*(y) 
'J°yyi.(pAv)(y,t)<?y- ufsn(y,t)A^^--nds(y) 

dy 

which decays in amplitude like l/|x|2 at large distances from the edge, and where the term 

in the square brackets [ ] is evaluated at the retarded time t — |x|/c0. For inviscid (or very 

high Reynolds number) flow we can take 

p'(x,t) 
-p0 sin(0/2) 

7T X 2 / 
0$*(y) 

dy 
(pAv)(y,t)d2y (47) 

Similarly, the diffraction theory formulae (38) and (42) have the corresponding 

representations 

'dB! 
P'(M) 

PoSin 

IT X 2 
m£ny) 

dyn 
(y,*) ds 

p0 sin(ö/2) ™fr(y) 
7T X 2 JS 

dVln 

dt (y,*) ds,    |x| —> 00, (48) 

where the skin friction contribution has been discarded. 
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4. ROUNDED TRAILING EDGE 

Rounded or bevelled trailing edges, of the type depicted in Figure 3a, are frequently- 

used in experimental studies of trailing edge noise at low Mach numbers [1, 27, 28]. The 

simplified geometry is suitable for validating numerical methods for edge noise prediction. 

When the Mach number is small enough for the edge flow to be regarded as incompressible, 

it is necessary to be able to determine numerically the velocity and vorticity distributions 

near the edge, or equivalently, the 'upwash' velocity v\n. In this section the procedure is 

illustrated for a highly simplified two-dimensional edge flow that can be treated analytically. 

4.1 Formulation 

A line (or 'point') vortex of circulation T is parallel to the edge of the airfoil and convects 

in the mean flow. Except very close to the edge, the airfoil has uniform thickness h and 

its 'upper' and 'lower' surfaces coincide with the planes x2 = ±|^- The upper surface is 

rounded over the interval — I < X\ < 0, and meets the lower surface at A: x\ =0, x2 = — \h 

(Figure 3a).   At large distances from the airfoil the mean flow is at speed U in the 

^i-direction, and the mean circulation around the airfoil is assumed to be adjusted to make 

A a stagnation point. 

Viscosity is ignored in the body of the fluid, so that the two-dimensional motion of the 

vortex can be determined by mapping the fluid region bounded by the airfoil in the complex 

plane of z = x\ + ix2 onto the upper half of the (-plane. To do this we introduce the 

complex function 

- J In ( ——^ J ,     ß = constant > -1. (49) 
2     7T     y   2   J 

The transformation 

i = /(C,/0 
maps the exterior of the semi-infinite airfoil of uniform rectangular cross-section and 

thickness h shown in Figure 3b onto Im ( > 0, such that the boundary points C, A, B, D 

on S correspond respectively to the points C, A', B', D' on the real (-axis. 

It may then be verified that the composite transformation 

^ = ^^y[/(C,l) + a/(C,/?)],    a>0,    ß > +1, (50) 
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where a is a second constant, maps the real £-axis onto an airfoil profile S whose upper and 

lower surfaces coincide with x2 = ±|/i respectively for Re£ < —ß and Re( > 1. The interval 

—ß < Re C < -1 maps into an upper 'rounded' section of the trailing edge (as in Figure 3a) 

which terminates at C, = -1 at the top of a vertical end-face {x\ = 0, —\h < x2 < -\h + A) 

of thickness A, that corresponds to the interval -1 < Re ( < 1. The constants a and ß 

are determined by the prescribed values of the ratios £/h and A/h. For the calculations 

presented in this chapter we take 

a = 600,    ß = 86.9370 (51) 

for which t/h = 4 and A/h = 0.0074. The corresponding airfoil profile is that shown in 

Figure 3a (because A <C h the end-face cannot be distinguished). 

When the edge A is a stagnation point, the complex velocity potential of mean flow is 

readily confirmed to be given by 

-Uh 4a 
1 + (C - I)2, (52) 

7T(l + a)   L (l + ß)2. 

which becomes asymptotically wm w Uz when \z\ » h. The vortex T is convected by the 

mean flow and by the induced velocity field of 'image' vortices in the airfoil. If A is also 

a stagnation point of the unsteady flow, i.e., if the unsteady Kutta condition is applied 

there, additional vorticity is shed from A, and will also influence the motion of T. We first 

consider the motion and sound generation in the absence of vortex shedding. 

4.2 No vortex shedding 

Let z0(t) denote the complex position of T at time t.  The velocity potential of the 

(incompressible) flow produced by T is 

^r = ^{ln(C-Co)-ln(C-C)}, 

where Co = C(2;o) is the image of z0 in the £-plane, and the asterisk denotes complex 

conjugate. The complex potential of the velocity component of the motion of T produced 

by image vorticity is obtained by subtracting the 'self potential' (—IT/2-K) ln(z — z0) from 

tup- The equation of motion of T is accordingly obtained in the form 

dz*      -iT So So 

dt        2TT   [2C0      CO-C0*J 
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where the suffix 'o' implies evaluation at z = z0, and the primes indicate differentiation 

with respect to z. This equation must be integrated numerically to determine the path of 

the vortex, and it is convenient to do this in the C-plane, where it is equivalent to 

dQ      -*T& C"       c So So + (^r)   IC!2- (54) dt 2n     IXO      Co-Cj      V^C 

The solid curve in Figure 4a depicts the calculated path when the vortex is released at a 

large distance upstream of the edge, above the airfoil at a stand-off distance d = \h from 

the upper surface. The vortex initially translates along a path parallel to the upper flat 

surface of the airfoil at speed U + u, where 

"=S5- (55) 

The results discussed below are obtained for u = —0.1/7. This corresponds roughly to a 

typical large fluctuation velocity close to the wall of a turbulent boundary layer [30]. The 

trajectory shown in Figure 4a was computed (using a fourth order Runge-Kutta scheme 

[20]) by adjusting the value of (0 far upstream of the edge to make the initial stand-off 

distance d (determined in terms of Co by (50)) equal to \h. The vortex location is indicated 

in the figure at different nondimensional times Ut/h, measured from the instant that it 

crosses x\ = 0. 

Two other trajectories are also shown in the figure. The 'frozen' path corresponds to the 

Chase-Chandiramani approximation [11, 12], in which turbulent structures are assumed to 

translate past the edge at a uniform mean convection velocity parallel to the airfoil. The 

position of the vortex on this path has been calculated by taking the uniform convection 

velocity to be U + u (not U), i.e., its 'exact' value when located above the flat section of the 

surface of the airfoil. The path labeled 'rdt' is determined by neglecting the influence of 

image vortices on the motion of T, whose equation of motion is now (53) with the omission 

of the first of the two terms on the right hand side. This corresponds to the approximation 

of 'rapid distortion theory', where each turbulent element is assumed to convect across an 

inhomogeneous region at the local mean stream velocity [31, 32]; for the purpose of this 

illustration it has again been assumed that the mean velocity far from the edge is U + u. In 

all cases, therefore, the vortex passes by the edge at approximately the same speed. 

Sound is generated by the vortex principally during its passage past the edge, and can be 

calculated from either of the formulae (47), (48), by noting that the transformation (50) 
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implies that 

<T(y) = Re   -0 
h 

1 + 
4a 

'\|7r(l + a) \       (l + ß¥ 

where ( is the image of z = yi + iy2, and y = (y1} y2)- 

Now, for a line vortex, 

eben 

(56) 

n = iv(y-xo(t))   and   v = ^(t), (57) 

where x0(t) is the vortex location at time t calculated from (53), (54), and we therefore find 

from (47) 

p'(x,t) 
-por sin(0/2)   fh  (1 + 4a/(1 + ß) 

i 
2\   2 

3 
7T2 1 + a 

Im 
oft 

|x| ->• oo, (58) 

where C0 is evaluated at the retarded time [t] = t — |x|/c0. 

The 'exact' curve in Figure 4b is a nondimensional representation of the pressure 

signature plotted against U[t]/h. Also shown are the corresponding predictions of rapid 

distortion theory and the frozen approximation. The high frequency components of the 

sound are generated by scattering at the sharp edge of the airfoil, and the peak radiated 

pressure occurs in the neighborhood of [t] = 0 when the vortex passes close to the edge. In 

the frozen approximation the contributions to the sound at higher frequencies are reduced 

because small scale disturbances generated by the vortex, that are responsible for the high 

frequency sound, decay rapidly as the stand-off distance of the vortex path from the edge 

A increases. 

The sound can also be calculated from the diffraction theory formula (48). To do this, 

recall that B\ = —dfa/dt, where in two-dimensions the 'free space' velocity potential fa of 

the vortex is given by 

fa(x, t) = Re | —— ln(2 - z0(t)) J ,    z = xx + ix2. 

It now follows, using the representation (56) of $*(y), that 

^     p0Tsm(e/2)  fh   /l + 4ay(l + /?n * 
p (x, t) « s W 7—7      Re 

27rf        V x   V 1 + a / 

dz0 i (dz 
|x| -> oo, (59) 

dt Js (z — z0)
2_ 

where the integration is in the anticlockwise direction about the contour S of the airfoil in 

the z-plane, and the square brackets denote evaluation at the retarded time t — |x|/c0. 
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3 — 
The integrand ~ 0(l/|z|2) as \z\ —>• oo. The integral may therefore be evaluated by 

residues by shifting the integration contour to a large circle at infinity, thereby capturing 

a contribution from the pole at z = z0(t). This procedure yields (58). Alternatively, (59) 

can be used to investigate the contributions to the diffraction radiation from the lower 

and upper surfaces of the airfoil, which are determined by the respective contributions to 

the integral from the lower surface between z = —oo — ih/2 and z = —ih/2 and from the 

upper, rounded surface between z = —ih/2 and —oo + ih/2. These separate integrals have 

been evaluated numerically, and the corresponding pressures are labelled 'lower surface' and 

'upper' in Figure 5 for the conditions of Figure 4, for the case in which the vortex moves 

along the solid ('exact') path of Figure 4a. The net acoustic pressure is the algebraic sum 

of these separate contributions. 

4.3 Influence of vortex shedding 

When the Kutta condition is imposed at the edge A of the airfoil during the passage of T, 

vorticity is shed into the flow and swept downstream. The acoustic radiation consists of the 

direct sound generated by T, considered in §4.2, and the sound generated by the wake. If 

u <[/, where u = V/And is the characteristic induced velocity of the vortex, the trajectory 

and the acoustic pressure signature of V are to a good approximation the same as when the 

vortex convects at the local mean stream velocity (according to 'rapid distortion theory', 

see Figure 4). We shall therefore adopt this approximation to examine the influence of 

the wake, by assuming that both T and the shed vorticity convect at the local free stream 

velocity along undisturbed streamlines of the mean flow. This is equivalent to the linearized 

approximation of unsteady thin airfoil theory [33, 34], where the airfoil is modelled as a 

plate of infinitesimal thickness parallel to the mean flow (as in §2), and all perturbation 

quantities are proportional to the amplitude of an incident 'gust'. In that case, however, 

both the gust and the wake vorticity convect parallel to the plate at the same, uniform 

mean stream velocity, and the acoustic pressure generated by the wake turns out to be 

equal and opposite to that produced by the gust, so that there is no net radiation from the 

edge [4]. 

The shedding does not become significant until T is close to the edge. It will be modelled 

by releasing from the edge A a succession of elementary line vortices of circulation Tk at 

discrete times t — tk, k > 1. Let Zk, (k denote respectively the position of Fk in the z-plane 

and its image in the upper half of the £-plane at time t. These vortices lie on the stagnation 
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streamline emanating from A (see Figure 6a), along which they convect at the local mean 

velocity; their images (k are located on the line Re ( = 1 extending from the real axis into 

the upper half-plane. At time tj, when there are j shed vortices in the flow, the complex 

potential of the unsteady component of the flow is 

^ = ^{ln(C-Co)-ln(C-C)} + E^{ln(C-a)-ln(C-C)}. (60) 

The Kutta condition is satisfied at A by setting dw/dQ = 0 at C = 1- This determines the 

strength Tj of the jth vortex in terms of T and all of the previously shed vortices according 

to 

r'~ta«{i££+gi&}- 
To apply this formula it is necessary to specify the initial position Q = 1 + ie of the jth 

vortex on the stagnation streamline Re £ = 1, where e is small and positive, whose precise 

value does not materially affect the results. At the next time step in the calculation all 

of the shed vortices will have moved along this streamline by distances determined by the 

mean velocity potential (52). 

The results of such a calculation are illustrated in Figure 6a, for the rounded airfoil 

considered previously. The initial stand-off distance d of T far upstream of the edge is equal 

to |/i, as before, and the characteristic velocity u of (55) is again taken to be -0.lt/. The 

trajectories of the incident and shed vortices are the streamlines of the mean flow shown 

in Figure 6a.  Time is measured from the instant that T crosses X\ = 0, and the figure 

shows the position of T at various times, and also the corresponding location of the peak 

shed vorticity. This peak is shed into the flow when T is close to the edge, and translates 

downstream with T on a parallel path at roughly the same velocity. Figure 6b indicates 

how the overall circulation of the wake vorticity is opposite in sign to T and has a final 

magnitude equal to about 80% of T. The slope of the wake circulation curve is always 

negative, showing that the sign of each elementary vortex Tj is always opposite to T. 

The sound generated by the impinging vortex and the wake at the retarded time 

tj = t— |x|/c0, just after the release of the jth vortex from A, can be calculated from either 

of the following generalizations of (58) and (59) 
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p'(x,i) 
-posin(0/2)  f 

3                 \ 
7T2              V X 

Yl + 4a/(l + /?)2\" 

X    < 

' im [rf + ELI rvf], 
X   -> 00. (62) 

The pressure signature is plotted against U[t]/h in Figure 7.   Also plotted are the 

separate contributions from T and from the wake, which are of comparable magnitudes, but 

opposite in sign. Because of the progressive increase in the total wake circulation, when 

U[t]/h exceeds about 5 the separate acoustic pressures attributable to T and the wake are 

effectively equal an opposite. Thus, the net radiation is significantly different from zero 

only for retarded times U[t]/h ~ 0(1) when T is very close to the sharp edge A. This may 

be contrasted with the analogous result for an airfoil of infinitesimal thickness [4], for which 

the predicted radiations from T and from the wake are equal an opposite for all times, and 

linear theory accordingly predicts that no sound is produced at the trailing edge. 
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5. CONCLUSION 

In this chaapter the Chase-Chandiramani diffraction theory for estimating trailing edge 

noise from a flat plate, zero thickness airfoil has been extended to low Mach number flows 

past a non-compact airfoil of finite thickness and arbitrary trailing edge geometry. For the 

flat-plate, the radiation can be approximated by considering the diffraction at the edge 

of the boundary layer blocked pressure, which is assumed to convect in a frozen pattern 

past the edge. The same approximation for a thick airfoil significantly underpredicts the 

high frequency components of the sound. In this case the problem must be formulated 

in terms of the diffraction of the the boundary layer 'upwash' velocity. Both approaches 

are equivalent for the flat plate airfoil, but the extension permits account to be taken of 

modifications of the turbulence during convection past the variable geometry edge. 

In applications it is desirable to be able to make accurate predictions of low Mach number 

edge noise by first performing numerical simulations of the edge flow based on the equations 

for an incompressible fluid, and then inserting the results into a suitable surface integral 

representation of the radiated sound. When the airfoil chord is not acoustically compact, 

it is not possible to make such predictions solely from a knowledge of the incompressible 

approximation to the unsteady surface pressure. This is because the airfoil itself extends 

into the acoustic far field, and the prescribed surface pressure must contain sufficient 

acoustic information to ensure that the calculated radiation satisfies the appropriate 

dynamical boundary conditions on the airfoil. In order to satisfy these conditions using 

incompressible data, the surface integral should involve an acoustic Green's function that is 

specifically tailored to the boundary conditions. For a rigid airfoil the normal derivative of 

the Green's function should vanish on its surface, and the incompressible data required to 

determine the far field sound is the boundary layer 'upwash' velocity. This velocity is equal 

to that given by the (free-field) Biot-Savart formula applied to the boundary layer vorticity 

lying outside the viscous sublayer. 
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Figure 3.  (a) Airfoil of thickness h with a rounded trailing edge section of length £. 
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Figure 4. (a) Trajectories of the vortex F past the trailing edge when u = -0.1U, l/h = 4, 

d/h = 0.5. (b) Acoustic pressure signatures p/{p0(F/h)2 sm(9/2)y/h/\irx.\/8}. 
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contributions from the upper and lower surfaces of the airfoil of Figure 

4 when u = -0.lt/, £/h = 4, d/h = 0.5 and when the vortex moves along 

the solid ('exact') trajectory of Figure 4a. 
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Figure 6. (a) Trajectories of the vortex T and shed vorticity in the approximation 

of rapid distortion theory for u = -0.lt/, l/h = 4, d/h = 0.5 

(b) Total wake circulation as a function of time. 

34 



Report No. AM 99-003 Boston University, College of Engineering 

u u 

U 
I- 
Cu 

ö 
.2 
c u 

T3 
Ö o 
c 

3 
1 

-    d/h = 

1        1 
0.5 

II         1         1         1         1 

/             —vortex T 
— 

2 _   «/[/ = -0.1 — 

1 

0 

^^acoustic pressure — 

-1 

-2 
\ wake       ^^__  

— 

-3 1 1         1 1         1        1         1         1         1 

a -i - 

-2 0 2 4 
U[t]/h 
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CHAPTER 2 

ATTACHED AND SEPARATED EDGE FLOWS 

SUMMARY 

The diffraction theory of Chapter 1 is applied to investigate the noise produced by 

turbulent flow over an edge whose upper surface profile (the suction side) is rounded. The 

sound is expressed in terms of the 'upwash' velocity fluctuations that the same boundary 

layer turbulence would generate if the airfoil were absent.  An approximate method is 

proposed for expressing these fluctuations in terms of local properties of the blocked pressure 

generated on the surface exposed to the turbulent flow. Predictions are made of the edge 

noise spectrum for both fully attached flow (that remains attached right up to the trailing 

edge) and for cases where separation occurs on the rounded profile.   When premature 

separation occurs the amplitude of the edge-generated sound decreases exponentially with 

increasing frequency, and predicted edge noise levels are significantly smaller than estimates 

obtained when the airfoil is modeled by a rigid half plane. For attached flow turbulence on 

the suction side of the airfoil always passes close to the edge and interacts strongly with 

it, but contributions from the interaction of the same turbulence with the pressure side of 

the airfoil are reduced because of the finite airfoil thickness. In this case sound levels fall 

short of those for a rigid half plane typically by about 5 to 10 dB, the precise values being 

dependent on frequency, and on the ratio of the boundary layer thickness to the mean airfoil 

thickness. 
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1. INTRODUCTION 

Consider turbulent flow at very small Mach number over the upper surface of the trailing 

edge an uncambered airfoil with a rounded upper surface edge profile, as illustrated in 

Figure 1. The profile is the same for all spanwise locations, so that the edge is parallel 

to the airfoil span. Airfoils of this type are frequently used in flow noise tests [1-3], and 

the simplified edge geometry is convenient for validating numerical codes for edge noise 

prediction. Let the main stream outside the airfoil boundary layers have low subsonic speed 

U in the xi-direction of the rectangular coordinate axes (xi,x2,x3). The coordinate origin 

0 lies on the midplane of the airfoil in the 'vertical' plane of the trailing edge A (see Figure 

2a, below). The upper, rounded edge region extends over the interval — £ < X\ < 0, and 

meets the lower surface at A: X\ = 0, x2 = —\h. Upstream of the edge, for X\ < —£, the 

airfoil has uniform thickness h and its upper and lower surfaces coincide with the planes 

x2 = ±|/J- The mean circulation around the airfoil is assumed to be adjusted to make A a 

stagnation point. 

The theory of the self noise generated at a trailing edge of finite thickness is discussed 

in Chapter 1. When the airfoil thickness h is acoustically compact, it was shown that the 

acoustic pressure p(x, t) in the far at x at time t can be rendered in the form 

/oo 
p(x,u)e-lutdu, (1) 

-oo 

. po/4sin5</,sin(0/2)eiK°lxl //.   _„ ,     ,      ,       _,      w d$*(y)      \ ,_, , 
p(x, UJ) «       ]        f i icü$*(y)vln{y, u) + vtt(y, u) A        WJ ■ n \ dS(y), 

7TV27TZ[X| Js { ay J 

|x| -)■ oo, (2) 

where the integration is over the upper and lower surfaces S of the airfoil. The terms in this 

formula are defined as follows 

Po = mean fluid density, 

K0 = UJ/C0 = acoustic wavenumber, 

c0 = speed of sound, 

v = kinematic viscosity, \ (3) 

f2 = curl v = vorticity,   v = velocity, 

sinip = r/|x|,   r = Jx\ + x2, 

sin# = x2/r. 
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Thus, (xi,x2) = r(cos9, sin6), and tj) is the angle between the radiation direction x/|x| and 

the a^-axis (the airfoil span, out of the plane of the paper in Figure 1). 

$*(x) = $*(xi,x2) is an auxiliary function that depends on the shape of the airfoil trailing 

edge profile. It satisfies Laplace's equation and describes an incompressible, irrotational 

flow around the edge of the airfoil (in planes parallel to the Zio^-plane), and is normalized 

such that 

$*(zi,x2) ->• <p*(xux2) = v^sin(0/2),    for ^Jx\ + x\ > h, (4) 

where ip*(xi,x2) is the corresponding potential of irrotational flow (in the anticlockwise 

direction) about the edge of the half plane X\ < 0, x2 = 0. 

The unit normal on S directed into the fluid is denoted by n, and v\n = vi • n is the 

normal component of the 'upwash velocity'. This is defined by 

dvi ,   r curl (fi A v)d3y ,   r fdCl       „, J\      d?y 
—± = -curl  /   -±-. L-z. = curi  / _ u^n   —    *— 5) 
dt Jv      4TT|X - y| h \ dt ) 4TT|X - y|' K ' 

where V is the region occupied by the fluid.   The vortical boundary layer motion is 

assumed to be well approximated at low Mach numbers by the Navier-Stokes equation for 

incompressible flow. In the viscous sublayer, close to the surface of the airfoil, the motion 

becomes linear and 

^ - uV2n » 0. 

Outside the sublayer viscous diffusion is negligible, and uW2ft may be discarded from the 

second integrand of (5). The upwash velocity is then given by the Biot-Savart formula [4] 

v,(x,()=cUrl/   "0^, (6) 
Jvs 47r|x-y| 

where the integration is confined to the nonlinear region of the boundary layer Vj outside 

the viscous sublayer. This result implies that, in applications to flows of very large Reynolds 

numbers, where the dominant turbulent motions may be regarded as essentially inviscid, 

possible contributions to the integral (6) from potential flow bound vorticity on S must be 

excluded. 

Equation (6) defines the velocity vi in terms of the boundary layer vorticity when the 

presence of the airfoil is ignored, i.e., when the volume enclosed by S is imagined to contain 

fluid moving irrotationally at the induced velocity of the boundary layer vorticity.  Of 

course, prior to evaluating the upwash velocity from either of the representations (5) or (6), 
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the vorticity 0(x, t) and flow velocity v(x,t) must first be determined'with full account 

taken of the presence of the airfoil including, of course, the no-slip condition on S. 

The first term in the brace brackets of the integrand of equation (2) represents the 

contribution to the edge noise from the normal surface stresses on S; the second term 

determines the net contribution from the surface shear stress, and is usually neglected at 

very high Reynolds numbers. 

In Chapter 1 the two-dimensional version of equation (2) was used to examine the sound 

generated during the mean flow convection of a rectilinear vortex past the trailing edge 

of Figure 1, including the influence of vortex shedding induced from the edge A. In this 

chapter equation (2) will be applied to estimate the acoustic pressure frequency spectrum of 

the high frequency self noise generated by turbulent flow over the rounded edge profile. The 

theory is formulated (in §2) to enable account to be taken of changes in the mean turbulent 

boundary layer characteristics with distance from the edge. In the theory of edge noise 

generated by flow over the edge of a thin plate airfoil [5 - 7], the properties of the boundary 

layer turbulence are expressed in terms of the blocked wall pressure wavenumber-frequency 

spectrum, measured or specified empirically just upstream of the edge.  In the present 

formulation (§3) it is assumed that the relevant frequencies are sufficiently high that the 

wavenumber-frequency spectrum of the upwash velocity v\n can be represented locally in 

terms of the blocked pressure spectrum, thereby permitting acoustic predictions to be made 

in terms of measured or calculated turbulence parameters. The Mach number is sufficiently 

small that the blocked pressure can be calculated from the incompressible equations of 

motion. Numerical results are presented in §3 for fully attached and separated edge flows, 

including a comparison with predictions of the frozen approximation of [5 - 7], according to 

which the boundary layer turbulence is convected over the edge along a path parallel to the 

undisturbed mean stream. 
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2. FORMAL REPRESENTATION OF THE EDGE NOISE 

Introduce a curvilinear coordinate system (s,s±,Xs), where s is measured along the 

curvilinear stream lines of the potential function §*(xi,x2) in the clockwise direction, s± 

lies in the z^-plane, normal to the streamlines and directed away from the profile S of the 

airfoil, on which we can take s± = 0 (Figure 2a). Then, s± > 0 in the fluid, and on S 

vIn=   lim   —-(s,s±,x3,u) =   lim   — /     <S>(s,s±,k3,Lj)elk!iX3 dk3, (7) 
SJL->-0  ds±_ sx-*-0  OS± J-oo 

where $(s, s±,X3,u), $(s,sx.,k3,u) are respectively the upwash velocity potential and its 

Fourier transform with respect to x$. This potential is well defined throughout the whole of 

space where the vorticity fl = 0, including the region occupied by the airfoil. 

When the final representation in (7) is substituted for v\n in equation (2), with dS = dsdy$, 

the integration with respect to ys yields the delta function S(k3).  In an exact integral 

representation of the edge generated sound (involving the specification of compressible data 

on S) the surface integral would actually yield S(k3 — K0COSI/;), which merely implies that 

only those Fourier components of Vin(s,x3,u>) that have supersonic spanwise phase velocity 

\u}/ks\ > c0 are responsible for the radiation of sound from the edge. In other words, the 

only relevant wavenumbers are confined to the acoustic domain |/c3| < |K0|, and correspond 

to variations in the spanwise direction occurring over distances of the order of the acoustic 

wavelength.  However, the dominant hydrodynamic motions near the edge have length 

scales of the order of the boundary layer displacement thickness 5* <C 1/K0 < VIM- In the 

approximation of equation (2), K06* is so small that we can take £3 = 0. 

When fc3 = 0 and the source motion is regarded as incompressible, the velocity potential 

<I(S,S_L, kz,uj) satisfies Laplace's equation, which locally reduces to 

d2       d2 \ ~ 
+ -^)${s,Sl,0,iu) = 0. 

ds2     ds2 

The corresponding stream function ty(s,s±,u>), say, is related to $(S,S±,0,UJ) by the 

Cauchy-Riemann equations [4] 

^ = -^Mx,0,u,),    — = -(s,s±t0^). (8) 

Hence, substituting from (7) into equation (2), and discarding the contribution to the 

radiation from the surface shear stress, we find 
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|x|   V     7T V-oo V9S^ A±=0 

-PoW./2*«o„:_l   ,    ;    ,fl ^^„Ixl   A00 **/../„NNÖ*, 
Iji- . /-0O /7VI/ 

— sin^sin(ö/2)ei'Colxl /    <$>*(y(s))^f-(s,0,uj)ds,    Ixl -> 00, 
7T J-00 OS 

(9) 

where the integration is taken in the clockwise sense around the profile sj_ = 0 of the airfoil 

S. 

Since the noise sources are confined to the neighborhood of the trailing edge, we may 

integrate by parts in the final line of (9) to express the radiation as a Stieltjes integral 

p{x,u)&^J^sm2^sm(8/2)eiK°M<[y{s,0,üü)d<l>*,    Ixl -> 00, (10) 
|X|   V     7T Js 

where the integration is in the clockwise direction about S. In §3 it will be convenient to 

evaluate the integral by setting z = x\ + ix2, and mapping the region of the 2-plane outside 

the airfoil occupied by the fluid onto the upper half of the complex ("-plane, such that the 

airfoil profile S transforms into the real C-axis with the correspondence of boundary points 

indicated in Figure 2b. But, the potential $* is given in terms of ( by 

$* = $*(£) =-//Re C,     /i>0, (11) 

where ß is a constant whose value depends on the shape of the trailing edge profile. Thus 

the acoustic pressure may be written 

p(x,u) n -^J^sm^sm{8/2)eiK°M f° *(5(C),0,w) d(,    |x| -> 00,        (12) 
|x|   V   ft J-00 

where the path of integration runs just above any singularities on the real axis. 
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3. MODELING HIGH FREQUENCY EDGE NOISE 

3.1 Conformal mapping 

The fluid region bounded internally by a trailing edge profile of the type shown in Figure 

2a is mapped into the upper £-plane by means of the transformation 

rii^I*1»^'^» cu>0,    /?>+!, (13) 

where a. and ß are numerical constants, and 

4 
/(C,/?) 

TT(1 + /?)
2 (c+^)vW^ 

TV 

ß-1 c + ^ Ux/c+^/c^T 
2        7T        I       2      , 

(14) 

Equation (13) maps the real £-axis (Figure 2b) onto an airfoil profile S whose upper 

and lower surfaces coincide with a;2 = ±\h respectively for Re £ < — ß and Re ( > 1. 

This transformation divides the upper, rounded section of the trailing edge (between B 

and A in Figure 2a) in two sections: the interval —ß < Re ( < — 1 is the image of the 

section that starts at B and terminates (at £ = —1) at the top of a vertical 'end-face' 

(xi =0,  — \h < X2 < — \h + A) of thickness A, which corresponds to the interval 

—1 < Re ( < 1.   The values of a and ß are calculated by prescribing values for the 

geometrical ratios £/h and A/h. As in Chapter 1, results presented in this chapter are for 

a = 600,    ß = 86.9370 (15) 

which yield £/h = 4 and A/h = 0.0074. The corresponding airfoil profile is shown in Figure 

2a (because A <C h the end-face cannot be distinguished). 

The coefficient ß in the definition (11) of $* is determined from condition (4), which is 

equivalent to — /J,( —¥ —isfz as \z\/h —> oo, and supplies 

ß 
h 

1 + 
4a 

\7r(l + a) \  T (1 + ß) 
(16) 

3.2 The frozen approximation 

In the frozen approximation of thin airfoil theory [5 - 7] the boundary layer turbulence 

is assumed to convect parallel to the undisturbed mean stream at a convection velocity Uc, 

42 



Report No. AM 99-003 Boston University, College of Engineering 

which depends weakly on frequency u. When this is applied to the airfoil of Figure 2a, 

boundary layer eddies translate as frozen distributions of vorticity in the Xi-direction within 

a boundary layer constrained to lie above the plate in the x2 > \h, so that the separation 

streamline is parallel to the undisturbed mean flow velocity, and extends downstream 

parallel to the X\ axis. ^ satisfies Laplace'e equation in the region x2 < \h, where we can 

write 
/oo "I 

A(k,u)eikxl-WW2-X2Uk,     x2<=-h. (17) 
-oo 2 

It was shown in Chapter 1 (§3.2) that the pressure fluctuations pi(x, t) produced by the 

boundary layer turbulence in x2 < \h when the presence of the airfoil is ignored satisfies 

the linear relation d\\/dt = (—l/p0)Vpi, and it therefore follows by applying this relation 

on x2 = |/i that 

A(k,cv) = S-^ps(kAu), (18) 
2p0uj 

ps(k,k3,u) being the Fourier transform of the blocked wall pressure, defined by 

1      r°° 
Ps(k,k3,uj) = —-J^pa(XuX3it)e-i^+k^-^ dXldx3dt, (19) 

where ps(xi,x3, t) = 2pi(xi,h/2, x^, t) is the pressure that would be exerted by the boundary 

layer on a rigid wall at x2 = \h, i.e., on the upstream, flat section of the upper surface of 

the airfoil. In the frozen approximation it is assumed that measurements of ps(xi,xs,t) 

several characteristic hydrodynamic length scales upstream of the trailing edge are sufficient 

to determine ps(k,ks,uj). 

Then, in equation (12) we find 

/OO    Ä                                                                 1 rOO 

V(8(Q\0,cü)dZ   -=* /    l(k)ps(k,0,oo)dk, (20) 
-oo ^Po1^ J—oo 

'  C.C. U-kh/2 joc^e-ikz d£J     for   k > 0) 

T(k)   =   < (21) 
-c.c.{l{-k)} for k < 0, 

where 'c.c.' denotes the complex conjugate. Thus, equations (12) and (1) give the far field 

sound in the form 

pfct) « _ ^in^sm(fl/2)   rrco JI{k)ps{kAu)e-Mt-lx\/co)+if ^^     |x[ _^ QO_   (22) 

v27TC0|x| JJ-oo 

The acoustic pressure frequency spectrum $(x, UJ), which satisfies 

(p2(x,i)) = /0°°$(x,u;)du,, 
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the angle brackets ( ) denoting an ensemble average, is calculated from (22) by first 

assuming that only a finite spanwise section — \L < x3 < \L of the trailing edge is wetted 

by the turbulent flow, where L is much larger than the boundary layer thickness 8. For 

statistically stationary turbulence 

(ps(k,0,u)p*(k',0,u'))^^-8(uj-Lj')8(k-k')P{k,0,u),    L>5, (23) 

where the asterisk represents the complex conjugate, and P(k, £3,0;) = P(—k, k$, —u) is the 

wavenumber-frequency spectrum of the blocked wall pressure [8]. Then equation (22) yields 

_,      ,      a2sinibsin2(9/2) ujL  r°° _., ,,,„,,  „    .  „      ,   . ,   , 
$(x,u/) = i= J2.   .; '  '— /     \l(k)\2P{k,0,uj)dk,    |x| ->oo. (24) 

Z7T   |X| C0   J—00 

To illustrate predictions of this formula the wall pressure spectrum will be approximated 

by the Corcos formula, which is applicable for u8/U > 1 in the immediate neighborhood of 

the 'connective ridge' (where P(k,k3,uj) attains a large maximum) [9]: 

P(k,k3,co)   =   $pp(u) ii h 
^[l + £l(k-u;/Uc)

2]7r[l + £lk2} 

lx   «   9Uc/u,    £3K1AUC/U. (25) 

The lengths tx and 4 are frequency dependent turbulence correlation scales in the xr- and 

^-directions. <&pp is the point pressure frequency spectrum which will be approximated by 

the following empirical formula (based on data collated by Chase [8]): 

(U/S,)%M _     (ws./uf 
(«*)'   -[M./io'+oar a' = 0'12' (25) 

where <5* ~ 8/8 is the boundary layer displacement thickness, and v* is the friction velocity. 

The principal contribution to the integral in (24) is from the immediate vicinity of the 

spectral maximum in the convective ridge, where k ~ UJ/UC. We therefore replace l{k) by 

l(u)/Uc) to obtain 

,,      N /i2sin^sin2((9/2)u;L      />.>\i2 
$(x,o;)   «   - w  ' 

27r2|x|2 c0 

0.7LMc/x
2sin^sin2(ö/2) 

3 I      19 Ti6 xr 
1{w)\ ®pp^'    lxl^°°> (27) 

where the Mc = Uc/c0 is the convection Mach number. 
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The integral in (21) defining l(k) must be evaluated numerically, with z — z(() 

determined by equation (13). Then the acoustic frequency spectrum can be expressed in 

the nondimensional form 

{U/5*)$(x,u) _   ,„, {L8*\ 2 (0\ ( a 
{Povl? r      V|x|V      Y        \2) \nU< 

/J M   —^   sin ip sin12   - *'£ 
2 a0(w8*/U) 
 Ö- ,   an = U.Uoo, 
K + (a„5,/[/)2]f 

(28) 

where M — U/c0 is the Mach number of the main stream, and we have introduced the 

approximation Uc ~ 0.7U; pi is given by (16). 

The solid curve in Figure 3 is a nondimensional plot of the acoustic pressure spectrum for 

the particular case h = 6, when the thickness of the turbulent boundary layer over the upper 

surface is just equal to the airfoil thickness h. At very low frequencies (when uh/Uc < 1) 

the radiation must be similar to that from the edge of a thin rigid half-plane. In this limit 

UCJ        (i   yu + iO      Uc 
K   ' 

and the spectrum becomes identical with that for the half plane 

Wf-y « M m sin^sin^ ff)        <***™    , , (30) 

which is also plotted in Figure 3. 

The large difference at high frequencies between the half plane and rounded edge spectra 

occurs because, in the frozen approximation the perpendicular stand-off distance of the 

separation streamline from the edge A (where the high frequency noise is generated) is 

equal to the plate thickness h, so that the upwash velocity at the edge is reduced by a factor 

of order e~^h/Uc < 1 relative to the half plane. 

3.3 Fully attached edge flow 

When the turbulent boundary layer remains attached to the curved upper surface of the 

airfoil right up to the edge A, as indicated in Figure 4, we write the representation (17) for 

^f(xi,X2,co) on the upper surface in terms of (s,s±) in the form 

*(s>si,w)=/    A(k,u)eiks-Ws± dk,     s±<0,    (< 1. (31) 
J — 00 

A(k,u) is determined by assuming that the wall pressure Fourier transform ps(k,0,u) is 

defined locally on the curved surface, with local statistical properties defined as in (23) - (26) 

that may vary over length scales much larger than the correlation scale of the turbulence. 
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This approximation can be used to evaluate the portion /loo^(s(C),0,w) d( of the 

integral in the representation (12) of the sound pressure. On the lower surface of the airfoil 

(i.e., for 1 < ( < +oo), we apply a local plane wave approximation to (31) by writing 
/OO 

A(k,cj)eik^^+h'i(;)s'md}-Wh'^C0Sl9dk,     s± = 0,    (>1,       (32) 
-OO 

where for a point on the lower surface specified by £ (1 < £ < +oo) s'(Q is the value of 

s at the corresponding point on the upper surface (i.e., where the perpendicular from the 

lower surface point meets the upper surface), h'(() is the airfoil thickness at that point, and 

•0 = i9(£) is the angle between the sj_-axis and the ^-direction at the upper surface point. 

Thus, when A(k,u>) is approximated in terms of the blocked pressure as in (18), the far 

field sound is found to be given by 

X  \/27rCn JJ-OO J-OO x|v/27TC^ 

-iu»(t-|x|/co) d(*        (33) j   i    I |fC \    ikh'(C) sinÖ-\k\h'(Ö cosÖ 

where, for — co < £ < 1, £(£) is determined by the point of intersection with the lower 

surface of the perpendicular onto the latter from the point ( on the upper surface, so that 

1 <C<+oo, and tf = tf(C). 

Thus, forming the acoustic pressure frequency spectrum, as in §3.2, we obtain the 

following modified form of equation (24) 

27T^|X|2 C0   J-oo        JJ-oo 

I _|_ |^| eikh'(0sin■d-\k\h'(C)cosd\   L    ,    (^C\ ^-iktiß)sin&-\k\h'{£')cost?' d(dC, 

|x| -> oo. (34) 

We can take account of slow changes (on a scale of the boundary layer thickness 5) in the 

mean properties of the boundary layer turbulence with curvilinear distance along the airfoil 

by permitting P(k,0,u)) in (34) to be a slowly varying function of s = s(() and s' = s((')- 

The simplest way to do this is to use a modified form of the Corcos approximation (25) 

in which the point pressure frequency spectrum $pp(w) is replaced by the geometric mean 

J$pp(s,oj)$pp(s',u) of the corresponding spectra at s and s', viz. 

p(kM = ^Pp(s, .)%p{s; U) n[1 + £2J
l_ u/m v[1 l\im■ (35) 
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This would be appropriate if variations in the convection velocity Uc « 0.7U are small 

compared with changes in the structure of the point pressure spectrum $pp as the trailing 

edge is approached. It is necessary to take the geometric mean (as opposed to, say, the 

arithmetic mean) to ensure that the right hand side of (34) remains positive definite. 

Thus, when the wavenumber integral in (34) is evaluated as before, by taking the first 

term in the expansion about the convective peak at k = iv/Uc, we find 

0.7u2LMsinV'sin2(Ö/2)l/T,.  ,., *(x,w)   «   —£ —^ LLi^)^    |x|->oo, 

J-oo 

1 4- I Z^ 1 Jkh'iÖ sin ■d-\k\h'(Ö cosd eika® d(. (36) 

In the numerical results to be given below we shall ignore the dependence of $pp(s,u) on 

s. In that case the acoustic pressure spectrum has the form given previously in equation 

(28), with 

X(k) = sgn(k) I 
J—c 

I _L |^| et*/i'(C)sin£-|A:|/i'(C)cosiJ eiks(0 ^ (37) 

This integral must be evaluated numerically. In doing this it has been assumed that the 

separation streamline at the edge makes an angle — | with the positive direction of the 

£i-axis, which is the same as for potential flow past the airfoil when the Kutta condition is 

applied at A (see Chapter 1). In order to achieve this smooth behavior, we have set -d = \ 

at those points very close to A where the geometrical value of the angle actually exceeds |. 

The acoustic pressure frequency spectrum is given by equation (28).  It is plotted in 

Figure 4 for h/8 = 1 and 5. The intensity of the sound decreases as h/S increases, because 

the exponential decay of the second term in the square brackets of (37) rapidly reduces the 

contribution from the lower surface.  However, the full effect of scattering by the upper 

surface is always present, so that the overall reductions with increasing thickness are very 

much less than those predicted by the frozen approximation. 

3.4 Separated edge flow 

When the boundary layer separates at some intermediate point on the curved section of 

the trailing edge (Figure 5) the radiation can be estimated by combining the approximations 

of §§3.2, 3.3.  Let separation occur at x\ = x0 (£ = £0), at the point where the airfoil 
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thickness is h0, and assume that immediately after separation the turbulence convects in a 

frozen pattern parallel to the undisturbed mean stream. In the simplest approximation in 

which the dependence of $pp(s, u) on s is again ignored, the acoustic pressure spectrum can 

be set in the form (28), where 

l(k)   =   sgn(*){/^ 1 + Jkh'(C) sin d-\k\h'(C) cos ■d Jks(C) 

+ r e-|*|d(C) + 
'dC\  - \k\h0 

d( 

ei*(*o+*i-*o)d^l     (38) 

where d(() = h0 — \h — x2(() (C < 1) is the vertical standoff distance of the separation 

streamline from the upper surface of the airfoil, and s0 = s((0). The separation coordinate 

x0 and the curvilinear distance of the separation point from the edge are displayed in Table 1. 

h0/h x0/h curvilinear distance//i 

1 -4 4.19 

0.5 -0.97 1.11 

0.2 -0.24 0.32 

0.1 -0.08 0.13 

Table 1. Separation coordinates for a = 600, ß = 86.9370. 

Typical acoustic pressure frequency spectra, calculated from the general formula (28), 

are illustrated in Figure 5 for the cases of Table 1 when S = h. The contributions at high 

frequencies decay very rapidly as the separation point moves upstream from the edge, for 

the reasons discussed in §3.2. The case h0/h = 1 coincides with the frozen approximation 

of §3.2. 

These results (and the frozen approximation of §3.2) take no account of the sound 

generated by turbulence in the 'dead water' region bounded by the separation streamline 

and the curved section of the upper surface between the separation point and the edge. 
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4. CONCLUSION 

The intensity of the high frequency sound generated by turbulent flow past the trailing 

edge of an airfoil is significantly reduced if separation occurs upstream of the geometrical 

edge.  Separated flow over a curved trailing edge profile (Figure 5) can be modeled by 

assuming that after separation boundary layer eddies are convected along a path parallel 

to the undisturbed mean stream, so that their distance of closest approach to the sharp 

trailing edge is just equal to the airfoil thickness at the separation point. The strength 

of the unsteady interaction responsible for sound generation then decreases exponentially 

with increasing frequency, and predicted levels of edge noise are significantly smaller than 

estimates made by modelling the interaction in terms of a rigid half plane. This conclusion 

ignores possible contributions to sound generation from turbulence in the recirculating zone 

between the separation streamline and the curved section of the upper surface between the 

separation point and the edge, which are probably significant only at much lower frequencies 

When the mean flow remains attached right up to the trailing edge, boundary layer 

turbulence on the suction side of the airfoil always interacts strongly with the edge. 

However, because of the finite thickness of the airfoil, the influence of the (turbulence free) 

lower surface on the radiated intensity continues to decrease exponentially fast at high 

frequencies. In consequence, most of the high frequency radiation is associated with the 

flow interacting with the upper surface. The sound levels are smaller than for the half plane 

model, but the differences at higher frequencies are more modest, typically being of the 

order 5 to 10 dB, the precise values being dependent on the ratio of the boundary layer 

thickness to the mean airfoil thickness. 
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Figure 1. Schematic low Mach number turbulent boundary layer flow over a rounded 

trailing edge. 

51 



Report No. AM 99-003 Boston University, College of Engineering 

(a) 

u 

*2 
A 

x3 

->■ Xj 

*»U 

(b) 

B' 

f-plane 

A' 

-ß       -1 f = 0 1 

D' 

Figure 2. (a) Configuration of the trailing edge and the coordinate system. 

(b) Mapping the region outside the airfoil (in the plane of z = X\+ix?) 

onto the upper half of the ("-plane. 
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Figure 3. Frozen approximation to the edge noise spectrum 

(Z7/^)$(x,o;)/[a0(p0^)2M(L^/|x|2)sinVsin2(ö/2)] 

for the rounded edge of Figure 2a of thickness h = S when t 

and for the rigid half plane (h = 0). 

Ah, 

53 



Report No. AM 99-003 Boston University, College of Engineering 

t 
h 

+*U FULLY ATTACHED EDGE FLOW 

ö   10 

i   i i i i 11          i     i   i   i i i 111          i     i    i   i i i 11 

■*■            "—*^^>^.. half plane 

S <P o ^W                                       ^^^^W   • 
<D 
^         1 

^W                                           ^^^^^   • 
co          1                                            ^^                                           ^^"^^^    •                                                                             ^^ ^W                                              ^^^^^^ 
ca A.                                           ^^^^. c \                                               ^W ^W      • o \                                                 ^^. ^W.      • 

S3   10 »                                                       ^k    ^^        • 
0> m                                                                 ^^.     ^^.          • 

a %                                                                    ^k      ^^          • 
• ^H 
T3 \                                                                          ^V.     ^^.            * 

1 >°-2 
frozen \                           tfi=\\ 

m-3  I        i    i li i i i nl        i    i   i i Xi i 

0.1 10 
co5*/£7 

Figure 4. Predicted edge noise spectrum 

{U/6*)$(x,Lü)/[a0(Povl)2M(L6*/\x\2)smTPsin2(e/2)] 

for the rounded edge of Figure 2a of thickness h/6 = 1 and 5, when t — Ah. Also 

shown for comparison are the frozen and half-plane spectra. 
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U SEPARATED EDGE FLOW 
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Figure 5. Predicted edge noise spectrum 

(U/6*)^,u)/[a0(p0vl)2M{LÖJ\x\2)Smißsm2(6/2)] 

for the rounded edge of Figure 2a when h/5 = 1, £ = Ah, and for the 

separated edge flows of Table 1. 
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