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Abstract 

This research proposes and evaluates a novel technique for detecting LPI/LPD 

communication signals using a digital receiver primarily designed to detect radar signals, such as 

a Radar Warning Receiver (RWR) or an Electronic Support Measures (ESM) receiver. The 

inherent flexibility of the digital receiver allows the incorporation of detection and estimation 

methods that would otherwise require dedicated hardware. 

The proposed Cyclic Spectrum Analysis (CSA) receiver is a robust detector that takes 

advantage of the spectral correlation properties of second-order cyclostationary signals. A 

computationally efficient algorithm is used to estimate the Spectral Correlation Function (SCF). 

The estimate is then reduced to an energy related test statistic that is valid for all cycle 

frequencies within the receiver bandwidth. By producing an estimate of the cyclic spectrum, the 

CSA receiver also benefits post-detection tasks such as signal classification and exploitation. 

Using state-of-the-art FFT processing, it is expected that the proposed CSA receiver 

architecture could estimate the entire cyclic spectrum in approximately 0.6 ms. As modeled, the 

ideal CSA receiver detection performance is within 1.0 dB of the radiometer in benign signal 

environments and consistently outperforms the radiometer in adverse signal environments. For 

example, in the presence of nonstationary noise, the CSA receiver performance is relatively 

unaffected whereas the radiometer performance is degraded by as much as 10 dB. 

The effect on detection performance when the CSA receiver is implemented with 

channelized and quadrature digital receiver architectures is also examined. The channelized 

receiver implementation performs as well as the ideal CSA receiver, and more significantly, 

detection performance is independent of the channel selected. The quadrature receiver 

implementation outperforms the ideal CSA receiver in all cases by approximately 1 dB. As the 

signal bandwidth increases relative to the receiver bandwidth, the quadrature receiver 

performance approaches that of the ideal receiver. 

IX 



NON CO-OPERATIVE DETECTION OF 

LPI/LPD SIGNALS VIA 

CYCLIC SPECTRAL ANALYSIS 

1.   Introduction 

1.1   Research Motivation 

Historically, the Electronic Warfare (EW) community has treated the problems of 

detecting communication and radar signals as distinct. The design considerations in detecting 

these signals were so different that non co-operative (or unintended) radar receivers, such as a 

Radar Warning Receiver (RWR) or Electronic Support Measures (ESM) receiver, bear little or no 

resemblance to a non co-operative communication receiver. However, despite the fundamental 

differences between radar and communications, from a non co-operative point of view the two 

areas are becoming increasingly similar. Communication systems are now using frequencies 

previously used exclusively by radar; both radar and communication systems are employing 

similar modulation techniques to reduce the probability of detection or interception. In terms of 

frequency coverage, it should be possible for an RWR or ESM receiver to detect a 

communication signal. Indeed, for certain modulation techniques, the linear non co-operative 

radar receiver can employ the same detection strategy for both radar and communication signals. 

However, communication systems are increasingly using modulation techniques designed 

to reduce the probability of detection or interception by an unintended receiver. Such signals are 

known as Low Probability of Detection (LPD), or Interception (LPI) signals. Once the principal 

domain of covert military communication systems, these techniques are becoming commonplace 

amongst commercial communication systems as they also reduce the probability the signals will 



be interfered with. One of the most common techniques spreads the spectral components of 

transmitted signals over a bandwidth much larger than necessary. This is termed Spread 

Spectrum (SS) and can be achieved through either multiplying the data with a spreading code 

(direct sequence) or by randomly offsetting the center frequency of the signal (frequency hop). 

Because the unintended receiver (or non co-operative receiver) has no knowledge of the 

particular spreading code, it does not have the ability to "de-spread" the signal and therefore, is 

presented with a significantly reduced Signal-to-Noise Ratio (SNR) compared to the co-operative 

receiver. So while the communication and radar frequency bands may overlap, the traditional 

non co-operative radar receiver which is constrained to linear detection due to the microwave 

hardware, is unable to detect these lower SNR signals. Even receivers employing Digital Signal 

Processing (DSP) techniques following detection are not be able to detect negative SNR signals. 

With advances in Analog-to-Digital Converter (ADC) technology, the logical move in 

ESM and RWR receivers has been towards the use of digital receivers which sample the received 

signal at IF prior to detection. By incorporating DSP in the detection stage, greater design 

flexibility is achieved, allowing detection and estimation that would have previously required 

dedicated hardware components. 

Techniques designed exclusively for detecting LPI/LPD communication signals can be 

broken down into two basic categories, energy detection and cyclic feature detection techniques. 

These two techniques are derived by modeling the signal as a random process with detection 

accomplished via application of the Likelihood Ratio Test (LRT). 

The traditional method for addressing the problem of detecting weak signals in noise is 

through modeling the signal as a stationary stochastic process. This technique yields the 

radiometer which produces an approximation to the exact optimal detector solution. However, 

because the radiometer simply compares total energy levels, it does not perform well in 



environments with varying energy levels, i.e. environments with varying noise power levels or 

narrowband interference. 

It is now well established that, in fact, most communication and radar signals are more 

appropriately modeled as cyclostationary stochastic processes. Cyclostationary processes differ 

from stationary processes in that they have periodic statistics; processes with periodic second 

order statistics also exhibit spectral correlation. When the problem of detecting weak signals in 

noise is applied to the second order cyclostationary model, it has been shown that the optimal 

detectors are cyclic feature detectors centered around what is known as the Spectral Correlation 

Function (SCF), the cyclic equivalent to the Power Spectral Density (PSD) [12]. Those LPI 

schemes that do not have second order features, such as transfer domain modulations, are not 

considered in this research. 

There are essentially two important advantages of cyclic spectral analysis over 

conventional power spectrum analysis. The first is an enhanced discriminatory capability, i.e. 

signals with overlapping power spectrum features can have non-overlapping cyclic spectrum 

features. The second advantage is that the cyclic spectrum contains more information about 

signal characteristics than the power spectrum. Not only are chip rate, bandwidth and timing 

information more easily determined by cyclic spectral analysis, but specific modulation types 

exhibit distinct cyclic features. These advantages mean that cyclic feature detectors perform 

better than traditional techniques, such as radiometry, in adverse signal environments. 

The optimal single-cycle Maximum Likelihood (ML) cyclic feature detector has been 

derived and its performance evaluated [15]. However, it has proven impractical for non co- 

operative detection. The detector is known as single-cycle because analysis is restricted to one 

particular cycle frequency where a strong cyclic feature is expected. This entails having 

knowledge of the signal parameters, such as chip rate, or searching across all possible cyclic 



frequencies.    In a truly non co-operative receiver single-cycle analysis would need to be 

combined with a searching strategy across all spectral frequencies of interest. 

1.2 Research Goal 

The goal of this research is to: 

1. Propose a method of detecting LPD/LPI communication signals using a non co- 
operative digital receiver; 

2. Evaluate the performance of this detection technique through simulation in benign 
and adverse signal environments, comparing results to the radiometer; and 

3. Determine the technique's effectiveness when combined with typical digital receiver 
architectures. 

1.3 Thesis Organization 

Chapter 2 introduces background theory and presents a review of current literature. A 

brief introduction to the theory of cyclostationarity is presented, along with both the probabilistic 

definition and a deterministic interpretation of the Spectral Correlation Function (SCF). Spectral 

estimation theory as it relates to both Power Spectral Density (PSD) estimation and SCF 

estimation is discussed. The basics of detection theory are covered, including the detection of 

weak signals in noise from both a stationary and a cyclostationary viewpoint. Various optimal 

and sub-optimal detectors are derived, their performance analyzed and compared . 

Chapter 3 explains the Cyclic Spectrum Analyzer (CSA) receiver design. The concept of 

the single-cycle detector derived in Chapter 2 is extended and its relationship to the CSA receiver 

is explained. An overview of the CSA receiver is presented with each component discussed in 

detail. Three different digital receiver architectures are covered, the ideal, channelized and 

quadrature digital receiver. Each is introduced and the algorithm used to estimate the SCF is 

presented. Possible methods for reducing the SCF to a test statistic that can be easily calculated, 



stored and compared to a threshold are discussed. Additionally, the limitations and assumptions 

necessary are covered. 

Chapter 4 presents the results of simulating the CSA receiver under various conditions. 

Initially, a number of simulations are carried out to determine optimal operating parameters for 

the algorithm and to determine the best method of data reduction. The performance of the Ideal 

CSA Receiver is then determined through simulation and compared to the radiometer in the 

presence of stationary noise, nonstationary noise and narrowband interference. The detection 

performance of the Channelized and Quadrature CSA Receivers is considered. The effect of the 

differing frequency response on the detection performance of different channels is quantified. 

Expressions are derived for the received SCF for a complex or a real quadrature receiver. Based 

on these expressions, the optimum input method is selected and the detection performance under 

benign and adverse conditions is simulated. The effects of non-ideal bandpass filters on detection 

performance is quantified. 

Finally, Chapter 5 provides a summary of the results, a conclusion and recommendations 

for further research in this area. The Appendix contains a list of symbols and terminology used 

throughout this thesis. 



2.  Background 

2.1 Introduction 

This chapter introduces the background theory used throughout the remainder of the 

thesis and presents a survey of current literature. The concept of cyclostationarity is introduced in 

Section 2.2, including both the probabilistic definition and a deterministic interpretation of the 

Spectral Correlation Function (SCF). In Section 2.2.3, spectral estimation theory is discussed. 

Concepts of the periodogram and cyclic periodogram, and their relationships to Power Spectral 

Density and the SCF, respectively, are explained. Different algorithms for estimating the SCF are 

also briefly discussed. 

The basics of statistical detection theory are covered in Section 2.4. The derivation of 

optimal and sub-optimal detector structures for the detection of stationary weak signals in noise is 

presented. Detectors derived from the Generalized Likelihood Ratio Test (GLRT) are covered, 

including  approximations  that lead to the radiometer,  or energy  detector.     Radiometrie 

performance in relation to GLRT derived detectors is also examined and the drawbacks of 
/ 

radiometric detection are examined.   The GLRT is then applied to the cyclostationary signal 

model to produce both optimal and sub-optimal cyclic feature detectors. 

The notation and terminology used throughout this thesis, particularly Sections 2.2-2.4, is 

quite complex.   The notation involves the use of time series representations and a generalized 

theory to allow both analog and digital implementations. A cross-referenced list of notation and 

terminology is provided in the Appendix. 

2.2 Cyclostationary Fundamentals 

A cyclostationary signal, or process, is characterized by the fact that it exhibits spectral 

correlation.   The spectral correlation is not immediately obvious through conventional spectral 



analysis using the PSD. Therefore, cyclic spectral analysis is employed via the Spectral 

Correlation Function (SCF). The SCF can be explained from both a probabilistic [14,18] and a 

deterministic viewpoint [10,13]. The probabilistic model is a more traditional approach and gives 

strong insight into the relationship between stationary and cyclostationary processes. However, it 

is argued that the difficulty in applying the stochastic-process model to statistical spectral analysis 

is that the concept of the ensemble, or population, is not always appropriate in these applications 

[13]. Sometimes only one realization of the ensemble is available and in these cases, the time- 

series model (non-probabilistic or deterministic model) is more intuitive. Certainly, the 

deterministic model is useful for visualizing the formation of the SCF. 

The assumption of ergodicity allows the transition between the two approaches. 

Ergodicity requires a very specific set of properties for both the stochastic process and the time- 

series; specifically, all ensemble averages of the stochastic process and all time-averages of the 

time-series must exist, and the corresponding time and ensemble averages must be equal as the 

length of the time-series approaches infinity. However, for the detection schemes discussed here, 

only second order cyclostationarity is of concern. It is a reasonable assumption for most 

communication signals that the first- and second-order statistics satisfy the ergodic property, 

therefore, the probabilistic and deterministic views are equivalent [41]. 

2.2.1  Probabilistic View 

This section summarizes the theory found in [14,18] unless otherwise noted. Given a 

wide-sense stationary (WSS) random or stochastic process, x(i), if the autocorrelation function is 

periodic the process is known as wide-sense (second order) cyclostationary. This property is 

quite common in man-made signals, especially communication and radar waveforms. The 

autocorrelation function for a cyclostationary signal, x(i), can be written in terms of its Fourier 

components as 



Rx (t, t + T) = E [x(t)x* (t + T)J 

a 

where £[■] is the expected value operator, T0 is the period, and frequency components, a, are 

given by a = n/T0. The Fourier coefficients, R" (T) , may be calculated from 

äX°(T)S— r°/2 ^(M + T)«-'2*8 * (2-2) 
r J-r„/2 

this equation is also known as the Cyclic Autocorrelation Function (CAF). Those frequencies a 

for which the cyclic autocorrelation function is non-zero are termed the set of cycle frequencies. 

Using the cyclic Wiener-Khinchin theorem the Spectral Correlation Function (SCF) may be 

determined by taking the Fourier transform of the CAF in Eqn. (2-2), yielding 

S" (fhf R" (r)e'mr dx (2-3) 

The SCF is generally plotted on the bi-frequency plane as a function of spectral frequency,/, and 

cyclic frequency, a. The SCF exhibits a great deal of symmetry. For real signals it is an even 

symmetric function of / and a Hermitian symmetric function of a, indicated by 

s?(f)=sxfy 

To determine the functional form for the CAF and SCF for purely stationary1 processes, the 

above expressions are simply evaluated at a = 0, yielding 

1 In order to distinguish between stationary processes that exhibit cyclostationarity and those that 

do not, a stationary process that does not exhibit cyclostationarity is termed a purely stationary process. 



a=0 

r0J-~J-7-„/2 (2-5) 

= sx(f) 

Therefore, for a purely stationary random process, x(t), the CAF reduces to the autocorrelation 

function, Rx(t), and the SCF reduces to the Power Spectral Density (PSD), Sx(f). 

2.2.2  Deterministic View 

The deterministic approach involves using a time-series, interpreted probabilistically as 

one finite time realization of an ensemble. The problems associated with only having access to a 

limited portion of the time series are explored further in Section 2.2.3. However, when 

developing the theory of spectral correlation it is appropriate to take the limiting form of the time- 

series, i.e. consider an infinitely long sample. A time-series is normally denoted by a T subscript 

which refers to the length of the time-series, but, as the length of the time-series approaches 

infinity the subscript is dropped. Additionally, the statistics formed from a finite time-series are 

also denoted by subscript T and as the length of the time-series approaches infinity, the subscript 

is dropped. The terminology 'limit' is introduced to differentiate between deterministic and 

probabilistic definitions. The limit cyclic spectrum (the deterministic counterpart to the SCF) is 

developed as follows [13]. The limit cyclic autocorrelation function of an infinitely long time 

series x(t) is defined as 

t>a( \    ,.     1 fr/2   (     t\ *(     O R"kmhm—\      x\t + —x\t — 
* T^T J-772    [        2 {        2 

j2madt (2-1) 

Defining two frequency shifted versions of x(t) as 



1 cTn  (    T\ 4    T^ 
"   dt (2-3) vu-   2 

w      w (2-2) 

then the limit cyclic cross correlation becomes 

-    /  x 1   tTI'1    I        T 
Ä"(r)slim-f     «U+- 

r->~ 7 J-r/2 I      2 

The Fourier transform of this can be written as 

which is known as the limit cross spectral correlation between u(t) and v(t), i.e. two frequency 

shifted versions of x(t). The limit cross spectral correlation is written as the limit cyclic spectrum 

when the total frequency shift, a, is introduced as an index 

S„(f)*S?(f) (2-5) 

As mentioned previously for a cycloergodic stochastic process, the ensemble averages are equal 

to the time-averages as the length of the time-series approaches infinity. The relationship 

between the cyclic spectrum formed with a non-infinite time series and the SCF is discussed in 

Section 2.2.3. However, for a stochastic process which is cycloergodic in the CAF, then the SCF 

and the limit cyclic spectrum are equal 

S:(fhSa
x(f) (2-6) 

Therefore the SCF can be interpreted as the measure, or degree, of correlation for two frequency 

components separated by a.  The equation for calculating the SCF of a low-pass signal can be 

represented by Figure 2-1. The notation (• J simply refers to a time averaging process. 
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Figure 2-1. Frequency Domain Representation of the Spectral Correlation Function 

Figure 2-2 illustrates the steps involved in computing the spectral correlation of an 

arbitrarily modulated carrier. The figure shows the magnitude of the original low pass spectra 

X(f), the low pass shifted spectra, V(f) and U(f), and the resultant SCF magnitude for a = 2/0. The 

BPF has a bandwidth of 25 MHz, and the carrier frequency, /v>, is 12.5 MHz. 

Frequency (Hz) 

Figure 2-2. Example of Spectral Correlation Evaluated at a = 2/0 
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It is important to note that for a lowpass signal of bandwidth of B, the SCF has a limited 

region of support (area of non-zero correlation) in the bi-frequency plane. This can be visualized 

using Figure 2-2 by moving the two shifted spectra further apart. As a approaches IB, the region 

of support for the SCF (indicated on the lower plot) approaches zero. This leads to a diamond 

shaped region of support in the bi-frequency plane as illustrated in Figure 2-3. 

Cycle Frequency 

Spectral Frequency 

5^73 Region of support for 
A    lowpass signals 

Figure 2-3. Region of Support in the Bi-Frequency Plane for Lowpass Signals 

2.2.3  Advantages of Cyclic Spe ctral Analysis 

Cyclic spectral analysis is used in many applications, including weak signal detection, 

waveform classification, parameter estimation and spatial filtering. There are essentially two 

important advantages of cyclic spectral analysis over conventional power spectrum analysis. The 

first is the discriminatory capability of cyclic spectral analysis. Signals with overlapping features 

in the power spectrum can have non-overlapping features in the cyclic spectrum. For example, 

Eqn. (2-5) shows that the SCF for a purely stationary process only exists at a = 0, therefore non- 

zero cyclic frequency analysis of a signal will reveal the cyclic features of that signal without any 

component due to the stationary process. The second main advantage is that the cyclic spectrum 

gives more information about the signal characteristics than the power spectrum. Not only are the 
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chip rate, bandwidth and timing information more easily determined, but   specific modulation 

types will have distinct cyclic features. [2,11] 

2.3   Spectral Estimation Theory 

Given the usefulness of the SCF, there is naturally a requirement to try and determine the 

cyclic features for received signals, or to estimate the SCF. The process and theory behind SCF 

estimation is closely related to PSD estimation. Therefore, this section covers both SCF and PSD 

estimation. 

There are two distinct problems to overcome when estimating the PSD or SCF 

probabilistic functions of Section 2.2.1. First, the estimator only has access to a finite length time 

series, xj{f). Second, the estimator can only formulate time-averages and cannot actually calculate 

any ensemble averages. As discussed previously, the ergodic property only relates to the limiting 

form of the time-averages. Therefore spectral estimation theory can be thought of as the study of 

techniques used to counteract the loss of information caused by processing a non-infinite time 

series or sampled signal and approximating the expected value operation. The following section 

summarizes basic spectral estimation theory covered in [13,24,23] unless otherwise referenced. 

Spectral estimation methods can be broken into two categories: the so-called traditional 

methods which are based on direct use of the Fourier transform and are variants of the 

periodogram, and the more modern methods which are based on parametric modeling and include 

Auto-Regressive (AR) and Auto-Regressive Moving Average (ARMA) models. 

Traditional methods are derived from an alternative definition of the PSD. According to 

the Wiener-Khinchin theorem, the PSD, Sx(f), for a stationary stochastic process x(f) is the Fourier 

transform of its autocorrelation function Rx(f) and is given by 

Sx{f)=r Rx^y
j2wfTdr (2-1) 

J— CO 
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However, it can also be expressed as 

Sx(f)= limfj- f/2 x{t)e-ilKftdt (2-13) 

which is equivalent to (2-12) assuming the autocorrelation function decays sufficiently rapidly. 

This form of the PSD tends to be easier to implement and is the basis of the periodogram. 

2.3.1   The Periodogram 

The periodogram, Sx (f), is defined as the squared magnitude of the Fourier transform 

of a time series, Xj(i), normalized by the length of the segment, T 

s (f)sl[T'zx(tyj^f'dt xT v /     T J_T/2   \ I (2-14) 
T J-T/2 

The main advantage of the periodogram is its relation with the Discrete Fourier Transform (DFT) 

when implemented with sampled data. If the time series x^i) is sampled at fs = VTS to form 

N = [Tfs J samples where LJ represents the integer part, then Eqn. (2-14) becomes 

sjfh %xT{kTs)e~^ 
k=0 

(2-15) 

which can also be written in the form of a DFT as 

/y_l ~j2nkn 

«=o 

N (2-16) 

The periodogram can therefore be efficiently computed using a Fast Fourier Transform (FFT). 

This form of the periodogram in Eqn. (2-16) is more commonly seen in general spectral 

estimation literature than its continuous time counterpart of Eqn. (2-14). 

It is clear by comparing the periodogram and the PSD definitions, Eqns. (2-14) and 

(2-13) respectively, that the periodogram will suffer due to the lack of the expected value 
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This can be quantified by analyzing the quality of the periodogram as an estimator. The quality 

of any estimator can be determined by calculating its mean and variance. Ideally, an estimator 

should be unbiased (mean of the estimate approaches the mean of the true function) and the 

variance of the estimator should approach the Cramer-Rao lower bound. The average value of 

the periodogram approaches the true PSD as the length of the data segment approaches infinity 

such that 

UmE{SXT(f)\=Sx(f) (2.4) 

so the periodogram is asymptotically unbiased. However, the variance is given by 

™[sXT{f)]=Sx
2{f) (2-5) 

which is independent of segment length, T. In other words, the periodogram is an unreliable 

estimator because increasing the segment length improves the spectral resolution while variance 

remains constant. Methods for reducing the variance and compensating for the lack of expected 

value operation are discussed in the next section. 

Other forms of the periodogram include the time variant periodogram and the cross- 

periodogram. The time variant periodogram can be used as an estimate for Time-Frequency 

Distributions (TFD's) such as the Wigner-Ville distribution [31,29]. TFD's are useful since they 

describe how the spectral content of a signal changes with time. The time variant periodogram is 

simply an extension of Eqn. (2-1) and is given by 

SXT{t,f)^\XT{tj)\2 (2-6) 

where Xj{ t,f) represents the sliding time-finite Fourier transform of x(t) 

XT(t,f)=j      x{w)e-]2*fwdw (2-7) 

15 



The cross-periodogram is a measure of spectral correlation and is used in such fields as 

propagation path identification and time- and frequency-difference-of-arrival estimation. The 

cross-periodogram is 

SUVT{t,f)=jUT{t,fK(t,f) (2-8) 

where Uj(t,f) and Vj(t,f) are the sliding time-finite Fourier transforms as defined in Eqn. (2-7). 

The cross periodogram is used as a basis for estimating the SCF as discussed in Section 2.3.3. 

2.3.2  Resolution, Spectral Leakage and Windowing 

A number of steps are usually taken to improve the quality of the periodogram as a PSD 

estimate, including the application of data-tapering windows to reduce spectral leakage and the 

application of smoothing windows to reduce the variance. Spectral leakage refers to the 

periodogram responses at frequencies not near the signal frequency. The application of these 

windowing techniques is examined in terms of the temporal and spectral resolution of the 

resulting estimate. 

To understand the time and frequency resolution of the time variant periodogram, Eqn. 

(2-6) can be re-written as 

SXT(t,f) = M[xT(ty
j2*f']®aT(t)\2 

(2-1) 
I|[xr(f,/K*'<]®A1/r(/)|

2 

where a-fa) is a rectangle function of width T, and AyT (/) is a sine function, the Fourier 

transform of aj{t). The convolution operation, denoted by ®, dictates that the width of the 

rectangle function and the sine function determine the temporal and spectral resolution of the 

time-variant periodogram. The temporal resolution At and spectral resolution A/ satisfy the 

uncertainty relation 
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At = T = ^- (2-2) 

The Fourier pair aj(f) and AVT(f) are also known as a data tapering or lag windows. There are a 

number of different windows that can be used instead of the rectangle function (also known as the 

Dirchlet window) including, the Bartlett window (a triangle), the Hanning and the Hamming 

windows (variants of raised cosine functions). The spectral resolution and leakage resulting from 

the application of these windows can be determined from their main-lobe and side-lobe 

properties. An important property of data windowing is that AtAf=l. In other words, even with a 

data-tapering window the resultant estimate still has a time-frequency resolution product of unity 

and the variance of the periodogram remains unaffected. 

Windowing of the spectral estimator can also be used to provide a better PSD estimate. 

As discussed in the previous section, the periodogram is an unreliable estimator because the 

variance is independent of the record length. There are ways of using windows to reduce the 

variance by smoothing or averaging the estimate in time or frequency, however, this usually 

means an increase in bias [38]. 

Temporal smoothing can be thought of as the convolution of the periodogram with a 

window «AI(0 of width At, 

SXu,f(t,f)Al=SXT(t,f)®uAt(t) (2-3) 

resulting in a temporal resolution At determined by the width of u/Jj) with the spectral resolution 

A/ still related to the data segment length, T per Eqn. (2-2). The time-frequency resolution 

product is greater than unity because At » T. The Bartlett-Welch method is a computationally 

efficient digital implementation of a time-smoothed time-variant periodogram. It essentially 

involves averaging over a number of periodograms that overlap in time and the use of data 

tapering windows to reduce spectral leakage.   The temporal-spectral resolution product is AtAf= 
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M, where M is half the number of periodograms averaged and the variance of the estimator is 

inversely proportional to M. 

Spectral smoothing is achieved by convoluting the periodogram with the Fourier 

transform of uAt(t), a sine squared window, zA./(/) 

SxJ,f)Af=SXT(t,f)®zAf(f) (2-4) 

where the spectral resolution is determined by the null to null width of ZA/J), and the temporal 

resolution is given by the data segment length per Eqn. (2-2). The Wiener-Daniell method is a 

popular digital implementation of a spectrally-smoothed time-variant periodogram. As with the 

Bartlett-Welch method, the reduction in the variance of the estimator is proportional to the 

temporal-spectral resolution product. 

It can be shown[13] that spectral and temporal smoothing operations are approximately 

equivalent 

SXuJt,f)Al=SxJ,f)Af,       AtAf»l (2-5) 

and that for typical data tapering windows where j \aT(t] dt = \, they are related to the 

statistical definition2 of the PSD, Eqn. (2-5), as 

Sx(f)= lim lim Sx     (t,f)At 

/     N (2-6) 
= lim lim Sx  (t,f)Af 

To summarize, based on careful evaluation of required temporal and spectral resolution, 

spectral leakage, and estimator bias and variance, both a data tapering window, a(f), and either 

2 Strictly speaking the limiting form of the periodogram is equal to the limit spectrum, which for 

the case of a stationary and ergodic random process is equivalent to the statistical definition of the PSD. 
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spectral or temporal smoothing may be used to form a much better PSD estimate than the 

periodogram of Eqn. (2-1). 

2.3.3  The Cyclic Periodogram 

To obtain an estimate of S"(t,f) (2-3) the time-variant cross periodogram is modified 

slightly and the time variant cyclic periodogram is formed 

si(f,f)'jxT^f+^y; 0^ 

2 
(2-1) 

where Xj(t,f) and Xj(t,f) are the sliding-time finite Fourier transforms as defined in (2-7). As 

with the time-variant periodogram, spectral and temporal smoothing are required to produce a 

reliable estimate3, and the smoothed estimates are approximately equal. 

(2-2) 
SlJ,f)At=SlA/(t,f)®uAt(t) 

= Sl(t,f)®zm{f)=Sl(t,f)Af 

The cyclic resolution is only related to the temporal resolution of the spectra 

1 
Aa = — (2-3) 

At 

Therefore, for a reliable estimate, the cyclic resolution must be much finer than the spectral 

resolution. 

Aa«Af (2-4) 

3 Not only does analysis of the variance show that the periodogram is an unreliable estimator, but 

Grenander's uncertainty condition also states that for a reliable estimate A?A/»1 for a time-variant cross 

periodogram. The only way to get this is to introduce substantial spectral or temporal smoothing such that 

At»T. 
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As with the time-variant periodogram, with smoothing such that 

—- = Af»T = — (2-5) 
Aa A/ 

the statistical definition of the SCF is related to the limit of time-variant cyclic periodogram as 

Af^OAt^       «'* (2_6) 

= lim  lim 5" {t,f)Af 

Digital   implementations   of  both   the  time   and  frequency   smoothed   time-variant  cyclic 

periodogram are discussed in the following sections. 

In addition to the time and frequency smoothed time-variant cyclic periodogram, the 

Autocorrelated Cyclic Periodogram (ACP) can also be used to estimate the SCF. The main 

advantage of the ACP is that the cyclic resolution is not given by (2-3), rather is shown to be Aa 

= 1/T. This means that there are less stringent requirements for cyclic frequency resolution and 

for a given performance, the ACP is more efficient than the time-smoothed time-variant cyclic 

periodogram. However, the ACP has not yet been developed to the algorithm level [53]. 

2.3.4  Spectral Correlation Function Estimation Algorithms 

Both the time-smoothed and frequency-smoothed time variant cyclic periodograms can 

be implemented fairly simply (for example Figure 2-1), but both methods are very inefficient. 

There has been a substantial amount of work done to modify the underlying equations to increase 

efficiency and accuracy of the estimate [39,3]. Most of this work revolves around using the FFT 

to perform channelization and smoothing. The end result has been the development of several 

different algorithms, each suited for a particular purpose. Variants of the time-smoothed cyclic 

periodogram are well suited for efficient estimation over the entire bi-frequency plane, whereas, 
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variants derived from the frequency-smoothed cyclic periodogram are more suited for estimating 

the SCF at particular cyclic frequencies. 

2.4  Statistical Detection Theory 

The basics of statistical detection theory are presented in this section. Additionally, the 

problem of detecting weak signals in the presence of noise is examined from both a stationary and 

a cyclostationary viewpoint. 

2.4.1  Detection Fundamentals 

To detect the presence of a Signal of Interest (SOI), a detector must decide between the 

null hypothesis (H0), corresponding to the noise only case, and the alternate hypothesis (7/j) 

which is the signal present case. These hypotheses can be represented as 

ff,:r(0=4)+«(0   _.__. 
0<t<T (2-1) 

H0:r(t) = n{t) 

where T is the observation time, s(t) is the SOI and n{t) includes everything else in the collection 

environment, such as noise and interference. 

The detector output can be represented by a test statistic, X, which is essentially a 

function of the received signal, and compared to a threshold to determine which hypothesis is 

chosen. If A is greater that the threshold value, XQ, then the alternate hypothesis {Hi) is chosen 

and the signal is declared present. Conversely, if X is less than Xo, then the null hypothesis (H0) is 

chosen and the signal is declared not present. This can be represented mathematically as 

G[r{t)]=X^^ (2-2) 

where G(-) represents the detector structure. 
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The performance of any detector may be described by the probability of false alarm (PFA) 

and probability of detection (PD). A false alarm occurs any time X exceeds the threshold given 

H0 is true. Obviously, detection occurs when X exceeds the threshold given H, is true. The 

probability of these two events may be defined by 

PM=Prob(A>Ao|H0) 
/ \ (2-3) 

PD=Viob{X>X0\Hx) 

The relationship between PFA and PD can be mathematically described using either the deflection, 

dx, or input Signal to Noise Ratio, SNRIN. The deflection is defined as 

\E{X\H0)-E(X\H1)\ 
dx=- ;     /„,      v  (2-4) 

jvai{X\H0) 

where £(•) is the expected value operator and var(-) is the variance [51]. When the conditional 

densities are Gaussian, the deflection relates to PFA and PD as 

dx
2=Q-\PFA)-Q-\PD) (2-5) 

where Q~l(-) is the inverse complementary error function. The Gaussian case is the only case 

where deflection completely characterizes detector performance, however, it is often used as an 

approximate measure for other detection problems. Deflection is closely related to output signal 

to noise ratio of the detector and is therefore often related to SNRm. 

For binary hypothesis testing and known conditional probability densities, the Likelihood 

Ratio Test (LRT) as specified by the Neyman-Pearson (NP) theorem [22], is given by 

, = G[r(t)] = 4^A^\ <2"6> PWHo)i 

which can be used to easily determine the test statistic, and the detector structure, G(). The NP 

theorem, which maximizes PD for a given PFA, is commonly used for these sorts of signal 
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detection problems. A detector derived using the LRT method is termed an optimal detector. 

However, quite often some parameters of the conditional densities are unknown, and the detector 

is presented with a composite binary hypothesis. The Generalized Likelihood Ratio Test (GLRT) 

can be used, replacing the unknown parameters with their Maximum Likelihood Estimates 

(MLEs). However, any resulting detector structure would generally4 be sub-optimal. 

Additionally, not every optimal detector can be physically implemented and must therefore be 

approximated, resulting in a sub-optimal detector [22,19]. 

There are two ways of graphically representing detector performance. The first is PFA 

versus PD and is termed the Receiver Operating Characteristic (ROC) curve. In this case the 

input signal-to-noise ratio, SNRIN, is held constant and the threshold is varied to produce each set 

of points on the ROC curve. The second method is to plot PD versus SNRlN for a given PFA. This 

curve is more representative of the detector's true operation where the threshold is set to yield a 

fixed PfA- This is the primary representation format used throughout this thesis. 

2.4.2  LRT Derived Detectors for Stationary Signals 

Clearly, the most important factor in determining detector structure is knowledge of the 

conditional densities. In turn, knowledge of the conditional densities requires some a-priori 

knowledge of the SOI. 

The simplest approach is to assume s(t) is a stationary gaussian stochastic process and 

n(t) is additive white gaussian noise (AWGN). In this case the NP detector is simply [22] 

4 Although it is possible for a detector to be optimal for certain values of the unknown parameter, 

a uniformly most powerful detector for all possible values does not usually exist. 

23 



G[rif)]=\y{f)dt^^ (2-D 

which is known as an energy detector, or radiometer, and is an optimal detector for the stated 

conditions. 

However, the detector usually has some knowledge of the signals structure. As discussed 

in Section 1.1, this research is concerned with the detection of LPI/LPD signals, a typical LPI 

signal with second order features is a Direct Sequence Spread Spectrum (DS-SS) Binary Phase 

Shift Keyed (BPSK) signal. The remaining part of this section looks at the derivation and 

performance of non co-operative detectors for this particular signal, and examines whether any 

benefit can be obtained from knowledge of the signal structure. In this case, the waveform under 

Hi is represented by 

r(t)=JlPc{t)cos[2nfct + <$>0}+n(t)       0<t<NTc (2-2) 

where P represents the average power, fc the carrier frequency, and $> the phase offset. 

Additionally, n(f) is assumed to be AWGN with a Power Spectral Density (PSD) of Sn(f) = NQ/2. 

The spreading code, c(t), is represented by 

c(t)=^cnp(t-nTc-ETc) (2-3) 
n=-oo 

where p(t) is a unit amplitude pulse of duration Tc and the signal epoch or chip offset, e, is a 

random variable uniformly distributed between 0 and 1. The iid sequence {cn} represents the 

product of a pseudo-random, periodic binary sequence (spreading code) and a completely random 

binary sequence (random data) and is equally likely to take on the values +1 or -1. 

To determine an upper bound on performance, co-operative detection of the DS-SS 

BPSK signal in Eqn. (2-2) is considered, i.e. the signal parameters are completely known.  The 
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resultant NP detector is termed a matched filter. Naturally, such a structure is not feasible in non 

co-operative detection. The deflection for the matched filter can be shown to be [34] 

dMF=fiNYc (2-4) 

where 

PTC r-'X (2-5) 

The GLRT is applied in [35,34] which consider the coherent synchronous case, the non- 

coherent synchronous case and the coherent asynchronous case. A synchronous detector is where 

the chip offset, e, is zero and a coherent detector has perfect knowledge of the carrier phase 

resulting in the phase offset, $>, being zero. Naturally, the most likely scenario for a detector is 

the non-coherent and asynchronous cases; however, analysis of the coherent and synchronous 

cases provides a useful theoretical upper bound on non co-operative performance, and it may be 

possible to use these detectors in conjunction with some form of phase-locked loop or chip 

synchronizer [36,26]. The application of the GLRT to all of these cases produces detectors which 

cannot be implemented. In all cases, the resultant sub-optimal approximation is a quadratic 

device. The deflections for these cases are 

4i|e=o=Vtfyc (2.6) 

d*L=o~Y 
25 XT 

24     c 

for the synchronous coherent case, synchronous non-coherent case and asynchronous coherent 

cases respectively. 

From the preceding analysis it can be concluded that the radiometer is the optimum 

realizable detector for any signal modeled as a stationary gaussian random process.   Minor 
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performance gains can be realized by synchronizing with the code timing and phase coherency. 

However, the added complexity to accomplish these tasks must be taken into account. Even with 

these modifications, the resultant sub-optimal structures are still essentially energy detectors. 

2.4.3  Performance of the Radio m eter 

As stated previously, the radiometer is a sub-optimal LRT procedure when s(t) is a non- 

gaussian process. Analysis of the radiometer performance under these sub-optimal conditions is 

now discussed. A common radiometer architecture typically used is shown in Figure 2-1. The 

bandwidth of the input bandpass filter, WBp, is usually set as narrow as possible, effectively 

minimizing the input signal to noise ratio. 

Figure 2-1. Radiometer 

Analysis shows that the conditional densities of the test statistic, X, have a chi-squared 

distribution and result in PFA and PD expressions that cannot be explicitly solved in closed form 

[48]. There are several different approaches for approximating the distributions so that solutions 

can be found, including the argument that as the time-bandwidth product (TWBP) increases the 

distributions become asymptotically gaussian as a result of the central-limit theorem. Various 

radiometer models have been compared to the exact solution in [28]. When the Signal of Interest 

(SOI) is the BPSK signal given by Eqn. (2-2), the deflection is calculated to be 

d,=. 
]WBPTC 

(2-1) 

where the attenuation factor a is given by 
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2        2 
a = f 

K HO 

rnWBPTcl2 ' smjc \ 

v   x   J 
dx (2-2) 

When the input bandpass filter bandwidth, WBP, is chosen such that WBP ~ l/Tc, d reduces to 

2 \*l2( 

'"im=r)'"Kn (2-3) 

and the deflection can be rewritten as [34] 

dx~Q.ll4NYc (2-4) 

The performance of the radiometer and the detectors discussed in the previous section is 

compared in Figure 2-2. Note that this comparison is for ideal energy detection conditions: 

stationary additive white Gaussian noise with known JV0 and no narrowband interference. The 

horizontal axis is EJN0 which has been previously referred to as yc. 
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Figure 2-2. Performance Comparison of Energy Detectors 
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2.4.4  Disadvantages of Radiom etry 

Put simply, the task of the radiometer is to distinguish the SOI from background noise 

and interference purely on the basis of energy measurement. There are two major problems with 

this method. First, the SOI energy is often easily overwhelmed by the amount of noise and 

interference in the collection environment. Second, fluctuations within the system itself, such as 

drifts in gain and phase can result in an increased rate of false alarms or missed detections. 

The preceding analysis has shown that the test statistic is dependent on noise power, 

which in AWGN environments is easily formulated. However, in the real world the noise power 

fluctuates and there is generally some form of additional non-white noise that the radiometer has 

to deal with. The first issue that must be addressed is determining and maintaining the threshold 

value. It has been shown that the limited accuracy with which the threshold can be set, due to 

uncertainties in noise power, has drastic effect on probability of detection for total power energy 

detectors [44]. 

It is desirable to only measure the noise energy level in the absence of the signal to 

determine the correct threshold value; however, this means that during this threshold calibration 

process, signal detection is not possible. This is the major problem of Dicke energy detectors 

which typically experience a 4dB loss in required SNR due to the switching between the antenna 

signal and the calibrated noise source [40]. One alternative is to employ switched dual channels 

so that the switching losses are not incurred. In this case, matching the channels becomes a 

difficult problem for wideband detectors designed for SS signal interception [33,8]. 

Even if the noise power is measured and maintained, interference from other transmitters 

(interferers or jammers) still causes major difficulties in distinguishing the SOI purely on the 

basis of energy measurements. The collection environment in which the radiometer must detect 

the signal is becoming increasingly populated with both military and commercial communication 
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systems. When the SOI utilizes Direct Sequence Spread Spectrum (DS-SS) techniques it can be 

easily buried beneath much stronger groups of interfering signals. In communication systems 

utilizing code-division or frequency-hop multiple access schemes, multiple SOIs interfere with 

each other, making it impossible for the energy detector to determine anything more than the 

signals presence [12]. 

There are a number of ways for reducing narrowband interference. Transform domain 

filtering and adaptive filtering techniques used in co-operative systems can be used to minimize 

the effects of narrowband interference in energy detection systems [48,27]. The Amplitude 

Distribution Function of a DS-SS waveform is time invariant, thus a detector built around this 

principle is more robust and significant performance gains have been shown to be theoretically 

possible, albeit for small time bandwidth products [43]. The dual channel radiometer is discussed 

in [34,30,33] and can reduce the effects of narrowband interference by implementing correlation 

in the frequency domain rather than the time domain. All of these suppression techniques will 

result in added complexity and higher implementation costs when compared to the simple energy 

detector. 

The second major problem with energy detection systems is fluctuations in the phase and 

gain drift of the high gain amplifiers. These fluctuations place an upper limit on the usable 

radiometer integration time [30]. Dicke radiometers are capable of calibrating out these 

fluctuations but remain subject to the disadvantages previously outlined. 

2.4.5  LRT Derived Detectors for Cyclostationary Signals 

The main problem with energy detection schemes is that a detection decision is made 

solely on the basis of measured energy exceeding a certain threshold. Therefore, these schemes 

fail to exploit potential temporal or spectral characteristics which may uniquely define the SOI. 

Some adaptations of energy detection systems overcome this by analyzing successive collected 
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power spectra and are capable of exploiting basic signal timing characteristics, such as hop rate, 

or using multi-sensor techniques to exploit spatial distribution of the SOI energy [12]. 

Given the advantages of cyclic spectral analysis over conventional power spectral 

analysis as explained in Section 2.2.3, it is not surprising that detectors which exploit the cyclic 

spectrum typically outperform those based on the power spectrum, especially in the presence of 

nonstationary noise or narrowband interference [20,47]. These detectors include the common 

Chip-Rate Detector (CRD), also known as the Pre-Filter Delay and Multiply (PFDM) detector 

[21,25,32]. It is interesting to note how spectral correlation theory, or cyclostationarity, was not 

initially used to derive these detectors, rather, it was used after the fact to explain their 

performance [12]. The PFDM essentially analyzes the cyclic spectrum at a specific chip rate and 

the presence of a spectral line at that frequency indicates the presence of that particular signal. 

While the PFDM does exploit the cyclostationarity of the SOI, it is not an optimal detector in that 

it does not follow exactly from application of the GLRT. The remainder of this section applies 

the GLRT to the cyclostationary signal model. 

In [52,12] it is shown that for a weak signal in white Gaussian noise the GLRT can be 

approximated by 

772   772 

X = T   f     \R,(u,v)r{u)r*(v)dudv (2-1) 
TAJ ^    J       J TN 

A detector derived from this approximation is also known as the maximum deflection detector 

because this is the detector structure that maximizes the deflection, d\, given in Eqn (2-4). 

Although this does not immediately look similar to the form of radiometric detectors discussed in 

Section 2.4.2, it can be shown that for a purely stationary signal, the detector structure is given by 

[17] 
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l = -K]ss{fJSrT(f)df (2-2) 

where Sr (/) is the periodogram of r(t). This detector structure is purely theoretical as it relies 

upon prior knowledge of Ss(f), the PSD of s(t). In fact it is equivalent to the matched filter 

detector discussed previously. If the only thing known about the SOI is its bandwidth, B, then the 

(sub-optimal) detector becomes approximated by 

A = 17rKW (2-3) 

The output test statistic is identical to that of the total power radiometer described in Section 

2.4.3. 

If the signal is now modeled as cyclostationary, the CAF in Eqn. (2-1) can be substituted 

for the autocorrelation in Eqn. (2-1) yielding the following ML detector 

"0      «   _7 "0 «    _T 
(2-4) 

"0      a  _«, 

where S" (/) denotes the cyclic periodogram of r(i) and the summation is for all values of a for 

which Sf(f) is non-zero. The subscript MC denotes multi-cycle, due to the a summation . The 

single-cycle version of this detector is simply 

xx
sc=-±Y]s:(jys?r(f)df (2-5) 

Clearly the performance of such a detector depends on the choice of a. For example, for 

a BPSK signal the double carrier cyclic feature, a = 2/0, is much greater than that at the chip rate, 

a = l/Tc, therefore a single-cycle detector set at the double carrier feature would outperform one 
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set at the chip rate. Additionally pulse shaping reduces the size of the chip rate cyclic features 

[37]. However, QPSK modulated signals do not contain cyclic features at a=2f0 therefore a 

single-cycle QPSK detector would generally be set to the chip rate. 

The performance of the optimal single cyclic feature detector described by Eqn. (2-5) has 

been evaluated and compared to that of the optimal radiometer of Eqn. (2-2) [17,45]. It was 

confirmed that for either choice of cycle frequency (chip rate or double carrier frequency), the 

single-cycle detector outperforms the optimal radiometer by a wide margin. Additionally the 

single-cycle detector performance and simplified versions for source location estimation have 

been discussed [16]. However, these detectors are all essentially some form of matched filter and 

unattainable for use in non co-operative detection. By replacing S"(f) of Eqn. (2-4) with by a 

simple frequency window of length Af, the sub-optimal detector becomes, 

/+A//2 

%c(t,fhjr    J^Mrfv (2-6) 
J   /-A//2 

Additionally, summation over a has been removed because the detector no longer knows which 

cycle frequencies of S"(f) are non-zero. It can be shown that this is equivalent to a frequency 

smoothed estimate of the SCF evaluated at a specific cycle frequency and therefore 

^R^cM = ^^S^f^=Sr(f) (2-7) 

In other words, the sub-optimal single-cycle detector is equivalent to the SCF in the limiting case. 

2.5   Summary 

This chapter introduced the background theory used throughout the remainder of the 

thesis and presented a survey of the current literature. The concept of cyclostationarity is 

introduced  in  Section  2.2,  including both  a probabilistic  definition  and  a deterministic 
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interpretation of the Spectral Correlation Function (SCF). In Section 2.2.3 spectral estimation 

theory is discussed and the periodogram and cyclic periodogram concepts and their relationships 

to the Power Spectral Density and SCF, respectively, is explained. Different algorithms used for 

estimating the SCF are also briefly discussed. 

The basics of statistical detection theory is covered in Section 2.4. The derivation of 

optimal and sub-optimal detector structures for detecting stationary, weak signals in noise is 

discussed. Detectors derived from the Generalized Likelihood Ratio Test (GLRT) are covered, 

including approximations leading to the radiometer, or energy detector. Radiometrie 

performance, in relation to the GLRT derived detectors, is also examined and the drawbacks of 

radiometric detection are covered. The GLRT is then applied to the cyclostationary signal model 

to produce both optimal and sub-optimal cyclic feature detectors and it is shown that for non co- 

operative detection the sub-optimal single-cycle detector is equivalent to a frequency smoothed 

estimate of the SCF evaluated at a particular cycle frequency. 
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3.  Receiver Design and Modeling 

3.1   Introduction 

This chapter presents the design of the Cyclic Spectrum Analysis (CSA) receiver and 

methodology used to analyze its performance. Section 3.2 discusses the overall CSA receiver 

design, linking to the statistical detection theory presented in Chapter 2 and giving an operational 

overview of the receiver. Section 3.3 discusses the scope of the research, relating how the 

research goals are met within time and resource limitations. The theory, design and modeling of 

each receiver element is then described in turn. Section 3.4 describes the different digital receiver 

architectures being modeled. Each digital receiver architecture leads to a different CSA receiver 

implementation: the Ideal CSA Receiver, the Channelized CSA Receiver, and the Quadrature CSA 

Receiver. The algorithm estimating the cyclic spectrum is then described in Section 3.5, 

including the development, implementation and modifications made to the algorithm. 

Section 3.6 describes three different methods for reducing the SCF estimate to an efficient test 

statistic. Finally, the assumptions made in modeling the receiver performance are summarized in 

Section 3.7. 

3.2   Cyclic Spectrum Analysis Receiver Overview 

The Cyclic Spectrum Analysis (CSA) receiver model, Figure 3-1, is broken into a 

number of sections: the Digital Receiver, SCF Estimation, Data Reduction and Hypothesis 

testing. 

XT(t) SCF 
Estimation 

S"/AfV' f)to 
X(t ,a) Hi 

^ kda) 
Ha 

r(r) w Digital 
Receiver 

Data 
Reduction ► W w w 

Figure 3-1. Cyclic Spectrum Analysis Receiver Model 
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The first three components are described in detail in following sections, however this section 

gives an overview of the operation and the design of the receiver. 

As discussed in Chapter 2, the CSA receiver must decide between the two hypothesis 

H, :r(t)=s(t)+n(t) 
_/    ){     ){ 0<t<T (3-1) 
H0:r{t)=n{t) 

where T is the observation time. The digital receiver downconverts the received signal to an 

Intermediate Frequency (IF) and then samples it. Depending on the digital receiver architecture, 

the output time series, xj(i), is either a channelized version of the sampled signal or composed of 

the sampled in-phase and quadrature components of r(t). In Chapter 2 it was shown that the 

maximum likelihood single-cycle detector is 

^=^k(/)x(/v/ 0-2) 

For non co-operative detection, the SCF of s(f), Sf(f), can be replaced with a frequency 

window of width B. The resultant single-cycle sub-optimal detector given by Eqn. (2-6) is 

actually a frequency smoothed estimate of the SCF evaluated at a particular cycle frequency. It 

was shown in Section 2.3.3 that the frequency smoothed estimate and the time smoothed estimate 

are equivalent per Eqn. (2-2). Therefore, the sub-optimal detector can be written as 

;&(*./)=^;v (*,/)* 0-3) 

Normally the single-cycle detector is simply evaluated at a cycle frequency that is expected to 

exhibit a strong cyclic feature when the signal of interest is present. However, in the case of the 

truly non co-operative detector, the receiver is required to detect all features within the bi- 

frequency (a -f) plane. This requires either: 1) the single-cycle detector to be sequentially 

evaluated over all possible cycle frequencies (-fs < a<fs), or, 2) estimation of the SCF over the 
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entire bi-frequency plane. Given that computationally efficient algorithms exist which allow 

efficient SCF estimation the latter is a much more appropriate choice. 

The choice of SCF estimation algorithms is relatively straightforward. It is well 

recognized that time smoothed periodogram based algorithms are much more suitable for 

estimating the entire SCF than frequency smoothed cyclic periodogram based algorithms (see 

Section 2.3.4). There are two published time smoothed algorithms, the Strip Spectral Correlation 

Algorithm (SSCA) and the FFT Accumulation Method (FAM) [39]. Both are quite similar, 

however, the cyclic and spectral frequency resolution of the SSCA is constant over the entire bi- 

frequency plane and requires less channelization. This is explained in greater detail in 

Section 3.5.1. However, all estimation algorithms require a baseband input signal sampled at 

exactly the Nyquist rate. This requirement leads to some modifications to the digital receiver 

architectures, these are further explained in Section 3.4. 

The output of any SCF estimation algorithm is a function of time, cyclic frequency and 

spectral frequency. Rather than calculate and store a threshold that is a function of both cyclic 

and spectral frequency, it is desirable to form a threshold that is simply a function of cyclic 

frequency. This has the advantage of reducing the amount of required data storage and number of 

computations. Therefore, the output of the SSCA is converted to a function of time and cyclic 

frequency only.   This stage is data reduction, the process through which the SCF estimate, 

S"    (t,f)At,is reduced to the simple test statistic M.t,oc).   Based on literature, there are three 

possible data reduction methods which lead to different test statistics, as explored in detail in 

Section 3.6. The resultant test statistic is then compared to a threshold which is also a function of 

cycle frequency, a, 
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A(t,a)^^,(a) (3-4) 
Wo 

The SC (single-cycle) subscript has been dropped and the a index converted to functional form 

since the test statistic is valid for all a. 

3.3   Scope of Research 

As stated in Section 1.2, the goals of this research are to: 

1. Propose a method of detecting LPD/LPI communication signals using a non co- 
operative digital receiver; 

2. Evaluate the performance of this detection technique through simulation in benign 
and adverse signal environments, comparing results to the radiometer; and 

3. Determine the technique's effectiveness when combined with typical digital receiver 
architectures. 

To meet the research goals, and stay within time and resource constraints, the scope of the 

research is limited in the following areas. The detection performance of the CSA receiver is 

evaluated against a typical LPI/LPD waveform with second order features, specifically, a BPSK 

DS-SS signal. While the proposed detection technique has many post-detection advantages, i.e. 

in the classification and exploitation of signals, only detection performance is being evaluated. 

Additionally, to present a meaningful comparison between CSA receiver performance and 

radiometer performance, only the CSA receiver detection performance at a single cycle frequency 

is being considered. The test statistic produced by the CSA receiver is actually a sequence of 

single cycle test statistics; detection is therefore being performed at every cycle frequency. 

Adverse collection environments considered are limited to two cases: 1) nonstationary noise, and 

2) narrowband interference. 
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3.4  Digital Receiver Model 

Digital receivers differ from conventional receiver architectures using digital signal 

processing in that they sample the received signal before the detection step [50]. Current 

limitations in A/D sampling rates mean that digital receivers still need to convert the received 

signal down to an Intermediate Frequency (IF) which can then be sampled at or above the 

Nyquist rate. The two architectures modeled in this thesis, channelized and quadrature, are 

amongst the most popular digital receiver implementations [49,42]. The ideal digital receiver is 

included for completeness, as testing will determine the detection performance of the algorithm 

and data reduction section without any influence from the receiver architecture. This also allows 

meaningful comparisons to be made between the different digital receiver architectures on the 

basis of detection performance. As mentioned in Section 3.2, the SCF estimation algorithm 

requires a baseband signal which is sampled at exactly the Nyquist rate. The channelized and 

quadrature receivers require some modifications to meet this requirement, these are described in 

detail in the subsequent paragraphs. 

3.4.1   Ideal Receiver 

The ideal receiver, shown in Figure 3-1, is a single channel receiver that simply 

downconverts and samples the received signal at IF. Both the RF and IF bandpass filters are ideal 

i.e. they have rectangular spectral responses. Therefore the only effect the ideal receiver has on 

the signal is the band-limiting and frequency shifting resulting from down-conversion to IF. This 

ideal receiver is included to enable subsequent detection performance comparisons between 

channelized and quadrature receivers. 
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Figure 3-1. Ideal Digital Receiver 

To form the Ideal CSA Receiver, shown in Figure 3-2, the ideal digital receiver architecture is 

combined with the SCF Estimation algorithm, data reduction process and hypothesis testing 

stage. 
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Figure 3-2. Ideal Cyclic Spectrum Analysis (CSA) Receiver 

The bandwidth of the RF and IF bandpass filters are exactly equal and, to meet the SSCA input 

requirements, the local oscillator frequency, fw, is selected so that the signal is at baseband, i.e. 

occupies the frequency range 0 </< WjF. The bandwidth of the Ideal CSA Receiver is therefore 

given by 

WCSA — W/p - yyRF (3-D 

The input Signal to Noise Ratio, SNRIN, is defined at the RF bandpass filter. 

3.4.2   Channelized Receiver 

The channelized receiver, shown in Figure 3-1, downconverts the received signal to IF, 

samples it with an ADC and then uses a digital filter bank to sort signals with differing frequency 

components. The digital filter, or channelizer, can be efficiently implemented using an FFT 
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processor. This method is also used to implement the channelizer in the SSCA and is described 

in further detail in Section 3.5.1. 
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Figure 3-1. Channelized Digital Receiver 
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Figure 3-2. Channelized Digital Receiver Filter Response 

The digital filter bank divides the IF bandwidth into M channels as shown in Figure 3-2. The 

output of the mth channel is defined as the time series ymT(t).   To meet previously described 

SSCA requirements, each channel is digitally shifted in frequency to occupy the range 

0</< WjF/ M. To form the Channelized CSA Receiver, shown in Figure 3-3, the channelized 

digital receiver is combined with the SCF Estimation algorithm, data reduction process and 

hypothesis testing stage. 
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Figure 3-3. Channelized Cyclic Spectrum Analysis (CSA) Receiver 

The bandwidth of the channelized CSA receiver is given by 

W       _ /J  _ Jsir   _ "IF   _ ™RF 
CSA      2     2M      M       ti 

(3-D 

To enable performance comparison with the Ideal CSA Receiver, the input SNR, SNRIN, is only 

defined over the RF bandpass filter portion that is visible to the receiver at the mth channel. This 

ensures that any differences in detection performance will be directly attributable to the effect of 

the bandpass filtering, and will not include the effects of channelizing the IF passband. Due to 

differing filter responses within each channel, as shown in Figure 3-2, it is expected that detection 

performance can differ between a channel with minimal or no attenuation, such as Channel M/2- 

1, and a channel with a large amount of attenuation such as Channel 1 or Channel M. For this 

reason, any simulation and performance evaluation of the Channelized CSA Receiver must 

include both cases. 

3.4.3   Quadrature Receiver 

An alternative approach to designing a digital receiver is the quadrature receiver shown 

in Figure 3-1. By sampling both the in-phase and quadrature components of the received signal, 

the receiver essentially acquires twice as much information. In some applications this permits 

recovery of phase information from the received signal. 
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Figure 3-1. Quadrature Digital Receiver 

The resultant in-phase and quadrature time series may be combined and input directly into the 

SSCA either as a complex ordered pair 

zT{t)=z,T{t)+jzQ(t) (3-1) 

or simply summed together 

zT(t)=z,T (t)+zQT(t) (3-2) 

To form the Quadrature CSA Receiver, shown in Figure 3-2, the quadrature digital receiver is 

combined with the SCF Estimation algorithm, data reduction process and hypothesis testing 

stage. 
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Figure 3-2. Quadrature Cyclic Spectrum Analysis (CSA) Receiver 

Note that the quadrature local oscillator reference signal amplitudes are one-half the local 

oscillator reference signals in the ideal and channelized receivers. This is simply a mathematical 
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convenience to ensure the resultant time series, Xj(f) always has the same power. To cover the 

same frequency band of interest as the channelized receiver, the quadrature receiver varies the 

local oscillator frequency so that the IF passband effectively scans over the RF passband. As 

with the ideal receiver, to meet the SSCA input requirements the local oscillator frequency, fL0, is 

selected so that the signal is at baseband, i.e. occupies the frequency range 0</< WlF. The 

bandwidth of the Quadrature CSA Receiver is therefore 

W, CSA 

W 
'IF M 

(3-3) 

To ensure that performance comparison does not include the effects of scanning the RF bandpass, 

the input SNR, SNRIN, is defined only over the portion of the RF passband that is visible to the 

receiver, i.e. WCSA- 

3.4.4  Modeling 

The modeling of these digital receivers is a relatively straightforward process. The only 

modeling decision is the design of the lowpass filter and the IF and RF bandpass filters for the 

channelized and quadrature receivers. The filters are modeled as fifth order Butterworth filters, 

and the frequency and phase response is shown in Figure 3-1. 
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Figure 3-1. Frequency and Phase Response of Band Pass Filters 
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3.5   SCF Estimation 

This section describes the algorithm used to estimate the SCF of the received signal. To 

simplify notation, the ideal digital receiver is considered, i.e. the receiver signal is xj(t). As 

described in Section 3.2, the algorithm used in this research is the Strip Spectral Correlation 

Algorithm (SSCA). The development of the algorithm is covered, then the particular 

implementation of the algorithm used is discussed. Finally an expression for the processing 

speed of the algorithm is presented. 

3.5.1   Algorithm Development 

The SSCA [3,39] can be described by Figure 3-1. The input signal is channelized into P 

bandpass spectra using an N' point FFT. Each spectra is then decimated and translated to 

baseband by the exponential product. The resultant "complex demodulate" is then interpolated 

and multiplied by the complex conjugate of the unfiltered received signal and an Appoint FFT 

taken to produce a strip of point estimates. This process is repeated for each of the P bandpass 

spectra and the point estimate strips are combined, covering the entire bi-frequency plane. 
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Figure 3-1. Strip Spectral Correlation Algorithm Schematic 
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The decimated output of the mth filter is given by 

^a{d-k)x{pL-d+k)e'i2nmklN' (3-1) 
*=o 

where d = N' / 2 - l,/m = m I N\ and a( d - k) is a data-tapering window of length AT. The filter 

output is then frequency shifted to baseband by multiplying by the exponential e ■i2im(PL-d>IN &X\& 

the complex demodulate is formed 

XT{pL,fm) = 
N'-l 

■jlnmklN' e-j2mi(pL-d)/Nl „_2) 2_,a(d-k)x(pL-d+k)e 
*=o 

This expression can be shown to be identical to the original complex demodulate equation 

XT(pL,f)= N'f^a{r)x{pL-r)e-»*^L-^ (3-3) 
r=-N'/2 

used to describe a time-smoothed version of the cyclic periodogram, Eqn. (2-1) in Section 2.3.3. 

The only difference is that the SSCA implementation of the complex demodulate of Eqn. (3-2) is 

more efficient because it uses an N' point FFT. 

The next stage in the algorithm computes the time-smoothed cyclic periodogram, 

S" (f,f)ät. The definition given in Section 2.3.3 involves multiplying two complex 

demodulates together, which can be implemented as 

Sa
XT{phfAt=^ÄpLJk)x;{rL,fl)gd{p-r)e-^r''lp (3.4) 

r 

where gj (p - r ) is a strip window of length P, and the entire expression can be computed by a 

P = N IL point FFT. This method is known as the FFT Accumulation Method (FAM) but there 

are a number of disadvantages to this. First, two channelizing operations are required, effectively 

doubling the number of FFT operations. Second, the resultant point estimates do not have 

constant resolution across the bi-frequency plane. 
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The SSCA, as shown in Figure 3-1, replaces the second complex demodulate, X£ (/%/,), 

with the unfiltered signal x*(r) in Eqn. (3-4) such that 

Sl(n,f)At=^XT(r,fk)x*(r)g(n-r)e-j -jlizrqlN 
(3-5) 

where n=pL, a=fk + qAa and/=/*/2 - qka/2. This removes the requirement for two complex 

demodulates to be calculated and therefore the number of W-point FFTs is halved. However, the 

unfiltered signal is at a different sampling rate than the complex demodulated produced by Eqn. 

(3-2). This means that the complex demodulate must be interpolated to match the sampling rate 

of x*(r) and an N-point FFT is then required to calculate each set of point estimates. The specific 

interpolation method used is addressed Section 3.5.2. 

Each JV-point FFT produces a strip of point estimates which lie along the line a=2fk-2f in the 

bi-frequency plane. All strips are A/wide and computed for each/*. The coverage for one strip is 

shown in Figure 3-2. 

Figure 3-2. Coverage Diagram for the SSCA 
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The width of each strip, and therefore the resolution of the estimate, is given by 

Af=jh       .       A^- = — (3-6) 
N f,    Aa 

By producing P strips, the SSCA covers the entire bi-frequency plane for a lowpass signal, as 

described in Section 2.2.2. The SSCA therefore has an effective lowpass bandwidth of 

N'     f 
wSSCA=AfY=Y (3"7) 

In other words, the frequency and cyclic resolution of the estimate are determined by the 

sampling frequency. Should the receiver bandwidth be less than fJ2, (i.e. the signal has been 

oversampled) then the algorithm is inefficiently estimating unsupported regions of the bi- 

frequency plane. Therefore the assumption is made that if the received signal is oversampled, it 

is decimated so that WCSA = WSSCA =fJ1. Additionally, the fact that the SSCA input bandwidth is 

lowpass leads to the receiver modifications discussed in the previous section. 

3.5.2  Algorithm Implementation 

The SSCA has been implemented in a variety of forms: assembly [46], C [6] and Matlab 

[7]. The code used in this research to perform the SSCA is based on that listed in [7]. The 

verification of the code involved simply comparing the SSCA estimates to those in [7] and to the 

theoretical functions. A number of modifications are made to improve the accuracy, efficiency 

and visualization aspects of the algorithm implementation, the most significant modifications are 

described in the following paragraphs. 

The first modification relates to the complex demodulate interpolation method. As 

mentioned in Section 3.5.1, due to the decimation during the channelization process, the complex 

demodulate, XT(pL,fl), has a sampling rate of fJL. The SSCA requires the complex 

demodulate to be multiplied with the complex conjugate of the unfiltered signal, x*(r), which has 
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a sampling rate of fs. This requires the demodulate to be interpolated to match the sampling rate 

of the unfiltered signal. Most descriptions of the SSCA [3, 6, 7, and 39] "hold" the value of the 

demodulate for L samples, essentially performing a sample and hold operation. This 

implementation has been found to introduce artificial cyclic features[l]. Therefore a linear 

interpolation method was substituted to minimize distortion. 

The second modification involves implementing the strip window, g(n), in Eqn. (3-5). 

The strip window was found to reduce the spectra leakage during the smoothing operation that 

caused artificial cyclic features. 

The final significant modification relates to the last stage of most SSCA implementations: 

mapping the strips of point estimates to the bi-frequency plane. The SSCA produces a total of 

N'xN points which require mapping onto the (2iV'+l)x(2iV+l) bi-frequency plane, as illustrated in 

Figure 3-l(a) for N' = 16 and N = 32. However, the SCF is inherently symmetric and for real 

signals, only one quadrant of the bi-frequency plane is needed to completely describe the SCF. 

By mapping only N'/2+l strips as shown in Figure 3-1(b), processing requirements are reduced. 

Note that this quadrant is the only one where the strips clearly align with the corners of the bi- 

frequency plane. 
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Figure 3-1. SSCA Mapping for JV = 16, N= 32 
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While the mapping operation is definitely necessary for visualizing the SCF, it may not be needed 

for hardware implementation of a system designed to detect cyclic features [1]. For this reason, 

mapping is not included in processing speed calculations and comparisons. 

3.5.3  Processing Time 

For any detector, processing time is a critical parameter for characterizing performance. 

The detector must be able to receive the signal, process the data and decide whether a detection 

has occurred in sufficient time such that this information is still tactically useful. The method of 

detection proposed in this thesis involves a particularly large number of computations by 

comparison to traditional single-cycle detectors such as a Chip Rate Detector (see Section 2.4.5). 

The number of computations, Cr, required to compute a cyclic spectrum estimate for a real valued 

signal is [39] 

Cr=NN'log2N + SNlog2N'+2NN' + 12N (3-1) 

Using the definitions for the SSCA operating parameters, N and N', in Eqn. (3-6) this can be 

expressed in terms of Af and At 

_   (AtAf) 

'    (A////°g2 
(AtAf) 

(A///J 
0 (AtAf) .      ,A,.,N      2AtAf       \2AtAf 

+sWL)>otM'f-)+W7fJ+W777) (3"2) 

3.6  Data Reduction 

As discussed in Section 3.2, it is desirable that the SCF estimate,  5"    (f,/)^, be 

reduced from a function of a,/and t, to a test statistic, Mt,a), that is a only a function of t and a. 

This reduces both the amount of data and number of computations required for determining 

whether a threshold crossing has taken place. In the case of the CSA receiver, the test statistic is 
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a function both of time, t, and cycle frequency, a, and is compared to a threshold which is also a 

function of a 

A(f,a)^Ao(a) (3-1) 
Ho 

The SSCA output needs to be reduced to a function of a and t. There are four different applicable 

methods for doing this: 

(1) Magnitude Squared Coherence, 

(2) Maximum Cut, 

(3) Energy, and 

(4) Cycle Frequency Decomposed Degree of Cyclostationarity. 

The Magnitude Squared Coherence (MSC) function is commonly used in cross-spectral analysis 

and is a measure of the similarity between two stationary processes [4]. In the cyclostationary 

case, this can be expressed as 

|C(/)f- *of (3-2) 
Sx(f + a/2)Sx(f-cc/2) 

When the MSC is used as a test statistic for a gaussian input signal, it produces a Constant False 

Alarm Rate (CFAR) [5]. However, the difficulty in implementing the MSC in the cyclic spectrum 

analysis receiver is that the individual power spectrum estimates, Sx(-), must also be estimated. 

While this process has been implemented, the algorithm employed has not been published [46]. 

Additionally, the MSC remains a function of spectral frequency. Therefore some other technique 

(such as those discussed below) is needed to remove the dependence on/. For these reasons, the 

MSC function is not considered herein. The remaining test statistics and their implementation in 

this research are described in detail in the following paragraphs. 
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3.6.1   Maximum Cut Method 

The maximum cut function is the simplest to express and is defined as 

Vx('>a)=101°gio1 max sllktV>f)kt (3-1) 

This function returns the squared magnitude value of the highest frequency peak for each cyclic 

frequency. 

3.6.2  Energy Method 

As discussed in Section 2.4, a well established way of detecting weak signals in noise is 

through the use of energy detection. The same principle can be applied to any cyclic cut of the 

bi-frequency plane. A test statistic that measures energy is 

AM^XK^./)* (3-D 

and given T is constant, it can be absorbed into the threshold. The resultant test statistic can then 

be expressed in dB as 

A£(f,or)=101og 10 ZJS",vV'f>to (3-2) 

Using an energy related test statistic allows CSA performance at non-zero cyclic frequencies to 

be easily analyzed with well established radiometer procedures; for a = 0, the performance of the 

CSA approaches that of the radiometer. This can be easily shown using the properties of the SCF 

shown in Eqn. (2-5). The test statistic can be rewritten as 

4(f,0)=101og 10 IK>/L (3-3) 

remembering that Sx(/) is essentially a band-limited, frequency shifted version of Sr (/), then 
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lim lim A£(r,0)=101og10 
A/-»OA(->°° 

\jx{f,t)df 

= lim 101og10 

(3-4) 

\srT{f,t)df 

which is the radiometer detector in Eqn. (2-3) expressed in dB. 

3.6.3   Cycle Frequency Decomp osed Degree of Cyclostationarity Method 

A measure of the Degree of Cyclostationarity (DCS) proposed in [54] is defined as 

DCS = ^2  

This is a multi-cycle measure, in that it is a single value formed by summing across all non-zero 

cycle frequencies. Therefore, it does not take advantage of the discriminatory capabilities of the 

cyclic spectrum. The cycle frequency decomposed DCS is more useful for detection and is 

defined as 

(3-1) 

fka(/)|V 
DCSa=-     ' ' (3-2) 

rjs°x(f)\2df 

It is shown in [54] that optimum detection performance is directly determined by DCS". This 

forms the basis for the cyclic-frequency decomposed DCS test statistic used in this research, now 

defined as 

^Dcs(f,a)=10log 

where in the limiting case 

10 TlAS"utfV>f)to -lOlog.o 
1 / 

(3-3) 
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lim lim XDCS (f,a) = DCS" (3-4) 
A/->OA(->~ 

3.7 Assumptions 

To meet research goals and stay within time and resource constraints, some assumptions 

are necessary. As explained in the scope, this research only considers the detection performance 

of the CSA receiver against a DS-SS BPSK signal and adverse signal environments only include 

nonstationary noise, or stationary noise and narrowband interference. Additionally, the following 

simplifying assumptions have been made throughout: 

1) The digital receiver architectures are modified so that the SSCA input signal is a 
lowpass signal 

2) The SSCA input signal is sampled at the Nyquist rate. 

3) The received signal is centered about the CSA receiver bandwidth. 

3.8 Summary 

This chapter explains the design of the Cyclic Spectrum Analysis (CSA) receiver and the 

methodology used to analyze its performance. Section 3.2 presented the overall CSA receiver 

design, linking to the statistical detection theory presented in Chapter 2 and giving an operational 

overview of the receiver. Section 3.3 discussed the scope of the research, relating how the 

research goals are met within time and resource limitations. The theory, design and modeling of 

each receiver element is then described in turn. Section 3.4 described the different digital 

receiver architectures being modeled. Each digital receiver architecture leads to a different CSA 

receiver implementation: the Ideal CSA Receiver, the Channelized CSA Receiver, and the 

Quadrature CSA Receiver. The algorithm for estimating the cyclic spectrum is then described in 

Section 3.5, including the development, implementation and modifications made to the algorithm. 

Section 3.6 described the three different methods for reducing the SCF estimate to an efficient 
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test statistic.     Finally, the assumptions made in modeling the receiver performance  are 

summarized in Section 3.7. 
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4.  Analysis and Results 

4.1  Introduction 

This Chapter describes the simulations and results used to determine the performance of 

the Cyclic Spectrum Analysis (CSA) receiver configurations described in Chapter 3, specifically 

the: 1) Ideal CSA Receiver, 2) Channelized CSA Receiver, and the 3) Quadrature CSA Receiver. 

First, optimal SSCA operating parameters are determined based on the accuracy and processing 

speed of the algorithm. The effect of any bandwidth mismatch between the signal and the 

receiver is examined briefly. The three data reduction methods described in Section 3.6, 

Maximum Cut, Energy and Cycle Frequency Decomposed Degree of Cyclostationarity (DCS), are 

implemented and one selected for use throughout the remainder of the simulations based upon 

analytical traceability, ease of threshold implementation, and the comparative detection 

performance of the resulting test statistic. 

The detection performance of the Ideal CSA Receiver is compared to the radiometer in 

both benign and adverse signal environments. The adverse signal environments consist of 

nonstationary noise and stationary noise with narrowband interference. The detection 

performance of the Channelized CSA Receiver and the Quadrature CSA Receiver is then 

evaluated. The performance of the channelized receiver is first simulated in the benign and 

adverse environments. Specifically, the effects of asymmetric spectral attenuation on the 'edge' 

channels are determined through comparison with a non-attenuated central channel. The 

detection performance of the quadrature receiver is then simulated. Expressions are derived for 

the Spectral Correlation Function (SCF) for the complex In-phase and Quadrature (I & Q) input 

and for the summed I & Q input. The summed I & Q input signal is then simulated in the benign 

and adverse environments. 
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4.2  Estimate Accuracy and Processing Speed 

It has been shown in Eqn. (2-3) that for an accurate SCF estimate, the temporal 

resolution, At, must be much greater than spectral resolution, A/. For a time smoothed estimator, 

such as the SSCA, the cyclic resolution, Aa, is equal to the inverse of the temporal resolution. 

Additionally, Eqn. (3-6) shows that the spectral resolution is determined by the length of the first 

./V'-point FFT, and the cyclic resolution is determined by the length of the second JV-point FFT. 

Clearly, as N and N' increase so does the computation time. Therefore, the need for high 

resolution and accuracy estimates must be balanced against the need to calculate the estimate 

quickly. 

To determine the SSCA operating parameters that provide sufficient spectral and cyclic 

resolution, while minimizing processing time, the SSCA is used to estimate the SCF of the DS-SS 

BPSK signal of interest at IF, given by 

s{t) =y[2P £a„ q(t - nTc -t0 )cos(2#/f r + 0O) (4-1) 

P is the average power, fa and t0 are phase and timing offset, respectively, an is a sequence of 

i.i.d. random variables equally likely to take on the values of ±1, and q(t) is a unit-amplitude 

rectangular pulse of length Tc. The theoretical SCF for the DS-SS BPSK signal is given by [10] 

s:(f)=^r[Q(f + f + fIF)Qif-f + fIF) 

+ Qif + f - fIF )ß0 - f - U )] e-ilm,° 
(4-2) 

+ ^F\Q{f+i + fMf-f-fIFV
i[Ma+2U)'°+2*°] 

+ Q{f-f+fIF)Q{f+f-f,F)e-i[Ma-2flF)'0+2^] 

where Q(f) = Tc sinc(fTc). Given this expression is only supported for a discrete number of 

cycle frequencies, assuming that the phase and code offset are zero, Eqn. (4-2) can be rewritten as 
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s:(f)= 

%[Q(f+f+fiF)Q(f-i+flF)+Q{f+i-fIF)Q(f-i-f,F)] <* = i 

^ßO+f-//F)ß(/-f+//f) 
0 

OC — T      2jIF 

2Tr 
a = j- + 2ft 

(4-3) 
IF 

e.w 

Using this expression as a basis for comparison, the operating parameters of the SSCA were 

varied and the resultant estimates are shown in Figure 4-1. Table 4-1 presents the corresponding 

SSCA parameters used including the number of computations required as determined from 

Eqn. (3-1). Computation time is calculated assuming the Digital Signal Processor can complete a 

1024 length complex FFT in 20u.s which is representative of the current state-of-the-art [9]. 

Figure 4-1 First FFT 
Length 

AT 

Second FFT 
Length 

N 

Resolution 
Product 

AtAf 

Number of 
Computations 

r 

Computation 
Time (ms) 

(a) 8 2048 500 82720 0.276 

(b) 8 4096 1000 164704 0.549 

(c) 16 2048 500 198208 0.661 

(d) 16 4096 1000 394944 1.316 

(e) 32 2048 500 461952 1.540 

(0 
32 

4096 1000 920960 3.070 

Table 4-1. SSCA Parameters and Computation Time 
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(a) (b) 

alpha (Hz/f$) 

(c) (d) 

alpha (H2/ft) 

(e) (f) 

Figure 4-1. SCF Estimates for Various SSCA Operating Parameters 
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Based on results shown in Figure 4-1, an FFT length of at least 16 is required to provide 

adequate spectral resolution. In the first two cases, (a) and (b), the spectral resolution is not good 

enough to properly discern the shapes of the cyclic features. Increasing N from 2048 to 4096 has 

the effect of reducing the measurement noise, however this reduction is not substantial and either 

choice provides adequate cyclic resolution. The parameters giving adequate spectral and cyclic 

resolution while minimizing computation time is N'= 16, N = 2048, Figure 4-1 (c). Therefore, 

these operating parameters are used for all proceeding simulations. 

4.3  Signal Bandwidth Considerations 

As stated in Section 3.7, this research assumes the center frequency of the Signal of 

Interest (SOI) at IF is exactly centered within WCSA, the receiver bandwidth. The purpose of this 

section is to examine the effect of signal bandwidth on detection. Two cases are considered: 1) 

the SOI null-to-null bandwidth is one-half the receiver bandwidth, i.e. WCSA, = 4/rc; and 2) the 

SOI null-to-null bandwidth is twice the receiver bandwidth, i.e. WCSA, = VTC . Of primary 

concern in the second case is whether the relative strength of the cyclic features changes as the 

SSCA is presented with a limited portion of the signal. The resultant SCF estimations for these 

two cases are shown in Figure 4-1. 

12000v A                           3500^ 

10000v "■/ \                          3000- 

8000 v 
/     \                         2500- 

/       \                   -H-2000-. 
6000 v 

/          \                      1500- 

4000-, 
■ A /          V                1000v 

2000- J    \              \         \            500- 

°> s__        Wte^V'1                °> ^näi%v 

f(HzMt) 

(a) (b) 

Figure 4-1. SCF Estimates for: (a) WCSA = 4/Tc, and (b) WCSA = VTC 
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These correlation surfaces confirm the theory; the expression in Eqn. (4-3) can be used to 

determine the location and strength of the cyclic features and the receiver bandwidth simply 

determines the region of support in the bi-frequency plane, as explained in Section 2.2.2. In the 

unknown bandwidth case, this confirms that the best cyclic frequency for detection is the double 

carrier feature at a = 2fIF. The bandwidth of the signal can then be determined post-detection by 

relative location of the chip rate features at a= {nlTc, nlTc-2fIF, nlTc+2fIF}, for neZ1", n>0. 

Importantly, this means simulations need only be run with one particular signal bandwidth, with 

variations in the bandwidth taken into account by changing SNRs. 

4.4  Data Reduction Methods 

Section 3.6 described a number of different methods that may be used to reduce the 

SSCA output to a test statistic that can be easily and efficiently compared to a threshold. The 

purpose of this section is to determine which of the three possible methods are most suitable 

based on a comparison of efficiency, detection performance and analytical traceability. To 

determine this, the DS-SS BPSK defined in Eqn. (4-1) with a SNR of-3 dB is first applied to the 

SSCA. The three different data reduction methods are then applied to produce the Maximum Cut, 

XMAXH®), Energy, A^a), and Cycle Frequency Decomposed DCS, XDCS(CC), test statistics. These 

statistics are presented in Figure 4-1 (a), (b) and (c), respectively, with the relative strengths of 

the main cyclic features provided in Table 4-1. Relative strength is defined as the strength of the 

cyclic feature when the signal is present (under Hi conditions) subtracted from the strength of that 

feature when the signal is not present (under H0 conditions). 
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-0.9 -0.8 -0.7 -0.6 -0.5 
alpha / f 

(b) 

-0.4 -0.3 -0.2 -0.1 

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 
alpha / f 

(c) 
Figure 4-1. Test Statistic Outputs for SNR,N = -3 dB: 

(a) -W(a), (b) A£(a), and (c) XDCS(ä). 
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Test 

Statistic 

Relative Strengths (dB) 

a= \ITC a = If IF M = MVIF)-M\ITC) 

A-MAxi®) 24.85 28.73 3.88 

AE(a) 10.65 13.14 
2'49 

^DCsi®) 22.28 27.62 5.33 

Table 4-1: Relative Strengths of Test Statistics 

Based on the relative strengths in Table 4-1, it appears that the Max Cut data reduction method 

produces the strongest cyclic features. However, this data is only for one noise realization and 

one particular SNR. 

There are a number of additional observations to be made from each plot in Figure 4-1. 

The average value of the "noise floor" for the Max Cut test statistic is well behaved, but some 

form of polynomial curve fitting is required to establish an appropriate threshold that can be 

applied across the entire statistic. This means added processing complexity in any 

implementation. Additionally, due of the definition of the Max Cut test statistic, it seems to be 

much more susceptible to variations in the estimate itself. In other words, if the resolution 

product, AtAf, is not large enough, the Max Cut test statistic is most effected. 

The average value of the Energy test statistic "noise floor" is distinctly multi-leveled. 

This is due to the large frequency resolution of the SSCA, therefore as a approaches 2fs there are 

only a small number of points. However each region is linear and a properly constructed 

threshold could easily be applied as determined from the SSCA operating parameters (N' and N). 

The Energy test statistic reflects smaller differences in strength between double carrier and chip 

rate features. This tends to indicate that the difference in detection performance between the 

double carrier and chip rate features is less than any other method. The Energy test statistic also 

provides substantial analytical advantages over the other two test statistics, as described in 
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Section 3.6.2, and allows radiometric theory to be used for analyzing the receiver performance at 

non-zero cycle frequencies. 

The Cycle Frequency Decomposed DCS test statistic exhibits the same advantages as the 

Energy statistic because it sums across frequency. However the difference between double 

carrier and chip rate feature is greater than the Energy test statistic and the threshold is not as 

easily constructed as the Energy threshold. 

Perhaps the most important criteria is the detection performance using these data 

reduction methods. As mentioned previously, the relative cyclic features strengths in Table 4-1 

are for one noise realization and one particular SNR. To determine the relative performance of 

each test statistic, detection is performed at the double carrier feature, a = 2fIF. As described in 

Section 2.4, Figure 4-2 represents the Probability of Detection (PD), versus the input SNR 

(SNRIN), for a constant Probability of False Alarm (PFA)- The input SNR for the CSA receiver is 

defined in Section 3.4.1. The number of trials, Ntriais, represents the number of noise realizations 

the receiver model is presented with for each SNR. 

       1               1               1 

,^7 
PFA = 0.1 

i 
>W5°° i 

- 1 
- 

- 

- // 

- 

^^■■' 

- 
 DCS5' 
         MaxCut 

- 

' 
-30 -28 -26 -24 -22 -20 

SNR,„ (dB) 
-18 -16 -14 -12 

Figure 4-2. Performance Comparison for Test Statistics Evaluated at a = 2fIF 
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These PD results show that none of the data reduction methods produce test statistics that are 

clearly superior in detection performance, regardless of SNR. Taking into account the accuracy 

of the results, the Energy test statistic appears marginally superior for the region 0.1 < PD < 0.5, 

but the detection performance of the test statistics are approximately equal elsewhere. 

Given the analytical advantages, the simplicity in constructing a threshold for all cycle 

frequencies, and the detection performance advantages for the lower PD region, it appears that the 

Energy test statistic is the most suitable for the CSA receiver. Therefore the Energy data 

reduction method and resulting test statistic are used exclusively for the remainder of the 

simulations described in this chapter. 

4.5  Ideal CSA Receiver Perfo rmance 

This section establishes the performance of the Ideal CSA Receiver, shown in Figure 3-2, 

and compares it to the radiometer described by Eqn. (2-3). Note that the radiometer 

implementation assumes 1) an ideal BPF of identical width to the bandwidth of the CSA receiver, 

and 2) the integration time is equal to the length of the data segment. The signal environment 

varies from stationary noise to nonstationary noise and then stationary noise with narrowband 

interference is considered. 

4.5.1   Stationary Noise 

In the case of stationary noise, the Ideal CSA Receiver is presented with the following 

binary hypothesis 

r(t) = 
IP |>n q(t-nTc)cos(27tf0t)+n{t)   (#i) 

n(f) fro) 

where an is a sequence of i.i.d. random variables equally likely to take on the values of ±1 and 

q(t) is a unit amplitude rectangular pulse of length Tc.  The noise component, n(t), is stationary 
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Additive White Gaussian Noise (AWGN) with a two-sided PSD, Sn(f), of No/2. The hypothesis 

may be rewritten in terms of the SCF of ideal digital receiver output signal, x(f), as 

s?(f)- 
's?(f)+s;(f) to) 

s:(f)    (Ho) 
(4-2) 

where S"(f) is the SCF for the DS-SS BPSK signal as previously shown in Eqn. (4-3). 

Therefore under Hj conditions, the SCF of x(i) is 

^[ö(/ + f+//f)ß(/-f+//F)+ß(/ + f-/ff)ß(/-f-/ff)]   cc = ±k*0 

^Qif + f+fMf-f-U) . cc = ±-2fIF S?(f)= 

irr 

(4-3) 

£Q{f+f-fMf-f+fIF) 2TC 
a — k + 2fi IF 

e.w 

where Q(f) = Tc sinc( fTc) and jfce t. Under H0 the SCF of tit) is simply 

fWn 

^a(/)= 
a = 0 

(4-4) 

. 0      e.w 

Simulation results for the Ideal CSA Receiver and radiometer are presented in Figure 4-1. 

The results confirm Eqn. (3-4) showing that in the limiting case, Ideal CSA Receiver performance 

at a= 0 approaches that of the radiometer.   Additionally, the results indicate that Ideal CSA 

Receiver performance at a = 2fIF is within 1 dB of the radiometer performance. 
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Figure 4-1. Ideal CSA Receiver Performance, Stationary Noise 

The analytical advantages of the energy test statistic are used to offer an alternative 

explanation of the CSA receiver performance. Based on Eqns. (4-3) and (4-4), the detector 

should be able to determine SOI presence by the existence of cyclic features within the region of 

support (in this case, at cc= {1/TC, 2f,F, 3/Tc}), i.e. the threshold could theoretically be set to zero. 

In reality, the detector is rarely presented with pure AWGN and there will generally be some 

spectral noise correlation. This is clearly illustrated in Figures 4-6 and 4-7. 

Figure 4-2. SCF Estimate under H0 
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-0.6 -0.5 -0.4 
alpha / fs (Hz) 

Figure 4-3. AE(a) under H0 

While there is some spectral noise correlation at non-zero cyclic frequencies, it is proportionally 

very little. Consequently, based purely on SNR gains, one would expect a significant 

performance improvement when using energy detection at a= {l/Tc, 2fIF, 3/Tc}. However, what 

is not evident from Figure 4-2 is that the amount and distribution of spectral noise correlation is 

dependant on each noise realization. As expected, the average noise energy at a = 0 is 

approximately constant for stationary noise. However, the proportion of noise energy that is 

spectrally correlated varies greatly over the bi-frequency plane. This is revealed in Figure 4-4 

which examines the mean and variance of the test statistic, A^a), evaluated at a = 0 and a = 2fIF. 

The mean of AE(2//F) is 13.5 dB less than the mean of AE(0) and the variances are 0.835 

dB and 0.005 dB for AE(2//F) and AE(0), respectively. This substantial increase in variance 

explains why the CSA performance a = 2fIF is inferior to its performance at a = 0 because it is 

well established that energy detector performance decreases as the noise power variance increases 

. Based on these results, it is expected that as the noise quality improves, i.e. the PSD becomes 

flatter, the amount of spectral correlation will decrease and the performance of the non-zero cycle 
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detector will eventually become superior to that of the radiometer.    However, this is not a 

particularly useful conclusion, as "white" noise is only attainable for large observation times. 

mean= 116.17dB 

var = 0.0052 dB 

mean = 102.68 dB 

-tA^JL-AkA 
115.9      115.95       116        116.05      116.1      116.15      116.2      116.25      116.3      116.35      116.4 

Test Statistic (dB) 

(a) (b) 
Figure 4-4. Histogram of Test Statistic Distributions under H0 : (a) AE(0) and (b) A£(2//F) 

4.5.2  Nonstationary Noise 

The second scenario for the Ideal CSA Receiver is for varying noise power, i.e. n(t) is 

nonstationary. As discussed in Section 2.4.4, this is an environment in which the cyclic detector 

is expected to outperform the radiometer. Variation in noise power can also be interpreted as 

uncertainty in noise power, or a limitation in the accuracy of the threshold setting. In this 

scenario, the detector is presented with a hypothesis formulation identical to Eqn. (4-1) except 

that n(t) is now modeled as a nonstationary random process. In this simulation the noise power is 

normally distributed with the following statistics 

i"*0 =E[Rn (t,0)] 

<^k2('.o)]-/40 
(4-1) 

where Rn(t,0) is the autocorrelation of noise, defined in Eqn. (2-1), evaluated at T=0.   The 

co-efficient of variation maybe defined as [45] 
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er; 
PN=- 

Vh 

and pN replaces No in the input signal-to-nöise ratio definition 

(4-2) 

SNRIN = 
PTC 

(4-3) 

Two distributions of noise power are considered in this section, a small amount of 

variability with pN = 0.01 and a larger amount with pN = 0.1. Simulations results are presented in 

Figure 4-1 and 4-10 for the first and second cases, respectively. Both cases confirm that CSA 

performance at a = 2fIF is superior to the radiometer and the CSA at a = 0 in nonstationary noise 

conditions. In the first case (pN = 0.0l), the CSA receiver improves upon the radiometer 

performance by approximately 8dB. In the second case (pN = 0.1), the CSA receiver detection 

performance exhibits approximately 10 dB performance improvement above the radiometer. In 

both cases, the noise power variation has caused a degradation in CSA detection performance of 

less than ldB compared to the stationary noise case in the previous section. 
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Figure 4-1. Ideal CSA Receiver Performance for Nonstationary Noise, pN = 0.01 
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Figure 4-2. Ideal CSA Receiver Performance for Nonstationary Noise, pN = 0.1 

The test statistic distribution at a = 0 and a = 2f,F gives some insight into this 

performance (see Figure 4-3). As expected, at a = 0 the variance of the test statistic has increased 

from approximately zero to the variance of the noise power. However, the variance at a = 2fiF 

has only slightly increased. The primary contribution to the variance at a * 0 appears to be due 

to the random nature of the spectral correlation for non 'white' noise, as discussed in the previous 

section, with the variation in noise power having little effect. Therefore, as the variance of the 

noise power increases, there will be a stronger effect on the test statistic variance at any a & 0, 

and a corresponding negative impact on performance. Consequently, the CSA receiver is not 

completely immune to noise power variations but it is clearly superior to the radiometer. These 

results also show that the CSA receiver is less sensitive than the radiometer to inaccuracies or 

uncertainties in the threshold setting. 
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Nonstationary Noise for: (a) A£(0), and (b) A.£(2//F) 

4.5.3  Narrowband Interference 

The third scenario evaluates the Ideal CSA Receiver performance in the presence of 

stationary noise and narrowband interference. Two narrowband interferers are examined, a 

simple tone jammer and an amplitude-modulated single sideband (AM-SSB) signal. First, the 

tone jammer is introduced into the received signal, so r{t) = s(t) +j(t) + n(t), where n(t) is 

stationary, and 

j(t) = 42JCOS(2TI fjt) 

The SCF of the jammer, j(t), is given by 

(4-1) 

*?(/) = 
iö(f-fj)+i8(f + fj\   « = o 

iö(f), a = ±2fj (4-2) 

0, e.w. 

Therefore, under Hi for any fi & k/Tc and fj^fIF SCF of the ideal digital receiver output signal, 

x(t), is given by 
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s?(f)- 

>[ß2(/ + //F)+ß2(/-//,)]+i[^-/;)+5(/ + /;)]+f 

^[ö(/+f+/^)ß(/-f+//F)+ö(/+f-//F)ö(/-f-//F)] 

^Qif+f+fMf-f-u) 
^Q(f+i-fIF)Q(f-i+fIF) 

is{f) 
0 

a = 0 

a = f ,£*0 

a = j--2f[F 

a = j- + 2fIF 

a = ±2fj 

e.w 

(4-3) 

These simulations consider the case where the signal and jammer have equal power, i.e. 

SJR = 0 dB and fj*fIF . The estimated SCF for SNR = -3 dB is shown in Figure 4-1 and the 

corresponding test statistic in Figure 4-2. To make the figure clearer, a display threshold has been 

set for the estimated SCF. 

f(Hz/f) 
-0.5      -1 

a(Hz/n 

Figure 4-1. SCF Estimate for Tone Jamming Environment 

SJR= 0 dB, SNRIN = -3 dB, and AtAf= 1000 
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Figure 4-2. A£(a) under H, for Tone Jamming with SJR = 0 dB, and SNRIN = -3 dB 

For this particular scenario, the advantage of estimating the entire bi-frequency plane is clearly 

demonstrated by comparing Figure 4-2 with Figure 4-1 (b). Not only is SOI detection a=2fIF 

unaffected by the introduction of a tone jammer, but the jammer itself is easily detected and the 

modulation type and parameters easily determined. If the jammer happens to set on the SOI 

frequency, i.e. fj =fiF, post-processing may be used to compare chip rate features with double 

carrier features and determine that the increased magnitude is due to the presence of a jammer. 

Probability of detection simulation results are presented at Figure 4-3. The radiometer 

experiences a 7 dB loss in detection performance, and as expected, CSA receiver performance at 

a= If IT is not effected by the tone jammer. However, there is a large discrepancy (approximately 

9 dB) between the radiometer and the CSA receiver at a = 0. As the case for any signal with an 

extremely small bandwidth (W, < Af), the CSA receiver tends to overestimate the power due its 

large frequency resolution. This can be seen by comparing the theoretical jammer SCF in 

Eqn. (4-2) to the estimated SCF shown in Figure 4-1 where the delta function tends to look more 

triangular. This has the apparent effect of increasing in jammer power (decreased SJR), by 

causing decreased detection performance. 
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Figure 4-3. Ideal CSA Receiver Performance for Tone Jamming with SJR = 0 dB 

However, the immunity of the CSA receiver to any narrowband interference depends 

strongly on the quality of the estimate. In the second case, an AM-SSB signal is introduced into 

the received signal, so r(t) = s(t) + i(t) + n(t), where n(t) is stationary, and 

i(t) = ■yjli [m(?)cos(2^/,f)- m(r)sin(2^/,f) ] 

where m(t) is the Hubert transform of m(t), given by 

J       KL 

In this case the modulating signal, m(t), is a simple tone 

m(t) = cos(2nfmt) 

(4-4) 

(4-5) 

(4-6) 
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reducing i(t) to 

cos[27tfm{t-C)] (t)=j2l\coS(27rfmt)coS(2Kfit)- J
cosl^y   WJJgsin(2^) 

= V27[cos(2^/m?)cos(27T/,?)+ sm(27cfmt)sm(2n ftt)] 

= V27 cos[2?r (/,.-/„>] 

(4-7) 

The SCF of i(f) is given by 

sr(f)= 

8(f-ft+fm)+i8(f + fj-fa\   a = 0 

{8(f), a = ±2(fi-fm) (4-8) 

0, e.w. 

Therefore under Hj for any (f, -fm) * klTc and (/• -fm) *fIF , the SCF of the SSCA input signal, 

x(t), is given by 

^[Q2(f + fjF)+Q2(f-f,F)]+ 

i8(f-ft+fm)+±8{f + fj-fm)+*-      a = 0 

'-[Qif + f + fMf-i + UhQif + f-fM-f-U)]  cc = j-,k*0 

£Q(f+i+fIF)Q(f-f-fIF) oc = j--2f,F s?(f>- (4-9) 

£Q(f+f-f,Mf-f+fIF) 
{8(f) 

a — k 
Tc 

+ 2//F 

a = ±2(fi-fn) 

0 e.w 

By comparison with Eqn. (4-3), the detection performance at a=2fw (k = 0) should be 

identical to the tone jammer case. However, the SCF estimation algorithm (the SSCA) has 

particular trouble estimating the SCF for an AM-SSB signal and tends to introduce many artificial 

cyclic features that can interfere during detection. This can be easily observed in the test statistic 

plotted in Figure 4-4. The expected reduction in detection performance is confirmed by using the 

simulation results. Figure 4-5 compares the Ideal CSA Receiver detection performance at a = 2fIF 
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in the presence of tone jamming and AM-SSB interference.   There is approximately a 1.5 dB 

decrease in performance due to the AM-SSB interferer. 

-0.6 -0.5 
alpha (Hz/fs) 

Figure 4-4. A£(a) for AM-SSB Interferer 

Tone Jammer 
AM-SSB Interferer 

-22 -20 -18 

SNRIM(dB) 

Figure 4-5. CSA Receiver Performance for AM-SSB Interference with SIR = 0 dB 

4.5.4  Summary 

This section determined the performance of the Ideal CSA Receiver by simulation and 

compared its performance to the radiometer.   As cyclic feature detection theory suggests, the 
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CSA receiver detection performance approaches that of the ideal radiometer in benign (stationary 

noise) environments. By applying radiometric detection principles to the test statistic, analysis 

shows that the CSA receiver performance is a function of noise quality. As the noise PSD 

becomes flatter, it is expected that the CSA receiver will outperform the radiometer. Simulation 

of a nonstationary noise environment shows that the CSA receiver outperforms the radiometer by 

approximately 10 dB, exhibiting only a slight decrease (less than 1 dB) in performance when 

compared to the stationary noise case. Analysis shows that the CSA detector is effected when the 

variance of the noise power exceeds the variance of the noise spectral correlation. When the 

signal environment includes tone jamming, CSA receiver performance is not unaffected, whereas 

the radiometer performs extremely poorly. In the presence of an AM-SSB interferer, the CSA 

receiver still outperforms the radiometer. However performance is degraded by 1.5 dB due to the 

artificial cyclic features introduced by the SSCA. 

4.6   Channelized CSA Receiver Performance 

The purpose of this section is to determine Channelized CSA Receiver performance and 

compare it to the Ideal CSA Receiver examined previously. First, the effect that bandpass 

filtering has on performance of different channels is determined. The signal environment varies 

from stationary noise to nonstationary noise and then stationary noise with narrowband 

interference is considered. 

4.6.1 Channelized Cyclic Spectrum Characterization 

As seen in Figure 3-2, the filter response of the channelized receiver varies drastically 

between channels at the edge of the passband and channels in the middle of the passband. The 

asymmetric nature of the filter response for 'edge' channels means that the spectra are no longer 
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symmetric about fIF after downconversion.    Therefore, the detection performance in those 

channels may be effected. The SCF for the mth channel, S" (/), can be written as 

Sl(fhs:(f)Hm(f + f)H:{f-f) (4-1) 

where 5"(/)is the Ideal CSA Receiver SCF and Hm{) is the cascade filter response for the mth 

channel. Two cases of particular interest are 1) those channels with the most asymmetric 

attenuation, such as channels 1 and M in Figure 3-2, and 2) those channels with little or no 

attenuation, such as channel M/2-1 in Figure 3-2. For ease of notation, the first case is referred to 

as Channel 1 and the second case Channel 2. For the filter implementation of this research, the 

estimated SCF and test statistics for Channels 1 and 2 are shown in Figures 4-17 and 4-18, 

respectively. 

K10 

'•■••   A               251 

2- 

1.5. 
"5T 
CO 

0.5. 

0> 
0.5 

f(Hz/f) alpha (Hz/f) f(Hz/f) alpha (Hz If) 

Figure 4-1. SCF Estimate with SNRIN = 0 dB for: (a) Channel 1, and (b) Channel 2. 
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(b) 
Figure 4-2. AE(a) under H, with SNRIN = OdB for: (a) Channel 1 and (b) Channel 2 

While there is a discernable difference in the magnitude of the cyclic features, examining the 

estimated SCF does not give any indication of expected detection performance. Given that SNRm 

is defined at the bandpass filter, any SNR improvement resulting from the additional IF bandpass 

filtering will translate to a detection performance improvement. The RF and IF filter responses 

for Channel 2 are both ideal, and the detection performance should be identical to the Ideal CSA 

Receiver. However, this is not the case for Channel 1. The difference between the PSD of 

Channel 1 at the RF and IF passbands is evident in Figure 4-3. 
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IF passband Channel Response 
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Figure 4-3. Channel 1 Filter Response 

As the bandwidth of the signal increases and the signal power becomes more uniformly 

distributed within the channel bandwidth, the amount of signal power attenuation will increase 

yet the amount of noise attenuation will stay constant. This will lead to a varying SNR 

improvement for Channel 1 with respect to the signal bandwidth. The SNR improvement for the 

mth channel is defined as the difference between SNRIN and the SNR of the mth channel output, 

ym(t). The mth channel SNR is defined as 

S_\   =[jAf)\Hm(f)\
2df 

N>-~ Nt\ym(f)\
2df No. 

2 

(4-2) 

In Figure 4-4, SNR improvement is plotted against the BW Ratio, which is defined as 

BW Ratio = - 
*c "CSA 

(4-3) 
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Figure 4-4. Channel 1 SNR Improvement 

10 

Based on these results, when the BW Ratio is unity, i.e. the null-to-null bandwidth of the signal is 

equal to the channel bandwidth, Channel 1 will exhibit a performance improvement of 

approximately 0.1 dB compared to Channel 2. This is a negligible performance improvement and 

leads to the conclusion that the Channelized CSA Receiver detection performance is independent 

of the channel selected. Additionally, it is important to note that Figure 4-4 is specific to the filter 

realization used in this research. A difference in the type or order of the filter will cause these 

results to vary. 

4.6.2  Stationary Noise 

In the case of stationary noise, the detector is presented with the following binary 

hypothesis 

it) nt =< 
IP Jan q(t-nTc)cos(2xf0t)+ n(t)   V#i) 

n(t) (Ho) 
(4-1) 

The SCF of the mth channel output, ym(i), is given by 

Sym(fhS?(f)Hm(f+f)H*m(f-f) (4-2) 

where under Hi conditions 
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s?(fh 

^■[Q2{f + fIF)+Q2if-f,F)]^ a = 0 

MQif+i+fM-f+uhQif+f-fM-f-fif)] <*=jr,k*o 

^Qif+f-fM-f+fif) 
o 

a = - •2/i IF (4-3) 

a = f + 2/fl 

e.w 

and under H0 conditions 

(Nn 

s;(/)= 
a = 0 

(4-4) 

. 0 e.w 

Simulation results for stationary noise are presented in Figure 4-1. As expected, these results 

show that Channel 1 and Channel 2 detection performance is approximately equal. The small 

performance improvement predicted by Figure 4-4 is much smaller than the resolution of the 

results. As discussed previously, the detection performance of Channel 2 is identical to the Ideal 

CSA Receiver detection performance, therefore the channelized receiver performs identically to 

the ideal receiver, independent of channel selected. 

: PFA = 01 

1                                                     1—, "         

- 

^~°*^ 

? 
_,                                  ,.                     .    ,-,£..      f.                                                 f-.. 

         Channelized CSA Receiver C2 

1                                                     1 i                                 i 
-20 -15 

SNR|N(dB) 

Figure 4-1. Channelized CSA Receiver Performance at a= 2fIF with Stationary Noise 
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4.6.3  Nonstationary Noise 

To determine the performance of the Channelized CSA Receiver in the presence of 

nonstationary noise, n(f) is modeled as being nonstationary with pN, the co-efficient of variation 

defined in Eqn.(4-2), equal to 0.1. Simulation results are presented in Figure 4-1 and as expected, 

indicate that Channel 1 and 2 detection performances are equal. 

•            1 1 
' /'/ 

- ' PFA=0-1 y - 

- N„*=5t)0 - 

- j - 

- 
// 
// - 

- 

1 

-^/^ 
- 

Channelized CSA Receiver C1 
Channelized CSA Receiver C2   

i 

-20 -15 
SNR,M«JB) 

Figure 4-1. Channelized CSA Receiver Performance at a=2fIF 

with Nonstationary Noise, p#= 0.1 

4.6.4  Narrowband Interference 

The tone jammer and AM-SSB interferer introduced in Section 4.5.3 are now included in the 

channelized receiver simulation. In general, the SCF of the /nth channel output is given by Eqn. 

(4-2).  Under Hi conditions, S"(f) for the tone jammer case is given by Eqn. (4-3)  and Eqn. 

(4-9) represents 5" (/) for AM-SSB interferer case. Simulation results for the tone jammer and 

the AM-SSB interferer are presented in Figure 4-1 (a) and (b), respectively. In the tone jammer 

case the detection performance of both Channelized CSA Receiver channels are unaffected, as 
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predicted by the theory. Figure 4-1 (b) shows that both Channels are slightly affected by the AM- 

SSB interferes due to the poor estimate of the cyclic spectrum of i(t) by the SSCA. The theory 

also suggests that detection performance of Channel 1 should be approximately equal to Channel 

2, this is confirmed in both cases. 
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Figure 4-1. Channelized CSA Receiver Performance at a=2f1F with: 

(a) Tone Jamming, and (b) AM-SSB Interference 
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4.6.5  Summary 

The Channelized CSA Receiver performance was determined by simulation and 

compared to the Ideal CSA Receiver. First, SNR improvements due to filter effects were 

examined and Channel 1 was found to have a negligible performance gain of 0.1 dB over 

Channel 2 when the null-to-null bandwidth of the signal equals the bandwidth of each channel. 

This results from the concentration of the signal power in the middle of the channel bandwidth. 

As the signal power is distributed more evenly by an increase in signal bandwidth, the attenuation 

of the signal and noise become identical and the SNR improvement approaches zero. Under all 

conditions, Channel 1 and Channel 2 performed identically as predicted. Therefore, the 

Channelized CSA Receiver performance is approximately equal to the Ideal CSA Receiver, 

independent of the channel selected. 

4.7   Quadrature CSA Receiver Performance 

The purpose of this section is to determine the Quadrature CSA Receiver performance 

and compare it to the Ideal CSA Receiver simulated in Section 4.5. First, theoretical SCF 

expressions for real and complex input cases are developed. Based on these expressions, the 

most suitable input method is selected. The signal environment varies from stationary noise to 

nonstationary noise and then stationary noise with narrowband interference is considered. 

4.7.1   Quadrature Input Cyclic Spectrum Characterization 

As with the Channelized CSA Receiver, the filter response of the IF and RF bandpass 

filters will have an effect on the quadrature receiver detection performance. Additionally, how 

the in-phase and quadrature signals are combined, as real or complex signals, also effects 

performance. The Quadrature digital receiver, described in Section 3.4.3 produces in-phase and 

quadrature signals, zi (t) and ZQ (t) defined as 
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z,{t) = \a{t)co&{2nfIFt) 

za{t) = ±a{t)sm{2jrf1Ft) 

Although these signals are actually time-series, to simplify analysis, stochastic processes are 

assumed. This assumption allows the calculation of the probabilistic SCF which the CSA 

Receiver attempts to estimate. The in-phase and quadrature signals can be combined either as a 

complex ordered pair or summed together as real signals. For the first case, the input signal is 

defined as   z(t) = Zi(t) +;Zß(0-   Assuming z(t) is an ergodic random process, the expectation 

operator, E{ ■}, can be interchanged with the time average operator (•) = lim J      ()dt. Using the 

CAF definition in Eqn. (2-2) 

= ^At^]zQ(t^%At-^)-hQ(t-^e-ßnm) 

= (la(t +1) eWA<«/2) la(, _ i)e-,W;f(,-T/2) e-j2m j 

= (ia{t + |M' ~^)e]2^T e'}2nat) 
(4-2) 

■\Ki*)e 
J2xfIFT 

for a(t) a real signal. Using the cyclic Wiener-Khinchin theorem 

J—CO 

= if Ra
a(T)e-j2*f-^dz (4-3) 

= }S:(f-fIF) 

which is a scaled and frequency shifted version of the SCF of a(t).   In the case of BPSK 

modulation, a(t) is given by, 

a(t) = j2P^anq(t-nTc)®h(t) (4-4) 
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where h(t) is the cascade filter impulse response, an is a sequence of i.i.d. random variables 

equally likely to take on the values of ±1 and q(t) is a unit amplitude rectangular pulse of length 

Tc. The SCF for a( t) is that of an ASK signal which is [14] 

s:(/)= 
2? Q(f+f)Q(f-i)H(f+f)H*(f-i)   <*=TC 

(4-5) 
0 e.w. 

where Q(f) = Tc sinc(fTc). To simplify analysis, the filter is assumed to be ideal, so the full 

expression for the SCF of z( 0 can therefore be written as 

Sf(f) = 2T, -Q{f-f1F+f)Q(f-f,F-i) a = t (4-6) 
0 e.w. 

The theoretical and estimated SCF for a lowpass signal are plotted in Figure 4-1 (a) and (b), 

respectively. 

Figure 4-1. Complex Quadrature CSA Receiver SCF: (a) Theoretical, and (b) Estimated 

Considering detection of this signal, the most significant thing about Figure 4-1 is the absence of 

the double-carrier feature at a = 2fIF. Therefore, any detection of the signal must be done using 

one of the chip rate features. Additionally, because the SCF for the complex signal z(t) is no 

longer symmetric about / = 0, the modifications made to the mapping stage of the SSCA, as 
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described in Section 3.5.2, need to be removed. The modified algorithm is not only less efficient 

because it must perform operations on complex numbers, but also because it must produce all P 

strips. The SSCA output is shown in Figure 4-1 (b) and the test statistic in Figure 4-2. 
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Figure 4-2. X^a) under Hj for Complex CSA Quadrature Receiver with SNRm = OdB 

For the second case, the in-phase and quadrature signals are simply summed, i.e. the 

signal is z(f) = Zi (t) + ZQ (t). Following the same procedure and assuming ideal filters, the CAF 

can be calculated 

= (±a(t + f)4 - ^os[2nfIF {t + \)]+ sin[2^//F (t + f )]]^os[2nfJF (t - \)] 

+ ,m[2KfIF{t-^[}e-'2m) 

= [\a{t + %)a(t- f )[COS(27T//FT)+ sm(4nfIF t)^2™ ) 

= ä-(T)+ä-(T) 

where for ease of analysis, 

Rl{x)^{\a{t + ^a{t-^)Cos{2nfIFT)e-^) 

= |C(T)COS(2^//FT) 

(4-7) 

(4-8) 



and 

*?>Hl4 + l)4-i>in(4tf//f0e -jlnca \ 

/ 
= (±a{t + i)a{t-i)[e-iM«-2f,F). _e-j2„(a+2flF)t^ (4.9) 

= ik+2f,F(*)-K-Zf,F(r)] 

the respective Fourier transform pairs can be easily calculated 

= lJ~ /?fl" (T) coS(27rf,FT)e-j2^dr (4"10) 

These expressions can be used to determine the SCF for any signal represented by the in-phase 

and quadrature components in Eqn. (4-1). In other words, the SCF of any signal input to the 

quadrature receiver can be determined, so long as a{i) and its corresponding SCF are known. In 

the case of the BPSK signal of Eqn. (4-5), the expression can be written as 

C(/)=2^tß(/-/;F+f)ß(/-//F-f)+ö(/ + //F+f)ß(/ + //f-f)] (4-11) 

and similarly 

^Cf)-£^(r)«-^dT 

= if k+2f,F (0- K~2f,F {?%-ßnfTdx <4"12) 

=ik+2f,F(f)-s:-2f*(f)] 

Using Eqn. (4-5), then 

K(f)=4;b(f + f,F+f)Q(f-f,F-i)-Q(f-fiF+i)Q(f + fiF-i)]       (4-13) 

Combining Eqns. (4-11) and (4-13) and utilizing the distributive nature of the Fourier transform, 

a full expression for the SCF of z( t) can now be written as 

89 



= ^[Q(f+f+f,F)Q{f-f+fIF)+Q{f+f-fIF)Q{f-f-fIF)]        (4-i4) 

+wlQ(f+f+fMf-i-fIF)-Q{f-f+fIF)Q{f+i-f1F)] 

As with Eqn. (4-2), not all components are non-zero for all values of a and this can be rewritten 

as 

S?(f) = 

'£[<*(/+ f + U)Q(f-t + flF)+Q(f + f-U)Q{f-f-fa?)]  « = £ 

|-ß(/+f + //f)ß(/-f-/J 

#Q(f+f-U)Q(f-i+fv) 

0 

« = t-2//i 
(4-15) 

e.w 

The theoretical and estimated SCF for a lowpass signal are shown in Figure 4-3 (a) and (b) 

respectively. Note that the magnitude of Eqn. (4-15) is identical to the magnitude of SCF for the 

BPSK, per Eqn. (4-3). Accordingly, assuming ideal input bandpass filters, the detection 

performance of the Quadrature CSA Receiver utilizing the summed in-phase and quadrature 

signals should be identical to the Ideal CSA Receiver. However, the bandpass filters of the 

quadrature receiver are fifth order Butterworth filters, described in Section 3.4.4, so any variation 

between the performance of the ideal and quadrature receivers can be directly attributed to the 

filters. This is explored further at the end of the section. 
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Figure 4-3. Summed Quadrature Receiver SCF: (a) Theoretical, and (b) Estimated 
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The test statistic for the summed quadrature receiver with a SNR of 0 dB is plotted in 

Figure 4-4. Comparing this to the complex input case shown in Figure 4-2, it is clear that the 

summed case has stronger cyclic features and provides more information, including the a = 2fip 

features. For these reasons, the following simulations use the summed input exclusively. 

Figure 4-4. A.£(o;) for Summed Quadrature Receiver with SNRm = OdB 

As with Channel 1 of the Channelized CSA Receiver, signal attenuation varies as a 

function of the signal bandwidth because of the non-ideal filters. However, the important 

difference between the channelized and quadrature cases is that the quadrature RF passband is 

much wider than the IF passband. Therefore, when the IF passband is within the ideal region of 

the RF passband, there will be a more significant SNR improvement than the channelized case. 

This can be illustrated by plotting the SNR improvement against the BW Ratio as defined in 

(4-3). SNR improvement is defined as the difference between SNRiN defined in Section 3.4.3, and 

the SNR of the quadrature receiver output signal, z(t). As shown in Figure 4-5, when the BW 

Ratio is unity, i.e. the null-to-null bandwidth of the signal equals the channel bandwidth, the 

Quadrature CSA Receiver exhibits a detection performance improvement of approximately 1 dB 

compared to the Ideal CSA Receiver. Again, this is specific to the filter realization used for this 

research, and as the signal bandwidth increases with respect to the receiver bandwidth, the SNR 
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improvement approaches zero.   Given a BW Ratio of unity, this magnitude of performance 

improvement should be evident in the simulation results. 

T 

BW Ratio 

Figure 4-5. Quadrature CSA Receiver SNR Improvement 

4.7.2  Stationary Noise 

The detection performance of the Quadrature CSA Receiver with summed inputs is now 

examined. An identical scenario to that in Section 4.5.1 is simulated. The detector is presented 

with the following binary hypothesis 

rfr) = 
IP ]T a„ q(t - nTc )cos{27tf0t)+ n(t)   (Hi) 

nit) <Po) 
(4-1) 

where the noise component, n(i), is stationary additive white gaussian noise with a two-sided 

PSD, Sn(f), ofN<J2. Using Eqns. (4-15) and (4-2), the H\ hypothesis can be rewritten as in terms 

of the quadrature digital receiver output signal SCF, 
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sfif)- 

ß(/+f-//F)ö(/-f-/^)]+f « = o 

^[ö(f + f + //F)ö(/-f + //f)+ß(/ + f-/^)ö(/-f-//F)] a = jr 

£Q(f + f + f1F)Q(f-f-fiF) <* = j--2flF 

$Q(f+t-U)Q(f-$+fiF) « = i+2/i 

(4-2) 

IF 

0 e.w 

assuming ideal filters and the noise component has been determined from Eqn. (4-7), by 

substituting n(t) for a(t). Simulation results are plotted in Figure 4-1. As predicted by Figure 4-5, 

the Quadrature CSA Receiver outperforms the Ideal CSA Receiver by approximately 1 dB. As 

discussed previously, it is important to note that an increase in chip rate, or signal bandwidth, 

such as the case presented in Figure 4-1 (b), results in the signal and noise powers being equally 

attenuated by the bandpass filters and the detection performance approaches that of the Ideal CSA 

Receiver. 

        Quadrature CSA Receiver, alpha = 2f|F 

 Quadrature CSA Receiver, alpha = 0 
I CSA Receiver, alpha = 2f|F 

-12 -10 
SNR|N(dB) 

Figure 4-1. Quadrature CSA Receiver Performance 
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4.7.3  Nonstationary Noise 

The noise component, n(f) is now modeled as being nonstationary with pN, the co- 

efficient of variation defined in Eqn.(4-2), equal to 0.1. With the null-to-null bandwidth of the 

signal equal to the receiver bandwidth, the Quadrature CSA Receiver is expected to outperform 

both the Ideal CSA Receiver and the Channelized CSA Receiver. Simulation results are presented 

in Figure 4-1. 

Quadrature CSA Receiver, alpha = 2f|F 

Quadrature CSA Receiver, alpha = 0 
Ideal CSA Receiver, alpha = 2f|F 

Figure 4-1. Quadrature CSA Receiver Performance for Nonstationary Noise with pN = 0.1 

Results in Figure 4-1 indicate that the Quadrature CSA Receiver at a=0, which is 

equivalent to a radiometer with identical bandpass filter characteristics as the quadrature receiver, 

outperforms the ideal radiometer shown in Figure 4-2. This is again because of SNR 

improvement due to the bandpass filters. As expected, the Quadrature CSA Receiver 

outperforms the Ideal CSA Receiver at a = 2fIF by about 1 dB. 

94 



4.7.4  Narrowband Interference 

The tone jammer and AM-SSB interferer introduced in Section 4.5.3 are now included in 

the Quadrature CSA Receiver simulation. Under the H\ hypothesis for the AM-SSB case 

saAf)- 

%[Q2(f + fIF)+Q2(f-fIF)]+ 

f5(/-/,.+/J+^(/ + /;-/J+f 
^[ß(/+f+/ff)ö(/-f+//f)+ß(/+f-//f)ß(/-f-//f)] 

|-ß(/+f+/Jß(/-f-/J 
gfß(/+f-//f)ß(/-f+/J 

im 

0 

a = 0 

a = ±-2fIF 

a = ± + 2fIF 

« = -2(/,-/J 
« = 2(/,.-/J 

e.w 

(4-1) 

and for the tone jammer case 

' ^[Q2(f + fIF) + Q2(f-f,F)]+is(f-fj)+is{f + fj)+^   « = o 

2^[ß(/+f+//F)ß(/-f+//F)+ß(/+f-//F)ß(/-f-//F)]    a = ±k*0 

l|ß(/ + f + /ff)ß(/-f-/J cc = ±-2fIF 

S?(f) = lrQ{f + f-f1F)Q{f-f+fIF) 

0 

a = ^ + 2fIF 

a = -2fj 

a = 2fj 

e.w 

(4-2) 

The interferer and jammer contributions to the SCF of z(t) are determined using Eqn. (4-7). 

Simulation results for the tone jammer and the AM-SSB interferer are presented in Figure 4-1 (a) 

and (b), respectively. For the tone jammer case, the Quadrature CSA Receiver detection 

performance is unaffected, as predicted by Eqn. (4-2), and shows an approximately 1 dB 

performance improvement over the Ideal CSA Receiver. In Figure 4-1 (b) it is evident that 

Quadrature CSA Receiver performance is effected by the AM-SSB interferer, even though Eqn. 

(4-1) shows that there are no overlapping cyclic features. As with the Ideal CSA Receiver, this is 
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due to the poor estimate of the cyclic spectrum of i(t) by the SSCA. In both cases, the Quadrature 

CSA Receiver outperforms the Ideal CSA Receiver due to the effect of bandpass filtering and the 

fact that the signal's null-to-null bandwidth equals the receiver bandwidth. 

0.9 
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Figure 4-1. Quadrature CSA Receiver Performance at a=2f,F with: 

(a) Tone Jamming, and (b) AM-SSB Interference 
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4.7.5  Summary 

This section determined the Quadrature CSA Receiver performance by simulation and 

compared to the performance of the Ideal CSA Receiver. Analysis of the quadrature receiver 

cyclic spectrum reveals that when the I and Q channels are input as a complex ordered pair, then 

the double carrier feature is removed, making detection more difficult. When the I and Q 

channels are summed, the magnitude of the cyclic spectrum is identical to that of a single channel 

receiver. Therefore, the only difference in detection performance between the Quadrature CSA 

Receiver and the Ideal CSA Receiver is due to the non-ideal bandpass filters. This aids detection, 

as the noise power is attenuated more than the signal power because of the concentration of the 

signal power in the middle of the passband. Consequently, in all signal environments, the 

Quadrature CSA Receiver shows a detection improvement of 1 dB over the Ideal CSA Receiver. 

This improvement is a function of signal bandwidth, and the 1 dB improvement is only for the 

case where the signal bandwidth matches the receiver bandwidth. As with Channel 1 of the 

channelized receiver, if the signal bandwidth is greater than the receiver bandwidth the 

attenuation of the signal and noise is equal and the performance of the Quadrature CSA Receiver 

approaches the Ideal CSA Receiver. 

4.8  Summary of Results and Analysis 

The purpose of this chapter was to determine the detection performance of three receiver 

configurations: the Ideal CSA Receiver, the Channelized CSA Receiver, and the Quadrature CSA 

Receiver. Initially, the performance of the SCF estimation algorithm, the SSCA, was examined. 

Various sets of operating parameters were considered and optimal parameters chosen on the basis 

of estimate accuracy, resolution and processing speed. Receiver performance against differing 

signal bandwidths was examined. By evaluating the test statistic at a = 2fIF, the performance 

effect can be determined simply by taking into account the changing SNR. Three different data 
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reduction methods were examined. Based on detection performance, analytical advantages, and 

the simplicity in constructing a threshold for all cycle frequencies, the Energy test statistic proved 

most suitable. 

The Ideal CSA performance was determined by simulation and compared to the 

performance of the radiometer. As cyclic feature detection theory suggests, the detection 

performance of the CSA receiver approaches that of the ideal radiometer in benign (stationary 

noise) environments. By applying radiometric detection principles to the test statistic, analysis 

shows that CSA receiver performance is directly related to noise quality. As the noise PSD 

becomes flatter, it is expected that the CSA receiver will outperform the radiometer. Simulation 

of a nonstationary noise environment shows that the CSA receiver outperforms the radiometer by 

approximately 10 dB, exhibiting only a slight decrease (less than 1 dB) in performance when 

compared to the stationary noise case. Analysis shows that the CSA detector is effected when the 

variance of the noise power exceeds the variance of the noise spectral correlation. When the 

signal environment includes tone jamming, the CSA receiver is unaffected, whereas the 

radiometer performs extremely poorly. In the presence of an AM-SSB interferer, the CSA 

receiver still outperforms the radiometer. However, performance is degraded by 1.5 dB due to 

the artificial cyclic features introduced by the SSCA when estimating the SCF of the AM-SSB 

signal. 

The Channelized CSA Receiver performance was determined by simulation and 

compared to the Ideal CSA Receiver. First, SNR improvements due to filter effects were 

examined and Channel 1 was found to have a negligible (0.1 dB) SNR improvement when the 

null-to-null bandwidth of the signal equals the bandwidth of each channel. This is due to the 

concentration of the signal power in the middle of the channel bandwidth. However, as signal 

power is distributed more evenly from an increase in signal bandwidth, the attenuation of the 

signal and noise become identical and the SNR improvement approaches Under all conditions, 
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Channel 1 and Channel 2 performed identically as predicted. Therefore, the Channelized CSA 

Receiver performance is approximately equal to the Ideal CSA Receiver, independent of the 

channel selected. 

Lastly, the Quadrature CSA Receiver performance was determined by simulation and 

compared to the performance of the Ideal CSA Receiver. Analysis of the quadrature receiver 

cyclic spectrum revealed that when the I and Q channels are input as a complex ordered pair, the 

double carrier feature is removed, making detection more difficult. When the I and Q channels 

are summed, the magnitude of the cyclic spectrum is identical to that of a single channel receiver. 

Therefore, the only difference in detection performance between the Quadrature CSA Receiver 

and the Ideal CSA Receiver is due to the non-ideal bandpass filters. This aids detection, as the 

noise power is attenuated more than the signal power due to the concentration of the signal power 

in the middle of the passband. Consequently, in all signal environments, the Quadrature CSA 

Receiver shows a detection improvement of 1 dB over the Ideal CSA Receiver. As with the 

channelized receiver, this is only for the case when the signal bandwidth matches the receiver 

bandwidth. If the signal bandwidth is greater than the receiver bandwidth, the attenuation of the 

signal and noise are equal and the Quadrature CSA Receiver performance approaches that of the 

Ideal CSA Receiver. 
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5.   Conclusions and Recommendations 

5.1 Restatement of Research Goal 

The goal of this research is to: 

1. Propose a method of detecting LPD/LPI communication signals using a non co- 
operative digital receiver. 

2. Evaluate the performance of this detection technique through simulation in benign 
and adverse signal environments and compare these results to the radiometer. 

3. Determine the effectiveness of this technique when combined with typical digital 
receiver architectures. 

5.2 Conclusions 

The Cyclic Spectrum Analysis (CSA) receiver is a robust detector which takes advantage 

of the spectral correlation properties of cyclostationary signals. Its performance closely matches 

the radiometer in benign signal environments and consistently outperforms the radiometer in 

adverse signal environments. 

The detection method proposed consists of estimating the Spectral Correlation Function 

(SCF) using the Strip Spectral Correlation Algorithm (SSCA). The SSCA is the most suitable 

estimation algorithm due to its uniform resolution and fine cyclic resolution. The resulting 

estimate is then reduced to a test statistic that is a function of cycle frequency and time only. This 

test statistic is equivalent to sequentially running a single-cycle non co-operative cyclic feature 

detector over all possible cycle frequencies. The proposed method is more computationally 

efficient than this method and, by estimating the complete SCF, benefits post-detection tasks such 

as classification. 

The operating parameters of the SSCA providing the best quality estimate in terms of 

resolution, variance, and minimizing processing time are N' (the first FFT length) equal to 16, and 
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N (the second FFT length) equal to 2048. It is expected that using state of the art FFT processing, 

each estimate would take approximately 0.6 ms to compute. 

Out of three possible data reduction methods, the method producing the Energy test 

statistic is optimal based on cyclic feature strength, analytical traceability, and detection 

performance. By using an energy related test statistic, well established radiometric detection 

principles are applied to explain the detection performance of the CSA receiver at various cycle 

frequencies. 

Under stationary noise conditions, the Ideal CSA Receiver performs within 1 dB of the 

ideal radiometer, the optimal non co-operative detector for stationary signals. By applying 

radiometric detection theory to the test statistic, analysis shows that the CSA receiver 

performance is directly related to the noise quality. As the power distribution of the noise 

becomes more uniform, the CSA receiver performance improves. When the noise distribution is 

perfectly uniform, the CSA receiver outperforms the radiometer. When the noise is modeled as 

being nonstationary, the radiometer exhibits a 10 dB decrease in performance whereas the CSA 

receiver is effected by less than 1 dB. In the presence of narrowband interference, the CSA 

receiver outperforms the radiometer. Specifically, in the presence of tone jamming with a 

Signal-to-Interference Ratio (SIR) of 0 dB, the CSA receiver performance is completely 

unchanged whereas the radiometer decreases by 7 dB. When the narrowband interferer is an 

AM-SSB signal, the CSA receiver performance is reduced by approximately 1.5 dB and the 

radiometer again decreases by 7 dB. 

When the CSA receiver methodology is implemented in a channelized digital receiver, 

the detection performance is unchanged. Additionally, the detection performance of each channel 

is approximately equal, experiencing no degradation due to non-ideal IF bandpass filter 

characteristics. 
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When the CSA receiver methodology is implemented in a quadrature digital receiver, the 

in-phase and quadrature components of the signal must be summed and input to the SCF 

estimation algorithm. By inputting the signals as a complex ordered pair, the main cyclic feature 

is removed and the detection performance of the receiver effected accordingly. The quadrature 

receiver variant of the CSA receiver outperforms the ideal receiver in all cases by approximately 

1 dB. This is due to the effects of the non-ideal IF bandpass filter and the fact that the majority of 

the signal power is distributed in the center of the bandwidth. This performance improvement is 

a function of ratio of the signal bandwidth to the receiver bandwidth. As the signal bandwidth 

increases, the signal and noise components are equally attenuated and the quadrature receiver 

performance approaches that of the ideal receiver. 

5.3  Significant Results of Res earch 

While the problem of detecting weak cyclostationary signals in the presence of noise has 

been previously examined from a theoretical viewpoint, only the performance of a single cycle 

co-operative detector has been evaluated and simulated [15,45]. Not only does this research look 

at the performance of a single cycle non co-operative detector, but it also proposes a method for 

efficiently formulating a sequence of single cycle feature detectors over a given input bandwidth 

by implementing an SCF estimation algorithm. The CSA receiver is found to outperform the 

radiometer in all adverse signal environments and performs within 1 dB of the radiometer in the 

presence of stationary noise. 

Additionally, this research takes into account the effect of existing digital receiver 

architectures. Significantly, the performance of the Channelized CSA Receiver is independent of 

the channel selected and equals the performance of the ideal receiver. The quadrature receiver 

implementation improves upon the performance of the ideal and channelized receivers as a 

function of signal bandwidth. 
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5.4  Recommendations for Fu ture Research 

Recommendations for further research fall into four main categories: algorithm 

improvement, digital receiver modeling, detection performance evaluation and interception 

performance evaluation. The Strip Spectral Correlation Algorithm (SSCA) is well suited as an 

analytical tool. However, it suffers from a number of disadvantages when implemented in a real 

receiver. First, the SSCA requires a lowpass signal. In most cases, the IF signal in a digital 

receiver is a bandpass signal and requires additional processing to shift the signal in frequency. 

The SSCA should be modified to allow bandpass SCF estimation without sacrificing resolution or 

accuracy. Second, the SSCA could be optimized further through the use of wavelet signal 

processing. An improvement in efficiency means improved detection performance, either due to 

improved resolution or quicker computation. 

Digital receiver modeling should be expanded to include scanning requirements, the use 

of energy detection for channelized receiver set on, and additional processing tasks the digital 

receiver is required to complete. This research assumed that the signal of interest is centered 

within the IF bandpass. This is not a particularly realistic assumption as a major factor in receiver 

performance is the time taken to scan the band of interest. In the case of the quadrature receiver, 

the modeling should include varying the local oscillator frequency to scan the receiver across the 

entire RF filter bandwidth. The channelized receiver model should include a method for 

determining which channel to set the SSCA onto, possibly through the use of a simple 

radiometric device. Additionally, the calculations performed to determine processing time 

assume the receiver can assign one hundred percent of its processing resources into this task. 

Again, this is not a realistic assumption, since the primary task of these receivers is typically radar 

signal detection. Therefore the task of detecting LPI/LPD communication signals is generally 

secondary. 
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An additional area for further research is detection performance evaluation. This 

research only determined detection performance of the CSA receiver when the signal of interest is 

a DS-SS BPSK signal. Clearly, there are many more LPI/LPD waveforms of interest and the 

receiver performance against these signals should be investigated. In addition to comparing the 

performance of this receiver against a radiometer, the performance of a chip rate detector and the 

co-operative single cycle detector should be compared. 

The last area for possible research is the evaluation of the interception performance of the 

receiver. This research proposed a detection method that appears to have advantages in 

classifying the cyclic spectrum as well as in detection. The application of pattern recognition 

methods in this area should be explored further. 
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Appendix: Notation and Terminology 

The following notation and terminology is used throughout this thesis and is consistent with that 

found in the literature. 

Probabilistic Definitions 

Rx (T) Autocorrelation of stochastic process x(t) Eqn. (2-1) 

K (T) Cyclic Autocorrelation Function (CAF) Eqn. (2-2) 

s" if) Spectral Correlation Function (SCF) Eqn. (2-3) 

Sx(/) Power Spectral Density (PSD) Eqn. (2-1) 

Deterministic Definitions 

.    , , Limit cyclic autocorrelation function of infinite length time- 
R°(T) Eqn. (2-1) 

series x(t) 

Suv(f) Limit cross spectral correlation Eqn. (2-4) 

S" (T) Limit cyclic spectrum Eqn. (2-5) 

Spectral Estimators 

SxT\f) Periodogram of finite length time-series xT(t) Eqn. (2-1) 

$xT v> f) Time-variant periodogram Eqn. (2-6) 

SUvTV'f) Time-variant cross periodogram Eqn. (2-8) 

SxnyV'fjAt        Time-smoothed time-variant periodogram Eqn. (2-3) 

^xtjV'fjAf Frequency-smoothed time-variant periodogram Eqn. (2-4) 
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S" (t,f) Time-variant cyclic periodogram Eqn. (2-1) 

S"    (t,f)tx Time-smoothed time-variant cyclic periodogram Eqn. (2-2) 

S" {t,f)Af Frequency-smoothed time-variant cyclic periodogram Eqn. (2-2) 

XT(t,f) Sliding finite-time Fourier transform or complex demodulate    Eqn. (2-7) 

Test Statistics 

XMC Multi-cycle Test Statistic Eqn. (2-4) 

Xa
sc Single Cycle Test Statistic Eqn. (2-5) 

C"if) Coherence function Eqn. (3-2) 

XMAXif,a) Maximum Cut Test Statistic Eqn. (3-1) 

XE (t, a) Energy Test Statistic Eqn. (3-2) 

DCS Degree of Cyclostationarity Eqn. (3-1) 

DCS" Cycle Frequency Decomposed Degree of Cyclostationarity       Eqn. (3-2) 

XDCS (t,a) Degree of Cyclostationarity Test Statistic Eqn. (3-3) 

Digital Receivers 

xT{t) Ideal Digital Receiver Output Section 3.4.1 

ym \t) Channelized Digital Receiver mth Channel Output Section 3.4.2 

/ x        / \       Quadrature Digital Receiver In-phase and Quadrature 
ZiT {*), ZQT \f) Section 3.4.3 

Outputs 
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