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Loop Gain Estimation for Adaptive Control 

Chapter 1 - Introduction 

1.1  Background 

Feedback, and the reliance on high gain action, are used to mitigate the ill effects of the un- 

structured environment where the controlled plant is operating. At the same time, the benefits of 

feedback control, and, in particular, high gain action, are severely circumscribed by sensor noise 

[10]. System identification entails the estimation of a control system's parameters from measure- 

ments on the system's inputs and outputs [11]; as such, system identification lends itself well to 

integration into modern feedback control synthesis, because no additional hardware, i.e., sensor or 

actuators, above and beyond the components used in conventional feedback control, are required. 

The incorporation of system identification into feedback control law synthesis calls for additional 

signal processing, however, a reduction in plant uncertainty is achieved. Therefore, lower gains 

in the feedback control law are possible. Hence, there is a strong incentive for the incorporation 

of system identification into control law synthesis and the employment of indirect adaptive control. 

Unfortunately, system identification, which entails the estimation of all the plant's parameters, re- 

sides in the realm of nonlinear filtering. It is however recognized that accurate information on the 

control matrix parameters is of paramount importance in control law design, e.g., in flight control 

one then refers to the "control derivatives". Now, in linear control systems, and provided that the 

dynamics matrix is known, the exclusive estimation of the parameters of the control matrix only 

is reducible to a problem in linear regression and therefore, is amenable to analysis using linear 

mathematics. Hence, a rigorous, i.e., an unbiased, estimate of the parameters of the control matrix 



can be obtained. In this thesis, a simplified version of this problem is addressed and an algorithm 

for the estimation of a single input control system's critical loop gain parameter is developed. The 

inclusion of a "forgetting factor" into this basic algorithm, or the employment of a sliding window, 

will afford on-line operation. Thus, a possible mechanization of an indirect adaptive flight control 

system which incorporates the loop gain identification algorithm developed in this paper is illus- 

trated in Fig 1. In a flight control application, the states a and q represent the aircraft's angle of 

attack and pitch rate, respectively. 

1.2 Problem Statement 

The linear discrete-time control system is considered, 

xk+i   =   Axk + Kbuk + Twk,    k = 0,l,...,N-l,    E{wkwl) = Q (1) 

x0   =   N(x0,P0X) (2) 

K   =   N(K0,P0K) (3) 

Vk+i   =   Cxk+1 (4) 

Zk+i   =   Vk+i+Vk+i,    E(vk+1vl+1) = R (5) 

In the special case of a single scalar output, the measurement equation (5) is 

Zk+i = 2/fc+i + vk+i,        vk+i = N(0, a2) (6) 

The control system's state xk e$ln. The dynamics matrix A, the control matrix b, the obser- 

vation matrix C and the vector T are known. The respective process and sensor noise covarinaces, 

Q and R (or a) are also known. In addition, the prior information specified in Eqs. (2) and (3) is 

provided. It is required to identify the scalar loop gain K, given the input sequence UQ, U\, ..., UJV-I 

and the measurements record z\,Z2,..., ZN- An estimate of the control system's state is also ob- 

tained.   Here, the loop gain parameter K is developed.   Hence, for instance, in the flight control 



application, one can now handle control surface failure. Obviously, for an unfailed plant (aircraft) 

the loop gain K = 1 (by definition), viz., K is unity, until a failure at time tf reduces the control 

derivative and forces K < 1. 

In this research, the identification of the control system's loop gain K is undertaken. The 

classical Kaiman filter theory for linear control systems [3] is extended and the control system's 

state and loop gain are jointly estimated. Explicit formulae for the loop gain's (unbiased) estimate 

and estimation error covariance are derived. The state estimate and the covariance of the state 

estimation error are also obtained. Also, digital control and digital signal processing are employed. 

Thus, a sampling rate of 100Hz is used and in our simulation the continuous-time plant dynamics 

are discretized accordingly. 

1.3  Proposed Adaptive Plant Controller 
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Figure 1. Flight Control System 

The propsed adaptive controller is shown in Fig. 1. A pilot commands a pitch rate signal, qc, 

into the adaptive controller.   The commanded input is passed through a low pass filter and into a 



PI or proportional fixed controller to imporve tracking performance creating the signal, r. Inside 

the boxed-off section labeled 'adaptive controller' is the system identification algorithm. The 

identification algorithm, i.e., modified Kaiman filter, is fed noise corrupted measurements, am and 

qm, from the plant. In turn, (filtered) estimates of a, q and loop gain K, a, q and K respectively, 

are calculated for each time sample. The estimates a and q are then fed back and summed with 

the signal r. The reciprocal of K is fed back into the foward path after the summing junction of 

the states and signal r but before the actuator. The actuator being used in this research is for the 

elevator of an F-16 class aircraft. By feeding back -i, the effects of K in Eq. 1 will be reduced 

and tracking performance restored. The value of K corresponds to a degree of failure in the flight 

control system. 

1.4 Assumptions 

Chapter 2 describes the classical system ID procedure for finding a system model. For this 

thesis, the system order and plant is assumed to be known before hand. The research proceeds under 

the assumption that the failure in the elevator does not significantly change the over-all aircraft 

system model. For this reason, the identification of the aircraft model is not needed and the focus 

is spent of identifying the open-loop gain which corresponds to the degree of failure. 

In this thesis, only the short period approximation is used and the phugoid period is neglected. 

This is done because the phugoid oscillation occurs in under thirty seconds where as the short 

period ocsillation occurs in under one second. Since the research being presented in this thesis 

deals with failing control surfaces, the time needed to detect a failure must occur in a short period 

of time. This is to prevent aircraft uncontrolability and loss. 

When dealing with the short period approximation of an F-16 class aircraft, both the alpha 

and q channels are used in the feedback design - see Fig.   2 for a visual description of alpha. 



Figure 2. Aircraft longitudinal parameters 



Although pitch rate tracking can be done without use of the alpha channel, Figs. 3-6, the extra data 

it provides is beneficial to the Kaiman filter used in the system identification algorithm. It also 

provides additional tracking stability when there is a control surface failure in the longitudinal axis. 

0.4 

Pitch Rate Response to a Step Input With Kr 

-i 1 1 1 1 1 1 r- 

Kq =  1 

Kd =  3.000000e-001 

_i i i i_ 
0.5 1 1.5 2 2.5 3 

Tim e (sec) 

Figure 3. Pitch rate response without using alpha feedback with gain Kr 

Figs. (7) and (8) show that a change in the measurement noise in the a channel has minimal 

effect on the controllers ability to track a (the dashed verticle line indicates the time of failure, 

t = 3 sec). However, it does influence the pitch rate measurements -see Figs (9) and (10). This is 

because the two channels are coupled. For this reason, the square root of the strength of the alpha 

noise is held constant at 0.03 degrees. This way the effects of measurement noise on the controllers' 

ability to track the pitch rate can be analyzed and compared. It also provides some dynamics for 

the system identification algorithm and creates a more realistic measurement case. Implementing 

a PI or proprotional controller to improve tracking performance yielded similar results. This is due 

to the robustness of the original flight control system. 
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Figure 4. Pitch rate response with alpha feedback using gain Kr 

Pitch Rate Response to a Step Input With PI Controller 
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Figure 5. Pitch rate response without alpha feedback using a PI controller 



Pitch rate Response to a Step Input with a PI Controller 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.1 

Figure 6. Pitch rate response with alpha feedback using a PI controller 

Alpha Response With Fixed Controller 

Alpha estimate with failure 
True alpha with failure 

Figure 7. Alpha response with a fixed controller; aa = 0.03 deg/sec, K=0.8, SNR=18.61 dB. 



Alpha Response With Fixed Controller 

Figure 8. Alpha response with a fixed controller; aa = 0.3 deg/sec, K=0.8, SNR=18.61 dB. 
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Figure 9. Pitch rate response with a fixed controller; aa = 0.03 deg/sec, K=0.8, SNR=18.61 dB. 



Pitch Rate Response With Fixed Controller 
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Figure 10. Pitch rate response with a fixed controller; aa = 0.3 deg/sec, K=0.8, SNR=18.61 dB. 
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The noise vector used in this thesis was created using the Matlab RANDN(N) function [12]. 

This command picks data points from a normal distribution with mean zero and variance equal to 

one.   After every run of the simulation code, the noise generator is reset to a initial point inside 

(R) Matlab    .   This created a fixed single noise sample for all simulations.   A better method would 

have been to set up a Monte Carlo run, generating hundreds of noise vectors and averaging them to 

get more random noise input. However, running a Monte Carlo analysis is time consuming and is 

not a necessary focus for this thesis. 

Process noise is represented in the system identification algorithm as u>,however, no process 

noise is implemented in the simulation runs.   This is done to show that the estimation techniques 

described in this thesis work in a deterministic case. The only noise used in the simulations are the 

alpha and pitch rate channel measurement noise needed for the algorithm. 

1.5 Organization of Thesis 

Chapter 1 provided an overview of the problem statement, a description of the proposed plant 

and the assumptions and reasoning for various parts of the research. Chapter 2 gives the classical 

approach to system identification, an example of a second order system and a stochastic approach 

when noise is introduced into the system. Chapter 3 introduces the deterministic approach to the 

system ID algorithm used in the thesis. The stochastic approach to the algorithm presented in 

Chapter 4 will be the main system identification algorithm. Chapter 4 also provides examples 

and remarks concerning the development of the open-loop gain system identification algorithm. A 

numerical simulation experiment is performed. Thus, a flight control experiment is performed and 

numerical simulation results which corroborate the developed theory are presented Chapter 5. The 

effects of sensor noise on identification performance are also investigated and presented in Chapter 

5. Concluding remarks are made is Chapter 6. 

11 



Chapter 2 - System Identification 

2.1  Introduction 

This chapter provides general background knowledge of system identification techniques. 

Both the classical and stochastic analysis methods are explained and examples are given. Also, 

some concerns and design considerations related to system identification are addressed. 

When modeling a system, there are two approaches of consideration, deductive and empirical 

[17]. With deductive modeling, the laws and equations found in physics and engineering are used 

to predict the proper model. With the empirical (system identification) approach, least squares and 

Kaiman estimates are found to form a statistical approach for determining a dynamics of the system. 

System identification has more applications than just for modeling purposes. It is also a 

useful technique for model order reduction of a plant or compensator, for measuring or estimating 

parameters and for real time adaptive control. 

One of the challenges that needs to be addressed is modeling error, especially when the order 

of the system, n, is not known. This error may consist of various disturbances such as process 

and measurement noises. Over-modeling is another source of error in system identification. It 

may seem logical to over-model a system. The extra parameters would be redundant and make 

determining the over-all system model easier. When determining the unknown parameters of a 

higher order model, the parameters that exceed the order of the physical system should equal zero 

and fall out of the equation. However, this does not always happen because of rounding, noise 

and other anomalies being injected into the calculations. These approximated values disturb the 

pole and zero placements of the system. Therefore, it is better to under-estimate the order of the 

unknown system than to over-estimate it. Under-modeling requires determining values for the 

parameters, ai, &2,- ■ •, bi, b2,- • •, that yield the best fit over a desired bandwidth. 

12 



2.2 Classical System Identification 

Consider the continuous-time transfer function (TF) [17] 

H(8) = y^l=      b^n~1+b2Sn-2 + --- + bn^1s + bn 

u(s)      sn - alS
n~l - a2s

n~2 are_lS - an 
(7) 

If we chose the input to be 

The output is the phasor 

where 

uk(t)=smu>kt,    0<t (8) 

yk(t)   =   (Ak+jBk)smtükt 

=   A sm(tokt + 4>) (9) 

(t>=Atan{i\) (10> 
Letting s = jto and substituting into H(s) 

^ = W)=Ak+3Bk 

blU^y-1 + b2(juk)n-2 + • ■ • + bn-iUuk) + bn 

{j"k)n ~ aiO'wib)»-1 - a2(juk)^ a„_i(ja;fc) - an 
(11) 

Cross multiplying and reducing creates a linear equation where the coefficients a and b can be 

obtained. 
n n 

Ak + jBk = J2(Ak + jB^Uuk^Oi + ^2(jcok)-% (12) 

Expanding the equation gives 

Ak+jBk   =   1(Ak+jBk)(—a1-^a3 + ^a5-\a7 + ---) 
J u,k col <4 "l 

J  cok ul u>\ u>l ' 
111 

+{Ak + jBk)( a2 + -rat ^a6 + • • ■) 
wfc2 col uPk 

+(-^2 + Jt64-> + ---) (13) 

13 



Multiplying both sides by j and expanding, we are able to match the real and complex portions of 

the right side of the equation with the left. This will allow us to solve for the unknown coefficients. 

A  i 1           *            1            *    7 -Bk   =   Ak{—a\ 3 a3 + —ra5 =-o  H ) 
u>k uk uk UJk 

r,   /     1 1 1 
+Bk( a2 7Ö4 + -g-06 ) 

Wfc2 U)\ u)bk 

+(—6i - — 63 + — &5 - — b7 + ■■■) 
u)k u>6

k u% uj7k 

r,   /   1 1 1 1      7 
^fc    =   Sfc(—01 0O3 + —5-05 ffli ) Uk Uk Uk UJk 

A   /        1 1 1 X +Ak{ a2 + —rat g-a6 H ) 
ujki col col 

+( b2 + — h-— be + ---) (14) 
Uk2 ul ul 

For an nth order SISO system, the control system is specified by 2n parameters.   For this reason, 

we chose n sinusoidal test functions, each one producing 2n equations. 

2.2.1   Second Order Example 

Given the TF [17] 

H(s) = < 
S2 + 2(,LünS + CJ2 

Knowing that we can measure the output phasor, the unknown parameters, 6 and con, can be solved 

using the technique described in Eqs. (11)-(14): 

A + jB = 
co2 

n 

-LÜ2 + 2C,LünjU + U)2n 

Cross multiplying and simplifying yields 

{A + jB){u?n -UJ
2
 + 2(u>njoj) = u?n 

(A - l)a£ - 2Bcv((cün) - Au? + j{Bu?n + 2Au((co) - Bu2) = 0 

14 



Separating the complex and real terms 

(A - l)Ji - 2Bu((un)   =   ALO
2 

Bui + 2AUJ((LV)   =   ßu2 

Solving for natural frequency and damping ratio, the unknown parameters, yields 

/    A2 + B2 

c = 
2^(A2 + B2-A)(A2 + B2) 

Recall, A and B are the coefficients of the output phasor and can be directly measured. 

2.3  Stochastic Analysis 

A goal of system identification is to find a "best fit" model of the system being analyzed [15]. 

The stochastic analysis takes the measurable input and output data, which has some noise influ- 

ence. Using a least-squares approach, the sum of the squared errors between the true output of 

the model and the measured output is minimized. Using the least-squares approach and stochastic 

estimation, large errors and poor measurements are given less value or priority than more accurate 

measurements. Because of the introduction of noise into the system and consequently the imple- 

mentation of stochastic analysis, our once continuous system is now discretized and represented as 

a discrete-time model. 

In a case of a dynamic system, a system output can be described as [7,15,17] 

Vk+i = aiVk + aiVk-\ H V a-nVk-n+i + b\uk + b2uk-i -\ h 6mnfc_m+1        (15) 

and the measurement equation as 

Zk+i = Vk+i + vk+i,    vk+1 = iV(0,<72) (16) 
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which may contain process and disturbance noise. Manipulating the above equation a little we can 

say 

Vk+i Zk+l — Wfc+l 

Therefore, 

zk+1-vk+1    =   a-i(zk - vk) + a2(zk+i - vk-i)-\ K^-n+i-^-n+l) 

+biuk + b2uk^i H \rbmuk-m+i (17) 

By defining a noise vector, Vfc+i, we can rearrange the above equation 

zk+\    =   a\zk + a2zk-i -\ \- anzk-n+i + friUjt + b2uk^\ H 1- bmuk_m+i 

+14+1 

where 

Vfc+i = vk+i - a\vk - a2vk-\ ^ anVk-n+i 

Now, the measurement equation is defined as 

Z = HQ + V 

where 

Z± 

( Zk+l \ 

and 

H± 

Zk+2 

\ Zk+N+1  ) {N+1)xl 

(      Zk Zk_i 

Zk+l zk 

e^ 

(al\ 

\bm ) 

v± 

(m+n)xl 

Zk-n+l Uk Uk-\ 

Zk-n+2 Uk+i Uk 

(   vk+1   \ 
Vfc+2 

V  Vk+N+l  j (N+1)xl 

Uk-m+1   \ 

Uk-m+2 

\ Zk+N     Zk+N-l     ■ ■ ■      Zk+N-n+1     Uk+N    Uh+N-1 

(18) 

(19) 

(20) 

Uk-m+N  ) (jv+l)x(m+ri) 

(21) 
In this notation, m is the number of measurements and n is the number of parameters to be identi- 

fied. We can now find the Least Squares estimate, 9, and the error covariance matrix P [1,17]. 
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The Least Squares estimate is defined as 

6 = (HTH)-lHTZ (22) 

The above equation calculates the parameter estimates using an unweighted pseudo-inverse.  This 

is possible when the weighting matrix, R, is assumed to be diagonal or when cross correlation does 

not exist.    When this assumption is made, R = a2I, where I is the identity matrix and a2 the 

strength of the noise, drops out of the equation. 

The error covariance is defined as 

P = (T^lFH)-1 (23) 

It too does not take into effect the measurement or process noise when estimating the parameters. 

A more rigorous method would be to solve for the parameter estimates and error using a weighted 

pseudo-inverse to account for any noise in the system. The minimum-variance estimate is defined 

as [3,4] 

QMV = {HTRr1H)-lHTR-lZ (24) 

and the minimum-error-estimate is 

pmv = ^(tfTR-iH)-1 (25) 

2.4  Calculating R 

R is affected by the noise created by our sensors when measuring the output of the system. 

Many times, R is represented as a diagonal matrix with a2 along the diagonal and zeros in the off- 

diagonal spaces which represents no cross correlation. This seems true knowing each output has 

its own independent sensor to take measurements. In truth, the sensors are coupled to some extent 

[17]. This causes off-diagonal terms in the R matrix. Before we described R as being the expected 

value of the measurement noise times the transpose ofthat noise.   It is shown from Eq. (20) that 
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the measurement noise is actually a noise vector, V.  This noise vector now produces off-diagonal 

terms in the R matrix. 

R, using a two parameter example, is now defined as 
// Vk+1 \ 

: ( Vk+i   ■ ■ ■    Vk+N ) 

\ vk+N ) 
( (      vk+1 - aivk      \ 

Vk+2 ~ aiVk+i 

R   =   E(VV1) = E 

=   E 

\ 

( Vk+i ~ a\vk   vk+2 - aiVk+i    ■ ■ ■    vk+N - aivk+N_i ) 

\ Vk+N - aiVk+N-i J 

(vk+x - aivk) (vk+i - axvk)       (vk+i - aivk) (vk+2 - axvk+i)     ■■■ ^ 
=   E |   (vk+2 ~ aiVk+i) {vk+x - aivk)    (vk+2 - aivk+x) (vk+2 - a\vk+\)    ■ ■ ■ 

'■ ) 

) 

( a2 + a2a2 

9 —acrz 

0 

0 

—a<7 

a2+a2a2 

—aa2 

0 

—aa 
a2 + a2a2 

-aa 

0 

0 
0 

—aa2 

a2 + a2a2 

-aa 

(26) 

Finally, 

R = a2 

( 1 + a2      -a 0 

—a 1 + a2 —a 

0          -a 

v        ■■■ •• / 
In summary, the parameters of an unknown plant can be identified by using a sinusoidal test 

function as an input to that unknown plant and observing the phasor output. However, care must 

be taken not to over-model the unknown plant. When noise is included in the system dynamcis, 

stochastic analysis must be used to account for the effects. A discrete-time model was given and 

the input and measurement equations, now with a noise term, were defined . It was then shown 

how the strength of the noise can be represented as a weighting matrix, R, and applied to the state 

estimates to provide more accurate results. 
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Chapter 3 - Deterministic Model 

A physical system can be adequately represented as a mathematical model in order to inves- 

tigate its dynamic characteristics and system responses. Sensors are used to measure the states 

required for the control law. The control law is simply the feedback of all the states required in 

the system identification algorithm [9]. It will be discussed further in Chapter 5. Although the 

proposed plant involves using a stochastic model to generate the state estimates, as in Fig. 1, it 

is necessary to create a deterministic model first. The deterministic model is the simplest model. 

With a deterministic model, physical noise is not introduced into the system. By removing the 

noise, the model and mathematics are made simpler. This allows us to see the true relationship 

between the input command and the output responses. It also helps the designer determine if a 

compensator is needed to improve system performance. The desired state parameters must be able 

to be calculated deterministically if one hopes to observe them later when noise is an influence. 

3.1  Deterministic Model Setup 

The aircraft model is an F-16 class aircraft flying at Mach 0.9 at 20,000 feet and the (unstable) 

short period pitch dynamics approximation is used [16]. The relevant states are a and q, the aircraft 

angle of attack and pitch rate, respectively, and the control variable is the elevator deflection 6e. 

The plant truth model used in the system identification algorithm is 

ä   =   Zaa + Zgq + KZSe 

q   =   Maa + Mqq + KMSe 

The Z derivatives are 

Za = -1.3433,    Zq = 0.9946,    Z6e = -0.1525 

and the M derivatives are 

Ma = 3.5,    Mq = -1.0521,    M6e = -24.3282 
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In continuous state space form, the bare aircraft (plant) dynamics are 

x   =   Ax + bu 

-1.3433    0.9946   \        /  -0.1525    , 
1.2915     -1.0521  )     '  \  -24.3282 

where the states 

fa x = 
\ 9 

evolve in $ft2 and u is the elevator deflection 6e. 

The input is three pitch rate doublet commands (q command), having an amplitude of ±10 

degrees and a period of 4.5 seconds giving a 13.5 second record. The doublets are passed through 

a low pass filter, ^g, and applied to a unit step to give a 13.5 second period of excitation and 3 

seconds of steady control for a combined 16.5 seconds of data. The input command represents a 

pilot "exciting the stick"or applying dynamic movement to the aircraft's elevator. 

The input command is then summed with the states a and q using state feedback. The elevator 

command then goes through a first order actuator with a bandwidth of 20.0 rad/sec, -jM^ ■ This 

signal, 6e, is the input signal into the plant. 

Augmenting the A and b matrix with the actuator dynamics yields 

x   =   Ax + bu 

Za    Zq    Zge 

Ma   Mq   MSe 

where the states are now 

and the control input is 6e 

and the actuator dynamics are 

0       0      -i 

x = 

6ec = r - (Ka + Kq + K6e)x 

0e = 0e + —Oe 
T T 
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where r = 0.05 sec. 

The closed loop A matrix is now formed using state feedback.  The resulting A and b closed 

loop matrices are 

Ad   =   A + b[Ka   -Kq   -KSe ] 

7       7       7 
Ma   Mq   Mge   ] + [   0   ] [ -Ka   -Kq   -KSe ] 

so we get 

x = Ad x + bdU 

The system as is will not track a step input, so a proportional or a PI controller can be included to 

adjust the tracking. 

3.2 Proportional Controller 

To find the gain needed to improve tracking performance, the augmented closed-loop state 

space equation is used. The reference signal r (= q) is the exogenous input and 6C = Krr — Kaa — 

Kqq — Kse ■ At steady state, x = Aci x + bKrr = 0. Writing the augmented state space equation 

with the necessary gain, Kr, at steady state 

0 = Ad x + Krbr 

and solving for x yields 

x = KrA^lbr 

Substituting the above into the output equation 

y = ex 
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gives us 

y = KrciAjbr) 

It is desired for the output to track a step input. For this to happen y = r: 

1 = KrcA^b 

must hold. Solving for Kr, yields 

Kr = 
1 

r     cAcl-^b 

which gives the required gain needed for proper tracking.  This gain is then applied to the system 

before the feedback loop as shown in Fig. 1, Chapter 1. This adjusts our Bc; to the following 

(   ° Bd=       0 

The gains needed for KQi Kgand Kge are 

Ka   =   0.283 

Kq   =   0.876 

KSe   =   0.3 

3.3  PI Controller 

Because the tracking error, or steady state error, is large but the transient response is adequate, 

a PI controller can be used [8]. It works by increasing the system type without significantly 

changing the dominant roots of the characteristic equation. This is done by placing a zero close to 

the origin to counteract the integrator pole located at the origin. This way, the system response is 

maintained very close to the original and the tracking error is reduced. 

Using a PI controller to obtain tracking causes the A and b matrices to change because of the 

additional integrator state. 

x = 

/   Za Zq       Zse      0  \ 
Ma Mq   M6e   0 

0      0-^0 
\   0 -1      0     0 ) 

x + 0 
0 

V1/ 

r + 
0 
l 
T 

v o y 

22 



where the states are now 

and r is the reference signal. Now, 

6r.   =   r 

t a \ 

\'J 

-Kaa - Kqq - KsJe + Kzz 

z   =   r — q 

The new Ac; and Bc/ matrices are 

Acl   =   A + b[ -Ka   -Kq   -K6e   Kz ] 

(   Za      Zq %6e 0    \ 
Ma     Mq MSe 0 

(l+ifr,,)      K^ 
T T 

o  J 

K^      K, 
T T : 

V o   -l      o 
/ o \ 

Bcl=      ? 
r 

The gains needed to improve tracking performance are 

Ka   =   0.283 

Kq   =   0.876 

K6e   =   -0.4 

Kz = -0.0001 

In this chapter, the deterministic model of the thesis problem was addressed. It was shown how the 

actuator dynamics was augmented with the A and b matrix, and the control law defined. Because 

the control system could not properly track a step input, a proportional and a PI controller were 

implemented for two different case studies. The closed loop matrices were found for both fixed 

controllers and the gains identified. 
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Chapter 4 - Stochastic Model 

A deterministic system may not always provide a complete and a sufficient method for data 

analysis. There are three basic reasons why this may be so [13]. 

As said before, a physical system can be adequately represented as a mathematical model. 

While this is true, it also says that no model is a perfect model. The model may be sufficient 

enough to observe those responses the designer finds important but many physical systems are very 

complex and nonlinear. Nonlinear systems are often linearized about some nominal point and the 

higher order terms are often neglected to make algorithms simpler and reduce computer processing 

time. Therefore, mathematical models are designed with error and uncertainty in it. 

Dynamic systems, such as an aircraft, are not just controlled by the user. Many external 

sources also serve as inputs into the system. These disturbances can come from wind, moisture, 

computer and actuator system delays. In short, most systems cannot be represented as a single 

input system. Factors are always present that can't be modeled in a deterministic system. 

Just as mathematical models are not perfect models, sensors, or measurement devices, are not 

perfect either. When states are measured using a device external to the model, imperfections are 

introduced. Therefore, the measurements displayed by the sensor are corrupted by its own design 

imperfections, system responses and noise. Another problem with sensors is that not all system 

variables are able to be measured with a common sensor device. For these situations, and for the 

reasons above, a stochastic estimation model is used. 

A stochastic system model is created with the help of a Kaiman filter. A Kaiman filter is 

basically a data processing algorithm that uses all available data, such as initial conditions, plant 

model, and statistical descriptions of any biases, noise or model uncertainty.   This information is 
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fed into the propagate/update algorithm which then optimally derives an estimated value for the 

system states or any other variables of interest in a way that minimizes error. 

4.1 Recursive System Identification Algorithm 

The novel loop gain system identification algorithm is stated in Theorem 1.   Since measure- 

ment noise is now being introduced into the system, a discrete-time model is used. 

Theorem XConsider the following linear estimation problem. The linear dynamical system is 
xk+1 = Axk + Kbuk+Twk,    k = 0,l,...,N-l,    E{wkwl)=Q (27a) 

The prior information is 
x0   =   N{x07P0x) (28a) 

K   =   N(K0,POK) (28b) 
The output signal 

yk+i = Cxk+i (29) 
and the observation equation is 

Zk+i = Vk+i + Ufc+i,    E(vk+ivl+1) = R. (30a) 
The mortices A, b, C and T are known.    The respective process noise and measurement noise 
covariance matrices, Q andR, are also known. 

Denote by xk and Kk the respective estimates of the state at time k, xk and the loop gain K, 
given the measurements record zi, ...zk, the input sequence uo, ...,uk-i, and the prior information 

on x0 and K.    The covariance of the estimation error of the I    „1 vector is denoted by the 

partitioned matrix Pk = (     rXI       xK 

Initially, set 
X0   =  &Ol K-O   =  -l^Ol *Oxx   ==    "o,l P°KK    =       °K1 PoxK   =  U. 

Then for k = 0,1,..., N — 1, the state and gain estimates are 
xk+x    =   Axk + Kkbuk + Kx(zk+i - CAxk - KkCbuk) (31) 

Kk+1   =   kk + KK(zk+l-CAxk-KkCbuk) (32) 
where the Kaiman gains 

Kx   =   {APkxxA
TCT + uk[APkxK(Cb)T + b(CAPkxKf} 

+u\PkKKb{Cb)T + TQTTCT} x {CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + (Cb)(CAPkxKf] 

+u2
kPkKK(Cb)(Cb)T + CTQVTCT + R}-1 (33a) 

and 
KK   =   [{CApkxK)T + ukPkKK{Cb)T}x{CAPkxxA

TCT 

+uk[CAPkxK(Cb)T + (Cb)(CApkxK)T) 

+u\pkKK (Cb)(Cb)T + CTQTTCT + R}-1 (34) 
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Furthermore, the estimation error covariances are 
Pk+lxx   =   {[APkxxA

T + uk(APkxKbT + bplKAT) 

+ukPkKKbbT + TQT7)-1 + CTR-lC}-1 (35) 

P*+i™    =   PkKK-[(CAPkxK)T + ukPkKK(Cb)T}{CAPkxxA
TCT 

+uk[CApkxK(Cbf + (Cb)(CApkxK)T}+ulpkKK(Cb)(Cb)T 

+CTQTTCT + R}-l{CApkxK + ukVkKK(Cb)) (36) 

Pk+lxK   =   ApkxK + ukPkKKb - {APkxxA
TCT + uk[APkxK(Cbf 

+b(CAPkxK)T]+ulPkKKb(Cb)T + TQTTCT} x 

{CAPkxxA
TCT + uk[CAPkxK(Cb)T + {Cb)(CAVkxK)T) 

+ulpkKK{Cb)(Cb)T + CYQYTCT + R}-1 x 

(CApkxK+ukPkKK(Cb)) (37) 

4.2 Proof of Theorem 

The proof of Theorem 1 is given below: 

Since the unknown loop gain K is a constant, we augment the dynamics as follows. 

Kk+1 = Kk (38) 

Hence, the augmented state dynamics evolve in 5Rn+1and are 

(s+
+OKo"f)(Ä)+(s)- 

and the measurement equation is 

zk+l=(c   \   0)(XK
k

k
+

+\)
+Vk+1 m 

As you can see, the equations are similar to that of the deterministic model except for noise 

now being modeled into the system.  Here, the wk and vk+i represent the process noise and mea- 

surement noise respectively.   The covariances of these noises are represented as Q and R in the 

stochastic model. The values of Q and R were defined in Chapter 1. 

The prior information at time k is 

£)-*((£;■*■■■">.' (41) 
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where 

is the estimation error covariance matrix. 

-ntxx   PkxK 

PkxK   VkKK 

(42) 

Note: The estimation error covariance matrix is partitioned as follows, 

PkxxeXnxn,   ftlKer,   PkKKe& 

Hence, before the zk+\ measurement is recorded, the augmented state 

=   N Xk+l 
Kk+i 

A   ukb 
0     1 

%k 

Kk 

A   ukb 
0 

,kb \ (   AT     0 \      / TQTT   0 \ 
i ) **-v y UkhT i ) + \   o    o ) 

(43) 

N (( Axk + Kkbuk 

( APkxxA
T + uk(APkxKbT+ 

bplKAT)+nlpkKKbb^ + YQYT 

V PlxKA
T + ukPkKKbT 

Next, apply the Bayesian estimation formula 

x+ = x~ + K [z - Hx], 

VIZ., 

ApkxK + ukPkKKb 

Pk« 

xk+i 
Kk+\ 

Axk + kkbuk ^ + K ^k+i _{c   .   Q)^Axk + Kkbuk 

Axk + Kkbuk \ + K ^ _ CMk _ UkRkCb^ 
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where the Kaiman gain 

/       APKxA
T + uk(APkxKbT + bplKAT) 
WkPkKKbbT+ TQTT 

K 

PLK
A7' + ukPkKKbT 

ApkxK+ukpkKKb 

PkKK 

CT 

0 
x {CAPkxxA

TCT + uk[CApkxK(Cbf + (Cb){CAVkxK)T\ 

+ u\pkKK (Cb) (Cbf + CTQTTCT + R}-1 

(      APkxxA
TCT + uk[APkxK(Cb)T + b(CAPkxK)T] 
+4PkKKb(Cbf+ TQT^CT 

V (CAPkxK)T + ukPkKK(Cb)T 

{CAPkxxA
TCT + uk[CAPkxK(Cbf + Cb(CApkxK)T] 

+u\pkKK{Cb){Cb)T + CYQYTCT + R}-1 

) 

(46) 

Finally, 

Pk+1{X,K) = Pk{x,K) ~ KHPk^,K) (47) 

Hence, we calculate 
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Pk+1(I,K) 

( APkxTA
T + uk(ApkxKbT+ 

bpT
kA

T)+ulpkKKbbT + TQTT 

PlxK
AT + ukPkKKbT 

ApkxK+UkPkKKb 

PkKK 

{APkxxA
TCT + uk[APkxK (Cbf + b(CAPkxK)T] 
b(Cb)T + TQTTCT} x {CAPkxxA

TCT 

(Cb){Cb)T 

+CTQTTCT + R}-1 x [CAPkxxA
T + uk(CApkxKbT 

+ukPk* 
+uk[CAPkxK_{Cb)T + (Cb)(CAPkx K)T] + u\pk 

+CbplAT) + u\pkKKCbV + CTQTT] 

{(CAPkxK)T + ukpkKK(Cb)T} x {CAP^C? 
+uk[CApkxK(Cb)T + (Cb)(CAPkxK)T}+ulpkKK(Cb)(Cb)'1 

+CTQTTCT + R}-1 x [CAPkxxA
T + uk(CApkxKbT 

+CbplKAT) + ulpkKKCbbT + CTQTT} 

{APkxxA
TC? + uk[APkxK{Cb)T + b(CApkxKf] 

WkVkKKb{Cb)T + TQTTCT} x {CAPkxxA
TCT 

+uk[CApkxK(Cb)T + (Cb)(CAPkxK)T}+ulpkKK(Cb)(Cb)T 

+CTQTTCT + R}-1 x (CAPkxK+ukpkKK(Cb)) 

l(CAPkxK)T + ukpkKK(Cb)T} x {CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + (Cb)(CAPkx K)
T] + ulPkKK(Cb)(Cbf 

+CTQTTCT + Ä}"1 x (CAPkxK + ukVkKK{Cb)) 

29 

(48) 



Thus, 

Pk+L*   =   [APkxxA
T + uk(APkxKbT + bpT

kxKA
T)+ulpkKKbbT 

+TQTT]{[APkxxA
T + uk(APkxKbT + bpT

kxKA
T) 

+ u2
kPkKKbbT + TQTT]-1 - CT{CAPkxxA

TCT 

+uk[CAPkxK(Cb)T + (Cb)(CApkxKf}+ulpkKK(Cb)(Cb)T 

+CTQTTCT + R}-'C}[APkxxA
T + uk{ApkxKbT + bpT

kxKA
T) 

+u2
kpkKKbbT+ TQTT] (49) 

Next, recall the complete Matrix Inversion Lemma (MIL). 

Lemma lAssume relevant matrices are compatible and invertible.  Then 
{Ax - A2A^A3)~

1 = A^1 + A^A2(AA - A3A^ A2y
x A3A^ (50) 
D 

Applying the MIL to the expression in the outer curly brackets from Eq. (49), viz., 

{[APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + 4PkKKbbT + TQTT]-i 

-CT{CAPkxxA
TCT + uk[CAPkxK{Cb)T + (Cb)(CApkxKf] 

+u2
kPkKK(Cb)(Cbf + CTQYTCT + R}-lC}-1 

where we set 

Ax  =  [APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + ulpkKKbbT + rgrr]-1 

A2   =   CT 

A3   =   C 

M   =   {CAPkxxA
TCT + uk[CApkxK(Cbf + (Cb)(CAPkxK)T} 

+u2
kpkKK{Cb)(Cb)T + CTQVTCT + R} 

we obtain 
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{[APkxxA
T + uk(APkxKbT + bplKAT) + ulPkKKbbT + TQTT}-i - Or{CAPkmaA

TCf1 

+uk[CApkxK{Cb)T + (Cb)(CAPkxK)T] + ulPkKK(Cb)(Cb)T + CTQTTCT + Rj^C}'1 

= [APkxxA
T + uk{AVkxKbT + bplKAT) + u\pkKKbbT + TQTT] + [APkxxA

T 

+«fe(APfciK6r + 6^if^)+^fc_66^ + rQrr]Cr{{C^Pfci^
TCr + ^[C^fcii,(C&)^ 

+{Cb){CAVkxK)T] + u\pkKK(Cb)(Cb)T + CTQTTCT + R} - C[APkxxA
T + uk(APkxKbT 

+bpT
kxKA

T) + ulpkKKbbT + TQTT]CT}-iC[APkxxA
T + uk(APkxKb^ + bplKAT) 

WkpkKKbbT + TQTT] 

Reducing the above gives 

[APkxxA
T + uk(APkxKbT + bpT

kxKA
T) + ulPkKKbbT + FQFT}{[APkxxA

T + uk{ApkxKbT 

+bplKAT) + u\pkKKbbT + VQVT]-^ + CTR-iC}[APkxxA
T + uk(APkxKb^ + bp^KAT) 

+ulPkKKbbT+ TQTT] 
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Hence, Eq. (49) can now be reduced to: 

Pk+ux   =   {[APkxxA
T + uk(APk^bT + bPlKAT) 

+ulPkKKbbT + rgr^-1 + cTR-lcyl (52) 

In addition, 

Pk+lKK   =   pkKK-[(CAPkxK)T + ukpkKK(Cbf}{CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + (Cb)(CAPkxKf] + u2
kPkKK(Cb)(Cb)T 

+CTQYTCT + R}-\CAVkxK + ukPkKK (Cb)) (53) 

and 

Pk+ixK   =   APkxK + ukPkKKb - {APkxxA
TCT + uk[APkxK(Cbf 

+b(CAPkxKf] + ulPkKKb(Cb)T + TQTTCT} x 

{CAPkxxA
TCT + uk[CAPkxK{Cb)T + {Cb){CAPkxK)T) 

+4pkKK(Cb)(Cbf + CTQTTCT + R}-\CAPkxK 

+ukPkKK(Cb)) (54) 

We also partition the Kaiman gain vector as follows 

*=(£) (55) 

where 

Kx   =   {AP^A'C1 +uk[ApkxK{CbY +b(CAPkxKY] 

+4PkKKb(Cbf + TQTTCT} x CAPkxxA
TCT 

+uk[CAPkxK(Cb)T + (Cb)(CAPkxK)T) +u2
kpkKK(Cb)(Cb)T 

+CTQTTCT + R}-1 
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and 

KK   =   l(CAPkxKf + ukVkKK{Cb)T]{CAPkxxA
TCT 

+uk[CApkxK(Cb)T + (Cb)(CApkxK)T}+ulpkKK(Cb)(Cb)T 

+CTQTTCT + R}-1 (57) 

Hence, 

xk+1   =   Axk + Kkbuk + Kx(zk+i - CAxk - KkCbuk) (58) 

Kk+1   =   kk + KK(zk+1-CAxk-KkCbuk) (59) 

D 

Remark 1 An application of the MIL will reduce the number of matrix inversions such that only 
the low-order matrix 

CAPkxxA
TCT + uk[CApkxK(Cbf + (Cb)(CAPkxKf}+ulpkKK(Cb)(Cb)T 

+CTQTTCT + R 
needs to be inverted. 

4.3 Discussion 

It is important to realize that the absence of complete plant information, viz., the uncertainty 

in the loop gain parameter K, causes both the loop gain and the state estimation error covariances 

to be dependent on the input signal - see, e.g., Eqs. (34)-(37).   This is a major departure from 

the classical state estimation paradigm in linear control theory.   Thus, the loop gain estimate K 

(and also the loop gain estimation error covariance) are now time dependent. Obviously, the best 

loop gain estimate is obtained at the end of the estimation interval, at time N.   In addition, the 

algorithm-provided loop gain and state estimates are correlated.   Furthermore, the loop gain and 

state estimates' dependence on the input signal is nonlinear.   The input signal dependence of the 

loop gain and state estimation error covariances, is a unique manifestation of the dual control effect. 
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4.3.1   Special Example 1 

Consider the classical Kaiman Filter paradigm where K is known, i.e., K=l.   In this special 

case 

PoKK=0,       PoxK=0,       PkKK=0,       PkxK=0       for all k = 1,2,... 

and it follows that 

Pk   =   Pkxx (60) 

KK   =   0 (61) 

Kx   =   (APkxxA
T + TQYT)CT{CAPkxxA

TCT 

+CTQTTCT + R}-1 (62) 

Pk+lxx   =   \{APkxxA
T + TQTT)-1 + CTR-1C}~1 (63) 

Thus, the classical Kaiman filter formulae are recovered. 

D 

Remark 2 Ifx0 is known, viz., x0 — N(xo,0), i.e., P0x = 0, and only the loop gain parameter K 
is not known, i.e., P0xx = 0, p0xK = 0, one nevertheless has to deal with an uncertain x at time k 

(even ifT-0 and ifthere is no process noise) and one must propagate I    -     ] and Pk{n+1)x{n+l) 

4.3.2   Special Example 2 

Special case: C is a row vector (i.e.,a. scalar measurement is being used). 

Then the estimation algorithm is 

xk+i    =   Axk+kkbuk + Kx(zk+i-CAxk-kk(Cb)uk) (64) 

Kk+1    =   Kk + KK(zk+l-CAxk-kk(Cb)uk) (65) 
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where the Kaiman gain for state estimation is: 

Kx   =   ±{APkxxA
TCT + uk[(Cb)ApkxK + (CAPkxK)b} (66) 

+ul(Cb)PkKKb + TQTTCT} 

and where the scalar X is given by: 

X   A   CAPkxxA
TCT + 2uk[(Cb)CAPkxK (67) 

+ul(Cb)2
PkKK+CTQrTCT + R 

The Kaiman gain for loop gain estimation is 

K   _ ^CAPk^+Uk^Cb'>Pk^ (68) 
X 

Finally, the estimation error covariances are 

Pk+u,   =   {[APkxx AT + uk (APkxK bT + bpT
kxK AT) + u\pkKK bbT 

+rQrT]~1 + ^CTC}-1 (69) 
ti 

[CApkxK+uk(Cb)pkKKY rm 
Pk+iKK    =   PkKK ^  ('«) 

A        -L.            h    CApkxK+uk{Cb)pk Pk+ixK   =   ApkxK+ukPkKKb  
X 

{APkxxA
TCT + uk[{Cb)APkxK + (CAPkxK)b] 

+ul(Cb)PkKKb + TQTTCT} (71) 

4.4 Alternative, Batch Approach to Estimation 

The system state 
fc-i fc-i 

xk = Akx0 + KYJA
k-l-ibui + Y,Ak~l~iVwii        k = l,2,...N-l (72) 

i=0 i=0 
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and the measurement 

Zk   =   CAkx0 + K^CAk-1-ibui + ^CAk-l-iTwi 

fc-i fc-i 

z=0 

fc—1 
CAk    Y, CAk-1~i1mi 

t=0 

i=0 

^fc-i 

+   J^CA^-T^ + i/i 
^=o 

This yields the linear regression 

Z = HO + V 

where 

G   4 

Z   4 

H   4 

■^    '(n+l)xl 

\ ZN~l  ) (JV_i)xl 

/    CL4 E/0C& \ 

V CAN~l    Y. Uk-i-iCA'b 
i=0 J 

fc-i 

Vk   4   JCAirU)M-i + "* 

Ä 4 £(yyT) 

where 

and where 

/   n   \ 
R = Diag 

rk = J2CAiPQPT(AT)CT + R. 
fc-i 

t=0 

The window length is N-1. 

This linear regression is augmented by the prior information equations 

x0   =   x0 + wk,        E{wxwl) = P0X 

K0   =   K + wK E(w2
k) = Pok 

(73a) 

(73b) 

(74) 

(75a) 

(75b) 

(75c) 

(75d) 

(75e) 

(76) 

(77) 

(78a) 

(78b) 
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i.e., the above linear regression is augmented to include 

x, 
Ko   ,    =   IN+10 + W (79a) 

7T\ I   Pox       0 E(WWX)   =    (    n     p (7%) 
U       r°K  / (n+l)x(re+l) 

© +      ~ (80) 

Hence, the augmented linear regression is 

XQ \ _ ( IN+I 
Z   J        V     ■"      / (N+n)x(n+l) 

where 

E f f  %   I ( ^T   ^ ) 1 = I     °°X    Pofc ° ) (81) 
\\V )K V       V    0       0     Diafl(rfc) y/ (iV+n) x (Ar+re) 

In summary, a system identification algorithm was developed to identify a systems' loop gain, 

K. A proof of this theorem, was given and supporting examples discussed. An alternative batch 

approach to loop gain estimation was also given. 
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Chapters - Results 

5.1 Zero Order Hold 

The commanded pitch rate is a continuous signal created by the pilots' force on the stick. 

The signal is fed into the plant and is passed through a analog to digital (A/D) converter and is 

sampled. This digital response contains a delay caused by the hold in the sample process. A delay 

in the feedback loop corrupts the damping and stability of the system. This delay is shown to 

be represented [9] using a first order approximation where the continuous signal lags the sampled 

signal by ^ 

G(S)=    2,T 

s + 2/T 

where T is the sample period and 1/T is the sample rate given as cycles per second or Hz.  When 

the signal, u(t), is being sampled at every kT points, 0< k < oo, the value of the signal at u(kT) is 

held to the next sample point (k+l)T. This gives a "stair case" estimate of the signal.   Using the 

first harmonic approximation, which is essentially the average of the sampled signal u(kT), we get 

the input signal.  However, the new signal is shifted, or delayed, by the size of the sample period. 

The following figure shows how the digital control system delays a signal following a step input. 

When the sample period is decreased, the delay gets smaller and follows the continuous signal more 

exactly - see, e.g., Figs. 11 and 12. 

5.2 Experimental Setup and Tracking Control 

One would like a feedback control system to be robust enough to perform within specifications 

in the face of parametric uncertainty, e.g., control surface loss due to failures. As the critical open- 

loop gain K decreases from one to zero, which represents a transition from no failure to complete 

control surface loss, the tracking of the reference signal begins to slip. Even though failure, viz., a 

reduction in the control derivative, causes a fixed controller's tracking performance to deteriorate, 
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Continuous and Digital Response Using Eulers Method 
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time (sec) 

Figure 11. Continuous and digital response for a step input [9]. 
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Short Period Outputs 

6 8 10 12 14 16 

-i 1 i—t 1- 

pitch rate 
commanded pitch rate 

6.2 6.4 6.6 6.8 7 7.2 

Time (sec) 

7.4 7.6 7.8 

Figure 12. Efects of discritization on the commanded continuous input; Pitch rate is the discrete 
signal 
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still, a correct system identification algorithm will properly estimate the degree of failure. Hence, 

one is motivated to use on-line system identification and adjust the controller's gain on line in 

order to account for the failure-induced reduction in open-loop gain, thus achieving adaptive and 

reconfigurable control. 

Figure 13. Aircraft elevator damage 

In our simulation, a control surface failure is induced at 4.5 seconds into the flight for all the 

test runs. This translates into a jump in K from 1 to K=Ki, 0<Ki < 1. Hence, the degree of failure 

is parameterized by Ki. 

In addition, measurement (sensor) noise is injected into the simulation. Thus, the measured 

pitch rate is qm = q + vq, where vq = 7V(0, aq), and the measured angle of attack is am = a + va, 

where va = iV(0, cr^). Given that both a and q observations are used for system identification, the 

following definition of SNR is used: 

SNR± 20log, 

where the weighting 

%ax   '   "  "max (82) 

w 
\/\P\V2 

sec 
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and pi, p2 are the poles of the open-loop plant (the short period approximation): 

Pl = -0.6737       p2 = 0.30691 

In our simulations, 

ftmax ~ 6  , <Zmax ~ H 

The experimental results presented in Figs. 14-31 were obtained using a fixed era=0.03 deg. 

For the SNR experiments of 40 and 60 dB, a scaled aq and aa are used.   We initially let 

<Tq = 0.05 deg / sec, and aa = 0.05 deg and we set 

(83a) 

aa   =   kaa (83b) 

where the SNR scaling parameter k > 0. The SNR is now expressed as 

aq   =   kaq 

Si\TÄ(fc) = 20 log, 
o?     4- w^o^ "max   '    "   imj (84) \ y2(al + w2af)k2J 

and therefore, for a specified SNR, the parameter k is determined according to 

k-p(o*+v>**)'1Q 

and in the simulation experiments aq and aa are adjusted according to Eqs.   (83a) and (83b), 

respectively. The aq, cra and SNR values are shown in Table 1. 

Table 1. SNR values using a constant cra=0.03 deg 

oq deg/sec 0"Qdeg SNR dB 

0.55534 0.03 23.29 
0.1108 0.03 37.227 
0.0739 0.739 40 

0.01108 0.03 53.286 
0.00739 0.00739 60 
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5.2.1   Tracking Control 

The F-16 class plant is open-loop unstable. This is a normal characteristic of advanced fighter 

aircraft. Using full state feedback, the flight control system can be stabilized. The ensuing closed 

loop linear state feedback control system is very robust; a well designed robust tracking controller 

can handle an open-loop gain as low as K=0.08. At lower K values, the feedback stabilization 

action becomes ineffective and the closed loop system becomes unstable. In this work, two tracking 

controllers are considered, a Proportional and Integral (PI) controller and a proportional controller. 

5.2.1.1   PI Controller 

Tracking is achieved using a fixed PI controller. The control law is 

6ec = r - Kaa - Kqq - KsJe + Kzz 

where the reference signal is the commanded pitch rate r=qc, and where z is the "charge" on the 

integrator of the PI controller.  The controller gains are Kz = -0.0001, Ka = 0.283, Kq= 0.876 and 

Kge = -0.4. Table 1 shows the eigenvalues of the open-loop plant and the closed-loop system when 

this PI controller is used for tracking control. 

Table 2. Longitudinal dynamics 

Open-loop Plant Closed-loop System, K=l Closed-loop System, K=0.08 

N/A -14.4614+15.504J -26.6776 
0.6737 -14.4614-15.504j -3.7210 
-3.0691 -1.4724 0.0016+ 0.0071J 
-20.0 0 0.0016 -0.0071J 

As can be seen, the bare plant is originally open-loop unstable. State feedback stabilizes the 

a, q, and 6e states of the unimpaired closed-loop flight control system. As the critical loop gain 

K is lowered from a value of 1, which corresponds to having no failure, to an almost complete 

longitudinal control surface loss at a value of K«0.08, the closed-loop system reverts to instability 

again. 
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In the tracking control experiments the above designed fixed PI controller is used. In the 

simulations, at time t=4.5 sec. into the flight, the open-loop gain K is reduced to K = K\ =0.8, 

K = K1 =0.6, K = Ki =0.4, K = Kx =0.2 and K = Kx=0.\. Although no loss in post-failure 

tracking performance is recorded for Ki=0.8 in Fig. 14 (due to the robustness of the controller), 

a discernible loss in tracking performance is evident for Ki=0.6, as is shown in Fig. 15, and the 

degradation in tracking performance is more pronounced for Ki=0.4 and Ki=0.2 in Figs. 16 and 

17, respectively. Although the control system does not become unstable until a degree of failure 

which corresponds to Ki=0.08, the post-failure tracking performance of the PI controller falls out 

of acceptable limits before this point, approximately when the loop gain Ki <0.25 - see, e.g. Fig. 

17, where the results for Ki=0.2 are shown. When the K value decreases further to Ki=0.1 and 

below, as shown in Fig. 18, post-failure tracking performance of the fixed controller deteriorates 

greatly, although stability is still preserved until Ki=0.08. 

Short Period Outputs 

\ 

alpha 
pitch rate 
commanded pitch rate 

14 

Tim e (sec) 

Figure 14. Pitch rate and alpha response for a loop gain of Ki=0.8, aq  —  0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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Short Period Outputs 

Figure 15. Pitch rate and alpha response for a loop gain of Ki=0.6, aq  =  0.1108deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 

S hört P eriod O utputs 

Tim e (sec) 

Figure 16. Pitch rate and alpha response for a loop gain of Ki=0.4, aq  =  0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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S hört P eriod O utputs 

Figure 17. Pitch rate and alpha response for a loop gain of Ki=0.2, aq  =  0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 

Short Period Outputs 

- -  -        alpha 
         pitch  rate 
        commanded pitch  rate 

6 8 10 

Tim e (sec) 

16 

Figure 18. Pitch rate and alpha response for a loop gain of Ki=0.1, aq  =  0.1108 deg/sec, 
<ra = 0.03 deg and SNR=37.227 dB 
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Figs. 19 and 20 show the state estimates, as calculated from the system identification algo- 

rithm, for a degree of failure of Ki=0.8 and Ki=0.2. After the point of failure, some error between 

the estimated pitch rate and the commanded pitch rate can be seen. The state estimates improve as 

time increases, converging back to the true commanded pitch rate. When the degree of failure in- 

creases to Ki=0.2, the pitch rate estimate error also increases. With the low SNR and high degree 

of failure, the system identification algorithm shows some degradation of estimation performance. 

The loop gain K estimation performance wil be shown in the next Section. 

State Estimates Using System Identification Algorithm 
15 

10 ■ r\ 

\ A 
< 

-10 

-15 

f'\ f f\ r 
4 

vj 

'A    f 

^  J 

W I 
q com mand 
alpha estimate 
q estimate 

6 8 10 
Time (sec) 

12 14 

Figure 19. Pitch rate and alpha estimates; Ki=0.8, aq — 0.1108 deg/sec, aa = 0.03 deg and 
SNR=3 7.227 dB 

5.2.1.2  Proportional Controller 

Tracking is achieved using a fixed proportional controller. The control law is 6ec = Krr — 

Kaa — Kqq — Kse where the reference signal r=qc. The controller's gains are Kr= 0.9964, Ka = 

0.283, Kg = 0.876 and Kge = -0.4. Integral action is not used to enforce tracking. The following 

table shows the eigenvalues of the closed-loop system using the proportional tracking controller. 
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State Estimates Using System Identification Algorithm 
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Figure 20. Pitch rate and alpha estimates; Ki=0.2, aq = 0.1108 deg/sec, aa = 0.03 deg and 
SNR=37.227 dB 
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Table 3. Longitudinal Dynamics 

Open-loop (Short Period) Plant Closed-loop System, K=l Closed-loop System, K=0.08 
-3.0691 -1.4724 0.0032 
0.6737 -14.4615 +15.5040J -3.7210 
-20.0 -14.4615-15.5040J -26.6776 

Once again, the open-loop plant is unstable and feedback stabilization is used. The closed- 

loop system becomes unstable again when the degree of control surface loss becomes excessively 

large, viz., Ki=0.08. 

In general, post failure tracking performance of the fixed proportional controller for the vari- 

ous reduced open-loop gain values is similar to that of the PI controller. The post failure tracking 

performance of the proportional controller becomes unacceptable when the critical loop gain is re- 

duced to Ki=0.2. When the critical loop gain is further reduced, tracking performance deteriorates 

rapidly as shown in Figs. 21 and 22. In both cases, when either the PI tracking controller or the pro- 

portional tracking controller were used, very similar identification results were obtained. Hence, 

the identification results for the PI controller only are displayed 

5.3  Estimation Performance 

When a fixed linear proportional or PI tracking controller is used and a severe failure occurs, 

the output signal of the plant (q) fails to follow the pitch rate command signal from the pilot (the 

reference signal qc). However, even in the case of severe control surface loss the system iden- 

tification algorithm (Theorem 1) still correctly estimates the value of the critical open-loop gain 

parameter K. 

In this section,   the estimation performance guaranteed by the novel system identification 

algorithm stated in Theorem 1 is experimentally investigated, and the results of the open-loop gain 

identification experiments are presented.   The plant truth model used in the system identification 
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Short Period Outputs 

6 8 10 

Time (sec) 

Figure 21. Pitch rate and alpha response for a loop gain of Ki=0.2, aq  =  0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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Figure 22. Pitch rate and alpha response for a loop gain of Ki=0.1, aq  =  0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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algorithm is 

ä   =    Zaa + Zqq + KZsu 

q = Maa + Mqq + KMgu 

viz., the state ( ) evolves in ÜR2 and the control signal is u=6e. A discrete-time version of the 

plant which corresponds to a sampling rate of 100Hz is embedded in the system identification algo- 

rithm. Furthermore, the prior parameter information given to the system identification algorithm is 

intentionally selected to be poor. It therefore takes the system identification algorithm some time 

to settle down and output the correct parameter estimates. 

The system identification algorithm is able to estimate the open-loop gain for a high degree 

of failure, even in the presence of poor tracking. This is due to the system's enhanced excitation 

which is caused by poor tracking and is therefore conducive to good system identification. Figs. 

23-27 show how the system identification algorithm using the expanding horizon Kaiman filter 

(Theorem 1) estimates the open-loop gain K as the degree of failure increases. Because of the 

robustness of the linear controllers, both yielded similar tracking performance and thus similar 

identification performance. The results for both types of controllers are summarized in Table 4. 

The true and the identified open-loop gain K (for both the PI and the proportional tracking controller 

mechanizations) are shown. 

Table 4. Open-Loop Gain Estimation Performance Analysis for Failure time of 4.5 sec 

Actual Post Failure 
Open-Loop Gain 

Final 
Estimated Value K 

Relative 
Estimation Error (%) 

Settling Time (sec) for 
20% Gain Estimation Error 

0.8 0.8413 4.91 i5=0.82 
0.6 0.6469 7.25 is=1.93 
0.4 0.4306 7.11 ts=2Jl 
0.2 0.2116 5.48 is=1.83 
0.1 0.0996 0.40 ts=1.51 
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The identification settling time, ts, when the expanding horizon estimate algorithm is used, is 

dependent on the degree of failure. Thus, a fairly good (20% error) estimate of the open-loop gain 

is obtained within 2.71 seconds after the failure. These estimates were obtained using an expanding 

data window with a relatively low SNR=37.227 dB. It will be shown in the next section how the 

identification time can be reduced using a moving window system identification algorithm. 

Open-Loop Gain Estimate 

1.1 

1.05 

1 

0.95 

0.9 

0.85 

0.8 

0.75 

K estim ate 
True K 

Failed K value is 8.000000e-001 

Tim e (sec) 

Figure 23. Open-loop gain estimimation for a failure of Ki=0.8,  aq   =   0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 

5.4 Moving Window Estimation 

A moving window (or, equivalently, finite memory data window) is used because in the case 

of a failure, when a jump in the value of the open-loop gain K occurs, the latter is identified faster 

than in the case where the expanding horizon system identification algorithm is used. By using the 

recursive system identification algorithm (Theorem 1) inside a 0.3 second window (of 30 samples), 

estimates of the parameters of interest are calculated. The window is then shifted one sample 

time and the estimation is repeated.  This gives the first parameter estimate at 0.3 seconds into the 
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Figure 24. Open-loop gain estimimation for a failure of Ki=0.6,  aq   =   0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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Figure 25. Open-loop gain estimimation for a failure of Ki=0.4,  aq   =   0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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Open-Loop Gain Estimate 
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Figure 26. Open-loop gain estimimation for a failure of Ki=0.2,  aq   =   0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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Figure 27. Open-loop gain estimimation for a failure of Ki=0.1,  aq   =   0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 
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flight. For all of the windows, the same prior information of a = —1.4414 degrees, q = —2.4314 

degrees/second, and the open-loop gain Ki = 0.8, are used. Prior information with negative a 

and q was intentionally used to test the windowed estimation algorithm's response to a poor initial 

guess. The initial variances are 0.1 [deg2], 1 (deg/sec)2 , and 0.4, respectively. 

In Fig. 28, the dashed lines represent ±20% error from the true degree of failure. One can 

see that the moving window is quicker to settle on an estimate, while the expanding horizon system 

identification algorithm takes more time to reach its final estimate value. Obviously, the estimate 

provided by the expanding Kaiman filter is smoother than the estimate provided by our relatively 

short sliding window. At the same time, the deleterious effect on estimation performance of a very 

short window (•C 0.3 sec) is also evident near i=0 in the expanding horizon plots in Figs. 23-27. 

8 10 

tim e (s ec) 

Figure 28. Expanding horizon versus moving window estimation; Ki=0.6, aq = 0.1108 deg/sec, 
aa = 0.03 deg and SNR=37.227 dB 

Also note that when the moving window system identification algorithm is used, during certain 

windows, the excitation in the window is poor and these particular windows yield bad parameter 

estimates.    These "poor" estimates occur when the window slides past the peaks of the input 
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command, as shown in Fig. 29. The peaks in the estimate seem to be correlated to the input peaks, 

as is evident in Fig. 29. Indeed, the input signal strongly affects the estimation performance of 

the system identification algorithm - as opposed to classical linear state estimation, i.e., Kaiman 

filtering. Obviously, poor estimates are also recorded during periods of low control activity as is 

the case for 14<t<16 sec. 
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Scaled Input Command 
Sliding Window Estimates 
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Figure 29. Input command versus the sliding window K estimate; Ki=0.6, aq = 0.1108 deg / sec, 
aa = 0.03 deg and SNR=37.227 dB 

To reduce the fluctuations in the K estimates, the estimates output by the identification algo- 

rithm are smoothed through a first order low pass filter: 

Kksmoothed = -9 * Kk-lsmoothed + .l*Kk (85) 

Thus, the current estimate is given less weight than the previous estimate. Smoothing of the algo- 

rithm's output (estimates) helps to reduce the deleterious effects of noise and improve estimation 

performance. However, smoothing increases the identification time, which is of particular impor- 

tance in a failure scenario. In Fig 30, the loop gain estimates are smoothed using various gains. As 
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can be seen, when Kh     ,,, ,, = .7 * -ftTt-i      ,, . + .3 * Ku is used, the delay in detection time is " ^smoothed "*     J-amootnea -"' " J 

greater than the unsmoothed estimates but less than when the smoothing gains in Eq. (85) is used. 

A reduction in detection delay comes at the expense of less smoothing.   One must decide if this 
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Figure 30. The effects of smoothing on failure detection time; Ki=0.6 and SNR=37.227 dB 

is an appropriate trade-off. If smoothing is not an option then increasing the window length also 

helps to reduce the deleterious effect's of noise, and hence the fluctuations in the open-loop gain 

estimate K are reduced, but not as effectively. In this work, the loop gain estimates are smoothed 

using Eq. (85). Fig. 31 shows the effects of smoothing on the loop gain estimate. The dashed 

lines, once again, represent a ±20% error of the true loop gain, K. 

Table 5 shows the time needed to obtain an open-loop gain estimate that is within 20% of 

the true open-loop gain using the windowed system identification algorithm. The open-loop gain 

estimates are calculated using a moving window and are smoothed. It is shown that, as the failure 

degree increases (K gets smaller), the time needed to identify the open-loop gain within ±20% of 

the true value, increases.   As expected, the smoothed open-loop gain estimates require more time 
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Figure 31. Open-loop   gain   estimates   and   smoothed   open-loop   gain   estimates;    Ki=0.6, 
aq = 0.1108 deg / sec, aa = 0.03 deg and SNR=37.227 dB 
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for identification than the original moving window algorithm provided estimates. An estimate of 

the open-loop gain with an error of less than 20% can be obtained after 0.23 seconds using the 

moving window, and it takes 0.5 seconds when the estimates are low pass filtered using Eq. (85). 

Nevertheless, this corresponds to a shortened identification time, viz., a reduction of over 1 second 

in identification time is obtained when compared to the expanding horizon algorithm's results in 

Table 4. Now, the settling time ts is monotonic in the degree of failure, as expected. 

Table 5. Time to Reach 20 Percent of True Loop Gain After Failure at 4.5 sec 

Actual Open-Loop 
Gain After Failure 

0.8 
0.6 
0.4 
0.2 
0.1 

Settling Time for 20% 
Gain Estimation Error 

Using Moving Window 

«.,=0.02 
«.,=0.08 
«.,=0.12 

«-=0.19 
«.,=0.23 

Settling Time for 20% 
Gain Estimation Error Using 

Moving Window with Smoothing 

«.,=0.09 
«.,=0.17 
is=0.26 
«s=0.44 
«s=0.51 

5.5  SNR Effects 

The measurement noise intensity has a strong influence on how the moving window system 

identification algorithm estimates the plant's open-loop gain. In the previous figures, a SNR of 

37.227 dB was universally used. When the SNR is increased to 53.286 dB, the identification 

performance improves and the estimates are smoother - see Fig. 32. However, when the SNR is 

lowered to 23.29 dB, the identification performance deteriorates and estimates become more erratic 

and peaks become more prominent, especially for windows that contain the instant of failure at 

t = 4.5 sec. - see, for example, Fig. 33. Thus, the SNR has a strong influence on the system 

identification algorithm's ability to estimate the parameters. 

In Fig. 34, K ± 2a, where the predicted open-loop gain estimation error standard deviation 

a ~ \/PkxK, is plotted. It is expected that about 95 percent of the estimates will fall inside these 

bounds. As can been seen in Fig 34, most of the estimates calculated from the moving window do 
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Figure 32. Moving window loop gain estimate; Ki=0.2, aq = 0.01108 deg/sec, aa = 0.03 des 
and SNR=53.286 dB e 
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Figure 33. Moving window loop gain estimate; Ki=0.2, aq = 0.555 deg / sec, aa = 0.03 deg and 
SNR=23.29dB 
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fall within these bounds. When the error covariance of the open-loop gain is large, the estimates 

from moving window identification algorithm are poor. This occurs when there are high dynamic 

changes of the input command. Indeed, Theorem 1 provides a rigorous open-loop gain estimation 

algorithm. Hence, as expected, Fig. 34 amply illustrates that "Kaiman filter divergence" does not 

occur, i.e., our open-loop estimate is indeed reliable. 

Obviously, K is within the limits of 1 andO, 1 for no failure and 0 for a complete loss of control 

surface area. As shown in Figs. 33,32, 36 and 38, the loop gain estimates before the point of failure 

often exceeded Kx=l. We know that this can not be the case. The plant's open-loop gain estimates 

provided by our smoothed moving window system identification algorithm can be modified using 

the above upper and lower bound information: when the moving window's identified loop gain 

estimates are greater than one or less than zero, they are set equal to their respective limits. This 

will reduce the estimated loop gain fluctuations before they are smoothed. 

After limiting the loop gain value estimate to 1 for the case when the SNR = 23.29 dB and the 

degree of failure is Ki = 0.2, the open-loop gain identification performance, shown in Fig. 35, is 

obtained - compare to Fig. 33. 

For the simulation runs presented in Figs. 36-39, both the a and q measurement noise intensity 

was varied according to Eqs. (83a) and (83b). As can be seen, as the SNR increases from 23 dB to 

40 dB, there is a significant improvement in the system identification algorithm's ability to estimate 

the open-loop gain accurately. For lower values of SNR, a moving window with a larger sample 

size would be needed to obtain more accurate results. However, as shown in the next Section, even 

with poor open-loop gain estimates, when adaptive control is implemented, tracking performance 

is restored. 
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K Estimates Using the Moving Window 
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Figure 34. Two sigma analysis of moving window estimates; Ki=0.6, an  = 0 1108dee /sec 
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Figure 35. Loop gain estimate with upper and lower bounds; Ki=0.2, aq  =  0.555 deg / sec, 
aa = 0.03 deg and SNR=23.29 dB 
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Figure 36. Moving window loop gain estimate; Ki=0.2, aq = 0.0739 deg / sec, aa = 0.0739 deg 
and SNR=40 dB 
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Figure 37. Loop gain estimate with upper and lower bounds; K]=0.2, aq = 0.0739 deg/sec, 
aa = 0.0739 deg and SNR=40 dB 
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Figure 39. Loop gain estimate with upper and lower bounds; Ki=0.2, aq = 0.00739 deg/sec, 
erQ = 0.00739 deg and SNR=60 dB 
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5.6 Indirect Adaptive Control 

The loop gain estimates are now used on-line to correct for the failure. In our indirect adaptive 

control mechanization, the reciprocal of the open-loop gain estimate is continuously fed back into 

the controller, as shown in Fig. 1. By doing so, the failure is taken into account and it is to be 

expected that the control system will respond as if a failure never happened. Using the K estimates 

obtained under the same low SNR conditions as in Figs. 33 and 35, the post failure tracking 

performance is improved - see e.g., Figs. 40 and 41, respectively. 

Loop Gain Adaptation with Moy'ng Window Implemented 
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Figure 40. Pitch rate tracking with failure and K adaptation; K=0.2, aq   =   0.555 deg/ sec, 
aa = 0.03 deg and SNR=23.29 dB 
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Loop Gain Adaptation with Moving Window Implemented 
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Figure 41. Pitch rate tracking with failure and K adaptation using upper and lower bounds; Ki=0.2, 
aq = 0.555 deg / sec, aa = 0.03 deg and SNR=23.29 dB 
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Figs. 42 and 43 demonstrate this point for an extreme degree of failure of Ki=0.2, in which 

case, we recall, the fixed controllers could not cause the system output to track the reference com- 

mand properly (see, e.g., Fig. 17). In addition, a relatively low SNR of 37.227 dB is used in this 

experiment. Note, that in Fig. 42, the estimate is significantly worse around the failure point than 
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Figure 42. Open-loop gain estimation using a moving window when Ki=0.2 and SNR=37.227 dB 

in Fig. 31 when the degree of failure was Ki=0.6. Thus, the degree of failure directly impacts the 

loop gain estimation performance near the instant of failure. Also, the peaks in estimation error 

occur near the peaks of the input signal. 

In Figs. 14-18, it was shown that, for a high degree of failure, the tracking performance dete- 

riorates. However, the K estimation error peaks are smaller when there is a reduction in tracking 

performance. This trend is evident in Figs. 33, 36 and 38 where the estimation performance af- 

ter the failure, where tracking is poor, is consistently better than before the failure. In addition, 

the higher the degree of failure and the poorer the tracking performance provided by the fixed con- 

troller, the better the esitmation performance.   Moreover, Fig. 44 shows the loop gain estimates 
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after the adaptive controller is implemented and tracking performance is restored after the failure. 

As can be seen, there is a significant reduction in estimation performance due to the reduction in 

excitation when tracking is restored - compare Figs. 42 and 44. Now, even though there are nu- 

merous instances of poor estimation, when the smoothed and bounded loop gain estimate K is used 

modify the controller, the ensuing tracking performance of the adaptive controller is excellent as 

shown in Figs. 41, 43 and 45-47. 

Loop Gain Adaptation with Moving Window Implemented 
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Figure 43. Pitch   rate   response   comparison   with   and   without   K   adaptation;     Ki=0.2, 
aq = 0.1108 deg / sec, aa = 0.03 deg and SNR=37.227 dB 

The adaptive control system's tracking performance at the higher SNRs of 40, 53.286 and 60 

dB is shown in Figs. 45-47. 
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K Estimates After Loop Gain Adaptation 
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Figure 44. K estimates after loop gain adaptation; Ki=0.2, aq = 0.1108 deg/sec, aa = 0.03 deg 
and SNR=37.227 dB 
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In conclusion: Figs. 40,41,43 and 45-47 were all created by calculating the loop gain estimate 

over each time epoch following which the reciprocal of the loop gain is fed back, as shown in Figure 

1. In addition, a and q are also estimated for each epoch bu the system identification algorithm 

and are then fed to the feedback controller. This produces the q output signal described above as 

'q with adaptive control'. For a high degree of failure and before the loop gain was adapted, the 

fixed controllers could not track properly. Once an adaptive tracking controller is implemented 

and the effective loop gain is restored, tracking performance is recovered. In addition, when the 

bound limited open-loop gain estimate is used in the adaptive control algorithm, the hump in q at 

t = 4.5+ seconds is removed, as shown in Figs. 40-41. 

In summary, as the degree of failure increased, the systems' ability to track the command input 

deteriorated. When the degree of failure was low, Ki = 0.25, tracking performance no longer was 

considered acceptable. The system identification algorithm was applied to an F-16 class control 

system and the states and loop gain were jointly estimated. To improve failure detection time, a 

moving window algorithm was created to estimate the loop gain. The loop gain estimates fluctuated 

appreciable from their true value. To reduce the Auctions, a smoothing filter was introduced. The 

smoothed loop gain estimates were then applied to the indirect adaptive controller to correct the 

failure in the system and make the tracking response appear as if the failure never happened. The 

results were excellent. 
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Loop Gain Adaptation with Moving Window Implemented 
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Figure 45. Pitch rate tracking with failure and K adaptation using upper and lower bounds; Ki=0.2, 
aq = 0.0739 deg/ sec, aa = 0.0739 deg and SNR=40 dB 
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Figure 46. Pitch rate tracking with failure and K adaptation; Ki=0.2, aq = 0.01108 deg/sec, 
aa = 0.03 deg and SNR=53.286 dB 
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Loop Gain Adaptation with Moving Window Implemented 
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Figure 47. Pitch rate tracking with failure and K adaptation using upper and lower bounds; Ki=0.2, 
aq = 0.00739 deg / sec, aa = 0.00739 deg and SNR=60 dB 
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Chapter 6 - Conclusions and Recommendations 

6.1  Summary 

Chapter 2 of this thesis described how system identification techniques can determine the 

unknown parameters of a model. We began with modeling disturbances and the importance of 

not over-modeling an unknown system. A classical system identification approach for solving the 

unknown parameters of an nth order SISO system was given. The approach was then demonstrated 

using a second order example. The example assumed there was an absence of measurement noise. 

When determining the proper model of the dynamic system, the applied input must have an order 

equal to or greater than the number of unknown parameters. For this reason, we chose n sinusoidal 

test functions. Each sinusoid produces 2n equations needed to solve the unknown parameters of 

the nth order SISO system. Chapter 2 also provided the case when measurement noise was an 

influence on the modeling of a dynamic system. Because of the measurement noise, a stochastic 

approach was then introduced, defining the Least Squares algorithm. It was then shown how the 

strength of the noise can be represented as a weighting matrix, R, and applied to the state estimates 

to provide more accurate results. 

Next, Chapter 3 described the plant used in this thesis. Only the deterministic approach was 

identified. It was important to dismiss the process and measurement noise initially. The absence 

of the noise allowed us to see the true response of the system and determine if any additional 

considerations were needed regarding the model. This chapter also presented the methods used to 

augment the state matrix and the appropriate control laws were defined. We saw that the tracking 

of the system was not adequate. To compensate for the steady state error, both a PI controller 

and a proportional controller were described and implemented to represent two different simulation 

scenarios. 
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In summary, a system identification algorithm was developed to identify a systems' loop gain, 

K. A proof of this theorem, was given and supporting examples discussed. An alternative batch 

approach to loop gain estimation was also given. 

The recursive system identification algorithm was described in Chapter 4. The algorithm 

used Kaiman filtering techniques to measure and estimate the state outputs, a and q (angle of attack 

and pitch rate respectively), and the critical loop gain, K. We then assumed that our measurement 

devices were not perfect and noise was being injected into the a and q channels. The Kaiman equa- 

tions were manipulated so that the loop gain can be estimated. Once the identification algorithm 

was complete, a simple example was provided to test the validity of Theorem 1, the system identifi- 

cation algorithm. In addition to the recursive identification algorithm, a batch estimation algorithm 

was also provided but not explored. 

Finally, Chapter 5 confirmed the functionality of the proposed system identification algorithm. 

The algorithm is tested for both the PI controller and the proportional controller. In this chapter 

the expanding horizon Kaiman estimates were compared to the estimates from the moving window. 

The performance of both methods were analyzed and compared for their ability to predict a failure. 

Since the algorithm is a function, in some part, of the measurement noise, the SNR. was varied so 

the effects of noise on the system could be analyzed. When the moving window was implemented, 

spots of poorer estimation were observed. To help correct this, a smoothing function was used and 

tested for different smoothing percentages. The reciprocal of the estimated loop gain derived from 

the system identification algorithm was then fed back recursively to provide a continuous correction 

factor to the failed plant. This was done over different SNRs and failure amounts. 
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6.2  Conclusion 

An algorithm for the identification of a control system's loop gain, K, is presented. The de- 

rived algorithm yields joint estimates for both the system's state and the open-loop gain. The open- 

loop gain and state estimation algorithm is being referred to as the system identification algorithm. 

Using state feedback, the original unstable plant of the F-16 class aircraft could be made stable. 

A PI controller or a proportional gain controller needed to be added to correct the steady state error 

of the pitch rate tracking. The final plants' tracking performance was tested using various failure 

amounts: Ki = 0.8, 0.6, 0.4, 0.2 and 0.1. Tracking performance began to slightly degrade at a 

degree of failure Ki = 0.6. As the degree of failure increased, the tracking performance decreased. 

When the loop gain Ki = 0.25, tracking was no longer acceptable. Even though tracking is no 

longer acceptable at Kx = 0.25 the plant was able to tolerate a failure of Kx = 0.08 before coming 

unstable again. Since the original plant was robust, it didn't matter much which controller was 

used, the PI or the proportional gain controllers. Both controllers, when implemented and ran, 

provided near identical test results. For this simulation, only one consistent command input signal 

was tested. 

It was also shown that a moving window can provide faster detection times for failure than 

the continuously expanding Kaiman filter. The moving window used in this thesis had a length 

of thirty samples or 0.3 seconds. The initial state and loop gain values, a = -1.4414 [deg], 

q = -2.4314 [deg/sec], Kx = 0.8, and the variances, 0.1 [deg2], 1 [(deg/sec)2] and 0.4, were 

updated before each run. There were times when some windows provided estimates that jumped 

appreciably from their expected values. This occurred around the high dynamic change of the 

input signal, when the input wave was at its highest or lowest peak. When the window size was 

increased, the estimate fluctuations decreased. However, a shorter window was able to detect a 

failure faster larger window, which is desirable. 
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To reduce the size of the fluctuations without increasing the window length, a smoothing filter 

was used. The moving window reduced the fluctuations but also increased the detection time of 

the failure. It was demonstrated that the more the estimates were smoothed, the longer it took to 

detect the failure amount. The 90 % smoothed estimates still detected the failure faster than the 

continuously expanding Kaiman filter. These smoothed estimates were used for the rest of the 

simulation. 

With the moving window estimation algorithm, the quality and accuracy of the results de- 

pended greatly on the quality of the measurements. This is a result of the short amount of time 

used to calculate the estimates. When the SNR became low, signifying more noise in the system, 

the loop gain estimates fluctuated from the true failure amount. That is, there was a higher range 

of values for the loop gain estimates when the SNR was low than when it was higher. This devia- 

tion, for when the moving window was implemented, was on the order of K ± 0.35 before the onset 

of failure at t = 4.5 sec and a SNR = 37 dB. In contrast, the estimates after the failure fluctuated 

less and as the degree of failure increased, the fluctuations decreased even further. This was con- 

tributed to the additional excitation created by the low failure, which in turn, caused poor tracking. 

It is evident that excitation of the plant parameters is important to system identification. 

All the research so far was to test the stability of the plant and the accuracy of the identification 

algorithm. Once the system identification algorithm calculated the loop gain, its reciprocal was fed 

back to correct the failure. The results are excellent. The identification algorithm was capable of 

detecting the loop gain at all failure amounts. Even when the plant model could no longer track 

the command input, the algorithm still provided accurate estimates. This is when the feedback is 

most critical. It was shown that when the estimates were used in the feedback path for low failures, 

when the system no longer tracked, the result was nearly complete correction of the failure. 
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However, for low SNR and high degree of failure the estimates from the moving window 

fluctuated greatly around the failure point, K s=s 6, causing the adaptive controller to track the 

command input improperly. The degree of failure was defined as being within the range of 1 and 

0, 1 for no failure and 0 for complete loss of actuator control. The moving window frequently 

estimated the loop gain as falling outside these bounds, especially before the point of failure. To 

correct this, the estimates were set equal to the respective bound that the estimate broke. When 

these bounded estimates were applied to the adaptive controller, improved tracking could be seen. 

The improvement of the system was significant. 

In summary, the loop gain of a dynamic system can be found and applied to an indirect adap- 

tive controller to compensate for actuator failure. 

6.3  Recommendations for Future Research 

The research presented used only a single input signal and the short period approximation of 

an F-16 class aircraft. The algorithm should be applied to the full scale aircraft system equations. 

It should then be followed up using various input signals to test the algorithm at different levels of 

excitation. Also one can create a scenario when the B matrix is changed to do structural damage. 

When simulating the failure of the elevator control surface, no process noise or external dis- 

turbance is injected into the model. Process noise and a disturbance noise should be added into the 

model. A constant noise vector was used. Instead, running a Monte Carlo run to obtain a random 

noise vector would be more realistic. Also, instead of performing a single error run, it would be 

better to show mean and 1 sigma time histories for 10-25 Monte Carlo runs. This would give a 

greater insight on how the adaptive controller is performing. 

Most of the simulation was done non-real-time. A new simulation code could be developed 

to simulate the failure real-time and correct real-time. 
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Another study could be created under the flight condition of straight and level.   This would 

require using a dither to enhance estimation. 
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