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Abstract 

Noncooperative target identification (NCTI) is a top priority for the Air Force, with 

emphasis on airborne targets. Key achievements of this thesis include unprecedented re- 

sults that make a significant contribution towards the aims of NCTI. 

High range resolution radar has received a significant amount of attention due to its 

ability to resolve closely spaced scatterers on a target. Processing the backscattered radar 

energy yields a target signature which then forms the basis for template-based classifica- 

tion. When measured signatures are used for classifier training, classification performance 

is excellent. However, it is often unfeasible to acquire measured HRR signatures for a wide 

set of targets, thus necessitating the use of synthetically generated HRR data. This data 

is used to create target templates for comparison with measured signatures. Classification 

performance suffers severe degradation when using the synthetic data for template forma- 

tion. A goal of any HRR classification system then is to improve classification accuracy 

when using synthetic data, ultimately enabling equivalent performance to that of measured 

data. 

This thesis suggests that a large portion of HRR signature content is non-discriminatory 

and that this content is a cause for classifier degradation for synthetic training data. We 

view this content as a form of abstract noise, and thus treat the classification problem 

in the context of noise removal. Well-established wavelet denoising methods have proved 

to be superior for signal denoising. However, these powerful methods assume a Gaussian 

noise model and are optimized with respect to a risk measure which often takes the form of 

mean squared error. The abstract notion of noise makes these wavelet methods unsuitable, 

and so a unique wavelet-based denoising methodology is developed which is optimized with 

respect to classification accuracy. 

In the case of synthetic training data, the denoising method of this thesis leads to 

remarkable classification improvement. In particular, we obtain classification accuracies 

which are comparable to those obtained when training on measured data.   This is an 

xvn 



unprecedented result.  We also show that the denoising approach of this thesis leads to 

superior results compared to those obtained with standard wavelet-based approaches. 
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Optimal Wavelet Denoising for High Range Resolution Radar Classification 

/.   Introduction 

1.1    Background 

Combat identification (CID) plays a major role in today's military and new technol- 

ogy in this area is being actively pursued by the Air Force. Reliable aircraft identification 

has typically required the use of Identify Friend or Foe (IFF) systems. For such a system 

to work, the aircraft to be identified must to be equipped with the IFF system. Clearly 

this limits the scope of aircraft identification, because it assumes cooperation between the 

identifier and the aircraft being identified. A more general approach is Noncooperative 

Target Identification (NCTI). A NCTI system performs identification essentially by means 

of remote sensing with no coordination with the target being sensed. Top level priorities for 

such a system are the destruction of hostile targets and the preservation of non-combatant, 

neutral, and friendly targets. The system must provide a declaration of target type and 

do so with confidence such that the previously mentioned priorities can be upheld. 

The primary sensor for CID is radar with a concentration on tactical airborne radar 

systems which enable the active or passive collection of multimode electromagnetic data. 

The CID function is then typically carried out by template matching (16). A promising 

sensor is High Range Resolution Radar (HRR). Range resolution is the ability of the radar 

to resolve point targets that are separated in range to the radar. In general, HRR works 

by illuminating a target with wideband radar energy and processing the backscattered 

energy. The range resolution is Ars fa c/2/3, where c is the speed of light and ß is the 

radar bandwidth. It is the large ß characteristic of HRR radar that enables high range 

resolution. After processing, a target signature is formed which measures energy as a 

function of range. Thus, individual scatterers of a target contribute to the signature in 

such a way that a signature is characteristic of a target. Although it was thought that most 

major backscatter sources at any given target aspect are produced by specular reflection 

from flat surfaces of the target normal to the radar and from corners, it is now known that 
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other mechanisms contribute. Radar energy actually propagates along the surface of some 

part of the target and reappears directed toward the radar. This phenomena is known as 

creeping wave reflection. Resonance effects can also produce reflections (46). Figure 1.1 

shows a typical HRR signature for a target. This signature consists of energies across 461 

range bins, each of which can be considered a feature. The peaks in the signal represent 

prominent features of the aircraft. 

U~A      -~A|V^~-—«JWI 

150 
^A^JWW^AJ^UJ 

200 250 
Range bin 

300 350 400 

_iflj 
50 100 150 200 250 

Range bin 
400 450 

Figure 1.1 Measured HRR signature (top) and synthetic signature (bottom) both from 
same target and 5X5 degree (azimumth X elevation) window. Magnitudes 
are normalized. 

The ability of HRR to resolve closely spaced features can, ironically, be problematic. 

The high range resolution causes significant changes in a target's signature when the tar- 

get's orientation changes. Thus, small azimuth and elevation changes lead to considerable 

variability in the signatures for a given aircraft. This variability can be attributed to the 

coherent interactions of the backscattered radar energy from many scatterers. When a 

target is moving, energy reflected from these scatterers moves in and out of phase, causing 

constructive and destructive interference that results in fluctuations in the total return 

amplitude. The implications of this variability are discussed thoroughly in (13). There is a 

trade-off that must be accepted, and as a consequence HRR classifiers need to have added 
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functionality to account for the high degree of signature variability. The added function- 

ality amounts to sectoring the data into windows in which there is a small azimuth and 

elevation change and constructing templates for all sectors. 

For CID systems to operate as described above, databases must exist that contain 

a sufficient number of radar signatures collected for the various targets that the system is 

to identify. It is not always feasible to obtain signatures for a target; for example, foreign 

nations may deny the United States the ability to collect radar signatures for targets. For 

this reason, there is a strong motivation within the Department of Defense to generate 

radar signatures synthetically. Through intelligence and other means, accurate models of 

targets can be constructed, and electromagnetic simulation software can then synthesize 

the radar signatures. These synthetic signatures can then be used in the same way as 

their measured counterparts - they form templates for a matching process. The ability to 

generate synthetic signatures also has the added benefit of reduced expense. However, this 

paradigm is inherently problematic since the synthetic signatures do not look precisely like 

the real ones due to the inaccuracies introduced by the modeling. Thus it is not surprising 

that classification performance is degraded when forming synthetic templates. Further 

research and development is necessary to successfully incorporate synthetic models into 

the overall CID philosophy. 

1.2   Review of HRR Classification Schemes 

As with any classification problem, HRR classification approaches vary widely. Tables 

1.1 and 1.2 summarize some of the approaches taken over the past decade. (This listing is by 

no means comprehensive.) From the tables, we see that the HRR classification approaches 

have covered a wide spectrum, ranging from very simple to very complex. Note also that 

feature extraction often amounts to simply retaining the HRR signatures. Since no reliable 

feature sets have been found for HRR classification, it is sensible to use the raw data. The 

inability to find reliable features can be attributed to the variability of HRR signatures as 

mentioned above. 
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Reference Feature Extraction Classification 
(43),1992 HRR signatures Gaussian and Synthetic 

Discriminant Classifier 
(55),1994 HRR signatures Maximum Liklihood Bayes 

Classifier 
(24), 1994 HRR range bin selection 

using   decision   boundary 
analysis 

K-Nearest Neighbor, Mul- 
tilayer Perceptron, Gaus- 
sian Classifier 

(3), 1995 HRR    signatures    repre- 
sented in scale space using 
wavelet decomposition 

Tree-Structured Vector 
Quantization 

(41), 1995 Obtain relative range, size 
and   shape   of  scattering 
centers 

Modified Correlation 
Method 

(45), 1995 Retain   middle   64   range 
bins of HRR signatures 

Radial Basis Function 
Classifier 

(49), 1996 Logarithms of energies of 
HRR decomposition at ad- 
jacent wavelet scales 

Radial Basis Function 
Classifier 

(52), 1996 HRR signatures Modified LVQ2 
(28), 1996 HRR signatures Adaptive Matched Filter 
(17), 1996 HRR signatures Multilayer Perceptron 

Table 1.1     Summary of HRR Classification Approaches 

1.3    Problem Statement 

This thesis investigates the use of wavelet-based denoising as a means to improve 

HRR classification accuracy. The denoising acts merely as a pre-processing step which 

is used in conjunction with a Gaussian classifier. In particular, we are interested in the 

case of training on synthetic data, for it is with this case that current performance is 

severely lacking. When training on measured data, current performance is excellent and we 

therefore do not expect to achieve considerable improvement. However, we certainly want 

the performance when training on measured data to at least match current performance. 

The desire to perform denoising stems from an intuition gathered by visual exam- 

ination of the raw HRR signatures. The jagged appearance of the HRR signatures is 

reminiscent of high order polynomial fitting to measured data samples, in which case the 

polynomial overfits to the noise of the underlying signal. In the spirit of Occam's razor, 

which states we should prefer simple models to complex ones (4), we then desire to trans- 
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Reference Feature Extraction Classification 
(18), 1996 Fractal dimension of HRR 

signatures 
Fractal dimensions used to 
discriminate amongst tar- 
gets 

(53), 1996 Wavelet detail representa- 
tion of HRR signatures at 
various scales 

Nearest neighbor 

(30), 1997 Thresholded  HRR  signa- 
tures 

Time Delay Neural Net- 
work 

(25), 1997 Spectral  peaks  extracted 
from HRR ARMA models 
at various scales 

Minimum Distance Classi- 
fier 

(51), 1997 Eight     HRR     signature 
peaks   with   highest   en- 
ergy kept using geometry 
information 

Radial Basis Function 
Classifier 

(29), 1997 Target length,  maximum 
amplitude, symmetry, and 
moments  extracted  from 
HRR signatures 

Matched Filter, NNC, 
MLP, RBF 

(50), 1997 Transient polarization re- 
sponse 

Multiresolution Neural 
Network 

(33), 1997 Low frequency Fourier co- 
efficients  of HRR  signa- 
tures 

Hidden Markov and Gaus- 
sian Mixture Models 

(40), 1997 HRR signatures Vector Quantizer, Koho- 
nen Feature Map, Gaus- 
sian Classifier 

(54), 1998 HRR signatures Gaussian and Multinomial 
Pattern Matching Classi- 
fier 

Table 1.2     Summary of HRR Classification Approaches (continued) 
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Figure 1.2     Illustration of the HRR radar data distribution. 

form the raw HRR signatures such that their representation becomes simpler. We are 

also interested in evaluating the generalization properties of the denoising/classification 

scheme, using an appropriate measure of "generalization". 

1.4    Scope 

There are two databases available for use in this thesis. One is a six class database 

of measured HRR signals which span 60-90° in azimuth and 0-35° in elevation. The other 

database covers the same targets and the same span but contains synthetic data. Among 

these six targets are three "easy" and three "hard" targets. Our interest lies with the full 

set of targets and all of our effort will be directed towards the full target set. 

Figure 1.2 illustrates the distribution of the HRR data; the shaded regions indicate 

data rich sectors. We see that there are 42 windows each 5X5 degrees in size. Figure 

1.3 shows 25 signatures for a particular aircraft, taken from one 5X5 window. The 

signatures are reordered from the most similar to the most dissimilar from the mean of 

the signatures, and only range bins 150-300 are shown, which has been done simply for 

visualization purposes. Figure 1.4 shows all 25 synthetic signatures for the same aircraft 

and same 5X5 window; reordering has been done in the same manner as for the measured 
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Figure 1.3     Visualization of measured HRR signatures collected from a 5 X 5 window. 

signatures. The variability across the measured and synthetic signatures gives us an idea 

of how potentially difficult HRR classification can be, though an underlying structure can 

be discerned (e.g., the dominant peak in the middle). 

Ideally, each window would be data rich, but due to the manner in which data is 

collected, certain windows contain several hundred signatures, while others contain several 

dozen. Furthermore, for some targets there are small numbers of signatures across all 

windows. We want to perform classification with a sufficient number of signatures in a 

given window for all classes, so we choose one window meeting this criteria, and then add 

several others to evaluate the generalization of the classification method. 

1.5   Methodology 

The approach is two fold. First we develop a wavelet-based denoising scheme which is 

incorporated into the baseline classifier. This denoising scheme is then optimized such that 

for a given set of classification parameters, maximum classification accuracy is obtained. 

The optimization process determines the denoising parameters. Using this approach, we 

optimize for the case of a single 5X5 window and then extend the method to multiple 5 

X 5 windows. In each case we are interested in training on real and synthetic data, and 

on comparing the results with those of the current classifier. 
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Figure 1.4     Visualization of synthetic HRR signatures collected from a 5 X 5 window. 

1.6    Objectives 

There are 6 objectives: 

1. Provide the reader with a sufficient coverage of relevant theory. 

2. Develop a thorough wavelet denoising methodology. 

3. Demonstrate that for the case of training on measured data, proper denoising can 

lead to equivalent classification accuracy when applied to a single window. 

4. Demonstrate that for the case of training on synthetic data, proper denoising can 

lead to increased classification accuracy when applied to a single window. 

5. Extend classification to multiple windows to suggest generalization of results beyond 

the single window case. 

6. Demonstrate that the developed denoising method leads to superior results compared 

to the methods prevalent in the wavelet literature. 

1.7   Organization 

Chapter 2 covers the necessary theoretical material, which consists of statistical pat- 

tern recognition and wavelet analysis.   Chapter 3 sets the foundation for our wavelet 



denoising scheme. Comprehensive results are presented in chapter 4. Chapter 5 provides 

conclusions and recommendations for future work. 
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i7.   Theory 

2.1 Introduction 

In this chapter we cover the theory relevant for this thesis. We introduce statistical 

pattern recognition from a Bayesian viewpoint and then cover wavelet analysis and powerful 

wavelet-based denoising techniques. The theory is presented such that it is independent 

from the subject matter of the thesis and thus it will serve in a stand-alone fashion. 

2.2 Pattern Recognition 

Consider for a moment, qualitatively, the manner in which humans recognize patterns 

and objects. If you are a classical music aficionado, then you can distinguish a composition 

from the Baroque era and one from the Romantic era, because you have listened to enough 

examples from both eras and have a "feel" for the unique sounds of both. The problem 

of determining from which era a certain piece of classical music is can be stated in a more 

formal way as follows: Given the characteristics of a classical music piece, from what era 

is it? Of course, it is unreasonable to assert that this decision could be made with 100 % 

certainty, and so the problem must be treated from a probabilistic standpoint, and may 

now be stated as: Given the characteristics of the classical music piece, what era was it 

most likely from? We can make a slight modification to this line of thinking which enables 

us to obtain a firmer grasp of "most likely." Suppose that the number of musical pieces 

composed during the Romantic era exceeded the number composed during the Baroque 

era. This type of knowledge can be of great utility. If a decision had to be made before 

listening to the composition (an unfair circumstance!), then the wise thing to do would 

be to decide that the piece was from the Romantic era. Once we listen to the piece, then 

to make a decision we can use the characteristics of the music and knowledge regarding 

the relative numbers of compositions from each era. This qualitative analysis leads to the 

Bayesian formalism of pattern recognition discussed below. 

2.2.1 Bayesian Decision Theory. We now consider a general classification prob- 

lem in which we try to classify N objects. Let P(Ck) be the fraction of all objects in the 

kth object class. These fractions are the a priori probabilities. Let p(x|Cfc) be the class 
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conditional density of the D-dimensional feature vector x for class k. Finally, define p(x) 

as the unconditional density of x. Bayes Theorem can then be expressed as 

P(CiW = *»>, (2.) 

where P(Cfc|x) is the posterior probability for class k. The unconditional density is written 

as 

N 

p(x) = J>(x|C* Wfc), (2-2) 
k=i 

and so it acts as a normalization factor and can be disregarded for the decision making 

process. The left side of Equation (2.1) can be read as "Given the feature vector x, what is 

the probability that it belongs to class kV Intuitively, we arrive at the following decision 

rule: A feature vector x is labeled as class k if 

P(Cfc|x)>P(Ci|x)forallA;^i. (2.3) 

By noting the unimportance of p(x) and by making use of Equation (2.1), we can rewrite 

Equation (2.3) as 

p(x|Cfc)P(Cfc) > p(x|Ci)P(Cj) for all k / j. (2.4) 

Since the classifier assigns each feature vector to one of N classes, we envision the 

feature space as being composed of decision regions 1Z\, ...,72/v- We must determine the 

placement of the decision boundaries such that the probability of misclassification is min- 

imized. Consider a problem with two classes and one dimensional feature vectors. A 

misclassification occurs when a feature vector is assigned to class C\ when the true class 
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is C2 and vice versa. We can write the total probability of error as 

P(error) = P(x G ft2,Ci) + P(x G Wi,C2) (2.5) 

= P(x G ^2|d)P(Ci) + P(x G fci|C2)P(C2) 

= J p(x\C1)P(C1) + J p(x\C2)P(C2), 

where P(x G TZi,C2) is the joint probability of assigning a feature vector to class C\ 

and having a true class of W2. If p(x|Ci)P(Ci) > p(x|C2)P(C2) for a given x, then 

V,\ and 7l2 should be chosen so that x lies in TZi, since this choice will yield a smaller 

contribution to the error and is precisely the decision rule given by Equation (2.4). If 

the joint probability densities are as in Figure 2.1 and the decision boundary is located 

at the vertical line, then we would have a sub-optimal classifier, since the shaded regions 

correspond to misclassifications. If instead we place the decision boundary at the point 

where the densities cross as indicated by the arrow, then we would minimize the area of the 

shaded region, thus minimizing the probability of misclassification. Equation (2.4) would 

have us do so and this placement is equivalent to assigning a feature vector to the class 

for which it has the largest posterior probability. This decision rule readily extends to the 

general case of N classes and D-dimensional feature vectors. 

2.2.2 Discriminant Functions. We saw in the previous section that class assign- 

ment is based on the relative sizes of the probabilities. This fact allows us to use a set 

of discriminant functions to perform classification. Each class has a discriminant function 

?/fc(x) such that the following decision rule can be used: Assign a feature vector x to class 

Ck if 

ite(x) >yj(x)   for all k £ j. (2-6) 

Equation (2.4) shows how to choose the discriminant functions: We choose them so that 

jfc(x) =p(x|Cfc)P(Cfc). (2.7) 
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Figure 2.1 Illustration of the joint probability densities for two classes as a function of 
a feature x. The vertical line indicates a sub-optimal decision boundary and 
the arrow indicates an optimal decision boundary. 

The relative magnitudes of the discriminant functions determine class assignments, so we 

can use a monotonic function to perform the transformation g( t/fc(x)). This transformation 

has the important property of preserving decision region boundaries. A particularly useful 

monotonic function is the natural logarithm function. Applying the natural logarithm to 

Equation (2.7) yields 

lfc(x) =lnp(x|Cfc) + lnP(Ck). (2.8) 

We have seen from the preceding sections that probability densities play a vital role 

in Bayesian decision theory. Some controversy arises over the Bayesian approach because 

it assumes that the densities are available; whether or not the densities you are using 

are representative of the underlying densities is the issue. Thus, density estimation is an 

important preliminary step before classification. There are two general methods used to 

estimate densities. The parametric method assumes a functional form for the density and 

estimates the parameters that define the functional form. An alternative approach is the 

non-parametric method, which assumes no functional form but fits a density to the data. 

A histogram is a crude non-parametric method.   Though not used in practice, it forms 
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the basis for more justifiable non-parametric density estimation methods ((4) provides a 

sufficient overview of both density estimation techniques as applied to pattern recognition). 

2.2.2.1 Quadratic Classifier. We now examine a particular classifier based 

on the preceding ideas. First we define the Gaussian density. For a one dimensional feature 

vector x, the Gaussian density function is 

*>=V5H-^}' ' (2-9) 

where ß and a2 are the mean and variance of the feature, respectively. The Gaussian 

density extends to feature vectors of D dimensions and has the form 

Kx)=&?*&* exp B<* - ">riri<x - ">} •      (2-io) 

where | A| and AT denote the determinant and transpose of a matrix A, respectively. We 

now use a D-dimensional mean vector //, and aflxfl covariance matrix S. The quantity 

(x - //)TS-1(x - n) is the Mahalanobis distance from x to ß. We can view this as a fair 

distance measure in that components of x with large variance do not contribute as much 

to the distance as components with small variances. From statistical estimation theory, we 

know that it desirable to obtain estimates of a parameter 0, such that £[§] = 0, where £[■] 

denotes the expectation operator. Such estimates are unbiased estimates (31). Unbiased 

estimates for fj, and £ are 

A4E
XW (2-11) 

n=l 

where N is the number of samples and x^ denotes the nth sample. 
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Let us now suppose that the class conditional densities are each Gaussian. Then for 

each class, we could compute ßk and Efc using Equations (2.11) and (2.12). Each density 

p(x|Cfc) could then be expressed in the form of Equation (2.10). 

Earlier we introduced discriminant functions, and monotonic transformations of these 

functions. In particular, we saw that by using a logarithmic transformation we obtain 

discriminant functions in the form of Equation (2.8). If we substitute the Gaussian form 

for p(x|Cfc) in Equation (2.8), then we obtain 

Vk(x) = ~g(x - Afc)TSfc*(x - ßk) - 2 ln Sfc + In P(Ck). (2.13) 

The decision boundaries are thus general quadratic surfaces due to the presence of the 

quadratic term (x - /ifc)TS^'1(x - ßk). There may be simplifications to Equation (2.13). 

If the covariance matrices for all classes are equal, then the Sfc terms can be dropped 

since they are class independent. The quadratic term xTS^1x that arises upon expansion 

of (x - /ifc)TI]^1(x - ßk) also can be dropped because it too is class independent. We can 

then write the discriminant functions as 

2/fc(x) = WfcX + Wfco, (2.14) 

where w^ = ßjt,'1 and Wko = -lAfc^-1/**; + lnP(Cfc).   The decision boundaries thus 

become hyperplanar . 

If the features are statistically independent, then the covariance matrix is diagonal 

and we need only be concerned with computing the variances of the individual features. 

A more extreme case is when the variance is equal across all features and all classes share 

this variance so that E = <r2I for all classes. If this is the case Equation (2.13) simplifies 

to 

Vk(x) 
Mfcl 

2a2 + In P(Ck). (2.15) 

In the case of equal prior probabilities, Equation (2.15) results in a simple decision rule: 

Measure the Euclidean distance from a feature vector to all class means and assign it to 
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the class for which this distance is the smallest. This rule is understandably referred to 

as a nearest mean classifier (44). The mean vector plays the role of a template so that 

classification amounts to the classical technique of template matching. Templates also play 

a role in radial basis function classifiers. 

At this point, a fair question is whether or not representing a density function as 

a Gaussian is a reasonable thing to do in view of its simplicity. We can look to nature 

for an answer to this question: It is well known that many densities arising in nature are 

well represented by Gaussian functions. This is true, for example, for receiver noise in 

electronic systems, and yearly rainfall. The central limit theorem provides a strong basis 

for the prevalence of Gaussian densities. This theorem states that the density function for 

the sum of independent random variables approaches the Gaussian form as the number of 

independent random variables increases without bound (48). 

2.2.3 Feature Extraction and Pre-Processing. Let us return to the problem of 

determining the era of a classical music composition. If you simply listen to an instrument 

in the composition that is faint, then you probably can not determine the era. If you 

listen to a lead instrument, then your chances are improved, because the lead instrument 

has more "presence". Still, you should consider the overall sound, and not just the lead 

instrument. You can consider each instrument as a unique feature, or you can combine 

low frequency instruments and higher frequency instruments into separate features. Thus, 

there are many ways that you could go about extracting information from the composition 

so as to make a decision regarding its era. This process is known as feature extraction and 

is an extremely important step that occurs early on in the pattern recognition process. 

If your classical-era decision making process is to be successful, you may need to 

remove noise from the recording before you extract information from it, for it may be 

considerably noisy as is often the case with old recordings. By removing noise, you are 

able to cue on the true instrumental quality of the composition. In engineering terms, you 

have increased the signal-to-noise ratio (SNR) so that the signal component is dominant. 

In the next section, we consider wavelet-based signal analysis which can satisfy the 

goals of both feature extraction and pre-processing. Particular emphasis is placed on the 
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signal denoising capabilities of wavelets. First we provide a theoretical background so that 

this powerful analysis tool can be appreciated. 

2.3    Wavelet Analysis 

The development in this section is based primarily on Chapter 2 in (8). When 

appropriate, it is supplemented with content from the cited references. 

Often in the business of signal analysis, it is desired to express a signal f(t) by a 

linear decomposition as 

/(<) = X>rtM*)' (2.16) 
I 

where / is an integer index, the a; are the expansion coefficients and the r/>i(t) form the 

expansion set. Furthermore, we often desire that the expansion set be orthogonal so that 

{tl>k,1>i) = JMWi(t)dt = o *#/, (2-17) 

where (,) denotes the inner product operation. Orthogonality then allows us to compute 

the ak by 

ak = (fM = Jf(t)Mt)dt. (2-18) 

Thus, the a* are simply the projections of / onto the fa (In fact, the ak are the least squares 

projections.). Perhaps the most well known linear decomposition is the Fourier Transform 

(FT), which decomposes a signal into a sum of sines and cosines (or complex exponentials). 

A drawback of the FT is that the coefficients represent frequency components that are of 

an infinite duration, and so time localization is lost. If a signal contained a high frequency 

burst, for instance, then the Fourier representation would not tell us when that burst 

occurred. Traditional Fourier analysis, then, is not suitable for nonstationary signals (2). 

To overcome the pitfalls of traditional Fourier analysis, Gabor devised a scheme which 

positions a window g(t) at a time r on the time axis and computes the FT of the signal 

within the window extent.  This scheme is known as the Short-Time Fourier Transform 
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(STFT) and is computed as 

/oo 

f(t)g*(t - r)e-^dt. 
■oo 

(2.19) 

When g(t) is chosen to be Gaussian, then Equation (2.19) is called the Gabor transform. 

The problem with the STFT is that the fixed duration of the window results in a fixed fre- 

quency resolution and hence a fixed time-frequency resolution as a result of the uncertainty 

principle.  Figure 2.2 shows the resolution cells that are obtained in the time frequency 

3wn 

2w„ 

Figure 2.2     Resolution cells in time-frequency plane of short time Fourier transform. 

plane of the STFT. 

The wavelet approach handles the drawbacks of the FT and STFT by allowing for a 

prototype function - the wavelet - to be scaled and shifted. A function is then projected 

onto the scaled and shifted versions. If we call the basic wavelet ip(t) and define i>a,b{t) = 

"T'V'C^Jr) to be the scaled and shifted version of the basic wavelet (with scale a and shift 

6), then we obtain the continuous wavelet transform (CWT) of a signal f(t) by evaluating 

F(a,b) = [ f(t)il>a,b(t)dt. (2.20) 

The wavelet transform thus provides us with a two-dimensional expansion set as a result of 

the scaling and translation operations. Depending on whether a is large or small, ij)(t) either 

expands or contracts in time, which results in a corresponding expansion or contraction 
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Figure 2.3     Resolution cells in time-frequency plane of wavelet transform. 

in frequency. The wavelet transform then provides flexibility in time-frequency resolution. 

Figure 2.3 shows the resolution cells in the time-frequency plane for the wavelet transform 

(2). 

Since the CWT maps a function of one parameter into one of two parameters, there 

is clearly redundancy. It turns out that we can sample the CWT plane and still get perfect 

reconstruction of f(t) which is analogous to the result that we can recover a signal from 

its samples as long as the Nyquist rate is met (12). The sampling of the CWT plane 

is most often done on a dyadic, which means that a = 2J and b = &2J. We then have 

i>j,k(t) = 2j/2ip(2H - k) (2) and can express /(<) as 

/w = EE^feW' (2.21) 

where j and k are integer indices. Equation (2.21) provides us with a linear decomposition 

essentially in the form of Equation (2.16). The d^k are the discrete wavelet transform 

(DWT) and are computed as (f,i>j,k) provided that {ipj,k} forms an orthonormal set. 
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At this point one may wonder about the benefits of wavelet analysis and under what 

circumstances their use is advantageous. Below are some general reasons why wavelet 

analysis is attractive: 

1. The magnitudes of the djtk fall off rapidly for a large class of signals - this is a char- 

acteristic of an unconditional basis and makes wavelets ideal for signal compression 

and denoising. Donoho (22) shows that wavelets are optimal for compression and 

denoising for a large signal class. 

2. Wavelet analysis allows for time and frequency localization so that transient features 

of a signal can be well represented, whereas with traditional Fourier methods there 

is no time localization. 

3. There are many wavelets one can choose from, thereby making wavelets adaptable 

to a specific problem. Wavelets can be designed in a similar manner to finite impulse 

response (FIR) digital filters. 

4. A computationally efficient algorithm exists for performing the discrete wavelet trans- 

form. 

We are now ready to begin a discussion of the wavelet approach from the viewpoint 

of multiresolution analysis, which provides an intuitive framework on which to base much 

of wavelet theory. This analysis leads to a computationally efficient means for computing 

the wavelet transform, alluded to above, which requires O(N) operations. Note that the 

computational efficiency exceeds that of the Fast Fourier Transform (FFT), which requires 

0(Nlog(N)) operations. 

2.3.1 Multiresolution Analysis. We will first describe, what is known in wavelet 

literature, as the scaling function. A set of scaling functions can be defined in terms of 

integer translates of a basic scaling function as 

4>h{t) = <j>{t - k)   kez, (2.22) 
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where Z is the set of all integers. We define the subspace spanned by these functions as 

V0 = Span{<f>k}, (2.23) 
k 

which means that 

/ = E*«*&   V   feV0. (2.24) 

We now allow the scaling function time scale to change giving us the family of functions 

<f>itk(t) = 2>'2<K2>t - k), (2.25) 

which span the subspaces 

Vj = Span{<f>j>k}. (2.26) 
k 

Increasing j allows the scaling functions to represent finer detail, while decreasing j allows 

them to only represent coarse details - this idea corresponds to our intuition of high and 

low frequency in the Fourier domain. 

We now establish the multiresolution framework by requiring a nesting of the spanned 

spaces: 

•••cVLaCVl! CV0CV1CV2C---CL2. (2.27) 

This nesting leads to the observation that 

f(t)eVj  &  f(2t)evj+1, (2.28) 

and so we see that elements in a given space are scaled versions of elements in the next 

finer space. Figure 2.4 depicts the nested spaces spanned by the scaling functions. We 

require that (j>{t) G V\, and since it is in V0, we can express <f>{i) as a weighted sum of 
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V3z>V2=>V^V0 

Figure 2.4     Nested spaces spanned by scaling functions. 

shifted versions of (j>(2t). So we have 

<Kt) = £>(n)V2#2*-n), (2.29) 

where the <7(n)'s are a real or complex sequence called the scaling filter, and V2 ensures 

the norm of the scaling function is one. This equation is often called the multiresolution 

analysis (MRA) equation. 

We now define the wavelets to be functions that span the differences between the 

spaces spanned by the scaling functions, and hence the wavelets are orthogonal to the 

scaling functions. Figure 2.5 shows the relation among the wavelet and scaling function 

Figure 2.5     Nested spaces spanned by scaling functions and wavelets. 
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spaces. From the figure we see that 

L2 = V0 U Wo U Wx U • • • . (2.30) 

The choice for the initial space is arbitrary - it can be at higher or lower resolution than 

VQ. We could just as easily define 

L2 = F_5 U W_5 U W_4 U • • • . (2.31) 

For practical purposes, we choose the initial space to represent the coarsest information of 

interest. 

Figure 2.5 also shows that the wavelets are in the space of the next finer scaling 

function, which leads to a relation between a wavelet function and a scaling function, 

similar to that of Equation (2.29): 

$(t) = ]T h(n)\/2<l>(2t - n). (2.32) 
n 

Equation (2.32) provides the mother wavelet, and we generate a family of wavelet functions 

(similar to the family of scaling functions) as 

^k(t) = 2i'2i>(2H - k). (2.33) 

Now that we have the families of functions </>j,k(t) and i>j,k(t), we can use Equation (2.30) 

and define jo to be the starting scale to obtain 

oo       oo 

/(')= E «*>(*)&(<)+ E E d(i>*)Vy,fc(0- (2-34) 
fc=-oo j=jo k=-oo 

Thus, the wavelet transform as specified by the coefficients in Equation (2.34), is a sampling 

of the translation and scale plane of the CWT, which results in the DWT; the form of 

Equation (2.34) assumes a dyadic grid. The wavelet coefficients in Equation (2.34) provide 

for time-frequency localization in that a coefficient associated with scale j and shift k gives 
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information about the function / near time point 2~^k and near frequency proportional 

to 2J (38). Since the signals that we most often deal with come from sampled systems, 

we can discretize time and simply replace t with the discrete time variable n. We assume 

discrete time from here on unless otherwise stated. 

The first summation in Equation (2.34) provides us with a course approximation to 

/ which is simply the projection of / onto Vj0. The second summation for each j gives us 

finer details and are the projections of/ onto the Wj spaces. It is convenient to think of the 

wavelet transform in terms of these vector spaces. We will define Py,/ as the projection of 

/ onto the Vj vector space, and similarly PWJ f is the projection onto the Wj space. The 

expansion in terms of the projections is 

f = Pvjof + Y,Pw3f. (2.35) 
3 

In wavelet analysis we are interested in projecting a signal onto the vector spaces 

in Figure 2.5 as dictated by Equation (2.35), whereas with Fourier analysis we extract 

information from projections of a signal onto the vector spaces spanned by sines and cosines 

at different frequencies. Figures 2.6 and 2.7 show a signal projected onto the scaling and 

wavelet function spaces. 

In practice, the wavelet coefficients are computed using Mallat's algorithm (34) which 

arises from equations that are similar to the MRA equations for the wavelet and scaling 

functions. These equations are as follows: 

aj(k) = ^2h(m- 2k)aj+1(m). (2.36) 

dj(k) = Y;9(m- M)cj+i(m). (2.37) 
m 

Equations (2.36) and (2.37) tell us how to perform the DWT: Convolve the coefficients at 

scale j with the time reversed filter coefficients h(-n) and g(-n) and then downsample to 

get the coefficients at scale j - 1. Figures 2.8 and 2.9 show a filter bank implementation 
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Figure 2.6     Signal projected onto the scaling function spaces. 

for the decomposition and reconstruction. In fact, Mallat's algorithm can essentially be 

found in engineering literature on filter banks, quadrature mirror filters, conjugate filters, 

and perfect reconstruction filter banks. A good treatment of these subjects is in (2). 

The finite signal length of sampled signals limits the number of filter bank iterations 

that can be carried out. Fortunately, Mallat's algorithm does provide for perfect recon- 

struction of sampled signals (2). We can then represent the coefficients at a given scale as 

a vector and express a sampled signal as 

/(n) = Ä(ajo) + X;Ä(di), (2.38) 

where aJO and dj are the approximation and detail coefficients at scale j0 and j, respectively, 

and R() denotes the reconstruction portion that comes from either approximation or detail 

coefficients. 

For a signal of length N Mallat's algorithm requires O(N) operations. Note that there 

are J- j0 levels in such a decomposition. The term "levels" is often used synonymously 
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Figure 2.7     Signal projected onto the wavelet function spaces. 

with iterations. In any case, a given level can also be labeled according to the function 

spaces depicted in Figure 2.5. The detail and approximation coefficients from level j 

provide us with the projection weights for the Wj-j and Vj_j spaces, respectively. We 

refer to both the levels and the spaces depending on circumstances. 

As an example, consider a signal s(n) whose length is N = 2J, which means that 

there are J choices for the initial scale j0. If we performed the full, standard wavelet 

decomposition as illustrated in Figure 2.8, then we would be left with a vector of wavelet 

coefficients which we could arrange as 

w = [aj0dj_idj_2---dio] J0j  5 (2.39) 

where the lengths of the coefficient vectors from left to right are 2J0,2J_1,2J~2,... ,230. 

This vector does not indicate how wavelet coefficients are typically ordered, but it is useful 

to arrange them in this manner for a subsequent development. 
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Figure 2.8     Filter bank implementation of discrete time wavelet decomposition. 

The essence of designing a wavelet system amounts to determining the filters g(n) and 

h{n) that are necessitated by Equations (2.29) and (2.32). From here on we refer to these 

filters as the lowpass and high pass filters, respectively. The wavelet framework imposes 

several necessary conditions on the filters, and the design process typically involves applying 

digital filter design techniques using the constraints imposed on the filters. Fortunately, 

one does not typically need to go through this arduous process, for others have provided 

useful filters, with the most widely used being the Daubechies filters. 

2.3.2 Daubechies Wavelets. The theory of wavelet design is beyond the scope 

of this thesis; (8) contains a thorough treatment of the necessary conditions imposed by 

wavelet systems. We summarize some important results and use them to provide insight 

into an important wavelet family - the Daubechies wavelets. 

Design of a wavelet system can be accomplished in a manner similar to digital filter 

design; Equations (2.29) and (2.32) in essence define a difference equation similar to that 

of FIR digital filters. However, several necessary conditions arise that restrict the design 
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Figure 2.9     Filter bank implementation of discrete time wavelet reconstruction. 

of h(n). These conditions are 

5^/i(n) = \/2    and   ]T/i(ra)/i(fc + 2m) = <5(ra). (2.40) 

The first condition is needed to ensure a solution to Equation (2.29), and the second 

condition provides for the orthogonality of the scaling and wavelet functions. These two 

conditions result in N/2 - 1 degrees of freedom in designing an h{n) which has a length 

or support of N. When a Daubechies filter is specified (using the notation daubjsr) the 

subscript refers to the length N. 

Daubechies filters fall in an important class known as K-Regular Scaling Filters. The 

z-transform of such a filter is 

H(z) 
1  ,    -l\ K 

1 + z    \ 
<?(*), (2.41) 
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where K is the regularity of the filter and is limited by 1 < K < JV/2. The smoothness 

of a function is related to its differentiability and the smoothness of h(n) thus is related 

to K, since for larger K, \H(z)\ drops off more rapidly. We now state some important 

properties of these filters: 

1. The wavelet filter moments, fig(k) = £n nkg(n), are zero for k = 0,1,... , (K - 1). 

2. The wavelet function moments, mg(k) = / tkij>(t)dt, are zero for k = 0,1,..., (K-l). 

3. All polynomial sequences up to degree (K - 1) can be expressed as a linear combi- 

nation of shifted scaling filters. 

4. All polynomials up to degree {K — 1) can be expressed as a linear combination of 

shifted scaling functions at any scale. 

It is useful to know what order polynomials can be exactly represented in consideration of 

the fact that a large class of signals can be represented adequately by a truncated Taylor 

Series. Daubechies filters are designed by setting K = N/2, and so a daub^ wavelet system 

allows us to exactly represent polynomials up to degree N/2 — 1 with shifted versions of 

the scaling functions alone. Figure 2.10 shows the wavelet and scaling functions for the 

daub4, daw&io,and daubiQ wavelet systems. The Haar wavelet system is also shown for 

contrast in Figure 2.11. 

2.3.3 Wavelet Denoising. The unconditional basis property of wavelets allows 

wavelets to represent a large class of signals more efficiently than, say Fourier bases. As an 

example, consider a piecewise constant function. The Fourier representation would require 

a large number of coefficients to represent the signal near discontinuities, and the basis 

functions would have a global extent. A wavelet representation can efficiently represent the 

signal at discontinuities and the basis functions have a local effect, thereby not affecting 

the signal representation elsewhere (38). The unconditional basis property then makes 

wavelets ideal for compression, and hence denoising too. 

Figure 2.6 suggests a simple wavelet-based denoising method - simply retain the 

approximation coefficients and reconstruct the signal solely from those coefficients, i.e., 
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Figure 2.10     Wavelet and scaling functions for daub4, daubio, and daubie. 

let Py 0 be the denoised signal. This method is crude, but it gives us a good basis for 

wavelet based denoising/smoothing. The more general approaches are typically established 

from the standpoint of nonparametric statistical estimation or regression. Donoho and 

Johnstone (20) take the following approach: Suppose that we have data of the form   J 

s(n) = f(n) + az(n),     n = 0,... , N (2.42) 

iid 
where the noise is independently, identically distributed asz~ N(0,1) and a is the noise 

level. By employing the usual I2 norm, a measure of risk is defined as 

U(f,f) = n-1E  f-f (2.43) 

The goal then is to minimize the risk, which is done by viewing the problem as one of selec- 

tive wavelet reconstruction. The idea is that only "large" wavelet coefficients contribute to 

the signal, and so to obtain the estimate / we keep only those coefficients whose magnitude 
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Figure 2.11     The Haar wavelet and scaling function. 

are greater than a threshold t. Such a threshold scheme is known as hard thresholding. In 

recognizing that each wavelet coefficient contains a signal and noise portion, it is desirable 

to try and remove the noisy portion. Soft thresholding, like hard thresholding, aims to 

meet this desire by keeping only those coefficients whose magnitudes are greater than a 

threshold. However, the remaining coefficients are shrunk towards zero by an amount t - 

hence, soft thresholding is often referred to in wavelet literature as wavelet shrinkage. The 

thresholding operators are defined by Equations (2.44) and (2.45) and are illustrated in 

Figure 2.12. 

Soft thresholding: 

m(x) = 
sign(x){\x\ — i)   if \x\ > t 

0 if \x\ < t 
(2.44) 

Hard thresholding: 

Vt(x) 
x   ii\x\ > t 

0   if Id < t 
(2.45) 

Both schemes possess the property of being spatially adaptive, meaning that they are 

able to apply the proper level of smoothing where needed.  Donoho and Johnstone (20) 
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Hard Soft 

Figure 2.12     Illustration of soft and hard thresholding. 

demonstrate that spatially adaptive estimation with wavelets is as powerful as other high- 

performance methods such as piecewise polynomial estimation. The general wavelet thresh- 

olding approach is as follows: 

1. Perform decomposition of the signal using an orthogonal wavelet transform. 

2. Apply soft or hard thresholding rules to the coefficients obtained in step 1. 

3. Reconstruct the signal with thresholded coefficients. 

In the above algorithm, the approximation coefficients are not thresholded, as they deter- 

mine the underlying signal structure and contain no noise component (6). 

In applying wavelet thresholding the choice of t is critical. Choosing too large a 

threshold results in oversmoothing, whereas choosing too small a threshold results in noisy 

estimates. Another issue concerns the choice of thresholding scheme. In practice, the soft 

thresholding method is used far more often than hard thresholding, due to the more visually 

pleasing results afforded with soft thresholding. Hard thresholding tends to produce greater 

oscillations near signal discontinuities and does not preserve signal features as well as soft 

thresholding (15). 
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One of the most widely used wavelet denoising methods is Donoho's VisuShrink and is 

described in (23). The VisuShrink threshold is set to y/2\og(N)a where a is an estimate 

of the noise level. This is often referred to as the universal threshold. This choice of 

threshold is based on a Gaussian noise model in which case P(max; \zi\ > y/2 log( JV)) —> 0, 

as n -» oo. Donoho suggests the use of soft-thresholding and shows that the estimate / 

obtained through the VisuShrink method is at least as smooth as / for a wide variety 

of smoothness measures and that it comes as close in mean square error to / as any 

measurable estimator can come. In fact, Donoho shows that when a Gaussian noise model 

is assumed, the noise can be completely removed (in an appropriate probabilistic manner) 

for some theoretical threshold. The details are in (23). 

A well documented problem with VisuShrink is that it tends to result in oversmoothed 

estimates due to the fact that the threshold selection rule results in a relatively large thresh- 

old thereby shrinking or removing a large number of coefficients (35). To overcome this, 

Donoho and Johnstone (21), propose the SureShrink procedure which is based on mini- 

mizing the Stein unbiased risk estimate (SURE) and assumes the Gaussian noise model. 

Given N noise-corrupted wavelet coefficients {«;,•}, the SURE criterion is 

N 

SURE(t, w) = N - 2 ■ #{i: H <t} + J^(N A t)2, (2.46) 
t=i 

where x A y is the minimum of x and y. An 0(N log N) algorithm is used to determine the 

threshold that minimizes the SURE criterion. SureShrink is applied at each decomposition 

level and if enough signal content is available then the SURE threshold is used; otherwise 

the universal threshold is used for that level. A remarkable theoretical result is that the 

SureShrink estimate achieves the near-minimax optimal rate of convergence for estima- 

tion of a function simultaneously over a large class of functions. Kernel and spline-based 

methods are not able to perform in a near-minimax sense over as many function spaces as 

SureShrink does. This result assumes soft thresholding. 

Though SureShrink alleviates the over-smoothing problem of VisuShrink, it tends to 

under-smooth. Neither of these methods provide desirable results in all situations. Other 

more general means to select the threshold are hypothesis testing and cross-validation. 
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Denoising in the above context is based on the assumption that there are "small" valued 

coefficients corresponding to noise and "large" valued coefficients corresponding to the 

signal. To determine these two groups of coefficients, hypothesis testing can be used 

so that the large coefficient group contains only coefficients that "pass the test". This 

approach is taken by Abramovich and Benjamini (1) and Ogden and Parzen as discussed 

in (39), and assumes the usual Gaussian noise model. Cross validation methods seek to 

choose the threshold such that the estimator has best performance when predicting new 

observations. A prediction is made on a subset of data and then compared to the remaining 

data. This data driven method makes no assumptions about the noise model. Nason uses 

this approach in the context of wavelets, but states that it is not suitable for complex 

noise structures(36), and that it is far less superior to the SureShrink method in the case 

of correlated noise (38). 

Ghael recognized that for any given signal, the optimal denoising method with respect 

to mean squared error (MSE) is the Wiener filter. However, Wiener filtering requires 

knowledge of the signal and noise statistics. A wavelet shrinkage estimate can be used as 

a preliminary step in designing a wavelet domain Wiener filter. This technique is aptly 

named WienerShrink. Whereas denoising methods typically strive to balance variance and 

bias, the WienerShrink method improves both simultaneously (27). Donoho points out 

that optimality with respect to mean square error alone tends to result in undesirable 

side effects - "ripples," "blips," and oscillations. VisuShrink is subject to an additional 

condition that with high probability, / is at least as smooth as /. It is this extra condition 

which allows VisuShrink estimates to be more visually appealing than other methods. This 

visually pleasing quality is responsible for the coining of the term "VisuShrink." 

One drawback with the above denoising approaches stems from the fact the wavelet 

transform is not translation invariant. The set of coefficients in Equation (2.39) would 

not be the same for a signal and a shifted version of that signal, and there is no simple 

relationship between the two sets (8). We prefer the denoising process to be translation 

invariant in the following sense: Consider a function /. Denote Ssf to be a circularly 

shifted version of /. Also let / and fs be the denoised versions of / and Ssf, respectively. 

We want fs to simply be a shifted version of /, so that /s = Ssf. 
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Several methods have been developed to perform translation invariant denoising. 

Coifman (15) developed one such method termed cycle spinning. In this approach, a 

signal is shifted, denoised, then unshifted and averaged across the shifts. When cycle 

spinning is done over all shifts the translation dependence is averaged out. The interest 

in cycle spinning led to a computationally efficient algorithm which, remarkably, requires 

0(Nlog(N)) time to cycle over all shifts. It turns out that we can in essence perform 

cycle spinning over all shifts, but we do not need to actually perform all shifts. This 

fact was realized by Beylkin and others independently (8). First, consider either the high 

pass or low pass output of the first stage in Figure 2.8. The decimation process discards 

the odd indexed coefficients, and leaves the even indexed coefficients. Now suppose the 

input signal is shifted by one, which shifts the coefficients by one as well, and so the odd 

indexed coefficients remain, and the even indexed coefficients are discarded. Thus the set 

of coefficients to be further processed are completely different for the two cases. However, if 

we were to shift the input signal by two, then the decimated output would differ from the 

nonshifted output by a shift of one. So all even shifts result in the same coefficients - they 

are just shifted versions of one another and the same is true for all odd shifts. At the end of 

the first iteration of Figure 2.8, there are a total of N different detail coefficients, where TV 

is the signal length. These coefficients are split into two groups, each with N/2 coefficients. 

One group corresponds to the nonshifted output and the second group corresponds to the 

output when the input is shifted by one. The approximation coefficients are also split into 

two groups in a similar manner. These two approximation groups are further processed 

as the decomposition goes through the next iteration. By the argument above, each of 

these two groups, when processed at the next level, spawns two more unique groups of 

approximation and detail coefficients. The following algorithm now emerges: 

1. Apply the filtering block of Figure 2.13 to the input signal - Si signifies a shift of 

one. 

2. Keep the groups of detail coefficients and proceed to next level of decomposition. 

3. Apply the filtering block of Figure 2.13 to all groups of approximation coefficients 

outputted from step 2. 
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Figure 2.13     Filter block for TI wavelet transform implementation. 

4. Repeat steps 2 and. 3 until the coarsest level of the decomposition has been completed. 

The above algorithm requires ö(iVlog(iV)) time, and keeping track of the groups of coef- 

ficients is a major bookkeeping issue. To handle bookkeeping, Donoho and Coifman (15) 

use a data structure referred to as the Translation Invariant (TI) Table. The TI Table is 

an array of size N X J - j0 + 1, where N = 2J is the signal length and jo corresponds 

to the coarsest scaling function space - Vj0. The first column contains N/2j0 groups, each 

having 2j0 elements. The groups correspond to the unique collections of approximation 

coefficients that can result after the completion of the above algorithm. The remaining 

columns from left to right contain the groups of detail coefficients that result each time 

step 2 is completed in the above algorithm. If we number these columns from 1 to J - j0, 

(consider the column of approximation coefficients column 0), then column k corresponds 

to the kth iteration of the decomposition, and in it are 2k groups of detail coefficients, 

each group containing 2J~k coefficients. To summarize the TI Table structure, column 

zero contains all collections of approximation coefficients at the coarsest scale, column two 

contains all collections of detail coefficients at the finest scale, column three contains all 
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collections of detail coefficients at the next finest scale, etc. The last column, then, contains 

all collections of detail coefficients at the coarsest scale, and hence it consists of the same 

number of collections as there are in the first column. 

If we denote dj>n as the nth group of detail coefficients corresponding to the Wj 

vector space which occur at level J - j, and define a.j>n similarly for the approximation 

coefficients, then the TI table is as follows: 

/ 

TI = 

aJo,l 

aJo,2 

dj-1,1    dj_2,i    • • •    dj0)i 

dj-1,2    dj_2,2    •••    dj0)2 

\ 

(2.47) 

\ajoy->o    dj_lt2    dj_2>4    •••    d.oy-JO J 

Note that each a.jiTl and dj)n is a column vector with 2J~n elements. 

The translation invariance property of the TI table comes about because if we let 

TI(f) be the TI table for a signal / and we let TI(Ssf) be the TI table for a shifted 

version of /, then there is a permutation of matrix entries IIS so that ILsTI(f) — TI(Ssf). 

The coefficients of the standard wavelet transform of / are contained in the TI table; they 

are the top-most group of coefficients in each column. To extract the standard wavelet 

coefficients for Ssf, Donoho and Coifman specify an encoding of the shift s and then use 

a dynamic programming algorithm to perform the extraction. 

Of course, one needs to be able to invert the TI transform, and to do so the following 

algorithm is used: 

1. Start with j = jo- 

2. For each k in the range 1 < k < 2J, compute 7^ = (GaJ)2fc-i + 5_iGaji2fe)/2 and 

6k = (Hdj,2fc-i + 5_iHdj)2A;)/2. G and H correspond to the usual upsampling and 

filtering operations used in wavelet reconstruction. 

3. Compute a^+i^+i = 7fc + h- 

4. Set j = j + 1 and repeat steps 2 and 3. Once you reach j = J, stop. 

5. Set / = aj,i. 
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This algorithm amounts to an average of all N reconstructions from all N circulant shifts. 

This result is due to the fact that each 7^ and 6k is an average of two possible reconstruc- 

tions - one from an unshifted group and one from a shifted group. 

We can extend the idea of the projections of Equation (2.35) to the TI wavelet 

transform. The projections now become averages of projections across a range of circulant 

shifts. Thus we can define Pvdf to be the average of the approximation space projections 

at scale j of / for a given range of shifts, and PwJ is defined analogously. We can define 

R(sij) and R(dj) similarly, where a,- is the first column of the TI Table and dj is a vector 

composed of the dj)tl occurring in a given detail column of the TI Table. A signal can then 

be represented conceptually as 

f = PvJ0f + Y,pwJ (2-48) 

or 

/(n) = Ä(aJO) + 2Ä(dj). (2.49) 
i 

Donoho and Coifman (15) arrived at an interesting theoretical result regarding use of the 

Haar wavelet in the full TI denoising scheme. They showed that PyJ is a continuous 

function which justifies the use of the Haar wavelet when used in the full TI wavelet 

transform, in contrast to the case of the traditional wavelet transform, in which the Haar 

wavelet is used typically for illustrative purposes. 

To perform translation invariant denoising, Donoho and Coifman (15) suggest thresh- 

olding the columns of detail coefficients in the TI table and then inverting to obtain the 

denoised signal. Denoising in this way has several advantages. To see why, note that tra- 

ditional wavelet denoising results in Gibbs phenomena. Though this effect is not as serious 

as with Fourier-based denoising, suppression is still desirable. Gibbs artifacts can all be 

attributed to misalignments of features of the signal and features of the basis functions. 

Other TI denoising schemes attempt to find an optimal shift for the input signal which 

handles the feature alignment problem. These schemes consider the transforms of the N 
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different circulant shifts as being N transforms into N orthogonal bases. Finding the best 

shift can be done in a manner similar to the entropy-based best basis algorithms discussed 

in (14). However, when a signal contains several discontinuities, the best shift for one 

discontinuity may be the worst for another. The TI denoising scheme described above 

avoids this potential interference problem by averaging over all shifts. A method that is 

equivalent to the full TI denoising method is denoising using the stationary or undecimated 

wavelet transform. Donoho and Coifman point out this equivalence (15), and the details 

are found in (37). 

2-4    Summary 

In this chapter we present the necessary theory that forms the basis for this thesis. 

The theory behind the Gaussian classifier and the interpretation of the classifier reducing 

to a template matcher in the case of disregarding the variance information is of much inter- 

est. Also of particular interest is the conceptual signal representation afforded by wavelet 

analysis - that is, the summations of the vector space projections. In the case of the transla- 

tion invariant wavelet transform, these projections become averages, and composing these 

averaged projections is done through use of a data structure that conveniently arranges 

the wavelet coefficients. In the following chapter, we present a wavelet-based denoising 

scheme that is integrated into a Gaussian classifier as a pre-processing step. 
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III.   Methodology 

3.1    Introduction 

A primary objective of this thesis is to achieve an improvement in the classification 

accuracy of HRR data. We have seen that typical HRR signatures contain jagged features 

which result from the high range resolution ability of the radar. So let us suppose that a 

considerable portion of the signal has no discriminatory content, and that this content is a 

source of performance degradation. This claim is valid in view of the results obtained by 

MacDonald (33) and Eisenbies (24). MacDonald demonstrated that using as few as five low 

frequency Fourier components from an HRR signature yielded an improvement over the 

baseline classifier. Eisenbies improved classification by retaining as few as 5% of the range 

bin features. Both results lead to the same conclusion - discarding HRR signal information 

is advantageous. The discarding of information is an act of simplification, and by virtue of 

Occam's razor, we should favor such simplifications. A contrary view is that information 

removal is detrimental because classification performance is optimal when using the raw 

data (26). This view does not take into account the fact that raw data often has a low 

SNR and that the removal of noise can increase the SNR and hence lead to classification 

improvement. 

The approach taken here is to simply perform a pre-processing step and then perform 

classification using the baseline Gaussian classifier. We have little reason to suspect that an 

alternative classifier alone will produce the classification improvement that we seek. The 

HRR range bins can be transformed so that they are governed by Gaussian probability 

densities, and so the Gaussian classifier is optimal under the Bayesian framework discussed 

in Chapter 2. Perhaps there is a yet-to-be-discovered feature set that would lend itself to 

non-parametric classification, but in the absence of such a feature set, we are justified in 

implementing a Gaussian classifier. The block diagram in Figure 3.1 depicts the baseline 

classification scheme and shows how an additional pre-processing step is added. Before 

continuing, we examine the Gaussian classifier as used in classifying HRR signals. 
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Figure 3.1     Block diagram of baseline classifier with denoising process indicated. 

3.2   Baseline Gaussian Classifier 

The next sections cover all the training and testing steps used by the classifier as 

depicted in Figure 3.1. In Chapter 2, the Gaussian classifier discriminant was given as: 

2/fc(x) = -^(x-Afc)TSfc1(x-Afc)-^ln|sfc|+lnP(Wfc). (3.1) 

We assume equal prior probabilities so that the last term in Equation (3.1) vanishes. 

Zumwalt (54) found that with limited training data, variance information can be discarded 

with no significant effect on classifier performance; this was true for measured and synthetic 

training data. Equation (3.1) then degenerates to 

yjfc(x)= - \\x - ßk\\2 , (3.2) 

and so we are performing classification based on Euclidean distance among feature vectors 

and templates. Dewall (19) attributes Zumwalt's results to an insufficient number of 

training signatures which results in inaccurate variance estimates. Larger data sets surely 

warrant the use of the variances, since estimation accuracy depends on the sample size. 
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For the case of synthetic data, variances are ignored regardless of the number of training 

signatures since the noise process responsible for measured signature variance is not present 

in synthetic data. 

3.2.1 Classifier Training. The training of a Gaussian classifier amounts to deter- 

mining the parameters of the discriminant functions. Thus, we simply estimate the mean 

vector fik for each target. A decision first has to be made as to which signatures are used 

for training. After selecting the training data, several pre-processing steps are taken. After 

completion of pre-processing, the templates are formed. These steps are shown in Figure 

3.1 and are described below. 

3.2.1.1    Pre-processing. First, the signal is decimated by a half, which 

serves as crude dimensionality reduction and results in 230 remaining range bin features. 

The signal is then energy normalized, which is a necessary step since template matching 

amounts to classifying a signature based on the most similar template. Normalization 

places two signatures acquired at different ranges on the same comparative basis. Power 

normalization is done by first computing the signal power as 

P = 

230 

\ !=*  (3.3) 
\      230 v     ; 

and then dividing the signal by P. It is known that the underlying probability density of 

the HRR signatures is Rician (19), and so the signatures must be modified such that the 

densities become more Gaussian-like. This step can be performed by a power transform, 

which is a transformation of a random variable of the form Y = Xv, with 0 < v < 1 (26). 

Zumwalt and Eisenbies found that v = 0.4 led to best classification results (54, 24). The 

last pre-processing step is noise floor removal. This step involves computing the mean of 

the first 20 range bins and subtracting that value from the entire signal. Figure 3.2 shows 

an example of a raw HRR signature and the pre-processed version of the same signature. 

3.2.1.2    Template Construction.       After pre-processing, training signatures 

are averaged to form a template, which is done for each class in the problem set.   For 
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Figure 3.2     Unprocessed HRR signature (left) and pre-processed HRR signature (right). 

the case of a six class problem, Figure 3.3 shows the templates. Note that the averaging 

process is a low pass filtering operation. 

3.2.2 Classifier Testing. An unknown signature must go through the same pre- 

processing steps as the training signatures, unless the training data is synthetic in which 

case noise floor removal is not performed. It can not be classified at this point, however, due 

to a well documented problem encountered when classifying HRR signatures using template 

matching: From class to class, there is typically a misalignment of the signature range 

bins. Thus, an unknown signal must be aligned with each template so that a meaningful 

distance computation can be performed. The alignment may be accomplished by finding 

the maximum of the cross correlation function of the unknown signal and the template. 

Once alignment is performed, distance measures are established between the unknown 

signal and all the templates. Figure 3.4 illustrates this process. Classification is then a 

simple matter of assigning the target to the class for which the distance measure is the 

smallest. 

3.3    Wavelet Denoising 

We have seen how a HRR signature is characterized by peaks that correspond to 

major scatterers on a target. A desirable pre-processing step is to remove the noise that 

is inevitably introduced by the atmosphere and by electronic systems used to process 
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Figure 3.3     Templates for all targets after pre-processing. 

the radar returns. Noise removal, regardless of the particular implementation, typically 

requires some assumptions about the noise. Many well-established methods assume a 

given probabilistic noise model and are optimized to remove the noise in the probabilistic 

framework. Removal of noise thus results in an estimation of the signal of interest. We 

use a wavelet-based approach for denoising. 

Wavelet denoising has been successfully applied in many areas including EEG signals 

for evoked response identification (10), underwater acoustic signals (47), transient detection 

in noisy time series (9), and ultrasound data for feature preservation (11) just to name a 

few. The technical literature does not consider wavelet denoising (and denoising in general) 

as applied to HRR classification. Instead, wavelets have been used for feature extraction, 

in which case the decompositions themselves are used for classification (53, 3, 24) or some 

derived feature such as energies computed from the coefficients are used(49). We take a 

much different approach, in that the use of wavelets is solely for denoising, and no wavelet 

based feature extraction is performed. 

Recall from Chapter 2 that a starting point for the development of most denoising 

techniques is a signal model in the form of Equation (2.42). Some measure of risk is 

defined and minimized (such as that of Equation (2.43)). If the noise model is assumed to 
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Figure 3.4     Illustration of the testing process of the baseline classifier. 

be Gaussian, analytical properties can be derived, such as bounds on the risk and metrics 

regarding optimality relative to some criterion. For instance, Donoho's techniques can be 

shown to be near optimal in the minimax sense (23, 20). If one were solely interested 

in removing Gaussian noise, then the VisuShrink method of Donoho would be extremely 

attractive. Since the HRR signatures are processed by electrical systems, we may be 

justified in assuming a Gaussian noise model. However, we make the assumption that 

other forms of "noise" are present as well. We suppose that all forms of noise combine 

in some manner (additive, multiplicative or both) that leaves the resulting noise model 
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unknown. The signal model then has the form 

s(n) = f(n) + z(n),     n = 0,...,N. (3.4) 

Here z(n) is noise in an abstract sense and f(n) is a representation of a HRR signal 

that lends itself to classification. The HRR signature fluctuations that occur due to small 

changes in target orientation can be considered "noise", as can the creeping wave reflections 

and resonance effects mentioned in Chapter 1. More importantly, the qualities of the 

signature that inhibit the classifier from performing at its best are "noise". 

We are not interested in minimizing a risk as in Equation (2.43). We assume that 

since we know nothing about the noise, we do not know the form of the recovered function. 

In essence, what we do is not so much signal denoising as signal transformation. Our 

interest is in being able to transform the HRR signals so that when presented to a classifier, 

an improvement in classification results. The denoising scheme must be general enough 

so that it allows for a large class of signal realizations, because we have no knowledge of 

what signal forms result in classification improvement. We do not know how rough or how 

smooth they are but we want to make sure that both rough and smooth realizations are 

allowed. The denoising scheme must be optimized with respect to classification accuracy 

so that the optimizing procedure reveals the form of / in Equation (3.4). Since we are 

optimizing for classification accuracy, the optimal threshold selection techniques in the 

wavelet literature are not of value. 

The translation invariant wavelet transform introduced in Chapter 2 serves as the 

engine for our denoising scheme and is computed using the third-party Matlab toolbox 

Wavelab, developed by Donoho and colleagues (7), Intuitively it is sensible that the de- 

noising of a HRR signature should be independent of time (or range bin) origin. Denoising 
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in the TI sense then supports this intuition. We repeat here the structure of the TI table: 

TI 

( ajo,i dj_i,i    dj_2,i    •••    dioil 

aj0,2 dj-1,2   dj_2,2    •••    dj0)2 (3.5) 

Vajo,2J-JO     dj"1'2     dj"2'4     ""     dio,2J-JO   / 

Before we begin to formulate a denoising scheme, we must consider the following questions: 

1. What wavelet family are we to use? 

2. How do we choose the coarsest scale of the wavelet decomposition? 

3. Which thresholding method do we choose - soft or hard? 

4. How do we choose a threshold? 

5. How do we apply a threshold to the TI table? 

6. How do we optimize? 

These questions help define the parameters of our denoising scheme. We will address each 

question individually. 

3.3.1 Wavelet Selection. Wavelet selection is not often discussed in the literature. 

For most practical purposes any orthogonal wavelet suffices except the Haar wavelet (due 

to the discontinuity of the wavelet and scaling function). Perhaps the most commonly used 

wavelet family is the Daubechies wavelets. Weiss and Dixon (47), for example, selected a 

daubi wavelet for denoising purposes and admitted that wavelet selection was not optimized 

and that additional performance gains would likely result from optimizing the wavelet 

selection. 

In Chapter 2 we saw that the Daubechies filters fall under the class of K-Regular 

Scaling Filters and that they possess some important properties. For a daub^ scaling 

filter a large N corresponds to a larger degree of smoothness. Also, large N enables exact 

representation of higher order polynomials by linear combinations of shifted scaling filters. 

Since we assume no knowledge of the function / (although we certainly do hope that / is 
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smooth), we have no reason to choose any one Daubechies wavelet over another. Therefore 

we try Daubechies filters for N = 4,6,... , 16. We also consider the Haar wavelet, which 

would surely be unwise if we were using the traditional wavelet transform. However, as 

pointed out in Chapter 2, the Haar wavelet can provide favorable results when used in a 

fully translation invariant scheme. 

3.3.2 Choice of Coarsest Scale. Choosing one possible coarsest scale would 

not give us the flexibility that we seek. Instead, we consider the projections of an HRR 

signature onto the scaling function spaces. We compute the projections and display them 

in a manner similar to Figure 2.6. However, in Chapter 2 we discussed projections in the 

context of the translation invariant wavelet transform, and so we are interested in visually 

examining the Py f projections in the case of full translation invariance. Although we 

mentioned that no assumptions are made regarding the form of the denoised signals, a 

clarification is that we certainly expect some degree of peak information to be preserved. 

The scale before which prominent peak information is essentially lost is the scale that will 

set the lower bound for jo- We choose the Haar basis for these projections because of its 

simplicity. 

Figures 3.5 and 3.6 show the projections for a representative measured HRR signature 

for target A. We see that at V5 the relative peak information has essentially been lost. From 

this observation we decide to consider j0 in the range 6 < j0 < 8. We can view j0 as a 

smoothing parameter (as seen in the Figures 3.5 and 3.6). 

3.3.3 Hard or Soft Thresholding. If we were performing traditional wavelet de- 

noising, then we could, with confidence, disregard hard thresholding, for it tends to produce 

greater oscillations near discontinuities than does soft thresholding. However, hard thresh- 

olding can not be disregarded with TI denoising because the averaging that occurs in TI 

denoising damps out the discontinuities of hard thresholding. Donoho and Coifman found 

that, in general, hard thresholding combined with translation invariance leads to superior 

visual and quantitative characteristics (23). More surprisingly, it was the Haar wavelet 

that lead to the best results! In an application involving wavelet denoising of ultrasound 

data, it was also found that hard thresholding along with translation invariance lead to 
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Figure 3.5     Fully translation invariant projection of measured HRR signature onto scaling 
function spaces. 

improved performance (11). While these results do not justify ignoring soft thresholding, 

they do justify considering both threshold methods. 

S.S.4 Applying Thresholds to TI Table. One of the trade-offs in choosing TI 

denoising over traditional denoising is the fact that we have more decisions to make due to 

the added information provided by the TI table. We must decide how to apply thresholds 

to the table. It is desirable to apply the thresholds so that the process is adaptive - that 

is, we do not want a method that results in discarding a fixed number of coefficients for 

all signals. 

We define ??t(c) to be the thresholding operator that applies a threshold t to the 

coefficients contained in the vector c. This operator returns the thresholded vector ct. It 

is convenient to restrict t to the range 0 < t < 1. The thresholds are then relative to a 
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Figure 3.6     Fully translation invariant projection of synthetic HRR signature onto scaling 
function spaces. 

particular c such that the threshold specifies a percentage of the coefficient in c whose 

magnitude is the largest. Setting t = 0 results in all coefficients remaining unchanged, 

whereas t = 1 discards all coefficients. We define max(c) to be the operator that returns 

the maximum absolute value in c. In effect, r)t(c) applies a threshold equal to fmax(c). 

Thresholding in this manner gives us the adaptability we seek. The same threshold used on 

two signals with one having a greater number of "large" coefficients results in a greater de- 

gree of information loss in the signal with fewer large coefficients. Note that this procedure 

differs from adapting a threshold to a signal, which is how adaptive wavelet thresholding 

is typically performed. 

In Chapter 2 we mentioned that wavelet-based denoising methods typically retain 

all approximation coefficients. If we perform denoising in this way, then we are severely 

restricted.  Instead, let us diverge from these methods and threshold the approximation 
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coefficients. We specify a separate threshold for the approximation and detail coefficients 

and call these thresholds ta and tj. We thus decide to threshold the TI table in the following 

way: 

1. For every detail column of the TI table apply the thresholding operator rjtd() as 

described above. 

2. Apply rjta{) to the column of approximation coefficients. 

3. Reconstruct signal as described in Chapter 2. 

In Chapter 2 we expressed a function as 

/(n) = Ä(ajo) + X;Ä(di). (3-6) 
i 

We can use a similar expression to represent our denoised signal as 

f(n) = £(%a(aio)) + Y^R(Vtd(dj))- (3.7) 
3 

Representing signals in this way is solely for informative purposes since in practice wavelet 

reconstructions are based on Mallat's algorithm. This representation gives us a qualitative 

feel for how we view our denoised signals: The denoised signals are viewed as the summation 

of a thresholded approximation portion and detail portions at successive wavelet scales. 

We certainly do not want to perform a full decomposition because then this representation 

would be meaningless since the approximation portion would be nothing more than a DC 

component in essence. So this representation is in line with our philosophy above regarding 

the choice of coarsest scales. 

The above method of thresholding the TI Table is not the only reasonable method. 

There are numerous other possibilities. For instance, we could compute the maximum 

absolute value across all detail coefficients and then select td relative to that value (as 

opposed to the maximum value for each column separately). Another option would be to 

apply separate detail thresholds for each column, however, this would cause the complexity 

of the optimization procedure to grow exponentially with the number of decomposition 
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levels. We feel that our method balances complexity and simplicity and such a balance is 

desirable. 

3.3.5 Threshold Selection. In Chapter 2 the established techniques mentioned 

for selecting a threshold were based on an assumed noise model. In particular, Donoho's 

VisuShrink method (23) has been used extensively with success. We also mentioned that 

the well-established techniques set out to minimize a risk (as in Equation (2.43)) and that 

such methods are unsuitable in our case. We find then that we have little guidance in 

determining the thresholds. It certainly would not be reasonable to allow too large a value 

for ta, since this would result in a near loss of the approximation. A large value for ta 

would only make sense if our approximation scale was extremely coarse, but (as we saw 

previously) our coarsest scale corresponds to V6. For this reason, we allow ta to be in the 

range 0.0 < ta < 0.3. Conversely, we suspect that we can discard considerable detail, and 

so we restrict U to be in the range 0.0 < td < 1. By choosing the thresholds in this way, 

we are able to consider the special case of signal reconstruction using the approximation 

projection alone, which occurs for ta = 0 and <<* = 1. 

3.3.6 Optimization. From the above, we see that our denoising scheme is com- 

posed of various parameters. We define these parameters as follows: 

w: choice of wavelet 

rj: choice of thresholding method 

jo', choice of coarse scale 

ta, td'. choices for approximation and detail coefficient thresholds 

All the above parameters can be encapsulated into a set of parameters Vp defined as 

VD = {w, r),jo,ta,td}- We also define D(f; VD) to be the operation of denoising the signal 

/ using the full TI scheme (i.e. the operator that returns / as in Equation (3.7)). Since 

we are optimizing our denoising scheme for classification accuracy, we must decide on the 

classification parameters. 
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3.3.6.1 Classification Parameters and Simplifications. Due to the large 

amount of data available, we have a variety of options for performing classification. We 

must decide which of the six targets to use, which 5X5 window(s), etc. To make our 

problem more manageable, we make several simplifications. First, we require a forced 

decision so that a feature vector is always assigned to one of the training classes. In a 

fielded system, this would not be the case - we would add additional functionality to the 

classifier so that there would be an unknown class. Targets for which there is no training 

data could then be assigned to this class. Second, we assume that we know with certainty 

that a HRR signature from a given 5X5 window did in fact come from that window. If 

the classification system were operating in real time, Kaiman filtering techniques would be 

used to estimate the azimuth and elevation at which a signature was collected (19). This 

process is not exact, and so there is the possibility that a signal labeled as being from a 

certain 5X5 window was in fact from a neighboring 5X5 window. To account for this, 

signatures can be compared with templates in neighboring windows. 

A real time system is allowed a brief moment of time to make a decision, and during 

this time several signatures can be collected. Thus multiple signatures (referred to from 

here onward as multiple "looks") may be used to make a decision. We expect to classify 

more accurately using multiple looks than would be the case if we were only to classify 

using a single look. 

We need to decide which 5X5 window(s) to use, which of the six targets to use for 

training and testing, and how many signatures to allow for classification. Our classification 

parameters are defined (in a manner similar to our denoising parameters) as follows: 

W = {win\ e,... ,win™e}: A set of 5 X 5 windows, each with a starting azimuth and 

elevation a and e respectively. 

T = {ci,... , c/v}: A training set consisting of N classes. 

nl: The number of looks employed. 

We now define Cjtk(D(fj;VD);yV,T,nl) to be the entire process of using the param- 

eters above to classify a denoised signal / whose true class is j and whose assigned class is 

k, such that Cjtk = 1 for k = j, and 0 for k ^ j. We elaborate on these parameters below: 
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Set # Targets 
1 
2 
3 

A, B, C 
D, E, F 

A, B, C, D, E, F 

Table 3.1     Target subsets of interest 

5X5 Window Choice. Zumwalt (54) chose a particular 5X5 window 

that was data rich, and all his results were computed for this window (which corresponds 

to wm65,i5).We choose the same window to provide a direct comparison. In addition, 

we are interested in assessing the performance of our denoising scheme when considering 

multiple 5X5 windows, which gives us some idea as to robustness and generality. We 

consider wineo,i5,win60,25,win65il5,win70ii5,&nd win75}i5. These windows correspond to 

the shaded regions of Figure 1.2. 

Training and Testing Data. There are two major categories of data - 

real and synthetic - and we are interested in using both. We are particularly interested in 

the case of synthetic data, for it is with this data that the baseline classifier has difficulty. 

Among the six classes, there are three subsets of interest. See Table 3.1: Set 1 consists of 

three easy targets, whereas set 2 consists of three hard targets. We are solely interested in 

set 3 since it contains a mixture of easy and hard targets and thus provides for a more dif- 

ficult problem (i.e. distinguishing amongst six targets is more difficult than distinguishing 

amongst three targets). Denoising is optimized for this set. 

As mentioned in Chapter 1, the number of signatures vary from window to window 

across all classes. In addition, for each window, signatures are collected on two "tracks" 

that correspond to separate data collection sessions. Kosir suggests using one track for 

training and one for testing (32). If training and testing are performed using the same 

track, then the classifier could output overly optimistic results, because the signatures 

could exhibit more similarity for a given track than would be the case between tracks. 

To address the above issues, we choose track 1 for training and track 2 for testing as did 

Zumwalt. Then, for the case of one window, we choose the number of training and testing 

signatures to be equal to the minimum numbers of signatures for either track across all 
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Case Description # Training/Testing Signa- 
tures per Class 

1 Real Training Data, Sin- 
gle Window, Single Look 

51/51 

2 Synthetic Training Data, 
Single Window, Single 
Look 

25/51 

Table 3.2     Single window cases using wines,i5 

targets. When we consider multiple windows, we use this same rule separately for each 

window. 

Incorporating Multiple Looks. Since the classification system has a 

brief period of time to make a decision, we use this time to collect HRR signatures in 

sequence. According to Fukunaga (26), this is beneficial because each signal in the sequence 

is of the same class, and so in theory we can average these signatures and this average will 

more closely resemble the class template. Although this is an attractive option, Kosir (32) 

found that averaging the discriminants for each signature and classifying based on the class 

for which the average is largest yielded better results. Thus we adopt Kosir's method. 

The number of looks that we incorporate depends upon the amount of time required 

to make a decision and on the speed with which HRR signatures can be collected and 

processed. Broussard (5) stipulates that ten looks are feasible and we choose ten looks 

based on his assertion. In order to simplify our denoising optimization we consider only one 

look. Results for multiple looks are computed using the denoising parameters determined 

using the single look. 

Based on the above discussion, there are several classification cases that we are 

interested in optimizing over. These cases fall into two main categories - one window and 

multiple windows. Tables 3.2 and 3.3 summarize these cases of interest. 
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# Training/Testing Signatures 
per Class per Window 

Case Description win60,i5 wineo,2s wiri65,15 ^«^70,15 win75,i5 

1 Real      Training      Data, 
Multiple Windows, Single 
Look 

60/60 64/64 51/51 50/50 45/45 

2 Synthetic Training Data, 
Multiple Windows, Single 
Look 

25/60 25/64 25/51 25/50 25/45 

Table 3.3     Multiple window cases using win6o,i5, win6o,25, win65:i5, win70>is, and ^7175,15 

3.3.7   Procedure.      Having formally posed our problem, we now succinctly define 

the quantity to be maximized as 

NW   NT    I    ,      /NC     ,     NTi 

^EtsEsE ciÄD(^vDy, w,, r, «I) 
1=1 \ V=1 " 

(3.8) 

where NW is the number of 5x5 windows, NTi is the number of testing signatures used 

from window W;, and NC is the number of test classes. The jpjß^ term allows for a 

weighted average based on the number of testing signals used from each class/Optimizing 

is a matter of computing A for a large number of denoising parameter combinations and 

choosing the set of parameters that result in maximum A. We do this for each of the cases 

tabulated above. The one remaining issue is the resolution of the thresholds. Thresholds 

must be chosen so that the optimization procedure is completed in a reasonable amount of 

time. We note that we have three choices for jo, eight choices for the wavelet, two choices 

for thresholding method, Ntd choices for detail threshold and Nta choices for approximation 

threshold, which give us 3 * 8 * 2(NtdNta) parameter combinations. We previously decided 

for ta to be in the range 0.0 < ta < 0.3 and for td to be in the range 0.0 < td < 1. If 

we set the ta and td increments to be 0.015 and 0.050, respectively, then Nta = Ntd = 21. 

We end up with 21168 denoising parameter combinations. For a single window, each 

evaluation of Equation (3.8) takes approximately one minute and with five windows it 

takes approximately four minutes when running in the Matlab computational environment. 

Having one processor cycle through all combinations for the single window case would take 

two weeks for completion.   Nearly two months would be needed for completion of the 
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multiple window case. We need to perform these optimizations for both the measured 

and synthetic data and we see that optimization has the potential to be prohibitively time 

consuming. However, each evaluation of Equation (3.8) is independent, and so we take 

advantage of parallelism achieved by the use of multiple processors. Optimization for all 

cases is done in a reasonable amount of time when using multiple processors. It may seem 

unnecessary to pose the calculation of A in a formal manner as was done above, since we are 

simply going to implement the computation on a computer, but formalizing our problem 

can be potentially beneficial in consideration of current efforts within computer science 

which seek to synthesize software implementations from formal, mathematical problem 

descriptions. 

3-4    Summary 

This chapter introduced a philosophy for HRR signature denoising based on an ab- 

stract idea of noise. The approach is unconventional but more powerful than the traditional 

treatments of HRR classification in the presence of Gaussian noise. We presented a de- 

noising methodology and described its optimization with respect to classification accuracy. 

This optimization procedure is a form of exhaustive search made possible by the high- 

performance of today's computational resources. The optimization procedure gives us a 

high level of confidence in our choice of denoising parameters since such a large number 

of parameter combinations are considered. In the next chapter we apply the denoising 

scheme to the HRR classification problem. 
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IV.   Results 

4-1    Introduction 

In this chapter, we compare the results of the baseline classifier with those obtained 

when implementing the denoising methodology outlined in the previous chapter. Optimal 

denoising parameters are determined based on the six class data set using a single look. 

These same parameters are then used for the extension to multiple looks. This is valid 

since the multiple look scheme averages the discriminants across all looks as opposed to 

averaging the signatures and computing a single discriminant. If we were averaging the 

signatures, then we would certainly want to optimize over the full number of looks due to 

the fact that the averaging process would constitute a low pass filtering operation. 

We examine the cases of training on measured data and training on synthetic data 

incorporating a single window. Then for validation purposes we incorporate five windows. 

Separate optimization needs to be done for the multiple windows, since we have no reason 

to suspect that optimal parameters for the single window case will yield favorable results 

for the multiple window case. Optimizing over multiple windows will provide us with 

insight into the generalization capability of the denoising scheme. Results are shown only 

for the full six class target set, for it is this set that is the most relevant. 

4-2   Single Window 

As a starting point, we examine the denoising results as applied to a single 5X5 

window. Our method of optimization is general enough so that incorporating multiple win- 

dows is easily handled - it simply amounts to specifying those additional windows. When 

we optimize over multiple windows we pay the price of having additional computational 

complexity and so we must choose a reasonable number of windows to optimize over. 

4.2.1 Training on Measured Data. In this section, all results obtained by training 

on measured data and incorporating a single window are presented. It is known that the 

baseline classifier achieves high accuracies when using measured data for testing and hence 

it is unreasonable to strive for significant improvement in this area. Our interest in denois- 

ing then is not to achieve classification improvement but to achieve equivalent performance 
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with simpler signals. By "simpler" we mean any signal form that contains considerably 

less content than the original signal. We do not apply quantitative measures to assess this 

concept of simpler. Instead we assess simplicity based on visual examination. It is not 

difficult though to imagine how one could approach this issue in a quantitative manner. 

A useful approach would be to compute compression ratios, since wavelet denoising and 

wavelet compression are related. They both take advantage of the unconditional basis 

property that characterizes wavelets. Our wavelet denoising is better done in an adaptive 

sense, and so there is no fixed compression ratio, but we can compute average compression 

ratios. 

4-2.1.1 Baseline Performance - Single Look. We first limit the classifier 

to only one look for a classification decision. In subsequent sections we remove this con- 

straint and allow multiple looks, which is a more realistic scenario. Table 4.1 summarizes 

the baseline results for the full six class target set.  The diagonal elements indicate how 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 51 0 0 0 0 0 100.0 
B 1 50 0 0 0 0 98.0 
C 4 0 39 0 5 3 76.5 
D 3 3 1 27 11 6 52.9 
E 1 0 1 2 47 0 92.2 
F 5 0 0 2 1 43 84.3 

All Classes 84.0 

Table 4.1     Baseline target confusion matrix for the case of a single window, single look, 
and measured training data 

many times a particular target was correctly classified. Pc stands for the probability of 

correct classification. Recall, that forced decisions are made by the classifier. In an actual 

implementation of the classifier, there would also be a probability of declaration, since the 

classifier only makes decisions when it is able to do so. To determine Pc for a particular 

target, the diagonal element corresponding to the target is divided by the sum along the 

respective row. This value is then converted to a percentage. We now have a feel for 

what is meant by "easy" and "hard" as we compare classification accuracies for the six 

targets. Notice that the classifier has a tendency to confuse target D with target E, and 

4-2 



hence Table 4.1 is referred to as a confusion matrix. Ideally, the confusion matrix would 

be strictly diagonal. Now we remove the single look constraint and allow the classifier to 

make a decision by incorporating up to ten looks. 

4-2.1.2 Baseline Performance - Multiple Looks. From here onward, when 

we consider multiple looks we do not tabulate results with the detail shown in Table 4.1 

except in the case of one and ten looks. Otherwise there would be an overbearing amount 

of data for the reader to examine which would detract from the underlying importance of 

the overall results. Instead, we examine the class accuracies as they evolve as a function 

of the number of looks. Figure 4.1 depicts this evolution graphically. We see that target D 

5 6 
Number of Looks 

Figure 4.1     Baseline classification accuracies versus number of looks for the case of a 
single window and measured training data. 

proves to be troublesome and that five looks results in maximum performance. However, 

in a real time system, we would have no way of knowing that five looks would be optimal 

for a classification decision, and in the absence of that knowledge we must use all ten looks 

to make the decision, since theoretically, we should expect performance to be maximal 

when the greatest possible number of looks are used. As with the one look case, we display 

the confusion matrix in Table 4.2, as a means to gain insight into the poor classification 
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performance for target D. We see that the misclassifications of target D can all be attributed 

to confusion with target E. This confusion can be visualized by making a scatter plot as 

shown in Figure 4.2. Such plots show pairwise distance measures for two sets of test 

signatures from two classes. The line corresponds to points where the distances to the 

templates are equal. If we had a two class problem, then this line would be precisely 

the decision boundary that Equation (2.6) would dictate. When there are more than two 

classes, these plots serve only to show us pairwise confusion, but are nonetheless a valuable 

visualization tool. Ideally, the clusters would be tightly compacted and would occupy the 

upper left and lower right corners, signifying maximal interclass separation and minimal 

intraclass separation. We see from the plot that post processing of the distance measures 

can have the advantage of reducing misclassifications by making use of alternative decision 

boundaries. This issue is addressed in (26). Dewall is currently pursuing the placement of 

hyper-ellipses in D dimensional space, where D is the number of classes. (19). 

(a) (b) 
0.9 

O Test Target A 
x  Test Target E 

0.9 

0.85 r 

0.8 

0.75 

O Test Target D 
x  Test Target E 

0.4 0.6 0.8 
Dist. to A 

0.5      0.6      0.7      0.8      0.9 
Dist. to D 

Figure 4.2 Illustration of target separability and inseparability: (a) Complete separa- 
bility of targets A and E; (b) Inseparability leading to misclassifications of 
target D 

In the following section we examine the results of the denoising optimization and 

repeat the classification results as above. 
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Actual 
Class 

Assigned Class Pc 
(%) A B c D E F 

A 51 0 0 0 0 0 100.0 
B 0 51 0 0 0 0 100.0 
C 0 0 51 0 0 0 100.0 
D 0 0 0 36 15 0 70.6 
E 0 0 0 0 51 0 100.0 
F 0 0 0 0 0 51 100.0 

All Classes 95.1 

Table 4.2     Baseline target confusion matrix for the case of a single window, ten looks, 
and measured training data. 

4-2.1.3 Denoising Performance - Single Look. We saw in Chapter 3 that the 

denoising scheme is a function of several parameters. Visualizing the classification accuracy 

as a function of these parameters would be a paramount feat even for the most astute 

topologist and is furthermore complicated since some of the parameters are categorical 

variables such as the wavelet choice and the thresholding method. What we can do is 

assume that the approximation and detail thresholds are the most significant parameters 

considering that these parameters can on the one extreme result in complete reconstruction 

and on the other extreme result in complete annihilation of a signal. The wavelet selection, 

for instance, could not possibly result in as widely varied a reconstruction. So for a given 

(ta,td) pair there is a corresponding wavelet and threshold method that lead to maximum 

classification accuracy. Then for each decomposition level, we can plot an accuracy surface 

as a function of the thresholds in which case the parameterization of the wavelet and 

threshold method have been encapsulated as previously mentioned. Figure 4.3 shows these 

accuracy surfaces, where the plane surface represents the baseline accuracy of 84% using 

a single look. 

The visualization afforded by the accuracy surface provides us with valuable insight 

into the denoising scheme. We see that the approximation threshold in each case has 

a greater effect on classification than does the detail threshold, which agrees with our 

intuition of the approximation coefficients providing the overall signal structure. Also in 

accordance with our intuition is the fact that the approximation threshold needs to be 

considerably smaller than that of the detail coefficients. What is surprising though is that 
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(a) (b) 

(c) 

Figure 4.3 Visualization of maximum classification accuracies as a function of thresh- 
old pairs for the case of a single window and measured training data, (a) 
Decomposition level 1; (b) Decomposition level 2; (c) Decomposition level 3 

if we consider the accuracy as a function of ta alone, then the accuracy appears to mimic a 

cubic function of ta to some extent (i.e. if we consider a slice through the ta - ace plane). 

We see from Figure 4.3 that highest performance is achieved in some cases for ta = 0. 

We can achieve nearly maximum performance for non-zero approximation thresholds and 

this is desirable for the following reason: Consider the accuracies in Figure 4.3(b). A 

maximum accuracy of 89.2% is achieved with daub12, soft thresholding, ta = 0 and tj = 0.3. 

Now let us restrict ta to be in the range ta > 0.05 and we find that for daub^,' soft 

thresholding, ta = 0.12 and td = 1 that we achieve an accuracy of 88.6%. Figure 4.4 shows 

a raw HRR signature along with denoised signature using the optimal parameters and the 

slightly suboptimal parameters. We see that what we sacrifice in classification accuracy 

we gain in signal simplicity. 
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A natural question to ask is whether or not we should also restrict tj,. We answer this 

in the affirmative and can provide a reasoning that serves as an alternative to the above 

explanation regarding the restriction on ta. First recall that in Chapter 3 we represented 

a denoised signal as 

/(n) = R(tH.M) + 2>(i*d(d,-)). (4.1) 
3 

If we do not place a restriction on the thresholds then we would be able to achieve virtually 

identical performance at all decomposition levels. (If we specified separate detail thresholds 

then we could achieve identical performance at all levels.) To see why, we need to consider 

the multiresolution framework of a wavelet system, in which case for some choice of coarsest 

scale we have that 

L2 = vjo © wjo © wjo+1 e ■ • •. (4.2) 

If we choose a coarser starting scale, then we have the equivalent representation 

L2 = Fjo_! 8 Wjo-i 8 Wjo © Wjo+1 © • • • , (4.3) 

and so to go to a representation at a coarser scale, the approximation in Vj0 loses some of 

its detail which then goes into Wj0-i. If we achieved a certain level of performance at one 

scale and needed to maintain most of the approximation, then when we go to the coarser 

scale, to regain the information that was contained in that approximation we would need 

to keep most of the information in WJO_i and hence use a small tj,. Figure 4.3(c) shows this 

effect, as we see that to maintain the performance of the previous decomposition levels, 

we need to keep the approximation coefficients and most of the detail coefficients. To 

avoid this ambiguity in signal representation and to be consistent with the philosophy that 

R(r]ta(a.j0)) contains an underlying signal structure, we then restrict both ta and td. This 

restriction also allows us to view the coarsest scale as a smoothing parameter since the 

restriction prevents a representation for a given coarsest scale from containing as much 

detail as that of the next finer scale.   From here onward, accuracy surfaces are plotted 
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for the ranges ta > 0.05 and tj, > 0.3. It is not necessary to restrict these thresholds in 

the same manner since we typically can afford to lose more detail information. With the 

threshold restrictions placed, we can determine the denoising parameters which we still 

refer to as optimal since we are doing nothing more that constrained optimization. Table 

4.3 contains the optimal parameters for each decomposition level. Here, the accuracy refers 

to the overall percentage of correct classifications (i.e., the figure in the bottom right corner 

of a confusion matrix). The levels correspond to the number of iterations through the filter 

bank implementation of the wavelet transform. 

J i. 
SO    200   250   300   3SO      ISO   ZOO    SSO   300   3SO      ISO    200    SSO   300   3SO 

Figure 4.4     (a) HRR signature; (b) Optimally Denoised signature; (c) Sub-optimally de- 
noised signature 

We are interested to see the transformation that takes place when applying these 

parameters to a typical HRR signature. Figure 4.5 shows the results of denoising a typical 

HRR signature using the parameters listed in Table 4.3. The coarser the approximation 

space is, the coarser the signal representation is which is the desired property as motivated 

above. Note also the spatial adaptability that wavelets possess. Detail is kept where 

needed, and otherwise considerable smoothing occurs. Fourier domain filtering could not 

possibly result in such representations since detail would be kept globally, or smoothing 

would occur globally. 

Target accuracies obtained when denoising with the three sets of parameters are 

shown in Table 4.4. At a first glance it would seem that denoising with one decomposition 

level is preferred. However, the multiple look performance needs to be evaluated to get 

the full picture. 
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Level Accuracy (%) Wavelet Threshold Method ta td 
1 89.9 daub\Q Soft 0.075 0.30 
2 88.6 daub\2 Soft 0.12 1.00 
3 81.0 daub\2 Soft 0.09 0.35 

Table 4.3     Optimal denoising parameters for the case of a single window and measured 
training data 

(a) (b) 

 1* ."   W\~*~*~~~J ij u. 
150 200 250 

(0) 

300 350 150 200 250 300 350 

J V. 
150 200 250 300 350 150 200 250 300 350 

Figure 4.5 Denoised signal representations for the case of a single window and measured 
training data: (a) Original HRR signature; (b) Denoised signature using level 
1 parameters; (c) Denoised signatures using level 2 parameters; (d) Denoised 
signature using level 3 parameters 

4.2.I.4    Denoising Performance - Multiple Looks. Classification perfor- 

mance is now examined as a function of the number of looks. In the previous section it 

was seen that single look performance is best when denoising at decomposition level one. 

Let us examine the ten look performances for each denoising scheme, which are shown in 

Table 4.5. Considering the relatively poor performance achieved when denoising at level 

three, it is surprising to see that this denoising scheme leads to the best ten look perfor- 

mance. Of course, it is not valid to attribute any statistical importance to an accuracy 

increase of 0.7%, since the number of test signatures for each target is only 51. Thus, 

performances in all denoising cases as are viewed as being equivalent. 
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Target Accuracies (Pc) 
Level A B c D E F Avg. 
1 100.0 100.0 92.2 56.9 98.0 92.2 89.9 
2 100.0 100.0 90.2 56.9 92.2 92.2 88.6 
3 98.0 98.0 84.3 56.9 82.4 66.7 81.0 

Table 4.4     Target accuracies with denoising for the case of a single window, single look, 
and measured training data. 

Target Accuracies (Pc) 
Level A B c D E F Avg. 
1 100.0 100.0 100.0 70.6 100.0 100.0 95.1 
2 100.0 100.0 100.0 70.6 100.0 100.0 95.1 
3 100.0 100.0 100.0 74.5 100.0 100.0 95.8 

Table 4.5     Target accuracies with denoising for the case of a single window, ten looks, 
and measured training data. 

For comparison purposes we show accuracies as a function of the number of looks 

for both the level one and the level three denoising to see the evolution that resulted in 

the excellent level three denoising performance. See Figure 4.6. Observe that with level 

one denoising, the target accuracies (with the exception of target D) quickly level off at 

100%. With level three denoising, the target accuracies level off similarly, but do so only 

after the full ten looks. This brings up some serious philosophical issues because it must be 

decided which denoising scheme is ultimately preferred. Since the multiple look strategy 

involves averaging the discriminants from all looks, it may be reasonable to assume that, 

in general, the denoising scheme that works best for a single look will also work best for 

multiple looks, and that the results obtained above are no more than a chance occurrence. 

Classification using a much larger data set would need to be performed to resolve the 

issue with confidence. Until there is resolution to this issue we choose the coarsest level 

denoising scheme in the case of equivalent denoising schemes. We do so because denoising 

. at coarser levels provides us with simpler signals which is a goal of this thesis. 

The ten look confusion matrix is shown in Table 4.6. The baseline misclassifications of 

target D are all attributed to confusion with target E. Denoising has lessened this confusion 

but has added confusion with target C. The fact that the denoising process adds previously 

non-existent confusion suggests that there may be a benefit to optimizing denoising for 
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Figure 4.6 Target accuracies with denoising versus the number of looks for the case 
of a single window and measured training data, (a) Level one denoising 
performance (b) Level three denoising performance 

targets individually, since targets may require different degrees of thresholding. Results 

are summarized in terms of improvement relative to the baseline results for the two extreme 

cases of one look and ten looks. See Table 4.7. The performance gains for the single look 

case are not of much interest. It is the ten look performance that is most relevant, and 

denoising performance with ten looks is essentially equivalent (at all three decomposition 

levels) to that of the baseline performance. 

Actual 
Class 

Assigned Class Pc 
(%) A B c D E F 

A 51 0 0 0 0 0 100.0 

B 0 51 0 0 0 0 100.0 

C 0 0 51 0 0 0 100.0 

D 0 0 6 38 7 0 74.5 

E 0 0 0 0 51 0 100.0 

F 0 0 0 0 0 50 100.0 

All Classes 95.8 

Table 4.6     Target confusion matrix with denoising for the case of a sinle window, ten 
looks, and measured training data. 
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Targets 
Level A B C D E F Avg 

1 Look 
1 0.0 2.0 15.7 4.0 5.8 7.9 5.9 
2 0.0 2.0 13.7 4.0 0.0 7.9 4.6 
3 -2.0 0.0 7.8 4.0 -9.8 -17.6 -3.0 

10 Looks 
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 0.0 0.0 0.0 3.9 0.0 0.0 0.7 

Table 4.7     Relative classification improvements for the case of a single window and mea- 
sured training data. 

4.2.2 Training on Synthetic Data. The baseline and denoising performance are 

nearly identical for the case of training on measured data. The key achievement in the 

measured training data case is that the denoised HRR signatures can indeed be much 

simpler than the original. Our focus now switches to training on synthetic data for it is 

with this case that baseline performance is significantly degraded as compared to the case 

of training on measured data. The goal now is not only to perform classification with 

simpler signals but to achieve a significant increase in classification accuracy as well. As 

in the previous section, we begin by presenting the baseline results. 

4.2.2.1 Baseline Performance - Single Look. Table 4.8 contains the confu- 

sion matrix for the case of interest. The degradation in performance is quite significant 

and is characteristic of training on synthetic data. In the case of training on measured 

data, target D is the poorest performer. This is certainly not the case when training on 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 40 11 0 0 0 0 78.4 
B 1 50 0 0 0 0 98.0 
C 9 1 19 14 0 8 37.3 
D 1 10 1 34 0 5 66.7 
E 18 4 0 23 3 3 5.9 
F 2 16 0 4 0 29 56.9 

All Classes 57.2 

Table 4.8 Baseline target confusion matrix for the case of a single window, single look, 
and synthetic training data. 
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synthetic data, as it is with target E that the classifier has the most difficult time. Target 

E is confused to a large extent with targets A and D. Target C also suffers severe degra- 

dation. It too has a large portion of misclassifications due to confusion with target D. We 

are now interested in incorporating multiple looks as a means to improve performance. 

4.2.2.2 Baseline Performance - Multiple Looks. Figure 4.7 shows the mul- 

tiple look performance. The confusion matrix for the full ten look classification is shown 

in Table 4.9. There is a great deal of disparity amongst the target accuracies. On the 

one extreme, targets B and D reach 100% accuracy, and on the other, target E has been 

entirely misclassified due to confusion with targets D and A. A primary goal of denoising 

then is to assuage this confusion. 
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Figure 4.7     Baseline target accuracies versus number of looks for the case of a single 
window and synthetic training data. 

4.2.2.3 Denoising Performance - Single Look. Optimal denoising param- 

eters for the case of training on synthetic data are determined in an identical manner to 

the measured training data case, by restricting the thresholds as previously mentioned. 

The accuracy surfaces are shown in Figure 4.8. Immediately it is seen that the denoising 
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Actual 
Class 

Assigned Class Pc 
(%) A B c D E F 

A 50 1 0 0 0 0 98.0 
B 0 51 0 0 0 0 100.0 
C 7 0 36 8 0 0 70.6 
D 0 0 0 51 0 0 100.0 
E 16 0 0 35 0 0 0.0 
F 0 16 0 0 0 35 68.6 

All Classes 72.9 

Table 4.9     Baseline target confusion matrix for the case of a single window, ten looks, 
and synthetic training data. 

scheme leads to a significant increase in classification accuracy. Indeed for a wide range 

of thresholds near optimal results are achieved. These surfaces provide some evidence of 

robustness since slight changes in the thresholds do not lead to a large change in accuracy. 

Also notice that the accuracy is in essence unaffected by the detail threshold. It may be 

valid then to dismiss the detail coefficients all together. However, more careful analysis 

would need to be done to validate such a claim and so we select the thresholds that occur 

at the surface maxima. The optimal denoising parameters are found to be those in Table 

4.10. We see how a typical synthetic signature is transformed through the denoising pro- 

Level Accuracy (%) 
79.1 
75.8 
67.3 

Wavelet 
daub, '6 

daub» 
daub 16 

Threshold Method 
Soft 
Soft 
Soft 

0.135 
0.195 
0.165 

td 
0.80 
0.70 
0.90 

Table 4.10      Optimal denoising parameters for the case of a single window and synthetic 
training data. 

cess in Figure 4.9. Using the optimal parameters and a single look, we get the classification 

accuracies shown in Table 4.11. We now see how powerful the denoising scheme can be as 

we are able to improve the average baseline accuracy from 57.2% to 79.1%. The true test 

is whether or not significant gain is made with multiple looks. 

4.2.2.4 Denoising Performance - Multiple Looks. We proceed here as we 

did for the case of training on measured data. First, we show the accuracies obtained for 

each denoising scheme when incorporating ten looks.   See Table 4.12.   We see that the 
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(b) 

(c) 

Figure 4.8 Visualization of overall target accuracies as a function of threshold pairs for 
the case of a single window and synthetic training data, (a) Decomposition 
level 1; (b) Decomposition level 2; (c) Decomposition level 3 

Target Accuracies (Pc) 
Level A B c D E F Avg. 
1 90.0 100.0 82.4 52.9 68.6 80.4 79.1 
2 90.2 98.0 74.5 47.1 62.7 82.4 75.8 
3 62.7 100.0 60.8 62.7 56.9 60.8 67.3 

Table 4.11     Target accuracies with denoising for the case of a single window, single look, 
and synthetic training data. 

multiple look performance now adheres to the intuition that best single look performance 

should in general lead to best multiple look performance. Denoising at level one is the 

preferred choice since it results in a considerable higher accuracy for target D than did 

denoising at level 2. This is unfortunate, since we desire as coarse a signal representation 

as possible. The classification performance as a function of the number of looks using this 

scheme is shown in Figure 4.10. 

Let us now display the confusion matrix that arises when using ten looks. In Table 

4.13, what strikes us most is the significant improvement in classifying target E, as well as 

considerable improvement for targets C and E. If we compare this confusion matrix with 
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Figure 4.9 Denoised signal representations for the case of a single window and synthetic 
training data: (a) Original synthetic HRR signature; (b) Denoised signature 
using level 1 parameters; (c) Denoised signatures using level 2 parameters; 
(d) Denoised signature using level 3 parameters 

that of Table 4.2, we see that we have been able to achieve multiple look performance 

with synthetic training data that nearly matches that of the measured data multiple look 

performance. Such a result is quite surprising and is highly encouraging. 

The results are not solely on the positive side as we see that there has been a degra- 

dation in performance for target D relative to the baseline result. The drastic improvement 

of approximately 22% in average accuracy overshadows this one negative result however. 

We can now gain some valuable insight through scatter plot visualization. We show the 

Target Accuracies (Pc) 
Level A B c D E F Avg. 
1 100.0 100.0 100.0 84.3 84.3 100.0 94.8 

2 100.0 100.0 100.0 74.5 84.3 100.0 93.1 
3 80.4 100.0 100.0 88.2 82.4 72.5 87.3 

Table 4.12     Target accuracies with denoising for the case of a single window, ten looks, 
and synthetic training data. 
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Figure 4.10     Denoising performance versus the number of looks for the case of a single 
window and synthetic training data. 

baseline plots as well so that we have a before and after picture. Of particular interest are 

the scatter plots for targets A and E, D and E, and B and F, for it was with these tar- 

get pairs that there was considerable baseline classifier confusion. See Figure 4.11. In the 

Actual 
Class 

Assigned Class Pc 
(%) A B c D E F 

A 51 0 0 0 0 0 100.0 

B 0. 51 0 0 0 0 100.0 

C 0 0 51 0 0 0 100.0 

D 0 0 0 43 8 0 84.3 

E 0 0 8 0 43 0 84.3 

F 0 0 0 0 0 51 100.0 

All Classes 94.8 

Table 4.13     Target confusion matrix with denoising for the case of a single window, ten 
looks, and synthetic training data. 

baseline case we see that target E is always "closer" to targets D and A. The corresponding 

denoising scatter plots reveal several important characteristics and reveal the mechanism 

responsible for the improved performance made possible with denoising. Denoising spreads 
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Figure 4.11     Scatter plots before and after denoising for the case of a single window, ten 
looks, and synthetic training data. 

apart the discriminant clusters thereby increasing interclass separation, which then leads 

to classification improvement. However, we also see that the standard deviation of the 

intraclass separations has increased which is not desirable. We can correct this problem in 

the following manner: First, we examine a comparison of original and denoised templates 

for targets A and E as well as corresponding test signatures. See Figure 4.12. We see 

how the denoising process facilitates template comparison by making the test signatures 

resemble the templates more closely. However, with target E, the denoising has a tendency 

to leave residual peaks in the denoised test signatures as can be seen in the lower right plot 

in Figure 4.12. The presence of these peaks leads to an increase in the distance of the test 

signature to the template, which causes the intraclass distances to deviate greatly as seen 

in Figure 4.11. These deviations do not affect classification because the distances to the 

targets with which there was confusion are sufficiently large. We still desire to alleviate this 

problem. As previously mentioned, Dewall is applying a post-processing technique that 

amounts to enclosing target clusters with hyper-ellipses, and this technique is successful 

when clusters are compact. We must modify the denoising methodology such that residual 
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Figure 4.12     On the left, are original templates along with a test signature. On the right 
are templates formed by denoising along with a denoised test signature. 

peaks do not appear. Though we do not implement such a modification in this thesis, we 

can automatically remove peaks that appear within a certain signature extent as a means 

to mimic the aforementioned denoising modification. If we do this and re-compute classi- 

fication results, we find that accuracies remain unchanged, but we get far more desirable 

scatter plots as shown in Figure 4.13. Note that in general, target clusters after denoising 

are more compact compared to those of Figure 4.11. 

To summarize, we show the denoised target classification accuracy improvement rel- 

ative to the baseline improvement for the case of one and ten looks in Table 4.14. The 

improvement in accuracies for targets C and E are most noteworthy, but attention is also 

drawn to the indicated degradation in performance for target D. Target D degradation 

was also observed for the case of measured data. As suggested earlier, a means to prevent 

this degradation is to adjust the denoising parameters for targets individually. Such an 

endeavor is beyond the scope of this thesis, but nonetheless should be considered in future 

work. 
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Figure 4.13     Scatter plots before and after denoising for the case of a single window, ten 
looks, and synthetic training data. 

4-3   Multiple Windows 

We have seen how powerful the denoising method of this thesis can be when applied 

to a single 5X5 window. The next logical step is to demonstrate the utility of this method 

when incorporating multiple windows, for it is the multiple window case that is the most 

relevant in the context of a real time HRR classification system. In this section we present 

results in a manner that is, for the most part, consistent with the presentation of results 

for the single window case. However, when we consider individual target accuracies, we 

compute averages across the windows. Similarly, when we consider the average accuracy 

across all targets, we compute this as an average over the five windows - that is, we compute 

an average of averages. Confusion matrices differ from the single window case in that the 

matrices are summed across all windows. These are referred to here onward as cumulative 

confusion matrices. 

When we incorporated a single window, we chose the number of training and testing 

samples to be equal and so computing an average accuracy across all targets was straight- 
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Target Accuracies (Pc) 
Level A B C D E F Avg 

1 Look 
1 11.8 2.0 45.1 -13.8 62.7 23.5 21.9 
2 11.8 0.0 37.2 -19.6 56.8 25.5 18.6 
3 -15.7 2.0 23.5 -4.0 51.0 3.9 10.1 

10 Looks 
1 14.8 0.0 45.9 -12.7 73.9 16.3 23.1 
2 14.8 0.0 45.9 -22.5 73.9 16.3 21.4 
3 -4.8 0.0 45.9 -8.8 72.0 -11.2 15.6 

Table 4.14     Relative classification improvements for the case of a single window and syn- 
thetic training data. 

forward. With multiple windows, the training and testing numbers are the same within 

each window, but these numbers vary across the windows. To compute, for instance, the 

average accuracy for target A across all windows, a weighted average needs to be used, in 

which case the weights are NA,{/NA, where N&,i is the number of target A test signatures 

for window i, and NA is the total number of target A signatures across all windows. Sim- 

ilarly, the average overall accuracy is computed as a weighted average in which case the 

weights are Ni/Ntot. Ni is the total number of testing signatures for window i and Ntot is 

the total number of testing signatures used across all windows. Note that when computing 

these averages using a cumulative confusion matrix (i.e., in the same manner that is used 

to compute probabilities of correct classification for the single window case), the weighting 

occurs automatically. Computing averages in this way adheres to the NCTI Performance 

Reporting Standards (19). 

4.3.1 Training on Measured Data. As was the case with single window classifica- 

tion, the intent here is not to achieve significant classification improvement, for that would 

be a futile goal in light of the excellent baseline results that are characteristic of training 

on measured data. The desire is merely to obtain equivalent results with simpler signals 

as was the case when incorporating a single window. 

4.3.I.I Baseline Performance - Single Look. Table 4.15 contains the single 

look classification accuracies for all targets across all five windows. We see that in general, 

performance is excellent with the exceptions of targets D and E. 

4-21 



Target Accuracies (Po) 

Window A B C D E F Avg. 

win6o,i5 100 98.3 81.7 66.7 66.7 98.3 85.3 

wineo,25 100 90.6 85.9 79.7 62.5 95.3 85.7 

win65,i5 100 98.0 76.5 52.9 92.2 84.3 84.0 

wiri7o,i5 100 100 86.0 92.0 80.0 90.0 91.3 

win75,i5 100 100 86.7 62.2 60.0 91.1 83.3 

Avg. 85.9 

Table 4.15     Baseline target accuracies for the case of five windows, a single look, and 
measured training data. 

To gain insight into target confusion, the cumulative confusion matrix is shown in 

Table 4.16. Note that there is not a particular target that is causing a large portion of 

Actual 
Class 

Assigned Class Pc 

(%) A B C D E F 

A 270 0 0 0 0 0 100.0 

B 6 262 0 0 0 2 97.0 

C 14 3 225 11 13 4 83.3 

D 17 9 12 192 16 24 71.1 

E 5 2 30 26 194 13 71.9 

F 7 0 3 9 2 249 92.2 

All Classes 85.9 

Table 4.16     Cummulative baseline target confusion matrix for the case of five windows, 
a single look, and measured training data. 

the confusion, but rather the confusion is somewhat uniform. We now examine baseline 

multiple look performance. 

4.3.1.2 Baseline Performance - Multiple Looks. From Figure 4.14, a sig- 

nificant improvement is seen in the classification accuracy of the hard targets D and E 

resulting in an average target accuracy of approximately 97%. The individual ten look 

target accuracies for all windows and the cumulative confusion matrix are shown in Ta- 

bles 4.17 and 4.18 respectively. The ten look results show that the confusion is almost 

exclusively due to an equal amount of confusion between targets D and E. Recall from 

the single window results that target E was confused to a large extent with target D but 

not the other way around. We assume that the multiple look results are more indicative 
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of a general trend and that targets D and E both tend to experience a similar degree of 

confusion. 
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Figure 4.14     Average baseline target accuracies versus number of looks for the case of 
five windows and measured training data. 

Target Accuracies (Pc) 
Window A B c D E F Avg. 

^«60,15 100 100 100 98.3 88.3 100 97.8 

W^60,25 100 100 100 93.8 85.9 100 96.6 

Win65,15 100 100 100 70.6 100 100 95.1 

win70,i5 100 100 100 100 100 100 100 
win75ti5 100 100 100 86.7 84.4 100 95.2 
Avg.                                                                         97.0 

Table 4.17     Baseline target accuracies for the case of five windows, ten looks, and mea- 
sured training data. 

The denoising goal is to achieve results equivalent to those above using simpler signal 

representations. It is also desired to alleviate the target confusion seen in Table 4.18, but 

it is acknowledged that such a goal may not be reached based on the single window results. 

4.3.1.3 Denoising Performance - Single Look. Classification accuracy sur- 

faces are viewed much in the same way as was done for the single window case. These 

surfaces are displayed in Figure 4.15. In this case, the surfaces represent the average overall 

accuracy obtained across all windows. By comparing Figures 4.15 and 4.3, the same overall 
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Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 270 0 0 0 0 0 100 

B 0 270 0 0 0 0 100 

C 0 0 270 0 0 0 100 

D 1 0 4 244 15 6 90.4 

E 0 0 8 15 247 0 91.5 

F 0 0 0 0 0 270 100 

All Classes 97.0 

Table 4.18     Cummulative baseline target confusion matrix for the case of five windows, 
ten looks, and measured training data. 

behavior as a function of the thresholds is seen. However, behavior for the case of multiple 

windows appears more regularized and does not exhibit the cubic like behavior that was 

seen in the single window case. It is therefore assumed that the multiple window results are 

more representative of a general trend. The observed trend is that the accuracy is almost 

exclusively a function of the approximation threshold and that it decreases monotonically 

with increasing ta. This trend makes sense intuitively if we recall the representation of 

a signal as /(n) = R(r)ta(&j0)) + X)j-R(??td(dj)), where the threshold restrictions forced 

R(rjta(a.j0)) to constitute the underlying signal structure. Table 4.19 contains the optimal 

denoising parameters at the three decomposition levels. 

Level Accuracy (%) Wavelet Threshold Method ta td 
1 89.4 daub\2 Soft 0.075 1.00 

2 88.8 daubß Soft 0.075 1.00 

3 85.5 haar Soft 0.135 0.30 

Table 4.19     Optimal denoising parameters for the case of five windows and measured 
training data. 

The interest now is in visually examining the appearance of a typical HRR signature 

when denoised using the optimal parameters. Compare Figures 4.16 and 4.5. Note that 

the denoised signatures in both figures are nearly identical to the eye. 

The optimal parameters from Table 4.19 are applied for classification and we obtain 

the averaged target accuracies of Table 4.20. These results are consistent with the trend 

of Table 4.4, in that single look accuracy drops off as the approximations become coarser. 

Recall that this trend was not present for the case of a single window when we incorporated 
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Figure 4.15 Visualization of average overall target accuracies as a function of threshold 
pairs for the case of multiple windows and measured training data, (a) 
Decomposition level 1; (b) Decomposition level 2; (c) Decomposition level 3 

multiple looks, and that denoising performances at all levels were nearly equivalent and 

indeed counterintuitive. We now see if this trend is also present for the case of multiple 

windows. 

Target Accuracies (Pc) 
Level A B C D E F Avg. 
1 98.9 98.1 89.3 72.2 82.6 95.6 89.4 
2 97.4 96.7 90.4 75.9 78.1 94.4 88.8 
3 91.5 94.1 83.0 69.3 83.0 91.9 85.4 

Table 4.20     Average target accuracies with denoising for the case of five windows, a single 
look, and measured training data. 

4.3.I.4 Denoising Performance - Multiple Looks. Upon examination of 

Table 4.31, we see denoising performances at all levels are indeed equivalent as was the case 

with a single window and multiple looks. Perhaps this phenomenon can be explained by- 

recognizing that when performing multiple look classification, there is not a lot of room for 
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Figure 4.16 Denoised signal representations for the case of five windows and measured 
training data: (a) Original measured HRR signature; (b) Denoised signature 
using level 1 parameters; (c) Denoised signatures using level 2 parameters; 
(d) Denoised signature using level 3 parameters 

improvement when denoising at levels one and two, whereas there is relatively more room 

for improvement when denoising at level three. So with all else equal, the performances 

reach a similar steady state, much as runners in a track event can cross the finish line 

neck and neck even though some runners could have been strides ahead of others during 

the brief moment following the start of the race. The equivalent performances suggest 

that we should prefer denoising at level three since it allows for simpler signal forms. In 

Figure 4.17, we see the progression of classification using multiple looks and the level three 

parameters. 

Target Accuracies {Pa) 
Level A B c D E F Avg. 
1 100 100 100 89.6 96.3 100 97.7 

2 100 100 100 91.9 95.2 100 97.8 

3 100 100 100 87.0 99.6 100 97.8 

Table 4.21     Average target accuracies with denoising for the case of five windows, ten 
looks, and measured training data 
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Figure 4.17     Average target accuracies with denoising versus number of looks for the case 
of five windows and measured training data. 

Tables 4.22 and 4.23 contain the more detailed results for classification with ten looks. 

By comparison with Table 4.17, we see that target accuracies reach similar values, though 

there is a slight drop in target's D's accuracy and a corresponding increase in target E's 

accuracy of nearly 10%. These changes do not affect the average accuracy significantly 

and so it must be kept in mind that changes in target accuracies on the order of 10% can 

lead to changes in the average overall accuracy on the order of 1%. From the confusion 

matrix we also see that target E is no longer being confused with target D, though some 

confusion has been introduced which results a slight degradation of target D's accuracy. 

This effect was also observed for the case of a single window. 

A comparison of multiple window performance for measured training data is in Table 

4.24. Comparing the ten look performance is of the most interest and it is seen that 

performances are nearly identical. This is as expected, but the results are still significant 

since we are able to classify with simpler signal representations. 

4.3.2    Training on Synthetic Data. The denoising performances obtained for 

the case of a single window are remarkable and the goal now is to achieve significant 

improvement in the case of multiple windows. Superior performance over multiple windows 
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Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 270 0 0 0 0 0 100.0 
B 0 270 0 0 0 0 100.0 
C 0 0 270 0 0 0 100.0 
D 0 0 13 235 10 12 87.0 
E 0 0 0 1 269 0 99.6 
F 0 0 0 0 0 270 100.0 

All Classes 97.8 

Table 4.22     Cummulative target confusion matrix with denoising for the case of five win- 
dows, ten looks, and measured training data. 

Target Accuracies (Pc) 
Window A B c D E F Avg. 
1 100 100 100 100 98.3 100 99.7 
2 100 100 100 90.6 100 100 98.4 
3 100 100 100 66.7 100 100 94.4 
4 100 100 100 100 100 100 100 
5 100 100 100 73.3 100 100 95.6 
Avg. 97.8 

Table 4.23     Target accuracies with denoising for the case of five windows, ten looks, and 
measured training data 

would suggest generalization capabilities of the denoising scheme and we now set out to 

demonstrate such capabilities. First the baseline performance is established. 

4-3.2.1 Baseline Performance - Single Look. Table 4.25 contains the target 

accuracies for the various windows. The cumulative confusion matrix is shown in Table 

4.26. From comparison with Table 4.8, we see that the overall multiple window performance 

is similar to the single window performance. In particular, we see that target E poses 

problems across all windows. Multiple look results are now presented. 

4-3.2.2 Baseline Performance - Multiple Looks. Average target accuracies 

are displayed as a function of the number of looks in Figure 4.18. We see that targets 

B and D are the only exceptional performers. Table 4.27 contains the baseline target 

accuracies. Note that multiple looks result in a further degradation for target E which is 

contrary to what we expect from multiple look classification. A confusion matrix can add 
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Targets 

Level A B C D E F Avg 

1 Look 
1 -1.1 1.1 6.3 1.1 10.7 3.4 3.5 

2 -2.6 -0.3 7.4 4.8 6.2 2.2 2.9 

3 -8.5 -2.9 0.0 -1.8 11.1 -0.3 -0.5 

10 Looks 
1 0.0 0.0 0.0 -0.8 4.8 0.0 0.7 

2 0.0 0.0 0.0 1.5 3.7 0.0 0.8 
3 0.0 0.0 0.0 -3.4 8.1 0.0 0.8 

Table 4.24     Relative classification improvements for the case of five windows and mea- 
sured training data. 

Target Accuracies (Pc) 

Window A B C D E F Avg. 

win6o,i5 
wineo,25 

63.3 
40.6 

95.0 
85.9 

36.7 
76.6 

75.0 
84.4 

1.7 
26.6 

88.3 
92.2 

60.0 
67.7 

wine5ti5 78.4 98.0 37.3 66.7 5.9 56.9 57.2 

win7Qtl5 88.0 98.0 18.0 92.0 16.0 56.0 61.3 

win75,i5 95.6 100 13.3 84.4 8.9 46.7 58.1 

Avg.                                                                                 61.2 

Table 4.25     Baseline target accuracies for the case of five windows, a single look, and 
synthetic training data. 

to our understanding of the problem. See Table 4.28. There are six primary instances 

of confusion: A with B, D with C, E with A, E with D, E with F, and F with D. The 

misclassifications of target E are attributed to confusion between it and most other classes. 

It is possible that the multiple looks allow for this large degree of confusion to manifest 

itself fully; afterall, if you light a fire in a forest, it will spread rapidly. We return to the 

confusion issue in the subsequent denoising section with multiple looks. 

4.3.2.3 Denoising Performance - Single Look. The accuracy surfaces that 

we have become accustomed to are displayed in Figure 4.19. Compare these surfaces with 

those of Figure 4.8, and note that the behaviors are different at all decomposition levels. 

This suggests that if the denoising scheme is to be implemented in a fielded system in 

which case a large number of windows must be incorporated, then we must maintain a 

large portion of the approximation coefficients. Recall, however, that the optimization 

process for multiple windows is designed to maximize the average overall target accuracy 
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Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 191 52 15 12 0 0 70.7 
B 7 256 0 5 0 2 94.8 
C 39 8 105 92 0 26 38.9 
D 8 28 10 217 0 7 80.4 
E 57 9 24 103 33 44 12.2 
F 19 22 4 33 2 190 70.4 

All Classes 61.2 

Table 4.26     Cummulative baseline target confusion matrix for the case of five windows, 
a single look, and synthetic training data. 

Target Accuracies (Pc) 
Window A B c D E F Avg. 

WJ»60,25 

80.0 
57.8 

100 
100 

61.7 
96.9 

91.7 
100 

0.0 
43.8 

100.0 
100 

72.2 
83.1 

win65,i5 98.0 100 70.6 100 0.0 68.6 72.9 

win70,i5 100 100 14.0 100 0.0 82.0 66.0 
win75ti5 100 100 8.9 93.3 0.0 57.8 60.0 
Avg.                                                                              71.7 

Table 4.27     Baseline target accuracies for the case of five windows, ten looks, and syn- 
thetic training data 

across all windows using a single set of denoising parameters. An alternative method is 

addressed in a later section. 

The optimal parameters are found to be those in Table 4.29. The interest now is 

examining the effects that denoising with these parameters has on a typical synthetic 

signature. These effects are seen in Figure 4.20. By comparing these denoised signatures 

with those in Figure 4.9, we see that we do not obtain signal realizations as simple as those 

in the single window case, which is due to a lesser degree of approximation coefficient 

thresholding. 

Accuracies for the individual targets are shown in Table 4.30. We now examine the 

multiple look results. 

4.3.2.4 Denoising Performance - Multiple Looks. Averaged target accu- 

racies are in Table 4.31. We see that overall accuracy drops as the signals become more 

coarse. This was the result we observed in the case of a single window. The performances 
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Number of Looks 

Figure 4.18     Average baseline target accuracies versus number of looks for the case of 
five windows and synthetic training data. 

when denoising at levels one and two are for all intents equivalent, and so we adopt the 

level two denoising parameters for the usual reason that it affords us simpler signal repre- 

sentations. 

The average accuracies versus the number of looks are shown in Figure 4.21. Target E 

proves to be the limiting factor in overall target accuracy. This is certainly more prevalent 

with the baseline classifier, but nonetheless, classifying target E correctly only 40% of the 

time is clearly not an impressive result even if it is nearly a 30% improvement over the 

baseline classifier. See Table 4.32 for the accuracies for each window. 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 230 22 9 9 0 0 85.2 
B 0 270 0 0 0 0 100.0 
C 15 3 146 99 0 7 54.1 
D 0 8 0 262 0 0 97.0 
E 46 0 10 146 28 40 10.4 
F 0 16 0 28 0 226 83.7 

All Classes 71.7 

Table 4.28     Cummulative baseline target confusion matrix for the case of five windows, 
ten looks, and synthetic training data. 
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Figure 4.19 Visualization of average overall target accuracies as a function of threshold 
pairs for the case of multiple windows and synthetic training data, (a) 
Decomposition level 1; (b) Decomposition level 2; (c) Decomposition level 3 

Level Accuracy (%) Wavelet Threshold Method *« td 
1 74.0 daub^ Soft 0.060 0.90 
2 75.8 daubi Soft 0.060 0.40 
3 74.0 haar Soft 0.075 0.35 

Table 4.29     Optimal denoising parameters for the case of five windows and synthetic 
training data. 

Recall that there were six key instances of confusion for the baseline classifier. Let us 

examine the ten look cumulative confusion matrix that denoising produces and compare 

with that of Table 4.28. We see that the confusions of target E with A and target F with 

D have been completely removed. The confusion of target C with D has been extensively 

lessened and the confusions of target E with D and target E with F have been alleviated 

somewhat. The denoising does, however, introduce confusion of target E with C which 

was not present with the baseline classifier. A similar phenomenon occurred in the case 

of a single window and this then appears to be a general denoising result that is due to 

optimization for maximum averaged performance. 
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Figure 4.20 Denoised signal representations for the case of five windows and synthetic 
training data: (a) Original measured HRR signature; (b) Denoised signature 
using level 1 parameters; (c) Denoised signatures using level 2 parameters; 
(d) Denoised signature using level 3 parameters 

The relative improvements that denoising provides us are shown in Table 4.34. We 

see that when testing over multiple windows we achieve a remarkable level of improvement 

over the baseline classifier. We now have enough evidence in favor of the denoising scheme 

that demonstrates generalization capability. If we compare these results with those in Ta- 

ble 4.14, then we see a recurring trend: Multiple look accuracy degrades as the denoised 

signals become coarser. This is not the case when training on measured data in which case 

multiple look accuracies were nearly equivalent for all decomposition levels (if decomposi- 

tions proceeded beyond levels 1-3, then this certainly would not be true). We can make 

Target Accuracies (Pc) 
Level A B C D E F Avg. 
1 79.6 95.6 74.8 72.2 39.6 82.2 74.0 
2 88.9 98.1 73.0 77.0 33.7 84.1 75.8 
3 84.1 97.4 66.7 79.3 33.7 82.6 74.0 

Table 4.30     Average target accuracies with denoising for the case of five windows, a single 
look, and synthetic training data. 
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Target Accuracies Po) 
Level A B c D E F Avg. 
1 94.4 100 94.8 96.3 45.2 100 88.5 
2 97.8 100 92.2 95.2 40.0 100 87.5 
3 97.4 100 90.4 91.1 38.9 97.8 85.9 

Table 4.31     Average target accuracies with denoising for the case of five windows, ten 
looks, and synthetic training data 
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Figure 4.21     Average target accuracies with denoising versus number of looks for the case 
of five windows and synthetic training data. 

sense of this result by considering the fact that when we train on synthetic data, we are 

at a disadvantage right from the beginning because we then need to match the measured 

signatures with these synthetically generated templates. By virtue of the modeling process, 

the measured signatures certainly differ to a greater extent from these synthetic templates 

than they would from measured templates. 

4-4    Additional Considerations 

In this section we address several questions that inevitably arise concerning the de- 

noising methodology. We would like to know if the results are as impressive when using 

larger testing sets and larger numbers of windows. Also, we are interested to examine 

classification performance when implementing wavelet denoising methods that are popular 
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Target Accuracies (Pc) 

Window A B c D E F Avg. 

win60>i5 100 100 98.3 100 0.0 100 83.1 

Wiri60,25 100 100 100 87.5 93.8 100 96.9 

win,65ti5 88.2 100 96.1 98.0 0.0 100 80.4 

win70,i5 100 100 98.0 100 34.0 100 88.7 

win75tl5 100 100 62.2 91.1 68.9 100 87.0 

Avg. 97.8 100 92.2 95.2 40.0 100 87.5 

Table 4.32     Target accuracies with denoising for the case of five windows, ten looks, and 
synthetic training data 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 262 6 0 0 0 0 97.8 

B 0 270 0 0 0 0 100 

C 0 0 249 6 0 15 92.2 

D 0 5 8 257 0 0 95.2 

E 0 0 98 43 108 21 40.0 

F 0 0 0 0 0 270 100.0 

All Classes 87.5 

Table 4.33     Cummulative target confusion matrix with denoising for the case of five win- 
dows, ten looks, and synthetic training data. 

in the wavelet literature. Other questions are related more specifically to the denoising 

method of this thesis. For instance, how sensitive are accuracies with respect to the wavelet 

choice? What is gained in implementing the denoising method with translation invariance 

as opposed to an analogous non-translation invariant method? Lastly, we are interested in 

an alternative optimization method for multiple windows as was alluded to earlier. Each 

of these questions are now addressed. 

4.4.I Performance with Larger testing Sets. The decision to limit the number of 

testing signatures for each class was based mainly on a desire to lessen the computational 

burden. We can, however, examine some special cases as a means to put to rest any 

reservations that we may have concerning the performance when faced with larger test 

sets. Let us consider the case of training on synthetic data, for it is this case that is of the 

most interest. 
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Target Accuracies (Pc) 
Level A B C D E F Avg 

1 Look 
1 8.9 0.8 35.9 -8.2 27.4 11.8 12.8 
2 18.2 3.3 34.1 -3.4 21.5 13.7 14.6 
3 13.4 2.6 27.8 -1.1 21.5 12.2 12.8 

10 Looks 
1 9.2 0.0 40.7 -0.7 34.8 16.3 16.8 
2 12.6 0.0 38.1 -1.8 29.6 16.3 15.8 
3 12.2 0.0 36.3 -5.9 28.5 14.1 14.2 

Table 4.34     Relative classification improvements for the case of five windows and syn- 
thetic training data. 

4.4-1.1 Single Window. First let us consider a single window. We have seen 

that results for single and multiple windows follow the same basic trends and so we have 

confidence in asserting that the results we obtain here carry over to the multiple window 

case. Confusion matrices are computed for a single look as well as ten looks. Tables 4.35 

and 4.36 contain these matrices. 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 235 66 0 0 0 0 78.1 
B 3 308 0 0 0 0 99.0 
C 22 2 43 47 0 9 35.0 
D 5 32 1 192 0 17 77.7 
E 18 4 0 23 3 3 5.9 
F 7 42 0 27 1 75 49.3 

All Classes: 57.5 

Table 4.35     Baseline target confusion matrix for the case of a single window, single look, 
synthetic training data, and all available testing data. 

Let us now examine the denoising results. See Tables 4.37 and 4.38. We see that 

denoising does in fact yield a remarkable improvement over the baseline results. The 

relative improvements are summarized in Table 4.39. These results are remarkable, however 

there is a drawback in that there is a degradation in performance for target D. This is a 

general result imposed by the optimization method and a likely solution to the problem is 

an optimization method that treats targets individually. 
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Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 279 22 0 0 0 0 92.7 
B 0 311 0 0 0 0 100.0 
C 7 0 63 53 0 0 51.2 
D 0 2 0 245 0 0 99.2 
E 16 0 0 35 0 0 0.0 
F 3 49 0 21 0 79 52.0 

Overall Accuracy: 65.8 

Table 4.36     Baseline target confusion matrix for the case of a single window, ten looks, 
synthetic training data, and all available testing data. 

Actual 
Class 

Assigned Class Pc 
A B C D E F 

A 245 53 0 2 0 1 81.4 
B 1 308 0 0 2 0 99.0 
C 3 0 95 20 4 1 77.2 
D 7 10 26 136 45 23 55.1 
E 0 1 8 6 35 1 68.6 
F 2 13 11 6 25 95 62.5 

Overall Accuracy: 74.0 

Table 4.37     Target confusion matrix with denoising for the case of a single window, single 
look, synthetic training data, and all available testing data. 

4.4.I.2 Multiple Windows. We now incorporate multiple windows, but we 

do not limit ourselves to the same five windows that we considered previously. Now we 

make the problem more difficult. We consider a total of 12 windows (five of which are 

the windows previously considered), covering the azimuth and elevation span Shown in 

Figure 4.22. and denoise using the optimal parameters found for the five window case 

using synthetic training data. This serves as a rigorous means to determine the robustness 

of the denoising method, since we now test over windows for which denoising was not 

optimized. As in the previous section, we show confusion matrices for one and ten look 

classification and compare average overall target accuracies. See Tables 4.40 and 4.41. 

Denoising results are in the confusion matrices in Tables 4.42 and 4.43. Again we see the 

trend that we are accustomed to: Target E has improved at the expense of degradation 

in target D, though there has been significant overall improvement. Classification with 

ten looks has yielded nearly a 16% improvement relative to baseline performance.  This 
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Actual 
Class 

Assigned Class Pc 
A B C D E F 

A 289 12 0 0 0 0 96.0 
B 0 311 0 0 0 0 100.0 
C 0 0 118 5 0 0 95.9 
D 0 0 1 217 29 0 87.9 
E 0 0 8 0 43 0 84.3 
F 0 0 0 0 17 135 88.8 

Overall Accuracy: 92.2 

Table 4.38     Target confusion matrix with denoising for the case of a single window, ten 
looks, synthetic training data, and all available testing data. 

Targets 
# Looks A B C D E F Avg 
1 Look 3.3 0.0 42.2 -22.6 62.7 13.2 16.5 
10 Looks 3.3 0.0 44.7 -11.3 84.3 36.8 26.4 

Table 4.39     Relative classification improvements for the case of five windows, synthetic 
training data, and all available testing data. 

figure is particularly impressive due to the extensive testing that was done and the fact 

that the denoising parameters were optimized across only five windows. The results in this 

section lend overwhelming evidence as to the robustness of the denoising method, and also 

strongly support the intuition regarding simple signal representations. 

44.2 Wavelet Sensitivity. The interest is to now assess performance sensitivity 

with respect to the wavelet choice. To do so, let us again consider the interesting case 

of training on synthetic data where we limit the scope to a single window. We apply at 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 2048 450 96 27 0 16 75.2 
B 22 1529 0 9 0 3 97.8 
C 115 29 440 312 3 107 43.7 
D 27 195 26 1115 1 59 78.4 
E 112 69 53 264 94 140 12.8 
F 58 119 25 187 24 646 61.0 

All Classes: 61.5 

Table 4.40     Cummulative baseline target confusion matrix for the case of 12 windows, 
one look, and synthetic training data. 
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Figure 4.22     Span of HRR data used for testing. 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 2048 255 66 8 0 0 86.2 
B 0 1563 0 0 0 0 100.0 
C 42 3 522 352 0 87 51.9 
D 0 89 1 1333 0 0 93.7 
E 68 55 28 376 64 141 8.7 
F 7 81 0 187 11 773 73.0 

All Classes: 68.9 

Table 4.41     Cummulative baseline target confusion matrix for the case of 12 windows, 
ten looks, and synthetic training data. 

Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 1755 378 195 13 1 35 73.8 
B 15 1536 0 8 0 4 98.3 
C 18 7 738 123 44 76 73.4 
D 22 183 97 990 26 105 69.6 
E 34 47 150 96 323 82 44.1 
F 26 51 92 76 60 754 71.2 

All Classes: 71.7 

Table 4.42     Cummulative target confusion matrix with denoising for the case of 12 win- 
dows, one look, and synthetic training data. 

4-39 



Actual 
Class 

Assigned Class Pc 
(%) A B C D E F 

A 1985 206 175 0 0 11 83.5 
B 0 1563 0 0 0 0 100.0 
C 0 0 947 14 6 39 94.1 
D 0 100 57 1254 3 9 88.1 
E 1 40 166 63 409 53 55.9 
F 2 12 13 38 73 921 87.0 

All Classes: 84.8 

Table 4.43     Cummulative target confusion matrix with denoising for the case of 12 win- 
dows, ten looks, and synthetic training data. 

Targets 
# Looks A B C D E F Avg 
1 Look -1.4 0.4 29.6 -8.8 31.3 10.2 10.2 
10 Looks -2.7 0.0 42.2 -5.6 47.1 14.0 15.9 

Table 4.44     Relative classification improvements for the case of 12 windows, synthetic 
training data, and all available testing data. 

each decomposition level, all wavelets that are contained in the parameter space, with the 

remaining parameters fixed to those in Table 4.10 and obtain classification accuracies for a 

single look. The assessment is not intended to be rigorous by any means and is primarily for 

qualitative purposes. In examining sensitivity for this particular case of synthetic training 

data and one look, we assume that the results generalize for other testing cases. See Figure 

4.23 

We see that the choice of wavelet has a substantial effect on classification performance 

and that we are justified in optimizing over it. Notice in Figure 4.23 that at coarser 

wavelet scales smoother wavelets become optimal, where smoothness is defined in terms 

of the K-Regular Scaling Filters that were briefly mentioned in Chapter 2. We attribute 

no significance to this however, since we did not see the same trend in the case of multiple 

windows. 

4.4.3 Alternative Denoising Methods. In Chapter 2 we discussed wavelet based 

denoising methods and in Chapter 3 we enumerated reasons for abandoning those methods 

which lead us to the methodology which has formed the basis of this thesis. Recall that 
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Figure 4.23 Illustration of the sensitivity of classification accuracy with respect to the 
wavelet choice for the case of a single window, single look, and synthetic 
training data. 

traditional wavelet denoising is based on the Gaussian noise model and that we adopt 

an abstract notion of noise which forces us to pursue optimal denoising with respect to 

classification accuracy as opposed to a risk measure (such as MSE). We are interested in 

determining what we gain by viewing noise in this manner, as opposed to the Gaussian 

noise model in which case the VisuShrink and SureShrink methods are preferable. 

The VisuShrink and SureShrink denoising methods assume a signal model s,- = /,- + 

azi, i = 1,2,... ,JV, where / is a deterministic signal and {zj are distributed as z ~ 

N(0,1). The risk measure is MSE between / and /. Both are performed in three steps: 

1. Compute wavelet transform. 

2. Apply soft thresholding to detail coefficients. 

3. Reconstruct to obtain /. 

In step 2, the threshold is chosen as described in Chapter 2. Denoising is implemented 

using the third-party Matlab toolbox WaveLab, as was the case with the implementation 

of the TI transform. As with the TI denoising method of this thesis, we allow the choice 

of wavelet to vary and we perform denoising at decomposition levels one through seven. 
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However, we allow the decomposition to progress to coarser scales than was the case with 

the TI method. The VisuShrink and SureShrink methods are optimized over the wavelet 

choice using a single window and a single look. Figure 4.24 shows the results. 

Figure 4.24 
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Maximum VisuShrink and SureShrink overall target accuracy as a function 
of decomposition level for the case of a single window and synthetic training 
data. Top line corresponds to maximum accuracy achieved through TI 
denoising; bottom line corresponds to baseline accuracy, (a) Single look; 
(b) Ten looks 

We are most interested in the ten look results and we see that at best, VisuShrink and 

SureShrink are able to match the baseline performance. Let us now examine representative 

signatures obtained through VisuShrink and SureShrink denoising. See Figures 4.25 and 

4.26. 

We see that both denoising methods do not significantly alter the original HRE, signa- 

ture. VisuShrink exhibits a larger degree of smoothing than SureShrink as is characteristic 

of VisuShrink. Still, it is not a large enough extent. We conclude that the TI denoising 

method provides us with superior results due to the large degree of smoothing that it 

affords. This capability exists due to the thresholding of approximation coefficients. 
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Figure 4.25 Denoised signal representations obtained through VisuShrink for the case of 
a single window and synthetic training data, (a) Original HRR signature; 
(b) Denoised signature using level 1 parameters; (c) Denoised signature 
using level 4 parameters; (d) Denoised signature using level 7 parameters; 

Let us now consider denoising using finite impulse response (FIR) filtering. A FIR 

filter has a transfer function of the form 

JV-i 

k=o 

-k (4.4) 

where N is the filter length.   The filtering (denoising) of a HRR signature s(k) can be 

implemented as a standard difference equation as 

N-l 

f(k)=^h(k)s(k-i), (4.5) 
i=0 

where / is the filtered (denoised) signal. The details of designing such a filter are in (42). 

We optimize overall target accuracy for the case of a single window, a single look, and 

synthetic training data. The denoising parameters are the filter length and the cutoff fre- 

quency which is in normalized frequency. We can view an accuracy surface as a function 

of the filter parameters as in Figure 4.27. The lower plane indicates baseline accuracy and 

the upper plane indicates the highest accuracy that was achieved with the TI denoising 
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Figure 4.26 Denoised signal representations obtained through SureShrink for the case of 
a single window and synthetic training data, (a) Original HRR signature; 
(b) Denoised signature using level 1 parameters; (c) Denoised signature 
using level 4 parameters; (d) Denoised signature using level 7 parameters; 

scheme. We see that FIR filtering does not lead to a significant increase in classifier perfor- 

mance. A maximum accuracy of approximately 61.2% is obtained with a filter length of 9 

and a normalized cutoff frequency of 0.7. Figure 4.28 shows a typical signal representation 

obtained through FIR filtering with the optimal parameters. Compare this representation 

with those obtained through VisuShrink and SureShrink as seen in Figures 4.25 and 4.26. 

Note that the traditional wavelet methods and the FIR method both result in represen- 

tations that are nearly identical, visually. This is not surprising since they both achieve 

similar accuracies in the single look classification case. This observation leads us to believe 

that FIR filtering does not lead to improved results for the case of multiple looks and so 

multiple look performance is not investigated. This is a valid belief since VisuShrink and 

SureShrink were able to match ten look baseline performance at best. 

444 Variation of the Denoising Implementation. Are we really gaining anything 

by performing the translation invariant wavelet transform as opposed to the standard 

wavelet transform? We can easily examine this issue by substituting the standard wavelet 

transform for the TI wavelet transform, and optimizing over the established parameter 
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Figure 4.27     Visualization of overall classification accuracies obtained with FIR filtering 
for the case of a single window, single look, and synthetic training data. 
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Figure 4.28     Original HRR signature (top) and denoised signature (bottom) obtained 
with optimal FIR filtering. 
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Figure 4.29     Level one denoising accuracy surfaces for the case of a single window and 
synthetic training data. Left: TI method; Eight: Non-TI method 

space. Conceptually, this is equivalent to retaining the topmost coefficient collections 

in each column of the TI Table, and setting all others to zero. That is, we retain the 

coefficients a_j0ii, dj_i,i, dj_2,i,... , dj0ii which comprise the standard wavelet transform. 

For illustration purposes, we do this for only one decomposition level. Let us view the 

resulting accuracy surface along with that of the TI method. These are shown in Figure 

4.29. We see that both methods are nearly equivalent. The non-TI method achieves a 

maximum accuracy of 77.8% with daub1&, soft thresholding, ta = 0.135, and tg = 0.85. 

Note that these thresholds are nearly identical to those obtained for the TI method. The 

non-TI implementation accuracy is almost 2% worse than the accuracy obtained with the 

TI method. Though this difference may not be statistically significant, we still prefer the 

TI method because of the desirable property that fs = Ssf, as mentioned in Chapter 

2. The results in this section also support the claim that the approximation coefficient 

thresholding is what provides the significant performance improvement. 

44.5   Alternative Optimization Procedure for Multiple Windows. Recall that 

when we optimized the denoising method over multiple windows, that the aim was to 

maximize the average overall accuracy across all windows using a single set of denoising 

parameters. One may wonder why we did not optimize with respect to windows individ- 

ually such that separate parameters would be determined for each window. We chose not 
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Figure 4.30 Visualization of maximum classification accuracies as a function of threshold 
pairs for the case of wiriQo,i5 and synthetic training data, (a) Decomposition 
level 1; (b) Decomposition level 2 

Figure 4.31 Visualization of maximum classification accuracies as a function of threshold 
pairs for the case of winßo,25 and synthetic training data, (a) Decomposition 
level 1; (b) Decomposition level 2 

to do so primarily for simplicity. Using a single set of optimal parameters to achieve im- 

provement across all windows is preferred over using separate parameters for each window 

because it is likely to be more robust. We now revisit the case of multiple windows and 

synthetic training data and optimize each window separately. We only need to optimize 

for four of the windows since optimization was already done for win65ii5. Let us begin 

in the usual manner by viewing accuracy surfaces. As a simplification, we only consider 

decomposition levels one and two. 

4-47 



Figure 4.32 Visualization of maximum classification accuracies as a function of threshold 
pairs for the case of «nra7o,i5 and synthetic training data, (a) Decomposition 
level 1; (b) Decomposition level 2 
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Figure 4.33 Visualization of maximum classification accuracies as a function of threshold 
pairs for the case of ^«175,15 and synthetic training data, (a) Decomposition 
level 1; (b) Decomposition level 2 
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Window Wavelet Thresholding Method ta td 

wiri6o,i5 daub± soft 0.050 0.70 

wineot25 daubß soft 0.050 1.00 

Win65,15 daube soft 0.195 0.70 

win70,i5 daub\2 soft 0.100 1.00 

wiri75,i5 daubio soft 0.075 0.80 

Table 4.45     Optimal level two denoising parameters for the case of five windows and 
synthetic training data 

Accuracies (Pc) 
Window Collectively Separately Improvement 

wine0ti5 71.9 72.5 0.6 

wineo,25 85.4 85.5 0.1 

win65ti5 69.6 75.8 6.2 

win70il5 77.3 82.7 5.4 

win75,i5 72.6 75.9 3.3 

Avg. 75.8 78.7 2.9 

Table 4.46     Comparison of overall target accuracies for different multiple window opti- 
mization techniques 

From these surfaces we see that accuracies either decrease nearly monotonically with 

increasing ta, or the accuracies rise then fall with increasing ta. This observation suggests 

that 5X5 windows can be broken into two major categories. It is possible that we could 

determine two sets of denoising parameters, each achieving near optimal performance for 

the respective window group. 

We find that maximum accuracies occur at the second decomposition level for all 

windows (with the exception of wine5,i5). Optimal parameters are shown in Table 4.45. 

Now let us compare the overall target accuracies obtained with both optimization methods. 

See Table 4.46. Note that optimizing windows individually provides us with a gain of 

about only 3%. This suggests that optimizing over all windows simultaneously may be the 

preferable method since it possesses a strong degree of robustness. 

4-5   Summary 

In this chapter we have seen some remarkable results. We demonstrated that we can 

achieve HRR classification accuracies equivalent to those of the baseline classifier when 
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training on measured data, through a denoising scheme that affords us simpler signal 

representations. More importantly though, we have achieved enormous accuracy improve- 

ments when training on synthetic data. When incorporating multiple looks, the denoising 

scheme leads to classification accuracies which approach those of the measured training 

data case. These results have far reaching implications and we now conclude this research 

and make recommendations. 
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V.   Conclusions and Recommendations 

5.1 Introduction 

The primary goal of this thesis is to achieve substantial improvement in HRR clas- 

sification for synthetic training data. Improvements in the synthetic case often lead to 

degradation in the measured case, and thus a secondary goal is to maintain the baseline 

performance when training on measured data. We first approach this challenging problem 

through visualization of the raw HRR signatures. The visual observations motivate us to 

apply a sound philosophy: we prefer simpler models to complex ones. We view the signals 

as containing noise, but the concept of noise extends beyond the standard Gaussian noise 

model. Removal of Gaussian noise would simplify the HRR signatures, but in the frame- 

work of this thesis, the assertion is that such removal would not be extensive enough to 

provide us with the simple signal representations that we seek. An abstract noise model is 

then adopted and we decide that, in general, any quality of the signals that prevents clas- 

sification improvement is noise. We develope a powerful wavelet-based denoising scheme 

that allows us to consider a larger class of signal representations than would be possi- 

ble with standard wavelet-based techniques. We implement a computationally efficient 

wavelet transform that has desirable translation invariance properties. Abandonment of 

the Gaussian noise model forces us to optimize the denoising parameters with respect to 

classification accuracy and this optimization is accomplished through an exhaustive search 

of the parameter space. Ultimately, the denoising scheme enables us to achieve remarkable 

improvements in classification accuracy when using synthetic training data. We find that 

the denoised signals are indeed much simpler than the original signals and that the abstract 

notion of noise is a powerful viewpoint. 

5.2 Summary of Key Results 

We summarize key results of this thesis: 

• A powerful wavelet-based denoising method is developed and serves as a pre-processing 

step in HRR classification.  This method is optimized with regard to classification 

accuracy in the context of an abstract noise model. 
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• The denoising method enables us to achieve excellent classification results equivalent 

to those of the baseline classifier for a single azimuth and elevation window and mea- 

sured training data. We find that equivalent performance is achieved with simpler 

signal representations. When training on synthetic training data, we obtain remark- 

able classification improvements which match those obtained for measured training 

data. This result is unprecedented. 

• Generalization and robustness of the denoising performance is demonstrated by first 

optimizing and testing over multiple windows. Results are, in general, similar to 

those found for the single window case. As a more rigorous means of assessing 

generalization and robustness, we classify all available testing data from 12 windows 

using the denoising parameters determined from optimization over five windows. We 

do this for the case of synthetic training data only since this is the most relevant case. 

Classification under these circumstances yields performance gains similar to those 

found for the five window case. The rigorous testing demonstrates, with confidence, 

that the denoising methodology of this thesis is an unquestionable means to achieve 

significant classification improvement when using synthetic data. 

• The denoising method of this thesis is shown to achieve classification results superior 

to those obtainable through traditional wavelet-based methods. A key factor enabling 

superiority is the decision to consider noise abstractly, as opposed to the traditional 

approach of specifying a Gaussian noise model. The abstract view of noise provides 

justification in thresholding approximation coefficients, since we do not necessarily 

want to maintain the underlying signal structure. The denoising methodology deter- 

mines the required underlying structure by virtue of the optimization process. 

5.3   Recommendations for Future Work 

The results of this thesis warrant considerable further research: 

• Modify the denoising scheme so that individual detail thresholds are specified for 

each decomposition level. The interest here is in performance gains (if any) and in 

whether or not the additional parameters cause a loss in robustness. 
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• Perform extensive testing of the denoising scheme across all 5 X 5 windows for which 

there is a sufficient number of training data. The testing can be done in one of three 

ways, all which should be examined: 1) Optimize the denoising method for windows 

individually. When testing an unknown signature, the denoising parameters associ- 

ated with the corresponding 5X5 window are used. 2) Optimize across all windows 

simultaneously so that maximum average overall accuracy is obtained. 3) Charac- 

terize the accuracy surfaces found in 1). It is likely that a small number of window 

groups will exhibit similar accuracy surfaces based on results in the previous chapter. 

Each group can then be assigned a unique set of optimal denoising parameters. If 

there is a window for which there is little data, then assign it to the group for which 

the accuracy surfaces are most regularized. This scheme has great potential in that 

it is likely to result in a higher average accuracy than in 2). It is also more concise 

than 1) and is likely to be more robust. 

• Modify denoising methodology so that parameters can be determined individually 

for targets. This approach could alleviate the problem seen in Chapter 4, in which 

case target E signatures contained residual, uninformative peaks following denoising. 

Though these peaks do not seem to affect classification performance, it is still desir- 

able to remove them since doing so results in scatter plots which are more amiable to 

post-processing. This approach also has the potential to eliminate the degradation 

in certain targets caused by denoising, as seen in Chapter 4. 

• Design wavelet systems whose basis functions more closely resemble the HRR signa- 

tures than do standard wavelet basis functions. This design might be approached 

from an eigenvalue/eigenvector standpoint. 

• Use the denoising methodology of this thesis as a preliminary step in a subsequent 

piecewise polynomial fitting routine. Investigate the use of the piecewise parameters 

as features for classification. Since this thesis (and others preceding it) demonstrates 

that large amounts of signature information can be discarded, it seems reasonable 

that we can represent signatures in a simple, piecewise manner. 
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5-4    Summary 

This thesis makes a major contribution to the HRR classification problem. Instead 

of trying to modify (or replace) the baseline classifier, we approach the problem solely 

from a pre-processing standpoint as a means to merely augment the baseline classifier. 

The results suggest that further work in this area focus on the problem in the context of 

pre-processing. The unprecedented accuracies obtained when training on synthetic data 

suggest that synthetic and measured data can be successfully integrated into a classification 

system, thereby satisfying one of the primary goals of the NCTI community. The results 

in this thesis also raise some philosophical issues. Since simpler signal representations arise 

from denoising, we may consider HRR classification as an inverse problem: How do we 

build radar systems that acquire signatures with forms similar to those seen in this thesis? 

Does high range resolution really provide benefits, given that we a) achieve equivalent 

performance when training on measured data by using much simpler representations, and 

b) achieve remarkable performance improvement when training on synthetic data with 

simpler signal representations? Initial high fidelity signals may be needed for reduction to 

the forms observed in this thesis. If this is the case, then the wavelet pre-processing of this 

thesis is a very attractive means to obtain simplified signal representations. We have used 

the word "simple" and its various forms throughout this thesis because we desire to convey 

the advantages gained from reducing the complexity of problems. Perhaps in simplifying 

problems we are regressing, but the underlying results of this thesis suggest that it is such 

a regression that is needed to satisfy the aims of HRR classification. 
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