
AF]T/GOA/ENS/99M-06

DYNAMIC UNMANNED AERIAL VEHICLE (UAV)
ROUTING WITH A JAVA-ENCODED

REACTIVE TABU SEARCH METAHEURISTIC

THESIS

Kevin P. O'Rourke, Captain, USAF

AFIT/GOA/ENS/99M-06

Approved for public release; distribution unlimited.

19990409 028

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

AF1T/GOA/ENS/99M-06

DYNAMIC UNMANNED AERIAL VEHICLE (UAV) ROUTING WITH A

JAVA-ENCODED REACTIVE TABU SEARCH METAHEURISTIC

THESIS

Presented to the Faculty of the Graduate School of Engineering
Air Force Institute of Technology

Air University
In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Operational Analysis

Kevin P. O'Rourke, B.S.
Captain, USAF

March 1999

Approved for public release; distribution unlimited

AFIT/GOA/ENS/99M-06

THESIS APPROVAL

NAME: Kevin P. O'Rourke, Captain, USAF CLASS: GOA-99M

THESIS TITLE: Dynamic Unmanned Aerial Vehicle (UAV)
Routing with a Java-Encoded Reactive Tabu Search Metaheuristic

DEFENSE DATE: 2 March 1999

COMMITTEE: NAME/TITLE/DEPARTMENT

Advisor

Reader

Reader

T. Glenn Bailey, Lieutenant Colonel, ÜSAF
Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

Raymond R. Hill, Major, USAF
Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

William B. Carlton, Lieutenant Colonel (P), USA M/mW
Adjunct Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

11

Acknowledgments

I would like to extend my sincere thanks to those people who both helped with

my thesis and made my time here at AFIT a success. Thanks to Lt Col Glenn Bailey, my

thesis advisor, for providing guidance while giving me the latitude to explore ideas on my

own. Thanks to LTC (P) Carlton for his tremendous initial work that provided the

reactive tabu search and for his comments and feedback as a reader. Thanks to Major

Ray Hill for his feedback and persuasive steering.

Thanks to Major Dave Ryer, who shared in the trials and tribulations of bringing

this monster to life. I am glad that I helped our efforts, and certainly appreciated his

work during the times that our thesis endeavors were on parallel tracks. I appreciate all

the kind hospitality of people who helped after my knee surgery (as if graduate school

wasn't hard enough on its own)—Major Sam and Mary Szvetecz, who opened their home

to provide a much needed change of scenery, as well as Dan Franzen and Lance Hrivnak

who chauffeured me while I couldn't drive. Thanks to all of my instructors and

classmates for giving me the opportunity to learn something from each and every one of

you.

I thank my friends here, both new and old (you all know who you are) for the

support in the hard times and the necessary diversions to keep me sane. Thanks to my

family for always being there, and for your 30 years of instruction on the lessons of life.

Kevin P. O'Rourke

m

Table of Contents

Page

Acknowledgments iii

Table of Contents iv

List of Figures vi

List of Tables vii

Notation viii

Abstract x

Chapter 1 1

Chapter 2 5

2.1 Introduction 5
2.2 Reactive Tabu Search for the Vehicle Routing Problem with Time Windows 8

2.2.1 Objective Function 10
2.2.2 Penalized Objective Function 11
2.2.3 Adjusting Reactive Penalty Coefficients 12
2.2.4 Initial Solution 13
2.2.5 Neighborhood Structure 14
2.2.6 Tabu Moves 15
2.2.7 Adjusting Tabu Length 16
2.2.8 Aspiration and Escape Functions 18
2.2.9 Move Evaluation and Selection 18
2.2.10 Heuristic Description 18
2.2.11 Computational Complexity 19

2.3 Reactive Tabu Search for Dynamic Unmanned Aerial Vehicle Routing 20
2.3.1 Operational Parameters 21
2.3.2 Geographic Coordinates 21
2.3.3 Wind Effects on Ground Speed 22
2.3.4 Numerical Formatting 23
2.3.5 Objective Function Modifications 24
2.3.6 Dynamic Mission Requirements 25
2.3.7 Optimizing Use of Altitude-Based Wind Tiers 25
2.3.8 Random Service Times 27
2.3.9 Emerging Targets 27

iv

Page

2.3.10 Locked and Forbidden Routes 28
2.4 Computational Results 29

2.4.1 General Results 29
2.4.2 UAV Results • 36

2.5 Conclusions 37

Chapter 3 43

3.1 Heuristic Modifications 43
3.2 UAV Related Modifications 44
3.3 Java Code Modifications 44

Bibliography 46

Appendix A. Extended Problem Formulation 49

Al Traveling Salesman Problem (TSP) 49
A.2 Multiple Traveling Salesman Problem (MTSP) 51
A3 Vehicle Routing Problem (VRP) 53
A.4 Multiple Depot Vehicle Routing Problem (MDVRP) 55

Appendix B. Tabu Search vs. Other Heuristics—TSP Example 57

Appendix C. Javadoc Listing 58

Appendix D. Additional References 116

Vita 118

List of Figures

Figure Page

1. Disjunctive Graph Notation 9

2. Initial Tour Sequence 10

3. Adjacent 3-Opt Swap Move 14

4. Redundant Tours 17

5. Distance and Bearing Geometry (Spherical Triangle) 22

6. Headwind and Tailwind Ground Speed Adjustment 23

7. Typical Winds Aloft Profile 26

8. Forbidden Route Example 29

9. Bosnia Scenario Target Locations 39

10. Bosnia Optimized Tour Route 41

11. Temporal Route Plot 42

VI

List of Tables

Table Page

1. Solomon mTSPTW Computational Results (25 Customers) 30

2. Solomon mTSPTW Computational Results (50 Customers) 31

3. Solomon mTSPTW Computational Results (100 Customers) 32

4. Solomon VRPTW Computational Results (25 Customers) 33

5. Solomon VRPTW Computational Results (50 Customers) 34

6. Solomon VRPTW Computational Results (100 Customers) 35

7. Wind Data 36

8. Bosnia Data Set 38

9. Bosnia Tour Sequence 40

vn

Notation

The following symbols appear in the main body of the paper and are defined as listed.
For the sake of clarity, symbols appearing only in the appendices are defined when
introduced.

at = arrival time at node i
A = arc set
A = line segment, wind adjustment triangle
AS = airspeed
B = line segment, wind adjustment triangle
dj = cost (travel time) from node /toy
C = line segment, wind adjustment triangle
C, = excess vehicle capacity
d = insertion move depth
di = departure time from node i
dij = great circle distance between locations i and 7
D = maximum tour-length duration
Dj = excess route duration
d = earliest begin service time of node i
G = graph set
GS = ground speed
H = intermediate heading angle
hijk = travel altitude fc between locations /and j
i = insertion move position
k = altitude band
k = iteration
£. = latest begin service time of node i

L = latitude
LD = load overage violations
m = number of vehicles
n = number of customers
qt = non-negative customer demand (quantity) of node i
Q = vehicle capacity
Si = customer service time of node i
Smax(i) = maximum stochastic service time for location i
Smin(i) = minimum stochastic service time for location i
Si = stochastic customer service time for location i
t = arbitrary time within time window
tij = travel time from node i to 7
tLD = number of load infeasible solutions in the previous ten iterations
tjw = number of time window infeasible solutions in the previous ten iterations
TW = time window violations

vin

thv(t) = tour hashing value
v0 = initial depot node (TSP, VRP)
v, = additional nodes (TSP, VRP)
V = vertex set
w, = wait time to commence at node i
WS = wind speed
xy = indicator variable denoting arc from node i toj is included in the tour
Z (t) = feasible objective function

Z{t) = penalized objective function

Z'f(t) = feasible UAV objective function

Z\t) = penalized UAV objective function

0ij = bearing from location / toj
€>ws = wind bearing
*Py = random weight for arc i, j
5 = course correction angle
X = longitude
6 = tabu list length
p = generic penalty scaling factor
PLD = load capacity penalty scaling factor
pm = time window penalty scaling factor
T = tour position

IX

Abstract

In this paper we consider the dynamic routing of unmanned aerial vehicles

(UAVs) currently in operational use with the US Air Force. Dynamic vehicle routing

problems (VRP) have always been challenging, and the airborne version of the VRP adds

dimensions and difficulties not present in typical ground-based applications. Previous

UAV routing work has focused on primarily on static, pre-planned situations; however,

scheduling military operations, which are often ad-hoc, drives the need for a dynamic

route solver that can respond to rapidly evolving problem constraints. With these

considerations in mind, we examine the use of a Java-encoded metaheuristic to solve

these dynamic routing problems, explore its operation with several general problem

classes, and look at the advantages it provides in sample UAV routing problems. The

end routine provides routing information for a UAV virtual battlespace simulation and

allows dynamic routing of operational missions.

Keywords: Air Force Research, Operations Research, Optimization, Combinatorial

Analysis, Algorithms, Remotely Piloted Vehicles, Surveillance Drones, Crosswinds,

Ground Speed (Tabu Search, Vehicle Routing Problem, Java, Heuristics, Traveling

Salesman Problem).

DYNAMIC UNMANNED AERIAL VEHICLE (UAV) ROUTING WITH A

JAVA-ENCODED REACTIVE TABU SEARCH METAHEURISTIC

Chapter 1

The research documented in this thesis was sponsored by the Unmanned Aerial

Vehicle (UAV) Battlelab. The UAV Battlelab is one of six battlelabs tasked with rapidly

advancing warfighting concepts that enhance Air Force core competencies (Bailey 1998).

The UAV Battlelab seeks innovative ideas and concepts with a military utility and

attempts to quickly study and demonstrate those with promise. This evaluation is

accomplished within the constraints of a limited budget and uses existing technologies

whenever possible.

Improvement ideas, or initiatives, fall into one of two classes, Mitchell Class and

Kenney Class. Mitchell Class initiatives are revolutionary in their impact and are

typically costly. Kenney Class initiatives are usually straightforward and less costly

(Bailey 1998). The research detailed in this paper falls under the auspices of a Kenney

Class initiative, specifically one investigating potential UAV use for an active

Suppression of Enemy Air Defense (SEAD) mission. The use of modeling and

simulation resources has been identified as a crucial part of evaluating this new mission

concept.

To aid in the modeling and simulation of the SEAD mission, the reactive tabu

search heuristic route solver interfaces with a virtual UAV battlespace simulation created

by Walston (1999). Her virtual battlespace simulates the US Air Force RQ-1A Predator

in a SEAD mission and allows evaluation of tactics and aircraft design parameters.

A heuristic with the power to solve routing problems for simulation has the

benefit of being able to solve real-world routing problems on-the-fly. Operational

interface to the solver is available through a graphical user interface (GUI) (Flood 1999).

The GUI provides air vehicle operators (AVOs), who are US Air Force pilots, the ability

to dynamically update vehicle routes to reflect real-time changes in operational missions.

This routing tool is offered as a proof of concept for possible implementation in their

Ground Control Station (GCS) software.

Our primary objective was to give the Battlelab a robust and powerful routing

black-box capable of dynamically supporting real-time operations and interfacing with

the battlespace simulation. Additionally, we sought to provide a generic, portable, and

expandable heuristic capable of solving this extremely difficult type of problem class, as

well as others that are even more difficult. We have succeeded with a Reactive Tabu

Search Heuristic implemented in the Java programming language.

The reactive tabu search is crucial to the success of both of these tools—tools that

will provide the UAV community with a new modeling and simulation capability and

provide the pilots with a new routing solver to aid flight mission planning. Both of these,

in the long run, save money and enhance combat effectiveness.

This thesis research involved creating a Java implementation of a reactive tabu

search (Battiti and Tecchiolli 1994, Carlton 1995, Ryan 1998) capable of solving

single/multiple traveling salesman problems with and without time windows (TSP,

MTSP,TSPTW, MTSPTW), as well as capacitated vehicle routing problems with and

without time windows (VRP, VRPTW). The RTS solver adds capacity constraints to

Ryan's work, and extends Carlton's work with a reactive penalty scheme. Work on this

RTS was done jointly with Ryer (1999) and results are representative of our combined

efforts. Consequently, some items appear concurrently in both papers.

This implementation supports both classical problems and formats and UAV

problems and formats. Changes required for the UAV problem reflect unique aspects of

the operational mission, and include items such as a reformulated objective function,

alternate coordinate and numerical formatting, and random customer service times. The

introduction of altitude-based wind tiers, when selecting UAV routes, capitalizes on the

altitude-dependent, highly asymmetric nature of travel times in an airborne environment.

The Java implementation is an object-oriented structure that is both machine

portable and readily modifiable to support new problem instances. The internal data

structure and methodology work with the GUI to support operational requirements such

as route locking and dynamic rescheduling in support of priority targets.

This thesis is organized such that Chapter 2 is a stand-alone article on the research

suitable for submission to an academic journal. Chapter 3 provides ideas that represent

natural and worthwhile extensions to the work accomplished. The appendices provide in-

depth information on various aspects of the research and other supplementary material.

Appendix A provides detailed formulation for several routing class problems.

Appendix B shows the performance of our reactive tabu search compared to other lesser

heuristics on a sample traveling salesman problem. Appendix C gives documentation

that accompanies our Java code in the JavaDoc format. Appendix D provides additional

references that were used in the course of the research, but are not cited or quoted in the

main document.

Chapter 2

2.1 Introduction

Unmanned Aerial Vehicle (UAV) routing is a complex problem, and earlier work

on the subject examined essentially predefined static scenarios. A tabu search coupled

with a Monte Carlo Simulation was used to find the minimum number of vehicles

required based on stochastic survival probabilities (Sisson 1997). Stochastic simulations

involved selecting the best predefined route based on expected values of service, wind,

and survival variables (Ryan 1998). This produced a robust tour which could then be

used to mission plan a given set of targets with unknown threat and wind conditions at

the time of mission execution. This approach is wholly appropriate for an autonomous

UAV which is preprogrammed to execute a planned mission. While this gives a good

starting point for a route schedule, it does not incorporate the latest information—

information that can rapidly change.

The continuously evolving mission is a primary concern, especially to the

operators of a long-duration, unmanned aerial vehicle such as the US Air Force's RQ-1A

Predator. An ability to dynamically adapt to the latest target update is fundamental to

successful military operations. Therefore, we seek to take maximum advantage of

current information (winds, target locations, threats, priorities) to dynamically generate

and update routes for real-time use. This requires a method fast enough to be

operationally effective, robust enough to handle a wide scope of problems, and reliable

enough to provide optimal (or near optimal) solutions.

Most routing problems are NP-hard combinatorial problems for which no

polynomially bounded algorithm has been found (Bodin et al. 1983). Convergent

algorithms can rarely solve large problems consisting of more than 50 customers and

often require relatively few side constraints (Gendreau et al. 1997). Unfortunately, real-

world problems, such as UAV routing, possess many side constraints such as route and

vehicle capacities, route length restrictions, and time windows in a sizeable network.

Additionally, this network may be comprised of multiple depots and heterogeneous

vehicles. Finding optimal solutions to these types of problems by using techniques such

as branch and bound or dynamic programming is currently not practical.

Several heuristic approaches have been used in an attempt to overcome these

problems. Greedy algorithms, which prove to be very useful in simpler problems, fail to

achieve the desired results with respect to solution quality. Simulated annealing (SA)

displays large variances in computational time and solution quality due to the random

nature of its search strategy (Osman 1993). Genetic algorithms (GAs), which are

designed to solve numerical optimization problems rather than combinatorial

optimization problems, are difficult to apply to vehicle routing problems (VRPs) that

require capacity, distance, and time window constraints (Gendreau et al. 1997).

Fortunately, tabu search (TS) (Glover 1989) provides excellent results on these types of

problems. The tabu search heuristic uses adaptive memory structures as it searches the

solution space. Moves from one solution to another are made in a forced and orderly

manner, and this forced move methodology allows the tabu search to escape the local

extreme points. At each iteration, the tabu search will select a solution from the

neighborhood provided the new candidate solution is not on the tabu list. The tabu list is

a data structure which keeps track of past solutions visited so that new solutions must be

examined. Since the search must pick a new solution at each iteration, the items on the

tabu list will be tabu, or off-limits, and the heuristic will pick the best non-tabu move,

which may actually be a worse solution. This seems somewhat counter-intuitive, but the

search will continue on to find unexplored areas which potentially may yield better

overall results. A special instance called aspiration allows the tabu status of a move to be

overruled if certain conditions are met. The tabu status will be overridden and the

solution accepted if it is deemed good enough based on certain attractiveness thresholds.

The length of time a solution stays on the tabu list is determined by the tabu list length.

Based on the length of the tabu list, the behavior of the search can be significantly

altered. If the list is shortened, intensification occurs and the local area will be searched

more thoroughly as the search gravitates towards the local optimum. If the list is

lengthened, diversification occurs and the search will be forced leave its current area to

explore new areas further away in the solution space (Glover 1997).

The literature shows TS is a robust approach to solving many variations of the

VRP and dominates current studies of routing problems (Garcia et al. 1994, Osman 1993,

Rochat and Semet 1994, Carlton 1995, Xu and Kelly 1996, Chiang and Russell 1997,

Gendreau et al. 1997, Barbarosoglu and Ozgur 1999). Even certain vehicle routing

methods, such as the sweep method and petal heuristic, are not as powerful as tabu search

algorithms (Renaud et al. 1996b).

This project explores the application of the reactive tabu search (RTS)

metaheuristic to routing problems, specifically the vehicle routing problem with time

windows (VRPTW). Our RTS follows the basic TS scheme, but differs in that it actively

adjusts the tabu length based on the quality of the search, as determined by the number of

iterations before a solution is revisited. In execution this project implements the object-

oriented (OO) Java programming language for two reasons. First, the 00 design of

software allows us to reuse and modify existing code and libraries which reduces the

development time of new software routines to extend problems (Eckel 1998). Second,

Java programs offer a cross-platform compatibility which enhances portability. Our Java

heuristic implementation follows, improves, and extends a MODSIM implementation

(Ryan 1998) based on an RTS developed by Battiti and Tecchiolli (1994) and

implemented by Carlton (1995).

In this paper, first we examine a reactive tabu search heuristic suitable for solving

traveling salesman and vehicle routing problems and provide our results from a Java

implementation of this solver. We look at enhancements to the RTS, the verification and

validation results, and explore how this tabu search successfully solves tough problems.

We review past work and general formulation of the UAV routing problem. We look at

our modifications to previous efforts and show how the RTS enables us to solve this

problem in particular. Finally, we suggest areas for future exploration.

2.2 Reactive Tabu Search for the Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is defined as follows:

Let G = (V, A) be a graph where V = {v0, vx,..., vn} is the vertex set and

A = {(vi,Vj): v(-,Vj GV, i* j} is the arc set. The depot vertex vo, has m identical

vehicles, each with a maximum load capacity Q and a maximum route duration D. The

remaining vertices v, e V represent customers to be serviced, each with a non-negative

demand qif a service time s„ and a service time window comprised of a no-earlier-than

time et and a no-later-than time £i. The no-earlier-than time window constraint is

considered soft, i.e., an arrival time a, before the early time results in a wait time wt until

e, to commence service. Each edge (v,-, v,-) has an associated non-negative cost cy,

interpreted as travel time % between locations i and j.

The objective of the vehicle routing problem with time windows (VRPTW) is to

determine a set of m vehicle routes starting and ending at the depot, such that each

customer is visited exactly once within its time window, the total demand of any vehicle

route does not exceed Q, the duration of any vehicle route does not exceed D, and the

total cost of all routes is minimized. When only one vehicle is available and Q, D, eh and

l.t are non-binding constraints, the problem reduces to a traveling salesman problem

(Renaud et al. 1996a).

A tour is defined by the order in which the n customers are served by the m

vehicles. In our heuristic, we represent the problem as an ordered list of the sequence of

customers and vehicles, or disjunctive graph, as shown in Figure 1.

T(d):

WS. Vehicle Nodes

(T) Cu stomer Nodes

Figure 1. Disjunctive Graph Notation

The first and last positions (0 and n + m) in this sequence represent the initial

depot/vehicle and an additional terminal depot required to close the graph. These two

nodes are fixed and will not move during the search. Initially, the customers occupy

positions between 1 and n and the additional vehicles occupy the remaining positions

between n + 1 and n + m - 1 as shown in Figure 2. During the search, customers and

vehicles will be interspersed, and unused vehicles will occupy positions between the last

serviced customer and the final depot.

T(d) =

0 1 2 n R + 1 n + m - l i + m

0 HJM5H --(■)-
n + 1 ► ... ►

niü —»Bill

m Vehicle Nodes

(7) Customer Nodes

Figure 2. Initial Tour Sequence

2.2.1 Objective Function.

For the generic VRPTW, we seek to minimize travel costs ctj along the selected

arcs identified by xy = 1. This is given by

minimize Zf (t) = ^T ^T c^Xy
j i

Where X = (xy)e S, Xy<= {0,l} V i, j

(1)

Full enumeration of all constraints is available in Appendix A.

10

2.2.2 Penalized Objective Function.

A major advantage of our method is that it effectively explores the solution space

by considering both feasible and infeasible solutions. First, instead of being restricted

only to feasible regions, our RTS can traverse regions of infeasibility to include starting

with an infeasible initial solution. Second, the infeasible solutions generated may be used

in real world applications with flexible constraints. For instance, an infeasible solution

that produces superb overall results may become feasible with the relaxation of a

constraint controlled by the decision-maker. Such a case occurred with a delivery

problem solved by Rochat and Semet (1994). Since very few real-world constraints are

absolutely hard, these infeasible solutions may represent some difficult route selection

choices that managers may face when trying to balance competing criteria.

A solution is infeasible if it violates a time window, load capacity, or duration

constraint. Constraint violations include missed time windows TW and excess vehicle

load capacity LD defined as

TW =X[max(0,fl/ -^)]+X[max(0,a,. -£>,)]
i i

and

LD = X[max(0,<7,.-ö,.)]

respectively. Each constraint violation is scaled by a corresponding penalty factor, pm

and pLD, giving the penalized objective function as

minimize Z(t) = Zf (t) + pLDLD + pmTW (2)

11

where Zft) is the original objective function given by (1). If the solution is feasible,

then Zft) and Z{t) are equivalent. Otherwise, Z(t) will include non-zero penalty terms.

2.2.3 Adjusting Reactive Penalty Coefficients.

The penalty factors should be large enough to separate the infeasible and feasible

regions of the solution space so that infeasible solutions do not dominate feasible

solutions. The penalty factors should also be small enough to allow consideration of

infeasible solutions. Appropriate penalty values can be very difficult to calculate

(Petridis et al. 1998), so our implementation allows for self-adjusting penalty values in

addition to constant user-set penalty values.

When self-adjusting, the value of the penalty coefficients pLD and p^ are

independently adjusted every five iterations as proposed by Gendreau et al. (1996) using

the relationship

'TW -1

PTW ~ PTW •25

tw -1

PLD = PLD ■2b

where tm is the number of time window infeasible solutions among the last ten solutions

and tLD is the number of capacity infeasible solutions among the last ten solutions. If all

ten previous solutions are feasible, the current p is multiplied by l/2. If all ten previous

solutions are infeasible, the current p is multiplied by 2. Intermediate numbers of

infeasible solutions yield multiplicative factors between l/2 and 2. The penalty values are

arbitrarily limited to the closed interval [0.1, 10200], a range easily represented by Java.

12

This prevents the penalties from being rounded by Java to unadjustable zero or infinity

values. In the reactive penalty scheme, we arbitrarily set both penalty values initially to

1000.

The reactive penalties provide a measure of trajectory control into and out of

feasible regions based on the collective feasibility of the previous solutions. When many

successive solutions are feasible, the lowered penalties do not strongly discourage

movement to an infeasible solution. Successive infeasible solutions drive the penalties

higher, putting increasingly greater emphasis on finding a feasible solution.

2.2.4 Initial Solution.

An initial solution, which may or may not be feasible, is arbitrarily constructed.

We employ three options for arranging this initial solution—the first is a listed ordering,

the second is based on the time window midpoint, and the third is based on a randomized

ordering. All three methods arbitrarily construct a solution by assigning all customers to

one vehicle.

The list ordered tour method (LOT) simply assigns customers to the vehicle in the

order that they are listed in the data set. The ordered starting tour (OST) method

generates a starting solution by sorting the customers based upon increasing time window

midpoint values while enforcing the time window feasibility conditions. The time

window midpoint for the customer i is defined as halfway between ei and £i.

The random starting tour (RST) method randomly reorders the sequential starting

list of customers to provide a different starting point. Since the tabu search is a

neighborhood search, the initial starting solution will influence the progression of the

13

search. Our experimentation suggests that the reactive tabu search is robust and

relatively insensitive to the initial tour.

2.2.5 Neighborhood Structure.

Our solution neighborhood is the set of tours immediately reachable from the

current solution with a single 3-opt move. The 3-opt move removes three edges and

replaces them with three new edges in a way that moves one vertex to another location in

the tour sequence. From the disjunctive graph formulation, the solution neighborhood is

examined with incremental swap moves and updated with an insertion move. A swap

move exchanges the position of two adjacent nodes with a 3-opt move as shown in Figure

3. An insertion move relocates a specific customer at location i forwards or backwards in

the tour by a number of steps called the insertion depth d. In our implementation, an

insertion is executed as a series of sequential swap moves.

Initial Sequence before Swap

<iK
O-0

D

Updated Sequence after Swap

.0
Ö" &

X)

.:»,.:..► Arcs affected by the swap

(j Nodes affected by the swap

Figure 3. Adjacent 3-Opt Swap Move

14

This problem types yields a staggering (n + m - 1)! possible solution

permutations—a relatively simple 25 customer, 5 vehicle problem has 8.842 x 10

possible solutions. To reduce the neighborhood size, moves which result in a redundant

tour are prohibited. Additionally, strong time window feasibility is enforced (Carlton

1995).

Strong time window infeasible states occur between nodes i and; whenever a

vehicle leaving node i at departure time d{ can never arrive at node; within the required

time window. Specifically, node j is strong time window infeasible with respect to node i

if di,+1.. > £ ■ V di = ai + st, at E [et ,£t] . Weak time window infeasible states occur

when only some departure times preclude a timely arrival at the following node, i.e.,

dt + cr < £ ■ Vdi = at + st, at<t,t^ [et,£t) . Unlike strong time window infeasible

tours, weak time window infeasible tours are evaluated in the search since insertion

moves can ultimately reduce the amount of infeasibility in the overall tour (Carlton

1995). Past vehicle routing problem research indicates that feasible solutions may be

isolated or disjoint from each other in the solution space, so in order to effectively search

the solution space, the method must investigate and perhaps accept infeasible solutions.

This search of the infeasible region is facilitated by our use of penalty factors.

2.2.6' Tabu Moves.

Tabu search uses a memory structure to determine if a particular tour has already

been visited by examining its attributes. The examination must efficiently and reliably

store and identify solution attributes previously altered during the search. We employ an

15

(n + 1) x (n + 1) dimension Tabulist matrix with rows corresponding to customer

identification numbers and columns corresponding to the index, or position, of the

customer in the solution tour. The data elements in this array store the iteration number k

for the move that placed the customer into this position plus the tabu length 6. This value

will be compared to the current iteration to determine if a move of this attribute is tabu.

2.2.7 Adjusting Tabu Length.

To maintain search quality, we reactively adjust the tabu length based on the

number of iterations occurring between cycles. Cycles occur when the search revisits a

solution; a high quality search should infrequently revisit past solutions. Given the

combinatorial nature of the problem, it is possible to select a seemingly different tour that

is actually a redundant tour—one that appears new, but in fact is a revisit of a previous

equivalent tour. Figure 4 illustrates two different tours which are actually redundant

tours.

Redundant tours are identified with a two-attribute hashing scheme. The first

hashing attribute, the hashing function f{t), is assigned the objective function value Z{t).

Woodruff and Zemel (1993) propose a method that we use to compute the second

hashing attribute, the tour hashing value thv{i). We take the tour vector and calculate an

integer based on random integer values, ^(T,), where T* is the index of the customer

assigned to tour position i, such that

thv(T)=^(T,y^(TM) .
i=0

16

This tour hashing value attempts to minimize the occurrence of a collision, or the

incorrect identification of two tours as being identical or redundant when they are

actually distinct.

T(l)

T(2).

~o~|—{T)—{T)—£T]—{7)—<7)—{7]—<7) - 8

T]—{7)—{7)—£B^ —*®—" 7 —*©—*®—" 8

Figure 4. Redundant Tours

We also use other attributes to identify a solution; these are tour cost, travel time,

time window penalty, and total penalty. These integer values are concatenated into a

uniquely identifiable Java string object and stored with Java Hashtable class functions.

This unique string value allows us to efficiently identify past solutions, as well as access

the hash record containing solution attributes stored in their original form.

When the search revisits a solution within the designated number of iterations, or

cycle length, the tabu length is increased by a scaling factor. This tabu length increase

diversifies the search. If the search is not revisiting solutions, tabu length is decreased by

a scaling factor. When a solution is revisited within the maximum cycle length, the

algorithm calculates a moving average of cycle lengths, or the average number of

iterations between a revisit. If the tabu length has remained unchanged for a number of

iterations greater than or equal to this moving average, then the current tabu length is

decreased by the scaling factor, thus intensifying the search. We set the initial tabu

length value 6 to the smaller of either 30 or m + n - 1.

17

2.2.8 Aspiration and Escape Functions.

Aspiration allows for overriding the tabu status of a move if the proposed tour

solution is better than any previous solution. If all moves are tabu and no proposed

solution meets aspiration criteria, the search escapes to the neighbor tour with smallest

move value. This escape move is accomplished regardless of tabu status and results in a

tabu length decrease.

2.2.9 Move Evaluation and Selection.

The RTS systematically explores the solution space using a series of swap moves

and chooses the allowable adjacent solution with the smallest move value. The move

value is the difference between the incumbent's objective function value and the

candidate's objective function value given as the cost/travel savings resulting directly

from the 3-opt move and the resultant changes occurring in the rest of the tour.

2.2.10 Heuristic Description.

Crucial to the success of the solver is the time matrix which contains the travel

times Uj between every node combination i, j. The time matrix is built in a three-step

process. First, cartesian distances between locations are computed. Second, these

distances are converted to times based on problem parameters. Third, the service time at

node i is added to the time. As such, % values then represent the amount of time between

arrival at node i and the subsequent arrival at node j. We use these values as our costs,

i.e., Cy = Uj. Actual en route travel time can be calculated by subtracting service time st

from Uj.

18

The reactive tabu search executes the following steps.

Step 1 (Initialization) Initialize data structures, vectors, and parameters.

Step 2 (Problem Input) Read data and assign node information. Calculate appropriate
time matrix.

Step 3 (Route Initialization) Construct initial tour, calculate initial tour schedule, and
compute associated tour cost and hashing value. Store values. Assign initial tour
as incumbent tour.

Step 4 (Cycle Check) Check hashing structure for the incumbent tour. If found, update
the iteration when found, increase the tabu length if applicable. If not found, add
to the hashing structure, decrease the tabu length, if applicable. Increment current
iteration number.

Step 5 (Check Later Insertions) Accomplish swap moves to evaluate all forwards
insertions. Store position i and depth d of best move value, aspiration, and escape
information.

Step 6 (Check Earlier Insertions) Accomplish swap move to evaluate all backwards
insertions. Store i, d of best move value, aspiration, and escape information.

Step 7 (Execute Move) Move to a non-tabu neighbor according to appropriate decision
criteria. If all moves are tabu, use the escape move and reduce the tabu length.
Perform insertion, update schedule, assign neighbor tour as new incumbent tour,
compute hashing value, and track best tour information. If current iteration
number is less than the maximum iteration number, return to Step 4.

Step 8 (Output results) Terminate heuristic search and output results.

2.2.11 Computational Complexity.

The neighborhood size considered at each step is 0(nd), and the computation of

the move value for each neighbor is 0(ri). If the depth of the insertion moves is restricted

to 1, then the algorithm achieves a minimum computational complexity of 0(n2). The

worst case complexity is 0(n2d) where d is the depth of the allowable insertion moves.

When the insertion depth is expanded to n the computational complexity expands with it

to a maximum 0(n3). However, empirical testing shows that considerably better times

19

than 0(n3) can be achieved due to the strong time window infeasibility restriction

discussed earlier (Carlton 1995).

2.3 Reactive Tabu Search for Dynamic Unmanned Aerial Vehicle Routing

The US Air Force uses the Predator UAV to perform a reconnaissance and

surveillance mission. The Predator is remotely flown by Air Vehicle Operators, who are

Air Force pilots, located in a Ground Control Station. Co-located Payload Specialists

remotely control the electro-optical camera, infrared scanner, and synthetic aperture radar

to observe targets of interest as specified by higher command elements. The imagery is

returned real-time via satellite link to intelligence specialists and regional commanders

(McKenna 1998). The Predator has been used successfully to monitor buildings, military

forces, and battle activities in Bosnia pursuant to United Nations and NATO missions.

The Predator's long airborne endurance of nearly 40 hours and its ground based control

system (with ready access to computers) makes it an ideal candidate for efficient

computerized routing strategies.

We seek to enhance the capabilities of existing mission software. Current

software will automatically generate deterministic items such as terrain avoidance

profiles, ground station to UAV line of site availibility, route times between defined way

points, fuel consumption, heading and turn information, etc., but it does not and will not

optimize routes. This combinatorial problem is a task left to the operator. We provide

our routing tool to fill the gap that exists in making complicated routing decisions.

20

Since this is a real-world operational problem, several real-world operational

factors influence our implementation approach.

2.3.1 Operational Parameters.

Operational employment of the UAV drives several changes to how the problem

data is specified and solved. These changes range from relatively superficial ones in how

the coordinates and times are represented, to moderate changes in how the parameters are

calculated, to significant changes in how the objective function is formulated to reflect

the nature of the problem.

2.3.2 Geographic Coordinates.

Coordinates are expressed in a geocentric format instead of a Cartesian format.

We calculate the distance and bearing between coordinate points as shown in AFR 51-40,

Air Navigation (Departments of the Air Force and Navy 1983). Given the departure

latitude L\ and longitude X\ and the destination latitude L2 and longitude A,2, the great

circle distance d in nautical miles between the two coordinate points can be found using

the following formulation

d = 60 • cos-1 [sin L^ • sin L2 + cos L^ ■ cos L2 • cos^ - \)J .

Using this distance, an intermediate heading angle H in degrees is determined as

i
sin Lj - sin L[• cos

H =cos

(d_\

60

sin
(d\

v60,
•COSlj

Based on the geometry of the coordinates, this intermediate heading angle is adjusted to

21

obtain the initial true heading ©*,, measured in degrees from true north, i.e.,

\H, sin(A2-A1)<0

"v 1360° -//, sin(A2-A1)>0

This distance and bearing geometry is shown in Figure 5.

(Lv \)

Figure 5. Distance and Bearing Geometry (Spherical Triangle)

2.3.3 Wind Effects on Ground Speed.

When computing transit times between locations, we must account for the effect

of winds aloft. Given a wind speed WS from a bearing of QWs measured in degrees from

true north, one can calculate the effective ground speed GS along the true course 0y from

the first location to the second. The difference between Qtj and ®Ws is represented by 8.

Figure 6 illustrates this geometry. When I 8 I < 90, A is negative and subtracts from the

airspeed as a headwind component. When 90 < I S I < 180, A is positive and adds to the

airspeed as a tailwind component. The wind correction angle from true heading is

denoted by y. This adjusted heading corrects the flight path to compensate for wind drift.

Groundspeed as influenced by wind aloft, is explicitly calculated as follows.

8=Qij-ews

22

A = WScos(180-<5)
C = WSsin(180-<5)

B = ^AS2-C2

GS = A + B = WS cos(180-<5) + ^AS2 -WS2 ■ sin2 (ISO - Ö)

The transit time between the points is then simply ttj = dtj /GS .

Headwind Effect (GS < AS)

<=\vs

Tailwind Effect (GS > AS)

.8

GS

G\vs

Figure 6. Headwind and Tailwind Ground Speed Adjustment

2.3.4 Numerical Formatting.

The latitude L and longitude X information is measured in degrees where one

degree is composed of sixty minutes and one minute is composed of sixty seconds. The

are values often listed in a degrees minutes seconds format (DD MM SS.ss); we convert

23

latitudes and longitudes into a decimal degree format for computational ease using the

formula

D.d = DD + MM/60 + SS.ss/3600 .

Locations can also be listed in a degrees minutes decimal minutes format (DD MM.mm)

where minutes are expressed as decimal values. Conversion to a decimal degree value is

defined as

D.d = DD +MM.mm/60 .

Clock time is often expressed in a military-style hours minutes (HH MM) format;

for computational ease, we express time in minutes tminutes as

tminules = 60 HH +MM .

2.3.5 Objective Function Modifications.

The UAV operating environment also mandates changes to the objective function.

The standard VRPTW objective function seeks to minimize travel costs as represented by

the distance traveled. Early arrival to a customer is allowed, and the resulting waiting

time is cost free in the objective function. This may be appropriate for a standard

terrestrial application in which the costs are associated mainly with transiting between

locations, but in UAV operations there are costs associated with keeping the aircraft

airborne. Thus, UAV waiting times represent costs that must be considered in our efforts

to minimize the objective function. We therefore modify the original and penalized

objective functions (1) and (2) to include waiting time w, at node / in addition to the

24

original transit times as

minimize Z'f (0 = X X (cu + w* \
; '

As before, the penalized objective function is gained by adding the scaled infeasibility

values to yield

minimize Z'(t) = Z'f (t)+ pLDLD + pmTW .

The search now attempts to minimize the total time aloft and proceeds as previously

presented.

2.3.6 Dynamic Mission Requirements.

The nature of UAV employment presents unique situations that our routing tool

must handle. As such, we show how our scenarios depart from traditional VRPs and

explain how we successfully implement these requirements. Unique routing situations

exist with regard to altitude-based wind tiers, random service times, emerging priority

targets, and locked route sequences. These instances are explored in the following

paragraphs.

2.3.7 Optimizing Use of Altitude-Based Wind Tiers.

Recall that in the general MTSPTW problem, travel times between fixed locations

are known, with fixed and symmetric costs (i.e., ctj = cß). This symmetry does not hold

in the UAV operating environment where winds affect travel times and can vary both in

direction and velocity as a function of altitude (depicted belowin Figure 7). We

incorporate this wind information to select the minimum travel time between nodes.

25

18,000'

10,000'

5,000 '

Figure 7. Typical Winds Aloft Profile

Specifically in any altitude band k, travel time is a function of UAV altitude hijk

and airspeed ASk; wind speed WSk and direction 0^ ; and the distance dy and bearing

0,.. between locations. We make the simplifying assumption that wind direction and

speed is constant throughout an entire altitude zone. This is reasonable since values at

any point in the region are interpolated predictions based on measurements of actual

conditions at discrete weather station locations (Parsons 1999).

Using our previous equations, we calculate times between all locations based on

the adjusted ground speed for each altitude band. This forms tiers of asymmetric wind-

influenced travel time matrices from which we select the smallest travel time from i toy

as

tsl = min
VJfc >]

dy

GS,(huk)

where GS^Qi^) the ground speed as a function of traveling in altitude band k. The

corresponding altitude is assigned as our flight altitude for that leg. Since this wind

optimization process is accomplished prior to beginning the tabu search, the heuristic will

26

accept an arbitrary number of altitude bands with no appreciable effect on computational

time or efficiency.

2.3.8 Random Service Times.

In the general TSPTW problem, customer service times are known constants. In

the UAV problem context, the target service times are random variables. The service

time represents the amount of time the aircraft spends circumnavigating the target point

to gather imagery from multiple viewpoints, and, due to the unknown nature of the target,

military necessity may dictate a longer observation than initially planned. The actual

target i service time St falls between the minimum service time smin (i) and the maximum

service time s^ii) inclusive. Service time will be the minimum service time with 0.7

probability; when the time is above the minimum, it is modeled as uniformly distributed

between the minimum and maximum. The service time is given by

s = knh(0 with °-7 probability
' [Uniform(^/n(j),5max(0) with 0.3 probability

A known service time is simply specified by setting St = smin(i)=smax(i) .

2.3.9 Emerging Targets.

Another aspect of UAV operations is the pop-up priority target. This occurs when

the UAV is retasked in flight to observe a target of utmost military urgency. Depending

on the new target location, this immediate divert may render the remainder of the route

27

obsolete. Rather than proceed with a potentially sub-optimal route, our solver offers the

ability to route-from-here.

Given that the UAV will proceed to the ad hoc target, this location becomes a new

starting point and the remaining targets are processed in a route that returns the UAV to

the depot. This route-from-here capability is achieved with smart processing of the time

matrix.

2.3.10 Locked and Forbidden Routes.

At times, UAV operations require a locked route, in which one or more targets

must be visited in a specific order. This may occur with a directed route or with certain

observational requirements such as a consecutive imaging pass for a synthetic aperture

radar image. The GUI allows these route points to be locked together and treated as an

aggregated node with a beginning location corresponding to the first point and an ending

location corresponding to the last point. The aggregated node is assigned a composite

service time that accounts for intra-node service, wait, and travel times.

The opposite of a locked route is & forbidden route which may be a result of a no-

fly zone or threat region. The forbidden area is then monitored for flight paths which

pass through it; if a path intersects a forbidden area, it is modeled as a longer route that

skirts the edge of the region as shown in Figure 8.

28

Initial Fobidden Resultant
Route Route Around

/No X / No \
/ Fiy / \ / Fiy \
/ Region/ \ / Region \

Figure 8. Forbidden Route Example

2.4 Computational Results

2.4.1 General Results.

Our initial testing and validation used the Solomon VRPTW problem test sets—

25, 50, and 100 customer scenarios with random, clustered and random clustered

distribution patterns. Our computational results are compared in Tables 1-6 (Ryer 1999)

to known optimal answers obtained by Desrochers, Desrosiers, and Solomon (1992).

Dashed regions of the chart indicate problems that could not be optimally solved by

Desrochers et al. All problems were solved in reasonable computation times by our RTS

algorithm (2500 iterations with user specified penalties) with an overall solution quality

within 1% of optimal values. Solving the harder VRPTW class problems did not require

an increase in computation times over the mTSPTW class problems.

The objective function value used in these initial tests includes travel time, missed

time window penalties, and load overage penalties. With a relatively small amount of

coding, the objective function can be expanded to include additional penalties, changed to

represent several different weighted objective functions, or combined in a hierarchical

objective function. Results are presented in Tables 1 through 6.

29

Table 1. Solomon mTSPTW Computational Results (25 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start

Set1 z,W Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST
R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST
R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0
R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2
R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST
R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST
R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0
Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0
R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LOT

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST
C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LOT
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST
C104 2436.9 3 797 8 2436.9 3 223.9 0.0 0.00% OST
C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST
C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST
C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST
C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST
C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LOT
RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST
RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2
RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST
RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1
RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0
RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% —

(Ryer 1999)

1 Maximum number of vehicles: m
2 Maximum iterations: k = 2500.
3

: 10. Time window penalty: pnv =1.0.

- 28 seconds each. Seconds on a Pentium II400 MHz system. Total runtime •
* Seconds on a Sun Sparc 1 workstation.
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

30

Table 2. Solomon mTSPTW Computational Results (50 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO
R102 1409.0 11 1939 78 1404.6 11 67.8 4.4 0.31% RSTO
R103 1282.7 9 871 36 1272.5 9 8939.1 10.2 0.80% OST
R104 1131.9 6 734 31 — — — — — RSTO
R105 1401.6 9 402 15 1399.2 9 362.6 2.4 0.17% LOT
R106 1293.0 8 2294 94 1285.2 8 386.4 7.8 0.61% RST1
R107 1211.1 7 1786 75 1211.1 7 7362.1 0.0 0.00% RSTO
R108 1117.7 6 1698 75 — — — — — RSTO
R109 1286.7 8 1452 58 — — — — — RSTO
R110 1207.8 7 1853 78 1197.0 7 4906.1 10.8 0.90% RST1
Rill 1216.6 7 1775 72 — — — — — RST2
R112 1140.5 6 1784 78 — — — — — RST2

C101 4862.4 5 119 4 4862.4 5 67.1 0.0 0.00% LOT
C102 4861.4 5 607 19 4861.4 5 330.2 0.0 0.00% LOT
C103 4855.8 5 1699 57 — — — — — OST
C104 4884.1 5 1253 43 — — — — — LOT
C105 4861.2 5 232 7 — — — — — OST
C106 4862.4 5 308 9 4862.4 5 91.3 0.0 0.00% LOT
C107 4861.2 5 382 12 — — — — — LOT
C108 4861.2 5 92 3 — — — — — LOT
C109 4860.9 5 301 9 — — — — — OST

RC101 1444.0 8 1252 38 — — RST1
RC102 1325.1 7 754 23 — — — — — RST1
RC103 1216.2 6 1589 54 — — — — — RSTO
RC104 1046.5 5 860 31 — — — — — RST2
RC105 1355.3 8 248 8 — — — — — OST
RC106 1223.2 6 1921 61 — — — — — RST2
RC107 1146.0 6 189 7 — — — — — LOT
RC108 1098.1 6 1821 65 — — — — — OST

Average 2374.7 6.66 1050 39.6 — — — — — —

(Ryer 1999)

1 Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: prw = 3.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each.
4 Seconds on a Sun Sparc 1 workstation.
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

31

Table 3. Solomon mTSPTW Computational Results (100 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set1 Z,(t) Used Iter2 Time3

Z,(f) Used Time4 Method5

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9 3.14% RST0
R102 2522.9 18 1783 322 2434.0 17 756.9 88.9 3.65% RSTO
R103 2266.8 15 1797 351 — — — — — RST2
R104 2010.6 11 1401 311 — — — — — RST2
R105 2418.0 16 560 93 •— — — — — RST1
R106 2256.9 14 1403 252 — — — — — LOT
R107 2091.6 12 1462 278 — — — — — LOT
R108 1980.3 10 2325 491 — — — — — RSTO
R109 2191.4 13 2149 398 — — — — — RST1
R110 2121.1 12 1479 291 — — — — — RST2
Rill 2082.1 12 1882 370 — — — — — RST2
R112 1986.1 11 2325 507 — — — — — RST1

C101 9827.3 10 285 45 9827.3 10 434.5 0.0 0.00% OST
C102 9820.3 10 237 42 — — — — — OST
C103 9813.7 10 256 49 — — — — — OST
C104 9809.0 10 2495 536 — — — — — RST2
C105 9821.2 10 313 50 — — — — — OST
C106 9827.3 10 455 75 9827.3 10 724.8 0.0 0.00% OST
C107 9818.9 10 292 48 — — — — — OST
C108 9818.9 10 662 115 — — — — — OST
C109 9818.6 10 1381 262 — — — — — LOT

RC101 2685.7 16 897 144 — — — OST
RC102 2534.0 15 2410 434 — — — — — OST
RC103 2352.3 13 1047 195 — — — — — RSTO
RC104 2209.1 11 1311 272 — — — — — RST2
RC105 2538.0 15 2327 412 — — — — — RST1
RC106 2457.8 14 443 74 — — — — — RSTO
RC107 2236.9 12 1822 344 — — — — — RSTO
RC108 2115.9 11 2206 451 — — — — — RST1

Average 4624.9 12.45 1365 261.48 — — — — — —

(Ryer 1999)

' Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each.
4 Seconds on a Sun Sparc 1 workstation.

OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

32

Table 4. Solomon VRPTW Computational Results (25 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start

Set1 Z,(t) Used Iter2 Time3 z,M Used Time* Method5

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST
R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST
R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0
R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2
R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST
R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST
R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0
Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RST0
R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LOT

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST
C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LOT
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST
C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST
C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST
C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST
C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST
C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST
C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LOT
RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST
RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2
RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LOT
RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1
RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1
RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LOT

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LOT

(Ryer 1999)

1 Maximum number of vehicles: m = 10. Time window penalty: p-rw = 8.0; load penalty pz.D =10.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 28 seconds each.
4 Seconds on a Sun Sparc 1 workstation.
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

33

Table 5. Solomon VRPTW Computational Results (50 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start

Set1 Zif) Used Iter2 Time3 Z,M Used Time4 Method5

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO
R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO
R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST
R104 1137.4 6 1533 69 — — — — — RST2
R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LOT
R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1
R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO
R108 1117.7 6 1698 78 — — — — — RSTO
R109 1286.7 8 1451 61 — — — — — RSTO
R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1
Rill 1216.6 7 1775 76 — — — — — RST2
R112 1135.0 6 1456 68 — — — — — RST2

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LOT
C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LOT
C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO
C104 4882.8 5 1727 79 — — — — — RSTO
C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST
C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LOT
C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LOT
C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LOT
C109 4862.4 5 643 26 — — — — — OST

RC101 1446.8 8 1613 60 — — — — OST
RC102 1331.8 7 1508 60 — — — — — RST2
RC103 1210.9 6 2194 94 — — — — — OST
RC104 1046.5 5 412 18 — — — — — LOT
RC105 1355.3 8 104 4 — — — — — OST
RC106 1223.2 6 1454 58 — — — — — RST2
RC107 1144.4 6 898 36 — — — — — RST1
RC108 1098.1 6 1361 58 — — — — — OST

Average 2375.01 6.66 1153 49.4 — — — — — —

(Ryer 1999)

1 Maximum number of vehicles: m = 15. Time window penalty: p™ = 1.0; load penalty pu> =10.0.
2 Maximum iterations k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime -100 seconds each.
4 Seconds on a Sun Sparc 1 workstation.
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

34

Table 6. Solomon VRPTW Computational Results (100 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start

Set' z,(0 Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO
R103 2265.0 15 1091 228 — — — — — RST2
R104 2039.6 12 1488 338 — — — — — OST
R105 2399.4 16 1974 378 — — — — — RSTO
R106 2268.4 14 2431 491 — — — — — LOT
R107 2129.0 13 1905 406 — — — — — RST1
R108 1956.8 10 2415 565 — — — — — RSTO
R109 2181.0 14 1587 311 — — — — — RST1
R110 2133.2 13 1548 328 — — — — — RST2
Rill 2077.3 12 2248 491 — — — — — RST2
R112 1971.6 11 1898 460 — — — — — RST2

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST
C103 9828.9 10 2500 535 — — — — — RSTO
C104 9949.6 10 2194 509 — — — — — RST2
C105 9827.3 10 378 65 — — — — — OST
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST
C109 9853.3 10 2202 463 — — — — — RSTO

RC101 2669.9 16 2110 381 — — — — — OST
RC102 2498.4 15 2136 419 — — — — — LOT
RC103 2363.6 13 1333 270 — — — — — RST1
RC104 2179.2 11 1365 308 — — — — — LOT
RC105 2557.4 15 2482 473 — — — — — OST
RC106 2432.8 13 2222 434 — — — — — RST2
RC107 2266.1 12 2024 417 — — — — — RST2
RC108 2175.1 12 2122 475 — — — — — RST1

Average 4632.3 12.62 1693 349.6 — — — — — —

(Ryer 1999)

1 Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0; load penalty PLD =10.0.
2 Maximum iterations k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each.
4 Seconds on a Sun Sparc 1 workstation.
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

35

2.4.2 UAVResults.

We analyzed a Bosnia UAV scenario provided by Bergdahl (1998). Winds for

the region of interest are given in Table 7. These winds are taken from actual US Air

Force meteorological conditions for the operating region.

Table 7. Wind Data

Altitude Altitude Bws WS AS
Tier (ft) (deg) (kts) (kts)

0 5,000 300 15 W~
1 10,000 300 37.5 70
2 18,000 310 50.0 70

Scenario details are listed in Table 8, and a map of this scenario is provided in Figure 9.

The 52 targets fall into three remote operating zones (ROZs), each with non-overlapping

time windows. Route optimization begins and ends with the Srbac, Bosnia waypoint,

since the route to and from there must follow a mandatory air corridor.

The scenario was solved in 108 seconds on a Pentium II300 MHz system using

the UAV specific module of the heuristic. With optimum use of wind tiers, the solver

returned a tour requiring only one vehicle with a mission time of 822 minutes. Without

wind tier modeling, two vehicles are required with a combined mission time of 1384

minutes. This demonstrates the improvement that can be achieved with smart selection

of travel altitudes.

The optimized tour output is listed in Table 9 (the "Alt" column designates the

altitude tier to be used enroute to the next target); this flight path is shown in Figures

36

Figure 10 and Figure 11. Figure 11 shows the same sequence as Figure 10 with a

temporal component as the added third axis and gray bars representing the time windows.

2.5 Conclusions

Our Java implementation of a reactive tabu search first described by Battiti and

Tecchiolli (1994) successfully solves single/multiple traveling salesman problems with

and without time windows (TSP, MTSP,TSPTW, MTSPTW), as well as capacitated

vehicle routing problems with and without time windows (VRP, VRPTW). On the

Solomon problem sets, our heuristic produces close to optimal solutions within

reasonable computing times. Addition of reactive penalties allows the algorithm to

perform more robustly over a wider set of problems.

Our implementation supports UAV problems and formats as well as classical

problems and formats. Changes required for the UAV problem reflect unique aspects of

the operational UAV mission and include items such as a reformulated objective

function, alternate coordinate and numerical formatting, and random customer service

times. The introduction of altitude-based wind tiers, when selecting UAV routes,

capitalizes on the altitude-dependent, highly asymmetric nature of the flight environment.

The Java implementation is an object oriented structure that is both machine

portable and readily modifiable to support new problem instances. The internal data

structure and methodology work with the GUI to support operational requirements such

as route locking and dynamic rescheduling in support of priority targets.

37

Table 8. Bosnia Data Set

Location Name Lat (DD MM SS) Lon (DD MM SS) —1 e,1
*min(0 ■SniaxCO

DepotTazarHungary N 46 24 0 E 17 54 0
CorridorSzulokHungary N 46 3 45 E 17 32 44

CorridorSrbacBosnia* N 45 24 0 E 17 30 0 940 4800 0 0
Dumdvga N 44 58 29 E 16 50 34 1015 1500 30 180
Mastye N 44 58 46 E 16 38 56 1015 1500 30 180
AAASiteGarred N 44 58 4 E 16 39 31 1015 1500 2 15
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1015 1500 2 30
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1015 1500 2 30
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1015 1500 2 30
CommSiteSardona N 44 59 2 E 16 39 56 1015 1500 2 30
CommSiteSardona N 44 59 11 E 16 40 19 1015 1500 2 30
CommSiteSardona N 44 59 15 E 16 39 20 1015 1500 2 30
SuspWpnStorage N 44 59 9 E 16 39 10 1015 1500 2 30
SuspWpnStorage N 44 54 52 E 16 34 47 1015 1500 2 30
SuspWpnStorage N 44 51 49 E 16 41 37 1015 1500 2 30
SuspWpnStorage N 45 0 7 E 16 34 47 1015 1500 2 30
SuspWpnStorage N 44 59 9 E 16 49 17 1015 1500 2 30
SuspWpnStorage N 44 57 41 E 16 39 35 1015 1500 2 30
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1015 1500 2 30
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1015 1500 2 30
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1015 1500 2 30
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1015 1500 2 30
HQSiteDromada N 45 0 7 E 16 53 49 1015 1500 30 120
WarehouseDromada N 44 53 31 E 16 54 12 1015 1500 2 60
BarracksOmanski N 44 45 34 E 17 10 34 1500 1715 5 120
BarracksOmanski N 44 48 19 E 17 12 14 1500 1715 5 120
BarracksOmanski N 44 51 2 E 17 13 24 1500 1715 5 120
TankRallyPointBolstavec N 44 50 51 E 17 14 39 1500 1715 2 30
TankRallyPointBolstavec N 44 56 17 E 17 17 41 1500 1715 2 30
StorageBunkerKrajachastane N 44 55 51 E 17 17 51 1500 1715 2 30
StorageBunkerKrajachastane N 44 56 7 E 17 18 23 1500 1715 2 30
RoadGolprtuniy N 44 28 13 E 17 1 18 1730 1830 20 40
RoadGolprtuniy N 44 27 29 E 17 1 46 1730 1830 20 40
RoadGolprtuniy N 44 27 10 E 17 2 24 1730 1830 20 40
Dumdvga N 44 58 29 E 16 50 34 1900 2300 30 180
Mastye N 44 58 46 E 16 38 56 1900 2300 30 180
AAASiteGarred N 44 58 4 E 16 39 31 1900 2300 2 15
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1900 2300 2 30
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1900 2300 2 30
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1900 2300 2 30
CommSiteSardona N 44 59 2 E 16 39 56 1900 2300 2 30
CommSiteSardona N 44 59 11 E 16 40 19 1900 2300 2 30
CommSiteSardona N 44 59 15 E 16 39 20 1900 2300 2 30
SuspWpnStorage N 44 59 9 E 16 39 10 1900 2300 2 30
SuspWpnStorage N 44 54 52 E 16 34 47 1900 2300 2 30
SuspWpnStorage N 44 51 49 E 16 41 37 1900 2300 2 30
SuspWpnStorage N 45 0 7 E 16 34 47 1900 2300 2 30
SuspWpnStorage N 44 59 9 E 16 49 17 1900 2300 2 30
SuspWpnStorage N 44 57 41 E 16 39 35 1900 2300 2 30
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1900 2300 2 30
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1900 2300 2 30
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1900 2300 2 30
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1900 2300 2 30
HQSiteDromada N 45 0 7 E 16 53 49 1900 2300 30 120
WarehouseDromada N 44 53 31 E 16 54 12 1900 2300 2 60
CorridorSrbacBosnia N 45 24 0 E 17 30 0 940 4740 0 0

DepotTazarHungary N 46 24 0 E 17 54 0
CorridorSzulokHungary N 46 3 45 E 17 32 44

(Bergdahl 1998)
1 Time listed in hours-minutes format.
2 Minutes.
* Optimization begins from Srbac Corridor waypoint

38

P=4

-4-- '^k ■ ! .5 ! '■ > •»# "r JV>-OMJ *

~% A
^äV/*L-^C

V Ok/'''
.2KKv..KÄBSÄ

V Vs. - S. "*~*x ' r o

-*—Ji V_,#-OW.J: V

5f«

i i/ **" ' ''«f^-Buffi!«

«jaaj'A-

- x._' l»

"N. A *:

S#. JO«,.' S3
«6

fv.V K^M i
-<;"* .SA?s»'i'«or-i"A;

%

3 * Depot »J- V "f I '/^^ iA;'
O Waypoint \

i yt

s A Target

I NM 5|

t?f ^ ! ^öE^ * rv J ,
4#i*

JOj ,, ,
^:::- M

mmmm
;s#*"{

■:*^,l

?»'g
Figure 9. Bosnia Scenario Target Locations

39

Table 9. Bosnia Tour Sequence

Label ID Lat* Long3 Early4 Late4 Arr4 Dep4 Serv4 Alt5

CorridorSrbacBosnia 0 45.1166 -17.5416 580 2880 580.00 580.00 0 0

HQSiteDromada 20 45.0019 -16.8969 615 900 606.25 615.00 30 0
SAMIADSiteProbSA2 16 44.9563 -16.8625 615 900 647.66 647.66 2 0

Dumdvga 1 44.9747 -16.8427 615 900 650.97 650.97 125 0
SuspWpnStorage 14 44.9858 -16.8213 615 900 778.02 778.02 2 2
SAMIADSiteProbSA2 17 44.9625 -16.8244 615 900 780.89 780.89 2 0
SAMIADSiteProbSA2 18 44.9325 -16.7311 615 900 786.88 786.88 2 0
CommSiteSardona 8 44.9863 -16.6719 615 900 792.77 792.77 2 0
CommSiteSardona 7 44.9838 -16.6655 615 900 795.05 795.05 2 0
CommSiteSardona 9 44.9875 -16.6555 615 900 797.50 797.50 6 0
SuspWpnStorage 10 44.9858 -16.6527 615 900 804.11 804.11 3 2
HvyWpnDepTharmet 6 44.983 -16.6577 615 900 807.86 807.86 2 2

HvyWpnDepTharmet 5 44.9775 -16.6613 615 900 810.05 810.05 2 2
SAMIADSiteSiteRadar 19 44.963 -16.665 615 900 812.57 812.57 2 0
SuspWpnStorage 15 44.9613 -16.6597 615 900 814.79 814.79 2 0

AAASiteGarred 3 44.9677 -16.6586 615 900 817.14 817.14 2 0
HvyWpnDepTharmet 4 44.9758 -16.6549 615 900 819.61 819.61 2 0
Mastye 2 44.9794 -16.6488 615 900 821.93 821.93 30 0
SuspWpnStorage 13 45.0019 -16.5797 615 900 855.02 855.02 19 2
SuspWpnStorage 11 44.9144 -16.5797 615 900 878.36 878.36 2 2
SuspWpnStorage 12 44.8636 -16.6936 615 900 883.24 883.24 2 1
WarehouseDromada 21 44.8919 -16.9033 615 900 891.03 891.03 2 1
TankRallyPointBolstavec 26 44.938 -17.2947 900 1035 903.71 903.71 2 2
StorageBunkerKrajachastane 28 44.9352 -17.3063 900 1035 905.98 905.98 15 0
StorageBunkerKrajachastane 27 44.9308 -17.2975 900 1035 921.88 921.88 2 0
TankRallyPointBolstavec 25 44.8475 -17.2441 900 1035 928.56 928.56 2 0
BarracksOmanski 24 44.8505 -17.2233 900 1035 931.42 931.42 15 2
BarracksOmanski 23 44.8052 -17.2038 900 1035 949.23 949.23 5 0
BarracksOmanski 22 44.7594 -17.1761 900 1035 956.77 956.77 5 2
RoadGolprtuniy 31 44.4527 -17.04 1050 1110 977.93 1050.00 20 0
RoadGolprtuniy 30 44.458 -17.0294 1050 1110 1070.52 1070.52 20 0
RoadGolprtuniy 29 44.4702 -17.0216 1050 1110 1091.27 1091.27 22 0
SuspWpnStorage 43 44.8636 -16.6936 1140 1380 1139.59 1140.00 13 0
SuspWpnStorage 42 44.9144 -16.5797 1140 1380 1159.13 1159.13 2 0
SuspWpnStorage 44 45.0019 -16.5797 1140 1380 1165.90 1165.90 2 2
Mastye 33 44.9794 -16.6488 1140 1380 1169.55 1169.55 30 0
SuspWpnStorage 41 44.9858 -16.6527 1140 1380 1199.91 1199.91 24 0
CommSiteSardona 40 44.9875 -16.6555 1140 1380 1224.17 1224.17 2 2
CommSiteSardona 39 44.9863 -16.6719 1140 1380 1226.56 1226.56 2 0
CommSiteSardona 38 44.9838 -16.6655 1140 1380 1228.84 1228.84 21 0
HvyWpnDepTharmet 37 44.983 -16.6577 1140 1380 1250.84 1250.84 2 2
HvyWpnDepTharmet 36 44.9775 -16.6613 1140 1380 1253.03 1253.03 8 0
HvyWpnDepTharmet 35 44.9758 -16.6549 1140 1380 1262.16 1262.16 2 2
AAASiteGarred 34 44.9677 -16.6586 1140 1380 1264.44 1264.44 2 2
SuspWpnStorage 46 44.9613 -16.6597 1140 1380 1266.67 1266.67 2 1
SAMIADSiteSiteRadar 50 44.963 -16.665 1140 1380 1268.84 1268.84 2 2
SAMIADSiteProbSA2 49 44.9325 -16.7311 1140 1380 1272.52 1272.52 2 2
WarehouseDromada 52 44.8919 -16.9033 1140 1380 1278.57 1278.57 2 0
SAMIADSiteProbSA2 47 44.9563 -16.8625 1140 1380 1284.55 1284.55 2 0
SAMIADSiteProbSA2 48 44.9625 -16.8244 1140 1380 1288.13 1288.13 28 0
SuspWpnStorage 45 44.9858 -16.8213 1140 1380 1318.38 1318.38 2 2
Dumdvga 32 44.9747 -16.8427 1140 1380 1320.94 1320.94 30 1
HQSiteDromada 51 45.0019 -16.8969 1140 1380 1353.14 1353.14 30 0
CorridorSrbacB osnia 45.1166 -17.5416 580 2880 1401.57 — 0 —
1 Parameters set as follows: maximum number of vehicles: m = 5; maximum iterations: k = 2500; reactive penalty scheme;

LOT starting tour. Total runtime 108 seconds on a Pentium II 300 MHz system.
2 By convention North latitudes are positive and South latitudes are negative.
3 By convention, West longitudes are positive and East longitudes are negative.

Time in minutes.
5 Flight altitude to next point: "0" = 5,000 ft, "1" = 10,000 ft, "2" = 18,000 ft.

40

 ' "!...?>.... .. i L V-s,>.

ß

'/'-'"

5F t^!9S'

'foö'SJa?:- .!•'::'". MVÖÄCA

\ ,VJ,V IÄ- —*S?

.„„ „ ... , - Jt V" *

I'KfjA.f*«^

\V _»* 6- /

y Ox ' **• .' / VS.) »«/ft. j* JK

A Target

1 NM 5

f»j-!lt)i^«>i.»,•5T,. u t£'mteTt

1°l ■■''.■ ^.;
■''■■•-T-- '

Figure 10. Bosnia Optimized Tour Route

41

45.2

45

44.8

44.6

44.4

Latititude

-►Longitude

16.6 16.8 17.2 17.4

Figure 11. Temporal Route Plot

42

Chapter 3

We present several ideas that represent natural and worthwhile extensions to the

work accomplished.

3.1 Heuristic Modifications

Modifications to the tabu search heuristic could include any of the following

ideas. Additional operators have increased solution quality for genetic algorithms

(Petridis et al. 1998); construction and implementation of additional operators may prove

useful. These operators could consider additional random or directed moves which

expand the neighborhood, such as a 4-opt, for possible improvements in the objective

function.

Restarts based on changes in the solution quality or stabilization of the objective

function could prove useful. Methods to consider include the following: maintenance of

an elite list of best solutions where a restart resumes with relaxed tabu restrictions (Xu

and Kelly 1996); intensification from previous location with stored tabu status

(Armentano and Ronconi 1999); or a multi-start backjump tracking scheme (Liaw 1999,

Norwicki and Smutnicki 1996). Other initialization methods such as a sweep

initialization or petal initialization (Renaud 1996b) could be explored.

43

3.2 UAV Related Modifications

Changes to the UAV specific aspect of the problem could include a priority

scheme hierarchy that generates route segments based on assigned target priorities. This

would involve constructing subtours that are then smartly linked together—obviously, the

parameters of one subtour will be highly dependent on the others. The rudimentary wind

modeling (discrete levels and average regional values) could be replaced with wind

values that correlate specifically to each leg. A more detailed modeling of actual UAV

transition times between altitudes, with modeled climb rates would provide a higher

fidelity mission profile. The service times distribution model, which is still rather

unknown, could be updated to reflect data gathered from recent operations.

3.3 Java Code Modifications

Although we are not strict computer programmers, work was done in an attempt

to improve the code for better heuristic performance. This includes items such as

ordering logic comparisons (so that the most likely outcome is encountered first to reduce

comparisons) and changing several methods (to decrease instantiations). These

optimization modifications reduced the run time for the 100 customer, 25 vehicle

Solomon problem sets from an average of 700 seconds to 550 seconds. While this

represents about a 25% reduction in run time, there is still tremendous room for

improvement due to excessive object copying.

With any Java non-primitive type, the statement "x = y" will cause the "x" label to

point to the "y" object, and the previous "x" object (if any) will be lost. What remains is

44

the "y" object with both an "x" label and a "y" label. In order to have a separate "x"

object that is the same as the "y" object, an explicit copy or clone function must be used

to duplicate the object (Flanagan 1997). This duplication is an expensive operation, as it

instantiates a new object and copies the member data. Analysis of the current reactive

tabu heuristic with the KL Group's JProbe™ Java profiler tool revealed that nearly 50%

of the run time is spent copying NodeType objects. Initial experimentation using an

index system as node pointers showed potential run times that are only 20% of the

current run time—100 customer, 25 vehicle Solomon sets ran in -120 seconds versus the

current -550 seconds. This speed increase results from copying and manipulating the

indices, which are Java primitive types, instead of copying and manipulating the

NodeType objects.

Some initial work was done in an attempt to reconfigure the heuristic to run using

indices, but the changes are substantial as they touch nearly every aspect of the program.

Future programming efforts should make the conversion, which will allow faster

solutions and larger problem sets.

45

Bibliography

Armenato, Vinicius A., and Debora P. Ronconi. "Tabu Search for Total Tardiness
Minimization in Flowshop Scheduling Problems," Computers & Operations
Research, 26: 219-235 (1999).

Bailey, T. "Ghost Riders—Battlelab studies roles for unmanned aerial vehicles,"
Airman, XLII(7): 32-33 (July 1998).

Barbarosoglu, G. and D. Ozgur. "A tabu search algorithm for the vehicle routing
problem," Computers & Operations Research, 26: 255-270 (1999).

Battiti, R. R., and G. Tecchiolli. "The Reactive Tabu Search," ORSA Journal on
Computing, 6: 126-140 (1994).

Bergdahl, B. Operations Officer, 11th Reconnaissance Squadron, Indian Springs AFAF
NV. Personal interview and facsimile. January 1998.

Bodin, Lawrence, Bruce Golden, A. Assad, and M. Ball. "Routing and Scheduling of
Vehicles and Crews; The State of the Art," Computers & Operations Research, 10:
(1983).

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D.
dissertation. University of Texas, Austin TX, 1995.

Chiang, W. C. and R. Russell. "A Reactive Tabu Search Metaheuristic for the Vehicle
Routing Problem with Time Windows," ORSA Journal on Computing, 9: 417
(1997).

Desrochers, M., J. Desrosiers, and M. Solomon. "A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows," Operations Research, 40: 342-354
(1992).

Departments of the Air Force and Navy. Flying Training, Air Navigation. Air Force
Regulation (AFR) 51-40. Washington: HQ USAF, 15 Mar 1983.

Eckel, Bruce. Thinking in Java—The definitive introduction to object-oriented
programming in the language of the World-Wide Web. Upper Saddle River NJ:
Prentice-Hall, 1998.

Flanagan, David. Java in a Nutshell, A Desktop Quick Reference (Second Edition).
Sebastopol CA: O'Reilly & Associates, 1997.

46

Flood, R. A Java Human Computer Interface for Displaying Maps in Support of a UAV
Decision Support Tool. MS thesis, AFIT/GCS/ENS/99M. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1999.

Garcia, B. L., J. Y. Potvin, and J. M. Rousseau. "A Parallel Implementation of the Tabu
Search Heuristic for Vehicle Routing Problems with Time Window Constraints,"
Computers & Operations Research, 21: 1025-1033 (1994).

Gendreau, M., A. Hertz, and G. Laporte. "Tabu Search Heuristic for the Vehicle Routing
Problem," Management Science, 40: 1276-1289 (October 1994).

Gendreau, M., G. Laporte, and R. Seguin. "A Tabu Search Heuristic for the Vehicle
Routing Problem with Stochastic Demands and Customers," Operations Research,
44: 469-477 (May 1996).

Gendreau, M., G. Laporte, and G. Potvin. "Vehicle Routing: Modern Heuristics," in
Local Search in Combinatorial Optimization. Eds. Aarts, E. and J. K. Lenstra.
Chichester: Wiley, 1997.

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Glover, Fred. "Tabu Search-Part I," ORSA Journal on Computing, 1: 190-206 (Summer
1989).

Liaw, C. "A Tabu Search Algorithm for the Open Shop Scheduling Problem,"
Computers & Operations Research, 26: 109-126 (1999).

McKenna, P. "Eyes of the Warrior—Prying Predator prowls unfriendly skies, peeking at
the enemy," Airman, XLII(7): 28-31 (July 1998).

Norwicki, E. and C. Smutnicki. "A Fast Taboo Search Algorithm for the Job Shop
Problem," Management Science, 42: 797-813 (1996).

Osman, I. H. "Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem," Annals of Operations Research, 41: 421-451 (1993).

Parsons, T. L. Meteorologist, US Air Force, Air Force Institute of Technology, Wright
Patterson AFB OH. Personal interview. 23 February 1999.

Petridis, V., S. Kazarlis, and A. Bakirtzis. "Varying Fitness Functions in Genetic
Algorithm Constrained Optimization: The Cutting Stock and Unit Commitment
Problems," IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, 28(5): 629-640 (October 1998).

47

Renaud, J., G. Laporte, and F. Boctor. "A Tabu Search Heuristic for the Multi-Depot
Vehicle Routing Problem," Computers & Operations Research, 23: 229-235
(1996a).

Renaud, J., F. Boctor, and G. Laporte. "An Improved Petal Heuristic for the Vehicle
Routeing [sic] Problem," Journal of the Operations Research Society, 47: 329-336
(1996b).

Rochat, Y. and F. Semet. "A Tabu Search Approach for Delivering Pet Food and Flour
in Switzerland," Journal of Operations Research Society, 45: 1233-1246 (1994).

Ryan, Joel L. Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle
Simulations. MS thesis, AFJT/GOR/ENS/98M. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, February 1998.

Ryer, David M. Implementation of the Metaheuristic Tabu Search in Route Selection for
Mobility Analysis Support System. MS thesis, AFIT/GOA/ENS/99M-07. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, March 1999.

Sisson, M. R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk and Maximum
Expected Coverage Routes. MS thesis, AFIT/GOR/ENS/97M. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
February 1997.

Xu, J. and J. Kelly. "A Network Flow-Based Tabu Search Heuristic for the Vehicle
Routing Problem," Transportation Science, 30: 379-393 (November 1996).

Walston, J. Unmanned Aerial Vehicle Engagement Level Simulation. MS thesis,
AFIT/GOR/ENS/99M-17. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1999.

Woodruff, D. and E. Zemel. "Hashing Vectors for Tabu Search," Annals of Operations
Research, Vol. 41: 123-137 (1993).

48

Appendix A. Extended Problem Formulation

This appendix examines the formulation of the traveling salesman problem (TSP),

multiple traveling salesman problem (MTSP), vehicle routing problem (VRP), and

multiple-depot vehicle routing problem (MDVRP). It is provided for generality and

thoroughness as these problem types have additional constraints which were not

mentioned previously since they are intrinsicly modeled in the tabu search heuristic. For

instance, based on the way the tabu search evaluates the neighborhood and swaps

customers, no subtour breaking constraint is provided since it is impossible for the

heuristic to construct a subtour. Notation and numbering of variables differs slightly

from that presented in Chapter 2, as the notation there is tailored to the problem context.

A.1 Traveling Salesman Problem (TSP)

The first problem class, and basis for the remaining types, is the traveling

salesman problem (TSP). Begin by defining the TSP structure and objective as follows:

Let G be our network with the set of nodes N, a set of branches A, and the associated non-

negative branch costs of C = c^. The objective of this problem is to form a tour spanning

all the nodes beginning and ending at the origin (node 1), which yields the minimum total

tour length or cost. In the most basic case, we assume that the costs are symmetric (Cy =

Cji), but the problem can be asymmetric with no loss of generality.

49

This can be represented as an assignment problem, where exactly one arc xtj starts at node

i, and exactly one arc xtj terminates at node j. Specifically, the problem is formulated as

follows:

n n

Minimize Z(t) = X X cvxu (Al. 1)
1=1 7=1

Where

[1 if arc ij is in the tour
11 [0 otherwise

Subject to:

£*, =bj=\ (; = l,2,...,n) (A1.2)
i=i

£*„ =a, = l (; = l,2,...,n) (A1.3)

Where

X = (XiJ)eS, x„e{0,l} V i,j = l,2,...,n .

As previously mentioned, additional constraints are required to eliminate

subtours. Adding the subtour breaking constraint to the assignment formulation prevents

subtours. The three standard ways to represent a subtour breaking constraint (Bodin et al.

1983) are listed as follows:

(1) S = Uxy): X X x'j ~ * f°r every nonempty proper subset Q of N [
[ieQ j£Q J

(2) S = \ (xu): XXxu - 1^1~~* ^or everY nonempty subset R of {2,3,...,n}>
[ieR jeR J

(3) S = ^Xy): y, - y; + nxy <n-\ for 2 < i * j < n for some real numbers y, j .

50

The first constraint requires that every node subset Q of the solution set be

connected to all of the other nodes in the solution. The second constraint requires that the

arcs in the solution set contain no cycles (a cycle over R nodes must contain \R\ arcs. The

third constraint is not intuitively straightforward and calls for more explanation. First,

define y,- as follows:

\t if node i is visited on the f * step in a tour

[0 otherwise

For an arc in the solution tour (xtj = 1), the constraint becomes

t-(t + i)+n<n-l .

For an arc not contained in the solution tour (xu = 0), the constraint reduces to

y,-yj <n-\ .

The third representation has the advantage of adding only n2 -3n + 2 subtour breaking

constraints to the formulation, where the previous two add 2" constraints (Bodin et al.

1983).

A.2 Multiple Traveling Salesman Problem (MTSP)

Adding more salesmen to the problem gives the next level of complexity, the

multiple traveling salesman problem (MTSP). Let m be the number of salesmen or

vehicles that make up the fleet. Again the objective is to minimize the total distance

traveled. Assume further that the m salesmen depart from and return to the same depot

and that each customer must be visited exactly once by exactly one salesman.

51

With these changes, the formulation is an extension of the basic TSP presented

above and is represented as

n n

Minimize Z(f) = £ X cyxy (A2.1)

Subject to:

t! J ' [1 if ,7 = 2,3 n

^ r M if 7 = i

% ' J [1 if j= 2,3,...,«

(A2.2)

(A2.3)

where X = (xy)G S , xtj e {0,l} V i, j = 1,2,..., n .

The first constraint in the formulation requires that all salesmen be used by

forcing them to leave the depot. The second constraint requires all salesmen to return to

the depot. Any one of the subtour breaking constraints used earlier in the TSP can be

used for the MTSP.

The apparent complexity of this new problem can be reduced by representing the

MTSP as m copies of the single TSP. This is accomplished by creating dummy depots

(Di,...JDm) that are connected to the original network. These m copies are either separate

from each other, or are connected with cost prohibitive big M arcs. When these single

TSP copies are connected to a common depot, the problem becomes a series of m

subtours, which when taken together forms the MTSP. This relatively straightforward

transformation of the MTSP helps demonstrates why a TSP algorithm can be used to

solve MTSP problems (Bodin et al. 1983).

52

A.3 Vehicle Routing Problem (VRP)

The next extension of the TSP is the Vehicle Routing Problem (VRP) which is

obtained by adding a capacity constraint to the salesman or vehicles. In the VRP, a

number of vehicles w leave a depot and service a number of customers n, each possessing

a unique demand dt. Each vehicle v has a limited capacity Kv and a maximum route

duration Tv that constrains their closed delivery routes, or return to depot time. This

particular instance of the VRP is commonly known as the general vehicle routing

problem (GVRP). If the maximum route lengths or range constraints are removed, then

this problem is referred to as the standard vehicle routing problem (SVRP) (Bodin et al.

1983). Additionally, the time required for a vehicle v to deliver or service at node i is s/,

the travel time for vehicle v from node i to node j is *,/, and finally xt/ = 1 if arc i-j is used

by vehicle v. From this, the formulation of the GVRP is as follows:

n n w

Minimize Z(t) = X EX cvxu (A3A)

;=1 j=\ v=l

Subject to:

n w

XX4=1 (7 = 2, ...,n) (A3.2)
1=1 v=l

£X4=1 (»' = 2, ...,«) (A3.3)
J=l v=l

5X"IX=0 (v=l,...,w;p=l,...,n) (A3.4)
<=i j=\

X4(i>»;)£*v (V=1,-,H0 (A3.5)
1=1 7=1

53

X^X^+XX«^ (v=i,...,W) . (A3.6)
i=l y=l J=l 7=1

£<.<1 (v=l, ...,w) (A3.7)
7=2

X^l (V=1,...,H>) (A3.8)
1=2

where X = (JC*)e 5, 4 e {0,l} V i, j,v .

The objective function, which minimizes the overall distance, remains the same but is

formulated to sum over all vehicles. Equations (A3.2) and (A3.3) require that every

customer is visited by exactly one vehicle. It is assumed that a customer's demand does

not exceed vehicle capacity and that each customer is fully serviced by the single vehicle

that visits it. Equation (A3.4) requires continuity of our routes while (A3.5) maintains

the vehicle capacity constraint. Since route length restrictions are represented with times,

equation (A3.6) requires that maximum route duration is not exceeded. Finally,

equations (A3.7) and (A3.8) limit the number of vehicles used.

In addition to these equations, subtour breaking constraints, slightly modified

from those used earlier in the TSP, must be included. Since it is the most efficient, the

third subtour representation is selected for expansion as follows:

S = {xj. :yj -yvj+nxy < n -1 for 2 < i * j < n for some real numbers yj }

This applies the original subtour breaking constraint to each vehicle in turn. We

note that some redundant constraints can be eliminated from the formulation above.

Using (A3.2) and (A3.4) enforces (A3.3) automatically and makes it unnecessary (Bodin

54

et al. 1983). Likewise (A3.4) and (A3.7) imply (A3.8) so this too can be eliminated from

the formulation (Bodin et al. 1983).

Finally, one common constraint added to the VRP is time windows. Let a, be the

arrival time to nodey, e, be the earliest delivery time allowable and lj be the no later than

time for delivery. A nonlinear representation yields

*j=2,11*1+4+W 0=u,..,») (A3-9)

ax =0

>,. <«,</,. 0 = 2.-.»)

(A3.10)

(A3.11)

If xj- = 0 then a} = 0. Otherwise a, is the sum of the previous arrival time (at = 0), the

service time at node i (sj), and the travel time from i to j (tv
tj). Alternatively the linear

representation of time windows constraint (Bodin et al. 1983) can be used in the

formulation

V

max aj>{ai + s: + t^-x^Tn

a,<(a; + 5r + ^)+(l-4)-C,.
• for all i, j, v (A3.12)

When xjj = 1, the second half of the equation is eliminated and a; is determined

from the previous arrival time, previous service time, and the travel time between the

nodes. When xv
a = 0, the constraints are redundant.

A.4 Multiple Depot Vehicle Routing Problem (MDVRP)

Expanding the previous GVRP to account for multiple depots, or bases of

operation, gives the multiple depot VRP. This problem can be formulated with only

55

minor changes. Let M be the number of depots in our problem. First the original VRP

formulation indexes are changed for equation (A3.2), (j = M + 1, ... ,ri), and equation

(A3.3), (z = M + 1,... , n). Next the constraints (A3.7) and (A3.8) are changed to sum

over all the depots individually to require that the number of vehicles used does not

exceed the number of vehicles available.

M n

2£4<i (v=i,...,W)
;=1 j=M+\

M n

2X*;<i (v=i,...,w)
p=l ,'=A/+1

The MDVRP also requires an adjustment to the subtour breaking constraint.

Again, only one is required (Bodin et al. 1983).

(1) S = {(xy): X X *<) - * for every nonempty proper subset Q of {1, 2, ... , n}

containing nodes 1,2, ... , M};

(2) S={(xij): XX^y-N-1 for every nonempty subset i? of {M+l,M+2 ,..., n}};
isR jeR

(3) S = {(xtj): yi - vy. + nxu <n-\ for M + 1 < i *j < n for some real numbers y,-} .

56

Appendix B. Tabu Search vs. Other Heuristics—TSP Example

Objective: Minimize distance, d

Initial Order, d = 3138

Global Greedy, d = 2238

Nearest Neighbor, d = 2108

Tabu Search, d = 1830

Nari Data Set (Sisson 1997)

57

Appendix C. Javadoc Listing

Class Hierarchy

class java.lang.Object
class Convert
class CoordTvpe
class CycleOut
class HashMod
class InFromKevbd
class KeyObj
class KevToString
class MTSPTWuav
class BestSolnMod
class TsptwPen
class NoCycleOut
class NodeTvpe
class PrintCalls
class PrintFlag
class ReacTabuObi
class ReadFile
class SearchOut
class StartPenBestOut
class StartTourObi
class TabuMod
class TimeMatrixObj
class Timer
class TsptwPenOut
class TwBestTTOut
class ValueObi
class VrpPenTvpe
class WindAdjust
class WindData

Index of all Fields and Methods

acSpeed. Variable in class WindData
double aircraft speed at the associated altitude level.

altitude. Variable in class WindData
integer value of the associated altitude level.

assignlnputFileCString). Static method in class ReadFile
assignlnputFile sets up the FilelnputStream.

B

bands. Variable in class WindData
double Number of altitude level bands.

58

bearing. Variable in class WindData
double wind bearing at the associated altitude level.

bearingXY(CoordTvpe, CoordType, double). Static method in class Convert
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

bestCost. Variable in class SearchOut
bestCost. Variable in class StartPenBestOut

Penalty related value.
bestCost. Variable in class TwBestTTOut

best tour related value.
bestiter. Variable in class SearchOut
bestiter. Variable in class StartPenBestOut

Penalty related value.
bestiter. Variable in class TwBestTTOut

best tour related value.
bestnv. Variable in class SearchOut
bestnv. Variable in class StartPenBestOut

Penalty related value.
bestnv. Variable in class TwBestTTOut

best tour related value.
BestSolnModO. Constructor for class BestSolnMod
bestTime. Variable in class SearchOut
bestTime. Variable in class StartPenBestOut

Penalty related value.
bestTime. Variable in class TwBestTTOut

best tour related value.
bestTour. Variable in class SearchOut
bestTour. Variable in class StartPenBestOut

Saved tour.
bestTour. Variable in class TwBestTTOut

best tour related value.
bestTT. Variable in class SearchOut
bestTT. Variable in class StartPenBestOut

Penalty related value.
bestTT. Variable in class TwBestTTOut

best tour related value.
bfCost. Variable in class SearchOut
bfCost. Variable in class StartPenBestOut

Penalty related value.
bfCost. Variable in class TwBestTTOut

best tour related value.
bfiter. Variable in class SearchOut
bfiter. Variable in class StartPenBestOut

Penalty related value.
bfiter. Variable in class TwBestTTOut

best tour related value.
bfnv. Variable in class SearchOut
bfnv. Variable in class StartPenBestOut

Penalty related value.
bfnv. Variable in class TwBestTTOut

best tour related value.
bfTime. Variable in class SearchOut
bfTime. Variable in class StartPenBestOut

Penalty related value.

59

bfTime. Variable in class TwBestTTOut
best tour related value.

bfTour. Variable in class SearchOut
bfTour. Variable in class StartPenBestOut

Saved tour.
bfTour. Variable in class TwBestTTOut

best tour related value.
bfTT. Variable in class SearchOut
bfTT. Variable in class StartPenBestOut

Penalty related value.
bfTT. Variable in class TwBestTTOut

best tour related value.

compPensfNodeTvpeH. int). Static method in class NodeTvpe
compPens computes the vehicle capacity overload and time window penalties.

compPensCNodeTvpen. int). Method in class VrpPenType
compPens computes the vehicle capacity overload and time window penalties.

ConvertO. Constructor for class Convert
CoordTypeO. Constructor for class CoordType

Default constructor.
CoordTypeCString. double, double). Constructor for class CoordType

Lat/long constructor.
copvO. Method in class NodeTvpe
cpuntVeh(NodeType[]). Static method in class NodeTvpe

Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

countVehiclesCNodeTvpen). Static method in class TabuMod
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

cycle(ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class TabuMod
cycle method updates the search parameters if the incumbent tour is found in the hashing structure.

CycleOutO. Constructor for class CvcleOut
Default constructor.

CydeOutfint. int, double, ValueObj). Constructor for class CvcleOut
Specified constructor.

cvciePrint. Variable in class PrintFlag
print flag.

D

distanceXYfCoordTvpe. CoordType). Static method in class Convert
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

DMMmtoDdfint. double). Static method in class Convert
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMmtoDdfint. double, String). Static method in class Convert
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMSSstoDdfint. int, double). Static method in class Convert
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

DMMSSstoDdfint. int, double, String). Static method in class Convert
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

60

endTime. Variable in class Timer
end time.

endTimeO. Method in class Timer
endTime assigns end time.

eguals(KeyObj). Method in class KeyObi
Overloaded equals(), check only attribute fields.

eguals(ValueObj). Method in class ValueObj
Overloaded equals(), check only attribute fields.

F

firstHashVal(int). Static method in class HashMod
firstHashVal method assigns the primary hashing value.

G

getACspeed(int). Method in class WindData
getACspeed returns aircraft (UAV) speed for the specified band.

getAltitude(int). Method in class WindData
getAltitude returns actual altitude for the specified band.

getBandsQ. Method in class WindData
getBands returns number of altitude bands (wind tiers).

getBearing(int). Method in class WindData
getBearing returns wind bearing for the specified band.

getEaO. Method in class NodeType
getldO. Method in class NodeType
getLaO. Method in class NodeType
getLoadQ. Method in class NodeType
getMQ. Method in class NodeType
getQtvO. Method in class NodeType
getSpeed(int). Method in class WindData

getSpeed returns wind speed for the specified band.
getTypeO. Method in class NodeType
getWaitQ. Method in class NodeType
groundSpeed(double, double, double, double). Static method in class WindAdiust

groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

groundSpeedAF(double, double, double, double). Static method in class WindAdjust
groundSpeedAF is an experimental method that uses a different formula.

H
hashCodeQ. Method in class KeyObj

Overloaded hashCode method.
hashCodeQ. Method in class ValueObj

Overloaded hashCode method.
HashModQ. Constructor for class HashMod
HHMMtoMM(int). Static method in class Convert

HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

HMMtoHh(int). Static method in class Convert
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

I

InFromKeybdQ. Constructor for class InFromKevbd

61

insert(NodeType[], int, int). Static method in class NodeTvpe
Method insert allows the element designated by "chl" to be shifted by "chD" elements.

iterPrint. Variable in class PrintFlag
print flag.

K

kevDoublefString). Static method in class InFromKevbd
keyDouble allows user to enter a double from the keyboard.

keyFloat(String). Static method in class InFromKevbd
key Float allows user to enter a float from the keyboard.

keylnt(String). Static method in class InFromKevbd
keylnt allows user to enter an integer from the keyboard.

KevObidnt, int, int, int, int, int). Constructor for class KeyObi
Specified constructor.

keyString(String). Static method in class InFromKevbd
key Sting allows user to enter a string from the keyboard.

KeyToStringQ. Constructor for class KeyToString
kevToStringfint, int, int, int, int, int). Static method in class KeyToString

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

loadPrint. Variable in class PrintFlag
print flag.

lookFor(Hashtable, int, int, int, int, int, int, int). Static method in class HashMod
lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

M
main(String[]). Static method in class MTSPTWuav

main executes MTSPTWuav problem.
mavg. Variable in class CycleOut

moving average.
MMtoHHMM(int). Static method in class Convert

MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

movePrint. Variable in class PrintFlag
print flag.

moveValTTCint, int, NodeType[], NodeType[], int[][]). Static method in class NodeTvpe
Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

moyeValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod
Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

MTSPTWuavO. Constructor for class MTSPTWuav

N

noCvclefdouble. int, double, int, int, PrintFlag). Static method in class TabuMod
noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

NoCvcleOutO. Constructor for class NoCycleOut
Default constructor.

NoCvcIeOutfint. int). Constructor for class NoCycleOut
Specified constructor.

62

NodeTypeO. Constructor for class NodeTvpe
Default constructor.

NodeType(int, int, int, int, int, int, int). Constructor for class NodeTvpe
Specified constructor.

numfeas. Variable in class SearchOut

penTrav. Variable in class SearchOut
penTrav. Variable in class StartPenBestOut

Penalty related value.
penTrav. Variable in class TsptwPenOut

Penalty related value.
printO. Method in class NodeTvpe
PrintCallsQ. Constructor for class PrintCalls
PrintFlagQ. Constructor for class PrintFlag

Default PrintFlag constructor sets all to "true".
PrintFlag(boolean). Constructor for class PrintFlag

Additional PrintFlag constructor allows specification of either "true" or "false".
printlnitValsfint, int, int, double, String). Static method in class PrintCalls
printTour(NodeType[]). Static method in class NodeTvpe

R

randWtWZCint, int, int). Static method in class HashMod
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all
nodes.

ReacTabuObiO. Constructor for class ReacTabuObi
ReadFileO. Constructor for class ReadFile
readNC(String). Static method in class TimeMatrixObi

readNC is used to read from the first token from the input file (the number of customers (nc)).
readNextDouble(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a double.
readNextlnt(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a integer.
readNextString(StreamTokenizer). Static method in class ReadFile

readNextString method gets the next token and returns it as a string.
readNV(String). Static method in class TimeMatrixObi

readNV is used to read from the second token from the input file (the number of vehicles (nv)).
readTSPTW(double. int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObi

readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

readTSPTWdepot(double, int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObj
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file.

readTSPTWdepotUAV(double, int, int, String, CoordTypef], int[]). Static method in class
TimeMatrixObi

readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service
times, and time window information associated with depot and target locations from the input file.

readTSPTWrerouteUAV(double, int, int, String, CoordTypef], intf]). Static method in class
TimeMatrixObj

readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and
time window information associated with depot and customer locations from the input file.

readWind(String). Static method in class WindData
readWind method reads wind data from a file and returns a WindData object.

rtsStepPrintdnt, int, int, int, int, int, int, int). Static method in class PrintCalls

63

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][],
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef],
NodeTypef]). Static method in class ReacTabuObi

ReacTabuObj steps through iterations of the reactive tabu search.
SearchOutQ. Constructor for class SearchOut

Default constructor.
SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef],
NodeTypef], NodeType[]). Constructor for class SearchOut

Specified constructor.
secondHashVaKint, int, int, NodeType[], int[]). Static method in class HashMod

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

setACspeedfint, int). Method in class WindData
setACspeed sets only the UAV speed information only for a particular band.

setACspeedAll(int). Method in class WindData
setACspeedAll sets only the UAV speed information.

setAlKint int, double, double, int). Method in class WindData
setAll method sets all related information for a particular band.

setAIt(int, int). Method in class WindData
setAltitude sets only the altitude information for a particular band.

sctBearingfint, double). Method in class WindData
setBearing sets only the bearing information only for a particular band.

setld(int). Method in class NodeTvpe
setLoad(int). Method in class NodeTvpe
setQtv(int). Method in class NodeTvpe
setSpeedCint, double). Method in class WindData

setSpeed sets only the wind speed information only for a particular band.
setType(int). Method in class NodeTvpe
setWait(int). Method in class NodeTvpe
setWind(int, int, double, double). Method in class WindData

setWind method sets only wind related information for a particular band.
speed. Variable in class WindData

double wind speed at the associated altitude level.
ssltlc. Variable in class CycleOut
ssltlc. Variable in class NoCycleOut

cycle related variable.
startPenBestfint, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int,
int, int, int, int, NodeTypef], NodeTypef]). Static method in class StartTourObi

startPenBest initializes "best" values and their times.
StartPenBestOutO. Constructor for class StartPenBestOut

Default constructor.
StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef],
NodeTypef]). Constructor for class StartPenBestOut

Specified constructor.
startPrint. Variable in class PrintFlag

print flag.
startTime. Variable in class Timer

begin time.
startTimeO. Method in class Timer

startTime assigns start time.
startTour(NodeType[], int[][], int, int). Static method in class NodeTvpe

Method startTour will bubble sort the initial tour based on the average time window time.
StartTourObiO. Constructor for class StartTourObi

64

stepLoopPrint. Variable in class PrintFlag
print flag.

stepPrint. Variable in class PrintFlag
print flag.

sumWait(NodeType[]). Static method in class NodeTvpe
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

swapdnt, int). Static method in class MTSPTWuav
Swap allows generic swap of integers.

swaplntdnt, int). Static method in class NodeTvpe
Method swaplnt switches two integers

swapNode(NodeType[], int, int). Static method in class NodeTvpe
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array

tabuLen. Variable in class CycleOut
tahuLen. Variable in class NoCvcleOut

cycle related variable.
TabuModQ. Constructor for class TabuMod
timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi

timeMatrix computes simple two-dimensional time/distance matrix.
timeMatrixDepot(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi

timeMatrixDepot computes the two-dimensional array used as the "time" matrix.
timeMatrixDepotUAV(int, int, double, int, CoordTypef], int[]). Static method in class TimeMatrixObi

timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix.
TimeMatrixObiO. Constructor for class TimeMatrixObi
timeMatrixUAV(int, int, double, int, CoordTypef], int[], WindData, int[][]). Static method in class
TimeMatrixObi

timeMatrixDepot computes the two-dimensional array used as the "time" matrix.
timeMatrixUAVrerouteqnt, int, double, int, CoordTypef], int[], WindData, int[][]). Static method in class
TimeMatrixObi

timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix.
timePrint. Variable in class PrintFlag

print flag.
TimerQ. Constructor for class Timer

Default constructor.
toStringQ. Method in class KeyObi

toString changes a KeyObj to a string for use in the hashTable.
toStringQ. Method in class ValueObi

toString changes a ValueObj to a string for use in the hashTable.
totalSeconds. Variable in class Timer

duration of run.
totalSecondsO. Method in class Timer

totalSeconds returns duration.
totPenaltv. Variable in class SearchOut
totPenaltv. Variable in class StartPenBestOut

Penalty related value.
totPenaltv. Variable in class TsptwPenOut

Penalty related value.
tour. Variable in class SearchOut
tourCost. Variable in class SearchOut
tourCost. Variable in class StartPenBestOut

Penalty related value.

65

tourCost. Variable in class TsptwPenOut
Penalty related value.

tourHVwz(NodeType[], int[]). Static method in class HashMod
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

tourPen. Variable in class SearchOut
tourPen. Variable in class StartPenBestOut

Tour penalty values.
tourSched(int, NodeType[], int[][]). Static method in class NodeTvpe

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderStartingTour method.

TsptwPenO. Constructor for class TsptwPen
tsptwPenfint, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in class TsptwPen

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities.

tsptwPenNormalized(mt, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in
class TsptwPen

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities.

TsptwPenOutO. Constructor for class TsptwPenOut
Default constructor.

TsptwPenOutCint, int, int, int). Constructor for class TsptwPenOut
Specified constructor.

tvl. Variable in class SearchOut
tvl. Variable in class TsptwPenOut

Penalty related value.
twBestTTdnt, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeType[],
int, int). Static method in class BestSolnMod

twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

TwBestTTOutO. Constructor for class TwBestTTOut
Default constructor.

TwBestTTOut(mt, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]). Constructor for class
TwBestTTOut

Specified constructor.
twrdPrint. Variable in class PrintFlag

print flag.

V

ValueObKint, int, int, int, int, int, int). Constructor for class ValueObi
Specified constructor.

VrpPenTypeQ. Constructor for class VrpPenType
Default constructor.

VrpPenTypefint, int). Constructor for class VrpPenType
Specified constructor.

VrpPenTypednt, int, int). Constructor for class VrpPenType
Specified constructor.

W

WindAdiustO. Constructor for class WindAdiust

66

Class BestSolnMod

j ava.lang.Obj ect

+ MTSPTWuav

I
+ BestSolnMod

public class BestSolnMod
extends MTSPTWuav BestSolnMod class retains the tours with the best travel times and tour costs.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

BestSolnModO

Method Index

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeType[],
int, int)

twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

Constructors

BestSolnMod

public BestSolnModO

Methods

twBestTT

public static TwBestTTOut twBestTT(int numnodes,
int totPenalty,
int penTrav,
int tvl,
int nvu,
int iter,
NodeType tour[],
int bfCost,
int bfTT,
int bfnv,
int bfiter,
int bestCost,
int bestTT,
int bestnv,
int bestiter,
NodeType bfTour[],
NodeType bestTour[],
int bfTime,

67

int bestTime)
twBestTT compares current tour with previous best and best feasible tours and updates records
accordingly.

Returns:
returns packages output object.

Class Convert

j ava.lang.Obj ect

+ Convert

public class Convert
extends Object Convert contains general conversion formulas applicable to location and distance
calculations. Included are conversions between decimal format and hours-minutes-seconds format, great
circle distance between two specified coordinates, and bearing from one point to another.

Version:
vl.lFeb99

Author:
Kevin P. O'Rourke, David M. Ryer

Constructor Index

Convert!)

Method Index

bearingXYCCoordType, CoordType, double)
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

distanceXY(CoordType, CoordType)
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

DMMmtoDd(int, double)
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMmtoDd(int, double, String)
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format.

DMMSSstoDd(int. int, double)
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

DMMSSstoDd(int. int, double, String)
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format.

HHMMtoMM(int)
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

HMMtoHh(int)
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

MMtoHHMM(inf)
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

68

Constructors

Convert

public Convert()

Methods

DMMmtoDd

public static double DMMmtoDd(int degrees,
double minutes)

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data.
The D.d format is required to readily perform distance calculations.

Parameters:
degrees - integer degree value of coordinate.
minutes - double minute value of coordinate.

Returns:
returns double Dd coordinate in the "degrees decimal degrees" format.

DMMmtoDd

public static double DMMmtoDd(int degrees,
double minutes,
String name)

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data.
The D.d format is required to readily perform distance calculations. This version of the method
considers hemisphere and assigns a negative value if appropriate to south and east coordinates.

Parameters:
degrees - integer degree value of coordinate,
minutes - double minute value of coordinate.
name - string hemisphere value of coordinate (either "E", "W", "N", or "S").

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

DMMSSstoDd

public static double DMMSSstoDd(int degrees,
int minutes,
double seconds)

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form
of the data. The D.d format is required to readily perform distance calculations.

Parameters:
degrees - integer degree value of coordinate,
minutes - integer minute value of coordinate,
seconds - double second value of coordinate.

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

DMMSSstoDd

public static double DMMSSstoDd(int degrees,
int minutes,
double seconds,
String name)

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs)

69

format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form
of the data. The D.d format is required to readily perform distance calculations. This version of the
method considers hemisphere and assigns a negative value if appropriate to south and east
coordinates.

Parameters:
degrees - integer degree value of coordinate.
minutes - integer minute value of coordinate.
seconds - double second value of coordinate.
name - string hemisphere value of coordinate (either "E", "W", "N", or "S").

Returns:
returns Dd coordinate in the "degrees decimal degrees" format.

HMMtoHh

public static double HMMtoHh(int time)
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630
hours to 6.5 hours) for use in time window and service time calculations.

Parameters:
time - integer whole minute "military format" (0630 hours) time value.

Returns:
returns Hh double fractional hour (6.5 hours) time value.

HHMMtoMM

public static int HHMMtoMM(int time)
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to
390 minutes) for use in time window and service time calculations.

Parameters:
time - integer whole minute "military format" (0630 hours) time value.

Returns:
returns MM integer number of minutes (390 minutes) time value.

MMtoHHMM

public static int MMtoHHMM(int time)
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390
minutes to 0630 hours) for human friendly output.

Parameters:
time - integer number of minutes (390 minutes) time value.

Returns:
returns HHMM integer whole minute "military format" (0630 hours) time value.

distanceXY

public static double distanceXY(CoordType x,
CoordType y)

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points
and returns the value as a double precision number.

Parameters:
x - CoordType coordinate of first position.
y - CoordType coordinate of second position.

Returns:
returns distanceXY double distance between the two points in nautical miles.

bearingXY

public static double bearingXY(CoordType x,
CoordType y,
double dXY)

70

bearingXY calculates the true bearing (in degrees) from one coordinate point to the second
coordinate point and returns the value as a double precision number.

Parameters:
x - CoordType coordinate of first position.
y - CoordType coordinate of second position.
dXY - double distance between the first and second position, in nautical miles.

Returns:
returns thetaXY double initial true heading from the first point to the second point measured from
true north in degrees.

Class CoordType

Java.lang.Object

+ CoordType

public class CoordType
extends Object CoordType is used to hold coordinate location for customer/vehicle nodes. It contains fields
for both x, y integer data and lat/long data, although only one set will be used.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

CoordTypeO
Default constructor.

CoordType(String, double, double)
Lat/long constructor.

Constructors

CoordType

public CoordTypeO
Default constructor. Assigns name to null and all values to zero.

CoordType

public CoordType(String nameLabel,
double lat,
double Ion)

Lat/long constructor. Assigns name, latitude, and longitude as specified.

Class CycleOut

j ava.lang.Obj ect

I
+ CycleOut

public class CycleOut
extends Object CycleOut is used as a package to output multiple fields from the class Cycle.

71

Version:
vl.lMar99

Author:
Kevin P. O'Rourke, David M. Ryer

Variable Index

mavg
moving average.

ssltlc
tabuLen

Constructor Index

CycleOutO
Default constructor.

CycleOut(int, int, double, ValueObj)
Specified constructor.

ssltlc

public int ssltlc
tabuLen

public int tabuLen
mavg

public double mavg
moving average.

Constructors

CycleOut

public CycleOutO
Default constructor. Assigns all values to zero.

CycleOut

public CycleOut(int ssltlc,
int tabuLen,
double mavg,
ValueObj matchPtr)

Specified constructor. Values set as passed.

Class HashMod

java.lang.Ob j ect

+ HashMod

public class HashMod
extends Object HashMod Class contains methods to assign first and second hashing values (used in the
hashtable) and the search method to search the hashtable.
Version:

72

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

HashModO

Method Index

firstHashVal(int)
firstHashVal method assigns the primary hashing value.

lookForCHashtable, int, int, int, int, int, int, int)
lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

randWtWZdnt, int, int)
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all
nodes.

secondHashVaKint, int, int, NodeType[], int[])
secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

tourHVwz(NodeType[], int[])
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

Constructors

HashMod

public HashModO

Methods

lookFor

public static boolean lookFor(Hashtable daHashTab,
int fhv,
int shv,
int cost,
int tvl,
int twPen,
int loadPen,
int lastlter)

lookFor method searches for the current tour in the hashing structure, if the tour is found a true
value for the boolean "found" is returned, if not found, the tour is added to the hashtable.

Parameters:
daHashTab - hashtable object,
fhv - First hashing value (objective function),
shv - Second hashing value (Woodruff & Zemel).
tourCost - Tour cost.
tvl - Travel time.
twPen - Time window penalty.
loadPen - Load overage penalty.
lastlter - Iteration on which the tour was previously found.

Returns:
returns true boolean value if the tour was previously found.

randWtWZ

public static final int[]- randWtWZ(int ZRANGE,

73

int nc,
int numnodes)

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all
nodes.

Parameters:
ZRANGE - maximum weight value.
nc - number of customers (targets).
numnodes - total number of nodes.

Returns:
returns integer array of "z" weights.

tourHVwz

public static final int tourHVwz(NodeType tour[],
int zArr[])

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node
id multiplication.

Parameters:
tour - tour node array to be processed.
zArr - "z" array of random weights.

Returns:
returns secondary hashing value function (thv).

firstHashVal

public static final int firstHashVal(int zT)
firstHashVal method assigns the primary hashing value. Currently, it assigns the objective
function as the first hashing value (fhv). Method can be updated as desired.

Parameters:
zT - objective function value.

Returns:
returns first hashing value (fhv).

secondHashVal

public static final int secondHashVal(int shv,
int chl,
int chD,
NodeType tour[],
int zArr[])

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion
move.

Parameters:
shv - current tour hashing value,
chl - node insertion position.
chD - node insertion depth,
tour - tour node array for processing.
zArr - "z" array of random weights.

Returns:
returns updated hashing value to reflect insertion.

Class InFromKeybd

j ava.lang.Obj ect

I
+ InFromKeybd

74

public class InFromKeybd
extends Object InFromKeybd class allows us to enter strings, integers, doubles and floats from the
keyboard with a specified prompt.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

InFromKevbdQ

Method Index

keyDouble(String)
keyDouble allows user to enter a double from the keyboard.

keyFIoat(String)
keyFloat allows user to enter a float from the keyboard.

keylnt(String)
keylnt allows user to enter an integer from the keyboard.

kevString(String)
keySting allows user to enter a string from the keyboard.

Constructors

InFromKeybd

public InFromKeybd()

Methods

keyString

public static final String keyString(String prompt)
keyString allows user to enter a string from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered string.

keylnt

public static final int keylnt(String prompt)
keylnt allows user to enter an integer from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered integer.

keyDouble

public static final double keyDouble(String prompt)
keyDouble allows user to enter a double from the keyboard.

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered double.

keyFloat

public static final float keyFloat(String prompt)
keyFloat allows user to enter a float from the keyboard.

75

Parameters:
prompt - Text prompt printed on screen.

Returns:
returns user entered float.

Class KeyObj

j ava.lang.Obj ect

I
+ KeyObj

public final class KeyObj
extends Object KeyObj Class is used to access tour attributes in the hashtable for comparison.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

KevObiCint int, int, int, int, int)
Specified constructor.

Method Index

eguals(KeyObj)
Overloaded equals(), check only attribute fields.

hashCodeO
Overloaded hashCode method.

toStringQ
toString changes a KeyObj to a string for use in the hashTable.

Constructors

KeyObj

public KeyObj(int fhv,
int shv,
int cost,
int tvl,
int twPen,
int loadPen)

Specified constructor. Values set as passed.

Methods

equals

public final boolean equals(KeyObj a)
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep
inline with hashCode overload.

Parameters:
a - element compared calling object.

Returns:
returns true if objects are equal, false otherwise.

toString

public final String toString()

76

toString changes a KeyObj to a string for use in the hashTable.
Returns:

returns concatenated String.
Overrides:

toString in class Object
hashCode

public final int hashCode()
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then
calling the hashCode method on each of the two objects must produce the same integer result.
Only check first two data elements because of size limitations of Integer.

Returns:
returns integer hashcode value.

Overrides:
hashCode in class Object

Class KeyToString

j ava.lang.Ob j ect

+ KeyToString

public class KeyToString
extends Object KeyToString Class converts the attributes of tour to a concatenated string used as a key to
the hashtable of tours.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

KevToStringQ

Method Index

kevToStringfint. int, int, int, int, int)
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

Constructors

KeyToString

public KeyToString()

Methods

keyToString

public static String keyToString(int fhv,
int shv,
int tourCost,
int tvl,
int twPen,

77

int loadPen)
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the
hashtable of tours.

Parameters:
fhv - First hashing value (objective function).
shv - Second hashing value (Woodruff & Zemel).
tourCost - Tour cost.
tvl - Travel time.
twPen - Time window penalty.
loadPen - Load overage penalty.

Class MTSPTWuav

j ava.lang.Obj ect

I
+ MTSPTWuav

public class MTSPTWuav
extends Object MTSPTWuav is the main part that implements the multiple traveling salesperson problem
with time windows solve algorithm. This version calls the UAV specific methods to read file input and
generate the appropriate time matrix.
Version:

vl.lMar99

Author:
Kevin P. O'Rourke, David M. Ryer

Constructor Index

MTSPTWuavO

Method Index

main(String[])
main executes MTSPTWuav problem.

swap(int. int)
Swap allows generic swap of integers.

Constructors

MTSPTWuav

public MTSPTWuav()

Methods

swap

public static void swap(int a,
int b)

Swap allows generic swap of integers.
Parameters:

a- integer
b- integer

Returns:
returns void

main

78

public static void main(String argv[])
main executes MTSPTWuav problem. Initializes global variables, calls methods to read data and
wind files, calls method to compute time matrix, calls tabu search method, writes output to file.

Parameters:
nv - number of vehicles, overridden by file information
iters - number of iterations
integer - precision scaling factor
file - data file name, without extension (actual filename must end with .dat).
wind - file name, without extension (actual filename must end with .dat).
reroute - identifier. Use 111 (one one one) to specify reroute.

Class NoCycleOut

j ava.lang.Obj ect

I
+ NoCycleOut

public class NoCycleOut
extends Object NoCycleOut is used as a package to output multiple fields from the method NoCycle.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

ssltlc
cycle related variable.

tabuLen
cycle related variable.

Constructor Index

NoCycleOutO
Default constructor.

NoCycleOut(int, int)
Specified constructor.

Variables

ssltlc

public int ssltlc
cycle related variable.

tabuLen

public int tabuLen
cycle related variable.

Constructors

NoCycleOut

public NoCycleOutO
Default constructor. Assigns all values to zero.

NoCycleOut

79

public NoCycleOut(int ssltlc,
int tabuLen)

Specified constructor. Values set as passed.

Class NodeType

2ava.lang.Obj ect

+ NodeType

public class NodeType
extends Object NodeType defines the relevant information of each particular node.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

NodeTypeQ
Default constructor.

NodeTypednt. int, int, int, int, int, int)
Specified constructor.

Method Index

compPens(NodeType[], int)
compPens computes the vehicle capacity overload and time window penalties.

copvO
cpuntVeh(NodeType[])

Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

getEa()
getldO
getLaQ
getLoadO
getM()
getQtyQ
getTipeO
getWaitO
insert(NodeType[], int, int)

Method insert allows the element designated by "chl" to be shifted by "chD" elements.
moveValTT(mt, int, NodeType[], NodeType[], int[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

printO
printTour(NodeType[])
setld(int)
setLoad(int)
setOtv(int)
setTvpe(int)
setWait(int)
startTourCNodeTypen, int[][], int, int)

Method startTour will bubble sort the initial tour based on the average time window time.
sumWait(NodeTypen)

80

Method sum Wait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

swaplnt(int, int)
Method swaplnt switches two integers

swapNodeCNodeTypen, int, int)
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array
"z".

tourSched(int, NodeTypef], int[][])
Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderStartingTour method.

Constructors

NodeType

public NodeType()
Default constructor. Assigns all values to zero.

NodeType

public NodeType(int id,
int ea,
int la,
int qty,
int type,
int wait,
int load)

Specified constructor. Values set as passed.

Methods

copy

public final NodeType copy()
swaplnt

public static final void swaplnt(int a,
int b)

Method swaplnt switches two integers
swapNode

public static final NodeType[] swapNode(NodeType z[],
int a,
int b)

Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array
"z".

Parameters:
z - node array to be updated,
a - element to be swapped,
b - element to be swapped.

Returns:
returns updated node array.

insert

public static final NodeType[] insert(NodeType z[],
int chl,
int chD)

81

Method insert allows the element designated by "chl" to be shifted by "chD" elements. chD may
be positive or negative.

Parameters:
z - node array to be updated.
chl - location of node to be moved.
chD - depth of move.

Returns:
returns updated node array.

countVeh

public static final int countVeh(NodeType tour[])
Method countVeh finds the number of vehicles being used in the current tour by counting the
vehicle to demand transitions.

Parameters:
tour - node array to be processed.

Returns:
returns integer number of vehicles used in the tour.

sum Wait

public static final int sumWait(NodeType tour[])
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait
values for each individual node.

Parameters:
tour - node array to be processed.

Returns:
returns integer value of total wait time in the tour.

compPens

public static final VrpPenType compPens(NodeType tour[],
int capacity)

compPens computes the vehicle capacity overload and time window penalties.
Parameters:

tour[] - current tour used to calculate penalties,
capacity - maximum vehicle load.

Returns:
returns the VrpPenType object which the method was called on with updated values.

tourSched

public static final int tourSched(int is,
NodeType tour[],
int time[][])

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from
the orderStartingTour method. This will use the listing of nodes to return the new tourLen value
(tour duration). Additionally, the nodeArray will be updated to reflect the new arrival and
departure times.

Parameters:
is - insertion/starting location for computation of schedule,
tour - node array to be processed,
time - time matrix used to determine schedule.

Returns:
returns integer total tour duration. Updates tour node array as appropriate.

startTour

public static final int startTour(NodeType tour[],

82

int time[][],
int nc,
int nv)

Method startTour will bubble sort the initial tour based on the average time window time. No
swap is made if the move would violate strong time window infeasibility.

Parameters:
tour - node array to be processed,
time - time matrix used to determine schedule,
nc - number of customers,
nv - number of vehicles.

Returns:
returns integer total tour duration. Updates tour node array as appropriate.

getld

public final int getld()

getEa

public final int getEa()

getLa

public final int getLa()

getQty

public final int getQty()

getType

public final int getType()

getWait

public final int getWaitO

getLoad

public final int getLoad()

getM

public final double getM()

setld

public final void setld(int id)

setWait

public final void setWait(int wait)

setType

public final void setType(int type)

setQty

public final void setQty(int qty)
setLoad

public final void setLoad(int load)

print

public final void print()

printTour

83

public static final void printTour(NodeType tour[])
moveValTT

public static int moveValTT(int i,
int d,
NodeType tour[],
NodeType nbrtour[],
int time[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

Parameters:
i - node position,
d - move depth.
tour - incumbent tour node array to be processed,
nbrtour - neighbor tour node array to be processed,
time - time matrix used to determine schedule.

Returns:
returns integer move value which is the resultant change in the objective function resulting from
the proposed move.

See Also:
compPens

Class PrintCalls

j ava.lang.Obj ect

+ PrintCalls

public class PrintCalls
extends Object PrintCalls is to display on the screen initial values and rts steps as required.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

PrintCallsO

Method Index

printlnitValsdnt, int, int, double, String)
rtsStepPrintCint, int, int, int, int, int, int, int)

Constructors

PrintCalls

public PrintCallsO

Methods

printlnitVals

public static void printlnitVals(int nv,
int iters,

84

int numcycles,
double factor.
String file)

rtsStepPrint

public static void rtsStepPrint(int id,
int i,
int d,
int k,
int moveVal,
int totNbrPen,
int tabu,
int numnodes)

Class PrintFlag

j ava.lang.Ob j ect

+ PrintFlag

public class PrintFlag
extends Object PrintFlag contains all print out flags as boolean attributes.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

cvclePrint
print flag.

iterPrint
print flag.

loadPrint
print flag.

movePrint
print flag.

startPrint
print flag.

stepLoopPrint
print flag.

stepPrint
print flag.

timePrint
print flag.

twrdPrint
print flag.

Constructor Index

PrintFlagQ
Default PrintFlag constructor sets all to "true".

PrintFlag(boolean)
Additional PrintFlag constructor allows specification of either "true" or "false".

85

Variables

movePrint

public boolean movePrint
print flag.

startPrint

public boolean startPrint
print flag.

timePrint

public boolean timePrint
print flag.

stepPrint

public boolean stepPrint
print flag.

stepLoopPrint

public boolean stepLoopPrint
print flag.

twrdPrint

public boolean twrdPrint
print flag.

cyclePrint

public boolean cyclePrint
print flag.

iterPrint

public boolean iterPrint
print flag.

loadPrint

public boolean loadPrint
print flag.

Constructors

PrintFIag

public PrintFIag()
Default PrintFIag constructor sets all to "true".

PrintFIag

public PrintFIag(boolean set)
Additional PrintFIag constructor allows specification of either "true" or "false".

Class ReacTabuObj

j ava.lang.Ob j ect

+ ReacTabuObj

86

public class ReacTabuObj
extends Object ReacTabuObj class contains the method to perform the reactive tabu search.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

ReacTabuObiO

Method Index

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][],
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef],
NodeTypef])

ReacTabuObj steps through iterations of the reactive tabu search.

Constructors

ReacTabuObj

public ReacTabuObj()

Methods

search

public static SearchOut search(double TWPEN,
double LDPEN,
double INCREASE,
double DECREASE,
int HTSIZE,
int CYMAX,
int ZRANGE,
int DEPTH,
int capacity,
int minTL,
int maxTL,
int tabuLen,
int iters,
int nc,
int numnodes,
VrpPenType tourPen,
int time[][],
PrintFlag printFlag,
int tourCost,
int penTrav,
int totPenalty,
int tvl,
int bfTourCost,
int bfTT,
int bfnv,
int bfiter,
int bestCost,
int bestTT,
int bestnv,
int bestTime,

87

int bestTimeF,
int bestiter,
int numfeas,
NodeType tour[],
NodeType bestTour[],
NodeType bestTourF[])

ReacTabuObj steps through iterations of the reactive tabu search. This method will perform tabu
search for VRP with capacity as well as TSP without capacity.

Returns:
returns packaged output object.

Class ReadFile

j ava.lang.Object

+ ReadFile

public class ReadFile
extends Object ReadFile Class reads appropriate data from a text file. Methods exist to read specific data
types (file format must be known in advance).
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

ReadFileQ

Method Index

assignlnputFileCString)
assignlnputFile sets up the FilelnputStream.

readNextDoubleCStreamTokenizer)
readNextString method gets the next token and returns it as a double.

readNextlnt(StreamTokenizer)
readNextString method gets the next token and returns it as a integer.

readNextString(StreamTokenizer')
readNextString method gets the next token and returns it as a string.

Constructors

ReadFile

public ReadFile()

Methods

assignlnputFile

public static final FilelnputStream assignlnputFile(String filename)
assignlnputFile sets up the FilelnputStream.

readNextString

public static final String readNextString(StreamTokenizer st)
readNextString method gets the next token and returns it as a string.

Parameters:
st - string tokenizer.

88

Returns:
returns next string from file.

readNextDouble

public static final double readNextDouble(StreamTokenizer st)
readNextString method gets the next token and returns it as a double.

Parameters:
st - string tokenizer.

Returns:
returns next double from file.

readNextlnt

public static final int readNextlnt(StreamTokenizer st)
readNextString method gets the next token and returns it as a integer.

Parameters:
st - string tokenizer.

Returns:
returns next integer from file.

Class SearchOut

j ava.lang.Ob j ect

+ SearchOut

public class SearchOut
extends Object SearchOut is used as a package to output multiple information from the Search method in
ReacTabuObj.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer
See Also:

Search

Variable Index

bestCost
bestiter
bestnv
bestTime
bestTour
bestTT
bfCost
bfiter
bfnv
bfTime
bfTour
bfTT
numfeas
penTrav
totPenaltv
tour
tourCost

89

tourPen
tvl

Constructor Index

SearchOutO
Default constructor.

SearchOutfint, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[],
NodeType[], NodeType[])

Specified constructor.

Variables

totPenalty

public int totPenalty
penTrav

public int penTrav
tourCost

public int tourCost
b fiter

public int bfiter
bfCost

public int bfCost
bfTT

public int bfTT
bestnv

public int bestnv
bestiter

public int bestiter
bestCost

public int bestCost
bestTT

public int bestTT
bfnv

public int bfnv
bfTime

public int bfTime
bestTime

public int bestTime
tvl

public int tvl
numfeas

90

public int numfeas
tourPen

public VrpPenType tourPen
tour

public NodeType tour[]
bfTour

public NodeType bfTour[]
bestTour

public NodeType bestTour[]

Constructors

SearchOut

public SearchOut()
Default constructor. Assigns all values to zero.

SearchOut

public SearchOut(int totPenalty,
int penTrav,
int tourCost,
int bfiter,
int bfCost,
int bfTT,
int bestnv,
int bestiter,
int bestCost,
int bestTT,
int bfnv,
int bfTime,
int bestTime,
int tvl,
int numfeas,
VrpPenType tourPen,
NodeType tour[],
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class StartPenBestOut

j ava.lang.Obj ect

+ StartPenBestOut

public class StartPenBestOut
extends Object StartPenBestOut is used as a package to output multiple penalty information from method
starfPenBest.
Version:

vl.lMar99
Author:

91

Kevin P. O'Rourke, David M. Ryer

Variable Index

bestCost
Penalty related value.

bestiter
Penalty related value.

bestnv
Penalty related value.

bestTime
Penalty related value.

bestTour
Saved tour.

bestTT
Penalty related value.

bfCost
Penalty related value.

bfiter
Penalty related value.

bfnv
Penalty related value.

bfTime
Penalty related value.

bfTour
Saved tour.

bfTT
Penalty related value.

penTrav
Penalty related value.

totPenaltv
Penalty related value.

tourCost
Penalty related value.

tourPen
Tour penalty values.

Constructor Index

StartPenBestOutO
Default constructor.

StartPenBestOutfint, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[],
NodeTypef])

Specified constructor.

Variables

totPenalty

public int totPenalty
Penalty related value.

penTrav

public int penTrav
Penalty related value.

tourCost

public int tourCost

92

Penalty related value.
bfiter

public int bfiter
Penalty related value.

bfCost

public int bfCost
Penalty related value.

bfTT

public int bfTT
Penalty related value.

bestnv

public int bestnv
Penalty related value.

bestiter

public int bestiter
Penalty related value.

bestCost

public int bestCost
Penalty related value.

bestTT

public int bestTT
Penalty related value.

bfnv

public int bfnv
Penalty related value.

bfTime

public int bfTime
Penalty related value.

bestTime

public int bestTime
Penalty related value.

tourPen

public VrpPenType tourPen
Tour penalty values.

bfTour

public NodeType bfTour[]
Saved tour.

bestTour

public NodeType bestTour[]
Saved tour.

93

Constructors

StartPenBestOut

public StartPenBestOut()
Default constructor. Assigns all values to zero.

StartPenBestOut

public c StartPenBestOut(int
int
int

totPenalty,
penTrav,
tourCost,

int bfiter,
int bfCost,
int bfTT,
int bestnv,
int bestiter,
int bestCost,
int bestTT,
int bfnv,
int bfTime,
int bestTime,
VrpPenType tourPen,
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class StartTourObj

Java.lang.Object

+ StartTourObj

public class StartTourObj
extends Object StartTourObj class begins timing, computes an initial schedule and initial tour cost (Tour
Cost = Travel time + Waiting Time + Penalty Term), computes the initial hashing values: Z(t) and thv(t),
and produces a tour based on a sort of increasing avg time windows at each node. The customers are
ordered by increasing avg time window value, and the nv vehicle nodes are appended to the end of the tour.

Constructor Index

StartTourObiO

Method Index

startPenBest(int, int, int, NodeTypef], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int,
int, int, int, int, NodeTypef], NodeTypef])

startPenBest initializes "best" values and their times.

Constructors

StartTourObj

public StartTourObj()

Methods

startPenBest

public static StartPenBestOut startPenBest(int numnodes,

94

int tvl,
int tourLen,
NodeType tour[],
double TWPEN,
double LDPEN,
int capacity,
int totPenalty,
int penTrav,
int tourCost,
VrpPenType tourPen,
int bfiter,
int bfTourCost,
int bfTT,
int bfnv,
int bestiter,
int bestCost,
int bestTT,
int bestnv,
int bestTimeF,
int bestTime,
NodeType bestTour[],
NodeType bestTourFf])

startPenBest initializes "best" values and their times. Computes cost of initial tour as tour length
with added penalty for infeasibilities.

Returns:
returns StartPenBestOut wrapper object for multiple values.

Class TabuMod

j ava.lang.Obj ect

+ TabuMod

public class TabuMod
extends Object TabuMod Class contains methods used in the TabuSearch. countVeh calculates the number
of vehicles used in the current tour. noCycle updates the search parameters if tour is not found in the
hashtable. cycle updates the search parameters if tour is found in the hashtable. moveValTT computes the
incremental change in the value of the travel time.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

TabuModO

Method Index

countVehiclesCNodeTypen)
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

cvcle(ValueObi, double, int, int, int, double, int, int, PrintFlag)
cycle method updates the search parameters if the incumbent tour is found in the hashing structure.

moveVaITT(int, int, NodeType[], NodeType[], int[][])
Method moveValTT computes the incremental change in the value of the travel time from the

95

incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

noCvclefdouble, int, double, int, int, PrintFlag)
noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

Constructors

TabuMod

public TabuMod()

Methods

countVehides

public static final int countVehides (NodeType tour [])
countVeh method calculates the number of vehicles used in the current tour by counting the
number of vehicle (type 2) to demand (type 1) transitions.

Parameters:
tour - node array to be processed.

Returns:
returns integer number of vehicles used in the tour.

noCycle

public static NoCycleOut noCycle(double DECREASE,
int minTL,
double mavg,
int ssltlc,
int tabuLen,
PrintFlag printFlag)

noCycle method updates the search parameters if the incumbent tour is not found in the hashing
structure.

Parameters:
DECREASE - adjustive scaling factor to reduce tabu length.
minTL - minimum tabu length,
mavg - moving average between cycles,
ssltlc - steps since last tabu length change.
tabuLen - current tabu length.
printFlag - option to print cycle information.

Returns:
returns noCycleOut wrapped object.

cycle

public static CycleOut cycle(ValueObj matchPtr,
double INCREASE,
int maxTL,
int CYMAX,
int k,
double mavg,
int ssltlc,
int tabuLen,
PrintFlag printFlag)

cycle method updates the search parameters if the incumbent tour is found in the hashing structure.
Parameters:

matchPtr - matched information for previously found identical tour
INCREASE - adjustive scaling factor to increase tabu length

96

maxTL - maximum tabu length
CYMAX - maximum allowable cycle frequency
k - current iteration
mavg - moving average between cycles.
ssltlc - steps since last tabu length change.
tabuLen - current tabu length.
printFlag - option to print cycle information.

Returns:
returns cycleOut wrapped object.

moveValTT

public static int moveValTT(int i,
int d,
NodeType tour[],
NodeType nbrtour[],
int time[][])

Method moveValTT computes the incremental change in the value of the travel time from the
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters
preparing for computation of penalty terms.

Parameters:
i - node position.
d - move depth.
tour - incumbent tour node array to be processed,
nbrtour - neighbor tour node array to be processed,
time - time matrix used to determine schedule.

Returns:
returns integer move value which is the resultant change in the objective function resulting from
the proposed move.

See Also:
compPens

Class TimeMatrixObj

j ava.lang.Object

I
+ TimeMatrixObj

public class TimeMatrixObj
extends Object TimeMatrixObj contains methods to calculate the distance/time matrix based on the
problem parameters.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

TimeMatrixObiO

Method Index

readNC(String)
readNC is used to read from the first token from the input file (the number of customers (nc)).

readNV(String)
readNV is used to read from the second token from the input file (the number of vehicles (nv)).

readTSPTW(double, int, int, String, CoordType[], int[])

97

readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

readTSPTWdepotfdouble, int, int, String, CoordType[], int[])
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file.

readTSPTWdepotUAV(double, int, int, String, CoordType[], int[])
readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service
times, and time window information associated with depot and target locations from the input file.

readTSPTWrerouteUAV(double, int, int, String, CoordType[], int[])
readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and
time window information associated with depot and customer locations from the input file.

timeMatrix(int, int, double, int, CoordType[], int[])
timeMatrix computes simple two-dimensional time/distance matrix.

timeMatrixDepoKint, int, double, int, CoordType[], int[])
timeMatrixDepot computes the two-dimensional array used as the "time" matrix.

timeMatrixDepotUAV(int, int, double, int, CoordType[], int[])
timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix.

timeMatrixUAV(int, int, double, int, CoordTypef], int[], WindData, int[][])
timeMatrixDepot computes the two-dimensional array used as the "time" matrix.

timeMatrixUAVreroute(int, int, double, int, CoordType[], int[], WindData, int[][])
timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix.

Constructors

TimeMatrixObj

public TimeMatrixObj()

Methods

readNC

public static int readNC(String filein)
readNC is used to read from the first token from the input file (the number of customers (nc)).

Parameters:
filein - - name of input file

Returns:
returns nc number of customers

readNV

public static int readNV(String filein)
readNV is used to read from the second token from the input file (the number of vehicles (nv)).

Parameters:
filein - - name of input file

Returns:
returns nv number of vehicles

readTSPTW

public static NodeType[] readTSPTW(double factor,
int nv,
int nc,
String filein,
CoordType coord[],
int s[])

readTSPTW reads in the geographical coordinates and time window file and calculates the time
between each node

Parameters:

98

factor - - integer scaling factor used to increase precision.
nv - - number of aircraft available (vehicles).
nc - - number of targets/route points (customers).
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting fde data.

readTSPTWdepot

public static NodeType[] readTSPTWdepot(double factor,
int nv,
int nc,
String filein,
CoordType coord[],
,int s[])

readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time
window information associated with depot and customer locations from the input file. This
information is returned as a tour array.

Parameters:
factor - - integer scaling factor used to increase precision,
nv - - number of aircraft available (vehicles),
nc - - number of targets/route points (customers),
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion,
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting file data.

readTSPTWdepotUAV

public static NodeType[] readTSPTWdepotUAV(double factor,
int nv,
int nc,
String filein,
CoordType coord[],
int s[])

readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service
times, and time window information associated with depot and target locations from the input file.
Actual service time is calculated as a random variable. This information is returned as a tour array.
This method reads in the data in degrees, minutes seconds format.

Parameters:
factor - - integer scaling factor used to increase precision,
nv - - number of aircraft available (vehicles),
nc - - number of targets/route points (customers),
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion,
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting file data.

readTSPTWrerouteUAV

public static NodeType[] readTSPTWrerouteUAV(double factor,
int nv,
int nc,
String filein,

99

CoordType coord[],
int s[])

readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and
time window information associated with depot and customer locations from the input file. This
information is returned as a tour array. This method reads in the data in degrees, minutes seconds
format. This is used to route a UAV from current position specified on the first line through a tour
to its home depot.

Parameters:
factor - - integer scaling factor used to increase precision.
nv - - number of aircraft available (vehicles).
nc - - number of targets/route points (customers).
filein - - name of input file.
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the tour array reflecting file data.

timeMatrix

public static int[][] timeMatrix(int nc,
int gamma,
double factor,
int numnodes,
CoordType coord[],
int s[])

timeMatrix computes simple two-dimensional time/distance matrix.
Parameters:

nc - - number of targets/route points (customers),
gamma - - additional vehicle usage penalty (set to ZERO only),
factor - - integer scaling factor used to increase precision,
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns: x

returns the time matrix specific to the problem.
timeMatrixDepot

public static int[][] timeMatrixDepot(int nc,
int gamma,
double factor,
int numnodes,
CoordType coordf],
int s[])

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix
contains the travel times between respective nodes, general setup for multiple depot problem.

Parameters:
nc - - number of targets/route points (customers),
gamma - - additional vehicle usage penalty (set to ZERO only),
factor - - integer scaling factor used to increase precision,
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the time matrix specific to the problem.

timeMatrixDepotUAV

public static int[][] timeMatrixDepotUAV(int nc,
int gamma,

100

double factor,
int numnodes,
CoordType coord[],
int s[])

timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix. This time
matrix contains the hard-coded wind adjusted travel times between respective nodes.

Parameters:
nc - - number of targets/route points (customers).
gamma - - additional vehicle usage penalty (set to ZERO only).
factor - - integer scaling factor used to increase precision.
coord - - blank array where coordinates will be stored upon method completion.
s - - blank array where service times will be stored upon method completion.

Returns:
returns the time matrix specific to the problem.

timeMatrixUAV

public static int[][] timeMatrixUAV(int nc,
int gamma,
double factor,
int numnodes,
CoordType coord[],
int s[],
WindData wind,
int altitude[][])

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix
contains the wind adjusted travel times between respective nodes. This is the "primary" UAV time
matrix method for standard routing.

Parameters:
nc - - number of targets/route points (customers),
gamma - - additional vehicle usage penalty (set to ZERO only),
factor - - integer scaling factor used to increase precision,
coord - - blank array where coordinates will be stored upon method completion,
s - - blank array where service times will be stored upon method completion,
wind - - wind data object used to scale travel times,
altitude - - matrix of optimum travel altitudes between points

Returns:
returns the time matrix specific to the problem.

timeMatrixUAVreroute

public static int[][] timeMatrixUAVreroute(int nc,
int gamma,
double factor,
int numnodes,
CoordType coord[],
int s[],
WindData wind,
int altitude[][])

timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix. This
time matrix contains the wind adjusted travel times between respective nodes. Node distance is
calculated from the point of origin. First vehicle returns to location specified in by second vehicle.
This is the REROUTE UAV method.

Parameters:
nc - - number of targets/route points (customers).
gamma - - additional vehicle usage penalty (set to ZERO only).
factor - - integer scaling factor used to increase precision.

101

coord - - blank array where coordinates will be stored upon method completion,
s - - blank array where service times will be stored upon method completion,
wind - - wind data object used to scale travel times,
altitude - - matrix of optimum travel altitudes between points

Returns:
returns the time matrix specific to the problem.

Class Timer

j ava.lang.Ob j ect

+ Timer

public class Timer
extends Object Timer Class is used to time overall computation time.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

endTime
end time.

startTime
begin time.

totalSeconds
duration of run.

Constructor Index

TimerO
Default constructor.

Method Index

endTimeO
endTime assigns end time.

startTimeO
startTime assigns start time.

totalSecondsQ
totalSeconds returns duration.

Variables

startTime

public long startTime
begin time.

endTime

public long endTime
end time.

totalSeconds

public long totalSeconds
duration of run.

102

Constructors

Timer

public Timer()
Default constructor. Assigns all values to zero.

Methods

startTime

public long startTime()
startTime assigns start time.

Returns:
returns start time.

endTime

public long endTime()
endTime assigns end time.

Returns:
returns end time.

totalSeconds

public long totalSeconds()
totalSeconds returns duration.

Returns:
returns duration.

Class TsptwPen

j ava.lang.Ob j ect

+ MTSPTWuav

+ TsptwPen

public class TsptwPen
extends MTSPTWuav tsptwPen class: Given the TW and load penalties, this procedure personalizes the
penalties to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for infeasibilities.

Constructor Index

TsptwPenO

Method Index

tsptwPenCint, NodeTypef], VrpPenType, double, double, int, int, int, int)
tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities.

tsptwPenNormalizeddnt, NodeTypef], VrpPenType, double, double, int, int, int, int)
tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities.

Constructors

TsptwPen

public TsptwPen()

103

Methods

tsptwPen

public static final TsptwPenOut tsptwPen(int tourLen,
NodeType tour[],
VrpPenType tourPen,
double TWPEN,
double LDPEN,
int totPenalty,
int tourCost,
int penTrav,
int tvl)

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length +
scaled penalty for infeasibilities. This method is used with the absolute penalty factors.

Parameters:
tourLen - tour duration.
tour - node array to be processed.
tourPen - current tour penalty value.
TWPEN - time window penalty factor.
LDPEN - load overage penalty factor.
totPenalty - sum total penalties.
tourCost - total tour cost.
penTrav - travel time penalty.
tvl - travel duration.

Returns:
returns wrapped multiple objects.

tsptwPenNormalized

public static final TsptwPenOut tsptwPenNormalized(int tourLen,
NodeType tour[],
VrpPenType tourPen,
double TWPEN,
double LDPEN,
int totPenalty,
int tourCost,
int penTrav,
int tvl)

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour
length + scaled penalty for infeasibilities. This method is uses penalty factors of one and is called
when the insertion move is made. Penalty values are then comparable from iteration to iteration.

Parameters:
tourLen - tour duration.
tour - node array to be processed.
tourPen - current tour penalty value.
TWPEN - time window penalty factor (IGNORED, set to 1).
LDPEN - load overage penalty factor (IGNORED, set to 1).
totPenalty - sum total penalties.
tourCost - total tour cost.
penTrav - travel time penalty.
tvl - travel duration.

Returns:
returns wrapped multiple objects.

104

Class TsptwPenOut

j ava.lang.Obj ect

I
+ TsptwPenOut

public class TsptwPenOut
extends Object TsptwPenOut is used as a package to output multiple penalty information from class
TsptwPen.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

penTrav
Penalty related value.

totPenaltv
Penalty related value.

tourCost
Penalty related value.

tvl
Penalty related value.

Constructor Index

TsptwPenOutQ
Default constructor.

TsptwPenOutdnt. int, int, int)
Specified constructor.

Variables

totPenalty

public int totPenalty
Penalty related value.

tourCost

public int tourCost
Penalty related value.

penTrav

public int penTrav
Penalty related value.

tvl

public int tvl
Penalty related value.

Constructors

TsptwPenOut

public TsptwPenOut()
Default constructor. Assigns all values to zero.

TsptwPenOut

105

public TsptwPenOut(int totPenalty,
int tourCost,
int penTrav,
int tvl)

Specified constructor. Values set as passed.

Class TwBestTTOut

j ava.lang.Object

I
+ TwBestTTOut

public class TwBestTTOut
extends Object TwBestTTOut is used as a package to output multiple information from the TWBestTTOut
method.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Variable Index

bestCost
best tour related value.

bestiter
best tour related value.

bestnv
best tour related value.

bestTime
best tour related value.

bestTour
best tour related value.

bestTT
best tour related value.

bfCost
best tour related value.

bfiter
best tour related value.

bfnv
best tour related value.

bfTime
best tour related value.

bfTour
best tour related value.

bfTT
best tour related value.

Constructor Index

TwBestTTOutO
Default constructor.

TwBestTTOutqnt int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef])
Specified constructor.

106

Variables

bfCost

public int bfCost
best tour related value.

bfTT

public int bfTT
best tour related value.

bfnv

public int bfnv
best tour related value.

bfiter

public int bfiter
best tour related value.

bestCost

public int bestCost
best tour related value.

bestTT

public int bestTT
best tour related value.

bestnv

public int bestnv
best tour related value.

bestiter

public int bestiter
best tour related value.

bfTime

public int bfTime
best tour related value.

bestTime

public int bestTime
best tour related value.

bfTour

public NodeType bfTour[]
best tour related value.

bestTour

public NodeType bestTour[]
best tour related value.

Constructors

TwBestTTOut

public TwBestTTOut()

107

Default constructor. Assigns all values to zero.
TwBestTTOut

public TwBestTTOut(int bfCost,
int bfTT,
int bfnv,
int bfiter,
int bestCost,
int bestTT,
int bestnv,
int bestiter,
int bfTime,
int bestTime,
NodeType bfTour[],
NodeType bestTour[])

Specified constructor. Values set as passed.

Class ValueObj

j ava.lang.Obj ect

I
+ ValueObj

public final class ValueObj
extends Object ValueObj Class is used to store tour attributes in the hashtable for comparison.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

ValueObifint int, int, int, int, int, int)
Specified constructor.

Method Index

eguals(ValueObj)
Overloaded equals(), check only attribute fields.

hashCodeO
Overloaded hashCode method.

toStringQ
toSrting changes a ValueObj to a string for use in the hashTable.

Constructors

ValueObj

public ValueObj(int fhv,
int shv,
int tourCost,
int tvl,
int twPen,
int loadPen,
int lastlter)

Specified constructor. Values set as passed.

108

Methods

equals

public final boolean equals(ValueObj a)
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep
inline with hashCode overload.

Parameters:
a - element compared calling object.

Returns:
returns true if objects are equal, false otherwise.

toString

public final String toString()
toString changes a ValueObj to a string for use in the hashTable.

Returns:
returns concatenated String.

Overrides:
toString in class Object

hashCode

public final int hashCode()
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then
calling the hashCode method on each of the two objects must produce the same integer result. Do
not checking first two data elements because of size limitations of Integer.

Returns:
returns integer hashcode value.

Overrides:
hashCode in class Object

Class VrpPenType

j ava.lang.Obj ect

+ VrpPenType

public class VrpPenType
extends Object VrpPentype class provides the object structure for load and time window penalties.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

VrpPenTvpeQ
Default constructor.

VrpPenTypednt. int)
Specified constructor.

VrpPenTypeCint. int, int)
Specified constructor.

Method Index

compPens(NodeType[], int)
compPens computes the vehicle capacity overload and time window penalties.

109

Constructors

VrpPenType

public VrpPenType()
Default constructor. Assigns all values to zero.

VrpPenType

public VrpPenType(int tw,
int Id)

Specified constructor. Values set as passed.
VrpPenType

public VrpPenType(int tw,
int Id,
int nvu)

Specified constructor. Values set as passed.

Methods

compPens

public final VrpPenType compPens(NodeType tour[],
int capacity)

compPens computes the vehicle capacity overload and time window penalties.
Parameters:

tour[] - current tour used to calculate penalties,
capacity - maximum vehicle load.

Returns:
returns the VrpPenType object which the method was called on with updated values.

Class WindAdjust

j ava.lang.Obj ect

+ WindAdjust

public class WindAdjust
extends Object WindAdjust will provides the adjusted ground speed given the desired heading from
location A to location B, and the wind heading.
Version:

vl.lFeb99
Author:

Kevin P. O'Rourke, David M. Ryer

Constructor Index

WindAdiustQ

Method Index

groundSpeedCdouble. double, double, double)
groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

groundSpeedAF(double, double, double, double)
groundSpeedAF is an experimental method that uses a different formula.

110

Constructors

WindAdjust

public WindAdjust()

Methods

groundSpeed

public static final double groundSpeed(double headingAtoB,
double windDir,
double airspeed,
double windSpeed)

groundSpeed method returns the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

Parameters:
headingAtoB - heading between points in degrees.
windDir - wind heading in degrees.
airSpeed - aircraft air speed in knots.
windSpeed - wind speed in knots.

Returns:
returns ground speed in knots.

groundSpeedAF

public static final double groundSpeedAF(double headingAtoB,
double windDir,
double airSpeed,
double windSpeed)

groundSpeedAF is an experimental method that uses a different formula. It has not been validated
and is not used. Designed to return the ground speed given the heading between points, the wind
heading, the wind speed, and the aircraft's airspeed.

Parameters:
headingAtoB - heading between points in degrees.
windDir - wind heading in degrees.
airSpeed - aircraft air speed in knots.
windSpeed - wind speed in knots.

Returns:
returns ground speed in knots.

Class WindData

java.lang.Obj ect

+ WindData

public class WindData
extends Object WindData Class provides attributes to store wind direction, velocity, and UAV velocity for
a given altitude plus methods to read in wind information from a file and manually manipulate wind data.
Version:

vl.lMar99
Author:

Kevin P. O'Rourke

111

Variable Index

acSpeed
double aircraft speed at the associated altitude level.

altitude
integer value of the associated altitude level.

bands
double Number of altitude level bands.

bearing
double wind bearing at the associated altitude level.

speed
double wind speed at the associated altitude level.

Method Index

getACsDeed(int)
getACspeed returns aircraft (UAV) speed for the specified band.

getAltitude(int)
getAltitude returns actual altitude for the specified band.

getBandsQ
getBands returns number of altitude bands (wind tiers).

getBearing(int)
getBearing returns wind bearing for the specified band.

getSpeed(int)
getSpeed returns wind speed for the specified band.

readWmd(String)
readWind method reads wind data from a file and returns a WindData object.

setACspeeddnt, int)
setACspeed sets only the UAV speed information only for a particular band.

setACspeedAU(int)
setACspeedAll sets only the UAV speed information.

setAIKint int, double, double, int)
setAll method sets all related information for a particular band.

setAltfint. int)
setAltitude sets only the altitude information for a particular band.

setBearingfint. double)
setBearing sets only the bearing information only for a particular band.

setSpeedCint. double)
setSpeed sets only the wind speed information only for a particular band.

setWindCint, int, double, double)
setWind method sets only wind related information for a particular band.

Variables

altitude

protected int altitude[]
integer value of the associated altitude level.

bearing

protected double bearing[]
double wind bearing at the associated altitude level.

speed

protected double speed[]
double wind speed at the associated altitude level.

acSpeed

112

protected int acSpeed[]
double aircraft speed at the associated altitude level.

bands

protected int bands
double Number of altitude level bands.

Methods

setWind

public void setWind(int level,
int altitude,
double bearing,
double speed)

setWind method sets only wind related information for a particular band.
Parameters:

altitude - actual altitude level for this band,
bearing - wind bearing for this band,
speed - wind speed for this band.

setAlt

public void setAlt(int level,
int altitude)

setAltitude sets only the altitude information for a particular band.
Parameters:

level - altitude band array index number,
altitude - actual altitude level for this band.

setBearing

public void setBearing(int level,
double bearing)

setBearing sets only the bearing information only for a particular band.
Parameters:

level - altitude band array index number,
bearing - wind bearing for this band.

setSpeed

public void setSpeed(int level,
double speed)

setSpeed sets only the wind speed information only for a particular band.
Parameters:

level - altitude band array index number,
speed - wind speed for this band.

setACspeed

public void setACspeed(int level,
int acSpeed)

setACspeed sets only the UAV speed information only for a particular band.
Parameters:

level - altitude band array index number.
acSpeed - aircraft (UAV) speed for this band.

setAU

public void setAll(int level,

113

int altitude,
double bearing,
double speed,
int acSpeed)

setAll method sets all related information for a particular band.
Parameters:

altitude - actual altitude level for this band,
bearing - wind bearing for this band,
speed - wind speed for this band.
acSpeed - aircraft (UAV) speed for this band.

setACspeedAU

public void setACspeedAU(int acSpeed)
setACspeedAU sets only the UAV speed information. It assigns the same speed for all bands.

Parameters:
acSpeed - aircraft (UAV) speed for every band.

getAltitude

public int getAltitude(int level)
getAltitude returns actual altitude for the specified band.

Parameters:
level - altitude band array index.

Returns:
returns actual altitude.

getBearing

public double getBearing(int level)
getBearing returns wind bearing for the specified band.

Parameters:
level - altitude band array index.

Returns:
returns wind bearing.

getSpeed

public double getSpeed(int level)
getSpeed returns wind speed for the specified band.

Parameters:
level - altitude band array index.

Returns:
returns wind speed.

getACspeed

public int getACspeed(int level)
getACspeed returns aircraft (UAV) speed for the specified band.

Parameters:
level - altitude band array index.

Returns:
returns aircraft (UAV) speed.

getBands

public int getBands()
getBands returns number of altitude bands (wind tiers).

Returns:
returns number of altitude bands (wind tiers).

readWind

114

public static WindData readWind(String filein)
readWind method reads wind data from a file and returns a WindData object.

Parameters:
filein - name of wind data file.

Returns:
returns a WindData object

115

Appendix D. Additional References

Adriatic Sea Regional Briefing Chart (First Edition). St. Louis MO: Defense Mapping
Agency Aerospace Center, 1993.

Baker, E.K., and J. R. Schaffer. "Solution Improvement Heuristics for the Vehicle
Routing and Scheduling Problem," American Journal of Mathematical and
Management Sciences, 16: 261-300 (February 1986).

Ball, M., and M. Magazine. "The Design and Analysis of Heuristics," Networks, 11:
215-219(1981).

Bodin, Lawrence and Bruce Golden. "Classification in Vehicle Routing and
Scheduling," Networks, 11: 97-108 (1981).

Cullen, F., J. Jarvis, and H. Ratliff. "Set Partitioning Based Heuristics for Interactive
Routing," Networks, 11: 125-143 (1981).

Desrosiers, J., M. Sauve, and F. Soumis. "Lagrangian Relaxation Methods for Solving
the Minimum Fleet Size Multiple Traveling Salesman Problem with Time
Windows," Management Science, 34: 1005-1022 (August 1988).

Evans, J. and S. Tsubakitani. "Optimizing Tabu List Size for the Traveling Salesman
Problem," Computers & Operations Research, 25: 91-98 (February 1998).

Fisher, M. L. and R. Jaikumar. "A Generalized Assignment Heuristic for Vehicle
Routing," Networks, 11: 109-124(1981).

Franklin, J. "Genetic Algorithms Stimulate Unmanned Vehicle Missions," Signal: 27-31
(December 1994).

Glover, Fred. "A User's Guide to Tabu Search *," Annals of Operations Research, 1: 3-
28 (1993).

 . "Tabu Search-Part II," ORSA Journal on Computing, 2: 4-32 (Winter 1990).

 . "Tabu Search: A Tutorial," Interfaces, 20: 74-94 (July 1990).

Golden, B. L. and A. Assad. "Vehicle Routing with Time Window Constraints,"
American Journal of Mathematical and Management Sciences, 16: 251-260 (1986).

Grand, Mark and Jonathan Knudsen. Java Fundamental Classes Reference. Sebastopol
CA: O'Reilly & Associates, 1997.

116

Hall, R. W. and J. Partyka. "On the Road to Efficiency," OR/MS Today. (June 1997).

Ioachim, I., S. Gelinas, F. Soumis, and J. Desrosiers. "A Dynamic Programming
Algorithm for the Shortest Path Problem with Time Windows and Linear Node
Costs," Networks, 31: 193-204 (1998).

Kindervater, G. and M. Savelsbergh. "Vehicle routing: handling edge constraints," in
Local Search in Combinatorial Optimization. Eds. Aarts, E. and J. K. Lenstra.
Chichester: Wiley, 1997.

Lenstra, J. K., and H. G. Rinooy Kan. "Complexity of Vehicle Routing and Scheduling
Problems," Networks, 11: 221-227 (1981).

Magnanti, T. L. "Combinatorial Optimization and Vehicle Fleet Planning: Perspectives
and Prospects *," Networks, 11: 179-213 (1981).

Moscato, Pablo. "An Introduction to population approaches for optimization and
hierarchical objective functions: A discussion on the role of tabu search," Annals of
Operations Research, 41: 85-121 (1993).

Ribeiro, C. and F. Soumis. "A Column Generation Approach to the Multiple-Depot
Vehicle Scheduling Problem," Operations Research, 42: 41-52 (January 1994).

Schräge, Linus. "Formulation and Structure of More Complex/Realistic Routing and
Scheduling Problems," Networks, 11: 229-232(1981).

Semet, F. and F. Taillard. "Solving Real-life Vehicle Routing Problems Efficiently
Using Tabu Search," Annals of Operations Research, 41: 469-488 (1993).

Tactical Pilotage Chart TPC F-2B (Ninth Edition). St. Louis MO: Defense Mapping
Agency Aerospace Center, March 1992.

Tsubakitani, S. and J. Evans. "An Empirical Study of a New Metaheuristic for the
Traveling Salesman Problem," European Journal of Operations Research, 104:
113-128(1998).

Van der Linden, Peter. Just Java and Beyond (Third Edition). Upper Saddle River NJ:
Prentice-Hall, 1998.

117

Vita

Captain Kevin P. O'Rourke was born on 22 July 1968 in Los Angeles County,

California. He graduated from Bel Air High School, Bel Air, Maryland, in 1986 and

entered undergraduate studies in engineering at The Pennsylvania State University in

State College, Pennsylvania. While attending Penn State, he enrolled in the Air Force

Reserve Officer Training Corps. He graduated with a Bachelor of Science degree in

Electrical Engineering and was concurrently commissioned in May 1990.

Captain O'Rourke completed Undergraduate Space Training at Lowry AFB,

Colorado in August 1991 and was assigned as an orbit analysis officer at Falcon AFB

Colorado (subsequently renamed Schriever AFB). In August 1994, he attended

Undergraduate Missile Training at Vandenberg AFB, California, and was next assigned

as a Peacekeeper ICBM Crew Commander at F. E. Warren AFB, Wyoming.

In August 1997, Captain O'Rourke entered the School of Engineering, Air Force

Institute of Technology.

Permanent Address: 4210 Cromwell Court
Colorado Springs CO 80906

118

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

DYNAMIC UNMANNED AERIAL VEHICLE (UAV) ROUTING WITH A
JAVA-ENCODED REACTIVE TABU SEARCH METAHEURISTIC

6. AUTHOR(S)

Kevin P. O'Rourke, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
Wright Patterson AFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Lt Col Mark A. O'Hair, Chief, Systems Integration Division (DOM)
Unmanned Aerial Vehicle Battlelab
1003 Nomad Way Ste 107
Eglin AFB FL 32542-6867

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/99M-06

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this paper we consider the dynamic routing of unmanned aerial vehicles (UAVs) currently in operational use with the US
Air Force. Dynamic vehicle routing problems (VRP) have always been challenging, and the airborne version of the VRP
adds dimensions and difficulties not present in typical ground-based applications. Previous UAV routing work has focused on
primarily on static, pre-planned situations; however, scheduling military operations, which are often ad-hoc, drives the need
for a dynamic route solver that can respond to rapidly evolving problem constraints. With these considerations in mind, we
examine the use of a Java-encoded metaheuristic to solve these dynamic routing problems, explore its operation with several
general problem classes, and look at the advantages it provides in sample UAV routing problems. The end routine provides
routing information for a UAV virtual battlespace simulation and allows dynamic routing of operational missions.

14. SUBJECT TERMS
Air Force Research, Operations Research, Optimization, Combinatorial Analysis, Algorithms,
Remotely Piloted Vehicles, Surveillance Drones, Tabu Search, Vehicle Routing Problem, Java,
Heuristics, Traveling Salesman Problem
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

132
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

