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Notation 

The following symbols appear in the main body of the paper and are defined as listed. 
For the sake of clarity, symbols appearing only in the appendices are defined when 
introduced. 

at = arrival time at node i 
A = arc set 
A = line segment, wind adjustment triangle 
AS = airspeed 
B = line segment, wind adjustment triangle 
dj = cost (travel time) from node /toy 
C = line segment, wind adjustment triangle 
C, = excess vehicle capacity 
d = insertion move depth 
di = departure time from node i 
dij = great circle distance between locations i and 7 
D = maximum tour-length duration 
Dj = excess route duration 
d = earliest begin service time of node i 
G = graph set 
GS = ground speed 
H = intermediate heading angle 
hijk = travel altitude fc between locations /and j 
i = insertion move position 
k = altitude band 
k = iteration 
£. = latest begin service time of node i 

L = latitude 
LD = load overage violations 
m = number of vehicles 
n = number of customers 
qt = non-negative customer demand (quantity) of node i 
Q = vehicle capacity 
Si = customer service time of node i 
Smax(i) = maximum stochastic service time for location i 
Smin(i) = minimum stochastic service time for location i 
Si = stochastic customer service time for location i 
t = arbitrary time within time window 
tij = travel time from node i to 7 
tLD = number of load infeasible solutions in the previous ten iterations 
tjw = number of time window infeasible solutions in the previous ten iterations 
TW = time window violations 

vin 



thv(t) = tour hashing value 
v0 = initial depot node (TSP, VRP) 
v, = additional nodes (TSP, VRP) 
V = vertex set 
w, = wait time to commence at node i 
WS = wind speed 
xy = indicator variable denoting arc from node i toj is included in the tour 
Z (t) = feasible objective function 

Z{t) = penalized objective function 

Z'f(t) = feasible UAV objective function 

Z\t) = penalized UAV objective function 

0ij = bearing from location / toj 
€>ws = wind bearing 
*Py = random weight for arc i, j 
5 = course correction angle 
X = longitude 
6 = tabu list length 
p = generic penalty scaling factor 
PLD = load capacity penalty scaling factor 
pm = time window penalty scaling factor 
T = tour position 
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Abstract 

In this paper we consider the dynamic routing of unmanned aerial vehicles 

(UAVs) currently in operational use with the US Air Force. Dynamic vehicle routing 

problems (VRP) have always been challenging, and the airborne version of the VRP adds 

dimensions and difficulties not present in typical ground-based applications. Previous 

UAV routing work has focused on primarily on static, pre-planned situations; however, 

scheduling military operations, which are often ad-hoc, drives the need for a dynamic 

route solver that can respond to rapidly evolving problem constraints. With these 

considerations in mind, we examine the use of a Java-encoded metaheuristic to solve 

these dynamic routing problems, explore its operation with several general problem 

classes, and look at the advantages it provides in sample UAV routing problems. The 

end routine provides routing information for a UAV virtual battlespace simulation and 

allows dynamic routing of operational missions. 

Keywords: Air Force Research, Operations Research, Optimization, Combinatorial 

Analysis, Algorithms, Remotely Piloted Vehicles, Surveillance Drones, Crosswinds, 

Ground Speed (Tabu Search, Vehicle Routing Problem, Java, Heuristics, Traveling 

Salesman Problem). 



DYNAMIC UNMANNED AERIAL VEHICLE (UAV) ROUTING WITH A 

JAVA-ENCODED REACTIVE TABU SEARCH METAHEURISTIC 

Chapter 1 

The research documented in this thesis was sponsored by the Unmanned Aerial 

Vehicle (UAV) Battlelab. The UAV Battlelab is one of six battlelabs tasked with rapidly 

advancing warfighting concepts that enhance Air Force core competencies (Bailey 1998). 

The UAV Battlelab seeks innovative ideas and concepts with a military utility and 

attempts to quickly study and demonstrate those with promise. This evaluation is 

accomplished within the constraints of a limited budget and uses existing technologies 

whenever possible. 

Improvement ideas, or initiatives, fall into one of two classes, Mitchell Class and 

Kenney Class. Mitchell Class initiatives are revolutionary in their impact and are 

typically costly. Kenney Class initiatives are usually straightforward and less costly 

(Bailey 1998). The research detailed in this paper falls under the auspices of a Kenney 

Class initiative, specifically one investigating potential UAV use for an active 

Suppression of Enemy Air Defense (SEAD) mission. The use of modeling and 

simulation resources has been identified as a crucial part of evaluating this new mission 

concept. 



To aid in the modeling and simulation of the SEAD mission, the reactive tabu 

search heuristic route solver interfaces with a virtual UAV battlespace simulation created 

by Walston (1999). Her virtual battlespace simulates the US Air Force RQ-1A Predator 

in a SEAD mission and allows evaluation of tactics and aircraft design parameters. 

A heuristic with the power to solve routing problems for simulation has the 

benefit of being able to solve real-world routing problems on-the-fly. Operational 

interface to the solver is available through a graphical user interface (GUI) (Flood 1999). 

The GUI provides air vehicle operators (AVOs), who are US Air Force pilots, the ability 

to dynamically update vehicle routes to reflect real-time changes in operational missions. 

This routing tool is offered as a proof of concept for possible implementation in their 

Ground Control Station (GCS) software. 

Our primary objective was to give the Battlelab a robust and powerful routing 

black-box capable of dynamically supporting real-time operations and interfacing with 

the battlespace simulation. Additionally, we sought to provide a generic, portable, and 

expandable heuristic capable of solving this extremely difficult type of problem class, as 

well as others that are even more difficult. We have succeeded with a Reactive Tabu 

Search Heuristic implemented in the Java programming language. 

The reactive tabu search is crucial to the success of both of these tools—tools that 

will provide the UAV community with a new modeling and simulation capability and 

provide the pilots with a new routing solver to aid flight mission planning. Both of these, 

in the long run, save money and enhance combat effectiveness. 

This thesis research involved creating a Java implementation of a reactive tabu 

search (Battiti and Tecchiolli 1994, Carlton 1995, Ryan 1998) capable of solving 



single/multiple traveling salesman problems with and without time windows (TSP, 

MTSP,TSPTW, MTSPTW), as well as capacitated vehicle routing problems with and 

without time windows (VRP, VRPTW). The RTS solver adds capacity constraints to 

Ryan's work, and extends Carlton's work with a reactive penalty scheme. Work on this 

RTS was done jointly with Ryer (1999) and results are representative of our combined 

efforts. Consequently, some items appear concurrently in both papers. 

This implementation supports both classical problems and formats and UAV 

problems and formats. Changes required for the UAV problem reflect unique aspects of 

the operational mission, and include items such as a reformulated objective function, 

alternate coordinate and numerical formatting, and random customer service times. The 

introduction of altitude-based wind tiers, when selecting UAV routes, capitalizes on the 

altitude-dependent, highly asymmetric nature of travel times in an airborne environment. 

The Java implementation is an object-oriented structure that is both machine 

portable and readily modifiable to support new problem instances. The internal data 

structure and methodology work with the GUI to support operational requirements such 

as route locking and dynamic rescheduling in support of priority targets. 

This thesis is organized such that Chapter 2 is a stand-alone article on the research 

suitable for submission to an academic journal. Chapter 3 provides ideas that represent 

natural and worthwhile extensions to the work accomplished. The appendices provide in- 

depth information on various aspects of the research and other supplementary material. 

Appendix A provides detailed formulation for several routing class problems. 

Appendix B shows the performance of our reactive tabu search compared to other lesser 

heuristics on a sample traveling salesman problem. Appendix C gives documentation 



that accompanies our Java code in the JavaDoc format. Appendix D provides additional 

references that were used in the course of the research, but are not cited or quoted in the 

main document. 



Chapter 2 

2.1 Introduction 

Unmanned Aerial Vehicle (UAV) routing is a complex problem, and earlier work 

on the subject examined essentially predefined static scenarios. A tabu search coupled 

with a Monte Carlo Simulation was used to find the minimum number of vehicles 

required based on stochastic survival probabilities (Sisson 1997). Stochastic simulations 

involved selecting the best predefined route based on expected values of service, wind, 

and survival variables (Ryan 1998). This produced a robust tour which could then be 

used to mission plan a given set of targets with unknown threat and wind conditions at 

the time of mission execution. This approach is wholly appropriate for an autonomous 

UAV which is preprogrammed to execute a planned mission. While this gives a good 

starting point for a route schedule, it does not incorporate the latest information— 

information that can rapidly change. 

The continuously evolving mission is a primary concern, especially to the 

operators of a long-duration, unmanned aerial vehicle such as the US Air Force's RQ-1A 

Predator. An ability to dynamically adapt to the latest target update is fundamental to 

successful military operations. Therefore, we seek to take maximum advantage of 

current information (winds, target locations, threats, priorities) to dynamically generate 

and update routes for real-time use. This requires a method fast enough to be 

operationally effective, robust enough to handle a wide scope of problems, and reliable 

enough to provide optimal (or near optimal) solutions. 



Most routing problems are NP-hard combinatorial problems for which no 

polynomially bounded algorithm has been found (Bodin et al. 1983). Convergent 

algorithms can rarely solve large problems consisting of more than 50 customers and 

often require relatively few side constraints (Gendreau et al. 1997). Unfortunately, real- 

world problems, such as UAV routing, possess many side constraints such as route and 

vehicle capacities, route length restrictions, and time windows in a sizeable network. 

Additionally, this network may be comprised of multiple depots and heterogeneous 

vehicles. Finding optimal solutions to these types of problems by using techniques such 

as branch and bound or dynamic programming is currently not practical. 

Several heuristic approaches have been used in an attempt to overcome these 

problems. Greedy algorithms, which prove to be very useful in simpler problems, fail to 

achieve the desired results with respect to solution quality. Simulated annealing (SA) 

displays large variances in computational time and solution quality due to the random 

nature of its search strategy (Osman 1993). Genetic algorithms (GAs), which are 

designed to solve numerical optimization problems rather than combinatorial 

optimization problems, are difficult to apply to vehicle routing problems (VRPs) that 

require capacity, distance, and time window constraints (Gendreau et al. 1997). 

Fortunately, tabu search (TS) (Glover 1989) provides excellent results on these types of 

problems. The tabu search heuristic uses adaptive memory structures as it searches the 

solution space. Moves from one solution to another are made in a forced and orderly 

manner, and this forced move methodology allows the tabu search to escape the local 

extreme points. At each iteration, the tabu search will select a solution from the 

neighborhood provided the new candidate solution is not on the tabu list. The tabu list is 



a data structure which keeps track of past solutions visited so that new solutions must be 

examined. Since the search must pick a new solution at each iteration, the items on the 

tabu list will be tabu, or off-limits, and the heuristic will pick the best non-tabu move, 

which may actually be a worse solution. This seems somewhat counter-intuitive, but the 

search will continue on to find unexplored areas which potentially may yield better 

overall results. A special instance called aspiration allows the tabu status of a move to be 

overruled if certain conditions are met. The tabu status will be overridden and the 

solution accepted if it is deemed good enough based on certain attractiveness thresholds. 

The length of time a solution stays on the tabu list is determined by the tabu list length. 

Based on the length of the tabu list, the behavior of the search can be significantly 

altered. If the list is shortened, intensification occurs and the local area will be searched 

more thoroughly as the search gravitates towards the local optimum. If the list is 

lengthened, diversification occurs and the search will be forced leave its current area to 

explore new areas further away in the solution space (Glover 1997). 

The literature shows TS is a robust approach to solving many variations of the 

VRP and dominates current studies of routing problems (Garcia et al. 1994, Osman 1993, 

Rochat and Semet 1994, Carlton 1995, Xu and Kelly 1996, Chiang and Russell 1997, 

Gendreau et al. 1997, Barbarosoglu and Ozgur 1999). Even certain vehicle routing 

methods, such as the sweep method and petal heuristic, are not as powerful as tabu search 

algorithms (Renaud et al. 1996b). 

This project explores the application of the reactive tabu search (RTS) 

metaheuristic to routing problems, specifically the vehicle routing problem with time 

windows (VRPTW). Our RTS follows the basic TS scheme, but differs in that it actively 



adjusts the tabu length based on the quality of the search, as determined by the number of 

iterations before a solution is revisited. In execution this project implements the object- 

oriented (OO) Java programming language for two reasons. First, the 00 design of 

software allows us to reuse and modify existing code and libraries which reduces the 

development time of new software routines to extend problems (Eckel 1998). Second, 

Java programs offer a cross-platform compatibility which enhances portability. Our Java 

heuristic implementation follows, improves, and extends a MODSIM implementation 

(Ryan 1998) based on an RTS developed by Battiti and Tecchiolli (1994) and 

implemented by Carlton (1995). 

In this paper, first we examine a reactive tabu search heuristic suitable for solving 

traveling salesman and vehicle routing problems and provide our results from a Java 

implementation of this solver. We look at enhancements to the RTS, the verification and 

validation results, and explore how this tabu search successfully solves tough problems. 

We review past work and general formulation of the UAV routing problem. We look at 

our modifications to previous efforts and show how the RTS enables us to solve this 

problem in particular. Finally, we suggest areas for future exploration. 

2.2 Reactive Tabu Search for the Vehicle Routing Problem with Time Windows 

The vehicle routing problem with time windows (VRPTW) is defined as follows: 

Let G = (V, A) be a graph where V = {v0, vx,..., vn} is the vertex set and 

A = {(vi,Vj): v(-,Vj GV, i* j} is the arc set. The depot vertex vo, has m identical 

vehicles, each with a maximum load capacity Q and a maximum route duration D. The 



remaining vertices v, e V represent customers to be serviced, each with a non-negative 

demand qif a service time s„ and a service time window comprised of a no-earlier-than 

time et and a no-later-than time £i. The no-earlier-than time window constraint is 

considered soft, i.e., an arrival time a, before the early time results in a wait time wt until 

e, to commence service. Each edge (v,-, v,-) has an associated non-negative cost cy, 

interpreted as travel time % between locations i and j. 

The objective of the vehicle routing problem with time windows (VRPTW) is to 

determine a set of m vehicle routes starting and ending at the depot, such that each 

customer is visited exactly once within its time window, the total demand of any vehicle 

route does not exceed Q, the duration of any vehicle route does not exceed D, and the 

total cost of all routes is minimized. When only one vehicle is available and Q, D, eh and 

l.t are non-binding constraints, the problem reduces to a traveling salesman problem 

(Renaud et al. 1996a). 

A tour is defined by the order in which the n customers are served by the m 

vehicles. In our heuristic, we represent the problem as an ordered list of the sequence of 

customers and vehicles, or disjunctive graph, as shown in Figure 1. 

T(d): 

WS.    Vehicle Nodes 

(T)   Cu stomer Nodes 

Figure 1. Disjunctive Graph Notation 



The first and last positions (0 and n + m) in this sequence represent the initial 

depot/vehicle and an additional terminal depot required to close the graph. These two 

nodes are fixed and will not move during the search. Initially, the customers occupy 

positions between 1 and n and the additional vehicles occupy the remaining positions 

between n + 1 and n + m - 1 as shown in Figure 2. During the search, customers and 

vehicles will be interspersed, and unused vehicles will occupy positions between the last 

serviced customer and the final depot. 

T(d) = 

0 1              2 n R + 1 n + m - l i + m 

0 HJM5H --(■)- 
n + 1  ► ... ► 

niü —»Bill 

m Vehicle Nodes 

(7) Customer Nodes 

Figure 2. Initial Tour Sequence 

2.2.1 Objective Function. 

For the generic VRPTW, we seek to minimize travel costs ctj along the selected 

arcs identified by xy = 1. This is given by 

minimize Zf (t) = ^T ^T c^Xy 
j     i 

Where X = (xy )e S,    Xy<= {0,l} V i, j 

(1) 

Full enumeration of all constraints is available in Appendix A. 
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2.2.2 Penalized Objective Function. 

A major advantage of our method is that it effectively explores the solution space 

by considering both feasible and infeasible solutions. First, instead of being restricted 

only to feasible regions, our RTS can traverse regions of infeasibility to include starting 

with an infeasible initial solution. Second, the infeasible solutions generated may be used 

in real world applications with flexible constraints. For instance, an infeasible solution 

that produces superb overall results may become feasible with the relaxation of a 

constraint controlled by the decision-maker. Such a case occurred with a delivery 

problem solved by Rochat and Semet (1994). Since very few real-world constraints are 

absolutely hard, these infeasible solutions may represent some difficult route selection 

choices that managers may face when trying to balance competing criteria. 

A solution is infeasible if it violates a time window, load capacity, or duration 

constraint. Constraint violations include missed time windows TW and excess vehicle 

load capacity LD defined as 

TW =X[max(0,fl/ -^)]+X[max(0,a,. -£>,)] 
i i 

and 

LD = X[max(0,<7,.-ö,.)] 

respectively. Each constraint violation is scaled by a corresponding penalty factor, pm 

and pLD, giving the penalized objective function as 

minimize Z(t) = Zf (t) + pLDLD + pmTW ( 2 ) 

11 



where Zft) is the original objective function given by ( 1). If the solution is feasible, 

then Zft) and Z{t) are equivalent. Otherwise, Z(t) will include non-zero penalty terms. 

2.2.3 Adjusting Reactive Penalty Coefficients. 

The penalty factors should be large enough to separate the infeasible and feasible 

regions of the solution space so that infeasible solutions do not dominate feasible 

solutions. The penalty factors should also be small enough to allow consideration of 

infeasible solutions. Appropriate penalty values can be very difficult to calculate 

(Petridis et al. 1998), so our implementation allows for self-adjusting penalty values in 

addition to constant user-set penalty values. 

When self-adjusting, the value of the penalty coefficients pLD and p^ are 

independently adjusted every five iterations as proposed by Gendreau et al. (1996) using 

the relationship 

'TW -1 

PTW ~ PTW •25 

tw -1 

PLD = PLD ■2b 

where tm is the number of time window infeasible solutions among the last ten solutions 

and tLD is the number of capacity infeasible solutions among the last ten solutions. If all 

ten previous solutions are feasible, the current p is multiplied by l/2. If all ten previous 

solutions are infeasible, the current p is multiplied by 2. Intermediate numbers of 

infeasible solutions yield multiplicative factors between l/2 and 2. The penalty values are 

arbitrarily limited to the closed interval [0.1, 10200], a range easily represented by Java. 

12 



This prevents the penalties from being rounded by Java to unadjustable zero or infinity 

values. In the reactive penalty scheme, we arbitrarily set both penalty values initially to 

1000. 

The reactive penalties provide a measure of trajectory control into and out of 

feasible regions based on the collective feasibility of the previous solutions. When many 

successive solutions are feasible, the lowered penalties do not strongly discourage 

movement to an infeasible solution. Successive infeasible solutions drive the penalties 

higher, putting increasingly greater emphasis on finding a feasible solution. 

2.2.4 Initial Solution. 

An initial solution, which may or may not be feasible, is arbitrarily constructed. 

We employ three options for arranging this initial solution—the first is a listed ordering, 

the second is based on the time window midpoint, and the third is based on a randomized 

ordering. All three methods arbitrarily construct a solution by assigning all customers to 

one vehicle. 

The list ordered tour method (LOT) simply assigns customers to the vehicle in the 

order that they are listed in the data set. The ordered starting tour (OST) method 

generates a starting solution by sorting the customers based upon increasing time window 

midpoint values while enforcing the time window feasibility conditions. The time 

window midpoint for the customer i is defined as halfway between ei and £i. 

The random starting tour (RST) method randomly reorders the sequential starting 

list of customers to provide a different starting point. Since the tabu search is a 

neighborhood search, the initial starting solution will influence the progression of the 

13 



search. Our experimentation suggests that the reactive tabu search is robust and 

relatively insensitive to the initial tour. 

2.2.5 Neighborhood Structure. 

Our solution neighborhood is the set of tours immediately reachable from the 

current solution with a single 3-opt move. The 3-opt move removes three edges and 

replaces them with three new edges in a way that moves one vertex to another location in 

the tour sequence. From the disjunctive graph formulation, the solution neighborhood is 

examined with incremental swap moves and updated with an insertion move. A swap 

move exchanges the position of two adjacent nodes with a 3-opt move as shown in Figure 

3. An insertion move relocates a specific customer at location i forwards or backwards in 

the tour by a number of steps called the insertion depth d. In our implementation, an 

insertion is executed as a series of sequential swap moves. 

Initial Sequence before Swap 

<iK 
O-0 

D 

Updated Sequence after Swap 

.0 
Ö" & 

X) 

.:»,.:..►      Arcs affected by the swap 

(      j      Nodes affected by the swap 

Figure 3. Adjacent 3-Opt Swap Move 

14 



This problem types yields a staggering (n + m - 1)! possible solution 

permutations—a relatively simple 25 customer, 5 vehicle problem has 8.842 x 10 

possible solutions. To reduce the neighborhood size, moves which result in a redundant 

tour are prohibited. Additionally, strong time window feasibility is enforced (Carlton 

1995). 

Strong time window infeasible states occur between nodes i and; whenever a 

vehicle leaving node i at departure time d{ can never arrive at node; within the required 

time window. Specifically, node j is strong time window infeasible with respect to node i 

if di,+1.. > £ ■ V di = ai + st, at E [et ,£t]  . Weak time window infeasible states occur 

when only some departure times preclude a timely arrival at the following node, i.e., 

dt + cr < £ ■ Vdi = at + st, at<t,t^ [et,£t)   . Unlike strong time window infeasible 

tours, weak time window infeasible tours are evaluated in the search since insertion 

moves can ultimately reduce the amount of infeasibility in the overall tour (Carlton 

1995). Past vehicle routing problem research indicates that feasible solutions may be 

isolated or disjoint from each other in the solution space, so in order to effectively search 

the solution space, the method must investigate and perhaps accept infeasible solutions. 

This search of the infeasible region is facilitated by our use of penalty factors. 

2.2.6' Tabu Moves. 

Tabu search uses a memory structure to determine if a particular tour has already 

been visited by examining its attributes. The examination must efficiently and reliably 

store and identify solution attributes previously altered during the search. We employ an 

15 



(n + 1) x (n + 1) dimension Tabulist matrix with rows corresponding to customer 

identification numbers and columns corresponding to the index, or position, of the 

customer in the solution tour. The data elements in this array store the iteration number k 

for the move that placed the customer into this position plus the tabu length 6. This value 

will be compared to the current iteration to determine if a move of this attribute is tabu. 

2.2.7 Adjusting Tabu Length. 

To maintain search quality, we reactively adjust the tabu length based on the 

number of iterations occurring between cycles. Cycles occur when the search revisits a 

solution; a high quality search should infrequently revisit past solutions. Given the 

combinatorial nature of the problem, it is possible to select a seemingly different tour that 

is actually a redundant tour—one that appears new, but in fact is a revisit of a previous 

equivalent tour. Figure 4 illustrates two different tours which are actually redundant 

tours. 

Redundant tours are identified with a two-attribute hashing scheme. The first 

hashing attribute, the hashing function f{t), is assigned the objective function value Z{t). 

Woodruff and Zemel (1993) propose a method that we use to compute the second 

hashing attribute, the tour hashing value thv{i). We take the tour vector and calculate an 

integer based on random integer values, ^(T,), where T* is the index of the customer 

assigned to tour position i, such that 

thv(T)=^(T,y^(TM) . 
i=0 
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This tour hashing value attempts to minimize the occurrence of a collision, or the 

incorrect identification of two tours as being identical or redundant when they are 

actually distinct. 

T(l) 

T(2). 

~o~|—{T)—{T)—£T]—{7)—<7)—{7]—<7)   - 8 

T]—{7)—{7)—£B^ —*®—" 7 —*©—*®—" 8 

Figure 4. Redundant Tours 

We also use other attributes to identify a solution; these are tour cost, travel time, 

time window penalty, and total penalty. These integer values are concatenated into a 

uniquely identifiable Java string object and stored with Java Hashtable class functions. 

This unique string value allows us to efficiently identify past solutions, as well as access 

the hash record containing solution attributes stored in their original form. 

When the search revisits a solution within the designated number of iterations, or 

cycle length, the tabu length is increased by a scaling factor. This tabu length increase 

diversifies the search. If the search is not revisiting solutions, tabu length is decreased by 

a scaling factor. When a solution is revisited within the maximum cycle length, the 

algorithm calculates a moving average of cycle lengths, or the average number of 

iterations between a revisit. If the tabu length has remained unchanged for a number of 

iterations greater than or equal to this moving average, then the current tabu length is 

decreased by the scaling factor, thus intensifying the search. We set the initial tabu 

length value 6 to the smaller of either 30 or m + n - 1. 
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2.2.8 Aspiration and Escape Functions. 

Aspiration allows for overriding the tabu status of a move if the proposed tour 

solution is better than any previous solution. If all moves are tabu and no proposed 

solution meets aspiration criteria, the search escapes to the neighbor tour with smallest 

move value. This escape move is accomplished regardless of tabu status and results in a 

tabu length decrease. 

2.2.9 Move Evaluation and Selection. 

The RTS systematically explores the solution space using a series of swap moves 

and chooses the allowable adjacent solution with the smallest move value. The move 

value is the difference between the incumbent's objective function value and the 

candidate's objective function value given as the cost/travel savings resulting directly 

from the 3-opt move and the resultant changes occurring in the rest of the tour. 

2.2.10 Heuristic Description. 

Crucial to the success of the solver is the time matrix which contains the travel 

times Uj between every node combination i, j. The time matrix is built in a three-step 

process. First, cartesian distances between locations are computed. Second, these 

distances are converted to times based on problem parameters. Third, the service time at 

node i is added to the time. As such, % values then represent the amount of time between 

arrival at node i and the subsequent arrival at node j. We use these values as our costs, 

i.e., Cy = Uj. Actual en route travel time can be calculated by subtracting service time st 

from Uj. 
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The reactive tabu search executes the following steps. 

Step 1 (Initialization) Initialize data structures, vectors, and parameters. 

Step 2 (Problem Input) Read data and assign node information. Calculate appropriate 
time matrix. 

Step 3 (Route Initialization) Construct initial tour, calculate initial tour schedule, and 
compute associated tour cost and hashing value. Store values. Assign initial tour 
as incumbent tour. 

Step 4 (Cycle Check) Check hashing structure for the incumbent tour. If found, update 
the iteration when found, increase the tabu length if applicable. If not found, add 
to the hashing structure, decrease the tabu length, if applicable. Increment current 
iteration number. 

Step 5 (Check Later Insertions) Accomplish swap moves to evaluate all forwards 
insertions. Store position i and depth d of best move value, aspiration, and escape 
information. 

Step 6 (Check Earlier Insertions) Accomplish swap move to evaluate all backwards 
insertions. Store i, d of best move value, aspiration, and escape information. 

Step 7 (Execute Move) Move to a non-tabu neighbor according to appropriate decision 
criteria. If all moves are tabu, use the escape move and reduce the tabu length. 
Perform insertion, update schedule, assign neighbor tour as new incumbent tour, 
compute hashing value, and track best tour information. If current iteration 
number is less than the maximum iteration number, return to Step 4. 

Step 8 (Output results) Terminate heuristic search and output results. 

2.2.11 Computational Complexity. 

The neighborhood size considered at each step is 0(nd), and the computation of 

the move value for each neighbor is 0(ri). If the depth of the insertion moves is restricted 

to 1, then the algorithm achieves a minimum computational complexity of 0(n2). The 

worst case complexity is 0(n2d) where d is the depth of the allowable insertion moves. 

When the insertion depth is expanded to n the computational complexity expands with it 

to a maximum 0(n3). However, empirical testing shows that considerably better times 
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than 0(n3) can be achieved due to the strong time window infeasibility restriction 

discussed earlier (Carlton 1995). 

2.3 Reactive Tabu Search for Dynamic Unmanned Aerial Vehicle Routing 

The US Air Force uses the Predator UAV to perform a reconnaissance and 

surveillance mission. The Predator is remotely flown by Air Vehicle Operators, who are 

Air Force pilots, located in a Ground Control Station. Co-located Payload Specialists 

remotely control the electro-optical camera, infrared scanner, and synthetic aperture radar 

to observe targets of interest as specified by higher command elements. The imagery is 

returned real-time via satellite link to intelligence specialists and regional commanders 

(McKenna 1998). The Predator has been used successfully to monitor buildings, military 

forces, and battle activities in Bosnia pursuant to United Nations and NATO missions. 

The Predator's long airborne endurance of nearly 40 hours and its ground based control 

system (with ready access to computers) makes it an ideal candidate for efficient 

computerized routing strategies. 

We seek to enhance the capabilities of existing mission software. Current 

software will automatically generate deterministic items such as terrain avoidance 

profiles, ground station to UAV line of site availibility, route times between defined way 

points, fuel consumption, heading and turn information, etc., but it does not and will not 

optimize routes. This combinatorial problem is a task left to the operator. We provide 

our routing tool to fill the gap that exists in making complicated routing decisions. 
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Since this is a real-world operational problem, several real-world operational 

factors influence our implementation approach. 

2.3.1 Operational Parameters. 

Operational employment of the UAV drives several changes to how the problem 

data is specified and solved. These changes range from relatively superficial ones in how 

the coordinates and times are represented, to moderate changes in how the parameters are 

calculated, to significant changes in how the objective function is formulated to reflect 

the nature of the problem. 

2.3.2 Geographic Coordinates. 

Coordinates are expressed in a geocentric format instead of a Cartesian format. 

We calculate the distance and bearing between coordinate points as shown in AFR 51-40, 

Air Navigation (Departments of the Air Force and Navy 1983). Given the departure 

latitude L\ and longitude X\ and the destination latitude L2 and longitude A,2, the great 

circle distance d in nautical miles between the two coordinate points can be found using 

the following formulation 

d = 60 • cos-1 [sin L^ • sin L2 + cos L^ ■ cos L2 • cos^ - \ )J . 

Using this distance, an intermediate heading angle H in degrees is determined as 

i 
sin Lj - sin L[ • cos 

H =cos 

(d_\ 

60 

sin 
(d\ 

v60, 
•COSlj 

Based on the geometry of the coordinates, this intermediate heading angle is adjusted to 

21 



obtain the initial true heading ©*,, measured in degrees from true north, i.e., 

\H, sin(A2-A1)<0 

"v     1360° -//,   sin(A2-A1)>0 

This distance and bearing geometry is shown in Figure 5. 

(Lv \) 

Figure 5. Distance and Bearing Geometry (Spherical Triangle) 

2.3.3 Wind Effects on Ground Speed. 

When computing transit times between locations, we must account for the effect 

of winds aloft. Given a wind speed WS from a bearing of QWs measured in degrees from 

true north, one can calculate the effective ground speed GS along the true course 0y from 

the first location to the second. The difference between Qtj and ®Ws is represented by 8. 

Figure 6 illustrates this geometry. When I 8 I < 90, A is negative and subtracts from the 

airspeed as a headwind component. When 90 < I S I < 180, A is positive and adds to the 

airspeed as a tailwind component. The wind correction angle from true heading is 

denoted by y. This adjusted heading corrects the flight path to compensate for wind drift. 

Groundspeed as influenced by wind aloft, is explicitly calculated as follows. 

8=Qij-ews 
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A = WScos(180-<5) 
C = WSsin(180-<5) 

B = ^AS2-C2 

GS = A + B = WS cos(180-<5) + ^AS2 -WS2 ■ sin2 (ISO - Ö) 

The transit time between the points is then simply ttj = dtj /GS   . 

Headwind Effect (GS < AS) 

<=\vs 

Tailwind Effect (GS > AS) 

.8 

GS 

G\vs 

Figure 6. Headwind and Tailwind Ground Speed Adjustment 

2.3.4 Numerical Formatting. 

The latitude L and longitude X information is measured in degrees where one 

degree is composed of sixty minutes and one minute is composed of sixty seconds. The 

are values often listed in a degrees minutes seconds format (DD MM SS.ss); we convert 
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latitudes and longitudes into a decimal degree format for computational ease using the 

formula 

D.d = DD + MM/60 + SS.ss/3600  . 

Locations can also be listed in a degrees minutes decimal minutes format (DD MM.mm) 

where minutes are expressed as decimal values. Conversion to a decimal degree value is 

defined as 

D.d = DD +MM.mm/60  . 

Clock time is often expressed in a military-style hours minutes (HH MM) format; 

for computational ease, we express time in minutes tminutes as 

tminules = 60 HH +MM   . 

2.3.5 Objective Function Modifications. 

The UAV operating environment also mandates changes to the objective function. 

The standard VRPTW objective function seeks to minimize travel costs as represented by 

the distance traveled. Early arrival to a customer is allowed, and the resulting waiting 

time is cost free in the objective function. This may be appropriate for a standard 

terrestrial application in which the costs are associated mainly with transiting between 

locations, but in UAV operations there are costs associated with keeping the aircraft 

airborne. Thus, UAV waiting times represent costs that must be considered in our efforts 

to minimize the objective function. We therefore modify the original and penalized 

objective functions ( 1 ) and ( 2 ) to include waiting time w, at node / in addition to the 
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original transit times as 

minimize Z'f (0 = X X (cu + w* \ 
;    ' 

As before, the penalized objective function is gained by adding the scaled infeasibility 

values to yield 

minimize Z'(t) = Z'f (t)+ pLDLD + pmTW   . 

The search now attempts to minimize the total time aloft and proceeds as previously 

presented. 

2.3.6 Dynamic Mission Requirements. 

The nature of UAV employment presents unique situations that our routing tool 

must handle. As such, we show how our scenarios depart from traditional VRPs and 

explain how we successfully implement these requirements. Unique routing situations 

exist with regard to altitude-based wind tiers, random service times, emerging priority 

targets, and locked route sequences. These instances are explored in the following 

paragraphs. 

2.3.7 Optimizing Use of Altitude-Based Wind Tiers. 

Recall that in the general MTSPTW problem, travel times between fixed locations 

are known, with fixed and symmetric costs (i.e., ctj = cß). This symmetry does not hold 

in the UAV operating environment where winds affect travel times and can vary both in 

direction and velocity as a function of altitude (depicted belowin Figure 7). We 

incorporate this wind information to select the minimum travel time between nodes. 
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18,000' 

10,000' 

5,000 ' 

Figure 7. Typical Winds Aloft Profile 

Specifically in any altitude band k, travel time is a function of UAV altitude hijk 

and airspeed ASk; wind speed WSk and direction 0^ ; and the distance dy and bearing 

0,.. between locations. We make the simplifying assumption that wind direction and 

speed is constant throughout an entire altitude zone. This is reasonable since values at 

any point in the region are interpolated predictions based on measurements of actual 

conditions at discrete weather station locations (Parsons 1999). 

Using our previous equations, we calculate times between all locations based on 

the adjusted ground speed for each altitude band. This forms tiers of asymmetric wind- 

influenced travel time matrices from which we select the smallest travel time from i toy 

as 

tsl = min 
VJfc >] 

dy 

GS,(huk) 

where GS^Qi^) the ground speed as a function of traveling in altitude band k. The 

corresponding altitude is assigned as our flight altitude for that leg. Since this wind 

optimization process is accomplished prior to beginning the tabu search, the heuristic will 
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accept an arbitrary number of altitude bands with no appreciable effect on computational 

time or efficiency. 

2.3.8 Random Service Times. 

In the general TSPTW problem, customer service times are known constants. In 

the UAV problem context, the target service times are random variables. The service 

time represents the amount of time the aircraft spends circumnavigating the target point 

to gather imagery from multiple viewpoints, and, due to the unknown nature of the target, 

military necessity may dictate a longer observation than initially planned. The actual 

target i service time St falls between the minimum service time smin (i) and the maximum 

service time s^ii) inclusive. Service time will be the minimum service time with 0.7 

probability; when the time is above the minimum, it is modeled as uniformly distributed 

between the minimum and maximum. The service time is given by 

s = knh(0 with °-7 probability 
'     [Uniform(^/n(j),5max(0)   with 0.3 probability 

A known service time is simply specified by setting St = smin(i)=smax(i) . 

2.3.9 Emerging Targets. 

Another aspect of UAV operations is the pop-up priority target. This occurs when 

the UAV is retasked in flight to observe a target of utmost military urgency. Depending 

on the new target location, this immediate divert may render the remainder of the route 
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obsolete. Rather than proceed with a potentially sub-optimal route, our solver offers the 

ability to route-from-here. 

Given that the UAV will proceed to the ad hoc target, this location becomes a new 

starting point and the remaining targets are processed in a route that returns the UAV to 

the depot. This route-from-here capability is achieved with smart processing of the time 

matrix. 

2.3.10 Locked and Forbidden Routes. 

At times, UAV operations require a locked route, in which one or more targets 

must be visited in a specific order. This may occur with a directed route or with certain 

observational requirements such as a consecutive imaging pass for a synthetic aperture 

radar image. The GUI allows these route points to be locked together and treated as an 

aggregated node with a beginning location corresponding to the first point and an ending 

location corresponding to the last point. The aggregated node is assigned a composite 

service time that accounts for intra-node service, wait, and travel times. 

The opposite of a locked route is & forbidden route which may be a result of a no- 

fly zone or threat region. The forbidden area is then monitored for flight paths which 

pass through it; if a path intersects a forbidden area, it is modeled as a longer route that 

skirts the edge of the region as shown in Figure 8. 
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Initial Fobidden Resultant 
Route Route Around 

/No X /    No      \ 
/  Fiy   / \ /     Fiy      \ 
/ Region/        \ /     Region        \ 

Figure 8. Forbidden Route Example 

2.4 Computational Results 

2.4.1 General Results. 

Our initial testing and validation used the Solomon VRPTW problem test sets— 

25, 50, and 100 customer scenarios with random, clustered and random clustered 

distribution patterns. Our computational results are compared in Tables 1-6 (Ryer 1999) 

to known optimal answers obtained by Desrochers, Desrosiers, and Solomon (1992). 

Dashed regions of the chart indicate problems that could not be optimally solved by 

Desrochers et al. All problems were solved in reasonable computation times by our RTS 

algorithm (2500 iterations with user specified penalties) with an overall solution quality 

within 1% of optimal values. Solving the harder VRPTW class problems did not require 

an increase in computation times over the mTSPTW class problems. 

The objective function value used in these initial tests includes travel time, missed 

time window penalties, and load overage penalties. With a relatively small amount of 

coding, the objective function can be expanded to include additional penalties, changed to 

represent several different weighted objective functions, or combined in a hierarchical 

objective function. Results are presented in Tables 1 through 6. 
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Table 1. Solomon mTSPTW Computational Results (25 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 

Set1 z,W Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST 
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST 
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 
R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST 
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 
R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0 
R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2 
R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST 
R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST 
R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0 
Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0 
R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LOT 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 
C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LOT 
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 
C104 2436.9 3 797 8 2436.9 3 223.9 0.0 0.00% OST 
C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST 
C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST 
C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST 
C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST 
C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LOT 
RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST 
RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2 
RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST 
RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1 
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 
RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0 
RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST 

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% — 

(Ryer 1999) 

1 Maximum number of vehicles: m 
2 Maximum iterations: k = 2500. 
3 

: 10. Time window penalty: pnv =1.0. 

- 28 seconds each. Seconds on a Pentium II400 MHz system. Total runtime • 
* Seconds on a Sun Sparc 1 workstation. 
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 2. Solomon mTSPTW Computational Results (50 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A         A% 

Start 
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO 
R102 1409.0 11 1939 78 1404.6 11 67.8 4.4 0.31% RSTO 
R103 1282.7 9 871 36 1272.5 9 8939.1 10.2 0.80% OST 
R104 1131.9 6 734 31 — — — — — RSTO 
R105 1401.6 9 402 15 1399.2 9 362.6 2.4 0.17% LOT 
R106 1293.0 8 2294 94 1285.2 8 386.4 7.8 0.61% RST1 
R107 1211.1 7 1786 75 1211.1 7 7362.1 0.0 0.00% RSTO 
R108 1117.7 6 1698 75 — — — — — RSTO 
R109 1286.7 8 1452 58 — — — — — RSTO 
R110 1207.8 7 1853 78 1197.0 7 4906.1 10.8 0.90% RST1 
Rill 1216.6 7 1775 72 — — — — — RST2 
R112 1140.5 6 1784 78 — — — — — RST2 

C101 4862.4 5 119 4 4862.4 5 67.1 0.0 0.00% LOT 
C102 4861.4 5 607 19 4861.4 5 330.2 0.0 0.00% LOT 
C103 4855.8 5 1699 57 — — — — — OST 
C104 4884.1 5 1253 43 — — — — — LOT 
C105 4861.2 5 232 7 — — — — — OST 
C106 4862.4 5 308 9 4862.4 5 91.3 0.0 0.00% LOT 
C107 4861.2 5 382 12 — — — — — LOT 
C108 4861.2 5 92 3 — — — — — LOT 
C109 4860.9 5 301 9 — — — — — OST 

RC101 1444.0 8 1252 38       — — RST1 
RC102 1325.1 7 754 23 — — — — — RST1 
RC103 1216.2 6 1589 54 — — — — — RSTO 
RC104 1046.5 5 860 31 — — — — — RST2 
RC105 1355.3 8 248 8 — — — — — OST 
RC106 1223.2 6 1921 61 — — — — — RST2 
RC107 1146.0 6 189 7 — — — — — LOT 
RC108 1098.1 6 1821 65 — — — — — OST 

Average 2374.7 6.66 1050 39.6 — — — — — — 

(Ryer 1999) 

1 Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: prw = 3.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 100 seconds each. 
4 Seconds on a Sun Sparc 1 workstation. 
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 3. Solomon mTSPTW Computational Results (100 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set1 Z,(t) Used Iter2 Time3 

Z,(f) Used Time4 Method5 

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9       3.14% RST0 
R102 2522.9 18 1783 322 2434.0 17 756.9 88.9       3.65% RSTO 
R103 2266.8 15 1797 351 — — — —        — RST2 
R104 2010.6 11 1401 311 — — — —        — RST2 
R105 2418.0 16 560 93 •— — — —        — RST1 
R106 2256.9 14 1403 252 — — — —        — LOT 
R107 2091.6 12 1462 278 — — — —        — LOT 
R108 1980.3 10 2325 491 — — — —        — RSTO 
R109 2191.4 13 2149 398 — — — —        — RST1 
R110 2121.1 12 1479 291 — — — —        — RST2 
Rill 2082.1 12 1882 370 — — — —        — RST2 
R112 1986.1 11 2325 507 — — — —        — RST1 

C101 9827.3 10 285 45 9827.3 10 434.5 0.0       0.00% OST 
C102 9820.3 10 237 42 — — — —       — OST 
C103 9813.7 10 256 49 — — — —       — OST 
C104 9809.0 10 2495 536 — — — —       — RST2 
C105 9821.2 10 313 50 — — — —       — OST 
C106 9827.3 10 455 75 9827.3 10 724.8 0.0       0.00% OST 
C107 9818.9 10 292 48 — — — —       — OST 
C108 9818.9 10 662 115 — — — —       — OST 
C109 9818.6 10 1381 262 — — — —       — LOT 

RC101 2685.7 16 897 144 —     —        — OST 
RC102 2534.0 15 2410 434 — — — —       — OST 
RC103 2352.3 13 1047 195 — — — —       — RSTO 
RC104 2209.1 11 1311 272 — — — —       — RST2 
RC105 2538.0 15 2327 412 — — — —       — RST1 
RC106 2457.8 14 443 74 — — — —       — RSTO 
RC107 2236.9 12 1822 344 — — — —       — RSTO 
RC108 2115.9 11 2206 451 — — — —       — RST1 

Average 4624.9 12.45 1365 261.48 — — — —     — — 

(Ryer 1999) 

' Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each. 
4 Seconds on a Sun Sparc 1 workstation. 

OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 4. Solomon VRPTW Computational Results (25 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 

Set1 Z,(t) Used Iter2 Time3 z,M Used Time* Method5 

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST 
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST 
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 
R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST 
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 
R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0 
R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2 
R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST 
R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST 
R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0 
Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RST0 
R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LOT 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 
C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LOT 
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 
C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST 
C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST 
C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST 
C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST 
C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST 
C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LOT 
RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST 
RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2 
RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LOT 
RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1 
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 
RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1 
RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LOT 

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LOT 

(Ryer 1999) 

1 Maximum number of vehicles: m = 10. Time window penalty: p-rw = 8.0; load penalty pz.D =10.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 28 seconds each. 
4 Seconds on a Sun Sparc 1 workstation. 
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 5. Solomon VRPTW Computational Results (50 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A         A% 

Start 

Set1 Zif) Used Iter2 Time3 Z,M Used Time4 Method5 

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO 
R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO 
R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST 
R104 1137.4 6 1533 69 — — — — — RST2 
R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LOT 
R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1 
R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO 
R108 1117.7 6 1698 78 — — — — — RSTO 
R109 1286.7 8 1451 61 — — — — — RSTO 
R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1 
Rill 1216.6 7 1775 76 — — — — — RST2 
R112 1135.0 6 1456 68 — — — — — RST2 

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LOT 
C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LOT 
C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO 
C104 4882.8 5 1727 79 — — — — — RSTO 
C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST 
C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LOT 
C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LOT 
C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LOT 
C109 4862.4 5 643 26 — — — — — OST 

RC101 1446.8 8 1613 60   — — — — OST 
RC102 1331.8 7 1508 60 — — — — — RST2 
RC103 1210.9 6 2194 94 — — — — — OST 
RC104 1046.5 5 412 18 — — — — — LOT 
RC105 1355.3 8 104 4 — — — — — OST 
RC106 1223.2 6 1454 58 — — — — — RST2 
RC107 1144.4 6 898 36 — — — — — RST1 
RC108 1098.1 6 1361 58 — — — — — OST 

Average 2375.01 6.66 1153 49.4 — — — — — — 

(Ryer 1999) 

1 Maximum number of vehicles: m = 15. Time window penalty: p™ = 1.0; load penalty pu> =10.0. 
2 Maximum iterations k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime -100 seconds each. 
4 Seconds on a Sun Sparc 1 workstation. 
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 6. Solomon VRPTW Computational Results (100 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A         A% 

Start 

Set' z,(0 Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2 
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO 
R103 2265.0 15 1091 228 — — — — — RST2 
R104 2039.6 12 1488 338 — — — — — OST 
R105 2399.4 16 1974 378 — — — — — RSTO 
R106 2268.4 14 2431 491 — — — — — LOT 
R107 2129.0 13 1905 406 — — — — — RST1 
R108 1956.8 10 2415 565 — — — — — RSTO 
R109 2181.0 14 1587 311 — — — — — RST1 
R110 2133.2 13 1548 328 — — — — — RST2 
Rill 2077.3 12 2248 491 — — — — — RST2 
R112 1971.6 11 1898 460 — — — — — RST2 

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST 
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST 
C103 9828.9 10 2500 535 — — — — — RSTO 
C104 9949.6 10 2194 509 — — — — — RST2 
C105 9827.3 10 378 65 — — — — — OST 
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST 
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST 
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST 
C109 9853.3 10 2202 463 — — — — — RSTO 

RC101 2669.9 16 2110 381 — — — — — OST 
RC102 2498.4 15 2136 419 — — — — — LOT 
RC103 2363.6 13 1333 270 — — — — — RST1 
RC104 2179.2 11 1365 308 — — — — — LOT 
RC105 2557.4 15 2482 473 — — — — — OST 
RC106 2432.8 13 2222 434 — — — — — RST2 
RC107 2266.1 12 2024 417 — — — — — RST2 
RC108 2175.1 12 2122 475 — — — — — RST1 

Average 4632.3 12.62 1693 349.6 — — — — — — 

(Ryer 1999) 

1 Maximum number of vehicles: m = 25. Time window penalty: prw = 8.0; load penalty PLD =10.0. 
2 Maximum iterations k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime ~ 550 seconds each. 
4 Seconds on a Sun Sparc 1 workstation. 
5 OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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2.4.2 UAVResults. 

We analyzed a Bosnia UAV scenario provided by Bergdahl (1998). Winds for 

the region of interest are given in Table 7. These winds are taken from actual US Air 

Force meteorological conditions for the operating region. 

Table 7. Wind Data 

Altitude Altitude Bws WS AS 
Tier                (ft) (deg) (kts) (kts) 

0 5,000 300 15 W~ 
1 10,000 300 37.5 70 
2 18,000 310 50.0 70 

Scenario details are listed in Table 8, and a map of this scenario is provided in Figure 9. 

The 52 targets fall into three remote operating zones (ROZs), each with non-overlapping 

time windows. Route optimization begins and ends with the Srbac, Bosnia waypoint, 

since the route to and from there must follow a mandatory air corridor. 

The scenario was solved in 108 seconds on a Pentium II300 MHz system using 

the UAV specific module of the heuristic. With optimum use of wind tiers, the solver 

returned a tour requiring only one vehicle with a mission time of 822 minutes. Without 

wind tier modeling, two vehicles are required with a combined mission time of 1384 

minutes. This demonstrates the improvement that can be achieved with smart selection 

of travel altitudes. 

The optimized tour output is listed in Table 9 (the "Alt" column designates the 

altitude tier to be used enroute to the next target); this flight path is shown in Figures 
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Figure 10 and Figure 11. Figure 11 shows the same sequence as Figure 10 with a 

temporal component as the added third axis and gray bars representing the time windows. 

2.5 Conclusions 

Our Java implementation of a reactive tabu search first described by Battiti and 

Tecchiolli (1994) successfully solves single/multiple traveling salesman problems with 

and without time windows (TSP, MTSP,TSPTW, MTSPTW), as well as capacitated 

vehicle routing problems with and without time windows (VRP, VRPTW). On the 

Solomon problem sets, our heuristic produces close to optimal solutions within 

reasonable computing times.   Addition of reactive penalties allows the algorithm to 

perform more robustly over a wider set of problems. 

Our implementation supports UAV problems and formats as well as classical 

problems and formats. Changes required for the UAV problem reflect unique aspects of 

the operational UAV mission and include items such as a reformulated objective 

function, alternate coordinate and numerical formatting, and random customer service 

times. The introduction of altitude-based wind tiers, when selecting UAV routes, 

capitalizes on the altitude-dependent, highly asymmetric nature of the flight environment. 

The Java implementation is an object oriented structure that is both machine 

portable and readily modifiable to support new problem instances. The internal data 

structure and methodology work with the GUI to support operational requirements such 

as route locking and dynamic rescheduling in support of priority targets. 
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Table 8. Bosnia Data Set 

Location Name Lat (DD MM SS) Lon (DD MM SS) —1  e,1 
*min(0 ■SniaxCO 

DepotTazarHungary N 46 24 0 E 17 54 0 
CorridorSzulokHungary N 46 3 45 E 17 32 44 

CorridorSrbacBosnia* N 45 24 0 E 17 30 0 940 4800 0 0 
Dumdvga N 44 58 29 E 16 50 34 1015 1500 30 180 
Mastye N 44 58 46 E 16 38 56 1015 1500 30 180 
AAASiteGarred N 44 58 4 E 16 39 31 1015 1500 2 15 
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1015 1500 2 30 
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1015 1500 2 30 
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1015 1500 2 30 
CommSiteSardona N 44 59 2 E 16 39 56 1015 1500 2 30 
CommSiteSardona N 44 59 11 E 16 40 19 1015 1500 2 30 
CommSiteSardona N 44 59 15 E 16 39 20 1015 1500 2 30 
SuspWpnStorage N 44 59 9 E 16 39 10 1015 1500 2 30 
SuspWpnStorage N 44 54 52 E 16 34 47 1015 1500 2 30 
SuspWpnStorage N 44 51 49 E 16 41 37 1015 1500 2 30 
SuspWpnStorage N 45 0 7 E 16 34 47 1015 1500 2 30 
SuspWpnStorage N 44 59 9 E 16 49 17 1015 1500 2 30 
SuspWpnStorage N 44 57 41 E 16 39 35 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1015 1500 2 30 
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1015 1500 2 30 
HQSiteDromada N 45 0 7 E 16 53 49 1015 1500 30 120 
WarehouseDromada N 44 53 31 E 16 54 12 1015 1500 2 60 
BarracksOmanski N 44 45 34 E 17 10 34 1500 1715 5 120 
BarracksOmanski N 44 48 19 E 17 12 14 1500 1715 5 120 
BarracksOmanski N 44 51 2 E 17 13 24 1500 1715 5 120 
TankRallyPointBolstavec N 44 50 51 E 17 14 39 1500 1715 2 30 
TankRallyPointBolstavec N 44 56 17 E 17 17 41 1500 1715 2 30 
StorageBunkerKrajachastane N 44 55 51 E 17 17 51 1500 1715 2 30 
StorageBunkerKrajachastane N 44 56 7 E 17 18 23 1500 1715 2 30 
RoadGolprtuniy N 44 28 13 E 17 1 18 1730 1830 20 40 
RoadGolprtuniy N 44 27 29 E 17 1 46 1730 1830 20 40 
RoadGolprtuniy N 44 27 10 E 17 2 24 1730 1830 20 40 
Dumdvga N 44 58 29 E 16 50 34 1900 2300 30 180 
Mastye N 44 58 46 E 16 38 56 1900 2300 30 180 
AAASiteGarred N 44 58 4 E 16 39 31 1900 2300 2 15 
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1900 2300 2 30 
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1900 2300 2 30 
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1900 2300 2 30 
CommSiteSardona N 44 59 2 E 16 39 56 1900 2300 2 30 
CommSiteSardona N 44 59 11 E 16 40 19 1900 2300 2 30 
CommSiteSardona N 44 59 15 E 16 39 20 1900 2300 2 30 
SuspWpnStorage N 44 59 9 E 16 39 10 1900 2300 2 30 
SuspWpnStorage N 44 54 52 E 16 34 47 1900 2300 2 30 
SuspWpnStorage N 44 51 49 E 16 41 37 1900 2300 2 30 
SuspWpnStorage N 45 0 7 E 16 34 47 1900 2300 2 30 
SuspWpnStorage N 44 59 9 E 16 49 17 1900 2300 2 30 
SuspWpnStorage N 44 57 41 E 16 39 35 1900 2300 2 30 
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1900 2300 2 30 
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1900 2300 2 30 
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1900 2300 2 30 
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1900 2300 2 30 
HQSiteDromada N 45 0 7 E 16 53 49 1900 2300 30 120 
WarehouseDromada N 44 53 31 E 16 54 12 1900 2300 2 60 
CorridorSrbacBosnia N 45 24 0 E 17 30 0 940 4740 0 0 

DepotTazarHungary N 46 24 0 E 17 54 0 
CorridorSzulokHungary N 46 3 45 E 17 32 44 

(Bergdahl 1998) 
1 Time listed in hours-minutes format. 
2 Minutes. 
* Optimization begins from Srbac Corridor waypoint 
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Table 9. Bosnia Tour Sequence 

Label ID Lat* Long3 Early4 Late4 Arr4 Dep4 Serv4 Alt5 

CorridorSrbacBosnia 0 45.1166 -17.5416 580 2880 580.00 580.00 0 0 

HQSiteDromada 20 45.0019 -16.8969 615 900 606.25 615.00 30 0 
SAMIADSiteProbSA2 16 44.9563 -16.8625 615 900 647.66 647.66 2 0 

Dumdvga 1 44.9747 -16.8427 615 900 650.97 650.97 125 0 
SuspWpnStorage 14 44.9858 -16.8213 615 900 778.02 778.02 2 2 
SAMIADSiteProbSA2 17 44.9625 -16.8244 615 900 780.89 780.89 2 0 
SAMIADSiteProbSA2 18 44.9325 -16.7311 615 900 786.88 786.88 2 0 
CommSiteSardona 8 44.9863 -16.6719 615 900 792.77 792.77 2 0 
CommSiteSardona 7 44.9838 -16.6655 615 900 795.05 795.05 2 0 
CommSiteSardona 9 44.9875 -16.6555 615 900 797.50 797.50 6 0 
SuspWpnStorage 10 44.9858 -16.6527 615 900 804.11 804.11 3 2 
HvyWpnDepTharmet 6 44.983 -16.6577 615 900 807.86 807.86 2 2 

HvyWpnDepTharmet 5 44.9775 -16.6613 615 900 810.05 810.05 2 2 
SAMIADSiteSiteRadar 19 44.963 -16.665 615 900 812.57 812.57 2 0 
SuspWpnStorage 15 44.9613 -16.6597 615 900 814.79 814.79 2 0 

AAASiteGarred 3 44.9677 -16.6586 615 900 817.14 817.14 2 0 
HvyWpnDepTharmet 4 44.9758 -16.6549 615 900 819.61 819.61 2 0 
Mastye 2 44.9794 -16.6488 615 900 821.93 821.93 30 0 
SuspWpnStorage 13 45.0019 -16.5797 615 900 855.02 855.02 19 2 
SuspWpnStorage 11 44.9144 -16.5797 615 900 878.36 878.36 2 2 
SuspWpnStorage 12 44.8636 -16.6936 615 900 883.24 883.24 2 1 
WarehouseDromada 21 44.8919 -16.9033 615 900 891.03 891.03 2 1 
TankRallyPointBolstavec 26 44.938 -17.2947 900 1035 903.71 903.71 2 2 
StorageBunkerKrajachastane 28 44.9352 -17.3063 900 1035 905.98 905.98 15 0 
StorageBunkerKrajachastane 27 44.9308 -17.2975 900 1035 921.88 921.88 2 0 
TankRallyPointBolstavec 25 44.8475 -17.2441 900 1035 928.56 928.56 2 0 
BarracksOmanski 24 44.8505 -17.2233 900 1035 931.42 931.42 15 2 
BarracksOmanski 23 44.8052 -17.2038 900 1035 949.23 949.23 5 0 
BarracksOmanski 22 44.7594 -17.1761 900 1035 956.77 956.77 5 2 
RoadGolprtuniy 31 44.4527 -17.04 1050 1110 977.93 1050.00 20 0 
RoadGolprtuniy 30 44.458 -17.0294 1050 1110 1070.52 1070.52 20 0 
RoadGolprtuniy 29 44.4702 -17.0216 1050 1110 1091.27 1091.27 22 0 
SuspWpnStorage 43 44.8636 -16.6936 1140 1380 1139.59 1140.00 13 0 
SuspWpnStorage 42 44.9144 -16.5797 1140 1380 1159.13 1159.13 2 0 
SuspWpnStorage 44 45.0019 -16.5797 1140 1380 1165.90 1165.90 2 2 
Mastye 33 44.9794 -16.6488 1140 1380 1169.55 1169.55 30 0 
SuspWpnStorage 41 44.9858 -16.6527 1140 1380 1199.91 1199.91 24 0 
CommSiteSardona 40 44.9875 -16.6555 1140 1380 1224.17 1224.17 2 2 
CommSiteSardona 39 44.9863 -16.6719 1140 1380 1226.56 1226.56 2 0 
CommSiteSardona 38 44.9838 -16.6655 1140 1380 1228.84 1228.84 21 0 
HvyWpnDepTharmet 37 44.983 -16.6577 1140 1380 1250.84 1250.84 2 2 
HvyWpnDepTharmet 36 44.9775 -16.6613 1140 1380 1253.03 1253.03 8 0 
HvyWpnDepTharmet 35 44.9758 -16.6549 1140 1380 1262.16 1262.16 2 2 
AAASiteGarred 34 44.9677 -16.6586 1140 1380 1264.44 1264.44 2 2 
SuspWpnStorage 46 44.9613 -16.6597 1140 1380 1266.67 1266.67 2 1 
SAMIADSiteSiteRadar 50 44.963 -16.665 1140 1380 1268.84 1268.84 2 2 
SAMIADSiteProbSA2 49 44.9325 -16.7311 1140 1380 1272.52 1272.52 2 2 
WarehouseDromada 52 44.8919 -16.9033 1140 1380 1278.57 1278.57 2 0 
SAMIADSiteProbSA2 47 44.9563 -16.8625 1140 1380 1284.55 1284.55 2 0 
SAMIADSiteProbSA2 48 44.9625 -16.8244 1140 1380 1288.13 1288.13 28 0 
SuspWpnStorage 45 44.9858 -16.8213 1140 1380 1318.38 1318.38 2 2 
Dumdvga 32 44.9747 -16.8427 1140 1380 1320.94 1320.94 30 1 
HQSiteDromada 51 45.0019 -16.8969 1140 1380 1353.14 1353.14 30 0 
CorridorSrbacB osnia 45.1166 -17.5416 580 2880 1401.57 — 0 — 
1 Parameters set as follows: maximum number of vehicles: m = 5; maximum iterations: k = 2500; reactive penalty scheme; 

LOT starting tour. Total runtime 108 seconds on a Pentium II 300 MHz system. 
2 By convention North latitudes are positive and South latitudes are negative. 
3 By convention, West longitudes are positive and East longitudes are negative. 

Time in minutes. 
5 Flight altitude to next point: "0" = 5,000 ft, "1" = 10,000 ft, "2" = 18,000 ft. 
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Chapter 3 

We present several ideas that represent natural and worthwhile extensions to the 

work accomplished. 

3.1 Heuristic Modifications 

Modifications to the tabu search heuristic could include any of the following 

ideas. Additional operators have increased solution quality for genetic algorithms 

(Petridis et al. 1998); construction and implementation of additional operators may prove 

useful. These operators could consider additional random or directed moves which 

expand the neighborhood, such as a 4-opt, for possible improvements in the objective 

function. 

Restarts based on changes in the solution quality or stabilization of the objective 

function could prove useful. Methods to consider include the following: maintenance of 

an elite list of best solutions where a restart resumes with relaxed tabu restrictions (Xu 

and Kelly 1996); intensification from previous location with stored tabu status 

(Armentano and Ronconi 1999); or a multi-start backjump tracking scheme (Liaw 1999, 

Norwicki and Smutnicki 1996). Other initialization methods such as a sweep 

initialization or petal initialization (Renaud 1996b) could be explored. 
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3.2 UAV Related Modifications 

Changes to the UAV specific aspect of the problem could include a priority 

scheme hierarchy that generates route segments based on assigned target priorities. This 

would involve constructing subtours that are then smartly linked together—obviously, the 

parameters of one subtour will be highly dependent on the others. The rudimentary wind 

modeling (discrete levels and average regional values) could be replaced with wind 

values that correlate specifically to each leg. A more detailed modeling of actual UAV 

transition times between altitudes, with modeled climb rates would provide a higher 

fidelity mission profile. The service times distribution model, which is still rather 

unknown, could be updated to reflect data gathered from recent operations. 

3.3 Java Code Modifications 

Although we are not strict computer programmers, work was done in an attempt 

to improve the code for better heuristic performance. This includes items such as 

ordering logic comparisons (so that the most likely outcome is encountered first to reduce 

comparisons) and changing several methods (to decrease instantiations). These 

optimization modifications reduced the run time for the 100 customer, 25 vehicle 

Solomon problem sets from an average of 700 seconds to 550 seconds. While this 

represents about a 25% reduction in run time, there is still tremendous room for 

improvement due to excessive object copying. 

With any Java non-primitive type, the statement "x = y" will cause the "x" label to 

point to the "y" object, and the previous "x" object (if any) will be lost. What remains is 
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the "y" object with both an "x" label and a "y" label. In order to have a separate "x" 

object that is the same as the "y" object, an explicit copy or clone function must be used 

to duplicate the object (Flanagan 1997). This duplication is an expensive operation, as it 

instantiates a new object and copies the member data. Analysis of the current reactive 

tabu heuristic with the KL Group's JProbe™ Java profiler tool revealed that nearly 50% 

of the run time is spent copying NodeType objects. Initial experimentation using an 

index system as node pointers showed potential run times that are only 20% of the 

current run time—100 customer, 25 vehicle Solomon sets ran in -120 seconds versus the 

current -550 seconds. This speed increase results from copying and manipulating the 

indices, which are Java primitive types, instead of copying and manipulating the 

NodeType objects. 

Some initial work was done in an attempt to reconfigure the heuristic to run using 

indices, but the changes are substantial as they touch nearly every aspect of the program. 

Future programming efforts should make the conversion, which will allow faster 

solutions and larger problem sets. 
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Appendix A. Extended Problem Formulation 

This appendix examines the formulation of the traveling salesman problem (TSP), 

multiple traveling salesman problem (MTSP), vehicle routing problem (VRP), and 

multiple-depot vehicle routing problem (MDVRP). It is provided for generality and 

thoroughness as these problem types have additional constraints which were not 

mentioned previously since they are intrinsicly modeled in the tabu search heuristic. For 

instance, based on the way the tabu search evaluates the neighborhood and swaps 

customers, no subtour breaking constraint is provided since it is impossible for the 

heuristic to construct a subtour. Notation and numbering of variables differs slightly 

from that presented in Chapter 2, as the notation there is tailored to the problem context. 

A.1 Traveling Salesman Problem (TSP) 

The first problem class, and basis for the remaining types, is the traveling 

salesman problem (TSP). Begin by defining the TSP structure and objective as follows: 

Let G be our network with the set of nodes N, a set of branches A, and the associated non- 

negative branch costs of C = c^. The objective of this problem is to form a tour spanning 

all the nodes beginning and ending at the origin (node 1), which yields the minimum total 

tour length or cost. In the most basic case, we assume that the costs are symmetric (Cy = 

Cji), but the problem can be asymmetric with no loss of generality. 

49 



This can be represented as an assignment problem, where exactly one arc xtj starts at node 

i, and exactly one arc xtj terminates at node j. Specifically, the problem is formulated as 

follows: 

n      n 

Minimize Z(t) = X X cvxu (Al. 1) 
1=1  7=1 

Where 

[ 1    if arc ij is in the tour 
11     [0   otherwise 

Subject to: 

£*, =bj=\   (; = l,2,...,n) (A1.2) 
i=i 

£*„ =a, = l    (; = l,2,...,n) (A1.3) 

Where 

X = (XiJ)eS,        x„e{0,l} V i,j = l,2,...,n  . 

As previously mentioned, additional constraints are required to eliminate 

subtours. Adding the subtour breaking constraint to the assignment formulation prevents 

subtours. The three standard ways to represent a subtour breaking constraint (Bodin et al. 

1983) are listed as follows: 

(1) S = Uxy): X X x'j ~ * f°r every nonempty proper subset Q of N [ 
[ ieQ j£Q J 

(2) S = \ (xu): XXxu - 1^1~~* ^or everY nonempty subset R of {2,3,...,n}> 
[ ieR jeR J 

(3) S = ^Xy): y, - y; + nxy <n-\ for 2 < i * j < n for some real numbers y, j . 
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The first constraint requires that every node subset Q of the solution set be 

connected to all of the other nodes in the solution. The second constraint requires that the 

arcs in the solution set contain no cycles (a cycle over R nodes must contain \R\ arcs. The 

third constraint is not intuitively straightforward and calls for more explanation. First, 

define y,- as follows: 

\t    if node i is visited on the f * step in a tour 

[0   otherwise 

For an arc in the solution tour (xtj = 1), the constraint becomes 

t-(t + i)+n<n-l  . 

For an arc not contained in the solution tour (xu = 0), the constraint reduces to 

y,-yj <n-\   . 

The third representation has the advantage of adding only n2 -3n + 2 subtour breaking 

constraints to the formulation, where the previous two add 2" constraints (Bodin et al. 

1983). 

A.2 Multiple Traveling Salesman Problem (MTSP) 

Adding more salesmen to the problem gives the next level of complexity, the 

multiple traveling salesman problem (MTSP). Let m be the number of salesmen or 

vehicles that make up the fleet. Again the objective is to minimize the total distance 

traveled. Assume further that the m salesmen depart from and return to the same depot 

and that each customer must be visited exactly once by exactly one salesman. 
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With these changes, the formulation is an extension of the basic TSP presented 

above and is represented as 

n      n 

Minimize Z(f) = £ X cyxy (A2.1) 

Subject to: 

t!    J        '      [1        if ,7 = 2,3 n 

^ r M   if 7 = i 

%    '        J      [1        if j= 2,3,...,« 

(A2.2) 

(A2.3) 

where X = (xy )G S ,   xtj e {0,l} V i, j = 1,2,..., n  . 

The first constraint in the formulation requires that all salesmen be used by 

forcing them to leave the depot. The second constraint requires all salesmen to return to 

the depot. Any one of the subtour breaking constraints used earlier in the TSP can be 

used for the MTSP. 

The apparent complexity of this new problem can be reduced by representing the 

MTSP as m copies of the single TSP. This is accomplished by creating dummy depots 

(Di,...JDm) that are connected to the original network. These m copies are either separate 

from each other, or are connected with cost prohibitive big M arcs. When these single 

TSP copies are connected to a common depot, the problem becomes a series of m 

subtours, which when taken together forms the MTSP. This relatively straightforward 

transformation of the MTSP helps demonstrates why a TSP algorithm can be used to 

solve MTSP problems (Bodin et al. 1983). 
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A.3 Vehicle Routing Problem (VRP) 

The next extension of the TSP is the Vehicle Routing Problem (VRP) which is 

obtained by adding a capacity constraint to the salesman or vehicles. In the VRP, a 

number of vehicles w leave a depot and service a number of customers n, each possessing 

a unique demand dt. Each vehicle v has a limited capacity Kv and a maximum route 

duration Tv that constrains their closed delivery routes, or return to depot time. This 

particular instance of the VRP is commonly known as the general vehicle routing 

problem (GVRP). If the maximum route lengths or range constraints are removed, then 

this problem is referred to as the standard vehicle routing problem (SVRP) (Bodin et al. 

1983). Additionally, the time required for a vehicle v to deliver or service at node i is s/, 

the travel time for vehicle v from node i to node j is *,/, and finally xt/ = 1 if arc i-j is used 

by vehicle v. From this, the formulation of the GVRP is as follows: 

n      n     w 

Minimize Z(t) = X EX cvxu (A3A) 

;=1   j=\  v=l 

Subject to: 

n     w 

XX4=1  (7 = 2, ...,n) (A3.2) 
1=1   v=l 

£X4=1  (»' = 2, ...,«) (A3.3) 
J=l   v=l 

5X"IX=0 (v=l,...,w;p=l,...,n) (A3.4) 
<=i j=\ 

X4(i>»;)£*v   (V=1,-,H0 (A3.5) 
1=1 7=1 
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X^X^+XX«^ (v=i,...,W) .   (A3.6) 
i=l y=l J=l   7=1 

£<.<1  (v=l, ...,w) (A3.7) 
7=2 

X^l (V=1,...,H>) (A3.8) 
1=2 

where  X = (JC* )e 5, 4 e {0,l} V i, j,v  . 

The objective function, which minimizes the overall distance, remains the same but is 

formulated to sum over all vehicles. Equations (A3.2) and (A3.3) require that every 

customer is visited by exactly one vehicle. It is assumed that a customer's demand does 

not exceed vehicle capacity and that each customer is fully serviced by the single vehicle 

that visits it. Equation (A3.4) requires continuity of our routes while (A3.5) maintains 

the vehicle capacity constraint. Since route length restrictions are represented with times, 

equation (A3.6) requires that maximum route duration is not exceeded. Finally, 

equations (A3.7) and (A3.8) limit the number of vehicles used. 

In addition to these equations, subtour breaking constraints, slightly modified 

from those used earlier in the TSP, must be included. Since it is the most efficient, the 

third subtour representation is selected for expansion as follows: 

S = {xj. :yj -yvj+nxy < n -1 for 2 < i * j < n for some real numbers yj } 

This applies the original subtour breaking constraint to each vehicle in turn. We 

note that some redundant constraints can be eliminated from the formulation above. 

Using (A3.2) and (A3.4) enforces (A3.3) automatically and makes it unnecessary (Bodin 
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et al. 1983). Likewise (A3.4) and (A3.7) imply (A3.8) so this too can be eliminated from 

the formulation (Bodin et al. 1983). 

Finally, one common constraint added to the VRP is time windows. Let a, be the 

arrival time to nodey, e, be the earliest delivery time allowable and lj be the no later than 

time for delivery. A nonlinear representation yields 

*j=2,11*1+4+W 0=u,..,») (A3-9) 

ax =0 

>,. <«,</,.     0 = 2.-.») 

(A3.10) 

(A3.11) 

If xj- = 0 then a} = 0. Otherwise a, is the sum of the previous arrival time (at = 0), the 

service time at node i (sj), and the travel time from i to j (tv
tj). Alternatively the linear 

representation of time windows constraint (Bodin et al. 1983) can be used in the 

formulation 

V 

max aj>{ai + s: + t^-x^Tn 

a,<(a; + 5r + ^)+(l-4)-C,. 
• for all i, j, v (A3.12) 

When xjj = 1, the second half of the equation is eliminated and a; is determined 

from the previous arrival time, previous service time, and the travel time between the 

nodes. When xv
a = 0, the constraints are redundant. 

A.4 Multiple Depot Vehicle Routing Problem (MDVRP) 

Expanding the previous GVRP to account for multiple depots, or bases of 

operation, gives the multiple depot VRP. This problem can be formulated with only 
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minor changes. Let M be the number of depots in our problem. First the original VRP 

formulation indexes are changed for equation (A3.2), (j = M + 1, ... ,ri), and equation 

(A3.3), (z = M + 1,... , n). Next the constraints (A3.7) and (A3.8) are changed to sum 

over all the depots individually to require that the number of vehicles used does not 

exceed the number of vehicles available. 

M       n 

2£4<i        (v=i,...,W) 
;=1 j=M+\ 

M       n 

2X*;<i       (v=i,...,w) 
p=l ,'=A/+1 

The MDVRP also requires an adjustment to the subtour breaking constraint. 

Again, only one is required (Bodin et al. 1983). 

(1) S = {(xy): X X *<) - * for every nonempty proper subset Q of {1, 2, ... , n} 

containing nodes 1,2, ... , M}; 

(2) S={(xij): XX^y-N-1  for every nonempty subset i? of {M+l,M+2 ,..., n}}; 
isR jeR 

(3) S = {(xtj): yi - vy. + nxu <n-\  for M + 1 < i *j < n for some real numbers y,-} . 
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Appendix B. Tabu Search vs. Other Heuristics—TSP Example 

Objective: Minimize distance, d 

Initial Order, d = 3138 

Global Greedy, d = 2238 

Nearest Neighbor, d = 2108 

Tabu Search, d = 1830 

Nari Data Set (Sisson 1997) 
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Appendix C. Javadoc Listing 

Class Hierarchy 

class java.lang.Object 
class Convert 
class CoordTvpe 
class CycleOut 
class HashMod 
class InFromKevbd 
class KeyObj 
class KevToString 
class MTSPTWuav 
class BestSolnMod 
class TsptwPen 
class NoCycleOut 
class NodeTvpe 
class PrintCalls 
class PrintFlag 
class ReacTabuObi 
class ReadFile 
class SearchOut 
class StartPenBestOut 
class StartTourObi 
class TabuMod 
class TimeMatrixObj 
class Timer 
class TsptwPenOut 
class TwBestTTOut 
class ValueObi 
class VrpPenTvpe 
class WindAdjust 
class WindData 

Index of all Fields and Methods 

acSpeed. Variable in class WindData 
double aircraft speed at the associated altitude level. 

altitude. Variable in class WindData 
integer value of the associated altitude level. 

assignlnputFileCString). Static method in class ReadFile 
assignlnputFile sets up the FilelnputStream. 

B 

bands. Variable in class WindData 
double Number of altitude level bands. 
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bearing. Variable in class WindData 
double wind bearing at the associated altitude level. 

bearingXY(CoordTvpe, CoordType, double). Static method in class Convert 
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 

bestCost. Variable in class SearchOut 
bestCost. Variable in class StartPenBestOut 

Penalty related value. 
bestCost. Variable in class TwBestTTOut 

best tour related value. 
bestiter. Variable in class SearchOut 
bestiter. Variable in class StartPenBestOut 

Penalty related value. 
bestiter. Variable in class TwBestTTOut 

best tour related value. 
bestnv. Variable in class SearchOut 
bestnv. Variable in class StartPenBestOut 

Penalty related value. 
bestnv. Variable in class TwBestTTOut 

best tour related value. 
BestSolnModO. Constructor for class BestSolnMod 
bestTime. Variable in class SearchOut 
bestTime. Variable in class StartPenBestOut 

Penalty related value. 
bestTime. Variable in class TwBestTTOut 

best tour related value. 
bestTour. Variable in class SearchOut 
bestTour. Variable in class StartPenBestOut 

Saved tour. 
bestTour. Variable in class TwBestTTOut 

best tour related value. 
bestTT. Variable in class SearchOut 
bestTT. Variable in class StartPenBestOut 

Penalty related value. 
bestTT. Variable in class TwBestTTOut 

best tour related value. 
bfCost. Variable in class SearchOut 
bfCost. Variable in class StartPenBestOut 

Penalty related value. 
bfCost. Variable in class TwBestTTOut 

best tour related value. 
bfiter. Variable in class SearchOut 
bfiter. Variable in class StartPenBestOut 

Penalty related value. 
bfiter. Variable in class TwBestTTOut 

best tour related value. 
bfnv. Variable in class SearchOut 
bfnv. Variable in class StartPenBestOut 

Penalty related value. 
bfnv. Variable in class TwBestTTOut 

best tour related value. 
bfTime. Variable in class SearchOut 
bfTime. Variable in class StartPenBestOut 

Penalty related value. 
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bfTime. Variable in class TwBestTTOut 
best tour related value. 

bfTour. Variable in class SearchOut 
bfTour. Variable in class StartPenBestOut 

Saved tour. 
bfTour. Variable in class TwBestTTOut 

best tour related value. 
bfTT. Variable in class SearchOut 
bfTT. Variable in class StartPenBestOut 

Penalty related value. 
bfTT. Variable in class TwBestTTOut 

best tour related value. 

compPensfNodeTvpeH. int). Static method in class NodeTvpe 
compPens computes the vehicle capacity overload and time window penalties. 

compPensCNodeTvpen. int). Method in class VrpPenType 
compPens computes the vehicle capacity overload and time window penalties. 

ConvertO. Constructor for class Convert 
CoordTypeO. Constructor for class CoordType 

Default constructor. 
CoordTypeCString. double, double). Constructor for class CoordType 

Lat/long constructor. 
copvO. Method in class NodeTvpe 
cpuntVeh(NodeType[]). Static method in class NodeTvpe 

Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

countVehiclesCNodeTvpen). Static method in class TabuMod 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

cycle(ValueObj, double, int, int, int, double, int, int, PrintFlag). Static method in class TabuMod 
cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 

CycleOutO. Constructor for class CvcleOut 
Default constructor. 

CydeOutfint. int, double, ValueObj). Constructor for class CvcleOut 
Specified constructor. 

cvciePrint. Variable in class PrintFlag 
print flag. 

D 

distanceXYfCoordTvpe. CoordType). Static method in class Convert 
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

DMMmtoDdfint. double). Static method in class Convert 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMmtoDdfint. double, String). Static method in class Convert 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDdfint. int, double). Static method in class Convert 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDdfint. int, double, String). Static method in class Convert 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 
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endTime. Variable in class Timer 
end time. 

endTimeO. Method in class Timer 
endTime assigns end time. 

eguals(KeyObj). Method in class KeyObi 
Overloaded equals(), check only attribute fields. 

eguals(ValueObj). Method in class ValueObj 
Overloaded equals(), check only attribute fields. 

F 

firstHashVal(int). Static method in class HashMod 
firstHashVal method assigns the primary hashing value. 

G 

getACspeed(int). Method in class WindData 
getACspeed returns aircraft (UAV) speed for the specified band. 

getAltitude(int). Method in class WindData 
getAltitude returns actual altitude for the specified band. 

getBandsQ. Method in class WindData 
getBands returns number of altitude bands (wind tiers). 

getBearing(int). Method in class WindData 
getBearing returns wind bearing for the specified band. 

getEaO. Method in class NodeType 
getldO. Method in class NodeType 
getLaO. Method in class NodeType 
getLoadQ. Method in class NodeType 
getMQ. Method in class NodeType 
getQtvO. Method in class NodeType 
getSpeed(int). Method in class WindData 

getSpeed returns wind speed for the specified band. 
getTypeO. Method in class NodeType 
getWaitQ. Method in class NodeType 
groundSpeed(double, double, double, double). Static method in class WindAdiust 

groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

groundSpeedAF(double, double, double, double). Static method in class WindAdjust 
groundSpeedAF is an experimental method that uses a different formula. 

H 
hashCodeQ. Method in class KeyObj 

Overloaded hashCode method. 
hashCodeQ. Method in class ValueObj 

Overloaded hashCode method. 
HashModQ. Constructor for class HashMod 
HHMMtoMM(int). Static method in class Convert 

HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

HMMtoHh(int). Static method in class Convert 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

I 

InFromKeybdQ. Constructor for class InFromKevbd 
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insert(NodeType[], int, int). Static method in class NodeTvpe 
Method insert allows the element designated by "chl" to be shifted by "chD" elements. 

iterPrint. Variable in class PrintFlag 
print flag. 

K 

kevDoublefString). Static method in class InFromKevbd 
keyDouble allows user to enter a double from the keyboard. 

keyFloat(String). Static method in class InFromKevbd 
key Float allows user to enter a float from the keyboard. 

keylnt(String). Static method in class InFromKevbd 
keylnt allows user to enter an integer from the keyboard. 

KevObidnt, int, int, int, int, int). Constructor for class KeyObi 
Specified constructor. 

keyString(String). Static method in class InFromKevbd 
key Sting allows user to enter a string from the keyboard. 

KeyToStringQ. Constructor for class KeyToString 
kevToStringfint, int, int, int, int, int). Static method in class KeyToString 

KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

loadPrint. Variable in class PrintFlag 
print flag. 

lookFor(Hashtable, int, int, int, int, int, int, int). Static method in class HashMod 
lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

M 
main(String[]). Static method in class MTSPTWuav 

main executes MTSPTWuav problem. 
mavg. Variable in class CycleOut 

moving average. 
MMtoHHMM(int). Static method in class Convert 

MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 

movePrint. Variable in class PrintFlag 
print flag. 

moveValTTCint, int, NodeType[], NodeType[], int[][]). Static method in class NodeTvpe 
Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

moyeValTT(int, int, NodeType[], NodeType[], int[][]). Static method in class TabuMod 
Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

MTSPTWuavO. Constructor for class MTSPTWuav 

N 

noCvclefdouble. int, double, int, int, PrintFlag). Static method in class TabuMod 
noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

NoCvcleOutO. Constructor for class NoCycleOut 
Default constructor. 

NoCvcIeOutfint. int). Constructor for class NoCycleOut 
Specified constructor. 

62 



NodeTypeO. Constructor for class NodeTvpe 
Default constructor. 

NodeType(int, int, int, int, int, int, int). Constructor for class NodeTvpe 
Specified constructor. 

numfeas. Variable in class SearchOut 

penTrav. Variable in class SearchOut 
penTrav. Variable in class StartPenBestOut 

Penalty related value. 
penTrav. Variable in class TsptwPenOut 

Penalty related value. 
printO. Method in class NodeTvpe 
PrintCallsQ. Constructor for class PrintCalls 
PrintFlagQ. Constructor for class PrintFlag 

Default PrintFlag constructor sets all to "true". 
PrintFlag(boolean). Constructor for class PrintFlag 

Additional PrintFlag constructor allows specification of either "true" or "false". 
printlnitValsfint, int, int, double, String). Static method in class PrintCalls 
printTour(NodeType[]). Static method in class NodeTvpe 

R 

randWtWZCint, int, int). Static method in class HashMod 
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
nodes. 

ReacTabuObiO. Constructor for class ReacTabuObi 
ReadFileO. Constructor for class ReadFile 
readNC(String). Static method in class TimeMatrixObi 

readNC is used to read from the first token from the input file (the number of customers (nc)). 
readNextDouble(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a double. 
readNextlnt(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a integer. 
readNextString(StreamTokenizer). Static method in class ReadFile 

readNextString method gets the next token and returns it as a string. 
readNV(String). Static method in class TimeMatrixObi 

readNV is used to read from the second token from the input file (the number of vehicles (nv)). 
readTSPTW(double. int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObi 

readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

readTSPTWdepot(double, int, int, String, CoordTypef], int[]). Static method in class TimeMatrixObj 
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. 

readTSPTWdepotUAV(double, int, int, String, CoordTypef], int[]). Static method in class 
TimeMatrixObi 

readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service 
times, and time window information associated with depot and target locations from the input file. 

readTSPTWrerouteUAV(double, int, int, String, CoordTypef], intf]). Static method in class 
TimeMatrixObj 

readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and 
time window information associated with depot and customer locations from the input file. 

readWind(String). Static method in class WindData 
readWind method reads wind data from a file and returns a WindData object. 

rtsStepPrintdnt, int, int, int, int, int, int, int). Static method in class PrintCalls 
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search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][], 
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef], 
NodeTypef]). Static method in class ReacTabuObi 

ReacTabuObj steps through iterations of the reactive tabu search. 
SearchOutQ. Constructor for class SearchOut 

Default constructor. 
SearchOut(int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef], 
NodeTypef], NodeType[]). Constructor for class SearchOut 

Specified constructor. 
secondHashVaKint, int, int, NodeType[], int[]). Static method in class HashMod 

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

setACspeedfint, int). Method in class WindData 
setACspeed sets only the UAV speed information only for a particular band. 

setACspeedAll(int). Method in class WindData 
setACspeedAll sets only the UAV speed information. 

setAlKint int, double, double, int). Method in class WindData 
setAll method sets all related information for a particular band. 

setAIt(int, int). Method in class WindData 
setAltitude sets only the altitude information for a particular band. 

sctBearingfint, double). Method in class WindData 
setBearing sets only the bearing information only for a particular band. 

setld(int). Method in class NodeTvpe 
setLoad(int). Method in class NodeTvpe 
setQtv(int). Method in class NodeTvpe 
setSpeedCint, double). Method in class WindData 

setSpeed sets only the wind speed information only for a particular band. 
setType(int). Method in class NodeTvpe 
setWait(int). Method in class NodeTvpe 
setWind(int, int, double, double). Method in class WindData 

setWind method sets only wind related information for a particular band. 
speed. Variable in class WindData 

double wind speed at the associated altitude level. 
ssltlc. Variable in class CycleOut 
ssltlc. Variable in class NoCycleOut 

cycle related variable. 
startPenBestfint, int, int, NodeType[], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int, 
int, int, int, int, NodeTypef], NodeTypef]). Static method in class StartTourObi 

startPenBest initializes "best" values and their times. 
StartPenBestOutO. Constructor for class StartPenBestOut 

Default constructor. 
StartPenBestOut(int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeTypef], 
NodeTypef]). Constructor for class StartPenBestOut 

Specified constructor. 
startPrint. Variable in class PrintFlag 

print flag. 
startTime. Variable in class Timer 

begin time. 
startTimeO. Method in class Timer 

startTime assigns start time. 
startTour(NodeType[], int[][], int, int). Static method in class NodeTvpe 

Method startTour will bubble sort the initial tour based on the average time window time. 
StartTourObiO. Constructor for class StartTourObi 
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stepLoopPrint. Variable in class PrintFlag 
print flag. 

stepPrint. Variable in class PrintFlag 
print flag. 

sumWait(NodeType[]). Static method in class NodeTvpe 
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

swapdnt, int). Static method in class MTSPTWuav 
Swap allows generic swap of integers. 

swaplntdnt, int). Static method in class NodeTvpe 
Method swaplnt switches two integers 

swapNode(NodeType[], int, int). Static method in class NodeTvpe 
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 

tabuLen. Variable in class CycleOut 
tahuLen. Variable in class NoCvcleOut 

cycle related variable. 
TabuModQ. Constructor for class TabuMod 
timeMatrix(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi 

timeMatrix computes simple two-dimensional time/distance matrix. 
timeMatrixDepot(int, int, double, int, CoordType[], int[]). Static method in class TimeMatrixObi 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 
timeMatrixDepotUAV(int, int, double, int, CoordTypef], int[]). Static method in class TimeMatrixObi 

timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix. 
TimeMatrixObiO. Constructor for class TimeMatrixObi 
timeMatrixUAV(int, int, double, int, CoordTypef], int[], WindData, int[][]). Static method in class 
TimeMatrixObi 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 
timeMatrixUAVrerouteqnt, int, double, int, CoordTypef], int[], WindData, int[][]). Static method in class 
TimeMatrixObi 

timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix. 
timePrint. Variable in class PrintFlag 

print flag. 
TimerQ. Constructor for class Timer 

Default constructor. 
toStringQ. Method in class KeyObi 

toString changes a KeyObj to a string for use in the hashTable. 
toStringQ. Method in class ValueObi 

toString changes a ValueObj to a string for use in the hashTable. 
totalSeconds. Variable in class Timer 

duration of run. 
totalSecondsO. Method in class Timer 

totalSeconds returns duration. 
totPenaltv. Variable in class SearchOut 
totPenaltv. Variable in class StartPenBestOut 

Penalty related value. 
totPenaltv. Variable in class TsptwPenOut 

Penalty related value. 
tour. Variable in class SearchOut 
tourCost. Variable in class SearchOut 
tourCost. Variable in class StartPenBestOut 

Penalty related value. 
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tourCost. Variable in class TsptwPenOut 
Penalty related value. 

tourHVwz(NodeType[], int[]). Static method in class HashMod 
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

tourPen. Variable in class SearchOut 
tourPen. Variable in class StartPenBestOut 

Tour penalty values. 
tourSched(int, NodeType[], int[][]). Static method in class NodeTvpe 

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderStartingTour method. 

TsptwPenO. Constructor for class TsptwPen 
tsptwPenfint, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in class TsptwPen 

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. 

tsptwPenNormalized(mt, NodeType[], VrpPenType, double, double, int, int, int, int). Static method in 
class TsptwPen 

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. 

TsptwPenOutO. Constructor for class TsptwPenOut 
Default constructor. 

TsptwPenOutCint, int, int, int). Constructor for class TsptwPenOut 
Specified constructor. 

tvl. Variable in class SearchOut 
tvl. Variable in class TsptwPenOut 

Penalty related value. 
twBestTTdnt, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeType[], 
int, int). Static method in class BestSolnMod 

twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

TwBestTTOutO. Constructor for class TwBestTTOut 
Default constructor. 

TwBestTTOut(mt, int, int, int, int, int, int, int, int, int, NodeType[], NodeType[]). Constructor for class 
TwBestTTOut 

Specified constructor. 
twrdPrint. Variable in class PrintFlag 

print flag. 

V 

ValueObKint, int, int, int, int, int, int). Constructor for class ValueObi 
Specified constructor. 

VrpPenTypeQ. Constructor for class VrpPenType 
Default constructor. 

VrpPenTypefint, int). Constructor for class VrpPenType 
Specified constructor. 

VrpPenTypednt, int, int). Constructor for class VrpPenType 
Specified constructor. 

W 

WindAdiustO. Constructor for class WindAdiust 
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Class BestSolnMod 

j ava.lang.Obj ect 

+ MTSPTWuav 

I 
+ BestSolnMod 

public class BestSolnMod 
extends MTSPTWuav BestSolnMod class retains the tours with the best travel times and tour costs. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

BestSolnModO 

Method Index 

twBestTT(int, int, int, int, int, int, NodeType[], int, int, int, int, int, int, int, int, NodeType[], NodeType[], 
int, int) 

twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

Constructors 

BestSolnMod 

public  BestSolnModO 

Methods 

twBestTT 

public static TwBestTTOut twBestTT(int numnodes, 
int totPenalty, 
int penTrav, 
int tvl, 
int nvu, 
int iter, 
NodeType tour[], 
int bfCost, 
int bfTT, 
int bfnv, 
int bfiter, 
int bestCost, 
int bestTT, 
int bestnv, 
int bestiter, 
NodeType bfTour[], 
NodeType bestTour[], 
int bfTime, 
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int  bestTime) 
twBestTT compares current tour with previous best and best feasible tours and updates records 
accordingly. 

Returns: 
returns packages output object. 

Class Convert 

j ava.lang.Obj ect 

+ Convert 

public class Convert 
extends Object Convert contains general conversion formulas applicable to location and distance 
calculations. Included are conversions between decimal format and hours-minutes-seconds format, great 
circle distance between two specified coordinates, and bearing from one point to another. 

Version: 
vl.lFeb99 

Author: 
Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

Convert!) 

Method Index 

bearingXYCCoordType, CoordType, double) 
bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 

distanceXY(CoordType, CoordType) 
distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

DMMmtoDd(int, double) 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMmtoDd(int, double, String) 
DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDd(int. int, double) 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

DMMSSstoDd(int. int, double, String) 
DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. 

HHMMtoMM(int) 
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

HMMtoHh(int) 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

MMtoHHMM(inf) 
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 
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Constructors 

Convert 

public  Convert() 

Methods 

DMMmtoDd 

public static double DMMmtoDd(int degrees, 
double minutes) 

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data. 
The D.d format is required to readily perform distance calculations. 

Parameters: 
degrees - integer degree value of coordinate. 
minutes - double minute value of coordinate. 

Returns: 
returns double Dd coordinate in the "degrees decimal degrees" format. 

DMMmtoDd 

public static double DMMmtoDd(int degrees, 
double minutes, 
String name) 

DMMmtoDd converts a number in "Degrees Minutes Decimal Minutes" (D.MMm) format to 
"Degrees Decimal Degrees" (D.d) format. The D.MMm is the "human friendly" form of the data. 
The D.d format is required to readily perform distance calculations. This version of the method 
considers hemisphere and assigns a negative value if appropriate to south and east coordinates. 

Parameters: 
degrees - integer degree value of coordinate, 
minutes - double minute value of coordinate. 
name - string hemisphere value of coordinate (either "E", "W", "N", or "S"). 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

DMMSSstoDd 

public static double DMMSSstoDd(int degrees, 
int  minutes, 
double   seconds) 

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form 
of the data. The D.d format is required to readily perform distance calculations. 

Parameters: 
degrees - integer degree value of coordinate, 
minutes - integer minute value of coordinate, 
seconds - double second value of coordinate. 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

DMMSSstoDd 

public static double DMMSSstoDd(int degrees, 
int minutes, 
double  seconds, 
String name) 

DMMSSstoDd converts a number in "Degrees Minutes Seconds Decimal Seconds" (D.MMSSs) 
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format to "Degrees Decimal Degrees" (D.d) format. The D.MMSSs is the "human friendly" form 
of the data. The D.d format is required to readily perform distance calculations. This version of the 
method considers hemisphere and assigns a negative value if appropriate to south and east 
coordinates. 

Parameters: 
degrees - integer degree value of coordinate. 
minutes - integer minute value of coordinate. 
seconds - double second value of coordinate. 
name - string hemisphere value of coordinate (either "E", "W", "N", or "S"). 

Returns: 
returns Dd coordinate in the "degrees decimal degrees" format. 

HMMtoHh 

public static double HMMtoHh(int time) 
HMMtoHh converts a military specified time to the equivalent decimal hour equivalent (i.e., 0630 
hours to 6.5 hours) for use in time window and service time calculations. 

Parameters: 
time - integer whole minute "military format" (0630 hours) time value. 

Returns: 
returns Hh double fractional hour (6.5 hours) time value. 

HHMMtoMM 

public static int HHMMtoMM(int time) 
HHMMtoMM converts a military time to the equivalent number of minutes (i.e., 0630 hours to 
390 minutes) for use in time window and service time calculations. 

Parameters: 
time - integer whole minute "military format" (0630 hours) time value. 

Returns: 
returns MM integer number of minutes (390 minutes) time value. 

MMtoHHMM 

public static int MMtoHHMM(int time) 
MMtoHHMM converts a given number of minutes to a military time hour format (i.e., 390 
minutes to 0630 hours) for human friendly output. 

Parameters: 
time - integer number of minutes (390 minutes) time value. 

Returns: 
returns HHMM integer whole minute "military format" (0630 hours) time value. 

distanceXY 

public static double distanceXY(CoordType x, 
CoordType y) 

distanceXY calculates the great circle distance (in nautical miles) between two coordinate points 
and returns the value as a double precision number. 

Parameters: 
x - CoordType coordinate of first position. 
y - CoordType coordinate of second position. 

Returns: 
returns distanceXY double distance between the two points in nautical miles. 

bearingXY 

public static double bearingXY(CoordType x, 
CoordType y, 
double dXY) 
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bearingXY calculates the true bearing (in degrees) from one coordinate point to the second 
coordinate point and returns the value as a double precision number. 

Parameters: 
x - CoordType coordinate of first position. 
y - CoordType coordinate of second position. 
dXY - double distance between the first and second position, in nautical miles. 

Returns: 
returns thetaXY double initial true heading from the first point to the second point measured from 
true north in degrees. 

Class CoordType 

Java.lang.Object 

+ CoordType 

public class CoordType 
extends Object CoordType is used to hold coordinate location for customer/vehicle nodes. It contains fields 
for both x, y integer data and lat/long data, although only one set will be used. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

CoordTypeO 
Default constructor. 

CoordType(String, double, double) 
Lat/long constructor. 

Constructors 

CoordType 

public  CoordTypeO 
Default constructor. Assigns name to null and all values to zero. 

CoordType 

public CoordType(String nameLabel, 
double   lat, 
double   Ion) 

Lat/long constructor. Assigns name, latitude, and longitude as specified. 

Class CycleOut 

j ava.lang.Obj ect 

I 
+ CycleOut 

public class CycleOut 
extends Object CycleOut is used as a package to output multiple fields from the class Cycle. 
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Version: 
vl.lMar99 

Author: 
Kevin P. O'Rourke, David M. Ryer 

Variable Index 

mavg 
moving average. 

ssltlc 
tabuLen 

Constructor Index 

CycleOutO 
Default constructor. 

CycleOut(int, int, double, ValueObj) 
Specified constructor. 

ssltlc 

public   int   ssltlc 
tabuLen 

public   int   tabuLen 
mavg 

public  double mavg 
moving average. 

Constructors 

CycleOut 

public  CycleOutO 
Default constructor. Assigns all values to zero. 

CycleOut 

public  CycleOut(int   ssltlc, 
int  tabuLen, 
double mavg, 
ValueObj   matchPtr) 

Specified constructor. Values set as passed. 

Class HashMod 

java.lang.Ob j ect 

+ HashMod 

public class HashMod 
extends Object HashMod Class contains methods to assign first and second hashing values (used in the 
hashtable) and the search method to search the hashtable. 
Version: 
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vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

HashModO 

Method Index 

firstHashVal(int) 
firstHashVal method assigns the primary hashing value. 

lookForCHashtable, int, int, int, int, int, int, int) 
lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

randWtWZdnt, int, int) 
randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
nodes. 

secondHashVaKint, int, int, NodeType[], int[]) 
secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

tourHVwz(NodeType[], int[]) 
tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

Constructors 

HashMod 

public  HashModO 

Methods 

lookFor 

public static boolean lookFor(Hashtable daHashTab, 
int fhv, 
int shv, 
int cost, 
int tvl, 
int twPen, 
int loadPen, 
int   lastlter) 

lookFor method searches for the current tour in the hashing structure, if the tour is found a true 
value for the boolean "found" is returned, if not found, the tour is added to the hashtable. 

Parameters: 
daHashTab - hashtable object, 
fhv - First hashing value (objective function), 
shv - Second hashing value (Woodruff & Zemel). 
tourCost - Tour cost. 
tvl - Travel time. 
twPen - Time window penalty. 
loadPen - Load overage penalty. 
lastlter - Iteration on which the tour was previously found. 

Returns: 
returns true boolean value if the tour was previously found. 

randWtWZ 

public static final int[]- randWtWZ(int ZRANGE, 
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int nc, 
int numnodes) 

randWtWZ method computes Woodruff & Zemel random weights between 1 & range for all 
nodes. 

Parameters: 
ZRANGE - maximum weight value. 
nc - number of customers (targets). 
numnodes - total number of nodes. 

Returns: 
returns integer array of "z" weights. 

tourHVwz 

public static final int tourHVwz(NodeType tour[], 
int zArr[]) 

tourHVwz method computes the Woodruff & Zemel hashing value from the sum of adjacent node 
id multiplication. 

Parameters: 
tour - tour node array to be processed. 
zArr - "z" array of random weights. 

Returns: 
returns secondary hashing value function (thv). 

firstHashVal 

public static final int firstHashVal(int zT) 
firstHashVal method assigns the primary hashing value. Currently, it assigns the objective 
function as the first hashing value (fhv). Method can be updated as desired. 

Parameters: 
zT - objective function value. 

Returns: 
returns first hashing value (fhv). 

secondHashVal 

public static final int secondHashVal(int shv, 
int chl, 
int chD, 
NodeType tour[], 
int   zArr[]) 

secondHashVal updates the Woodruff & Zemel second hashing value based on the tour insertion 
move. 

Parameters: 
shv - current tour hashing value, 
chl - node insertion position. 
chD - node insertion depth, 
tour - tour node array for processing. 
zArr - "z" array of random weights. 

Returns: 
returns updated hashing value to reflect insertion. 

Class InFromKeybd 

j ava.lang.Obj ect 

I 
+ InFromKeybd 
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public class InFromKeybd 
extends Object InFromKeybd class allows us to enter strings, integers, doubles and floats from the 
keyboard with a specified prompt. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

InFromKevbdQ 

Method Index 

keyDouble(String) 
keyDouble allows user to enter a double from the keyboard. 

keyFIoat(String) 
keyFloat allows user to enter a float from the keyboard. 

keylnt(String) 
keylnt allows user to enter an integer from the keyboard. 

kevString(String) 
keySting allows user to enter a string from the keyboard. 

Constructors 

InFromKeybd 

public   InFromKeybd() 

Methods 

keyString 

public static final String keyString(String prompt) 
keyString allows user to enter a string from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered string. 

keylnt 

public static final int keylnt(String prompt) 
keylnt allows user to enter an integer from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered integer. 

keyDouble 

public static final double keyDouble(String prompt) 
keyDouble allows user to enter a double from the keyboard. 

Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered double. 

keyFloat 

public  static  final   float keyFloat(String prompt) 
keyFloat allows user to enter a float from the keyboard. 
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Parameters: 
prompt - Text prompt printed on screen. 

Returns: 
returns user entered float. 

Class KeyObj 

j ava.lang.Obj ect 

I 
+ KeyObj 

public final class KeyObj 
extends Object KeyObj Class is used to access tour attributes in the hashtable for comparison. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

KevObiCint int, int, int, int, int) 
Specified constructor. 

Method Index 

eguals(KeyObj) 
Overloaded equals(), check only attribute fields. 

hashCodeO 
Overloaded hashCode method. 

toStringQ 
toString changes a KeyObj to a string for use in the hashTable. 

Constructors 

KeyObj 

public  KeyObj(int fhv, 
int shv, 
int cost, 
int tvl, 
int twPen, 
int loadPen) 

Specified constructor. Values set as passed. 

Methods 

equals 

public final boolean equals(KeyObj a) 
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep 
inline with hashCode overload. 

Parameters: 
a - element compared calling object. 

Returns: 
returns true if objects are equal, false otherwise. 

toString 

public final String toString() 
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toString changes a KeyObj to a string for use in the hashTable. 
Returns: 

returns concatenated String. 
Overrides: 

toString in class Object 
hashCode 

public final int hashCode() 
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then 
calling the hashCode method on each of the two objects must produce the same integer result. 
Only check first two data elements because of size limitations of Integer. 

Returns: 
returns integer hashcode value. 

Overrides: 
hashCode in class Object 

Class KeyToString 

j ava.lang.Ob j ect 

+ KeyToString 

public class KeyToString 
extends Object KeyToString Class converts the attributes of tour to a concatenated string used as a key to 
the hashtable of tours. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

KevToStringQ 

Method Index 

kevToStringfint. int, int, int, int, int) 
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

Constructors 

KeyToString 

public KeyToString() 

Methods 

keyToString 

public static String keyToString(int fhv, 
int shv, 
int tourCost, 
int tvl, 
int twPen, 
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int  loadPen) 
KeyToString Class converts the attributes of tour to a concatenated string used as a key to the 
hashtable of tours. 

Parameters: 
fhv - First hashing value (objective function). 
shv - Second hashing value (Woodruff & Zemel). 
tourCost - Tour cost. 
tvl - Travel time. 
twPen - Time window penalty. 
loadPen - Load overage penalty. 

Class MTSPTWuav 

j ava.lang.Obj ect 

I 
+ MTSPTWuav 

public class MTSPTWuav 
extends Object MTSPTWuav is the main part that implements the multiple traveling salesperson problem 
with time windows solve algorithm. This version calls the UAV specific methods to read file input and 
generate the appropriate time matrix. 
Version: 

vl.lMar99 

Author: 
Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

MTSPTWuavO 

Method Index 

main(String[]) 
main executes MTSPTWuav problem. 

swap(int. int) 
Swap allows generic swap of integers. 

Constructors 

MTSPTWuav 

public MTSPTWuav() 

Methods 

swap 

public static void swap(int a, 
int  b) 

Swap allows generic swap of integers. 
Parameters: 

a- integer 
b- integer 

Returns: 
returns void 

main 

78 



public static void main(String argv[]) 
main executes MTSPTWuav problem. Initializes global variables, calls methods to read data and 
wind files, calls method to compute time matrix, calls tabu search method, writes output to file. 

Parameters: 
nv - number of vehicles, overridden by file information 
iters - number of iterations 
integer - precision scaling factor 
file - data file name, without extension (actual filename must end with .dat). 
wind - file name, without extension (actual filename must end with .dat). 
reroute - identifier. Use 111 (one one one) to specify reroute. 

Class NoCycleOut 

j ava.lang.Obj ect 

I 
+ NoCycleOut 

public class NoCycleOut 
extends Object NoCycleOut is used as a package to output multiple fields from the method NoCycle. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

ssltlc 
cycle related variable. 

tabuLen 
cycle related variable. 

Constructor Index 

NoCycleOutO 
Default constructor. 

NoCycleOut(int, int) 
Specified constructor. 

Variables 

ssltlc 

public int ssltlc 
cycle related variable. 

tabuLen 

public   int  tabuLen 
cycle related variable. 

Constructors 

NoCycleOut 

public  NoCycleOutO 
Default constructor. Assigns all values to zero. 

NoCycleOut 
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public NoCycleOut(int ssltlc, 
int  tabuLen) 

Specified constructor. Values set as passed. 

Class NodeType 

2ava.lang.Obj ect 

+ NodeType 

public class NodeType 
extends Object NodeType defines the relevant information of each particular node. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

NodeTypeQ 
Default constructor. 

NodeTypednt. int, int, int, int, int, int) 
Specified constructor. 

Method Index 

compPens(NodeType[], int) 
compPens computes the vehicle capacity overload and time window penalties. 

copvO 
cpuntVeh(NodeType[]) 

Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

getEa() 
getldO 
getLaQ 
getLoadO 
getM() 
getQtyQ 
getTipeO 
getWaitO 
insert(NodeType[], int, int) 

Method insert allows the element designated by "chl" to be shifted by "chD" elements. 
moveValTT(mt, int, NodeType[], NodeType[], int[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

printO 
printTour(NodeType[]) 
setld(int) 
setLoad(int) 
setOtv(int) 
setTvpe(int) 
setWait(int) 
startTourCNodeTypen, int[][], int, int) 

Method startTour will bubble sort the initial tour based on the average time window time. 
sumWait(NodeTypen) 
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Method sum Wait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

swaplnt(int, int) 
Method swaplnt switches two integers 

swapNodeCNodeTypen, int, int) 
Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 
"z". 

tourSched(int, NodeTypef], int[][]) 
Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderStartingTour method. 

Constructors 

NodeType 

public NodeType() 
Default constructor. Assigns all values to zero. 

NodeType 

public NodeType(int id, 
int ea, 
int la, 
int qty, 
int type, 
int wait, 
int load) 

Specified constructor. Values set as passed. 

Methods 

copy 

public final NodeType copy() 
swaplnt 

public static final void swaplnt(int a, 
int  b) 

Method swaplnt switches two integers 
swapNode 

public static final NodeType[] swapNode(NodeType z[], 
int  a, 
int  b) 

Method swapNode allows the node array elements "a" and "b" to be swapped in the Node Array 
"z". 

Parameters: 
z - node array to be updated, 
a - element to be swapped, 
b - element to be swapped. 

Returns: 
returns updated node array. 

insert 

public static final NodeType[] insert(NodeType z[], 
int chl, 
int chD) 
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Method insert allows the element designated by "chl" to be shifted by "chD" elements. chD may 
be positive or negative. 

Parameters: 
z - node array to be updated. 
chl - location of node to be moved. 
chD - depth of move. 

Returns: 
returns updated node array. 

countVeh 

public static final int countVeh(NodeType tour[]) 
Method countVeh finds the number of vehicles being used in the current tour by counting the 
vehicle to demand transitions. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer number of vehicles used in the tour. 

sum Wait 

public static final int sumWait(NodeType tour[]) 
Method sumWait calculates the total "waiting" time in a particular tour by summing the wait 
values for each individual node. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer value of total wait time in the tour. 

compPens 

public static final VrpPenType compPens(NodeType tour[], 
int  capacity) 

compPens computes the vehicle capacity overload and time window penalties. 
Parameters: 

tour[] - current tour used to calculate penalties, 
capacity - maximum vehicle load. 

Returns: 
returns the VrpPenType object which the method was called on with updated values. 

tourSched 

public static final int tourSched(int is, 
NodeType  tour[], 
int   time[][]) 

Method tourSched should be called with the syntax tourLen = tourSched(nodeArray, time) from 
the orderStartingTour method. This will use the listing of nodes to return the new tourLen value 
(tour duration). Additionally, the nodeArray will be updated to reflect the new arrival and 
departure times. 

Parameters: 
is - insertion/starting location for computation of schedule, 
tour - node array to be processed, 
time - time matrix used to determine schedule. 

Returns: 
returns integer total tour duration. Updates tour node array as appropriate. 

startTour 

public static final int startTour(NodeType tour[], 

82 



int   time[][], 
int  nc, 
int  nv) 

Method startTour will bubble sort the initial tour based on the average time window time. No 
swap is made if the move would violate strong time window infeasibility. 

Parameters: 
tour - node array to be processed, 
time - time matrix used to determine schedule, 
nc - number of customers, 
nv - number of vehicles. 

Returns: 
returns integer total tour duration. Updates tour node array as appropriate. 

getld 

public final int getld() 

getEa 

public final int getEa() 

getLa 

public final int getLa() 

getQty 

public final int getQty() 

getType 

public final int getType() 

getWait 

public final int getWaitO 

getLoad 

public final int getLoad() 

getM 

public final double getM() 

setld 

public final void setld(int id) 

setWait 

public final void setWait(int wait) 

setType 

public final void setType(int type) 

setQty 

public final void setQty(int qty) 
setLoad 

public final void setLoad(int load) 

print 

public final void print() 

printTour 
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public static final void printTour(NodeType tour[]) 
moveValTT 

public static int moveValTT(int i, 
int d, 
NodeType  tour[], 
NodeType nbrtour[], 
int   time[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

Parameters: 
i - node position, 
d - move depth. 
tour - incumbent tour node array to be processed, 
nbrtour - neighbor tour node array to be processed, 
time - time matrix used to determine schedule. 

Returns: 
returns integer move value which is the resultant change in the objective function resulting from 
the proposed move. 

See Also: 
compPens 

Class PrintCalls 

j ava.lang.Obj ect 

+ PrintCalls 

public class PrintCalls 
extends Object PrintCalls is to display on the screen initial values and rts steps as required. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

PrintCallsO 

Method Index 

printlnitValsdnt, int, int, double, String) 
rtsStepPrintCint, int, int, int, int, int, int, int) 

Constructors 

PrintCalls 

public   PrintCallsO 

Methods 

printlnitVals 

public static void printlnitVals(int nv, 
int iters, 
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int numcycles, 
double factor. 
String file) 

rtsStepPrint 

public static void rtsStepPrint(int id, 
int i, 
int d, 
int k, 
int moveVal, 
int totNbrPen, 
int tabu, 
int numnodes) 

Class PrintFlag 

j ava.lang.Ob j ect 

+ PrintFlag 

public class PrintFlag 
extends Object PrintFlag contains all print out flags as boolean attributes. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

cvclePrint 
print flag. 

iterPrint 
print flag. 

loadPrint 
print flag. 

movePrint 
print flag. 

startPrint 
print flag. 

stepLoopPrint 
print flag. 

stepPrint 
print flag. 

timePrint 
print flag. 

twrdPrint 
print flag. 

Constructor Index 

PrintFlagQ 
Default PrintFlag constructor sets all to "true". 

PrintFlag(boolean) 
Additional PrintFlag constructor allows specification of either "true" or "false". 
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Variables 

movePrint 

public  boolean movePrint 
print flag. 

startPrint 

public  boolean  startPrint 
print flag. 

timePrint 

public  boolean  timePrint 
print flag. 

stepPrint 

public  boolean  stepPrint 
print flag. 

stepLoopPrint 

public boolean  stepLoopPrint 
print flag. 

twrdPrint 

public  boolean  twrdPrint 
print flag. 

cyclePrint 

public boolean cyclePrint 
print flag. 

iterPrint 

public  boolean  iterPrint 
print flag. 

loadPrint 

public  boolean  loadPrint 
print flag. 

Constructors 

PrintFIag 

public PrintFIag() 
Default PrintFIag constructor sets all to "true". 

PrintFIag 

public PrintFIag(boolean set) 
Additional PrintFIag constructor allows specification of either "true" or "false". 

Class ReacTabuObj 

j ava.lang.Ob j ect 

+ ReacTabuObj 
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public class ReacTabuObj 
extends Object ReacTabuObj class contains the method to perform the reactive tabu search. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

ReacTabuObiO 

Method Index 

search(double, double, double, double, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, int[][], 
PrintFlag, int, int, int, int, int, int, int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef], 
NodeTypef]) 

ReacTabuObj steps through iterations of the reactive tabu search. 

Constructors 

ReacTabuObj 

public  ReacTabuObj() 

Methods 

search 

public static SearchOut search(double TWPEN, 
double LDPEN, 
double INCREASE, 
double DECREASE, 
int HTSIZE, 
int CYMAX, 
int ZRANGE, 
int DEPTH, 
int capacity, 
int minTL, 
int maxTL, 
int tabuLen, 
int iters, 
int nc, 
int numnodes, 
VrpPenType tourPen, 
int time[][], 
PrintFlag printFlag, 
int tourCost, 
int penTrav, 
int totPenalty, 
int tvl, 
int bfTourCost, 
int bfTT, 
int bfnv, 
int bfiter, 
int bestCost, 
int bestTT, 
int bestnv, 
int bestTime, 

87 



int bestTimeF, 
int bestiter, 
int numfeas, 
NodeType tour[], 
NodeType bestTour[], 
NodeType bestTourF[]) 

ReacTabuObj steps through iterations of the reactive tabu search. This method will perform tabu 
search for VRP with capacity as well as TSP without capacity. 

Returns: 
returns packaged output object. 

Class ReadFile 

j ava.lang.Object 

+ ReadFile 

public class ReadFile 
extends Object ReadFile Class reads appropriate data from a text file. Methods exist to read specific data 
types (file format must be known in advance). 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

ReadFileQ 

Method Index 

assignlnputFileCString) 
assignlnputFile sets up the FilelnputStream. 

readNextDoubleCStreamTokenizer) 
readNextString method gets the next token and returns it as a double. 

readNextlnt(StreamTokenizer) 
readNextString method gets the next token and returns it as a integer. 

readNextString(StreamTokenizer') 
readNextString method gets the next token and returns it as a string. 

Constructors 

ReadFile 

public  ReadFile() 

Methods 

assignlnputFile 

public   static   final   FilelnputStream assignlnputFile(String  filename) 
assignlnputFile sets up the FilelnputStream. 

readNextString 

public   static   final   String  readNextString(StreamTokenizer  st) 
readNextString method gets the next token and returns it as a string. 

Parameters: 
st - string tokenizer. 
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Returns: 
returns next string from file. 

readNextDouble 

public static final double readNextDouble(StreamTokenizer st) 
readNextString method gets the next token and returns it as a double. 

Parameters: 
st - string tokenizer. 

Returns: 
returns next double from file. 

readNextlnt 

public static final int readNextlnt(StreamTokenizer st) 
readNextString method gets the next token and returns it as a integer. 

Parameters: 
st - string tokenizer. 

Returns: 
returns next integer from file. 

Class SearchOut 

j ava.lang.Ob j ect 

+ SearchOut 

public class SearchOut 
extends Object SearchOut is used as a package to output multiple information from the Search method in 
ReacTabuObj. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 
See Also: 

Search 

Variable Index 

bestCost 
bestiter 
bestnv 
bestTime 
bestTour 
bestTT 
bfCost 
bfiter 
bfnv 
bfTime 
bfTour 
bfTT 
numfeas 
penTrav 
totPenaltv 
tour 
tourCost 
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tourPen 
tvl 

Constructor Index 

SearchOutO 
Default constructor. 

SearchOutfint, int, int, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[], 
NodeType[], NodeType[]) 

Specified constructor. 

Variables 

totPenalty 

public  int  totPenalty 
penTrav 

public   int  penTrav 
tourCost 

public   int  tourCost 
b fiter 

public   int  bfiter 
bfCost 

public   int  bfCost 
bfTT 

public   int  bfTT 
bestnv 

public   int  bestnv 
bestiter 

public   int  bestiter 
bestCost 

public   int  bestCost 
bestTT 

public   int  bestTT 
bfnv 

public   int  bfnv 
bfTime 

public   int  bfTime 
bestTime 

public   int  bestTime 
tvl 

public   int  tvl 
numfeas 
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public   int  numfeas 
tourPen 

public VrpPenType  tourPen 
tour 

public  NodeType  tour[] 
bfTour 

public  NodeType  bfTour[] 
bestTour 

public  NodeType  bestTour[] 

Constructors 

SearchOut 

public SearchOut() 
Default constructor. Assigns all values to zero. 

SearchOut 

public SearchOut(int totPenalty, 
int penTrav, 
int tourCost, 
int bfiter, 
int bfCost, 
int bfTT, 
int bestnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bfnv, 
int bfTime, 
int bestTime, 
int tvl, 
int numfeas, 
VrpPenType tourPen, 
NodeType tour[], 
NodeType bfTour[], 
NodeType bestTour[]) 

Specified constructor. Values set as passed. 

Class StartPenBestOut 

j ava.lang.Obj ect 

+ StartPenBestOut 

public class StartPenBestOut 
extends Object StartPenBestOut is used as a package to output multiple penalty information from method 
starfPenBest. 
Version: 

vl.lMar99 
Author: 
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Kevin P. O'Rourke, David M. Ryer 

Variable Index 

bestCost 
Penalty related value. 

bestiter 
Penalty related value. 

bestnv 
Penalty related value. 

bestTime 
Penalty related value. 

bestTour 
Saved tour. 

bestTT 
Penalty related value. 

bfCost 
Penalty related value. 

bfiter 
Penalty related value. 

bfnv 
Penalty related value. 

bfTime 
Penalty related value. 

bfTour 
Saved tour. 

bfTT 
Penalty related value. 

penTrav 
Penalty related value. 

totPenaltv 
Penalty related value. 

tourCost 
Penalty related value. 

tourPen 
Tour penalty values. 

Constructor Index 

StartPenBestOutO 
Default constructor. 

StartPenBestOutfint, int, int, int, int, int, int, int, int, int, int, int, int, VrpPenType, NodeType[], 
NodeTypef]) 

Specified constructor. 

Variables 

totPenalty 

public   int   totPenalty 
Penalty related value. 

penTrav 

public  int penTrav 
Penalty related value. 

tourCost 

public int tourCost 
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Penalty related value. 
bfiter 

public int bfiter 
Penalty related value. 

bfCost 

public int bfCost 
Penalty related value. 

bfTT 

public int bfTT 
Penalty related value. 

bestnv 

public int bestnv 
Penalty related value. 

bestiter 

public   int  bestiter 
Penalty related value. 

bestCost 

public   int  bestCost 
Penalty related value. 

bestTT 

public int bestTT 
Penalty related value. 

bfnv 

public int bfnv 
Penalty related value. 

bfTime 

public int bfTime 
Penalty related value. 

bestTime 

public   int  bestTime 
Penalty related value. 

tourPen 

public VrpPenType  tourPen 
Tour penalty values. 

bfTour 

public  NodeType bfTour[] 
Saved tour. 

bestTour 

public  NodeType  bestTour[] 
Saved tour. 
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Constructors 

StartPenBestOut 

public StartPenBestOut() 
Default constructor. Assigns all values to zero. 

StartPenBestOut 

public c StartPenBestOut(int 
int 
int 

totPenalty, 
penTrav, 
tourCost, 

int bfiter, 
int bfCost, 
int bfTT, 
int bestnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bfnv, 
int bfTime, 
int bestTime, 
VrpPenType tourPen, 
NodeType bfTour[], 
NodeType bestTour[]) 

Specified constructor. Values set as passed. 

Class StartTourObj 

Java.lang.Object 

+ StartTourObj 

public class StartTourObj 
extends Object StartTourObj class begins timing, computes an initial schedule and initial tour cost (Tour 
Cost = Travel time + Waiting Time + Penalty Term), computes the initial hashing values: Z(t) and thv(t), 
and produces a tour based on a sort of increasing avg time windows at each node. The customers are 
ordered by increasing avg time window value, and the nv vehicle nodes are appended to the end of the tour. 

Constructor Index 

StartTourObiO 

Method Index 

startPenBest(int, int, int, NodeTypef], double, double, int, int, int, int, VrpPenType, int, int, int, int, int, int, 
int, int, int, int, NodeTypef], NodeTypef]) 

startPenBest initializes "best" values and their times. 

Constructors 

StartTourObj 

public  StartTourObj() 

Methods 

startPenBest 

public static StartPenBestOut startPenBest(int numnodes, 
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int tvl, 
int tourLen, 
NodeType tour[], 
double TWPEN, 
double LDPEN, 
int capacity, 
int totPenalty, 
int penTrav, 
int tourCost, 
VrpPenType tourPen, 
int bfiter, 
int bfTourCost, 
int bfTT, 
int bfnv, 
int bestiter, 
int bestCost, 
int bestTT, 
int bestnv, 
int bestTimeF, 
int bestTime, 
NodeType bestTour[], 
NodeType bestTourFf]) 

startPenBest initializes "best" values and their times. Computes cost of initial tour as tour length 
with added penalty for infeasibilities. 

Returns: 
returns StartPenBestOut wrapper object for multiple values. 

Class TabuMod 

j ava.lang.Obj ect 

+ TabuMod 

public class TabuMod 
extends Object TabuMod Class contains methods used in the TabuSearch. countVeh calculates the number 
of vehicles used in the current tour. noCycle updates the search parameters if tour is not found in the 
hashtable. cycle updates the search parameters if tour is found in the hashtable. moveValTT computes the 
incremental change in the value of the travel time. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

TabuModO 

Method Index 

countVehiclesCNodeTypen) 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

cvcle(ValueObi, double, int, int, int, double, int, int, PrintFlag) 
cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 

moveVaITT(int, int, NodeType[], NodeType[], int[][]) 
Method moveValTT computes the incremental change in the value of the travel time from the 
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incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

noCvclefdouble, int, double, int, int, PrintFlag) 
noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

Constructors 

TabuMod 

public  TabuMod() 

Methods 

countVehides 

public   static   final   int  countVehides (NodeType  tour [ ] ) 
countVeh method calculates the number of vehicles used in the current tour by counting the 
number of vehicle (type 2) to demand (type 1) transitions. 

Parameters: 
tour - node array to be processed. 

Returns: 
returns integer number of vehicles used in the tour. 

noCycle 

public static NoCycleOut noCycle(double DECREASE, 
int minTL, 
double mavg, 
int  ssltlc, 
int  tabuLen, 
PrintFlag printFlag) 

noCycle method updates the search parameters if the incumbent tour is not found in the hashing 
structure. 

Parameters: 
DECREASE - adjustive scaling factor to reduce tabu length. 
minTL - minimum tabu length, 
mavg - moving average between cycles, 
ssltlc - steps since last tabu length change. 
tabuLen - current tabu length. 
printFlag - option to print cycle information. 

Returns: 
returns noCycleOut wrapped object. 

cycle 

public static CycleOut cycle(ValueObj matchPtr, 
double INCREASE, 
int maxTL, 
int CYMAX, 
int k, 
double mavg, 
int ssltlc, 
int tabuLen, 
PrintFlag printFlag) 

cycle method updates the search parameters if the incumbent tour is found in the hashing structure. 
Parameters: 

matchPtr - matched information for previously found identical tour 
INCREASE - adjustive scaling factor to increase tabu length 
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maxTL - maximum tabu length 
CYMAX - maximum allowable cycle frequency 
k - current iteration 
mavg - moving average between cycles. 
ssltlc - steps since last tabu length change. 
tabuLen - current tabu length. 
printFlag - option to print cycle information. 

Returns: 
returns cycleOut wrapped object. 

moveValTT 

public static int moveValTT(int i, 
int d, 
NodeType  tour[], 
NodeType nbrtour[], 
int  time[][]) 

Method moveValTT computes the incremental change in the value of the travel time from the 
incumbent tour to the proposed neighbor tour, and computes the neighbor schedule parameters 
preparing for computation of penalty terms. 

Parameters: 
i - node position. 
d - move depth. 
tour - incumbent tour node array to be processed, 
nbrtour - neighbor tour node array to be processed, 
time - time matrix used to determine schedule. 

Returns: 
returns integer move value which is the resultant change in the objective function resulting from 
the proposed move. 

See Also: 
compPens 

Class TimeMatrixObj 

j ava.lang.Object 

I 
+ TimeMatrixObj 

public class TimeMatrixObj 
extends Object TimeMatrixObj contains methods to calculate the distance/time matrix based on the 
problem parameters. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

TimeMatrixObiO 

Method Index 

readNC(String) 
readNC is used to read from the first token from the input file (the number of customers (nc)). 

readNV(String) 
readNV is used to read from the second token from the input file (the number of vehicles (nv)). 

readTSPTW(double, int, int, String, CoordType[], int[]) 
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readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

readTSPTWdepotfdouble, int, int, String, CoordType[], int[]) 
readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. 

readTSPTWdepotUAV(double, int, int, String, CoordType[], int[]) 
readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service 
times, and time window information associated with depot and target locations from the input file. 

readTSPTWrerouteUAV(double, int, int, String, CoordType[], int[]) 
readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and 
time window information associated with depot and customer locations from the input file. 

timeMatrix(int, int, double, int, CoordType[], int[]) 
timeMatrix computes simple two-dimensional time/distance matrix. 

timeMatrixDepoKint, int, double, int, CoordType[], int[]) 
timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 

timeMatrixDepotUAV(int, int, double, int, CoordType[], int[]) 
timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix. 

timeMatrixUAV(int, int, double, int, CoordTypef], int[], WindData, int[][]) 
timeMatrixDepot computes the two-dimensional array used as the "time" matrix. 

timeMatrixUAVreroute(int, int, double, int, CoordType[], int[], WindData, int[][]) 
timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix. 

Constructors 

TimeMatrixObj 

public  TimeMatrixObj() 

Methods 

readNC 

public static int readNC(String filein) 
readNC is used to read from the first token from the input file (the number of customers (nc)). 

Parameters: 
filein - - name of input file 

Returns: 
returns nc number of customers 

readNV 

public static int readNV(String filein) 
readNV is used to read from the second token from the input file (the number of vehicles (nv)). 

Parameters: 
filein - - name of input file 

Returns: 
returns nv number of vehicles 

readTSPTW 

public static NodeType[] readTSPTW(double factor, 
int nv, 
int nc, 
String  filein, 
CoordType  coord[], 
int   s[]) 

readTSPTW reads in the geographical coordinates and time window file and calculates the time 
between each node 

Parameters: 
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factor - - integer scaling factor used to increase precision. 
nv - - number of aircraft available (vehicles). 
nc - - number of targets/route points (customers). 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting fde data. 

readTSPTWdepot 

public static NodeType[] readTSPTWdepot(double factor, 
int nv, 
int nc, 
String   filein, 
CoordType  coord[], 
,int  s[] ) 

readTSPTWdepot reads in the geographical coordinates, load quantity, service time, and time 
window information associated with depot and customer locations from the input file. This 
information is returned as a tour array. 

Parameters: 
factor - - integer scaling factor used to increase precision, 
nv - - number of aircraft available (vehicles), 
nc - - number of targets/route points (customers), 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion, 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting file data. 

readTSPTWdepotUAV 

public static NodeType[] readTSPTWdepotUAV(double factor, 
int nv, 
int nc, 
String  filein, 
CoordType  coord[], 
int   s[]) 

readTSPTWdepotUAV reads in the geographical coordinates, load quantity, min/max service 
times, and time window information associated with depot and target locations from the input file. 
Actual service time is calculated as a random variable. This information is returned as a tour array. 
This method reads in the data in degrees, minutes seconds format. 

Parameters: 
factor - - integer scaling factor used to increase precision, 
nv - - number of aircraft available (vehicles), 
nc - - number of targets/route points (customers), 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion, 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting file data. 

readTSPTWrerouteUAV 

public static NodeType[] readTSPTWrerouteUAV(double factor, 
int nv, 
int nc, 
String filein, 
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CoordType coord[], 
int s[]) 

readTSPTWrerouteUAV reads in the geographical coordinates, load quantity, service time, and 
time window information associated with depot and customer locations from the input file. This 
information is returned as a tour array. This method reads in the data in degrees, minutes seconds 
format. This is used to route a UAV from current position specified on the first line through a tour 
to its home depot. 

Parameters: 
factor - - integer scaling factor used to increase precision. 
nv - - number of aircraft available (vehicles). 
nc - - number of targets/route points (customers). 
filein - - name of input file. 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the tour array reflecting file data. 

timeMatrix 

public static int[][] timeMatrix(int nc, 
int  gamma, 
double   factor, 
int  numnodes, 
CoordType  coord[], 
int   s[]) 

timeMatrix computes simple two-dimensional time/distance matrix. 
Parameters: 

nc - - number of targets/route points (customers), 
gamma - - additional vehicle usage penalty (set to ZERO only), 
factor - - integer scaling factor used to increase precision, 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: x 

returns the time matrix specific to the problem. 
timeMatrixDepot 

public static int[][] timeMatrixDepot(int nc, 
int  gamma, 
double   factor, 
int  numnodes, 
CoordType coordf], 
int  s[]) 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix 
contains the travel times between respective nodes, general setup for multiple depot problem. 

Parameters: 
nc - - number of targets/route points (customers), 
gamma - - additional vehicle usage penalty (set to ZERO only), 
factor - - integer scaling factor used to increase precision, 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the time matrix specific to the problem. 

timeMatrixDepotUAV 

public static int[][] timeMatrixDepotUAV(int nc, 
int gamma, 
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double factor, 
int numnodes, 
CoordType coord[], 
int s[]) 

timeMatrixDepotUAV computes the two-dimensional array used as the "time" matrix. This time 
matrix contains the hard-coded wind adjusted travel times between respective nodes. 

Parameters: 
nc - - number of targets/route points (customers). 
gamma - - additional vehicle usage penalty (set to ZERO only). 
factor - - integer scaling factor used to increase precision. 
coord - - blank array where coordinates will be stored upon method completion. 
s - - blank array where service times will be stored upon method completion. 

Returns: 
returns the time matrix specific to the problem. 

timeMatrixUAV 

public static int[][] timeMatrixUAV(int nc, 
int gamma, 
double factor, 
int numnodes, 
CoordType coord[], 
int s[], 
WindData wind, 
int  altitude[][]) 

timeMatrixDepot computes the two-dimensional array used as the "time" matrix. This time matrix 
contains the wind adjusted travel times between respective nodes. This is the "primary" UAV time 
matrix method for standard routing. 

Parameters: 
nc - - number of targets/route points (customers), 
gamma - - additional vehicle usage penalty (set to ZERO only), 
factor - - integer scaling factor used to increase precision, 
coord - - blank array where coordinates will be stored upon method completion, 
s - - blank array where service times will be stored upon method completion, 
wind - - wind data object used to scale travel times, 
altitude - - matrix of optimum travel altitudes between points 

Returns: 
returns the time matrix specific to the problem. 

timeMatrixUAVreroute 

public static int[][] timeMatrixUAVreroute(int nc, 
int gamma, 
double factor, 
int numnodes, 
CoordType coord[], 
int s[], 
WindData wind, 
int altitude[][]) 

timeMatrixDepotUAVreroute computes the two-dimensional array used as the "time" matrix. This 
time matrix contains the wind adjusted travel times between respective nodes. Node distance is 
calculated from the point of origin. First vehicle returns to location specified in by second vehicle. 
This is the REROUTE UAV method. 

Parameters: 
nc - - number of targets/route points (customers). 
gamma - - additional vehicle usage penalty (set to ZERO only). 
factor - - integer scaling factor used to increase precision. 
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coord - - blank array where coordinates will be stored upon method completion, 
s - - blank array where service times will be stored upon method completion, 
wind - - wind data object used to scale travel times, 
altitude - - matrix of optimum travel altitudes between points 

Returns: 
returns the time matrix specific to the problem. 

Class Timer 

j ava.lang.Ob j ect 

+ Timer 

public class Timer 
extends Object Timer Class is used to time overall computation time. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

endTime 
end time. 

startTime 
begin time. 

totalSeconds 
duration of run. 

Constructor Index 

TimerO 
Default constructor. 

Method Index 

endTimeO 
endTime assigns end time. 

startTimeO 
startTime assigns start time. 

totalSecondsQ 
totalSeconds returns duration. 

Variables 

startTime 

public   long  startTime 
begin time. 

endTime 

public   long  endTime 
end time. 

totalSeconds 

public   long  totalSeconds 
duration of run. 
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Constructors 

Timer 

public Timer() 
Default constructor. Assigns all values to zero. 

Methods 

startTime 

public long startTime() 
startTime assigns start time. 

Returns: 
returns start time. 

endTime 

public long endTime() 
endTime assigns end time. 

Returns: 
returns end time. 

totalSeconds 

public   long  totalSeconds() 
totalSeconds returns duration. 

Returns: 
returns duration. 

Class TsptwPen 

j ava.lang.Ob j ect 

+ MTSPTWuav 

+ TsptwPen 

public class TsptwPen 
extends MTSPTWuav tsptwPen class: Given the TW and load penalties, this procedure personalizes the 
penalties to the mTSPTW; Computes tourCost of tour as tour length + scaled penalty for infeasibilities. 

Constructor Index 

TsptwPenO 

Method Index 

tsptwPenCint, NodeTypef], VrpPenType, double, double, int, int, int, int) 
tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. 

tsptwPenNormalizeddnt, NodeTypef], VrpPenType, double, double, int, int, int, int) 
tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. 

Constructors 

TsptwPen 

public TsptwPen() 
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Methods 

tsptwPen 

public static final TsptwPenOut tsptwPen(int tourLen, 
NodeType tour[], 
VrpPenType tourPen, 
double TWPEN, 
double LDPEN, 
int totPenalty, 
int tourCost, 
int penTrav, 
int tvl) 

tsptwPen method uses the TW and load penalties to computes tourCost of tour as tour length + 
scaled penalty for infeasibilities. This method is used with the absolute penalty factors. 

Parameters: 
tourLen - tour duration. 
tour - node array to be processed. 
tourPen - current tour penalty value. 
TWPEN - time window penalty factor. 
LDPEN - load overage penalty factor. 
totPenalty - sum total penalties. 
tourCost - total tour cost. 
penTrav - travel time penalty. 
tvl - travel duration. 

Returns: 
returns wrapped multiple objects. 

tsptwPenNormalized 

public static final TsptwPenOut tsptwPenNormalized(int tourLen, 
NodeType tour[], 
VrpPenType tourPen, 
double TWPEN, 
double LDPEN, 
int totPenalty, 
int tourCost, 
int penTrav, 
int tvl) 

tsptwPenNormalized method uses the TW and load penalties to computes tourCost of tour as tour 
length + scaled penalty for infeasibilities. This method is uses penalty factors of one and is called 
when the insertion move is made. Penalty values are then comparable from iteration to iteration. 

Parameters: 
tourLen - tour duration. 
tour - node array to be processed. 
tourPen - current tour penalty value. 
TWPEN - time window penalty factor (IGNORED, set to 1). 
LDPEN - load overage penalty factor (IGNORED, set to 1). 
totPenalty - sum total penalties. 
tourCost - total tour cost. 
penTrav - travel time penalty. 
tvl - travel duration. 

Returns: 
returns wrapped multiple objects. 
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Class TsptwPenOut 

j ava.lang.Obj ect 

I 
+ TsptwPenOut 

public class TsptwPenOut 
extends Object TsptwPenOut is used as a package to output multiple penalty information from class 
TsptwPen. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

penTrav 
Penalty related value. 

totPenaltv 
Penalty related value. 

tourCost 
Penalty related value. 

tvl 
Penalty related value. 

Constructor Index 

TsptwPenOutQ 
Default constructor. 

TsptwPenOutdnt. int, int, int) 
Specified constructor. 

Variables 

totPenalty 

public   int  totPenalty 
Penalty related value. 

tourCost 

public   int   tourCost 
Penalty related value. 

penTrav 

public   int  penTrav 
Penalty related value. 

tvl 

public int tvl 
Penalty related value. 

Constructors 

TsptwPenOut 

public TsptwPenOut() 
Default constructor. Assigns all values to zero. 

TsptwPenOut 
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public TsptwPenOut(int totPenalty, 
int   tourCost, 
int penTrav, 
int   tvl) 

Specified constructor. Values set as passed. 

Class TwBestTTOut 

j ava.lang.Object 

I 
+ TwBestTTOut 

public class TwBestTTOut 
extends Object TwBestTTOut is used as a package to output multiple information from the TWBestTTOut 
method. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Variable Index 

bestCost 
best tour related value. 

bestiter 
best tour related value. 

bestnv 
best tour related value. 

bestTime 
best tour related value. 

bestTour 
best tour related value. 

bestTT 
best tour related value. 

bfCost 
best tour related value. 

bfiter 
best tour related value. 

bfnv 
best tour related value. 

bfTime 
best tour related value. 

bfTour 
best tour related value. 

bfTT 
best tour related value. 

Constructor Index 

TwBestTTOutO 
Default constructor. 

TwBestTTOutqnt int, int, int, int, int, int, int, int, int, NodeType[], NodeTypef]) 
Specified constructor. 
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Variables 

bfCost 

public   int  bfCost 
best tour related value. 

bfTT 

public int bfTT 
best tour related value. 

bfnv 

public int bfnv 
best tour related value. 

bfiter 

public int bfiter 
best tour related value. 

bestCost 

public   int  bestCost 
best tour related value. 

bestTT 

public int bestTT 
best tour related value. 

bestnv 

public int bestnv 
best tour related value. 

bestiter 

public   int  bestiter 
best tour related value. 

bfTime 

public int bfTime 
best tour related value. 

bestTime 

public   int  bestTime 
best tour related value. 

bfTour 

public NodeType  bfTour[] 
best tour related value. 

bestTour 

public  NodeType  bestTour[] 
best tour related value. 

Constructors 

TwBestTTOut 

public TwBestTTOut() 
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Default constructor. Assigns all values to zero. 
TwBestTTOut 

public TwBestTTOut(int bfCost, 
int  bfTT, 
int bfnv, 
int  bfiter, 
int  bestCost, 
int  bestTT, 
int  bestnv, 
int  bestiter, 
int  bfTime, 
int  bestTime, 
NodeType bfTour[], 
NodeType bestTour[]) 

Specified constructor. Values set as passed. 

Class ValueObj 

j ava.lang.Obj ect 

I 
+ ValueObj 

public final class ValueObj 
extends Object ValueObj Class is used to store tour attributes in the hashtable for comparison. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

ValueObifint int, int, int, int, int, int) 
Specified constructor. 

Method Index 

eguals(ValueObj) 
Overloaded equals(), check only attribute fields. 

hashCodeO 
Overloaded hashCode method. 

toStringQ 
toSrting changes a ValueObj to a string for use in the hashTable. 

Constructors 

ValueObj 

public  ValueObj(int fhv, 
int shv, 
int tourCost, 
int tvl, 
int twPen, 
int loadPen, 
int lastlter) 

Specified constructor. Values set as passed. 
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Methods 

equals 

public final boolean equals(ValueObj a) 
Overloaded equals(), check only attribute fields. Do not check first two data elements to keep 
inline with hashCode overload. 

Parameters: 
a - element compared calling object. 

Returns: 
returns true if objects are equal, false otherwise. 

toString 

public final String toString() 
toString changes a ValueObj to a string for use in the hashTable. 

Returns: 
returns concatenated String. 

Overrides: 
toString in class Object 

hashCode 

public final int hashCode() 
Overloaded hashCode method. Note: if two objects are equal according to the equals method, then 
calling the hashCode method on each of the two objects must produce the same integer result. Do 
not checking first two data elements because of size limitations of Integer. 

Returns: 
returns integer hashcode value. 

Overrides: 
hashCode in class Object 

Class VrpPenType 

j ava.lang.Obj ect 

+ VrpPenType 

public class VrpPenType 
extends Object VrpPentype class provides the object structure for load and time window penalties. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

VrpPenTvpeQ 
Default constructor. 

VrpPenTypednt. int) 
Specified constructor. 

VrpPenTypeCint. int, int) 
Specified constructor. 

Method Index 

compPens(NodeType[], int) 
compPens computes the vehicle capacity overload and time window penalties. 
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Constructors 

VrpPenType 

public VrpPenType() 
Default constructor. Assigns all values to zero. 

VrpPenType 

public VrpPenType(int  tw, 
int   Id) 

Specified constructor. Values set as passed. 
VrpPenType 

public  VrpPenType(int   tw, 
int   Id, 
int  nvu) 

Specified constructor. Values set as passed. 

Methods 

compPens 

public final VrpPenType compPens(NodeType tour[], 
int  capacity) 

compPens computes the vehicle capacity overload and time window penalties. 
Parameters: 

tour[] - current tour used to calculate penalties, 
capacity - maximum vehicle load. 

Returns: 
returns the VrpPenType object which the method was called on with updated values. 

Class WindAdjust 

j ava.lang.Obj ect 

+ WindAdjust 

public class WindAdjust 
extends Object WindAdjust will provides the adjusted ground speed given the desired heading from 
location A to location B, and the wind heading. 
Version: 

vl.lFeb99 
Author: 

Kevin P. O'Rourke, David M. Ryer 

Constructor Index 

WindAdiustQ 

Method Index 

groundSpeedCdouble. double, double, double) 
groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

groundSpeedAF(double, double, double, double) 
groundSpeedAF is an experimental method that uses a different formula. 
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Constructors 

WindAdjust 

public WindAdjust() 

Methods 

groundSpeed 

public static final double groundSpeed(double headingAtoB, 
double windDir, 
double  airspeed, 
double windSpeed) 

groundSpeed method returns the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

Parameters: 
headingAtoB - heading between points in degrees. 
windDir - wind heading in degrees. 
airSpeed - aircraft air speed in knots. 
windSpeed - wind speed in knots. 

Returns: 
returns ground speed in knots. 

groundSpeedAF 

public static final double groundSpeedAF(double headingAtoB, 
double windDir, 
double  airSpeed, 
double windSpeed) 

groundSpeedAF is an experimental method that uses a different formula. It has not been validated 
and is not used. Designed to return the ground speed given the heading between points, the wind 
heading, the wind speed, and the aircraft's airspeed. 

Parameters: 
headingAtoB - heading between points in degrees. 
windDir - wind heading in degrees. 
airSpeed - aircraft air speed in knots. 
windSpeed - wind speed in knots. 

Returns: 
returns ground speed in knots. 

Class WindData 

java.lang.Obj ect 

+ WindData 

public class WindData 
extends Object WindData Class provides attributes to store wind direction, velocity, and UAV velocity for 
a given altitude plus methods to read in wind information from a file and manually manipulate wind data. 
Version: 

vl.lMar99 
Author: 

Kevin P. O'Rourke 
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Variable Index 

acSpeed 
double aircraft speed at the associated altitude level. 

altitude 
integer value of the associated altitude level. 

bands 
double Number of altitude level bands. 

bearing 
double wind bearing at the associated altitude level. 

speed 
double wind speed at the associated altitude level. 

Method Index 

getACsDeed(int) 
getACspeed returns aircraft (UAV) speed for the specified band. 

getAltitude(int) 
getAltitude returns actual altitude for the specified band. 

getBandsQ 
getBands returns number of altitude bands (wind tiers). 

getBearing(int) 
getBearing returns wind bearing for the specified band. 

getSpeed(int) 
getSpeed returns wind speed for the specified band. 

readWmd(String) 
readWind method reads wind data from a file and returns a WindData object. 

setACspeeddnt, int) 
setACspeed sets only the UAV speed information only for a particular band. 

setACspeedAU(int) 
setACspeedAll sets only the UAV speed information. 

setAIKint int, double, double, int) 
setAll method sets all related information for a particular band. 

setAltfint. int) 
setAltitude sets only the altitude information for a particular band. 

setBearingfint. double) 
setBearing sets only the bearing information only for a particular band. 

setSpeedCint. double) 
setSpeed sets only the wind speed information only for a particular band. 

setWindCint, int, double, double) 
setWind method sets only wind related information for a particular band. 

Variables 

altitude 

protected int altitude[] 
integer value of the associated altitude level. 

bearing 

protected double bearing[] 
double wind bearing at the associated altitude level. 

speed 

protected double speed[] 
double wind speed at the associated altitude level. 

acSpeed 
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protected int acSpeed[] 
double aircraft speed at the associated altitude level. 

bands 

protected int bands 
double Number of altitude level bands. 

Methods 

setWind 

public void setWind(int level, 
int  altitude, 
double bearing, 
double  speed) 

setWind method sets only wind related information for a particular band. 
Parameters: 

altitude - actual altitude level for this band, 
bearing - wind bearing for this band, 
speed - wind speed for this band. 

setAlt 

public void setAlt(int level, 
int  altitude) 

setAltitude sets only the altitude information for a particular band. 
Parameters: 

level - altitude band array index number, 
altitude - actual altitude level for this band. 

setBearing 

public void setBearing(int level, 
double bearing) 

setBearing sets only the bearing information only for a particular band. 
Parameters: 

level - altitude band array index number, 
bearing - wind bearing for this band. 

setSpeed 

public void setSpeed(int level, 
double  speed) 

setSpeed sets only the wind speed information only for a particular band. 
Parameters: 

level - altitude band array index number, 
speed - wind speed for this band. 

setACspeed 

public void setACspeed(int level, 
int  acSpeed) 

setACspeed sets only the UAV speed information only for a particular band. 
Parameters: 

level - altitude band array index number. 
acSpeed - aircraft (UAV) speed for this band. 

setAU 

public void setAll(int level, 
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int altitude, 
double bearing, 
double speed, 
int  acSpeed) 

setAll method sets all related information for a particular band. 
Parameters: 

altitude - actual altitude level for this band, 
bearing - wind bearing for this band, 
speed - wind speed for this band. 
acSpeed - aircraft (UAV) speed for this band. 

setACspeedAU 

public void setACspeedAU(int acSpeed) 
setACspeedAU sets only the UAV speed information. It assigns the same speed for all bands. 

Parameters: 
acSpeed - aircraft (UAV) speed for every band. 

getAltitude 

public int getAltitude(int level) 
getAltitude returns actual altitude for the specified band. 

Parameters: 
level - altitude band array index. 

Returns: 
returns actual altitude. 

getBearing 

public double getBearing(int level) 
getBearing returns wind bearing for the specified band. 

Parameters: 
level - altitude band array index. 

Returns: 
returns wind bearing. 

getSpeed 

public double getSpeed(int level) 
getSpeed returns wind speed for the specified band. 

Parameters: 
level - altitude band array index. 

Returns: 
returns wind speed. 

getACspeed 

public int getACspeed(int level) 
getACspeed returns aircraft (UAV) speed for the specified band. 

Parameters: 
level - altitude band array index. 

Returns: 
returns aircraft (UAV) speed. 

getBands 

public int getBands() 
getBands returns number of altitude bands (wind tiers). 

Returns: 
returns number of altitude bands (wind tiers). 

readWind 
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public static WindData readWind(String filein) 
readWind method reads wind data from a file and returns a WindData object. 

Parameters: 
filein - name of wind data file. 

Returns: 
returns a WindData object 
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