REPORT D	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of infl gathering and maintaining the data needed and, collection of information including suggestions fo Davis Highway, Suite 1204, Arlington, VA 22202-	ormation is estimated to average 1 hour pe , completing and reviewing the collection o or reducing this burden to Washington Hea 4302 and to the Office of Managemeni and B	er response, including the time t f information. Send comments adquarters Services, Directorate i udget, Paperwork Reduction Proje	or reviewing instructions, searching existing data sources, regarding this burden estimate or any other aspect of this for information Operations and Reports, 1215 Jefferson ct (0704-0188) Washington, DC, 20503
T. AGENCY USE ONLY (Leave blank)	April 6, 1999	Technical Re	eport
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Preliminary Complexation substituted Tetraaza-15-0	N00014-98-1-0485		
6. AUTHOR(S)		,,,,,	- 98PR03020-00
Xian X. Zhang, Jerald S. Savage and Reed M. Izat	Bradshaw, R. Todd Bron tt	nson, Paul B.	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT
Department of Chemistry an Brigham Young University Provo, UT 84602	Technical Report No. 7		
9. SPONSORING/MONITORING AGENCY	Y NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY
Dr. Kelvin Higa (Program	Director)		
Office of Naval Research			
800 No. Quincy Street			
Arlington, VA 22217-500	0		
1. SUPPLEMENTARY NOTES			
Approved for public release	e; distribution unlimited	<u></u>	126. DISTRIBUTION CODE
Complexation of bis Technical Report No. 6) wi potentiometrically in aqueo complexes with these meta	s(8-hydroxyquinoline)-su th Cu ²⁺ , Co ²⁺ , Ni ²⁺ , Zn ²⁺ , bus solution (0.10 M Me ₄ l ions. The UV-Vis spect	bstituted tetraaza-1 Cd ²⁺ , and Pb ²⁺ was NCl) at 25°C. Liga	5-crown-5 (1) (see our s evaluated and 1 formed very stable
an aqueous acetic acid buff	fer solution (pH 4.7). The	$e 1-Cu^{2+}$ complex p	plexes were examined in rovided a new absorption
an aqueous acenc acid buff band at 258 nm.	er solution (pH 4.7). The	e 1-Cu ²⁺ complex p	plexes were examined in rovided a new absorption
an aqueous acenc acid buff band at 258 nm.	er solution (pH 4.7). The	21-Cu ²⁺ complex p	plexes were examined in rovided a new absorption
an aqueous acetic acid buff band at 258 nm.	er solution (pH 4.7). The	21-Cu ²⁺ complex p	plexes were examined in rovided a new absorption 15. NOMBER OF PAGES 16. PRICE CODE NA
TA SUBJECT TERMS	er solution (pH 4.7). The	1-Cu ²⁺ complex p	plexes were examined in rovided a new absorption 15. NUMBER OF PAGES 16. PRICE CODE NA ATION 20. LIMITATION OF ABSTRACT
an aqueous acetic acid buff band at 258 nm. 14. SUBJECT TERMS 17. SECURITY CLASSIFICATION OF REPORT	er solution (pH 4.7). The 18. SECURITY CLASSIFICATION OF THIS PAGE	1-Cu ²⁺ complex p	15. NOMBER OF PAGES 15. NOMBER OF PAGES 16. PRICE CODE NA ATION 20. LIMITATION OF ABSTRACT

• _ •

OFFICE OF NAVAL RESERACH

Grant N00014-98-1-0485

Technical Report No. 7

Preliminary Complexation Studies of Bis(8-hydroxyquinoline)-substituted

Tetraaza-15-crown-5 with Various Metal Ions

by

X. X. Zhang, Jerald S. Bradshaw, R. T. Bronson, Paul B. Savage, and Reed M. Izatt

Department of Chemistry and Biochemistry Brigham Young University, Provo, UT 84602

April 6, 1999

Reproduction in whole or in part is permitted for any purpose of the University Government

This document has been approved for public release and sale; its distribution is unlimited

19990412 044

DTIC QUALITY INSPECTED &

PRELIMINARY COMPLEXATION STUDIES OF BIS(8-HYDROXYQUINOLINE)-SUBSTITUTED TETRAAZA-15-CROWN-5 WITH VARIOUS METAL IONS

•

Xian X. Zhang, Jerald S. Bradshaw, R. Todd Bronson,

Paul B. Savage, and Reed M. Izatt

Department of Chemistry Brigham Young University, Provo, UT 84602

1

Results and Discussion

A series of new 8-hydroxyquinoline- and 8-aminoquinoline-substituted tetraaza-15-(-16)-crown-5 ethers (1-4 and 5-8, respectively) have been prepared in our laboratory.¹ These new ligating agents were designed to selectively bind transition and post-transition metal ions with a concomitant modulation in the absorption and fluorescent spectra of the compounds. This report gives a preliminary account of the complexation of ligand 1 with various metal ions.

Protonation and Complexation Studies of Ligand 1. Protonation constants of 8-

hydroxyquinoline-containing tetraazacrown ether 1 and stability constants for the interactions of 1 with Cu^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+} , and Pb^{2+} were determined by a potentiometric titration technique² at 25 °C in aqueous solution. The ionic strength was kept constant with 0.10 *M* tetramethylammonium chloride. The overall reactions are expressed by the general equation:

$$pM^{2+} + qH^{+} + rL^{2-} \neq M_pH_qL_r^{(2p+q-2r)}$$
(1)

where M is the metal ion and L is the ligand. The overall equilibrium constant can be defined as

$$\beta_{pqr} = [M_p H_q L_r^{(2p+q-2r)}] / [M^{2+}]^p [H^+]^q [L^{2-}]^r$$
(2)

The values of the protonation constants of the ligands and stability constants of the metal ion complexes (log β_{par}) are listed in Tables 1 and 2, respectively.

Four protonation constants can be calculated for compound 1. The first two protonation constants (log $K_1 = 9.55$ and log $K_2 = 7.30$ (16.85 - 9.55), Table 1) and the last two constants

Table 1. Logarithms of Protonation Constants of Macrocyclic Ligand 1 in Aqueous Solution $(0.10 M \text{ Me}_{4}\text{NCl})$ at 25.0 °C

Reaction	\logeta
$H^+ + L^{2-} \Rightarrow HL^-$	9.55 ± 0.05
$2\mathrm{H}^+ + \mathrm{L}^{2-} \rightleftharpoons \mathrm{H}_2\mathrm{L}$	16.85 ± 0.08
$3H^+ + L^{2-} \rightleftharpoons H_3L^+$	19.87 ± 0.09
$4\mathrm{H}^{+} + \mathrm{L}^{2-} \rightleftharpoons \mathrm{H}_{4}\mathrm{L}^{2+}$	21.31 ± 0.14

(log $K_3 = 3.02$ and log $K_4 = 1.44$) are close to each other. A large decrease in protonation constants is seen between the second and the third protonation steps. Since the first protonation constant of 1 (log $K_1 = 9.55$) is hydroxyquinoline (9.65 at 25 °C, $\mu = 0.1$),³ the first two protonation constants of 1 are due to protonation of OH groups of the 8-

hydroxyquinoline portion and the last two forming a neutral complex with a divalent cation which may be coordinated by both the 8-hydroxyquinolines and the macroring.

Data in Table 2 show that each metal ion studied forms several types of complexes with the ligand. The 1:1 complexes ML (p = 1, q = 0, r = 1 in eq. 1) and M(OH)L⁻ (p = 1, q = -1, r =1) are observed in each case. The complexes of ligand 1 with Cu²⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, and Pb²⁺ are very stable in aqueous solution. The large stability constants (log $\beta_{ML} > 12$ and log $\beta_{MHL} > 15$) are shown in Table 2. The most stable complexes were observed for Cu²⁺. The values of log β_{CuL} and log β_{CuHL} are 15.5 and 18.6, respectively. Cd²⁺ also forms very stable complexes with ligand 22 (log $\beta_{CdL} = 15.3$ and log $\beta_{CdHL} = 17.5$). Therefore, not only the fully deprotonated form of 22 (L²⁻) but also the monoprotonated ligand (HL⁻) forms very stable complexes with the metal ions studied (except for Co²⁺). In the case of Co²⁺, the complex CoHL⁺ was not detected. However, Co²⁺ forms a 1:2 (M:L) complex with 1 (log $\beta_{CoL_2} = 20.2$). A dinuclear complex with Cu²⁺, Cu₂L²⁺, was also observed. The equilibrium constants of the complexes containing hydrolysis products of the metal ions, M(OH)L⁻, range from 6.44 (log $\beta_{Co(H)L}$) to 9.62 (log Table 2. Overall Stability Constants^a of Metal Ion Complexes with Macrocyclic Ligand 1 in Aqueous Solution (0.10 M Me₄NCl) at

25.0 °C

\logeta_{pqr}	Co^{2+} Ni^{2+} Zn^{2+} Cd^{2+} Pb^{2+}	$12.34 \pm 0.04 \qquad 13.46 \pm 0.03 \qquad 12.41 \pm 0.03 \qquad 15.33 \pm 0.02 \qquad 13.65 \pm 0.03 \qquad 12.41 \pm 0.03 \qquad 13.65 \pm 0.03 \qquad 13.6$	1.12 16.15 ± 0.18 15.55 ± 0.09 17.50 ± 0.05 16.93 ± 0.03	0.19 , 6.44 ± 0.06 , 7.49 ± 0.12 , 6.49 ± 0.05 , 9.62 ± 0.07 , 8.22 ± 0.08	0.22	20.19 ± 0.06	-3.59 ± 0.25
	Co ²⁺	12.34 ± 0.04		6.44 ± 0.06		20.19 ± 0.06	
	Cu ²⁺	15.52 ± 0.08	18.55 ± 0.12	8.53 ± 0.19	18.92 ± 0.22		
	r	1	1		1	2	-
	в	0	-	7	0	0	-7
	d	7			7		

^aThe equilibria of the reactions are defined by the general equation:

 $pM^{2^+} + qH^+ + rL^{2^-} = M_pH_qL_r^{(2p+q-2r)}$. M = metal; L = ligand. A minus q value refers to OH⁻ group.

 $\beta_{Cd(OH)L}$). The Ni²⁺ forms a second type of hydrolysis complex, Ni(OH)₂L²⁻, which has a very low equilibrium constant (Table 2).

UV-Visible spectra. The UV spectra of free and complexed ligand 1 are shown in Figures 1 and 2. The free 1 has an absorption maximum at 244 nm. Upon addition of Cu^{2+} , a new peak develops at 258 nm (Figure 1). Other metal ions (Zn^{2+} , Pb^{2+} , Cd^{2+} , Ag^+ , Hg^{2+} , Co^{2+} , and Ni^{2+}) were also titrated with 1, but none produced a new peak or significantly interfered with the new 1- Cu^{2+} complex peak at 258 nm (Figure 2). Thus, the 258 nm peak for the 1- Cu^{2+} complex could be used for sensing purposes.

Experimental Section

Determination of Protonation and Stability Constants. The protonation and stability constants were determined by potentiometric titration in aqueous solution at 25 °C. The titrations were carried out at a constant ionic strength of $0.10 M Me_4NCl$ using an automatic microprocessor-controlled potentiometric titrator.⁴ Temperature was controlled within ± 0.1 °C using a jacketed cell through which water from a constant-temperature bath was circulated. Potentials to within ± 0.1 mV were measured using an Orion Model 701A Digital Ion Analyzer in conjunction with a Cole-Parmer combination electrode (Ag/AgCl reference cell). The electrode was calibrated by two precision buffer solutions, pH 4.000 ± 0.002 and 7.000 ± 0.002 at 25.0 °C (Cole-Parmer). Calculations were performed with the SUPERQUAD program⁵ using an IBM computer. Compound 1 was used as its adduct with HCl (1•6HCl) which had good solubility in aqueous solution (0.01 *M*).

5

UV-visible Spectral Measurements. UV-visible spectra were recorded at 23 ± 1 °C in a 1-cM quartz cell using a Hewlett-Packard 8452A Diode Array spectophotmeter. Both ligand and metal ions were prepared in aqueous acetic acid buffer (pH = 4.7). Concentrations of acetic and sodium acetate were 5.00 x 10^{-2} M and 5.00 x 10^{-2} M, respectively, and concentration of ligand 1 was 1.00×10^{-5} M. The metal ion concentrations were 1-5 times the ligand concentration.

REFERENCES

- (1) (a) Yang, Zh.; Bradshaw, J. S.; Zhang, X. X.; Savage, P. B.; Krakowiak, K. E.; Dalley, N. K.; Su, N.; Bronson, R. T.; Izatt, R. M. J. Org. Chem. in press. (b) Yang, Zh.; Bradshaw, J. S.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M.; "Synthesis of Bis(8-aminoquinoline)-substituted Tetraazacrown Ethers by a Reductive Amination Process," Technical Report No 5, Office of Naval Research, March 8, 1999. (c) Yang, Zh.; Bradshaw, J. S.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M.; "Synthesis of Tetraazacrown Ethers Containing Two 8-Hydroxyquinoline Side Arms," Technical Report No 6, Office of Naval Research, April 6, 1999.
- Braibanti, A.; Ostacoli, G.; Paoletti, P.; Pettit, L. D.; Sammartano, S. Pure Appl. Chem.
 1987, 59, 1721.
- (3) Smith, R. M.; Martell, A. E.; Mortekaitis, R. J. "NIST Critically Selected Stability Constants of Metal Complexes Database", Version 3.0, MD, 1997.
- (4) Gampp, H.; Maeder, M.; Zuberbühler, A. D.; Kaden, T. A. Talanta 1980, 27, 513.
- (5) Gans, P.; Sabatini, A.; Vacca, A. J. Chem. Soc., Dalton Trans. 1985, 1195.