
AFIT/GCS/ENG/99M-08

METHODOLOGY FOR APPLICATION DESIGN
USING INFORMATION DISSEMINATION AND

ACTIVE DATABASE TECHNOLOGIES

THESIS

Robert H. Hartz, Captain, USAF

AFIT/GCS/ENG/99M-08

Approved for public release, distribution unlimited.

19990409 049

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

METHODOLOGY FOR APPLICATION DESIGN USING INFORMATION
DISSEMINATION AND ACTIVE DATABASE TECHNOLOGIES

6. AUTHOR(S)

Robert H. Hartz, Capt, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street, Bldg 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-08

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Capt Terry A. Wilson/DDB Program Manager
AFRL/SNAS
2010 5th Street
WPAFB OH 45433-7001
COMM: (9371255-6329 x2634 DSN: 785-6329 x2634

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr Henry B. Potoczny
COMM: (937)255-3636 x4282 DSN: 785-3636 x4282
henry. potoczny @afit. af. mil
12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
In dynamic data environments, the large volume of transactions requires flexible control structures to effectively balance the
flow of information between producers and consumers. Information dissemination-based systems, using both data push and
pull delivery mechanisms, provide a possible scalable solution for data-intensive applications. In this research, a
methodology is proposed to capture information dissemination design features in the form of active database rules to
effectively control dynamic data applications. As part of this design methodology, information distribution properties are
analyzed, data dissemination mechanisms are transformed into an active rule framework, and the desired reactive behavior is
achieved through rule customization. The methodology is applied to dynamic data test case scenarios to demonstrate the
design of dissemination-based active rules. The results of applying the methodology to test case scenarios demonstrated that
encapsulating information dissemination concepts into active rule structures could provide flexible database control strategies
for dynamic data applications.

14. SUBJECT TERMS

DATABASES, INFORMATION TRANSFER, INFORMATION SYSTEMS, DATA
MANAGEMENT, METHODOLOGY, DESIGN, OODBMS, ECA

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the

U.S. Government.

AFIT/GCS/ENG/99M-08

METHODOLOGY FOR APPLICATION DESIGN USING INFORMATION

DISSEMINATION AND ACTIVE DATABASE TECHNOLOGIES

THESIS

Presented to the Faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Robert H. Hartz, B. S. E.

Captain, USAF

March, 1999

Approved for public release, distribution unlimited.

AFIT/GCS/ENG/99M-08

METHODOLOGY FOR APPLICATION DESIGN USING INFORMATION

DISSEMINATION AND ACTIVE DATABASE TECHNOLOGIES

Robert H. Hartz, B. S. E.
Captain, USAF

Approved:

Henry &. Potoczny, Ph.D. * (f '
Thesis Advisor

Michael L Talbert, Maj, Ph.D., USAF
Thesis Cdflimittee Member

Scott A. DeLoach, Maj, Ph.D., USAF
Thesis Committee Member

Tftd^JK ^ t?99
date

SU*rWf\
date

date

11

Acknowledgments

I would like to extend my sincere appreciation to the faculty members of

my thesis committee. I wish to thank Maj Michael Talbert for his unwavering

enthusiasm and guidance throughout this research effort, and I also want to

acknowledge Maj Scott DeLoach for the insightful comments and support he

provided to me. I would like to express a special thanks to my thesis advisor, Dr

Henry Potoczny, whose patience and encouragement during my frequent

research direction changes have enabled me to achieve a much deeper learning

experience while at AFIT.

I would also like to acknowledge the contribution of the members of my

sponsoring organization, the Air Force Research Laboratory's Sensor Directorate.

I am sincerely thankful for the combined efforts of Capt Terry Wilson, Maj Tom

Rathbun, and Capt Eric Baenen in providing me with useful insight and key

documentation related to the Dynamic Database program.

Most importantly, I would like to express my grateful appreciation to my

loving wife, Sandy, and my children, Bryan and Jennifer, for their continuous

love, encouragement, and understanding throughout the past eighteen months. I

offer my final thanksto the Lord, who is my true source of inspiration.

in

Table of Contents

Acknowledgments iii

Table of Contents iv

List of Figures vii

Abstract viii

1 Introduction 1

1.1 Problem Statement 2
1.2 Research Goals 2
1.3 Assumptions 3
1.4 Document Organization 3

2 Background 5

2.1 Active Database Technology 5
2.1.1 Rule Definition 6
2.1.2 Rule Execution 11
2.1.3 Active Database Implementation Issues 16

2.2 Data Dissemination 21
2.2.1 Primary Architecture Components 22
2.2.2 Design Issues 24
2.2.3 Delivery Mechanisms 28

2.3 Summary 31

3 Methodology 32

3.1 Data Dissemination Application Analysis 33
3.1.1 Activation Mechanisms 34

iv

3.1.2 Data Precision 35
3.1.3 Data Size 36
3.1.4 Client Communication 37
3.1.5 Feature Classifications 38

3.2 Transforming Dissemination Features to Active Rules 39
3.2.1 Aperiodic Pull 39
3.2.2 Aperiodic Push 41
3.2.3 Periodic Pull 42
3.2.4 Periodic Push 44

3.3 Active Rule Customization 46
3.3.1 Aperiodic Pull 47
3.3.2 Aperiodic Push 48
3.3.3 Periodic Pull 49
3.3.4 Periodic Push 51

3.4 Summary 52

Case Study Analysis and Results 53

4.1 Analysis of Information Pull Scenario 54
4.1.1 Application Features 55
4.1.2 Rule Framework 55
4.1.3 Customized Rules 55

4.2 Analysis of Information Push Scenario 56
4.2.1 Application Features 57
4.2.2 Rule Framework 58
4.2.3 Customized Rules 58

4.3 Analysis of Hybrid Dissemination Scenario 59
4.3.1 Application Features 60
4.3.2 Rule Framework 61
4.3.3 Customized Rules 62

4.4 Summary of Results 64

Conclusions 65

5.1 Findings • 66
5.2 Recommendations 67

5.2.1 Assess DDB for Active Database Selection 67
5.2.2 DDB Development Process Integration 68
5.2.3 Technology Bridge for DDB and BADD 68

5.3 Future Areas of Research 68

5.3.1 Integrate Rule Analysis into Methodology 69
5.3.2 Automate Methodology Design Tool 69
5.3.3 Dynamic Push/Pull Rule Condition Experiments.... 70

5.4 Summary 70

Bibliography 71

Vita 78

VI

List of Figures

Figure 1: Spectrum of Database Rule Languages 7

Figure 2: Create Rule Command inStarburst 9

Figure 3: Basic Coupling Modes between the Event and Condition 15

Figure 4: Architecture of SAMOS Kernel on top of ObjectStore 18

Figure 5: Data Delivery Options 29

Figure 6: Example of a 7-Unit, 3-Disk Broadcast Program 31

Figure 7: Design Methodology Steps 33

Figure 8: Application Features Mapped to a Dissemination Approach 38

Figure 9: Information Pull Scenario 54

Figure 10: Active Rule for Aperiodic Pull 56

Figure 11: Information Push Scenario 57

Figure 12: Active Rule for Periodic Push 59

Figure 13: Push/Pull Hybrid Scenario 60

Figure 14: Active Rule for Periodic Pull 63

Figure 15: Active Rule for Aperiodic Push 64

vii

AFIT/GCS/ENG/99M-08

Abstract

In dynamic data environments, the large volume of transactions requires

flexible control structures to effectively balance the flow of information between

producers and consumers. Information dissemination-based systems, using both

data push and pull delivery mechanisms, provide a possible scalable solution for

data-intensive applications. In this research, a methodology is proposed to

capture information dissemination design features in the form of active database

rules to effectively control dynamic data applications. As part of this design

methodology, information distribution properties are analyzed, data

dissemination mechanisms are transformed into an active rule framework, and

the desired reactive behavior is achieved through rule customization. The

methodology is applied to dynamic data test case scenarios to demonstrate the

design of dissemination-based active rules. The results of applying the

methodology to test case scenarios demonstrated that encapsulating information

dissemination concepts into active rule structures could provide flexible database

control strategies for dynamic data applications.

vin

1 Introduction

Dynamic data environments are characterized by a collection of

heterogeneous loosely-coupled data sources where a stream of information

updates must be distributed to interested clients in a timely manner. The high

velocity of changes to source data and derived data computations demand

dynamic control structures that can efficiently tune system performance to the

fluctuating environment. Satisfying information needs of numerous clients often

requires finding a proper balance of data pull and push technologies to achieve

the desired level of responsiveness.

The Dynamic Database (DDB) program [DDFA98] sponsored by the

Defense Advanced Research Projects Agency (DARPA) is developing the

capability to convert multi-sensor data into a responsive, comprehensive history

of the sensed battlespace for warfighters. To provide ready access to sensor

observations over time, the essential battlespace information must be efficiently

stored and retrieved in a timely manner. A key challenge of this objective is the

development of database technologies and distribution services for efficiently

managing, querying, updating, reporting, and processing the large volume of

sensor data that is transformed and aligned on a global common schema.

1.1 Problem Statement

In data-intensive applications, the amount of data processing activity and

resource consumption associated with application tasks can cause significant

performance degradation. Data dissemination-based system concepts can

provide a mechanism to achieve scalable hierarchies of information flows among

data producers and consumers. In addition, efficient dynamic structures are

necessary to effectively control the large volume of data transactions in a

consistent manner. Encapsulating information dissemination features within an

active rule framework can provide embedded application control strategies as

well as performance improvements for a dynamic data environment.

1.2 Research Goals

The goal of this research is to provide a methodology to assist developers

in designing data dissemination features for an application using automated

database controls. Through this methodology, a process for analyzing and

classifying the information distribution properties of an application is

introduced. In addition, the transformation of data dissemination features into

an active database rule framework is developed as a research sub-goal. A

process is also developed to analyze and customize the remaining active rule

dimensions to achieve the desired level of reactive behavior. Finally, this

research will demonstrate, through a case study, that the methodology can be

used to design dissemination-based active rules for a dynamic data application.

1.3 Assumptions

The analysis techniques used in the active dissemination-based design

methodology do not presume any particular database or application design

approach is in use. In addition, general-purpose active database rule syntax and

generic dissemination communication services are used throughout this research

to express the methodology concepts and case study test cases. The examples

shown in this research are based on an object oriented data model, but most of

design principles of the methodology would equally apply to either a relational

or object-relational data model.

Since the objective of this research is primarily focused on the

dissemination-based active rule design, no implementation-specific issues are

addressed, nor have any performance studies been performed on the resulting

rule structures. Finally, this active rule design methodology does not conduct

any static rule analysis for termination or confluence properties at this time.

1.4 Document Organization

Chapter 2 introduces the event-condition-action (ECA) rule definition

model, rule execution semantics, and implementation challenges of active

databases. Also, the features of dissemination-based information systems and

associated design tradeoffs are considered in the background chapter. Chapter 3

details the steps used in the active dissemination-based design methodology.

The first step examines the data dissemination characteristics to be captured in a

dynamic design model. The actual conversion of data distribution concepts into

an active rule framework is presented next in this methodology. In the last

methodology step, the active rule components are tuned to produce the proper

behavioral semantics. In Chapter 4, an evaluation of the methodology is

performed using components of a dynamic data application as a test case.

Finally, chapter 5 summarizes the findings, recommendations, and future

directions for this research.

2 Background

In this chapter, some background material is provided on active database

and information dissemination technologies. As part of an active database

orientation, rule definition features, rule execution semantics, and

implementation issues are covered. Also, the essential features and design

considerations associated with information dissemination systems are presented.

2.1 Active Database Technology

Active database systems combine the data storage capabilities of passive

databases with the reasoning of artificial intelligence rule-based systems to

dynamically perform actions in response to selected data manipulation or user-

defined events. By enhancing passive database management systems (DBMS)

with rules, active databases can efficiently perform functions previously encoded

in application code, accomplish tasks allocated to internal database sub-systems,

and facilitate new applications beyond the scope of passive databases [WC96].

It is difficult to categorize specific characteristics required of all active

database systems without considering the intended application domain.

Although many active database applications are still primarily research

prototypes or single domain applications, there are some general features

common to most active DBMS implementations [PDW+93][FT95][DGG96]. The

key characteristics of active databases examined in this section are rule

definition, rule execution, and implementation issues.

2.1.1 Rule Definition

By embedding active rules into databases, many of the behavioral

semantics normally present in an application program can be formally expressed

with data rule definitions. Since there are two types of rules associated with

databases, the similarities and differences of active and deductive rules will

initially be examined. Then, the syntactical elements of the most common form

of active rules, event-condition-action rules, will be described.

2.1.1.1 Active and Deductive Rules in Databases

Database rules are distinguished as two different types: deductive rules,

which are used to express knowledge about application domains in a purely

declarative way; and active rules, which are used to express actions to be

performed in response to events that may be internal or external to the system

[FWP97].

Although both active and deductive databases achieve a level of

knowledge independence from applications, the semantics of their rules are quite

different [CR96]. Deductive rules express declarative knowledge. Influenced by

artificial intelligence work in logic programming, deductive rules represent

queries in a style that describes the meaning of the query (the what) and does not

depend on the query evaluation strategy (the how). In contrast, active rules, with

roots in rule-based expert systems, express knowledge in a procedural form

through event-condition-action computations. The behavioral semantics of

active rules are based on reactive computations that occur automatically in

response to data manipulation or other registered events. In one study of

relational database rule language differences, highly abstract deductive rule

languages lie on one end of a spectrum, while active rule languages possessing

more powerful constructs are on the other extreme, with rule languages of

varying degrees of expressiveness in between as shown in Figure 1 [Wid93].

DEDUCTIVE ...

higher abstraction level

ACTIVE

lower abstraction level

Datalog ... RDL ... A-RDL ... Ariel ... Starburst ... Postgres

Figure 1: Spectrum of Database Rule Languages

Although the syntax and semantics of deductive databases are fairly

standard, active database systems have no widely accepted formal

characterization. There is broad agreement on syntax and semantics of active

rules; however, recent research work has focused on building formal foundations

for active rules [FWP97]. Other significant active DBMS research has proposed

using static analysis algorithms to ensure active rule processing guarantees

termination, confluence, and observably deterministic behavioral properties

[AHW95][KC95][BCP96].

2.1.1.2 Event-Condition-Action (ECA) Rule Model

The most common type of active rules is Event-Condition-Action (ECA)

rules [DBB+88], meaning "WHEN a current event occurs, and IF a given

condition holds, THEN a certain action is executed." ECA-rules are also known

synonymously as triggers [HAC+97], alerters [GFV96], production rules [Pat95],

and situation-action rules [DBB+88]. Active database rule definitions specify the

events, conditions, and actions used by the ECA-rule model, as well as any rule

groupings and priority relationships among rules [WC96]. Since the operational

semantics of ECA-rules is independent of the underlying data model, active

databases with similar functionality have been built over both relational and

object-oriented databases [FWP97]. The detailed features of an ECA-rule may

best be illustrated by looking at an example of the Starburst active database

language in Figure 2 [Wid96]:

create rule name on table
when triggering-operations

[if condition]
then action-list

[precedes rule-list]
[follows rule-list]

Figure 2: Create Rule Command in Starburst

The name in Figure 2 identifies the rule, and table is the name of the

relational database table over which the rule is defined. With an active object-

oriented data model, ECA-rules are declared as first-class objects with attributes

and methods, and inheritance and aggregation properties can be used to build

rule hierarchies [DBB+88].

The when clause of Figure 2 identifies the event that causes the rule to be

triggered. An ECA-rule event type can be primitive, defined as an elementary

occurrence of interest, or composite, a combination of primitive or composite

events separated by logical constructors such as sequence, conjunction, or

disjunction [DGG96]. Primitive database modification operations such as insert,

delete, and update are internal events that can cause rules to be triggered, but

other events such as time events, transaction events, method-invocation events,

or events originating from a source external to the database may also trigger a

rule [PDW+93][BZBW95]. Some rule events may contain parameter data that can

be used for the rule's condition evaluation and action execution, if necessary

[GD93].

In Figure 2, the if clause specifies a condition to be evaluated once the rule

is triggered. In this example, the optional condition clause specifies some state of

the database to be evaluated, and if omitted, a variant of ECA-rules called event-

action rules is produced with an assumed true condition [Wid96]. A rule

condition is satisfied if a predicate on the database state evaluates to true or the

result of a specified query is non-empty [DHL90].

The then clause of Figure 2 defines the list of actions to be executed once

the rule is triggered, and the specified condition evaluates to true. At a

minimum, the action list may contain data modification or retrieval operations,

but database transaction operations or application subprograms and methods

may also be part of the action list [DGG96]. Unless scheduled concurrently, the

actions specified are executed sequentially in the order defined in the rule

[WC96].

Finally, the precedes and follows clauses shown in Figure 2 are optional

and used to specify priority ordering between rules. The defined rule will

10

execute before any rule in the precedes list and after the rules in the follows list,

if triggered at the same time; however, cycles in the rule priority ordering are not

permitted [Wid96]. Assigning similar priorities to a group of related rules or

using unique numeric priority values for each rule are alternate ways a rule

designer can specify the firing order of concurrent rules to the execution model

[FT95][WC96].

Rules may be classified as either instance-oriented or set-oriented

depending on whether rules react separately for each distinct updated item or

are triggered by a collective modification and activated only once [FT95]. For

collective modifications, rule conditions and actions may act on special logical

entities that contain all the inserted, deleted, or updated database tuples

resulting from the rule's triggering event [Wid96]. Finally, ECA-rule definitions

may include rule-structuring features for organizing individual rules into

designated collections or sets [WC96].

2.1.2 Rule Execution

Besides rule syntax, the semantics of rule execution must also be

consistent among active database implementations. An execution model is the

primary feature necessary for active database rule processing. Detecting event

occurrences, evaluating conditions, and coordinating action execution with

11

database transactions are all responsibilities of the execution model [DGG96].

2.1.2.1 Event Handling

Active databases have mechanisms to detect all structured query language

(SQL) data modification events automatically, but all active DBMSs may not

detect primitive events such as temporal events, method events, and external

application events [DGG96]. For temporal events, an absolute time event may be

signaled after a system clock interrupt, and relative time events require the

system to monitor a specified time interval for event detection [GD93]. For

signaling method events, method wrapping brackets a method with both a begin-

method and end-method signal [Buc98], and active DBMS implementations

include wrapping all methods automatically [BZBW95], only wrapping methods

of special object classes [AC95], or manually adding wrappers as needed [GD93].

To signal events external to the active DBMS, users or applications must notify

the system by using an explicit operator to raise the event [GD93]. Composite

events for active rules are composed of primitive events and algebraic operator

combinations [DHL90]. Specialized data structures, such as colored Petri nets

[GD93], are sometimes used to detect complex composite event patterns, and

active DBMS implementations must support a persistent event history for

composite events that span several database transactions [DGG96].

12

During rule processing, the rule execution model must also control the

treatment of triggering events, known as consumption. Event consumption

issues include whether processed events retain their capability of triggering more

rules (scope of event consumption), and when does actual consumption take

place for multiple occurrences of the same event type (time of event

consumption) [FT95]. There are three ways to deal with the scope of event

consumption: no consumption, local consumption, and global consumption. If

no consumption is used, triggering events retain their capability to trigger rules,

similar to production rules, until the condition becomes false. Using local

consumption, the triggering event may activate other rules, but not the processed

rule, and finally, global consumption restricts any additional rules from being

triggered. With event consumption timing, most active rule implementations

support recent mode, where the latest event is consumed, and chronicle mode,

where events are consumed in chronological order, although other event

consumption policies are possible [BZBW95].

2.1.2.2 Condition Evaluation

Condition evaluation can be a large performance bottleneck for active

database systems with a large rulebase. Three techniques for efficiently

evaluating rule condition are identification of common sub-conditions,

13

materialization of intermediate results, and incremental condition evaluation

[DBB+88]. Artificial intelligence discrimination networks, such as Rete and

TREAT, are sometimes used in active databases to reduce the condition

evaluation performance overhead [Pat95][HBC+97]. In addition, another body of

active DBMS research [BCL98] introduces the concept of logical events to limit

the number of unnecessary ECA-rules triggered, subsequently reducing the

amount of extraneous condition evaluations to be performed.

The condition evaluation of the execution model must also possess the

capability to pass parameter information from events to conditions, and the

condition must also be able to refer to data items bound after event detection

[DGG96]. Likewise, action execution must have access to relevant information

from events and conditions.

2.1.2.3 Coupling Modes and Transactions

As part of rule execution, active databases must offer different

synchronization strategies between event detection, condition evaluation, and

action execution called coupling modes [DHL90]. With both immediate and

deferred coupling, triggered transactions are treated like sub-transactions of the

triggering transaction [DGG96]. Immediate coupling occurs when a triggered

transaction is executed directly after the triggering transaction is detected, and

14

deferred coupling happens when a triggered transaction is executed at the end of

the triggering transaction, but before it commits. In the detached mode, the final

coupling approach, the triggered transaction is started as a separate transaction

and is independent from the triggering transaction. An example of the three

modes used for event-condition coupling is illustrated in Figure 3 [SUC98].

Begin
Transaction Event E

End Commit
Transaction Transaction

[Condition]
(IM M EDIATE)

[Condition]

[Condition]

(DEFERRED)

(DETACHED)

Figure 3: Basic Coupling Modes between the Event and Condition

Since there are many combinations of event-condition and condition-

action coupling modes, several performance studies have been conducted with

active databases using different transaction models. For lightly loaded systems,

the type of coupling mode used had little impact on response time [CJL91].

Active DBMS coupling performance experiments have focused on different

active workloads [CJL91][PDW+93][AKGM96], including real-time systems

15

[PSS93][Ulu98][SST96][SUC98], and various transaction models

[DHL90] [AC95] [CA95] [MT95] [Ulu98].

2.1.2.4 Miscellaneous Rule Execution Features

The semantics of active DBMS rule execution should also prescribe the

behavior of rule conflict resolution strategies and data binding modes. The

execution model's conflict resolution strategy for multiple rules may include

serial or parallel execution [FT95]. With a serial approach, the rule designer may

assign priorities to help resolve conflicts (e.g., Starburst's precedes and follows

clause [Wid96]). For concurrent execution, all triggered rules in the conflict set

are executed in parallel by scheduling separate condition evaluation/action

execution transactions for each rule.

Execution models also support instance-oriented or set-oriented binding

modes for determining the granularity of the event as well as the data items that

the condition and actions, associated with the event, can access [PDW+93].

When the binding mode is prior, conditions and actions can also refer to the value

of a data item just before the event was detected.

2.2.3 Active Database Implementation Issues

Having outlined the rule syntax and execution semantics of active

16

databases, there are still some issues that designers should consider when

implementing applications with active functionality. This section will discuss

the tradeoffs of different architectural approaches, present categories of active

DBMS applications, and overview some future areas of active database research.

2.1.3.1 Architectures

The primary distinction between active database architectures is the level

of integration between the passive database and the active components. The

three architectural approaches examined in this section are integrated, layered,

and unbundled architectures.

Integrated architectures can either be achieved by adding active features

to an existing passive DBMS or by building an active database system from

scratch [Cha92][WC96]. The advantages of tightly coupling active components

with the underlying database are a wider range of functionality and more

efficient performance, but the main drawback is the substantial development

effort in either creating or modifying complex DBMS code to accommodate

active features [Buc98]. The REACH active DBMS uses an integrated

architecture with Texas Instrument's Open OODB system [BZBW95].

A layered architectural approach of implementation builds the active

functionality on top of an existing passive DBMS, requiring a communication

17

layer between the DBMS and the active components [WC96]. Although

performance can suffer by not being able to interact directly with internal DBMS

subsystems, layered architecture benefits include lower implementation costs

and possible reuse of the same interface for multiple passive databases [Buc98].

The SAMOS active DBMS prototype is implemented using a layered approach

on top of the ObjectStore commercial DBMS as shown in Figure 4 [GGD+95].

Clock/Application

 ► Event/Rule Objects Retrieval
and Storage

Figure 4: Architecture of SAMOS Kernel on top of ObjectStore

Although most active functionality is bundled together with passive

database systems, some researchers feel the active capabilities should be

uncoupled from the continually increasing functionality included in most

18

passive DBMSs [GKVB+98]. Some advantages of stand-alone active functionality

are applications not requiring databases may also use active rules, heterogeneous

information sources are easier to include into active applications, and unbundled

active mechanisms may more easily port to other DBMSs. Some remaining

challenges with having active functionality separated from the database are

whether the full active behavioral semantics can exist outside the DBMS and the

lack of mature active rule services in open architecture environments.

2.1.3.2 Application Classifications

The power and versatility of active rules make active databases well

suited for a variety of applications. Two factors that can be used to classify

active DBMS applications are the role the active functionality plays within the

information system (monitoring or controlling) and the degree of information

integration (homogeneous or heterogeneous) [DGG96]. Using combinations of

the information system role and integration level, active DBMS features can be

grouped into three meaningful application classes: monitoring in a homogeneous

system, controlling in a homogeneous system, and controlling in a

heterogeneous system. In addition, a study has been performed to determine

which common active database features are ideally suited for application

domains such as integrity constraint checking and derived data updates

19

[PDW+93].

Active databases have been used to automatically enforce data integrity

constraint errors caused by data manipulation events, maintain consistency

between source data and summarized views of data warehouses, and support

business policies in applications by means of 'business rules' [Wid96]. Some

other prototype active database applications include workflow management

systems [DHL90], navigation systems [PSS93], manufacturing control [LRST93],

battlefield awareness [DSLL97], network services [PSS93], and data mining

[HNK94].

2.1.3.3 Future Directions

Active databases are powerful mechanisms for creating 'knowledge

independence' from applications by expressing the appropriate domain

semantics in the form of rules, but there are still active database issues needing

further research. Future work needs to continue to make active database rule

syntax and semantics more standard and interoperable with more formal

representations [FT95][FWP97]. In addition, further research should be

conducted to examine better ways to uncouple active functionality from

monolithic databases, yet maintain the same desired level of reactive behavior

through the use of distributed active services [GKVB+98]. Finally, active

20

database research should address more issues related to real-time and temporal

databases, like data deadlines [RSS+96] and timeliness requirements

[SST96][XSR+96].

If active databases are to migrate from research prototypes to general-

purpose applications, a usable suite of development tools should be available for

domain users and developers. To achieve maximum benefit from active DBMS

implementations, programming environments should contain the following

functionality as separate tools or extensions of existing tools: rule browser, rule

designer, rulebase analyzer, a debugger, a maintenance tool, and a performance

tuning tool [DGG96].

2.2 Data Dissemination

With the continued advancement of communications technology and

proliferation of information available on the Internet, the demand for

dissemination-based applications that can harness information flows within

data-intensive environments is growing. These data dissemination applications

use controlled delivery mechanisms to move data from a set of producers to

another, typically larger, set of consumers [FZ96]. Properly configured data

dissemination systems prevent information overload by balancing data push and

pull requirements without enduring a large performance penalty. As an

21

overview of dissemination-based information systems, the essential architectural

components, design considerations, and data delivery mechanisms are presented

in the following sections.

2.2.1 Primary Architecture Components

Although the implementation details of applications may vary,

dissemination-based systems are largely designed around three essential

architectural elements: data sources or producers, clients or consumers, and

information brokers [FZ97]. These components may be hierarchically designed in

an information processing chain for some data-intensive domains. For example,

a particular system node might simultaneously be considered a consumer of

upstream data, a broker that transforms the retrieved data, and a producer for

any downstream activities.

2.2.1.1 Data Sources (Servers)

Data sources, also known as servers in dissemination-based systems, are

the origins of raw information that is to be disseminated. The underlying

content of these heterogeneous information sources may be in many different

formats, to include: unstructured text, semi-structured Web documents, images,

stream-based multimedia information, and structured data from database

management systems [LS97]. Data servers may passively retrieve information in

22

response to a user request, or a server may actively transmit data to clients based

on predefined user interests or upon source data modification. To help clients

retrieve relevant data, research efforts are focusing on using metadata access and

domain ontologies to better describe source data contents [YA95][LS97][RS98].

2.2.1.2 Clients

Dissemination-based information systems usually have a large population

of clients relative to the number of data sources [FZ96]. In a case study of Web-

based dissemination applications [FZ97], client data requests were characterized

as fairly small, focused primarily on new or recent changes to data, and

contained a great degree of overlap among user interests. To reduce overall data

latency, information consumers are relying on push-based user profiles [YGM95]

and caching strategies [YA95] in dissemination applications.

2.2.1.3 Information Brokers

As central elements of a data dissemination application, the information

brokers are responsible for collecting producer data, making any enhancements

to the data, and distributing the information to consumers [FZ97]. Unlike the

common features among producers and consumers, brokers encapsulate a

variety of different functionality within dissemination-based systems, and

depending on the implementation, these intermediary elements may be known

23

as information brokers [FZ97], mediators [LS97], agents [CB97], gestalts [RS98],

or filtering engines [YGM95]. Filtering retrieved information, locating user data

requirements, semantically structuring or organizing data, and notifying users of

significant events are some of the important tasks performed by brokers [CB97].

The task breakdown can be distributed to a hierarchy of intercommunicating

brokers depending on the size and functionality of the application [FZ97].

2.2.2 Design Issues

Several key design issues of the information environment must be

considered to achieve a scalable, customized dissemination-based solution. The

three main factors of dissemination systems that must be analyzed are the

primary direction of data flows, the timing of data delivery, and the type of

communication protocol used [FZ96]. In addition, selection of intelligent client

profile management schemes and effective data caching strategies can also yield

system performance improvements.

2.2.2.1 Server Push vs. Client Pull

Passive data servers have traditionally been 'pull-based', where

information is transferred to a client after a request has been initiated. On the

other hand, 'push-based' data delivery sends information in advance of any

specific client requests [FZ97]. Some drawbacks of a data pull approach include:

24

server contention, a priori knowledge of data requirements, and limited

flexibility for scheduling data delivery. However, push-based approaches can

result in network bandwidth congestion, fail to accurately predict client data

requirements, and are targeted primarily for new or recently updated data.

Therefore, the cost of initiating a data transfer and the precision of client data

requirements are important criteria for selecting the types of data delivery

mechanisms [FZ96].

2.2.2.2 Periodic vs. Aperiodic Processing

Data push or pull can be performed in either a synchronous or

asynchronous manner. Periodic delivery is conducted according to some

repeating schedule [FZ97], and it is best suited for situations where clients may

be unavailable (e.g., mobile users) [DMS97] or must meet real-time timing

constraints [BB97]. In the design of a periodic system, polling too frequently

increases performance overhead, while infrequent polling can lead to data

staleness [FZ98]. In contrast, aperiodic delivery is triggered by an event such as

a client action (information pull) or a data update (information push) [FZ97].

Clients that consistently monitor data communication for updates [DSLL97] or

can tolerate missing information benefit the most from event-driven information

dissemination [FZ96].

25

2.2.2.3 Unicast vs. 1-to-N Communication

The third major design consideration is whether data delivery

mechanisms employ unicast or 1-to-N communication. With unicast

communication, information is sent using a point-to-point connection between a

data source and one other machine [FZ96]. Data dissemination systems use 1-to-

N communication in two different ways: multicast and broadcast. With a

multicast protocol [Gla96], data is sent to a selected group of clients, who have

previously declared interest in the information, while data transmitted in a

broadcast mode can be received by an unknown and unbounded set of clients

[FZ97]. Since developed network protocols can guarantee the eventual delivery

of data to an authorized client, unicast and multicast approaches are considered

reliable forms of communication [FZ98]. Scalability of multicast or broadcast

communication can be achieved by using local server nodes to handle all

dissemination traffic for an organization with a commonality of interest [YGM94]

[DMS97].

2.2.2.4 Profile Management

For data push applications, an accurate representation of a user's

information interests, known as a profile, allow data sources to better anticipate

the data requirements of a client. Good profiles should minimize the amount of

26

relevant information that is missed, and reduce the number of irrelevant data

items retrieved [YGM95][CB97].

Profiles have been implemented as continuously executing queries

[TGN092], collections of tables [RS98], statistically weighted vectors [YGM95],

and boolean predicates [YGM95][LEF98]. Some research initiatives for

improving profile-matching performance include: using AND-OR graphs of

predicates for efficient profile evaluation [LEF98], extracting profile data from

overlapping queries [DFJ+96][CBGM98], and saving bandwidth by grouping

common profile interests [YGM95][SDSV97].

2.2.2.5 Caching

Caching strategies in dissemination-based systems should be closely

integrated with the design decisions for data flow direction and timing to

achieve peak performance. Although caching is similar in most ways to other

applications, dissemination systems offer a few design challenges.

Implementation policies must decide whether cached copies of recently modified

data will be propagated or invalidated among a multitude of potential clients

[FZ97]. Research on cache replacement policies for data dissemination systems

include semantic locality replacement based on query access patterns [DFJ+96]

and cost-based replacement for broadcast disks [AFZ96]. Imagery and

27

multimedia objects, also known as heavyweight objects, present a unique

challenge for bandwidth allocation in dissemination-based systems. One

application transmits metadata for the heavyweight object to the client, allowing

the user to assess the relevance of the heavyweight object prior to disseminating

it [SDSV97].

2.2.3 Delivery Mechanisms

The different types of data delivery mechanisms implemented in

dissemination-based systems are shown in Figure 5 [FZ98]. In the following

sections, four classifications of mechanisms are described: aperiodic pull,

periodic pull, aperiodic push, and periodic push.

Pull Push

Aperiodic Periodic Aperiodic Periodic

Unicast 1-to-N Unicast 1-to-N Unicast 1-to-N Unicast 1-to-N

request/
response

request/
response w/
snooping

polling
polling w/
snooping

e-mailing
lists

publish/
subscribe

e-mail list
digests

publish/
subscribe

broadcast
disks

Figure 5: Data Delivery Options

28

2.2.3.1 Aperiodic Pull

With a unicast connection, this data delivery option is the traditional client

request/ server response mechanism. When aperiodic pull is used with 1-to-N

communication, the mechanism is characterized as 'request/response with

snooping' since some clients may obtain data they did not explicitly request.

These mechanisms can exhibit scaling problems since the rate a server can

handle pull requests is fixed and as the number of requests grows, data latency

also increases [AFZ97].

2.2.3.2 Periodic Pull

Periodic pull mechanisms are used in applications to obtain information

or status from remote data sources on a regular cycle. Both unicast and 1-to-N

communication are considered polling data delivery options, but polling with

the 1-to-N connection can also snoop to retrieve data not requested [FZ98].

2.2.3.3 Aperiodic Push

As an increasingly popular way to disseminate data, aperiodic push

delivery alternatives are also known as publish /subscribe protocols

[YGM95][Gla96]. Most push-based publish/subscribe mechanisms communicate

to multiple clients, but some e-mail list mechanisms or database triggers use a

unicast connection for implementation. These protocols are ideally suited for

29

dynamic source data that can be pushed to clients based on their respective user

profiles [RS98].

2.2.3.4 Periodic Push

An example application of periodic push data delivery using a unicast

connection is an email list that collects and forwards digest updates on a

regularly scheduled cycle, so a user is not continually interrupted with messages.

A more common periodic push delivery option is called broadcast disks [AFZ95]

that use 1-to-N communication links.

A broadcast disk implementation continuously and repeatedly sends data

on a broadcast channel that a client can access. By broadcasting data at different

frequencies based on the interests of clients, the broadcast channel emulates

multiple disks of different sizes and speeds from a user's perspective [AFZ95].

Figure 6 [AFZ97] shows an example of a broadcast program emulating three

disks with relative spinning speeds of 4:2:1, and data unit A is on the fastest disk,

units B and C are on the medium disk, and units D, E, F, and G are on the

slowest disk. Broadcast disk programs have been an active research topic in

dissemination-based information systems, and recent work has examined

broadcast disk scheduling [AF98], caching [AFZ96][AFZ97], push/pull

bandwidth allocation [AFZ97], and real-time constraints [BB97].

30

Figure 6: Example of a 7-Unit, 3-Disk Broadcast Program

2.3 Summary

This chapter provided an overview of the syntax and semantics of active

database rules, and the design components and classification of information

dissemination mechanisms were also covered. In Chapter 3, a methodology will

be introduced to convert the inherent design characteristics of information

dissemination applications into the essential active rule features.

31

3 Methodology

Designing applications with active database mechanisms is not a widely

practiced endeavor, and therefore, well-established design methodologies for

active rule implementation are not very prevalent. Since active functionality is

typically layered between the database and the application, active rule design

approaches have ranged from extending the passive database schema design

[NTM+95], to extracting behavioral semantics of an application into a modular

set of partitioned rules called stratification [BCP96][CF97]. While this research

complements other database schema and application design approaches, the

primary focus of this proposed methodology is to build dynamic structures to

intelligently control the flow of data between producers and consumers.

This chapter presents a methodology for designing data dissemination-

based mechanisms into a dynamic data application through the use of active

database rules. The objective is to help application designers capture the

semantics of information distribution policies for data-intensive environments in

consistent and maintainable structures residing closely with the data.

The design process of the methodology is structured in three phases as

shown in Figure 7: application analysis, rule transformation, and rule

customization. Information distribution properties are mapped into

32

dissemination classes in the application analysis step. Using the dissemination

classes as input, the rule transformation phase specifies the events, conditions,

and actions in an active rule framework. Miscellaneous rule features are added

to the rule template to achieve the desired level of reactive behavior as part of the

rule customization step. The resulting active rules generated by this

methodology are general-purpose abstractions that can provide consistent

behavior for a variety of dynamic data streams.

Appli-
cation

Application
Analysis

Dissemination
Classes

Rule
Templates

Rule
Transformation

JS b Rule
Customization

Active
Rules

Figure 7: Design Methodology Steps

3.1 Data Dissemination Application Analysis

The first step of the methodology is to assess certain features that impact

data distribution strategies for the primary data flows associated with

33

application processes or threads. In this analysis, each relevant data processing

scenario is evaluated in terms of activation mechanisms, data precision, data size,

and client communication protocols. In the following sections, each of these

important characteristics is examined in the context of high-volume data

distribution.

3.1.1 Activation Mechanisms

When analyzing dynamic data processing scenarios, it is important to

determine what type of event initiates the data processing activity. The

activation mechanism used for a data flow process can impact the scheduling of

transactions as well as the timeliness of the data. Active mechanisms for

dissemination-based processing are classified as either data-driven or time-driven

events [PDW+93].

Data-driven events are triggered by modifications to the affected data

object. The data change can be initiated by data manipulation operations (e.g.,

insert, delete, update) or object methods that modify data attributes. Data

retrieval operations such as query functions or methods accessing data attributes

are also considered data-driven activation mechanisms. Data-driven triggers are

useful when 'on-demand' processing is appropriate.

On the other hand, time-driven activation mechanisms are based on the

34

temporal events associated with a system clock or calendar. Temporal triggers

can be explicitly defined as absolute time events with optional repeating cycles,

or time events can be specified implicitly to occur at some time interval relative

to a specific event occurrence [DG93]. Time-driven activation mechanisms are

often used to synchronize processing with periodically updated data sources or

for selectively scheduling transactions to improve system performance.

3.1.2 Data Precision

Data precision, in this dissemination-based design methodology, refers to

the degree of data correctness that must be obtained when processing

transactions. For some data processing tasks, exact results must be retrieved at

all times, yet semantically close matches or inexact objects may be sufficient for

transactions involving uncertain data.

To achieve exact responses from complex data requests, query developers

must have detailed knowledge of the underlying database Schemas in advance.

Exact results are also desired when performing aggregate computations over all

instances of data objects. If exact results are required for temporal data items,

transactions must ensure data elements remain valid or are refreshed before the

transaction commits.

Inexact data results are preferred when clients are not entirely certain of

35

their data requirements. User profiles are commonly use to describe client data

interests, and data sources attempt to disseminate information that matches or

nearly matches the profile. To effectively use inexact data distribution, data

servers should monitor client statistical feedback of previous data submittals,

and clients must adapt their profiles to meet changing data interests.

3.1.3 Data Size

Based on the availability of system resources, or by desire of the clients,

the granularity of a server response to data transactions may include lightweight

objects, such as notifications or data references, or the complete data components

known as heavyweight objects [SDSV97].

Disseminating lightweight notifications or alerts usually occurs in

response to some existential query condition or to signify some type of

processing exception. As another lightweight object example, metadata

transmissions typically are used when communications bandwidth is limited and

large data objects such as images or multimedia files are involved. When only

data descriptions or references to object identifiers are disseminated, clients can

reduce some of the uncertainty associated with their requirements before

formally requesting the actual heavyweight objects in question.

When heavyweight data objects must be distributed as part of a

36

transaction, client cache strategies can be used to enhance system performance.

In addition, large image or multimedia objects may require compression to

minimize transmission latencies in constrained communications bandwidth

environments.

3.2.4 Client Communication

The final data design consideration for this dissemination-based

methodology is whether the data is distributed to individual or multiple clients.

The client communication requirements can be categorized as either unicast for a

single transmission or multicast for data delivery to a group of clients [FZ96].

Unicast data responses earmarked for an individual client typically are

very specific in nature with constrained domain conditions. Unicast data

communication is also appropriate when data is sensitive, and the authorized

receipt of the information must be verified. However, frequent use of unicast

data traffic can saturate communications networks and degrade overall system

performance.

In high velocity data systems with numerous clients, there are frequently

overlapping data requirements that can be multicast to different groups of clients

to conserve communications bandwidth. If confirmation of data delivery is not

required, broadcasting information instead of using multicast protocols can be an

37

efficient dissemination approach, especially for mobile clients.

3.1.5 Feature Classifications

The mapping between the design methodology's application features and

the recommended data dissemination delivery approach is shown in Figure 8.

The two primary features for determining the general data delivery classification

are the type of active mechanism used and the level of data precision required.

However, data size requirements and client communication issues are important

distinguishing characteristics for the detailed design of the active dissemination-

based structures.

Activation
Mechanism

Data
Precision

Data
Size

Client
Communication

Recommended Data
Dissemination Approach

>S Exact KgA
11 Data Pj

Heavyweight
Objects

Unicast
Multicast ■ (Aperiodic Pull

Lightweight
Objects

Unicast
1 Data- H Multicast
1 Driven B

jji Inexact BY
Data

Heavyweight
Objects

Unicast
Multicast Aperiodic Pus Lightweight

Objects
Unicast -,f
Multicast

1- \act [",.,, .
p Data jh<>s

Heavyweight
Objects

Unicast
Multicast Periodic Pull

Lightweight
Objects

Unicast

1 Time- H Multicast
| Driven ^|

jjj Inexact Ife
Data

Heavyweight Unicast
Objects Multicast Periodic Push Lightweight
Objects

Unicast
Multicast

Figure 8: Application Features Mapped to a Dissemination Approach

38

3.2 Transforming Dissemination Features to Active Rules

Once the data dissemination application features have been assessed, the

next step in the methodology is to transform those features into the primary

active E-C-A rule components: events, conditions, and actions. For each rule

component, representative elements that could be specified in rule definitions are

identified, and no specific active rule syntax is assumed. The process for

transforming data features into an active rule framework will be described for

the four dissemination-based classifications: aperiodic pull, aperiodic push,

periodic pull, and periodic push.

3.2.1 Aperiodic Pull

Asynchronous data retrieval processes are typically single-client request-

response transactions as indicated in the background chapter. Either

heavyweight data objects or just the data references are retrieved, depending on

the client caching capabilities or available network bandwidth. Multiple clients

may also gain access to data by snooping through results that were disseminated

to a common client repository in response to an individual request. The essential

rule components for aperiodic pull data components are discussed in the

following sections.

39

3.2.1.1 Events

The primary trigger event for aperiodic pull scenarios would be a data

retrieval operation, such as query(). Depending on the application, a data request

could also be initiated by a user method invocation. Finally, a data manipulation

event on a data source may also trigger an aperiodic data request for

downstream nodes before performing derived data computations.

3.2.1.2 Conditions

In some aperiodic pull scenarios, the condition predicate would be

evaluated to true implicitly for the query processing. The query constraints for

the data retrieval can be evaluated as the rule condition. Some safeguard

conditions may also be implemented in rules to improve performance. For

temporal data objects, the condition could block queries until data timestamps

have expired to prevent redundant refresh transactions.

3.2.1.3 Actions

For data requests invoked by a user or application event, saving the query

results in a transient collection for dissemination is an appropriate action. When

hierarchical information nodes are involved, high-level queries in rules may be

re-written with the necessary sub-queries included in the action list. Actions

might also include appropriate calls to communications services to cache the

40

retrieved objects or distribute the associated metadata to clients.

3.2.2 Aperiodic Push

Data dissemination techniques using aperiodic push are known as

publish/subscribe protocols. Publish/subscribe delivery mechanisms are ideal

for dynamic data environments or temporal data items since new data is

constantly being propagated to match client profiles. Profiles can be developed

so lightweight metadata or messages can serve as indicators to inform clients of

any unusual data activity. Although publish/subscribe techniques can keep

heavyweight objects continuously up-to-date, pushing large data items to clients

in anticipation of their profile requirements can often lead to inefficient use of

network resources. Aperiodic push approaches can be converted to active rules

without much difficulty.

3.2.2.1 Events

In data-driven processing, the primary activation events are modifications

to affected data objects, either through data manipulation operations or by

method invocations that alter object attributes. In addition, application errors or

other exception events can trigger aperiodic push data transactions.

41

3.2.2.2 Conditions

Conditions for publish/subscribe mechanisms are evaluated to determine

if new data modifications match client profiles. Profile management predicates

are either individually optimized or merged with other individual profiles to

permit efficient condition evaluation of rules.

3.2.2.3 Actions

In the simplest form, the action of an aperiodic push process could be a

notification that is sent to a client whenever a data update occurs. Depending on

the cache strategies in use, a rule action sequence may include a data

manipulation operation for either a data object or object reference in a cached

collection. With changes occurring to data objects, other possible actions that

could be spawned are method calls for derived data computations or new query

operations to refresh materialized views.

3.2.3 Periodic Pull

Periodic pull or polling mechanisms can be an effective way to

disseminate information, if the right polling interval is used or the data update

process is deterministic. Applications using polling can tolerate some staleness

in data consistency in exchange for improved system throughput. Also, periodic

pull can be used to retrieve heavyweight objects during non-peak times for

42

network bandwidth-constrained environments. Finally, common broker nodes

may effectively consolidate various client information needs by requesting data

objects in a periodic manner. Active rules that are used for polling applications

employ temporal triggers and actions are often view update operations.

3.2.3.1 Events

Activation events for periodic pull data processing are based on system

clock interrupts. The time interrupt events usually occur on some regular

interval depending on the data characteristics or the remote data update patterns

of the application domain. A clock interrupt event may also occur as a relative

time offset to the timestamp of some already signaled application event in

polling applications.

3.2.3.2 Conditions

Similar to the aperiodic pull rules, the periodic pull data requests can

evaluate the rule condition with an implied truth-value. The query constraint is

a likely rule condition for retrieval requests. If the polling requests are

conducted as batch updates during light processing periods, the condition

predicate may also evaluate the presence of any data updates or assert whether

the network utilization rate is under a certain threshold for heavyweight object

43

dissemination.

3.2.3.3 Actions

Sub-query data retrieval actions are common for periodic pull rules in a

hierarchical information structure. When requesting data objects or metadata,

communication services are also valid actions for distributing results to clients.

Finally, an important action for periodic data transactions is scheduling the clock

interrupt event for next periodic processing cycle.

3.2.4 Periodic Push

Periodic push data dissemination, such as data broadcasting, transmits

information on a regular cycle, and clients can monitor the broadcasts to retrieve

relevant information. Clients subjected to occasional network down times can

still recover missed information when periodic push dissemination is used.

Additionally, periodic push data distribution relieves data servers from

processing time-consuming data requests for numerous clients because users can

regularly monitor broadcasts of frequently accessed database information. The

challenges associated with data broadcasting are finding the right broadcast

frequency and acquiring the communications bandwidth resources for

dissemination. Periodic push rules use temporal events and data dissemination

44

actions.

3.2.4.1 Events

Periodic push activation events are time-based system clock interrupts.

With broadcast disk data dissemination, the client data access frequencies of

database clusters is used to determine how often refreshed data should be

distributed to the client community. Maintaining consistent push intervals is

important for remote clients attempting to synchronize data monitoring activities

with broadcast cycles.

3.2.4.2 Conditions

Periodic push-based rules use condition evaluation to match client profile

information against the proposed data broadcast schedule. By maintaining an

accurate client profile, data broadcasts may only need to transmit a subset of

database objects each cycle. In addition, another relevant condition for periodic

push processing may be verifying that data has changed prior to submitting a

broadcast.

3.2.4.3 Actions

One common action for periodic push dissemination rules is invoking the

communication routines for multicasting the data. Scheduling the next broadcast

45

time trigger is also a necessary periodic push rule action. Finally, data updates to

cached client collections may also be in the action sequence.

3.3 Active Rule Customization

The first two steps of this design methodology have extracted the essential

dissemination-based application features and converted those data

characteristics into basic rule components. The active rule customization process

enhances the rule framework previously established by introducing additional

rule elements to tailor rule-based reactive behavior to client needs. In this step of

the methodology, variations of rule features that can impact the rule execution

semantics are examined for the four data dissemination-based rule templates:

aperiodic pull, aperiodic push, periodic pull, and periodic push.

Event-condition (E-C) coupling, condition-action (C-A) coupling, event

consumption, rule granularities, and priorities are some of the active rule

dimensions used for in the customization step. Since this methodology is based

on generic active rule capabilities, not all features presented may appear in a

specific active database implementation, but designers should consider which

rule features must be supported as they make their implementation selection.

46

3.3.1 Aperiodic Pull

The miscellaneous active rule features for the aperiodic pull dissemination

class are summarized in the following sections.

3.3.1.1 Coupling

Since asynchronous triggers are used to process 'on-demand' requests,

immediate E-C coupling ensures rule conditions are promptly evaluated. For C-

A coupling, detached coupling from the triggering transaction may be an

effective performance choice for executing long duration sub-query transactions,

but the failure of those separate transactions are independent of the main

triggering transaction. However, immediate C-A coupling ensures prompt

action execution as a dependent sub-transaction of the event-triggering

transaction for add-hoc information requests.

3.3.1.2 Priorities

Unless rules are used in applications with firm real-time deadlines, the

demand-driven aperiodic rules usually have higher relative priorities than time-

based rules. Among rules in the same dissemination class, the information

significance value can be used to determine the partial order of absolute rule

priorities. For example, rules for lightweight objects may be preferred over rules

governing heavyweight objects due to their performance advantage in a limited

47

bandwidth environment.

3.3.1.3 Miscellaneous Features

For pull operations, set granularity is implied since the query request

evaluates over all data instances. Chronicle event consumption mode ensures

that each retrieval operation is handled in the order received.

3.3.2 Aperiodic Push

The coupling options, priorities, and other customization features are

covered in the following sections for aperiodic push data transfers like the

publish/subscribe mechanism.

3.3.2.1 Coupling

Immediate E-C and C-A coupling modes are most appropriate when

instance-oriented push is in use since the nested sub-transactions for each data

object need to complete promptly to avoid streamline transaction processing.

For set-oriented processing, deferred E-C and C-A coupling allows all updates in

a transaction to occur before checking the profile and distributing the results.

Detached C-A coupling can be used for dispatching downstream derived-data

computations to other data components.

48

3.3.2.2 Priorities

Among rules in the aperiodic push dissemination class, the information

significance value should be the most important factor for determining absolute

rule priorities. When data objects have similar information value, temporal data

items with a shorter validity interval should possess a higher relative rule

priority than objects with a longer data validity period. As a final consideration,

rules for lightweight objects may be preferred over heavyweight objects due to

the performance advantage.

3.3.2.3 Miscellaneous

For important or real-time data items, instance-level granularity ensures

that transactions are processed immediately. However, performance

considerations may dictate that frequent individual updates should be pooled

and processed using set granularity. For non-temporal data, chronicle event

consumption mode is the appropriate choice since update dependencies may

exist between successive events. When multiple update events occur for

temporal data, recent event consumption ensures that only the latest item with

the longest data validity is used for rule processing.

3.3.3 Periodic Pull

When customizing periodic pull rules, developers must consider the

49

execution features detailed in the following sections.

3.3.3.1 Coupling

Since periodic pull rule events may have tight timing constraints,

immediate E-C coupling enables query conditions to be evaluated in an efficient

manner. For C-A coupling, polling query actions should be executed using

immediate coupling for prompt completion of time-based request. However,

detached coupling can be used so longer duration upstream sub-queries of

heavyweight objects can occur in separate transactions, allowing the triggering

transaction to commit and release locks on data items. Regardless of which CA-

coupling mode is used, the scheduling of the next periodic update should be the

last action in the sequence.

3.3.3.2 Priorities

The information significance value should determine the precedence of

rule execution priorities so transactions most important to a client are scheduled

first. Since periodic pull transactions may be scheduled for off-hours updates,

rules for heavyweight objects may be preferred over lightweight objects during

light data traffic periods.

50

3.3.3.3 Miscellaneous Features

For periodic pull transactions, set granularity is implied as all relevant

data instances are queried. To prevent starvation of time-based transactions,

sequential execution of data retrievals using chronicle event consumption mode

is appropriate for periodic polling.

3.3.4 Periodic Push

The miscellaneous active rule features for the periodic push dissemination

class are summarized in the following sections.

3.3.4.1 Coupling

Immediate E-C and C-A coupling modes are most appropriate for

periodic push transactions since remote clients may be using the data broadcast

as their primary source of information. Deferred C-A coupling can be used for

multicasting data to verify that all communications were received before

scheduling the next push cycle.

3.3.4.2 Priorities

Due to the large volume of data transactions in dissemination

applications, the information significance value should be the most important

factor for determining rule execution priorities. For data broadcasts, the

51

frequency of data distribution implicitly infers an execution priority for rules.

3.3.4.3 Miscellaneous Features

Set-oriented granularity is used for periodic push broadcasts almost by

convention, since the entire database could be cyclically transmitted for some

applications. Because broadcast schedules are potentially well synchronized

with clients, chronicle event consumption mode would be the most appropriate

choice.

3.4 Summary

The methodology steps presented in this chapter have formulated a

process for incrementally transforming information distribution concepts into an

active rule implementation approach. In the next chapter, the steps of the design

methodology are applied to three test scenarios representative of a dynamic data

application environment.

52

4 Case Study Analysis and Results

Chapter 3 presented a methodology to assist developers in the analysis

and design of information dissemination concepts in the form of active database

rules. This chapter outlines an application of that methodology to a test case by

presenting the analysis and design of three nominal information dissemination

scenarios from a dynamic data application, DARPA's Dynamic Database (DDB)

research program.

The overarching goal of the DDB program [BBD+96] is to efficiently

produce and continuously update a dynamic situation estimate of the evolving

battlespace using all available sensor resources. The underlying information

processing goals of DDB include: maintaining a comprehensive history of sensor

data, generating newly derived information products from multiple data

sources, and informing clients and other applications of significant database

changes based on either pre-defined interests or data requests. The

communications infrastructure and information dissemination services, used by

DDB, would eventually be provided by another DARPA program, Battlefield

Awareness and Data Dissemination (BADD) [DMS97][DSLL97][LS97][SDSV97].

In the rapidly changing data environment of DDB, there are many

potential information push and information pull scenarios available for analysis

53

in the case study. The first test case examined is a nominal information pull

scenario that is representative of a DDB application process. Secondly, the

methodology is applied to a plausible information push scenario from DDB. The

final test case is a hybrid scenario involving both data push and pull

technologies.

4.1 Analysis of Information Pull Scenario

In this scenario, a user wants to retrieve all data images in the database

that contain an image number associated with a particular sensor. By reviewing

a history of the stored images, the image analyst hopes to determine when the

quality of images started to degrade and whether the sensor is malfunctioning.

The client initiates a high priority data request to the sensor history database,

which maintains a materialized collection of image references as shown in Figure

9.

R equest IMAGE
ANALYST

>

Figure 9: Information Pull Scenario

54

4.1.1 Application Features

The user-initiated request is not time-driven, so the activation mechanism

in this scenario would be considered data-driven. The data request has an image

number constraint, so the precision of the query results should be exact. The

client wants to be able to examine the images, which are heavyweight objects.

Finally, a unicast distribution is probably appropriate for this individual request.

If the caching resources existed, multicast snooping of the images could take

place from a common client cache area. Based on the analysis of the scenario

application features, an aperiodic pull dissemination approach is recommended.

4.1.2 Rule Framework

The triggering event for this data scenario would be the user-directed

query operation. The rule condition evaluates the image number query

constraint over the image collection, Alllmages. The first rule action stores the

retrieved images in a transient storage collection, then a communications service

is called to distribute the transient collection. Finally, the transient memory is

recovered when the delete action occurs.

4.2.3 Customized Rules

Because this is an asynchronous request, immediate E-C coupling is used

to quickly start the condition evaluation for this data request. However, deferred

55

C-A coupling is preferred, so that all images can be evaluated before any query

results are returned. Since this request involves retrieving heavyweight objects

and the information value is significant, the overall rule execution priority would

probably be medium. Set-oriented granularity is assumed due to the data

retrieval, and chronicle event consumption ensures the request is not preempted

by a more recent request. Figure 10 shows a sample active rule structure for the

DDB information pull scenario.

CREATE RULE Rl FOR Alllmages

ON Client.query(image_number)

IF [IMMEDIATE]

AHImages.oid->GetNumber == image_number

THEN[DEFERRED]

QueryResult.insert(DeRef (oid)); //DeRef gets image

send(Client, QueryResult);

delete QueryResult

PRIORITY MEDIUM

Figure 10: Active Rule for Aperiodic Pull

4.2 Analysis of Information Push Scenario

Every six hours, new weather satellite images are processed. The current

weather images are maintained in a sensor history database view, and new

images are added to the view whenever updates occur. Since the weather

56

images are so large, clients desiring the weather data must register their

geographic location and network address with the server to receive the data.

Because the images are considered a six-hour snapshot, the overall significance

of the information is low in terms of real-time weather assessments. The scenario

data flows are shown in Figure 11.

SENSOR
HISTORY

GEOGRAPHIC
CLIENTS

Figure 11: Information Push Scenario

4.2.1 Application Features

The weather source data is updated on a regular periodic basis, which

implies that a time-driven activation mechanism would be the right choice. If

only a small group of clients actually register for weather updates, current data is

only disseminated for a subset of the image database, so client data precision

57

would be considered inexact. The dissemination weather images indicates the

data size factor is categorized as heavyweight. Several neighboring clients may

require the same geographic images, so a multicast protocol is probably the best

solution. A periodic push distribution mechanism is an appropriate solution for

this scenario.

4.2.2 Rule Framework

The cyclic nature of the weather sensor updates suggests a clock-based

interrupt as the rule-triggering event. The rule condition will perform the profile

matching of registered client geographic location with the location of the image.

The first rule action is the multicast transmission of images, and the next action is

the scheduling of the next periodic interrupt.

4.2.3 Customized Rules

Immediate E-C is appropriate for this time-based triggered rule. Deferred

C-A coupling will ensure the multicast transmission will reach all registered

clients. Heavyweight objects with little information significance would lead to a

low static rule priority, but the priority should increase dynamically as the image

data validity deadline approaches. Set-oriented granularity coincides with the

lone multicast distribution, and the temporal nature of the data suggests recent

event consumption mode. With a six-hour window for processing these images,

58

the chances of having multiple time interrupt events active is fairly remote. The

proposed active rule for weather image periodic push is shown in Figure 12.

CREATE RULE R2 FOR AHWeatherlmages

ON SixHourTimeUpO

IF [IMMEDIATE]

AllWeatherImages.oid->GetLoc INTERSECT

Profiles.Client->GetLoc

THEN[DEFERRED]

schedule(SixHourTimeUp, NOW + 6:00:00.00);

multicast DeRef (oid),

Profiles.Client->GetAddr); //DeRef gets image

PRIORITY LOW

Figure 12: Active Rule for Periodic Push

4.3 Analysis of Hybrid Dissemination Scenario

The commander client wants to know whenever an enemy unit is on the

move with a certainty of at least 60 percent. The sensor history server maintains

a view UnitMovers, which contains reference-pairs pointing to a entity (e.g., unit)

and a track (e.g., road). The sensor history server checks both the entity and the

tracks source data periodically. If a unit is moving on a road, a new object is

inserted into the UnitMovers view, and if the object meets the certainty

threshold, the commander client is notified immediately.

59

In this scenario, a hierarchical information structure is used where one

component is both a consumer and producer of information as shown in Figure

13. As such, the overall data processing scenario is actually a compilation of two

sub-processes: view update and client notification. An active rule structure will

be created for each data dissemination sub-process.

TRACKS

Request
**" N SENSOR

N HISTORY

COMMANDER

Figure 13: Push/Pull Hybrid Scenario

43.1 Application Features

For the view update, the activation mechanism is a time-driven interrupt,

which for this process is every minute. The entity and track source information

60

must be accurate and meet the query constraints, so data precision is exact. Only-

data references are used in the updates; therefore, lightweight is the data size

feature. Lastly, a unicast connection can be used to distribute updates. Based on

the analysis of the scenario application features, a periodic pull dissemination

approach is recommended.

On the other hand, the client notification process uses a data-driven trigger

whenever view modifications occur. Inexact data precision may apply here since

the client may be notified as the certainty level nears the threshold, but has not

reached the constraint level. The data size is lightweight message dissemination,

and the sensitivity of information warrants a unicast communication connection.

An aperiodic push distribution mechanism is an appropriate solution for this

scenario.

4.3.2 Rule Framework

The view update rule needs a temporal interrupt event every minute. The

rule condition is the query join constraint of entities and tracks. The scheduling

of the next interrupt is the first action, and the insert or update operation on the

view is the second action.

For the client notification rule, the view data manipulation operation is the

event trigger. The profile match conditions are included in the notification rule

61

condition. The only action is the alert notification to the client.

4.3.3 Customized Rules

With the temporal characteristics of the entity and track data, the E-C and

C-A coupling modes for the view update rule should be immediate. The high

information significance and time-based data validity warrants a high rule

priority. The periodic query implies set granularity, and recent event

consumption ensures timely refreshing of temporal data. The active rule format

of the view update sub-process is shown in Figure 14.

CREATE RULE R3 FOR UnitMovers

ON MinuteTimeUpO

IF [IMMEDIATE]

AllEntities.oid->GetUnitID ==

AllTracks.oid->GetTUnitID

AND AllEntities.oid->GetSide == 'ENEMY'

AND AUTracks.oid->GetAction == 'MOVING'

THEN[IMMEDIATE]

schedule(MinuteTimeUp, NOW + 00:01:00.00);

insert(AHEntities.oid, AllTracks.oid);

PRIORITY HIGH

Figure 14: Active Rule for Periodic Pull

For the commander notification, the E-C and C-A coupling modes are

62

deferred to allow all view changes in the transaction to occur before checking the

uncertainty profile condition. The rule priority is high because of the

significance of the information value. Instance-oriented granularity would work

for this rule if you sent the alert on every view update, but since deferred C-A

coupling is used, the rule granularity is set-oriented. Chronicle event

consumption makes sense for this asynchronous process. The client notification

active rule is shown in Figure 15.

CREATE RULE R4 FOR UnitMovers

ON insertO

IF [DEFERRED]

certainty >= UMProfiles.Client->GetConfLvl

THEN [DEFERRED]

alert("Enemy Units Moving!", Profiles.Client->GetAddr);

PRIORITY HIGH

Figure 15: Active Rule for Aperiodic Push

4.4 Summary of Results

By applying the methodology to these three test case scenarios, active

rules were designed for all four of the dissemination-based classes. Although

some active rule dimensions were not exercised in these test cases, the scenarios

did effectively demonstrate the use of the information dissemination-based

active rule methodology for nominal design tasks. To determine the

63

methodology's utility for more robust design tasks, test cases exploring some of

the more esoteric features of active rule design would be necessary.

64

5 Conclusions

The immense volume of transactions involved in dynamic data

environments requires flexible control structures to effectively balance the flow

of information between producers and consumers. As one promising solution,

dissemination-based information systems provide a scalable variety of

distribution mechanisms using both data push and pull technologies. Even

closer to the underlying data, active database rules can embed reactive behavior,

normally found in application code, right into the numerous transactions

occurring within a dynamic data environment. Capturing the capabilities of data

dissemination systems in the form of active rules for more effective dynamic

database control was the goal of this research effort.

The significant contribution of this research is the introduction of a design

methodology that evolves information distribution concepts of an application

into a consistent form closely coupled to the affected data. The methodology

presented is divided into a dissemination-based application analysis phase, an

active rule transformation phase, and a rule customization phase. The three-step

methodology was successfully demonstrated using four different dissemination

approaches in a dynamic data case study.

65

5.1 Findings

The four data features used to assess the information dissemination

application were effective not only with classifying a data delivery strategy, but

also with introducing design considerations such as client caching and

communications protocols. However, analyzing a database application from the

viewpoint of distribution principles in this methodology proved to be a bit

orthogonal from traditional database design techniques.

Building an active rule framework from a data dissemination class was

relatively straightforward, although each rule event, condition, or action usually

had multiple options to consider. The versatility of the E-C-A rule model enables

many behavioral alternatives to exist based on the configuration of those three

rule components. Without any formal rule analysis included in the

methodology, the inherent rule flexibility could eventually lead to rule execution

problems for designers.

The rule customization step was difficult to perform from an abstract

design perspective. Some of the rule execution features are configurable, like

coupling modes, but rule granularity and event consumption modes can

sometimes be implementation-dependent features. Ideally, this step could be

automated, and only features configurable in the target implementation rule

66

language would require designer input.

The case studies successfully demonstrated the methodology on some

simple, but representative, dynamic data test cases. The test scenarios were

selected to illustrate the application of the design process on all four classes of

dissemination. The testing of the methodology using more sophisticated active

rule features such as composite events and detached coupling is left as future

work.

5.2 Recommendations

As a result of the knowledge obtained from this research, the following

recommendations for the application and extension of the dissemination-based

active rule methodology are presented.

5.2.1 Assess DDB for Active Database Selection

Technological forecasts for future contractual phases of the Dynamic

Database program include the integration of active database technology with the

initial DDB demonstration system to provide more flexible control of data

computations. By assessing the DDB functionality using the proposed

methodology, designers can decide which active database dimensions they are

likely to need and select an active database system that supports those features.

67

5.2.2 DDB Development Process Integration

To fully realize all DDB design goals, the steps of the active dissemination-

based methodology should be at least compatible, if not fully integrated, with the

overall application design process used by DDB team members. The integration

effort would involve introducing active rule design concepts among the use-case

scenarios and schema development activities of DDB.

5.2.3 Technology Bridge for DDB and BADD

The dissemination-based active rule structures, developed as part of this

research, provide an excellent transition mechanism between two key

components of DARPA's battlefield awareness architecture. The Dynamic

Database (DDB) program maintains the active repository of information

products, and the Battlefield Awareness and Data Dissemination (BADD)

program provides the intelligent data dissemination services for warfighting

clients. By considering the information distribution properties as part of the

active database design activity, the application data flows can seamlessly migrate

from the storage component to the dissemination mechanism.

5.3 Future Areas of Research

There are several areas of related research that are relevant to the active

dissemination-based design methodology. Future research areas include:

68

adding formal rule analysis to the methodology, automating the rule design tool,

and experimenting with dynamic dissemination performance conditions.

5.3.1 Integrate Rule Analysis into Methodology

The formal properties of active rules can be statically analyzed to predict

rule execution behavior. Rule analysis research has examined termination,

confluence, and observable determinism properties for active rules

[AHW95][FT95][KC95][VGD97]. In addition, rule grouping design strategies

called stratification [BCP96][CF97] could be added to the methodology.

Including rule analysis as part of this methodology would make the

dissemination-based active rule design process much more robust.

5.3.2 Automate Methodology Design Tool

An automated design tool based upon the dissemination-based active rule

methodology would be a valuable asset for a developer. The steps of the

methodology could be presented to the rule designer in a graphical format, and a

repository of rules and templates would also make rule maintenance easier.

Finally, the design tool could produce rule constructs in a target rule language

for active databases.

69

5.3.3 Dynamic Push/Pull Rule Condition Experiments

The methodology proposed in this research statically determines the

information dissemination approach. Further research could examine the

essential conditions for determining data distribution performance [AKGM96] so

active rules could use different dissemination strategies based on a performance

condition. Also, collaborative intelligent agent research may reveal effective

methods for dynamically adjusting information flow between data nodes.

5.4 Summary

While the active database rule design techniques applied in this research

have provided a contribution to information dissemination systems

development, the constant growth of widespread dynamic data applications will

continue to challenge researchers to find scalable and flexible solutions to

manage high-velocity information flow among clients. This research effort

facilitates the migration of design principles between both the information

dissemination and the active database fields.

70

Bibliography

[AC95] E. Anwar, S. Chakravarthy, "Realizing Transaction Models: An
Extensible Approach using EC A Rules," Technical Report UF-CIS-
TR-95-029, University of Florida, 1995.

[AF98] D. Aksoy, M. Franklin, "Scheduling for Large-Scale On-Demand
Data Broadcasting," In Proceedings of the IEEE Conference on
Computer Communications (INFOCOM'98), March 1998.

[AFZ95] S. Acharya, M. Franklin, S. Zdonik, "Dissemination-Based data
Delivery Using Broadcast Disk," IEEE Personal Communications, pp.
50-60, December 1995.

[AFZ96] S. Acharya, M. Franklin, S. Zdonik, "Prefetching from a Broadcast
Disk," In Proceedings of the Twelfth International Conference on Data
Engineering (ICDE'96), pp. 276-285, March 1996.

[AFZ97] S. Acharya, M. Franklin, S. Zdonik, "Balancing Push and Pull for
Data Broadcast," In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, pp. 183-194, May
1997.

[AHW95] A. Aiken, J. Hellerstein, J. Widom, "Static Analysis Techniques for
Predicting the Behavior of Active Database Rules," ACM
Transactions on Database Systems, pp. 3-41, March 1995.

[AKGM96] B. Adelberg, B. Kao, H. Garcia-Molina, "Database Support for
Efficiently Maintaining Derived Data," In Proceedings of the Fifth
International Conference on Extending Database Technology (EDBT '96),
pp. 223-240, March 1996.

[BB97] S. Baruah, A. Bestavros, "Pinwheel scheduling for Fault-Tolerant
Broadcast Disks in Real-time Database Systems," In Proceedings of
the Thirteenth International Conference on Data Engineering (ICDE'97),
pp. 543-551, April 1997.

[BBD+96] P. Bairn, B. Bolles, D. DeWitt, et al., "Concepts for a Dynamic
Database," unpublished presentation, September 1996. Available
at http://dtsn.darpa.mil/iso.

71

[BCL98] M. Berndtsson, S. Chakravarthy, B. Lings, "Extending Active
Capability Mechanisms for Context Based Subscriptions," Technical
Report HS-IDA-TR-98-007, University of Skovde, November 1998.

[BCP96] E. Baralis, S. Ceri, S. Paraboschi, "Modularization Techniques for
Active Rules Design," ACM Transactions on Database Systems, pp. 1-
29, March 1996.

[Buc98] A. Buchmann, "Architecture of Active Database Systems," In N.
Paton, Active Rules in Database Systems, Springer-Verlag, 1998.

[BZBW95] A. Buchmann, J. Zimmerman, J. Blakeley, D. Wells, "Building an
Integrated Active OODBMS: Requirements, Architecture, and
Design Decisions," In Proceedings of the Eleventh International
Conference on Data Engineering (ICDE'95), pp. 117-128, March 1995.

[CA95] S. Chakravarthy, E. Anwar, "Exploiting Active Database Paradigm
for Supporting Flexible Transaction Models," Technical Report UF-
CIS-TR-95-026, University of Florida, April 1995.

[CB97] G. Cybenko, B. Brewington, "The Foundations of Information Push
and Pull," to appear in D. O'Leary (ed.), Proceedings of the IMA
Workshop on the Mathematics of Information, Springer-Verlag,
September 1997.

[CBGM98] A. Crespo, O. Buyukkokten, H. Garcia-Molina, "Efficient Query
Subscription Processing in a Multicast Environment," unpublished
technical report, Stanford University, July 1998.

[CF97] S. Ceri, P. Fraternali, Designing Database Applications with Objects and
Rules: The IDEA Methodology, Addison-Wesley, 1997.

[Cha92] S. Chakravarthy, "Architectures and Monitoring Techniques for
Active Databases: An Evaluation," Technical Report UF-CIS-TR-92-
041, University of Florida, 1992.

[CJL91] M. Carey, R. Jauhari, M. Livny, "On Transaction Boundaries in
Active Databases: A Performance Perspective," IEEE Transactions
on Knowledge and Data Engineering, pp. 320-336, September 1991.

[CR96] S. Ceri, R. Ramakrishnan, "Rules in Database Systems," ACM
Computing Surveys, pp.109-111, March 1996.

72

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M Hsu, R.
Ledin, D. McCarthy, A. Rosenthal, S. Sarin, "The HIPAC Project:
Combining Active Databases and Timing Constraints," SIGMOD
Record, pp. 51-70, March 1988.

[DDFA98] "The Dynamic Database: Functional Architecture (Version 0.32),"
1 unpublished document, October 1998.

[DFJ+96] S. Dar, M. Franklin, B. Jonsson, D. Srivastava, M. Tan, "Semantic
Data Caching and Replacement," In Proceedings of 22nd International
Conference on Very Large Data Bases (VLDB'96), pp. 330-341,
September 1996.

[DG93] K. Dittrich, S. Gatziu, "Time Issues in Active Database Systems," In
Proceedings of the 1st International Workshop on an Infrastructure for
Temporal Databases, June 1993.

[DGG96] K. Dittrich, S. Gatziu, A. Geppert (eds.), "The Active Database
Management System Manifesto: A Rulebase of ADBMS Features,"
SIGMOD Record, pp. 40-49, September 1996.

[DHL90] U. Dayal, M. Hsu, R. Ladin, "Organizing Long-Running Activities
with Triggers and Transactions," In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, pp. 204-
214, May 1990.

[DMS97] R. Douglass, J. Mork, B.R. Suresh, "Battlefield Awareness and Data
Dissemination (BADD) for the Warfighter," In Proceedings of the
SPIE, Volume 3080, pp. 18-24, April 1997.

[DSLL97] J. Dukes-Schlossberg, Y. Lee, "IIDS: Intelligent Information
Dissemination Server," In Proceedings of the 1997 IEEE Military
Communications Conference (MILCOM'97), pp. 635-639, November
1997.

[FT95] P. Fraternali, L. Tanca, "A Structured Approach for the Definition
of the Semantics of Active Databases," ACM Transactions on
Database Systems, pp. 414-471, December 1995.

[FWP97] A. Fernandes, M. Williams, N. Paton, "A Logic-Based Integration of
Active and Deductive Databases," New Generation Computing, pp.
205-244,1997.

73

[FZ96] M. Franklin, S. Zdonik, "Dissemination-Based Information
Systems," IEEE Data Engineering Bulletin, pp. 19-28, September
1996.

[FZ97] M. Franklin, S. Zdonik, "A Framework for Scaleable Dissemination-
Based Systems," In Proceedings of the 1997 ACM SIGPLAN
Conference on Object Oriented Programming Languages and
Applications (OOPSLA'97), pp. 94-105, October 1997.

[FZ98] M. Franklin, S. Zdonik, "'Data in Your Face': Push Technology in
Perspective," In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, pp. 516-519, June 1998.

[GD93] S. Gatziu, K. Dittrich, "Events in an Active Object-Oriented
Database System," In Proceedings of the 1st International Workshop on
Rules In Database Systems (RIDS'93), pp. 23-39, September 1993.

[GFV96] S. Gatziu, H. Fritschi, A. Vaduva, "SAMOS an Active Object-
Oriented Database System: Manual," Technical Report 96.02,
University of Zurich, February 1996.

[GGD+95] A. Geppert, S. Gatziu, K. Dittrich, H. Fritschi, A. Vaduva,
"Architecture and Implementation of the Active Object-Oriented
Database Management System SAMOS," Technical Report 95.29,
University of Zurich, November 1995.

[GKVB+98] S. Gatziu, A. Koschel, G. von Bultzingsloewen, H. Fritschi,
"Unbundling Active Functionality," SIGMOD Record, pp. 35-40,
March 1998.

[Gla96] D. Glance, "Multicast Support for Data Dissemination in
OrbixTalk," IEEE Data Engineering Bulletin, pp. 29-36, September
1996.

[HAC+97] E. Hanson, N. Al-Fayoumi, C. Carnes, M. Kandil, H. Liu, M. Lu, J.B.
Park, A. Vernon, "TriggerMan: An Asynchronous Trigger
Processor as an Extension to an Object-Relational DBMS," Technical
Report TR-97-024, University of Florida, December 1997.

[HBC+97] E. Hanson, S. Bodagala, U. Chadaga, M. Hasan, G. Kulkarni, J.
Rangarajan, "Optimized Trigger Condition Testing in Ariel using
Gator Networks," Technical Report TR-97-002, University of Florida,
February 1997.

74

[HNK94] J. Han, S. Nishio, H. Kawano, "Knowledge Discovery in Object-
Oriented and Active Databases/' In F. Fuchi, T. Yokoi, Knowledge
Building and Knowledge Sharing, Ohmsha Ltd. and IOS Press, pp.
221-230,1994.

[KC95] S.K. Kim, S. Chakravarthy,, "A Confluent Rule Execution Model for
Active Databases," Technical Report UF-CIS-TR-95-032, University
of Florida, October 1995.

[LEF98] Q. Lu, M. Eichstaedt, D. Ford, "Efficient Profile Matching for Large
Scale Webcasting," Computer Networks and ISDN Systems, pp. 443-
455, April 1998.

[LRST93] P. Loborg, T. Risch, M. Skold, A. Torne, "Active Object-Oriented
Databases in Control Applications," Technical Report LiTH-IDA-R-
93-28, Linkoping University, 1993.

[LS97] M. Lazaroff, P. Sage, "Any Information, Anywhere, Anytime, for
the Warfighter," In Proceedings of the SPIE, Volume 3080, pp. 35-42,
April 1997.

[MT95] D. Montesi, R. Torlone, "A Transaction Transformation Approach
to Active Rule Processing," In Proceedings of the Eleventh
International Conference on Data Engineering (ICDE'95), pp. 109-116,
March 1995.

[NTM+95] S. Navathe, A. Tanaka, R. Madhavan, Y.H. Gan, "A Methodology
for Application Design Using Active Database Technology,"
Technical Report RL-TR-95-41, Air Force Contract F30602-93-C-0175,
Rome Laboratory, March 1995.

[Pat95] N. Paton, "Supporting Production Rules Using ECA-Rules in an
Object-Oriented Context," Information and Software Technology, pp.
691-699,1995.

[PDW+93] N. Paton, O. Diaz, M.H. Williams, J. Campin, A. Dinn, A. Jaime,
"Dimensions of Active Behaviour," In Proceedings of the 1st
International Workshop on Rules In Database Systems (RIDS'93), pp.
40-57, September 1993.

[PSS93] B. Purimetla, R. Sivasankaran, J. Stankovic, "A Study of Distributed
Real-Time Active Database Applications," IEEE Workshop on Parallel
and Distributed Real-Time Systems, April 1993.

75

[RS98] R. Ramakrishnan, A. Silberschatz, "Scalable Integration of Data
Collections on the Web/' Technical Report CS-TR-98-1376,
University of Wisconsin, Madison, 1998.

[RSS+96] K. Ramamritham, R. Sivasankaran, J. Stankovic, D. Towsley, M.
Xiong, "Integrating Temporal, Real-Time, and Active Databases,"
SIGMOD Record, pp. 8-12, March 1996.

[SDSV97] T. Stephenson, B. DeCleene, G. Speckert, H. Voorhees, "BADD
Phase II: DDS Information Management Architecture," In
Proceedings of the SPIE, Volume 3080, pp. 49-58, April 1997.

[SST96] R. Sivasankaran, J. Stankovic, D. Towsley, B. Purimetla, K.
Ramamritham, "Priority Assignment in Real-Time Active
Databases," VLDB Journal, pp.19-34, January 1996.

[SUC98] Y. Saygin, O. Ulusoy, S. Chakravarthy, "Concurrent Rule Execution
in Active Databases," Information Systems, pp. 39-64, January 1998.

[TGN092] D. Terry, D. Goldberg, D. Nichols, B. Oki, "Continuous Queries
over Append-Only Databases," In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, pp. 321-
330, June 1992.

[Ulu98] O. Ulusoy, "Transaction Processing in Distributed Active Real-
Time Database Systems," Journal of Systems and Software, pp. 247-
262, September 1998.

[VGD97] A. Vaduva, S. Gatziu, K. Dittrich, "Investigating Termination in
Active Database Systems with Expressive Rule Languages,"
Technical Report 97.03, University of Zurich, April 1997.

[WC96] J. Widom, S. Ceri, Active Database Systems: Triggers and Rules for
Advanced Database Processing, Morgan Kaufmann Publishers, 1996.

[Wid93] J. Widom, "Deductive and Active Databases: Two Paradigms or
Ends of a Spectrum?" In Proceedings of the 1st International Workshop
on Rules In Database Systems (RIDS'93), pp. 306-315, September 1993.

[Wid96] J. Widom, "Starburst Active Database Rule System," IEEE
Transactions on Knowledge and Data Engineering, pp. 583-595, August
1996.

76

[XSR+96] M. Xiong, J. Stankovic, K. Ramamritham, D. Towsley, R.
Sivasankaran, "Maintaining Temporal Consistency: Issues and
Algorithms/' First International Workshop on Real-Time Databases,
March 1996.

[YA95] T.W. Yan, J. Annevelink, "A Powerful Wide-Area Information
Client/' In Proceedings of the 1995 IEEE Computer Conference
(COMPCON'95), pp. 13-18, March 1995.

[YGM94] T.W. Yan, H. Garcia_Molina, "Distributive Selective Dissemination
of Information/' In Proceedings of the Third International Conference on
Parallel and Distributed Information Systems (PDIS'95), pp. 89-98,
September 1994.

[YGM95] T.W. Yan, H. Garcia_Molina, "SIFT - A Tool for Wide-Area
Information Dissemination," In Proceedings of the 1995 USENIX
Technical Conference, pp. 177-186, January 1995.

77

Vita

Captain Robert H. Hartz was born on 5 August 1962 in Ashland, Pennsylvania. In 1980,

he graduated from North Schuylkill High School of Ashland, and shortly thereafter, he enlisted in

the Air Force as an inventory management specialist. After assignments in supply at Eielson

AFB, Alaska, and Grissom AFB, Indiana, he retrained into the computer-programming field in

1985. He was subsequently assigned to Detachment 1, 4200 Test and Evaluation Squadron,

Castle AFB, California as a maintenance programmer for the KC-135 Digital Aircrew Training

Devices. In 1987, he was selected for the Airman's Education and Commissioning Program and

attended Arizona State University as a technical sergeant. In 1990, he graduated cum laude with

a Bachelor's of Science in Engineering degree in the Computer Systems Engineering program.

In 1991, Capt Hartz graduated from Officer Training School and received a commission

as a second lieutenant. He was initially assigned as Development Computer Engineer for the

3302nd Technical Training Squadron, Keesler AFB, Mississippi, and then he served as element

chief of the 81st Communications Squadron's Software Support Flight in 1992. In 1994, he was

reassigned to Armstrong Lab's Logistics Research Division, Wright-Patterson AFB, Ohio, as

Computer Engineering Research Officer. He completed Squadron Officer School in-residence in

1996, and he began attending the Air Force Institute of Technology in 1997. After graduation

from AFIT in 1999, Capt Hartz will be assigned to the Air Force Operational Test and Evaluation

Center's Software Analysis Team, Kirtland AFB, New Mexico.

78

