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1. Let us Investigate a rectangular plate of 
uniform thickness h , with one of the elastic symmetry 
planes parallel to the middle plane of the plate, the, 
other, two being parallel to its sides. 

The rectangular coordinate system ( as, p,*r I  is so 
selected that the coordinate plane 0$ coincides with the 
medien plan, of the plate, but the coordinate exes  «, p , 
ere in direction of its sides. 

The following hypotheses ere assumed /I/ 1 
a) The normal stresses ar   on areas parallel to 

the median plane may be neglected as compared to the 
other stresses• 

b) The normal distance (?) between two plate points 
remains unchanged after the deformation. 

c) For tangential stresses ■*«* and **ir we have 

*«Y Y (T - Tf) 9 («. P).   **« Y (T - tf * <**W    <M> 

where ?(«. ß) ■ and £ ( a, fs- } are arbitrary functions to be - 
determined of coordinates at, p. 

These hypotheses, as Is known /2,3/> prove their 
validity. Some Inconsistency, which is due to the accept- 
ance of hypothesis (a), can be justified in the present 
case. The fact is that in omitting  or , we first of all 
commit only small errors for the majority of actual plates, 
since all terms connected with  sY have small multipliers; 
second -- omission of  °Y  does not distort the qualita- 
tive aspect of the investigated problems, and third — 
omission of cy substantially simplifies problems of 
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1 
stability and oscillations of anisotropic plates. 

In work /l/, while investigating problems of bend- 
ing of anisotropic plates, a resölv.ing system of three 
differential equations in three unknown functions is 
derived: norHiai dislocation v(-a, ß ) and functions 
9(i, p). $>(*>'?). For the accepted notations the system 

has the form 

«»5 "r" «i? ~" A» 

fl*  . r>  <?2 |/^^+(»„-"2^);4rt-]*--Ji«»(Ä„£H-i»-^ + 

*ar_ /» i » \i!?_ 

where Z - intensity of the normal approximated surface 
load; Bik, ai^, a^r> —known elasticity coefficients 

For setting up equations of static and dynamic 
stability and ocillations of rectangular anisotropic 
plates, which are investigated here, we start with the 
equation system (1.2).  ' ^4,4* 2. We derive the equation of static stability 
by substituting in (1.2) for Z the expression /4,5/ 

where T? , T? and s° " tangential forces per unit length, 
acting in the median plane of the plate. 

Substituting (2.1) into 1.2) we obtain the final 
equations of stability of an orthotropic plate 

Jj + 3 + S(r»'S + ,,«#iF+M,Ä)-0        (2'2) 
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[ {£„ -r 2B») jpjjp + Bn j^J t» — 

c out. 

Let us investigate the stability of a rectangular plate 
supported along the edges, compressed in both principal 

~  directions (Pig. 1). Assuming .>Y»J\ IV»XPf we obtain 

; J7=-J», J'4°«-XP. 5*-o (2-3) 

Pig. 1 

¥e seek the solution of system (2.2) in the form of vhere 
.   »ma «sä 

,    w ■■• W'0SIU S II —~ 
a l> 

w?8    .    ««S (2»^) 

_$=■;„ Sill—COS-y*   _ 
w
osf e «J»o--unknovn constants. Using (.2.*) we satisfy the 

requirements of hinged support around the whole outline 

Substituting (2.4) into (2.2) we get 

/m»     If* \      A" W»     A* *fl .    A 

-[l+ «« ^>.^- + *-£)]«*-° 

This system has solutions different from zero only 
in cases when the determinant composed of the coefficients 

u of the system is zero. Equating the determinant of the j 
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system (2.5) to zero we can find the following expression 
for the critical value of force 

where 

*-'-vtvTj*m[D»£+2(£>w +^»+^vl <27) 

is the value of critical force of an analogue problem, 
assuming validity of Kirchoff»s hypothesis /4/ 

,4 — B n      ■ **®te t9 ßv 

The first term of formula (2.6) represents the 
value of the critical force of the investigated problem, 
determined by the classic theory of plates, but the 
second one—its correction. 

It should be pointed out that the second term of 
the expression (2.6), which is conventionally called 
its correction, in some cases may be larger than the 
basic term determined by the classic theory. 

When the plate is compressed in the main direction 
only, the formula (2.6) remains unchanged, but the 

expression 

must be used for P* instead of (2.7). 
In the special case of a rectangular plate support- 

ed all around the edges, compressed in direction cL ,  and 
made of transversely isotropic material (it being assumed 
that the isotropy planes at each point are parallel to 
the median plane of the plate /V we get for the critical 
f°rCe . «*D   <m/c + e»«/«y. (2.10) I 

Pmn — —gr J-t-k(m»/«* + **) j 



I 
where g 

F, u ^elasticity modulus and Poissons ratio in the 
isotropy plane; G»—shear modulus, characterizing the 
distortion of angles between the directions in the plane 
of isotropy and perpendicular to It. 

In examining (2.10), it is easy to prove that the 
value of the critical force is minimal vhen only on© half - 
wave is generated in the direction perpendicular to the 
direction of compression, that is if asl. We get 

p • „ **u  ±mL±±Jl£Lr (2.12) 

Prom (2.12) it may he seen that, as in the ana- 
logous problem of the classical plate stability theory 
7^,5/> the minimum value of critical force Pm« is in- 
dependent of m and equals 

D *£—i— (2.13) 

The values of the plate side ratio c as e/b for 
different m  , when the critical force reaches its min- 
imum (2.13) can be determined from the formula 

csmf(l-*)/(! +*)' (2.14) 

As may be seen from (2.12) to (2.1*) the determined 
values substantially depend on the coefficient k , or 
on the ratio of elasticity constants l/G«, Poissons ratio 
and the ratio h/b> that is on some relative normalized 
plate thickness, which depends not only on the geometrical 
parameters, but also on the physical properties of the 
plate material. _,    ._,  ,  

In .Table 1 values of coefficient k and coordinates 
of some characteristic points of curves- <f> ~ ®(0 for {*- 
0.25 are given. iG the upper part of the Table h/b • 0.1, 
but in the lower part h/b * 0.2; cn and §h are points of 
intersection of stability curves. ' 
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Table 1 

• t Points   ro4n «• m«*2 m=e 3 

£,%T * C/fR * mm .e n n 
en ••' 

c n ••• ft 

0 
2.5 

5 
10 

0 
0.02632 
0.05264 
0.1053 

f.G 
0,074 
0.94S 
0.900 

4.00 
3.798 
3.610 
3.274 

1.414 
1.373 
1.332 
1.256 

4.50 
4.245 
4.00S 
3.593 

'  - ■         i1   i 

2.449 
2.383 
2.319 
2.194 

4.167 
3.947 
3.745 
3.383 

3.464 
3.372 
3.283 
3.110 

4.083 
3.873 
3.677 
3.329 

Ü 
2.5 

5 
JO 

0 
0.1053 
(1.2S06 
0.4211 

1.0 
(i.flOO 
o.fios 
0.638 

4.0 
3.274 
2.730 
1.981 

1.415 
1.256 
1.113 
0.857 

4.50 
3.593 
2.9:50 
2.054 

2.449 
2.194 
1.961 
1.536 

4.167 
3.383 
2.799 
2.007 

3.464 
3.110 
2.785 
2.102 

4.083 
3.329 
2.765 

11.994 

Based on data of Table 1 stability curves fop^somj values 
of parameter k are plotte* in Fig. S.JJaiuea^rcm^ ^ 

k»0 correspond to the 
.solution of the pre- 
sent problem of the 
classical method. 
From the examined 
numerical examples 
ve see. that with an 
Increase of parameter 
k the critical force 
decreasesj as compared 
■with its value obtainec 

hy the classical theory of plates (k. 0). In »*J"^; *^ 
limits of every type of stability narre* down with increas 

°f k *For the case of an orthotropic plate the calculation 
of the critical force per formula (2.6) is very cumbersome. 
?able 2 sh"s some results of variations calculated vith 
a computer 1). Values of the expression Q«) *- l>  W«»ßi. 
for different ratios b/a and 

'l1 « Ü1» hi- _ 5,  *} - an/it - aMKt, 
ft I   J*8   /'M 

(4, - 0.3 
4  1 
T =" lo• 

respectively. 
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Table 2 

c *»----2 »»5     j 
t 

»10 ,0 

0.25 12.61113458 9.1525G88 8.2856576 16,9I8!OPO 
0.45 5.2574384 4.5388932 3.7037616 5.8843716 
0.65 3.1438824 9.8728144 2.5156152 3.3S69840 
0.85 2.3224992 2.1740704 1.9668984 2.4341830 
1.05 1.9577536 1.8552720 1.7077264 2.0331295 
1.25 1.7985344 1.7164560 1.5S60576 t.§581000 
1.45 1.7495952 i.6771424 1.5695656 1.8017243 
1.65 1.7685984 1.7003600 1.SB819M 1.81"4095 
1.85 1.8344560 1.7673152 1.66618&4 1,8822841 
2.05 1.9357216 1.8876672 i.7647040 1.064O53G 
2.25 2.0657552 i.9253648 1.8885034 2.1156309 
2.45 2.2204896 2.1466720 2.0343192 2.2726873 

<*1.4820312      e=l.4829392      c^l.433E692      e=f.f«5348S 
0»mln=1.7487856«Drcin=1.6770192 «HraJn=--l. 5693776<Dffi!8= 1.800027 J 

Calculations were made only for m- 1. According to 
the methods based on the case for m«l the cases of m*. 2,3.. 
can be determined. In the last column of Table 2 values of 
1) The calculations were made on an electronic computer 

type M-3 at the computing center of the Armenian SSSR. 
<P(c) , calculated according to the classical theory of 
plates, are given, The tvo lowest lines give values of 
c and the corresponding <£>,-.«„ 

3. In order to obtafirequations of free oscillations 
of non loaded plates it Is necessary to assume for Z 
/Win (1.2) 

y __   To^ d~w 
~    ~g   dl» . 

The final equation of free oscillations of the orthotropic 
plate can be written in the form 

£? ■ Hut __ il I0'l ÜÜÜL 0 (3.1) 

7  — 



where to -specific gravity of the plate material, 
gravity acceleration. The solution of system (3*1 
ve seek in the form 

, mr.s    .    ...... , 

f0 cos »in —j~ cos << (3.:') 

satisfying conditions of free support along the wnole 
contour of the plate. 

Substituting (3.2) into (3.1) ve obtain a system 
of homogenous equations in**, 9». y.,'Equating its deter- 
minant to zero we get the frequencies of free oscilla- 
tions from  

<«W% "*NmVi -f d (3,3) 

where d corresponds to (2.8), and 

represents, properly speaking, its frequencies, determin- 
ed according to the classical theory of plates. 

If the plate is made of transversally-isotropic  . 
material (see section 2) /%/ m  get for the frequencies of 
free oscillations       . ■ 

0}mn  =» 40^ Yr^v^T^r^ * 
^«•p-l^^-C^'^ + n«) (3.5) 

Table 3 gives values of ratio ■***/»*».corresponding 
to some oscillation tones(«, »■* i. 2)calculated according 
to formula (3.5) for a square plate (c = l) with different 
values of parameter k . 

Table 3  

* • 1 « • • • 
* ««*„ «Ml» «Dt/«*M k uttfto «to/to 

«8 

0 i 1 1 0.15 0.8771 
\ 

0.7559 0.6742 
o.m 0.9806 0.9535 0.9285 0.20 0.8452 0.7071 0.6202 
0.03 0.9713 0.9325 0.8980 0.25 0.8165 0.6667 0.5774 
0.0» 0.9535 0.8944 0.8452 0.30 0.7908 0.6325 0.5423 
0.07 0.9306 0.8607 * 0.8006 0.35 0.7670 I  0.8030 0.5i.*U> 
0.10 0.912t 0.81165 0.7454 0.40 0.7454 I  0.5774 0.4880 

_ 8  _ 



1 
This table shows that with increase of parameter 

k the frequencies of its oscillations <Omn vary more greatly 
from the corresponding frequencies <*hnn   obtained by the 
classical theory of plates. This difference, less pronounced 
at the lowest oscillation frequency (wu)  * becomes more 
substantial at the highest oscillation modes ( w12, t   etc.; 

4. The equation of dynamic stability of an ortho- 
tropic plate is found when substituting in (1.2) for Z the 
expression /?/ 

Substituting (4.1) into (1.2) we can easily obtain 
the final equations of dynamic stability of orthotropic 
plates. *»**.* 

If the plate is compressed In the main direction 
« only (Pig. 1) then 

Let us assume that the external force P varies 
periodically in time 

/»•-/'„ cos & (4-3) 

where P„ - amplitude and Ö - frequency of external force. 
Considering (4.1)  to  (4.3)  the system (1.2)  is written as 

■nrw + v/""p#eoBl,iiir."" t "5s* *a0 

[*u *35T + (ÄM + 2£M) ^ip] v — w [«a, (fiH ^ + 4N ^J f -f 

+ «*(*is + *«)^] + 9»© f*^J 

[(A» + 2#M) ^y^- -f- BK -ggfj 10 — -Hj. |%j (J?3, -f 0„) ^j^- + 

We seek solution of system (2.3) in the form of ' 

^^(Ocos^sin^,      i~W)BinZZLco&ZjP- (4.5)   J 

—     9     — 
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f where w('t). *'(th and *(t) —values of cunctions w, 9  and 
Tn til  center of the plate. This will satisfy the con- 
ditions of hinged support all around the outline 01 the 

plate*  Substituting (4.5) into (4.4) we obtain 

"      ifiBu * + <*„ + HU £>(0-[i + #^7 + B«£)>w- 

-^«a(B» + W-5-*(0-0        (4.6) 

The last two equations of system (4*6), as may 
be seen,'do not contain derivatives with respect to time. 
be    ' Secluding 9(t) and *(t **<»•*»*« LuaUon respect to w(t) we obtain the differential equation 

*•« + «k (l -r -£~ cos 9«) w (t) - 0 (4.7) 
dfi 

v^ere v„„, Pi* — frequency of free oscillations of the 
nonloaded'plRe (3.3),«* critical value J^.J^m 
pressing for-e (2.9) (if the expressing force ects in 

M«tthieu  For certain coefficient relationships it has 
in'reas^ly unUmited solutions. These solutions fill 
oSt compllte areas of the parameter plane, to wnich 
correspond regions of dynamic instability. 

Let us rewrite equation (4.7) as 

&s is known /7Ä the boundaries of instability 
regions can bl A/iiUely determined from the follow- 

u lng formulas: 

— 10  — 
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for the first-or main instability region, or 

for the second instability region, or 

"  -~*3 «WB»!/ 
(4.11) 

for the third instability region. 
Here ©° are critical frequencies of external 

load, that is external load frequencies, corresponding 
to the boundaries of instability regions. 

As may be seen from the above formulas, the 
critical forces, the frequencies and instability region 
boundaries will be substantially different, depending 
on the number of half-waves (m,n) in the directions <*- 

6nd * There will be a further examination of the case 
when, in both directions«! and ^ only one ha^f:wfJee^^ 
be generated, that is in all the above formulas we shall 

take ' m«n * 1     (4-«) 

and for simplicity the indices " 11M shall be omitted. 
Let us consider the case when the rectangular 

plate, supported around the outline, is made of trans- 
versely - Isotropie material. As before, we assume 
the plane of isotropy at every point to be parsxle^ 
with the median plane of the plate. 

Table 4 

fc« t. .region ii tesi&n in region 

For *«0(X.-«*/t) 

I la» 

i.oo 

0.8944 
0.8367 
0.774« 
0.7071 

1.00 
1.04*8 
1.0854 
1.1402 
1,1832 
1.2248 

0.50 
0.4950 
0.4*98 
0.4528 
0.4123 
0.3536 

0.50 
0.5008 
0.5033 
0.5074 
0.5132 
0.5204 

0.3333 
0.3312 
0.3235 
0.3068 
0.2734 
0.1992 

0.3333 
0.3316 
Ö-.3272 
0.3205 
0.3120 
0.3018 

—   11 



1 
ffiable 4 ContQ 

I region II region III region 

fot k^O.Ob (K1^l%\) 

0 
0,1 
0.2 
<u 
0,4 

lim 

U 
u.i 
0.2 

■0.3 

lim 

0 

o.:t 

o 
0,1 
0,2 
<»,3 

*lim 

Ü.853S . 0.8535 
0.888$ 1.0045 

1.053! 0.8422 
0.7804 1.0996 
0.7135 1.1442 
0.6742 1.1677 

U.8123 
0,8563 
0,71158 
0.7.4(0 
0.6583 
OÜ157 

ti.84.VJ 
0.7838 
0.7171 
u.8438 
0.5U76 

o.7-}i0tt 
u.7;'U> 
O.H5I9 
0.5701 
0.&&W) 

0.Ü12Ö 
0. i*6€>l 
1.01G5 
1 .(«45 
1.1105 
1.1180 

0.8452 
o..m^4 
0.9502 
1.0071 
1 .(«51 

O.7SJ06 
I». 8515 
Q.»<83 
o.yuis 

0.4767 
0.4709 
0.453t 
0.4218 
0.3732 
0.3371 

lim 
0.4767 
0.4777 
0.4808 
0.4853 
0.4919 
0.4962 

For *«0.lO(^lija-*/i«) 

0.4584 
0.4498 
0.4293 
0.3929 
0.3352 
0.3078 

0.4575 
0.4608 
0.4887 
0.4738 
0.4751 

For *~0.20<V '«»/u) 
11M 

0.4228 
0.4142 
0.3880 
U.34O0 
0.2Ö88 

0,4220 
0.4240 
0.4281 
U.4348 
0.43U8- 

For it   0.30 (X, -Vie) 

0.31*53 
0.3970 
0.4020 
0.4102 
0.4114 

38.V.» 
3525 

0.3178 
0.3153 
0.3081 
0.2852 
0.2397 
0.1899 

0.3043 
0.3014 
0.2905 
0.2644 
0.2010 
0.1319 

0,28!7 
0.2780 
0.2830 
0.2225 
0.1684 

0.2635 
0.258» 
0.1T20 
0.1741 
0.1575 

,3178 
.3161» 
.3110 
.3033 
.2938 
.2878 

3043 
3021 
2ÖS4 
2881 
2735 
2755 

0.2817 
0.27SJO 
U.2721 
0.202ä> 
0.255t 

0.2635 
0.2603 
0.2521 
0.2403 
0.238« 

Th© regions of-dynamic instability vill lie dej 
terrained per formulas (4.9) to (4,11), the indices an 
being omitted. ;. '    . 

Let us examine a square plate ( b %  a;. XJ 
order to compare the results obtained for the instability 
regions with the respective result* obtained by the 
classical theory of plates, — formulas (4.9) to (4.11J 
— taking (4.12; into consideration — are presented 
in the following form 

12 
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for the first (mala) instability region, br 

2^ 7 V rnj+—äni\'• &F- IT r+2* * • H ' l '■ 

for the second instability region, or. 

2u»° 
II/    *     „ •  9Q+2*T(FF' 
3 V  r+2ft       8±9(1 +2k)l° 2PJ (4.15) 

#,■' 

for the third instability region. 
Prom (4.8) v® draw the conclusion that X<V8; 

and therefore for the limit value of A" *e have 

hlisktv 2(i + 2k) (4.16) 

Table 4 gives values 
of ©° / 2w° dependent 
on A* * calculated 
according to formulas 
(4.13) to (4.15) for 
different values of 
parameter k . 
As illustration Pig. 3 
shows regions of in- 
stability for k*0 and 
k-o.2. 

Fig. 3 
In examining Fig. 3 and the above Tables we see that with 
increase of the coefficient k the instability regions 
calculated according to (4.13) to (4.15) are different 
from those calculated according to the classical theory 
of plates (k»0), this difference being a decrease of ©o/ 
2wo and of th* interval of parameter 

Analogous calculations for orthotrcpic square 
plates (b=a) were made on an electronic computer type 
M-3- at the computing center of the Acad. Sei. Armenian 
SSR. 

Three variations of these calculations are given 
in Table 5, showing ©° / 2w° for different values of 

u parameter k . 

13 
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Table 5 u. 

X* I region II region JH region 

For*i=10, fca=2 (X   *~0,48404M) 
tins 

0 
0.10 
Ö.20 
0.30 
Ö.4Q 
Xlim 

0.10 
0.20 
0.30 
0.40 

lim 

0 
o.to 
0.20 
0.30 
Aliffi 

0.9839190 
0,9317170 
0.8764112 
0.8173718 
0.7537218 
0.6957358 

0.8892632 
0.8418280 
0.7801758 
0.7182142 
0.8740454 

0.8887454 
0.8305832 
0.7680290 
0.6999060 
0.6284378 

0.9839190 
1.0334878 
1.0807852 
1.1260980 
1.1696586 
1.2050498 

0.4919595 
0.4866820 
0.4704945 
0.4422004 
0.39Ö234Ö 
fi.3478879 

0.4919595 
0.4928338 
0.4954466 
0.4997713 
0.5057637 
0.5120477 

k^k^S  (X •«0.4543373) 
* *  % lim 

0.9532442 
1.0043278 
1.0529360 
1.0993972 
1.1439730 
1.1674810 

0.4766221 
0.4708143 
0.4529443 
0.4214806 
0.3729991 
0.3370227 

0.4766221 
0.4775832 
0.4804549 
0.4852034 
0.4917743 
0.4960840 

*»«2,*,»10 (1^0.3949343) 

0.8887454 
0.9433284 
0.9949214 
1.0439878 
1.1)884864 

0.4443727 
0.4371921 
0.4149053 
0.3748275 
0.3142189 

0.4443727 
0.4455582 
0.4490969 
0.4549311 
0.4625178 

0.3279730 
0.3257381 
0.3175495 
0.2995431 
0.2626090 
0.1960013 

0.3177480 
0.3152678 
0.3060235 
0,2850747 
0.2394993 
0.1898907 

0.2962485 
0.2931173 
0.2809120 
0.2507869 
0.1770423 

0.3279730 
0.3262047 
0.3215206 
0.3145625 
0.2057170 
0.2969922 

0.3177480 
0.3158160 
0.3107304 
0.3032098 
0.2936728 
0.2877331 

0.2962485 
0.2939012 
0.2878131 
0.2788981 
0.2682644 

Notations used in these Tables are 

where E- ,^. and Eg tA   --elasticity moduli and 

Poissons ratios in directions«*: and^ , respectively? 

G12 * B66' 
lculations were made for/ ■ 0.3, h/a»0.1. Ca 
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