
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

E s- o o £°
0) .Q
o w

Q. +,
0) W
K ©

m

METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-
BASED SIMULATION ARCHITECTURES FOR

BAMBOO OR VISUAL C++

by

Mark A. Boyd
Todd A. Gagnon

March 1999

Thesis Advisor:
Thesis Co-Advisor:

Michael Zyda
Rudolph Darken

Approved for public release; distribution is unlimited.

STIC QUAUlTf Ii.vbi'ÄU ,frU » 19990409 066

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-BASED SIMULATION
ARCHITECTURES FOR BAMBOO OR VISUAL C++

6. AUTHOR(S)
Boyd, Mark A. and Gagnon, Todd A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Zero-sum budgeting, downsizing, and increased mission requirements make it more challenging for U.S.

Navy leaders to understand the short and long-term consequences of their decisions. An enterprise model of the
Navy could provide decision-makers with a tool to study how their decisions might affect the Navy's ability to
conduct worldwide operations. Agent-based simulation technology provides a flexible platform to model the
complex relationships between the Navy's many components. Agent-based modeling uses software agents to
define each relevant entity of the system. These agents have the ability to interact with their environment and
learn or adapt their behaviors while trying to achieve their goals. The aggregate of these interactions results in
identifiable behavior patterns known as emergent behaviors. This thesis looks at two methods of designing the
underlying architecture for a simple agent-based simulation. A classic predator-prey relationship is modeled
using a Windows/C++ implementation and a dynamically extensible Bamboo implementation. While the
Windows/C++ implementation is straightforward, it requires definition of all agents before run-time. Bamboo is
more challenging to implement, but allows the introduction of agents on the fly, and can easily be extended for
distributed implementation. Both appear to be viable implementation architectures for an enterprise model of
the Navy.
14. SUBJECT TERMS
Agent-Based Simulation, Autonomous Agents, Bamboo, Emergent Behavior, Adaptive Agents

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
109

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-BASED SIMULATION
ARCHITECTURES FOR BAMBOO OR VISUAL C++

Mark A. Boyd
Major, United States Army

B.S., Oregon State University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

Todd A. Gagnon
Lieutenant, United States Navy

B.S., United States Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Authors:

Approved by:

Rudolph Darken, Thesis Co-Advisor

Michael Zyaa, Academic Associate
Modeling Virtual Ejüüronmfents and Simulation Academic Group

>ACf>
Dan Boger, Chairman

Department of Computer Science

ill

IV

ABSTRACT

Zero-sum budgeting, downsizing, and increased mission requirements make it more

challenging for U.S. Navy leaders to understand the short and long-term consequences of their

decisions. An enterprise model of the Navy could provide decision-makers with a tool to study

how their decisions might affect the Navy's ability to conduct worldwide operations. Agent-

based simulation technology provides a flexible platform to model the complex relationships

between the Navy's many components. Agent-based modeling uses software agents to define

each relevant entity of the system. These agents have the ability to interact with their

environment and learn or adapt their behaviors while trying to achieve their goals. The

aggregate of these interactions results in identifiable behavior patterns known as emergent

behaviors. This thesis looks at two methods of designing the underlying architecture for a

simple agent-based simulation. A classic predator-prey relationship is modeled using a

Windows/C++ implementation and a dynamically extensible Bamboo implementation. While

the Windows/C++ implementation is straightforward, it requires definition of all agents before

run-time. Bamboo is more challenging to implement, but allows the introduction of agents

"on-the-fly", and can easily be extended for distributed implementation. Both appear to be

viable implementation architectures for an enterprise model of the Navy.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1
B. BACKGROUND 2
c. AGENT-BASED MODELING 3
D. BAMBOO 5

E. SUMMARY OF CHAPTERS 9

O. AGENT-BASED MODELING H

A. INTRODUCTION 11
B. AGENTS 11

1. Interaction 12
2. Adaptability 14

C. EMERGENT BEHAVIORS 15
D. SUMMARY 16

m. BAMBOO 17

A. INTRODUCTION 17
B. DYNAMIC EXTENSIBILITY 17

1. Dependency 17
2. Callbacks 19
3. Event Handling 20

c. SUMMARY 20

TV. ARCHITECTURE 21

A. INTRODUCTION 21
B. WINDOWS/C++IMPLEMENTATION 23

1. Introduction 23
2. Interface 23
3. Architecture 25

a. Overall Design. 25
b. Agents 25
c. Base Class 27
d. Subclasses 31
e. Agents Summary 34

4. Interactions 34
5. Learning and Adaptation 36
6. Emergent Behaviors 39
7. Windows/C-H- Implementation Summary 41

c. BAMBOO IMPLEMENTATION 41
1. Introduction 41
2. Interface 42
3. Architecture 44

a. Overall Design 44
b. Agents 44
c. Base Class 45
d. Subclasses 46

4. Interactions 47
5. Learning and Adaptation 47
6. Bamboo Implementation Summary 48

D. SUMMARY 49

Vll

V. CONCLUSIONS 51

A. CONCLUSION 51
B. FUTURE WORK 51

1. SimNavy Agents 51
2. Learning and Adaptation 52
3. Networked Applications 52
4. SimNavy Engine 52

APPENDIX A: IMPLEMENTATION CODE LISTINGS 55

APPENDIX B: GLOSSARY 89

LIST OF REFERENCES 91

BIBLIOGRAPHY 93

INITIAL DISTRIBUTION LIST 95

Vlll

LIST OF FIGURES

Figure 3.1: Bamboo Runtime View 18
Figure 3.2: Module Dependency View 19
Figure 3.3: The Callback Handler 20
Figure 4.1: Savannah Windows/C++ Interface 24
Figure 4.2: Savannah Class Structure 27
Figure 4.3: Computation of Integer xy Position 29
Figure 4.4: Method to Determine if Two Animals Can Mate 32
Figure 4.5: Method to Determine if Cheetah Kills Prey 34
Figure 4.6: Learning and Adaptation in Savannah 38
Figure 4.7: No Predator Knowledge 39
Figure 4.8: Cheetah Kills Antelope 39
Figure 4.9: Antelope Learn and Flee 39
Figure 4.10: Savannah 3D with Loaded Modules 43
Figure 4.11: Savannah 3D Class Structure 45

IX

ACKNOWLEDGEMENTS

The authors would like to express our appreciation to our thesis committee

members, Dr. Mike Zyda and Dr. Rudy Darken for their assistance, direction, and

dedication throughout our course of study.

Also, for his guidance, we are indebted to John Hiles, who introduced us to agent-

based modeling, and showed great patience through many meetings.

We are grateful to Kent Watsen who encouraged and guided the Bamboo

implementation to include porting the simulation to the latest version of Bamboo.

For his technical support in the graphics lab we must thank Jimmy Liberato.

Finally, for their love and support we thank our families, especially our wives,

Lauren and Kim, and our kids, Courtney, Morgan, and Keegan.

XI

Xll

I. INTRODUCTION

A. MOTIVATION

Every day the Navy's top leaders make key decisions affecting the flow of money

from its sources down to its resources. These decisions have certain consequences that

impact the Navy's overall warfare capability, which is a direct measure of the Navy's

ability to meet the global needs of the nation. Today, with the current trend of military

downsizing and zero-sum budgeting, each decision made has a greater effect on the

Navy's various components and their abilities to maintain the levels of readiness needed

for a strong, effective force. Often, the effects of budget decisions may not be felt for a

number of years. Under the current process, budget planners regularly make key

decisions with neither the time nor ability to fully model how these decisions might affect

the Navy in the future. An enterprise model of the U.S. Navy that contained the proper

relationships between the Navy's budget allocation and its warfare capability could assist

leaders in understanding the potential consequences of various decisions. This insight

would help those individuals make more informed decisions in the future.

For years, the entertainment industry has developed modeling and simulation

technology that in some ways surpassed comparable technology developed by the

Department of Defense (DoD). The DoD normally develops modeling and simulation

technology that differs greatly in use from that of the entertainment industry, but has

realized that much of what the entertainment industry produces can replace, or enhance

DoD technology with significant cost savings. A recent study published by the National

Research Council (NRC), "Modeling and Simulation: Linking Entertainment and

Defense," calls for the DoD to work with and learn from entertainment companies to

better meet the DoD modeling and simulation requirements of the future [1]. As a result

of this study, the Director of Naval Training (N7) requested an enterprise model of the

U.S. Navy be developed that leveraged expertise from the entertainment industry.

The first decision required in the process was to determine what type of modeling

technology existed in the entertainment industry that would provide the best approach for

modeling the U.S. Navy. The Navy is a constantly evolving, complex system made up of

many entities with sometimes-conflicting goals. To model this system requires an

architecture that supports that evolution and the intricate interactions of the various

components. After some consideration, it was determined that agent-based modeling,

which has been used in the private and commercial sectors to successfully model large-

scale, complex systems, would provide the best capabilities with which to develop an

enterprise model of the U.S. Navy. This thesis explores some of the fundamental issues

associated with developing an architecture for agent-based simulations.

B. BACKGROUND

Simulations are used to explore outcomes without having to become involved in

expensive, time-consuming, or sometimes dangerous activities. Within this framework,

simulations provide a way to answer questions, practice skills, or rehearse actions.

Simulations also provide a platform to manipulate things in ways that are impossible to

do with real systems. They can be started, stopped, restarted with new assumptions, and

allow the introduction of entities that do not exist in the real world. Various techniques

for modeling systems have been around as long as humanity. They have evolved from

arranging stones to model the passing of the seasons, as seen at Stonehenge [2], to highly

complex computer models like the flight simulators used to train pilots.

The fidelity built into a model depends on the kinds of questions the model needs

to answer. The spectrum of fidelity ranges from aggregated or high-level models that

might be used to study a military corps-level, force-on-force battle, to high-resolution or

low-level models that might be used to study the human interactions of a peacekeeping

operation. The ability to increase the fidelity of models has paralleled the development

of high-speed computers. As processors and memory have gotten bigger, faster, and less

expensive, modelers have been able to build simulations that are more intricate.

Although this capability exists, high-resolution models are not appropriate in every

circumstance. They are, however, particularly applicable to modeling systems where

representation down to the entity level is pertinent.

Not only is capturing entity level interaction important to the result, but so is

studying how these entities adapt and adjust based on these interactions. The resulting

complexity of these kinds of simulations led to the development of agent-based

simulations. Because agent-based simulations represent the dynamics of non-linear

interactions and adaptive behaviors, they provide an outstanding environment to practice

decision-making skills, and conduct training and rehearsals [3].

C. AGENT-BASED MODELING

Complex natural environments or complex systems present researchers trying to

model and study them with many difficult issues. Many real world systems, often

referred to as complex adaptive systems, include individual or local entities that have the

ability to adapt to their environment and change their techniques for interacting with

other local entities. A perfect example of this is the Earth, which has thousands of types

(species) of individuals each with its own rules for interacting with and adapting to its

environment. Over time, species adapt to ensure they accomplish their goal, which for

most, is simply the survival of the species. The adaptive properties of the individuals

often affect the system as a whole in variable and unpredictable ways; basically, the

behavior of the whole system does not equal the sum of the individual components'

behaviors. This phenomenon is known as emergent behavior, and when modeling certain

systems tends to render traditional deterministic or stochastic modeling techniques

inferior.

A common method of studying complex adaptive systems is through the use of

computer simulations - called adaptive, agent-based simulations. Researchers trying to

model their system can develop adaptive software agents that represent individual entities

each with its own rules that describe how it should interact with its environment. What

makes the agent adaptive is that it can revise its rules of behavior based on what it has

learned from previous interactions. Adjusting its rules as it learns means the agent

ensures that similar or repeated interactions will certainly produce different outcomes

each time. Provided each agent is properly studied and modeled, the system as a whole

will exhibit the same emergent behaviors as would be found in the real world providing

the researcher with many insights to the behaviors of the entire system.

Agent-based simulations are most commonly used for entertainment and training.

They provide an environment where a player, or person using the simulation, can view

the potential consequences of their decision. Perhaps the most widely recognized

entertainment applications are the simulation games produced by Maxis, in particular,

SimCity Classic and SimCity 2000, which together have sold nearly six million copies,

making them among of the best selling computer games of all time [4]. While gaming is

a big market for agent-based models, the same technology is gaining popularity for

training people on the dynamics of everything from budgeting to crowd control.

In the SimCity games, a player is "given a plot of barren land to zone into

industrial, residential, and commercial areas. As the city grows, the player must deal

with crime, education, and health issues by strategically placing police stations, schools,

and hospitals. Manage traffic, the budget, and the needs of the constituents, or face riots,

ridicule in the press, and eventual impeachment!" [5] The entity level interactions are

controlled through an agent-based implementation; agents are the constituents. If a

residential zone is provided water and electricity, people will build homes there.

Population growth will stagnate unless industrial and commercial zones are designated

facilitating the growth of schools, police, fire and medical protection, jobs and leisure

opportunities. If an area becomes too crowded or is not properly balanced; agents

interact causing riots, shifting the populations to more attractive locations, and possibly

leaving the city altogether. Much like a real city, these simulated cities persist while

there is constant change taking place.

Although SimCity is an entertainment application, the use of similar agent-based

technology can provide city managers useful insight into the dynamics of city planning

where they are able to view potential consequences of their decisions. For example,

"What happens if we raise property taxes by 5%?", "What happens if we cut the police

force budget or remove some police stations?" or "What happens if we build a zoo on the

North end of the city?" While these simulations will not provide direct answers to the

questions, they do provide the city manager with possible results of his actions. As the

city manager runs through many iterations of one scenario, the new zoo for instance, he

can identify possibilities of how the new zoo might affect the city as a whole - he can

experiment. The zoo may bring in more tourists, cause nearby developments to increase,

decrease, or stagnate, cause traffic problems, or have little effect at all. The bottom line

is the simulation can identify potential issues the city manager might not have considered

otherwise.

An example of a simulation that could easily be adapted for military purposes is

CACTUS, an agent-based simulation developed to train senior police officers in the

dynamics of crowd control [6]. The training simulation used before CACTUS consisted

of a manual, pseudo-control room with incidents story-boarded before executing an

expensive, time-consuming, and inflexible training exercise. Additionally, after action

reviews were very limited, consisting mostly of discussion based on what people could

remember and what few notes had been taken. An agent-based simulation was

introduced because it provided a platform for more realistic incidents to develop, was less

expensive to develop, was very flexible, and could be recorded for playback [6].

The methodology behind CACTUS is easily transferable to training military

participants in the nuances of peacekeeping operations such as those now being

conducted in the republics of the former Yugoslavia. These types of simulations provide

key players the opportunity to plan for and rehearse actions to unexpected situations that

were not realistically represented in the previous planning and training cycle.

An important note on adaptive agent-based simulations is that they do not predict

the future because as events occur, there are infinitely many new states to which the

current state of the environment may transition. These types of simulations only suggest

individual states as possibilities and therefore do not guarantee the real world would

produce the same output. Agent-based simulations simply provide a more abstract level

of output that should help the researcher observe and understand complex cause/effect

relationships.

D. BAMBOO

The academic and commercial sectors have developed many agent-based

simulations over time; SimCity and CACTUS are two examples. Each of these allow

runtime interactions where users can introduce new agents, modify agents' interaction

rules, adjust behavior parameters, increase or decrease the numbers of agents, etc. These

interactions, although occurring at runtime, are based on a static implementation of the

simulation where all possible future capabilities were decided before the final

compilation of the executable. This technique is reasonable if the simulation is modeling

a system or environment whose limits are well understood and static. But, since agent-

based simulations are often used to model highly complex, unfamiliar systems, a static

implementation can cause certain limitations. Bamboo is a programming environment

that allows users to overcome this limitation by providing a means to dynamically add

functionality to a simulation at runtime. Users can create new functionality and

dynamically link it to the current simulation executing without having to stop or

recompile the whole system.

To illustrate the limitations of a statically implemented agent-based simulation,

consider the scenario where a citrus farmer in southern California wishes to model an

orange grove to help understand the effects of weather, farming techniques, and local

flora and fauna on future crop yield. The farmer gathers facts, statistics, characteristics,

and other pertinent information relating to the local environment, which, for his study,

consists of typical weather in the area and all other plants, animals, and insects that might

affect the orange crop yield. He must consider all known enemies and benefactors in the

environment of the particular orange tree he wishes to grow. This is important because,

like other processes that occur in nature, an orange grove is a very complex system and

the omission of one small detail may cause the simulation to produce output far from

reality.

Once the farmer has collected the information needed, he can design agents for

each entity needed to populate the simulation. For this illustration, assume the year is

1975, and although the Mediterranean fruit fly (Medfly) has been trapped in the United

States before, California has had no confirmed captures of the pest [7]. Because of this,

the farmer never considers the Medfly as a potential threat to his orange grove, and

therefore does not design an agent to represent it in the simulation. After spending

months researching the environment where he plans to grow his oranges, and many more

months designing and implementing a very robust agent-based simulation to model this

environment, the farmer begins his simulation.

The simulation runs for months and begins to provide great insight to potential

patterns in crop yield and tree survivability based on the interactions of all agents in the

simulation. Now the farmer begins to see patterns that aid in planning the real world

orange grove that he may never have considered otherwise. Assume that it is now late

1975 and the Los Angeles Times announces the first confirmed capture of a Medfly in

the southern California [6]. The farmer must now reconsider attempting to grow his

oranges in this area because the Medfly poses a serious threat and must be factored into

his strategy. Because the simulation was originally statically implemented, the farmer

must stop the simulation, design an agent to represent the Medfly, recompile the entire

simulation, and run it all over again.

Had the farmer implemented his simulation using a dynamically extensible

executable like that provided by Bamboo, he would have been able to design a Medfly

agent and load it into the simulation while it was still running. The agents in the

simulation would have been able to interact with new Medfly agent and vice-versa.

These new interactions would begin to produce new behaviors or patterns that might

assist the farmer in his strategic planning. This would have saved the farmer a great deal

of time and money and provided more timely feedback.

Another example to highlight potential drawbacks of statically compiled agent-

based simulations that may be more pertinent to a military audience is a combat

simulation designed to provide insight on the expected success of various warfare tactics.

Consider a scenario where forces are to be deployed on a peacekeeping operation to a

war-torn country. Before actually committing forces in harms way it would be very

productive to run a simulation that might provide some insight as to the potential

outcomes of the operation. This would provide the peacekeepers with a platform to view

potential consequences of their actions and allow them to practice reacting to various

scenarios that might arise. This pre-mission training would hopefully limit the number of

unexpected events during the execution of the actual mission.

As with the orange farmer example, the first thing the modeler of the

peacekeeping scenario must do is gather the pertinent data. He must discover all possible

information about all forces that may be involved in the operation and the environments

where these operations might take place. "Who are the leaders?", "What kinds of tactics

do the forces employ?", "What is the composition of the forces?", "Will they typically

fight in built-up areas or open terrain?", "What are their goals?", "What are their

constraints?" (especially pertinent to the peacekeeping force), etc., are all questions that

need to be answered to build an accurate model.

Agents are then developed to represent entities, aggregate or individual, in the

simulation. After running many iterations of the scenario, the modeler begins to notice

certain behaviors emerge. He may begin to see the warring parties adapt certain tactics

because of the introduction of peacekeepers. The warring parties may band together

against the peacekeepers, they may remain separate but all act hostile towards the

peacekeepers, some may disband or go into hiding and wait things out. The modeler now

begins to experiment with ways to counter the new threats.

For this example, consider that the warring parties have banded together against

the peacekeepers. The peacekeepers deploy to conduct a mission that turns into a full-

blown conflict with the warring parties. The peacekeeping force commander calls for

assistance - armored jeeps and five-ton trucks loaded with soldiers deploy to assist.

(Requests by the commander to have tanks and infantry fighting vehicles available were

denied before the initial operation ever began, so they were not built into the simulation.)

The situation continues to escalate with the peacekeeping forces being divided and their

reinforcements being blocked. As the scenario continues the peacekeepers begin taking

heavy casualties.

The simulation has shown that there is potential for a violent conflict, something

neither the commander nor his superiors anticipated. It has also shown that resources

currently available to the peacekeeping force commander are potentially not adequate to

handle extreme situations. The commander has the simulation run again, this time with a

reaction force of tanks and infantry fighting vehicles. Since the simulation was restarted

under different conditions, a conflict similar to the one witnessed in the previous run may

or may not emerge. The commander does not know if this is simply a new outcome or

the result of the introduction of new resources. What he really needed to know was how

the employment of the tank and infantry fighting vehicle reaction force might have

affected the outcome ofthat scenario. He needed the ability to introduce them as he saw

the situation develop. If the operation had been developed using a Bamboo

implementation, the tanks and infantry fighting vehicles could have been introduced "on

the fly", thereby allowing the commander to see behavior patterns develop based on the

introduction of new resources.

The simulation provides the commander with a tool to view situations as they

arise that he may not have even considered. He can view potential outcomes, and with a

Bamboo implementation, see how weapons not originally included in the simulation

might actually impact the outcome of the mission. At that point he can either come up

with new courses of action or go back to his superiors and request additional resources,

because he has seen the potential for the mission to evolve into more than a peacekeeping

operation.

The last two examples are fictional and contrived, but hopefully serve to illustrate

that agent-based simulations can benefit a great deal from the dynamic extensibility that

Bamboo offers. Bamboo provides the mechanisms where users or systems themselves

can modify the executables on the fly without having to stop the simulation and

recompile. Bamboo was originally designed to facilitate the development of real-time,

networked virtual environments, and one can immediately see the potential for

developing networked agent-based simulations where users from around the world could

design and introduce their own agents into a commonly shared virtual environment

through the Internet.

E. SUMMARY OF CHAPTERS

The remainder of the thesis is organized as follows:

• Chapter II: Agent-Based Modeling. Discusses a definition for agent-based

models to include: the purpose of agent-based models, what makes an agent-

based model different than other models, and what constitutes an agent-based

model.

• Chapter III: Bamboo. Discusses the current implementation of Bamboo and

how its capabilities are suited for dynamically extending virtual environments

and simulations.

• Chapter IV: Architecture. Describes the development of a basic agent-based

simulation architecture, modeling the predator-prey relationship, using both a

Windows/C++ and Bamboo implementation.

• Chapter V: Conclusions. Discusses the limitations discovered during

development and provides ideas as to future work that might be completed in

this area.

10

II. AGENT-BASED MODELING

A. INTRODUCTION

Agent-based models, known by many different names to include bottom-up

models, individual-base models, artificial social systems, or behavior-based models, are

used to study everything from the stock market to ant colonies to the human immune

system [2]. Regardless of their name, their purpose is to allow users to gain an

understanding, through analysis, of the processes that appear in different complex

systems [8].

At the core of agent-based simulations are independent software agents that

represent the model down to the entity level. These agents populate an environment and

interact with each other and the environment. Each agent has the ability to adapt or learn

from these interactions - they evolve over time. While each agent has a relatively small

number of possible behaviors, the sheer number of possible interactions and outcomes

greatly increases the complexity of these simulations. The complexity is further

increased by the inherent non-linearity of those interactions and typically produces

unpredictable large-scale effects. These large-scale effects are known as emergent

behaviors [8]. Agents, their interactions and adaptability, and emergence are what

differentiate agent-based simulations from other types of simulations that typically

aggregate behaviors instead of track individuals through time [9].

B. AGENTS

An agent is simply a software object with internal states and a set of associated

behaviors [10]. Examples of what agents can represent include atoms, fish,

organizations, people, vehicles, or nations [8]. A state represents attributes or properties

of an agent such as identification number, sex, age, or geographic location. Some states,

such as identification, are fixed for the life of the agent, while others, such as energy

level, may change over time as the agent interacts with its environment [10]. An agent's

behaviors provide a set of rules that describe how it should interact with its environment.

These rules are often represented as a set of stimulus-response combinations, and are

usually coded as IF-THEN statements [2]. An agent typically has an underlying goal

11

such as food, survival, or wealth, and must navigate through the environment, modifying

its behaviors based on interactions, in an attempt to attain that goal. The two major

characteristics of agents found in agent-based simulations are their ability to interact with

their environment, and through learning, their ability to adapt future behavior based on

these interactions.

1. Interaction

An agent interacts with its environment and coordinates with other agents in an

attempt to attain its underlying goal(s) and achieve a progressively better fit to the

requirements of the environment. Their interactions may consist of many things to

include mating, communication, combat or partnership [8].

Many steps must occur for a single interaction to take place. First, an agent must

sense its surroundings, or environment, in order to determine whether or not there are any

other agents with which to interact. Sensing is limited to a set range based on the

expected real-world sensing limitations of the agent. An agent's sensors may be

programmed explicitly so that each sensor has its own functionality. Another approach is

to implement sensing in an abstract manner where the agent simply knows, or can access

information about everything within its sensing range, but has no physical sensors to do

so. This abstraction is useful when "how an agent senses" is not important compared to

simple fact that it does sense because it allows developers to aggregate many sensors that

an agent might actually use in the real world into one sensing capability. For example,

humans use the five basic senses of touch, smell, sight, hearing, and taste to sense their

environment and decide what action to take next. Rather than implement all five senses

separately, it is often easier to provide a human agent with the ability to simply sense, and

therefore know, everything about all other agents within its sensing range.

Once an agent has sensed its environment, it must gather information about each

agent within its range to determine what course of action is required next. Gathering the

information is usually accomplished through one of two ways; broadcast reception and

direct interrogation. In the first method, an agent broadcasts its own state information to

all other agents within range. This means that an agent within sensing range of the

broadcasting agent will receive that information whether it needs it or not. For example,

12

if two humans are within sensing range of one another. If one agent speaks, its "voice" is

broadcast to any agent within "hearing" range. The second agent will hear that

information whether it needs it or not. In the second method, an agent is allowed to

interrogate another agent for specific information. Normally, the level of information

available through direct interrogation is limited by the designer to match the level of

available information that would be expected in the real world. For example, in the real

world, when a herd of antelope are in mating season, a male antelope can sense whether a

female antelope has already been impregnated. It makes sense then, that a male antelope

agent in a simulation should be able to interrogate a female agent for pregnancy

information and expect a valid reply. It is possible to combine both broadcast and

interrogation techniques in an agent-based simulation since information is normally

passed both ways in the real world.

Once an agent has gathered all the needed information about other agents within

its vicinity, it must then determine what, if any, interactions it should attempt.

Interactions may include attempts to mate, flee, or form alliances. An interaction

normally affects two or more agents, therefore the outcome ofthat interaction must be

determined fairly and equitably for all those involved. While the outcomes of some

interactions are straightforward and easily determined, others, such as combat, can result

in a large number of potential outcomes. To simplify the process, the outcome of a single

interaction is usually determined by a referee in the simulation. A referee has access to

all pertinent information needed to decide how an interaction should affect each agent

involved. Once an interaction has occurred and the referee has decided the outcome, the

agents involved must update their states and possibly revise their behavior rules.

Referring to the mating example above, once two agents have successfully mated, the

female's state value for pregnant would become true, and her behavior might be

modified. She may become territorial and avoid other agents instead of moving towards

them or she may require more food and therefore feed more. The level to which behavior

is modified after an interaction again depends on the designer of the simulation.

13

2. Adaptability

The ability to adapt, or adjust, to their environment is one of the essential

components of agents that distinguishes agent-based simulations from other traditional

simulation techniques. Agents adapt by modifying their rules of behavior and strategies

based on what they have learned from previous interactions. This adaptability greatly

increases the level of complexity that can be modeled. Most agents modeled in a

simulation will use two forms of adaptability, short-term and long-term, in order to attain

their desired goals.

Short-term adaptability allows an agent to adjust its behaviors to satisfy some

immediate requirement in the environment. It normally requires the temporary

integration or switching between specific behaviors [11]. A simple example of this might

be an autonomous robot agent that encounters a physical object in its path while

attempting to relocate to a new location. If the robot has no prior knowledge of the

object, and no generic avoidance behavior, it may collide with the obstacle. Once the

collision has occurred, the robot will adjust its behavior by changing direction as needed

to get around the object. The robot may alternate its behaviors between move forward

and move sideways until it has cleared the object at which time it can resume its original

goal of relocating. Switching between these two specific behaviors during the sequence

of interactions is what makes this a short-term adaptation.

Long-term adaptation represents a higher level of learning and normally takes

place over the life of the agent [11]. From the example above, the robot has learned that

the object with which it collided is something it should avoid in the future. It can also

remember basic information about the object, such as size and the most efficient way to

avoid the object in the future. This means the next time the robot encounters the object

while relocating, it will be able to avoid the object while minimizing the delay from its

original goal of relocating. Over time, the robot will develop a new behavior called

obstacle avoidance that represents a higher level of motion control compared to simply

moving forward or sideways.

Agents that do not adapt will not be able to find their niche in the environment or

achieve their goal(s). They are the ones that will perish, whether they are stock market

agents trying to buy stock at a certain break point, military tactics agents trying to detect

14

a vulnerability in an enemy's defense, or agents representing animals in the wild just

trying to survive. As individual agents interact and adapt, group behaviors begin to

emerge. These emergent behaviors are what provide the modeler with a platform to carry

out the what-if scenarios and observe various outcomes.

C. EMERGENT BEHAVIORS

Entity level agents that learn from, and adapt to their environment by interacting

with each other, provide researchers with realistic and useful views of behavior patterns

that might emerge in real-world systems. These patterns, typically referred to as

emergent behaviors, result from the aggregate interactions among, and adaptive nature of,

individual agents [12]. They"... are often surprising because it can be hard to anticipate

the full consequences of even simple forms of interaction" [8].

A good example of emergent behaviors is an ant colony as described by D. R.

Hofstadter [2,13].

Individual ants are remarkably automatic (reflex driven). Most of
their behavior can be described in terms of the invocation of one or more
of about a dozen rules of the form "grasp object with mandibles,"" follow
a pheromone trail (scents that encode 'this way to food,' 'this way to
combat,' and so on) in the direction of an increasing (decreasing gradient,"
"test any moving object for 'colony member' scent," and so on. (To
actually perform computer simulation of an ant following these rules, the
description of the rules would have to be somewhat more detailed, but
these phrases give the gist.) This repertoire, though small, is continually
invoked as the ant moves through its changing environment. The
individual ant is at high risk whenever it encounters situations not covered
by the rules. Most ants, worker ants in particular, survive at most a few
weeks before succumbing to some situation not covered by the rules.

The activity of an ant colony is totally defined by the activities and
interactions of its constituent ants. Yet the colony exhibits a flexibility
that goes far beyond the capabilities of its individual constituents. It is
aware of and reacts to food, enemies, floods, and many other phenomena,
over a large area; it reaches out over long distances to modify it
surroundings in ways that benefit the colony; and it has a life-span orders
of magnitude longer than that of its constituents (though for some species
the life-span of the queen may approximate the life-span of the colony).
To understand the ant, we must understand how this persistent, adaptive
organization emerges from the interactions of its numerous constituents.

15

While an individual ant's behavior rules are fairly small and simplistic, a complex

colony emerges from the large number of ants and their interactions with the

environment. The colony is much more than just the sum of the individual ants. The

emergent behaviors displayed by the ant colony are the types of behaviors that modelers

are looking for when they build agent-based simulations. They can model the individual

entities with very basic states and behavior rules and from that alone, observe many

complex patterns as they emerge.

D. SUMMARY

Agent-based models are very useful for simulating many types of systems. They

are particularly appropriate for modeling realistic environments that consist of many

agents interacting in a non-linear fashion. In an attempt to achieve a better fit with the

environment, agents adapt future behaviors based on these interactions, resulting in

complexity that is typically difficult to model using stochastic or deterministic processes.

It is often more realistic and useful to provide agents with initial behaviors, let them

interact, and then observe the behaviors that emerge. Agent-based modeling provides a

platform where those unexpected behaviors can emerge and provide analysts with greater

insight into the complexity of their models.

16

III. BAMBOO

A. INTRODUCTION

Bamboo is a toolkit that provides an application programmer's interface (API) for

the development of real-time, networked, virtual environments (VE). Its primary focus

is to provide a means for users to create dynamically extensible code. This means that

applications programmed in Bamboo have the ability to dynamically reconfigure

themselves by adding to or altering their functionality during runtime. It contains a series

of functional modules that extend its basic execution core. Users can further extend the

execution core by adding application specific modules that provide the VE with the

desired capabilities. Although Bamboo was designed to facilitate the development of

networked VEs, its unique features can greatly enhance traditional agent-based

simulations as well. Dynamic extensibility is the most significant feature of Bamboo that

will provide the greatest benefit to agent-based simulations.

B. DYNAMIC EXTENSIBILITY

Dynamic extensibility was the single most influential design issue for the creator

of Bamboo [14]. Bamboo accomplishes this by implementing a plug-in metaphor much

like that popularized by commercial software companies such as Netscape Navigator

[15]. The biggest difference between Bamboo and traditional plug-ins is the fact that

Bamboo does not require an application or system re-start in order to function. Each

Bamboo module represents a plug-in that can extend the existing execution core. It

further extends the plug-in metaphor by adding inter-module dependencies. Bamboo

uses the plug-in concept along with the simple but robust mechanisms of callbacks and

event handling to provide dynamic extensibility.

1. Dependency

Not only does Bamboo support the plug-in metaphor by allowing additional

functionality be added to the executable through external modules, it utilizes modules

itself to create the Bamboo runtime environment. The core executable, or "main"

routine, contains only enough logic to page modules and provide the framework into

17

which plug-ins may hook. The remainder of the functionality in the Bamboo runtime

environment is provided through additional separate modules.

Developers who wish to use Bamboo to create a simulation simply need to create

modules that further extend the capabilities of the existing Bamboo runtime environment.

User application modules are paged into memory and become part of the current

executable. Figure 3.1 provides an abstract view of the Bamboo core with external

modules attached to it. This approach ensures that the programmer makes all decisions

regarding an application's capabilities and that no decisions are forced by restrictions in

Bamboo itself. All capabilities of an application are defined at runtime when the

application is loaded into Bamboo.

® (M
MM JvOO

rTX^I CORE FM)

V^L S^8 M) ̂ Mj

Figure 3.1: Bamboo runtime view

One of the main benefits of using a plug-in concept, is that it allows applications

that need certain functionality not already in memory to load the needed modules. This is

done through a dependency list where a module specifies all other modules on which it

depends. Modules in the dependency list that are not active in memory are simply loaded

before the application without any user interaction. A great advantage to this approach is

that functionality that is not needed to run the current application, is not loaded into

memory thereby saving valuable resources and enhancing system performance.

Specifying every possible module on which an application depends would be

complex and difficult, so Bamboo simplifies the process by requiring an application to

18

list only the immediate modules that it needs in memory. Bamboo then manages the

system of dependencies to ensure that all required modules are loaded into memory in the

correct order. Figure 3.2 depicts an example where module four (M4) is being loaded

into memory. For the example, assume that the numbered modules are the application

specific modules and that M3 has already been loaded into memory. As the system tries

to load M4, it must first verify that M2 is in memory. Since M2 is not already in

memory, the system must load M2. In the process of loading M2, the system must verify

that Ml is already in memory, which it is because it was loaded when M3 was loaded.

Having verified the required modules for M2, the system then loads M2, after which it

can finish loading M4 [14].

Figure 3.2: Module dependency view

2. Callbacks

The plug-in concept of Bamboo does help facilitate dynamic extensibility of a

simulation, but the ability to extend the executable actually comes from the callback and

callback handler. The callback is a very simple yet powerful component of Bamboo. It

provides the framework to which new code can attach itself and be brought into the same

address space as the executable. A callback enters the execution loop by attaching itself

to a callback handler. A callback handler is a thread in the Bamboo runtime environment

which shares execution time with the "main" routine and other callback handlers. A

callback handler is responsible for sequentially executing each of its attached callbacks

19

every time it itself is executed. Figure 3.3 illustrates how individual callbacks attach

themselves to a callback handler.

Figure 3.3: The Callback Handler

3. Event Handling

The event handler provides a useful abstraction for handling system and user

generated events. It does so by using the callback handler to notify registered parties of

an event via callbacks. Since Bamboo uses a callback handler for notification delivery,

multiple callbacks may be executed in response to a single event.

C. SUMMARY

Bamboo breaks the paradigm of statically defined virtual environments and

simulations by providing simple mechanisms to dynamically extend an executable. It

accomplishes this by specifying a convention for defining new program modules,

allowing those new modules to link into the executable through the use of callbacks and

callback handlers, and by loading required modules for any new application without user

interaction. As mentioned earlier, the ability to dynamically extend a simulation during

runtime could greatly increase the utility of traditional statically defined agent-based

simulations.

20

IV. ARCHITECTURE

A. INTRODUCTION

It is very challenging to describe the interactions among agents, especially when

the agents can modify their behaviors thereby changing their rules of interaction with

other agents. Developing an architecture that supports this methodology is also a

daunting task. Object-oriented programming (OOP) languages, such as C++, seem to

provide the best environment to program agent-based simulations. OOP provides many

mechanisms that greatly facilitate the construction of agent-based models; the most

significant of these include encapsulation, inheritance, and polymorphism. Agents and

the environment in which they exist can all be implemented as objects; structures that

hold data and procedures.[10] An agent's state is comprised of instance variables, while

its behaviors are defined through methods. Inheritance provides a mechanism for

defining a base class and letting modelers define agent specific routines, whereas

polymorphism allows the modeler to redefine or extend the functionality of the base class

if needed.

One of the drawbacks to this type of implementation is the requirement to have

everything set before run time. If a modeler wishes to add a new type of agent - one not

defined at run time - they must stop the simulation, update the code where appropriate,

and then recompile. Bamboo appears to offer an attractive alternative to this because it

affords the modeler the opportunity to define and add new agents "on the fly".

The goal of this thesis was to look at the issues associated with building

architectures for agent-based adaptive simulations. We first designed the architecture

using the Windows/C++ programming environment because of our familiarity with this

programmer interface. As we conducted research and the architecture began to develop,

we realized that the ability to add agents during a run could be very beneficial to the

modeler. Discussions with Mike Zyda [16], Rudy Darken [17], and Kent Watsen [18],

encouraged us to build an architecture using Bamboo, which provides the ability to

implement this new paradigm.

With this in mind, we decided to model a simple predator-prey relationship to see

how speed affects their interactions and the survivability of each species. This scenario

21

afforded us the opportunity to fully exercise and view the core fundamentals of agent-

based modeling, namely - agents, interactions, adaptability, and emergent behaviors. The

agents are Cheetah, Antelope, and grassy feeding areas. Interactions between agents

included: mating, killing, avoiding, herding, fleeing, chasing, and feeding. Through these

interactions, we were able to observe how both the Cheetah and the Antelope adapt their

behaviors to achieve their overall goal; which in this simulation was simply survival of

the species. These interactions also lead to some emergent behaviors that we will discuss

later.

The predator-prey model is called Savannah after the African Savannah where

these real-world interactions take place each day. Much like the real Savannah, the

simulated Antelope roam an open range in herds looking for food and potential mates,

while trying not to fall prey to any predators. They may also die from infant mortality or

age. The Cheetah, being solitary animals, typically avoid each other while hunting for

prey in their own territory. The only time Cheetah come together is during mating

season, when they will seek a mate and then return to their independent lifestyle. Like

the Antelope, they can die from age or infant mortality and also starvation. Both Cheetah

and Antelope have simple sets of rules to govern their behavior.

As is common with many other models, this simulation does not attempt to

intricately model every detail. To attempt to model the predator-prey relationship exactly

as it occurs in nature is unrealistic and is not the focus of this thesis. The normal practice,

when deciding how much detail to include in the model, is to determine what is needed in

the model and implement that to a sufficient level of detail. Since we were mainly

interested in looking at architectural issues of agent-based modeling, only a few aspects

of this relationship along with a few major components of each animal were modeled.

For instance, the interactions between the Cheetah and Antelope were modeled in terms

of the hunt-chase-kill cycle that exists for the Cheetah or the watch-fiee-escape cycle that

exists for the Antelope. As far as modeling the survivability of each species, other

relationships were modeled such as mating, infant mortality, and aging. To further

simplify the model, some capabilities or conditions were aggregated such as sensing

ability and infant mortality.

22

It is also important to note that other species, which could affect the output a great

deal, were not modeled in the main simulation. Again, this is because the main purpose

of this thesis was not to model a Cheetah-Antelope relationship in the wild, but to

discover architectural development issues of agent-based modeling.

B. WINDOWS/C++ IMPLEMENTATION

1. Introduction

The windows version of Savannah was developed on an Intergraph TDZ 2000,

400 MHz personal computer (PC) running the Microsoft Windows NT 4.0 Operating

System (OS) using Microsoft Visual C++ 5.0. Visual C++ and Microsoft Foundation

Class (MFC) libraries provided a straightforward programming environment to produce a

two-dimensional 640 x 480-dpi display of Savannah. Although the simulation was

developed on Windows NT, the precompiled version may be run on any Windows PC.

2. Interface

The user interface for Savannah was developed using Microsoft Developer Studio

97. The display provides the user with a simple, single-document window from which to

view simulation runs. Making changes to the simulation requires Visual C++ and the

MFC libraries. Figure 4.1 shows a typical screen shot of the interface during a simulation

run.

23

H TrwTTfirnriH.TOTwni »T""i

\Sr Savannah ^MH^H-l~|x|
vTte gait View EBBUHBBI Help lest

Q GS Hi ' fiun Ü f r s
Step

m

m

•

■

cm | SB Fast

«»■Medium -"'" v'-\ !?

/ '<: Slow
Cm' ■

m ™

» ■

... ■ " ..-■'' "N

■ ■ (\ ■

m
m

m
m

■

m
* m

m

m -■-_■•■■■'■

m "

■ V"-. .y

■ / \
". «

■
■ , ,_

■, *

* ' ([) ■

'""•••_ —•'"'
■

'"'-•_ „^

Cm '
s

■
/ \ ■

■ ^B ■
■

■
■

■

/ ■
■

*
a «= ■

a ■

Artete -M: 44 F: 56 G:1 Cheetah - M: 2 F: 3 G: 1 Simulation Time : 1 C 1 i
Figure 4.1: Savannah Windows/C++ Interface

The environment is initially populated with 100 randomly located Antelope and 5

randomly located Cheetah. The Antelope are color-coded in five increments, based on

speed, using the Red-Green-Blue (RGB) spectrum. Red are the slowest Antelope, and

blue are the fastest. The Cheetah are colored according to gender; male being black, and

female being gray. For ease of identification, Figure 4.1 also identifies Cheetah with a

"C".

The simulation can be started by either using the simulation pull-down menu or

clicking on the "T" toggle button. The toggle button allows the user to start and stop the

simulation. The simulation pull-down menu not only provides start and stop options, but

also allows the manipulation of the simulation speed from slow to medium to fast, and

the ability to step through the simulation run. The "S" step button, on the toolbar, also

24

provides this step-through capability. Once the simulation has been started, the agents

interact according to the architecture that is described in the following sections.

3. Architecture

a. Overall Design

When designing any model, the first thing to accomplish is to decide what

is to be studied and to what detail. Answering questions such as "What will the

simulation be used for?", "How much detail is needed?", "What issues may need to be

studied in the future?", and "Who will use this simulation?" are often very helpful in

determining an implementation structure.

In the case of Savannah, we wanted to see how speed affects the Antelope-

Cheetah relationship and overall survivability of each species. To develop the

architecture to support this, we initially designed the simulation using four linked lists;

one list each for the male and female Antelope and Cheetah. Because most of the

interactions in the simulation are based on location and distance between agents, we

quickly found the linked-list implementation to be computationally prohibitive. After

some experimentation, we settled on a hash table implementation using the Map class

from the Standard Template Library (STL). The Map class is one of the collection

classes from the STL and provides a one-to-one mapping of a unique key value and some

associated data. The key can be of any valid type and the data can be a simple element or

a complex data structure. For this simulation, the agents were placed into the Map based

on their unique xy location in the virtual world. This allowed us to easily pare the agents

that were not within sensing range when animals executed their sensing loop.

With the linked list implementation, the sensing loop required 0(n)

computations because each agent had to traverse the entire list to sense those other agents

within range. The Map implementation required 1/x 0(n2) where the scalar 1/x was

inversely proportional to the number of local groups in the simulation. Since the agents

were able to calculate the xy boundaries of their sensing range, they could then hash into

the Map and only view those records of agents within range. As an example, if the

simulation had 300 agents active, the linked list implementation required each agent to

25

loop through all 300 records in the list so the sensing loop required 300 x 300, or 90000

steps. In the map implementation, each agent only looped through the agents within its

sensing range so if the 300 agents were divided into 10 Antelope herds and 10 Cheetah,

then each agent would loop through an average of 30-40 agents. This would require only

300 x 40, or 12000 steps to complete the sensing loop. So even though the final cost may

appear to be 0(n), the hash table implementation did drastically reduce computational

costs.

The next thing we considered was how to sequence the agent behaviors

and interactions. In initial versions of the simulation the Antelope would sense their

environment in a sensing loop and decide on what action to take. They would then take

this action in a move loop. After the Antelope finished both loops, the Cheetah would

then sense and take actions in the same manner. This gave the Antelope a one-step

advantage, which would have been unrealistic and produced improper results. Therefore,

in later versions we implemented concurrent sensing and action loops for each species.

This meant that all Cheetah and Antelope would sense their environment and decide on

their next action before any agent was allowed to move. This resulted in interactions that

were more realistic and better matched what we would expect to occur in the real world.

b. Agents

When developing the architecture for an agent-based simulation, it is

important to keep it as simple and generic as possible. It must be simple so that people

can understand the underlying structure. If they do not understand this, then it will be

very difficult to explain or make believable the complex emergent behaviors that result

from the simulation. Making the architecture generic leads to reusability and aids

extensibility. A generic architecture allows modelers to easily develop other agents for

smooth integration into the simulation. Once the basic architecture is understood, adding

a new agent only requires the need to know what basic functionality must be included in

an agent. Also, implementing a different scenario would only require subtle changes to

or extensions of existing code. The easiest way to implement generic reusability appears

to be through OOP techniques. Figure 4.2 shows the basic class structure that was used

in Savannah and will be discussed in detail in the following section.

26

Animal
(super class)

[gender, speed, age, energy level,
location, pregnant, movement,

death indicator, generation]

Antelope
(sub class)

Antelope
(sub class)

[id number, goal for next action] [id number, goal for next action]

Figure 4.2: Savannah Class Structure

C. Base Class

The agents in Savannah are designed using an abstract base class with

subclasses for each agent type. The use of a base class allows the identification of

common characteristics and methods for all agents. We identified appropriate common

attributes for animals and put them into the Animal base class. The Animal class state

variables include: speed, age, generation, pregnancy state information, a mating season

flag, location, a death indicator, and energy level. The Animal class includes methods

that allow agents to move around their environment, avoid collisions with other agents,

and virtual functions for mating and killing. The use of virtual functions ensures that

modelers extending the base class include these functions in their specific subclass.

Speed is a statically implemented integer. Initially, each animal is

assigned a random speed based on the minimum and maximum speed variables

determined by the modeler. Cheetah are assigned an additional speed advantage to

account for their sprinting ability when hunting. When a new animal agent is born, it is

assigned the speed of either the mother or the father based on a random distribution.

27

The age and generation integer variables are used to track how old an

animal is, and what generation it belongs to. Age is used to determine that an animal is

old enough to mate, and at some point can cause it to die of old age. Initially, each

animal is assigned a random age between a minimum and maximum age variable set by

the modeler. When a new animal agent is born, it is assigned an age of zero. An

animal's age increases by one unit during each simulation time step. The generation

variable is simply a counter used to show how successful each species has been at

reproduction. When an animal agent is born, it receives the generation value of its

mother plus one.

The pregnancy state structure, pregPtr, which is included with every

female agent, is used as a way to carry genetic information about the father. When a new

animal is born, there is the ability to numerically identify both parents, assign it the speed

of either parent, tag a generation identifier to it, and assign it a sequential species

identification number.

The mating season flag, inSeason, simply notifies other agents that the

agent is mate eligible. The modeler can control when a species is in mating season by

setting the appropriate integer ranges before run time. The flag allows agents to

determine if they should attempt to mate with other agents sensed during their sensing

loop. The ability to manipulate the length of the mating season allows the modeler to see

how shorter or longer seasons might affect the population sustainability of each species.

Location is an integer number that represents the current location of an

agent in the environment. The use of a single integer number resulted in quicker position

conflict detection and resolution than using an xy array. The number either conflicts or it

does not, while in an array the agent would have to look at both elements of an array for

all agents within its sensing range to determine if there is a location conflict. While

location is a single integer, it does represent an x and y coordinate location. These

coordinates can be returned through the getX and getY functions.

Figure 4.3 shows how a two dimensional xy location is converted and

displayed as a single integer. The x position is the product of the maximum x value

multiplied by the y offset plus the x offset for that row as annotated by the equation:

28

max(jc)*offset(y)+offset(x). In this example max x = 640, offset(y) = 206, and offset(x):

255. This results in an xy integer value of 16895.

B ■ 1 III 11 11 ■^^^^^^^^^■■■■■^^■■^^^^^^■-Iclxl
Ffe Edi» View Simulation Help Jest

D|c*y| X mm air's
max(x) = 640

■

offset(x) = 255

■
offset(y) = 206 ",int(xy) = 16895

max(x) * offset(y) + offset(x) = int(xy)

640*206 + 255 = 16895

max(y) = 480

i '"I I'
Figure 4.3: Computation of Integer xy Position

The death indicator value is a way to update an animals state indicating

how it died. There are five legal entries to the deathlndicator field: age, mortality,

starvation, predator, and the default value of not-dead. When an agent dies its death

indicator is set to the appropriate and the agent remains in the simulation for two time

steps so other agents can sense it to determine how it died. When an agent reaches the

maximum age it sets its death indicator to age. Every agent created has the probability of

dying from infant mortality. When this occurs, that agent's death indicator is set to

mortality. When an agent starves to death it sets its death indicator to starvation and

29

when it is killed by a predator, the predator sets the agent's death indicator to predator.

After two simulation time steps the agent is removed from the simulation with the

destructor method.

The energy level provides a way to put boundaries on agents actions. It

can be used to trigger short-term goals in an agent, thereby dictating a sequence of

possible actions. If the energy level is high enough, then the agent may not have to feed

right away, but if it drops too low, the agent may have to hunt for food. Energy can also

be used to force an agent to abandon a chase, if it expends too much energy, and rest.

Another common use for energy is to determine if an animal has starved to death.

In Savannah, only the Cheetahs are modeled with an energy level. The

integer-based energy level is used to control their hunting desires. In earlier versions,

before the energy level was implemented, Cheetahs could eat a large population of

Antelope in a short time; there was often no population balance. With energy

implemented, every time a Cheetah kills an Antelope its energy level is boosted by a

predetermined amount. The low energy level dictates the level at which the Cheetah

must rest to regain strength. An intermediate level is set high enough so the Cheetah can

start hunting again without immediately going below their low energy level. The high

energy level acts as a hunting cut off, where once above this level, the Cheetah does not

hunt, keeping it from decimating an entire Antelope population.

The animal base class also contains the methods needed to move agents

around the environment. There are three move functions: move, moveTo, and

moveFrom. If an agent is not trying to move away from or towards another agent, the

move function updates the agent's position based on the speed of its move: either rest or

regular. If the agent is moving away from another agent, such as when an Antelope is

being chased, the moveFrom function is used to update its position. In this chase

example, moveFrom uses the location of the Cheetah to move the Antelope in the

opposite direction based on the Antelope's maximum speed. Similarly, the moveTo

function is used to update an agent's position if it is moving toward a specific agent, i.e.,

when animals are attempting to mate.

30

While the agents are free to roam around the environment, the map

implementation does not allow two agents to occupy the same location. Therefore, the

base class also has a method to avoid collisions. This function simply checks to see if the

agent is trying to move to an occupied position, and if so calls the appropriate move

function until the agent has identified a position that is not currently occupied. This is

also realistic in that most simulations need some kind of collision avoidance to maintain

believability of interaction between agents.

As mentioned earlier, the use of virtual functions ensures that every

developer of a subclass will define methods to describe actions needed to complete the

model. In our implementation, we decided that determining if agents could kill or mate

were not actions that should be generalized in the base class since they tend to require

species specific attention. The killing tradeoff between every agent pair is different and

should be decided by the developer of a specific agent.

While it may be considered an over simplification, we modeled the

Cheetah's ability to kill Antelope based solely on proximity. The virtual function canKill

provides the modeler with the ability to describe the agent-to-agent kill relationship in

any way they would like. Mating was made a virtual function for the same reason.

While cross species mating was not the main concern, we felt it was important to define

the mating relationships within a specific species. This results in finer granularity than

what could be provided in the base class.

d. Subclasses

The use of OOP in our simulation allowed us to develop a base class that

implements attributes and behaviors common to all of the agents. In addition, the use of

the class structure provided a way to implement species specific attributes. In Savannah,

the Antelope subclass includes information on identification, mating, creation of new

Antelope agents, and predator knowledge. The Cheetah subclass includes information on

identification, mating, creation of new Cheetah agents, and killing.

Every agent in a simulation should have a unique identification number.

There are many reasons why the modeler would want to know information about a

specific agent. In a map or list implementation, agents must be able to identify

themselves when iterating through loops. This prevents them from taking illegal actions

31

on themselves. Additionally, specific identification numbers make it easy to track

information such as; movement, mating, killing, herding, and offspring creation. In

Savannah an integer identification number, idNum, starting with one, is assigned to each

agent based on species.

Mating is also handled in each subclass because even though mating could

be described generically as either yes - they do, or no - they do not, it is more appropriate

to have the flexibility to model species specific mating attributes. Defining mating as a

virtual function in the base class, forces the modeler to determine if a yes or no style

mating function is appropriate or if a more robust function is needed for their simulation.

This provides greater flexibility and allows for agents that are more customizable. For

example, while some species, such as Canadian Geese, pick one mate for life, others such

as Elephant Seals mate in herds with a dominate alpha male spawning most of the

offspring. A generic mating function could not account for the differences between both

of these examples.

In Savannah, the mating routines are very similar in the Antelope and

Cheetah subclasses. In both, the canMate function returns a Boolean expression on the

ability of two agents to mate. Several things factor into determining the outcome of this

Boolean logic to include: distance, age, season, species, sex, and whether or not the

female is pregnant. If the function returns true, the agents then mate and the female agent

begins her gestation period. Figure 4.4 shows the implementation of this logic.

bool Animal::canMate(Animal spotentialMate)
{

bool mateFlag = false;
if(this->getGender() == MALE)
{

mateFlag = ((!(potentialMate.isPregnant())) &&
(potentialMate.getAgeO >= MATE_AGE) ss
(this->getAge() >= MATE_AGE) SS
(abs (this->getX() - potentialMate.getXO) <= MATE_DISTANCE) ss
Cabs(this->getY() - potentialMate.getY()) <= MATE_DISTANCE));

}
else
{

mateFlag = ((!(this->isPregnant())) ss
(potentialMate.getAgeO >= MATE_AGE) ss
(this->getAge() >= MATE_AGE) SS
(abs(this->getX() -potentialMate.getXO) <= MATE_DISTANCE) ss
(abs(this->getY() - potentialMate.getYO) <= MATEJDISTANCE));

}
return mateFlag;

Figure 4.4: Method to Determine if Two Animals Can Mate

32

Ifagents choose to mate, they will execute the mate function. The mate

function is used to initialize the pregnancy information to include setting the females

state to pregnant, recording the male id and speed for genetic information, and starting

the gestation time counter. The gestation counter is simply an integer counter that

increments each time step and can be set to account for species-specific gestation periods.

When the gestation period ends, a series of functions determine how many agents will be

born, and what attributes they will have.

The litter size is determined using a Normal distribution function. Species

specific, minimum and maximum number born are entered and the conditional probably

distribution function returns an integer for the number of agents created. To account for

infant mortality, each potential agent is then tested to see if it dies as an infant in the

diesAsInfant function. In Savannah, infant mortality includes any agent that would die

within the first two years its life. Since infant mortality rates are also species specific, a

floating point number from 0 to 1, representing the probability of infant mortality, must

be entered for each subclass.

To streamline the simulation, only those agents that do not die of infant .

mortality are created. However, there are still methods to track the initial litter size and

number of these that die as infants. New agents are created in the giveBirth function.

This function assigns each new agent a species-specific integer identification number, an

integer speed from either the mother or father, and an initial xy location near the mother.

The Cheetah subclass contains an additional method for killing, canKill.

This method simply tests if the Cheetah is close enough, and has the energy, to kill the

Antelope. Figure 4.5 shows the implementation of canKill. This results in the slower

Antelope typically being killed off first, but also causes the slower Cheetah to eventually

die of starvation. Successful kills result in the Cheetah manipulating the Antelope's state;

setting its death indicator to Predator.

33

bool Cheetah::canKill(Animal sprey)

{
bool killFlag = false;

if ((abs(this->getX() - prey.getXO) <= KILL_RADIUS) ss
(abs(this->getY() - prey.getYO) <= KILL_RADIUS))
if(Animal::myRand() > .5)

killFlag = true;
else

killFlag = false;

return killFlag;
}

Figure 4.5: Method to Determine if Cheetah Kills Prey

While the Antelope does not require a method for killing, the subclass

does contain an additional method for acquiring predator knowledge. This is an attempt

provide actual learning to the agent, thereby facilitating adaptation. It is a Boolean

function that will be described in greater detail in the learning and adaptation subsection

below.

e. Agents Summary

Taking advantage of the functionality offered by the C++ class structure

appears to be an efficient methodology for representing agents. A generic base class

offers the flexibility to extend it in order to meet almost any need. Once the agents have

been correctly represented, their interactions need to be implemented in such a way as to

produce believable, understandable results.

4. Interactions

Agent interactions are one of the essential characteristics of agent-based models.

While the base architecture describes the state variables and methods of the agents, the

methodology used to sequence interactions is also very important to the underlying

implementation of these simulations. If events are not properly ordered, possible

outcomes can be unrealistic, unbelievable, and very difficult to explain.

As stated above, Savannah is executed in two loops; a sensing loop and a

movement loop. The underlying architecture to include the methods executed during

these loops has already been described. The purpose of this section is to take a high-level

look at how and why agent interactions were prioritized.

34

In the sensing loop, Antelope have five possible actions. They can flee, mate,

move toward potential mates, herd, or feed. The priority of these events is very important

to the outcome of the simulation. If the Antelope's first priority were always to mate,

they would typically not be looking out for predators and could easily fall prey to the

Cheetah. We chose to prioritize the Antelope's actions based on its current state, and

what it sensed in its environment. The movement loop simply ensures that all agents

simultaneously executed the proper move to achieve their current goal.

If an Antelope has predator knowledge and there is a Cheetah within its sensing

range, it will always flee, no matter what the Cheetah is doing. If an Antelope is not

fleeing and is in mating season, its next priority is to mate if it can. If there is not a mate

in proximity and it is mating season, it will move toward the nearest mate eligible

Antelope. If none of the above conditions exist, the Antelope will either try to move

towards other Antelope or feed. The effect is the appearance of herding and searching for

food simultaneously. This priority of actions seemed to result in the most realistic

behaviors and outcomes.

Once the Antelope's desired actions are set, the Cheetah iterate through their

sensing loop. This ensures that Cheetah are determining what action to take based on the

current state of the environment. Cheetah have four possible actions to take including

mating, moving towards a mate, avoiding other Cheetah and hunting. Since they have no

predators in Savannah, Cheetah will always mate if in mating season and they are close

enough to a potential mate. Otherwise, if it is mating season they will move toward the

closest potential mate. When not in mating season, Cheetah try to avoid each other, and

when their energy level becomes low enough, they are driven to hunt Antelope. Again,

the Cheetah's actions are always constrained by their energy level.

Although we set the priorities of the agents, we believe it would be more

appropriate for them to have the ability to set and adjust their own priorities. To do this,

they must have the ability to interrogate other agents to determine other agents' states.

For example, if an Antelope can sense a Cheetah, it should be able to tell if that Cheetah

is hunting, mating, or taking some other action. Then the Antelope can make a more

intelligent decision on what action to take in the presence of a Cheetah, rather than

35

always fleeing when it senses one. Fleeing may cause it to be sensed when it may have

remained undetected if it had rested.

The interactions also play a major role in determining what learning and

adaptation the agents can accomplish. By setting the priorities for the agents, it appears

we have constricted their ability to learn and therefore adapt. The learning and

adaptation we see is Savannah is very basic. There appears to be a fine line as to how

much guidance we should provide the agents. It is not only very difficult to hard code all

interactions, but also limits the emergence of new behaviors. On the other hand, if they

are just thrown in an environment with no guidance, they do nothing. A few basic rules

to get and keep agents interacting seems to be the key to achieving true learning and

adaptive behaviors.

5. Learning and Adaptation

Providing the agents with the ability to learn and adapt their behaviors is the most

challenging component of agent-based modeling. Once they have been given a set of

simple basic behaviors and interactions, how does one provide the agent with the ability

to learn things that can not be anticipated? Then how can one tell if an agent is actually

learning and adapting its behaviors? To look at these questions Savannah implements a

simple learning routine that allows the adaptive behavior to be easily recognized. A more

robust learning implementation methodology, developed for the Bamboo implementation,

will be discussed in that section.

Savannah implements one learning routine based on a Boolean value. This

method results in constrictive learning, because the agents appear to only have the ability

to learn things that are determined by the modeler. However, some of the emergent

behaviors discussed in the next section indicate learning and adaptations are occurring on

levels that can not be directly traced. To test the Boolean flag method of learning,

Antelope were provided with a "memory" field, called predatorKnowledge, to learn and

store knowledge about predators.

Predator knowledge is a Boolean that indicates the agent either does or does not

have knowledge of predators. To test this method of learning, when Antelope agents are

created their predatorKnowlege flag is either set to true, indicating they have the

36

knowledge that Cheetah are predators, or false, indicating they do not have this

knowledge. In the simulation loop, the predator knowledge field triggers the Antelope to

flee if a Cheetah is within their sensing range.

Antelope who do not have predator knowledge are able to learn it during the

sensing loop. During each loop an Antelope will sense all other Antelope within a

specified range and if it senses a dead Antelope, it will look at the Antelope's state values

to see how it died. If it died from a predator, the sensing Antelope's predatorKnowledge

flag is set to true. The Antelope has learned that Cheetah are bad and from then on will

adapt its behavior to flee from them if they are within its sensing range. This learning

and adaptation cycle can be seen in figures 4.6,4.7,4.8, and 4.9. Figure 4.6 shows the

entire Savannah environment.

37

A«- Savannah

Fie Eeft View Smiiation Help -J£a

iES

D G? Q .*' ft* II 3! T S

< t>

C*

*y'

I Antelope -M: 75 F: 69 6i 2 ^ Cheelafi - M: 4 F:^l G: 1 SändaforiTime: ^4

Figure 4.6. Learning and Adaptation in Savannah

Figure 4.7 through 4.9 are magnified views of where an interaction results in

learning and behavior adaptation. Figure 4.7 shows a Cheetah that is able to intermingle

with Antelope. Antelope this close to a Cheetah do not have predator knowledge and

therefore do not flee. Figure 4.8 shows the same Cheetah just after it has killed an

Antelope. The nearby Antelope will now observe this interaction the next time they

sense. Figure 4.9 shows that the Antelope within sensing range of the kill are now

attempting to move out of the area. They have learned that Cheetah are predators and

have adapted their behaviors to flee from them.

38

Sim Time: 855 Sim Time: 858 Sim Time: 862

CTfr \ (r^ • m
r

Figure 4.7: No Figure 4.8: Cheetah Figure 4.9: Antelope
Predator Knowledge Kills Antelope Learn and Flee

Both Antelope and Cheetah agents appear to learn and adapt their

behaviors based on the emergent behaviors that are displayed in Savannah. These

behaviors and what they might indicate are discussed in the following section.

6. Emergent Behaviors

Emergent behaviors are the result of the agent behaviors, interactions, learning

and adaptation as described above. They are identifiable, believable occurrences of

events that emerge from complex adaptive agents interacting in a given environment. The

behaviors are present in virtually every run of the simulation, but when they appear they

may vary drastically based on when the underlying events that cause them occur.

In Savannah, we identified several possible emergent behaviors. All of them

make sense when compared to what is expected in the real world. Some emergent

behaviors are obvious, while others are so subtle they are difficult to differentiate from

behaviors that are programmed to occur. Emergent behaviors noticed in multiple runs of

Savannah include: Antelope herd sizes, Antelope become faster as the species evolves

over time, Cheetah appear to loiter around Antelope feeding sites, and Cheetah eventually

resort to group tactics for hunting faster Antelope.

One of the actions Antelope in Savannah are programmed to do is to find other

Antelope. This results in them eventually forming into herds. While this in itself is not

an emergent behavior, the disposition of the herds appears to be. There is no algorithm to

track or pare the herd size, yet the Antelope typically form into several herds of eight to

twenty members. It is conceivable that all Antelope in Savannah could form one big

herd, but the simple routines that require an Antelope to eat, mate, and flee from Cheetah

all result in a moderation of herd sizes. Within these herds the Antelope populations

typically get faster over time.

39

As seen in the real world, the slower Antelope in Savannah tend to be killed at a

higher rate than the faster Antelope, although Antelope with no predator knowledge have

the same chance of being killed regardless of their speed. The Cheetah does not have the

ability to look at an Antelope's speed to determine which one to chase. They simply take

up the case if they have the energy and can sense an Antelope. As the Antelope flee, the

slower ones typically fall behind and are eaten by the Cheetah. As one might expect to

see in the real world, it becomes more difficult for the Cheetah to successfully hunt as the

Antelope population gets faster. Two behaviors appear to emerge to offset this

phenomenon. First, Cheetah begin to remain closer to the Antelope feeding sites and

secondly, they begin attacking in groups as they compete for food.

In Savannah, the Cheetah appear to quickly stake out their territory and typically

remain within it as long as there are Antelope present. As the simulation progresses and

the Antelope get faster, it takes more energy for the Cheetah to hunt. Patterns of loitering

near Antelope feeding sites seem to develop. This is probably explained by the fact that

the Cheetah need to conserve energy so they can continue to hunt and mate. Once they

have identified a source of food, they do not need to roam as much to eat. If the Antelope

population becomes fast enough or sparse enough, the Cheetah start to increase their

roaming distance.

As the Cheetah begin to roam bigger areas, they tend to encounter more Cheetah.

If the simulation progresses so that there becomes a competition for food, it appears as if

the Cheetah begin to hunt in groups to corner the faster Antelope. This emergent

behavior is in no way programmed or expected, but does make sense. The need for

energy appears to cause them to modify their behavior in an attempt to corner Antelope,

ensuring at least one of the Cheetah will receive an energy boost. If they were to remain

apart, they would likely all die of starvation although there may be plenty of Antelope

remaining.

Emergent behaviors also often seem to be in the eye of the beholder. What may

appear as emergent to one may not even be recognized by someone else. What is

consistent is that they are non-programmed phenomena that are explainable and

identifiable when one considers all the low-level interactions that occur to make them

emerge.

40

7. Windows/C-H- Implementation Summary

An object-oriented architecture appears to be a very good way to implement

agent-based simulations. It offers a structure that allows for easy, straightforward

declaration and extension. Once the base class or classes have been identified, it

becomes very simple for other users to modify the simulation. The Savannah

implementation showed that with a simple, well-defined architecture, the basic elements

of agent-based simulations can be achieved. While there are perhaps many ways the

implement these simulations, it is important to note that believable outcomes will show

whether or not the architecture has truly hit the mark.

Perhaps one weakness in this implementation is the requirement to have all agents

defined at run time. The ability to dynamically extend a running simulation is very

attractive for all the reasons discussed in previous chapters. To take a look at how such

an architecture might be implemented, we next modeled Savannah using Bamboo. We

named this implementation Savannah 3D.

C. BAMBOO IMPLEMENTATION

1. Introduction

The methodology behind the Bamboo architecture implementation is considerably

different from the Windows/C++ implementation, although Bamboo still uses Microsoft

Visual C++ to compile the code. The main difference stems from Bamboo itself, which

is a toolkit that extends the functionality of the preexisting C++ libraries and then

provides an execution layer above the Windows NT kernel. The code executed in

Bamboo runs inside this layer. As a proof of concept for the Bamboo version, we built a

predator-prey relationship very similar to our Savannah simulation and called it Savannah

3D, since its display window provides a three-dimensional (3D) representation of the

simulation.

The following sections describe the Bamboo architecture implementation, but due

to its similarity with the Windows version, we will only highlight the areas where

Savannah 3D is different. For that reason, the emergent behaviors subsection seen in the

Windows version will not be covered since this area did not change.

41

2. Interface

Running on Windows NT 4.0, Bamboo provides the user with a command-line

interface through a DOS shell. Modules can be loaded into or removed from the

execution core during run time with the dynamicPageModule. This is significant in three

ways. First, it allows the modeler to create and load new agents. Second, modelers have

the ability to remove an agent from the world. Third, which combines the first two, a

modeler can remove an agent, redefine and reload it. What differentiates this from the

traditional simulation methodology is that this can all be done without halting the

simulation, providing greater flexibility. Using the dynamicPageModule also results in a

smaller executable because users only load those modules necessary for a given

simulation run.

To convert our Windows/C++ version over to Bamboo, we created five separate

modules. The first module, agentDisplayModule, which simply creates a single-

document, OpenGL window that represents an empty 3D world. Unlike the Windows

version, the OpenGL window used to display the simulation is fully sizeable. The other

four modules - npsAgentModule, antelopeModule, cheetahModule, and grassModule will

be discussed in the following subsections. Figure 4.10 shows the agentDisplayModule

with numerous instances of the Antelope, Cheetah, and Grass modules.

42

Savannah 30

I.** f

?f -f
f *r

Figure 4.10: Savannah 3D with Loaded Modules

Users navigate through the world using the mouse to control 3D flight. The left

mouse button controls forward flight, while the right mouse button controls backward

flight. The world also has three predefined views that can be invoked using the

keyboard. The first, invoked by the spacebar, is on ground level at the origin looking in

the direction of the negative z-axis. The second, invoked by the "/" key, is 200 units

above the origin looking straight down, and the last, "ctrl-t" is located at x=50, y=100,

and is looking back to the origin. As users develop modules for the simulation, they can

define other keystrokes to invoke new camera viewpoints. If a user desires any type of

output from the simulation, text can be written to the DOS shell. Functionality that will

soon be implemented in Bamboo will provide a Graphical User Interface (GUI) where

the user will be able to change agent attributes and view output from the simulation in a

separate GUI window.

43

3. Architecture

a. Overall Design

Many of the issues we encountered implementing the Windows version

regarding which data structure to use for object control and manipulation were eliminated

by using Bamboo because it has this functionality built in. Every agent created in the

simulation is based on an underlying object class in Bamboo called bbListedClass, and

has an associated geometry, npsGeometry, that represents the agent in the virtual world.

The bbListedClass automatically places the agent objects on a control list that can be

traversed at any time by obtaining a handle to the list. Although this is a linked-list

implementation, Bamboo is multi-threaded so we were able to fork a new thread to

control the agents' move and sense loops. Separating computational requirements

through the use of threads increased performance over our previous version by ensuring

the graphics engine was given access to the processor in regular intervals and allowed to

refresh the world at a decent rate. In Savannah, the graphics draw functions were

executed sequentially in turn with the move and sense loops. This meant that it could

only refresh the display window after all agents had completed one pass through their

move and sense loops, which caused a noticeable screen flicker as more agents populated

the world.

b. Agents

When developing Savannah 3D, most of the agent architecture was similar

to our Savannah version although we did try to further develop the class structure. In the

Bamboo version, the focus was to design a more generic agent-based simulation that

would provide modelers greater flexibility in creating new agents that could seamlessly

plug into a running simulation. To that end, we created a generic npsAgent class as the

base class and then extended it to create our Animal, Plant, Antelope, Cheetah, and Grass

classes. Figure 4.11 shows the class structure as it was implemented.

44

NPS Agent
(super class)

[speed, age, energy level,
sensing range, remove,

agent type]

Animal
(sub class)

[gender, pregnant, movement,
generation, death indicator,

goal for next action]

Plant
(sub class)

[]

Antelope
(leaf class)

[id number]

Cheetah
(leaf class)

[id number]

Grass
(leaf class)

[id number]

Figure 4.11: Savannah 3D Class Structure

As a rule, every agent class that would eventually be instantiated in the

simulation had a module of its own, and resided as a leaf of that tree, so our simulation

had AntelopeModule, CheetahModule, and GrassModule. Each of these modules

contains the specific class and all application functionality needed to create the agent in

Savannah 3D. All other abstract classes to include npsAgent, Animal, and Plant were

included in the npsAgentModule.

c. Base Class

The npsAgent class was designed to implement only the basic state

variables and functionality that might be needed by all future agents. To facilitate the

addition of many different types of agents, we created a generic agent that implemented a

base class with the following state variables - speed, age, sensing range, and energy

level. We also included an agent-type attribute and a Boolean flag that can tell Bamboo

to remove the agent once it is no longer needed in the simulation. To further develop the

learning capabilities of the agents in Savannah 3D, npsAgent contains a set of vectors that

allow an agent to store and remember class names of other agents it has discovered in the

environment. The vectors include knownPredators, knownFriends, knownEnemies,

45

knownEnergySources, and unknownAgents. If an agent discovers a new agent and

establishes a relationship with that agent, it can add the new one to the appropriate vector

and use that information to guide how it interacts with the agent in the future. If it can

not determine the relationship, then it must add the agent to its unknown vector. This

implementation is a slightly more robust form of memory than the simple Boolean-flag

mechanism used in Savannah. The extra memory allows an agent to develop a better

database of information about its world and allows it to interact with the environment at

more sophisticated level. The various benefits of this approach will be discussed later.

A location field was not required in the base class with this version

because the Bamboo npsGeometry class included with each agent object contains a 3D-

position field. Bamboo also provides a three-element vector class that can be used to

pass or update the x, y, z coordinates of the geometry's position field.

Since we did not want the npsAgent to define the sensing and moving

functions for all its subclasses, we included virtual functions for each to ensure that the

modeler would implement these for every agent developed for a simulation. When a

simulation runs in Bamboo, the only way it can track the agents and allow them to update

their positions is by handling them all as npsAgent class objects. By including the sense

and updatePosition virtual functions, Bamboo can loop through the list of active objects

(which it recognizes as npsAgents) and call the two functions. Polymorphism allows the

simulation to dynamically link to the correct definition of the sense and move methods by

checking the derived class hierarchy until it finds where the methods are defined.

d. Subclasses

Savannah has five subclasses. The Animal and Plant are abstract classes

that implement functionality common to all animals and plants respectively. The next

two, Antelope and Cheetah, are subclasses of Animal, and the last, Grass is a subclass of

Plant. Figure 4.8 shows how each of these classes contributed to our architecture.

Animal, Antelope, and Cheetah remain virtually the same as they were in Savannah. The

new subclasses included in Savannah 3D are the Plant and Grass classes. Plant is an

abstract class that defined attributes and methods needed by all derived plant agents.

Grass is a very simple class that extends Plant and implements a grass agent with no

46

interaction or functionality. It was created only to add grass to the simulation to provide

the Antelope with feeding areas.

4. Interactions

The interactions defined and witnessed in Savannah 3D did not differ

significantly from those in Savannah. The one change was the elimination of the referee

that was used in our Windows implementation. As mentioned in chapter II, the outcomes

to interactions between agents is normally decided by a referee that has knowledge of the

whole system including all agents. The referee must decide a fair outcome and indicate

that to the agents. This is easy to accomplish in a statically developed simulation where

all agents that will ever enter the world are known ahead of time.

In Savannah 3D, all agents are derived from the same base class which requires

them to contain enough built-in logic to learn about other agents and determine the

outcomes of interactions on their own. It would be impossible to program a referee that

had knowledge of all potential agents that might enter the world, because Bamboo allows

new agents to be implemented after the simulation has been created and compiled. The

overhead associated with having a referee who could dynamically learn about every agent

to ever enter the simulation would be too costly. Also, the referee would in fact be

performing the interrogate-learn functions that all other agents would be doing, making

the referee no better than any single agent. For these reasons, a referee in a Bamboo

implementation is neither practical nor needed.

5. Learning and Adaptation

This is probably the most important, and, as we mentioned in the Windows

architecture section, the most challenging part of creating an agent-based simulation.

From Savannah, we determined that agents should have memory and corresponding logic

that allowed them to make smarter decisions while navigating through the simulation. A

desire to provide this prompted the creation of the dynamic vectors mentioned in

subsection c above. Each vector allows the agent to store class-names of any agents it

encounters, into groups based on its relationship with each agent. As the relationship

47

develops or possibly changes over time, the agent can move or delete the reference to that

agent to keep track of the appropriate relationship.

In order for the memory mechanisms to benefit the agent, each agent must have

logic that takes advantage of them. While the functionality was included with npsAgent

to manipulate the contents of each memory vector, no logic was provided to tell the agent

what to do with the information. Since every agent pair will establish specific

relationships with each other in ways that minimize cost and maximize payoff, it would

not be possible for the base class to try to provide that logic.

To demonstrate how to implement logic that might complement the memory

provided in Savannah 3D, we implemented the same learning for Antelope that we had

done in the Windows version. In order to facilitate an Animal agent in learning about

any predators or enemies it might have, we included a killer field in the Animal class.

Now, if an Antelope agent is killed by a Cheetah, it will set the killer value to "Cheetah".

Any other Antelope within sensing range will see the dead Antelope and be able to

determine that the Cheetah agent was the killer. With this knowledge, the Antelope

agents can then add "Cheetah" to their knownPredator list and act accordingly the next

time they sense a Cheetah. Again this is a very simple example, but the goal was only to

explore the possibility of a more robust learning and adaptation method.

6. Bamboo Implementation Summary

The Bamboo toolkit provides the basis for a very dynamic implementation of

agent-based simulations. The predefined functionality hides many of the implementation

details, so the modeler can concentrate on properly extending existing modules with well-

defined agent models.

The real attractiveness of Bamboo though, is dynamic extensibility. The

architecture implementation of Savannah 3D displayed a rudimentary version of this

capability. As mentioned earlier, this greatly increases the flexibility of a simulation.

For example, modelers often define entities to represent specific interactions or

relationships in the real world. After observing simulation runs for a period of time, they

begin to identify new aspects of the entities that should be studied. As they identify

specific attributes of the agents that should have been included in the initial

48

implementation, they can use Bamboo to unplug and redefine the agent to explore new

relationships or interactions. Conversely, the Windows/C++ implementation would

require modelers to stop simulation, redefine the agents, recompile the simulation, and

then start the simulation again. Dynamic extensibility is a robust feature of Bamboo that

provides modelers with unlimited options when deciding on how best to model a

particular agent.

Another very nice feature of Bamboo is the ease with which simulations written

in C++ for other applications can be ported over. Very little of the actual methodology

behind Savannah had to be changed to build Savannah 3D. In fact, since Bamboo

provides functionality not available with other programming libraries, some of the

implementation can actually be streamlined during the conversion process. Again, we

saw this when all of the location functionality of Savannah was removed on the

conversion to Savannah.

Perhaps the biggest benefit to this type of implementation is the fact that modelers

can create and execute simulations on multiple platforms, while the Windows/C++

implementation is constrained to the Windows OS.

D. SUMMARY

The preceding sections provide an overview of two different architectural

implementations for agent-based simulations. The predator-prey models, Savannah and

Savannah 3D, were built to explore issues associated with developing agent-based

simulations. Both the Windows/C++ and Bamboo designs seem to be feasible options

for building these simulations. Both implementations also take advantage of the

functionality offered by OOP languages. These advantages include encapsulation,

inheritance, polymorphism, and the STL.

The Windows/C++ version is a relatively straightforward implementation, in that

it is a convention easily explained and understood. The class structure provides an ideal

way to model agents and their behaviors. Allowing all agents to simultaneously sense

and act on simple rule sets results in realistic interactions among agents, and often

produce complex emergent behaviors that allow the researcher to conduct cognitive

experiments.

49

The Bamboo version is more abstract, but in the long run, a much more attractive

implementation. Not only does it offer all the advantages of the Windows/C++ version,

but also provides the capability to dynamically add agents to a running simulation. This

methodology makes programming very challenging; agents must not only interact and

adapt to agents that are known at run time, they must also do so with agents that were not

defined before run time.

50

V. CONCLUSIONS

A. CONCLUSION

Both the Windows/C++ and Bamboo agent-based simulation architectures appear

to be appropriate for building an enterprise model of the Navy. Input from subject area

experts will allow the proper agent functionality and inter-agent relationships to be

accurately defined. Agents with the ability to learn and adapt in their pursuit of goals

will provide a robust simulation that allows leaders to view the potential outcomes of

their decisions through emergent behaviors.

While we have explored the issues of developing two types of agent-based

simulation architectures, building an enterprise model of the Navy at such a low-level is

probably not appropriate. It appears that the best approach to take when building

SimNavy would be to create a modeling engine that contains the needed functionality to

define specific agents through an easy-to-use interface. This would allow modelers to

focus on developing accurate models of desired agents without having to concern

themselves with code and implementation issues. It could be developed using many of

the same ideas from the architectures we developed. Current students in the Naval

Postgraduate School's Modeling, Virtual Environments, and Simulation Curriculum plan

further research in this area.

B. FUTURE WORK

The following section lists future projects that could assist in further exploring the

issues associated with using the agent-based simulation methodology to build an

enterprise model of the Navy.

1. SimNavy Agents

When developing an enterprise model of the Navy, one of the first issues that

needs to be addressed is to identify what components are required to be modeled. Once

these components have been identified, the level to which they should be modeled, either

as individual entities or aggregated systems, needs to be studied. Close coordination with

all Navy agencies will help with the development of the logic and functionality of these

various Navy agents. This in and of itself will be a very challenging task since it appears

51

that most of the information currently available is stove piped, with very little cross talk

between agencies.

2. Learning and Adaptation

It is very difficult to establish a generic solution for dynamic agent learning and

adaptation. We explored two methods for providing agentswith this capability. A very

simple Boolean flag method was used to indicate knowledge of predetermined

relationships. The status of the flag provided access to different functionality and

triggered new behaviors, but was very limited. In the Bamboo implementation a more

robust structure using dynamic arrays was implemented to assist in learning. Both seem

to accomplish the goal, but is there a more efficient or dynamic way to do so? Is there a

way to generalize learning even more? How can this learning be tied better to

adaptation? Future work could entail a more detailed exploration of methods to provide

agents with a robust learning ability that allows them to adapt their behaviors.

3. Networked Applications

The Savannah and Savannah 3D architectures were built to run on stand-alone

computers. The Windows/C++ implementation is not directly portable to distributed

applications. The Bamboo toolkit, however, is designed for networked virtual

environments, and provides an outstanding platform to build networked agent-based

simulations. This area is wide open for research. Probably one of the first and most

critical areas that should be studied is how and in what format does agent data need to be

passed across the network so as not to lose any of the functionality of an agent-based

model?

4. SimNavy Engine

Savannah 3D is an attempt to generalize agent-based modeling enough so that it

can be easily modified to execute many different variations of a simulation. To build a

fully functional enterprise model of the Navy is going to require a generalized, yet very

robust architecture. Research in this area is needed to determine what other functionality

can be added to or implemented with Bamboo to begin building a SimNavy engine. Such

52

an engine would provide a simple GUI that could be used to study the numerous dynamic

relationships that exist throughout the Navy's structure.

53

54

APPENDIX A: IMPLEMENTATION CODE LISTINGS

Table of Contents for the Code Listings

I. WINDOWS/C++IMPLEMENTATION 56

A. ANIMAL.H 56
B. ANIMAL.CPP 57
C. ANTELOPE.H 59
D. ANTELOPE.CPP 60
E. CHEETAH.H 61
F. CHEETAH.CPP 61
G. STDAFX.H 63
H. AGENTGUIVIEW.H 63
I. AGENTGUIVIEW.CPP 64
J. AGENTGUIDOC.H 66
K. AGENTGUIDOC.CPP 67

II. BAMBOO IMPLEMENTATION 71

A. NPSAGENT.H 71
B. NPSAGENT.C 72
C. AGENTDISPLAYAPP.H 73
D. AGENTDISPLAYAPP.C 74
E. ANIMAL.H 75
F. ANIMAL.C 76
G. ANTELOPE.H • 78
H. ANTELOPE.C 79
I. ANTELOPEAPP.H 82
J. ANTELOPEAPP.C 82
K. CHEETAH.H 82
L. CHEETAH.C 83
M. CHEETAHAPP.H 86
N. CHEETAHAPP.C 86
O. PLANT.H 86
P. PLANT .C 87
Q. GRASS.H 87
R. GRASS.C 87
S. GRASSAPP.H 88
T. GRASSAPP.C 88

55

WINDOWS/C++ IMPLEMENTATION

Animal (int s, int gn, int 1);

//Default Destructor - does nothing at this time
-Animal{);

//move the animal
void move();
void avoidCollisionO;
void moveTo(int 1);
void moveProm(int 1);

//test if two animals are within the provided range of each other
bool inRange {Animal &secondAnimal, int testRange);

//generate a random number
double myRand ();

//get and set the max speed of animal
int getMaxSpeedO;
void setMaxSpeedtint s);

//get gender of animal
char getGender();
void setGender(char g);

//get and set energy level
int getEnergyLevel();
void setEnergyLevelfint el);

//get and set xy coordinate (location) of animal
int getLocationO;
int getx () ,-
int getYO;
void setLocationtint xy);
void setLocationtint x, int y);
void setRandomLocationO;

//get and set the choice of speed for next move
MOVE_SPEED getSpeedOfNextMoveO;
void setSpeedOfNextMove (MOVE_SPEED ms);

//get and set reason for animals death
DEATH_INDICATOR getDeathlndicator (),-
void setDeathIndicator(DEATH_lNDICATOR di);

//get and set deathCounter
int getDeathCounterO;
void setDeathCounter(int dc);

//get age of animal
int getAget);
void setAge(int a);

//get and set generation of animal
int getGenerationO;
void setGeneration(int g);

//** * ******
// EXECUTIVE SUMMARY
//File Name: Animal.h
//
//Authors:
//
//
//Description: Package contains definition of Animal class and its
// member functions to work in a larger simulation
//
//March 1999, Master Thesis
// ********************** ****. ***

Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; todd@gagnon.com

#ifndef ANIMAL_H__
«define ANIMAL_H_

»include "stdafx.h"
«include <math.h>

struct Pregnancy{
int partnerId;
int maleSpeed;
int gestationTime;
int seasonCounter;

};

class Animal {

private:

MOVE_SPEED speedOfNextMove;

DEATH_INDICATOR deathlndicator;

char gender;

int maxSpeed,
age,
generation,
location,
moveToLocation,
movePromLocation,
deathCounter,
energyLevel;

bool pregnant,
inSeason,
resting;

public:

//Default Constructor
Animal () ,-

//Newborn Initialization Constructor

56

//get and set location to move to
int getMoveToLocationO;
void setMoveToLocationtint mtl);

//get and set location to move from
int getMoveFromLocationO;
void setMoveFromLocation(int mfl);

//can the animals mate
virtual bool canMate (Animal fcpotentialMate);
virtual void mate(Animal fcmate)(};

//test to see if predator can kill the prey
virtual bool canKill(Animal &prey);

//get distance between two animals
int getDistance(Animal fcanimal);
int distanceFromFoodtint 1);

//age animal one year
void growOlderO;

//see if female is pregnant
bool isPregnant();
void setPregnant(bool p);

//see if the animal is in season
bool isInSeasont);
void setlnSeasontbool is);

//see if animal is dead
bool isDeadO ;

//see if animal needs to rest
bool isRestingt);
void setRest(bool r);

//pointer to Pregancy struct
Pregnancy* pregPtr;

// INLINE FUNCTIONS
//*****

inline int Animal::getMaxSpeed()
{

)
return maxSpeed;

inline void Animal::setMaxSpeed(int s)
{

maxSpeed = s;

inline char Animal::getGender()

return gender;

inline void Animal::setGender(char g)

gender = g;

inline int Animal::getEnergyLevel()

return energyLevel;

inline void Animal::setEnergyLevel(int el)

energyLevel = el;

inline int Animal::getMoveToLocation{)

return moveToLocation;

inline void Animal::setMoveToLocation(int mtl)

moveToLocation = mtl;

inline int Animal::getMovePromLocation()

return moveFromLocation;

inline void Animal::setMoveFromLocation(int mfl)

moveFromLocation = mfl;

inline int Animal::getLocation{)

return location;

inline int Animal::getX{)

return (location % MAX_X);

inline int Animal::getY()

return (location / MAX_X);

inline bool Animal::isInSeason()

return inSeason;

inline void Animal:rsetlnSeason(bool is)

inSeason = is;

inline bool Animal::isResting()

return resting;

inline void Animal::setRest(bool r)

resting « r;

inline DEATH_INDICAT0R Animal:igetDeathlndicator{)

return deathlndicator;

inline void Animal: :setDeathIndicator (DEATH_INDICATOR di)

deathlndicator = di;

inline int Animal::getDeathCounter()

return deathCounter;

inline void Animal::setDeathCounter(int dc)

deathCounter = dc;

inline bool Animal::isDead()

return (deathlndicator != NOT_DEAD);

inline void Animal::grow01der()

age++;

»endif

//end file animal.h

57

nline void Animal::setLocation(int xy)

location = xy;

inline void Animal::setLocation(int x, int y)

location = y * MAX_X + x;

nline void Animal::setRandomLocation()

location = int{myRand0 * MAX_X * MAX_Y);

inline MOVE_SPEED Animal::getSpeedOfNextMove()

return speedOfNextMove;

inline void Animal::setSpeedOfNextMove(MOVE_SPEED ms)

speedOfNextMove = ms;

inline int Animal::getAge()

return age;

inline void Animal::setAge(int a)

age = a;

inline int Animal::getGeneration()

return generation;

inline void Animal::setGeneration(int g)

generation = g;

.nline bool Animal::isPregnant()

return pregnant;

(
.nline void Animal::setPregnant(bool p)

pregnant = p;

//** ********* **** *** *******..**.......
// EXECUTIVE SUMMARY
//File Name: Animal.cpp
//
//Authors: Mark A. Boyd; maboyd@bigfobt.com
// Todd A. Gagnon; todd@gagnon.com
//
//Description: Package contains definition of Animal class and its
// member functions to work in a larger simulation
//
//March 1999, Master Thesis ,,********.***********..* **** ******* ******* ****

»include <stdio.h>
»include <iostream.h>
»include <stdlib.h>
»include <ctime>
»include "Animal.h"

//*** *** ****** **** ***************
// DEFINES AND FILE SCOPE CONSTANTS
//** * ** *************** ****
//
// Function: Animal::Animal()
// Return Val: None
// Parameter: None
// Purpose: Default constructor
// -
Animal::Animal ()
:speedOfNextMove(REGULAR), deathlndicator(NOT_DEAD), pregPtr(NULL),
pregnant(false), inSeason(false), generation(1), moveToLocation(O),
moveFromLocation(O), deathCounter(0), energyLevel(800), resting(false)

{
double genderRand = myRand();

if (genderRand < O.S)
gender = MALE;

else
gender = FEMALE;

//assign a random max speed for the animal between 5..10
maxSpeed = myRand0*10;

if (maxSpeed < 5)
maxSpeed += 5;

setRandomLocationO;

age = int(myRand() * ANIMAL_AGE);

)//end animal::animal()

//
// Function: Animal::Animal(int s, int x, int y)

// Return Val: None
// Parameter: Speed, XY position
// Purpose: Newborn initialization constructor //
Animal: :Animal (int s, int gn, int 1)
: speedOfNextMove(REGULAR), deathlndicator<NOT_DEAD), maxSpeed(s),
generation(gn), age(NEWBORN_AGE), pregnant(false), inSeason(false),
pregPtr(NULL), location(l+l), moveToLocation(O), moveFromLocation(O)
deathCounter(O), energyLevel(800), resting(false)

(
double genderRand;

genderRand = myRand();
if (genderRand < 0.5)
{

gender = MALE;
}
else
<

gender = FEMALE;
}

}//end Animal::Animal(int s, char g, int x, int y)

//
// Function: Animal::-Animal()
// Return Val: None
// Parameter: None
// Purpose: Default destructor //
Animal::-Animal()
(

//do nothing at this point

)//end Animal::-Animal()

//
// Function: Animal::move ()
// Return Val: void
// Parameter: None
// Purpose: move animals that are not resting
// —
void Animal: :move()
{

if (speedOfNextMove != REST)
{

int tempX = this->getX(),
tempY = this->getY();

double randX = myRand(};
double randY = myRandt);

if (randx <= 0.5)
tempX—;

tempY = MAX_Y - 1; //move the animal up one row

this->setLocation(tempX, tempY);

return;

)//end Animal::avoidCollision()

// _.
// Function: Animal: :moveTo ()
// Return val: void
// Parameter: int location
// Purpose: returns destination for animals next move //
void Animal: :moveTo(int 1)
{

int tempX ss 1 % MAX_X,
tempY ~ 1 / MAX_X,
thisTempX = this->getX(),
thisTempY = this->getY();

if(SpeedOfNextMove == REGULAR)
<

if((thisTempX - tempX) > 0)
thisTempX -■ UNIT_MOVEMENT;

else if((thisTempX - tempX) < 0)
thisTempX += UNIT_MOVEMENT;

if((thisTempY - tempY) > 0)
thisTempY-= ÜNIT_MOVEMENT;

else if((thisTempY - tempY) < 0)
thisTempY += UNIT_MOVEMENT;

}//end if
else//RON
{

if((thisTempX - tempX) > 0)
thisTempX -= this->getMaxSpeed()/2;

else if((thisTempX - tempX) < 0)
thisTempX += this->getMaxSpeed()/2;

if((thisTempY - tempY) > 0)
thisTempY-= this->getMaxSpeed()/2;

else if((thisTempY - tempY) < 0)
thisTempY += this->getMaxSpeed()/2;

)//end else
if(thisTempX <= MIN_X)

thisTempX = MIN_X + 1;//bring the animal back one unit
if (thisTempX >= MAX_X)

thisTempX = MAXJC-1;//bring the animal back one unit
if(thisTempY <= MIN_Y)

thisTempY « MIN_Y + 1; //move the animal down one row
if(thisTempY >= MAX_Y)

thisTempY = MAX_Y - 1; //move the animal up one row
this->setLocation(thisTempX, thisTempY);

55

else
tempX++;

if (ranäY <= 0.5)
tempY—; // this moves the animal up one row

else
tempY++; // this moves the animal down one row

if(tempX <= MIN_X)
tempX = MIN_X + l;//bring the animal back one unit

if(tempX >= MAX_X)
tempX = MÄX_X-1;//bring the animal back one unit

if(tempY <= MIN_Y)
tempY = MIN_Y + 1; //move the animal down one row

if (tempY >= MAX_Y)
tempY = MAX_Y - 1; //move the animal up one row

this->setLocation(tempX, tempY);

)//end if not at REST

return;

) //end Animal: :move ()

//
// Function: Animal::avoidCollision 0
// Return Val: void
// Parameter: None
// Purpose: keep animals from occuping the same grid space //
void Animal: :avoidCollision{)
(

int tempX = this->getX(),
tempY = this->getY();

double randX = myRand 0;
double randY = myRand();

if (randX <= 0.5)
tempX—;

else
tempx++;

if (randY <= 0.5)
tempY—; // this moves the animal up one row

else
tempY++; // this moves the animal down one row

if (tempX <= MIN_X)
tempX = MIN_X + 1;//bring the animal back one unit

if (tempX >= MAX_X)
tempX = MAX_X-1;//bring the animal back one unit

if (tempY <= MIN_Y)
tempY = MIN_Y + 1; //move the animal down one row

if(tempY >= MAX_Y)

return;

) //end Animal: :moveTo {)

//
// Function: Animal: :moveFrom()
// Return Val: void
// Parameter: int location
// Purpose: returns destination for animals next move
//- -
void Animal: :moveFrom(int 1)
{

int tempX - 1 % MAX_X,
tempY = 1 / MAX_X,
thisTempX = this->getX(),
thisTempY = this->getY();

it (speedOfNextMove == REGULAR)
{

if ((thisTempX - tempX) > 0)
thisTempX += DNIT_MOVEMENT,

else if((thisTempX - tempX) <
thisTempX -= DNIT_HOVEMENT,

if((thisTempY - tempY) > 0)
thisTempY += UNIT_MOVEKENT,

else if ((thisTempY - tempY) <
thisTempY -= HNIT_MOVEMENT

)//end if
else//R(JN
{

if((thisTempX - tempX) > 0)
thisTempX ♦= this->getMaxSpeed()/2;

else if((thisTempX - tempX) < 0)
thisTempX -= this->getMaxSpeed()/2;

if((thisTempY - tempY) > 0)
thisTempY += this->getMaxSpeed()/2;

else if((thisTempY - tempY) < 0)
thisTempY -= this->getMaxSpeed()/2;

)//end else
if (thisTempX <= MIN_X)

thisTempX = KIN_X -f l;//bring the animal back one unit
if (thisTempX >= MAX_X)

thisTempX = MAX_X-1; //bring the animal back one unit
if (thisTempY « MIN_Y)

thisTempY = MIN_Y ♦ 1; //move the animal down one row
if(thisTempY >= MAX_Y)

thisTempY = MAX_Y - 1; //move the animal up one row

this->setLocation (thisTempX, thisTempY);

return;

) //end Animal: :moveFrom()

// ~ ~
// Function: Animal: :myRand O
// Return Val: double - a pseudorandom number between 0.0 and 1.0
// Parameter: none
// Purpose: return random number
//
double Animal:rmyRand {)
{

double randomNumber;

randomNumber = rand () /double (RAND_MAX);

return randomNumber;

)//end Animal::myRand()

//
//Function: Animal::canMate ()
//Return Val: true / false
//Parameter: potentialMate
//Purpose: evaluate whether two like animals can mate
//-
bool Animal::canMate{Animal &potentialMate)
{

bool mateFlag = false;

if(this->getGender()
{

mateFlag =

== MALE)

)
else
{

mateFlag ■

((MpotentialMate.isPregnantO)) &&
(potentialMate.getAget) >= MATE_AGE) &&
(this->getAge<) >= MATE_AGE) && _
(abs(this->getX() - potentialMate.getx())

MATE_DISTANCE) &&
(abs(this->getY() - potentialMate.getY())

MATE_DISTANCE));

((!(this->isPregnant{)}) &&
(potentialMate.getAgeO >= MATE.JW3E) &&
(this->getAge() >= MATE_AGE) &.&
(abs(this->getX() - potentialMate.getXO)

MATE_DISTANCE) &&
(abs(this->getY{) - potentialMate.getYO)

MATE_DISTANCE));

return mateFlag;

}//end function Animal::canMate(Animal tpotentialMate)

//
//Function: Animal:
//Return Val:

:canKill {}

//File Name:
//
//Authors:
//
II
//Description:
//
II
//March 1999, Master Thesis

Antelope.h

Mark A. Boyd; maboyd0bigfoot.com
Todd A. Gagnon; todd@gagnon.com

Package contains definition of Antelope class and its
member functions to work in a larger simulation

ftifndef __ANTELOPE_H__
•define _ANTELOPE_H_

•include "animal.h"

class Antelope: public Animal{

private:

ANTELOPE_DESIRED_ACTION nextAction;

int idNum,
herdsize;

bool predatorKnowledge;

public:

//Default Constructor
Antelope();

//Newborn Initialization Constructor
Antelope (int s, int gn, int 1);

//Default Destructor - does nothing at this time
-Antelope();

//produce a newborn Antelope from a male/female pair
Antelope* Antelope:igiveBirth(int speedOne, int speedTwo,

int motherGeneration, int motherLocation);

//get antelope identification number
int getldNumO ;

//set and get herd size
int getHerdSize();
void setHerdSizetint hs);

//get and set the desired next action for the antelope
ANTELOPE_DESIRED_ACTION getNextActionO ;
void setNextAction (ANTELOPE_DESIRED_ACTION na);

//return antelope litter size
int litterSizeO;

//Parameter:
//Purpose: evaluate whether two like animals can mate
//
bool Animal::canKill(Animal &prey)
{

return false;

}//end bool Animal::canKill(Animal fiprey)

//
//Function: Animal::getDis tance{)
//Return Val: int distance between two animals
//Parameter: animal
//Purpose: determine distance between two animals
// ——
int Animal: :getDistance(Animal fcanimal)
{

int xSquare, ySquare, answer;
xSquare = (this->getX{) - animal.getXO)

animal.getXO) ;
ySquare = (this->getY() - animal .getYO }

animal.getYO);
answer = (sqrt(xSquare + ySquare));

return answer;

)//end Animal::getDistance()

(this->getX()

(this->getYO

//
//Function: Animal::distanceFromFood()
//Return Val: int between animal and food
//Parameter: int location
//Purpose: determine distance between animal and food
// -
int Animal::distanceFromFood(int 1)
{

int tempx *= 1 % MAX_X,
tempY = 1 / MAX_X,
xSquare,
ySquare,
answer;

xSquare = (this->getX() - tempX) * (this->getX() - tempX);
ySquare = (this->getYO - tempY) * (this->getYO - tempY) ;
answer = (sgrt(xSquare + ySquare));

return answer;
}//end Animal::distanceFromFood()

//end file Animal.cpp

EXECUTIVE SUMMARY

//return true if Antelope dies as infant
bool diesAsInfantO ;

//can the Antelope mate
bool canMate(Antelope fcpotentialMate);
void mate(Antelope &mate);

//are the Antelope mate eligible
bool mateEligibletAntelope SepotentialMate);

//does a Antelope know Cheetahs are bad?
bool getPredatorKnowledgeO;
void setPredatorKnowledgetbool pk);

//print Antelope info
void printAntelopelnfoO ;

// INLINE FUNCTIONS
//** ********«*«**..*.********* **********.****.***

inline int Antelope::getIdNum{)

return idNum; \

inline ANTELOPE_DESIRED_ACTION Antelope::getNextAction()

return nextAction;

inline void Antelope::setNextAction (ANTELOPE_DESIRED_ACTION na)

nextAction = na;

inline bool Antelope::getPredatorKnowledge()

return predatorKnowledge;

inline void Antelope::setPredatorKnowledgetbool pk)

predatorKnowledge = pk;

inline int Antelope::getHerdSize()

return herdSize;

inline void Antelope::setHerdSize(int hs)

59

herdSize = hs;
}

•endi f

//end file Antelope.h

// EXECUTIVE SUMMARY
//File Name: Antelope.cpp
//
//Authors: Mark A. Boyd; maboyd9bigfoot.com
// Todd A. Gagnon; toddegagnon.com
//
//Description: Package contains definition of Antelope class and its
// member functions to work in a larger simulation
//
//March 1999, Master Thesis
//*.*+.*•***.*••.*****.*******************.*.******,*++***,****,..*»*«

•include <stdio.h>
•include <iostream.h>
•include <stdlib.h>
•include <ctime>
•include "Antelope.h"

// ********•**.**.***•*** *•*.******. *.*****.**
// DEFINES AND FILE SCOPE CONSTANTS
//* * **** * * ..****.**

static int numAntelope = 0;

//
// Function: Antelope::Antelope0
// Return Val: None
// Parameter: None
// Purpose: Default constructor
// -
Antelope: :Antelope ()

:Animal(), idNum(numAntelope++), nextAction(A_NOTHING),
herdSize(1)

{
if (Animal ::myRand{) < PREDATOR_KNOWLEDGE)

predatorKnowledge = true-
else

predatorKnowledge = false;

)//end Antelope::Antelope0

//
// Function: Antelope::Antelope (int s, int gn, int x, int y)
// Return Val: None
// Parameter: Speed, generation, and XY position
// Purpose: Initialization constructor for newborn Antelopes

Antelope::Antelope(int s, int gn, int 1)
: AnimaKs, gn, 1), idNum (numAntelope++), nextAction(A_NOTHING),

herdSize(1)

if(Animal::myRand() < PREDATOR_KNOWLEDGE)
predatorKnowledge = true;

else
predatorKnowledge *= false;

}//end Antelope::Antelope(int s, int x, int y)

//—
// Function: Antelope::-Antelope(}
// Return Val: None
// Parameter: None
// Purpose: Default destructor
//—
Antelope::-Antelope {)
(

//do nothing at this point
}//end Antelope::-Antelope()

//-- -- - - —
//Function: Antelope::giveBirth ()
//Return Val: Antelope
//Parameter: male speed, female speed
//Purpose: make a new Antelope
//— -
Antelope* Antelope::giveBirth{int speedOne, int speedTwo,

int motherGeneration, int motherLocation)
{

int newSpeed,
nextGeneration = (motherGeneration +1);

Antelope *newBorn;

if(Animal::myRand() < .5}
newSpeed = speedOne;

else
newSpeed = speedTwo;

newBorn = new Antelope(newSpeed, nextGeneration, motherLocation+1);

' fifdef SPEED_COUT
cout « "ANTELOPE" « " " « "speedOne: " « speedOne « "

« "speedTwo: ■ « speedTwo « ■ ■ « "newborn speed
« newSpeed « endl;

•endi f

return newBorn;

}//end animal::mate()

//
//Function:
//Return Val:

Antelope::mate ()
true / false

//Parameter: potentialMate
//Purpose: evaluate whether two like animals can mate //
void Antelope: :mate(Antelope &mate)
{

if(this->getGender() == MALE)
{

mate.setPregnant(true);
mate.pregPtr->partnerId = this->getIdNum();
mate.pregPtr->maleSpeed = this->getMaxSpeed();
mate.pregPtr->gestationTime = 0;

}
else
{

this->setPregnant(true);
this->pregPtr->partnerId = mate.getldNumO;
this->pregPtr->maleSpeed = mate.getMaxSpeedO ;
this->pregPtr->gestationTime = 0;

)
return;

)//end function Antelope::mate()

//
// Function: void Antelope: :printAntelopeInfo()
// Return Val: void
// Parameter: none
// Purpose: Print Antelope information
//-
void Antelope: :printAntelope!nfo()
{

f (getGenderO == 'M')

cout «" Male Antelope " « idNum;

else

cout « "Female Antelope " « idNum;

cout «• => spd = " « getMaxSpeed () .
«" gndr = " « getGenderO
«' age = " « getAgeO
«" x = " « getXO
«- y = ■ « getYO
« endl;

re turn,-

}//end Antelope Antelope::printAntelopeInfo()

//
// Function: int Antelope::litterSize()
// Return Val: int number in litter
// Parameter: none
// Purpose: return a random number of antelope in a litter //

int Antelope::litterSize()

int litter = 1;

if(Animal::myRand() >= 0.9)
litter = 2;

return litter;

)//end Antelope::litterSize()

6)

//—
// Function: bool Antelope: :diesAsInfant 0
// Return Val: true for dies; false for lives
// Parameter: none
// Purpose: return whether infant dies or not //
bool Antelope::diesAsInfant0
{

double randNum = Animal::myRand();

return (randNum < ANTELOPE_M0RTALITY_RATE) ;

}//end Antelope: :ntortality()

//-
// Function: bool Antelope::canMate()
// Return Val: true for yes; false for no
// Parameter: potential mate

, // Purpose: return whether Antelope can mate or not
//
bool Antelope: :canMate (Antelope spotentialMate)
(

bool mateFlag = false;

ifUthis->getGender() = «ALE) ti
(potentialMate.getGenderO == FEMALE))

<
mateFlag = {(!(potentialMate.isPregnantO)) &&

(this->getNextAction() == A_MATE) St
(potentialMate. getNextAction () == A_MATE) &
(potentialMate.getAgel) >= MATE_AGE) &&
(this->getAge() >= MATE_AGE) &&
(abs(this->getx() - potentialMate.getXO) <=

MATE_DISTAMCE) &&

(abs(this->getYO - potentialMate.getYO)
MATE_DISTANCE)) ;

else if((this->getGender() == FEMALE) 65
(potentialMate.getGenderO == MALE))

{
mateFlag = ((i(this->isPregnant0)) &&

(this->getNextAction() == A_MATE) &&
(potentialMate.getNextActionO == A_MATE)
(potentialMate.getAgei) >= MATE_AGE) &&
<this->getAge(> >= MATE_AGE) &&
<abs(this->getx() - potentialMate.getxO>

MATE_DISTANCE) &&
(abs(this->getY 0 - potentialMate.getY())

MATE_DISTANCE));

return mateFlag;
)//Antelope: :canMate(Antelope ipotentialMate)

//
// Function: bool Antelope: :mateEligible()
// Return Val: potential mate
// Parameter: true for yes; false for no
// Purpose: return whether Antelope is eligible to mate
//
bool Antelope: :mateEligibletAntelope ^potentialMate)
{

bool mateEligibleFlag = false;

if(Uhis->getGender() == MALE) &&
(potentialMate.getGenderO == FEMALE))

(
mateEligibleFlag = (!(potentialMate.isPregnantO) &&

(potentialMate.isInSeasonO) &6
(potentialMate.getAgei) >= MATE_AGE) &&
(this->getAge() >= MATE_*GE));

)
else if ((this->getGender() == FEMALE) &&

(potentialMate.getGenderO == MALE))
(

mateEligibleFlag = (!(this->isPregnant()) &&
(this->isInSeason 0) &&
(potentialMate.getAgeO >= MATE_AGE) &s
(this->getAge() >= MATEJlGE));

>
return mateEligibleFlag;

)//end Antelope: :mateEligible

//end file Antelope.cpp

//*

bool canMate (Cheetah ftpotentialMate);
void mate(Cheetah &mate);

//are the Cheetahs mate eligible
bool mateEligible (Cheetah ftpotentialMate) ;

//print Cheetah info
void printcheetahlnfo 0 ;

// INLINE FUNCTIONS

inline int Cheetah::getIdNum()
(

return idNum;
)
inline CHEETAH_DESIRED_ACTION Cheetah: :getNextAction()
(
)

return nextAction;

inline void Cheetah: :setNextAction (CHEETAH_DESIRED_JlCTION na)
{

nextAction = na;
}

»endif

//end file Cheetah.h

...........................
// EXECUTIVE SUMMARY
//File Name: Cheetah.cpp
//
//Authors:
//
//
//Description:
II
II
//March 1999. Master Thesis
// * '
•include <stdio.h>
•include <iostream.h>
•include <stdlib.h>
»include <ctime>
•include "Cheetah.h"

Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; toddSgagnon.com

Package contains definition of Cheetah class and its
member functions to work in a larger simulation

//* 61

// EXECUTIVE SUMMARY
//File Name: Cheetah.h
//
//Authors;
//
II
//Description:
//
//
//March 1999, Master Thesis

Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; todd@gagnon.com

Package contains definition of Cheetah class and its
member functions to work in a larger simulation

//*
»ifndef _CHEETAH_H_
«define _CHEETAH_H_

»include 'animal,h"

class Cheetah: public Animal{

CHEETAH_DESIRED_ACTION nextAction;
int idNum;

public:

//Default Constructor
Cheetah!);

//Newborn initialization constructor
Cheetah (int s, int gg, int 1);

//Default Destructor - does nothing at this time
-Cheetah();

//produce a newborn Cheetah from a male/female pair
Cheetah* Cheetah::giveBirth(int speedOne, int speedTwo,

int motherGeneration, int motherLocation);

//get Cheetah identification number
int getldNumO ;

//return Cheetah litter size
int litterSizeO ;

//get and set the desired next action for the antelope
CHEETAH_DESIRED_ACTION getNextAction();
void setNextAction (CHEETAH_DESIRED_ACTION na);

//return whether or not the Cheetah dies in infancy
bool diesAsInfantO ;

//check to see if cheetah can kill Antelope
bool canKill(Animal fcprey);

//can the Cheetah mate

// DEFINES AND FILE SCOPE CONSTANTS //****•**********..*..******** ******** * *.*********:

static int numCheetah = 0;

// —
// Function: Cheetah::Cheetah{) <
// Return Val: None
// Parameter: None
// Purpose: Default constructor
//
Cheetah::Cheetah ()

:Animal(), idNum(numCheetah++), nextAction(C_NOTHING)
{

int speed = <rand{)/double<RAND_MAX))*10;'
if (speed < 5)
{

speed += 5;
}

this->setMaxSpeed(speed + CHEETAH_SPEED_ADVANTAGE);

)//end Cheetah::Cheetah()

//- --
//Function: Cheetah::Cheetah{int s, int gn, int 1)
// Return Val: None
// Parameter: Speed, generation, and XY position
// Purpose: Initialization constructor for newborn Cheetahs
//
Cheetah::Cheetah(int s, int gn, int 1)
: Animal (s, gn, 1), idNum(numCheetah++), nextAction<C_NOTHING)
{
}//end Cheetah::Cheetah(int s, int gn, int 1)

//
// Function: Cheetah::-Cheetah(>
// Return Val: None
// Parameter: None
// Purpose: Default destructor
//
Cheetah::-Chee tah ()
{

//do nothing at this point

}//end Cheetah::-Cheetah()

//--
//Function: Cheetah::mate 0
//Return Val: Cheetah
//Parameter: speed of two cheetah, female generation and location
//Purpose: create new cheetah

Cheetah* Cheetah: :giveBirth(int speedone. int speedTwo,
int motherGeneration, int motherLocation)

int newSpeed,
nextGeneration ■

Cheetah *newBorn;

(motherGeneration + 1);

if (Animal: :myRand() < -5)
newSpeed = speedOne;

else
newSpeed = speedTwo;

newBorn = new Cheetah (newSpeed, nextGeneration, motherLocation + 1);

return newBorn;

} / /end animal: :mate ()

//
//Function: Cheetah::mate ()
//Return Val: none
//Parameter: mate
//Purpose: mate the cheetah
II-
void Cheetah: :mate (Cheetah &mate)
{

if (this->getGender() — MALE)
{

mate.setPregnant(true);
mate.pregPtr->partnerId = this->getIdNum();
mate.pregPtr->maleSpeed = this->getMaxSpeed<);
mate.pregPtr->gestationTime = 0;

)
else
(

this->setPregnant(true);
this->pregPtr->partnerId = mate.getldNuml);
this->pregPtr->maleSpeed = mate.getMaxSpeedO;
this->pregPtr->gestationTime =0;

return;

}//end function Cheetah::mate()

//
// Function: void Cheetah: :printCheetahInfo()
// Return Val: void
// Parameter: none
// Purpose: Print Cheetah information //
void Cheetah::printCheetahInfo()

// Return Val: number of cheetah that die
// Parameter: none
// Purpose: return whether infant dies or not
II-
bool Cheetah::diesAs!nfant()
{

double randNum = Animal: :myRandO;

return (randNum < CHEETAH_MORTALITY_RATE);

)//end Cheetah::mortality()

//
//Function: Cheetah::canKi11 ()
//Return Val: true if yes; false if no
//Parameter: potential prey
//Purpose: evaluate whether two like animals can kill
II-
bool Cheetah::canKill(Animal sprey)
(

bool killFlag = false;

if (Z/(this->getKaxSpeed() > prey.getMaxSpeedO) &&
(abs(this->getX() - prey.getXO) <= KILL_RADIOS) &&
(abs(this->getY() - prey.getYO) <= KILL_RADIUS))

if (Animal: :myRand() > .5)
killFlag = true;

else
killFlag = false;

return killFlag;

}//Cheetah: :canKill (Animal fcprey)

//
// Function: bool Cheetah: :canMate()
// Return Val: true if yes; false if no
// Parameter: potential mate
// Purpose: return whether Cheetah can mate or not
II-
bool Cheetah::canMate(Cheetah tpotentialMate)
(

bool mateFlag = false;

if<(this->getGender() — MALE) &&
(potentialMate.getGenderO == FEMALE))

(
mateFlag = ((! (potentialMate.isPregnantO)) &&

(this->getNextAction() — C_MATE) &&
(PotentialMate.getNextActionO == C_MATE)
(potentialMate.getAgeO >= MATEJiGE) 45
(this->getAge() >= MATE_AGE) &&
(abs(this->getx() - potentialMate.getXO)

MATE_DISTANCE) &&

if (getGenderO == MALE)
(

cout «" Male Cheetah " « idNum;
}
else
{

cout « "Female Cheetah " « idNum;
)
cout «■ => spd = - « getMaxSpeedO

«" gndr = " « getGenderO
«• age = - « getAget)
«" x = ■ « getxo
«•ye- « getYO
«endl ,-

return;

)//end void Cheetah::printCheetah!nfo()

//
// Function: int Cheetach::litterSize(>
// Return Val: int number in litter
// Parameter: none
// Purpose: return a random number of Cheetah in a litter
II-
int Cheetah::litterSize()
{

int litter =1;

double randNum = Animal: :myRand() ;

iftrandNum <= 0.05)
litter = 1;

else if((randNum > 0.05) && (randNum <= 0.15))
litter = 2;

else ifdrandNum > 0.15) && (randNum <= 0.3))
litter = 3;

else if ((randNum > 0.3) ss. (randNum <= 0.7))
litter = 4;

else if((randNum > 0.7) && (randNum <= 0.85))
litter = 5;

else if((randNum > 0.85) && (randNum <= 0.95))
litter = 6;

else //if randNum > .95
litter = 7;

return litter;

)//end Antelope::litterSize()

// Function: bool Cheetach::diesAs!nfant0

(abs(this->getY() -
MATE_DISTANCE));

po'tentialMate .getY ())

&&

62

else if((this->getGender() == FEMALE) &&
(potentialMate.getGenderO == MALE))

(
mateFlag = ((!(this->isPregnant0)) &&

(this->getNextAction() == C_MATE) &&
(potentialMate.getNextActionO == C_MATE)
(potentialMate.getAgeO >= MATE_AGE) &&
(this->getAge() >= MATE_AGE) &&
(abs(this->getX() - potentialMate.getXO) <=

MATE_DISTANCE) 4S
(abs(this->getY() - potentialMate.getYO) <=

MATE_DISTANCE));

return mateFlag;
)//Cheetah::canMate(Cheetah ipotentialMate)

//
// Function: bool Cheetah::mateEligible()
// Return Val: true if yes; false if no
// Parameter: potential mate
// Purpose: return whether Cheetah is eligible to mate

bool Cheetah::mateEligible(Cheetah ipotentialMate)

bool mateEligibleFlag = false;

if((this->getGender() == MALE) &&
(PotentialMate.getGenderO == FEMALE))

(
mateEligibleFlag = ((!(potentialMate.isPregnantO)) &&

(potentialMate.isInSeason O) &&
(potentialMate.getAgeO >= MATE_AGE) it,
(this->getAge() >= MATE_AGE)) ,-

else if((this->getGender() == FEMALE) &&
(potentialMate.getGenderO == MALE))

mateEligibleFlag = (!(this->isPregnant()) ss
(this->isInSeason{)) &&
(potentialMate.getAgeO >= MATE_AGE) &&
(this->getAge () >= MATE_^iGE));

return mateEligibleFlag;
)//Cheetah: :mateEligible (Cheetah StpotentialMate)

//end file Cheetah.cpp

EXECUTIVE SUMMARY

//File Name: StdAfx.h »define MALE *M*
// «define FEMALE 'F'
//Authors: Mark A. Boyd; maboyd@bigfoot.com »define KILL_RADIUS 5
// Todd A. Gagnon; todd@gagnon.com »define MATE_DISTANCE S
// »define MATE_AGE 660 //20-23 months->22 months
//Description: Package contains standard Windows MFC settings and »define NEWBORN_AGE 1 //l day old
// simulation globals. include file for standard system »define CHEETAH_SPEED_ADVANTAGE 1
// include files, or project specific include files that are »define ANTELOPE_GESTATION_PERIOD 171 //171 day gestation period
// used frequently, but are changed infrequently »define CHEETAH_GESTATION_PERIOD 95 //95 day gestation period

//
//March 1999, Master Thesis

»define ANTELOPE_WAIT_TO_MATE_TIME . 365 //wait for a litter to Ive
»define CHEETAH_WAIT_TO_MATE_TIME 700 //wait for a litter to Ive
»define CHEETAH_INFANT_AGE ' 700 //days until mom moves out
»define ANTEL0PE_INFANT_AGE 365 //days until mom moves out

#if>defined(AFX_STDAFX H 99A28497_8631_11D2_889B_0000F8092715 INCLUDED.) »define CHEETAH_M0RTALITY_RATE 0.90//90% die in first 2 years
•define AFX_STDAFX_H_99A28497_8631_11D2_889B_0000F8092715 INCLUDED. »define ANTELOPE_MORTALITY_RATE 0.3//30% die in first 2 years

»define STOP_SPEED 0 //stop speed of any animal

♦if _MSC_VER >= 1000
»pragma once
»endif // _MSC_VER >= 1000

»define CHEETAH_CRUISE_SPE£D 3 //medium speed of Cheetah
»define ANTELOPE_CRUISE_SPEED 3 //medium speed of Antelope
»define ANTELOPE_REST_SENSING_RANGE 50
»define ANTELOPE_REGULAR_SENSING_RANGE 30

»define VC_EXTRALEAN // Exclude rarely-used stuff from windows headers »define ANTELOPE_RUN_SENSING_RANGE 15
»define CHEETAH_REST_SENSING_RANGE 175

»include <afxwin.h> // MFC core and standard components »define CHEETAH_REGULAR__SENSING_RANGE 175
»include <afxext.h> // MFC extensions »define CHEETAH_RUN_SENSING_RANGE 100
»include <afxdisp.h> // MFC OLE automation classes »define CHEETAH_AVOID_RANGE 150
tifndef _AFX_NO_AFXCMN_SUPPORT »define CHEETAH_STARVATION_LEVEL 2
»include <afxcmn.h> // MFC support for Windows Common Controls »define PREDATOR_KNOWLEDGE 0.5 //% know predator
»endif // AFX_NO_AFXCMN_SÜPP0RT »define UNIT_MOVEMENT 1 //how many pixels to move

»define FAST_SIMULATION_SPEED 50
»define MEDIUM_SIMULATION_SPEED 250

// Global Constants used to initialize and/or scale the simulation »define SLOW_SIMULATI0N_SPEED 500
»define FRIEND_STAND0FF_DISTANCE 15
»define CHEETAH ENERGY_B00ST 400

enum MOVE_SPEED (REST, REGULAR, RUN); »define CHEETAH_HIGH_ENERGY_LEVEL 800
enum DEATH_INDICATOR (INFANT_MORTALITY, 0LD_AGE, PREDATOR, STARVATION, »define CHEETAH_STOP_HUNTING_LEVEL 200

NOT DEAD); »define CHEETAH_RESUME_HUNTINGJLJEVEL 600
enum AOTELOPE_DESIRED_ACTION {A_N0THING, A_MATE, HERD, FLEE, FEED); »define CHEETAH_LOW_ENERGY_LEVEL 0
enum CHEETAH_DESIRED_ACTION <C_N0THING, C_MATE, AVOID, CHASE); »define CHEETAH_REST_ENERGY_GAIK 4

»define CHEETAH_REGULAR_ENERGY_PENALTY 4
»define HIGH_NUM »define CHEETAH_RUN_ENERGY_PENALTY 10

»define ANTEL0PE_START_IN_SEAS0N 15

»ifdef HIGH_N0M »define ANTELOPE_STOP_IN_SEASON 60
»define CHEETAH_KILLS_CODT »define CHEETAH_START_IN_SEASON 30
»define SPEED_CODT »define CHEETAH_STOP_IN_SEASON 140
»define MAX_TIME 10000 //maximum time steps »define FOOD_RANGE 25
»define NUM_JUJTELOPE 100 //# antelope to create const int FOOD LOCATION[]={44870, 45370, 109020, 109240, 153670, 154170,
»define NDM_CHEETAH 5 //» cheetah to create 198620, 198840, 262470, 262970);
»define MIN_X 0
//X coordinates range from 0 to MAX_X »endif
»define MAX_X 640
//Y coordinates range from 0 to MAX_Y*define MIN_Y //{{AFX_INSERT_LOCATION}}

// Microsoft Developer Studio will insert additional declarations
»define MAX_Y 480 // immediately before the previous line.
»define ANIMAL.JW3E 1825
»define MAXJ1NTEL0PE_AGE 2000 »endif
»define MAX CHEETAHJ1GE 3650 //8 - 12 years - 10 years

CPen pPenMaleAntelopel,
pPenMaleAntelope2,

// EXECUTIVE SDMMARY pPenMaleAntelope3,
//File Name: AgentGUIView.h pPenMaleAntelope4,

// pPenMaleAntelope5,
//Authors: Mark A. Boyd; maboyd8bigfoot.com pPenMa1eCheetah,
// Todd A. Gagnon; todd@gagnon.com pPenFema1eChee tah,

// pPenFood;
//Description: interface of the CAgentGOTView class
// CBrush brushMaleAntelopel,
//March 1999, Master Thesis brushMaleAntelope2,

brushMaleAntelope3,
brushMaleAntelope4,

»if!defined(AFX_AGENTGUIVIEW_H_99A2849D_8631_llD2_889B_O000F8092715 brushMaleAntelopeS,
 INCLUDED.) brushMaleCheetah,

»define AFX_AGENTGUIVIEW_H_99A2849D_8631_11D2_889B_0000F8092715 brushFema1eCheetah;
 INCLUDED.

bool simulationOn,
»if _MSC_VER >= 1000 statisticsOn;
»pragma once
»endif void printAntelopeStatistics (CDC *pDC);

void printCheetahStatistics (CDC *pDC);
class CAgentGUIView : public CView
(void updateStatusBar(int numMaleAntelope, int numFemaleAntelope,
protected: // create from serialization only int antelopeGenerations, int numMaleCheetah,

CAgentGUIViewO; int numFemaleCheetah, int cheetahGenerations,
DECLARE_DYNCREATE (CAgentGUIView) int simTime);

void integerToString(int num. CString finumbers);
// Attributes
public: // Generated message map functions

CAgentGUIDoc* GetDocument (); protected:
afx_msg void OnTimer(UINT nIDEvent);

// Operations afx_msg void OnRunSimulationO ;
public: afx_msg void OnStopSimulationO ,-

afx_msg void OnStepSimulationO ;
public: afx_jnsg void OnToggleO; '

virtual void OnDraw(CDC* pDC); // overridden to draw this view afx_msg void OnSpeedFastO ;
virtual BOOL PreCreateWindow(CREATESTRUCT& cs); afx_msg void OnSpeedMedium();
protected: afx_msg void OnSpeedSlowO;
virtual BOOL OnPreparePrinting(CPrintInfo* plnfo); afx_msg void OnUpdateRunSimulationtCCmdUI* pCmdUI);
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* plnfo); afx_msg void OnUpdateStopSimulation(CCmdUI* pCmdUI);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo); afxjnsg void OnUpdateSpeedFast(CCmdUI* pCmdUI);

afx_msg void OnUpdateSpeedMedium(CCmdUI* pCmdUI);
// Implementation afx_msg void OnUpdateSpeedslow(CCmdUI* pCmdUI);
public: afx_^isg void OnLButtonDowntuINT nFlags, CPoint point);

virtual -CAgentGUIViewO; afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
»ifdef .DEBUG DECLARE MESSAGE MAP()

virtual void AssertValidO const;);
virtual void Dump (CDumpCon texts dc) const;

»endif »ifndef _DEBUG // debug version in AgentGUIView.cpP
inline CAgentGUIDoc* CAgentGUIView::GetDocument()

protected: { return (CAgentGUIDoc*)m_pDocument; }
»endif

int loopSpeed,
simulationTime; »endif

t 3

//*
// EXECUTIVE SUMMARY
//File Name: AgentGUIView.cpp
//
//Authors: Mark A. Boyd; maboyd8bigfoot.com
// Todd A. Gagnon; todd@gagnon.com //
//Description: implementation of the CAgentGUIView class //
//March 1999, Master Thesis
//*
•include "stdafx.h"
•include "AgentGDT.h"
•include "MainFrm.h"

•include "AgentGUIDoc.h"
•include "AgentGUIView.h"

•ifdef _DEBUG
•define new DEBUG_NEW
•undef THIS_FILE
static char THIS_FILE[] « FILE ;
•endif

static int numAntelope = 0;
static int numCheetah - 0;

IMPLEMENT_DYHCREATE (CAgentGUIView, CView)

BEGIN_MESSAGE_HAP (CAgentGUIView, CView)
ON_WM_TIMER()
ON_COMMANr>(ID_RUH_SIMOLATI0N, OnRunSimulation)
ON_COMMAHD (ID_STOP_SIMULATION, OnStopSimulation)
ON_COMMAHD (ID_STEP_SIMULATION, OnStepSimulation)
ON_COMMAND (SIMULATION_TOGGLE, OnToggle)
ON_COMMAHD(SET_SPEED_FAST, OnSpeedFast)
ON_COMKAND(SET_SPEED_MEDIUM, OnSpeedMedium)
ON_COMKAND(SET_SPEED_SLOW, OnSpeedSlow) (
ON_UPDATE_CCMMAND_UI (ID_RUN_SIKULATION, OnUpdateRunSimulation)
ON_UPDATE_COMMAND_UI <ID_STOP_SIMULATION, OnUpdateStopSimulation)
ON_UPDATE_COMMAND_UI (SET_SPEED_FAST, OnUpdateSpeedFast)
ON_DPDATE_COMMAND_UI (SET_SPEED_MEDIUM, OnUpdateSpeedMedium)
0N_UPDATE_COMHAND_UI(SET_SPEED_SLOW, OnUpdateSpeedSlow)
0N_WM_LBUTT0NDOWN ()
ON.COMMMJD (SIMDLATION_STEP, OnStepSimulation)
ON_WM_LBUTTONUP ()
ON_COMMAND(ID_FILE_PRINT, CView: :OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView: :OnFilePrint)
ON_COHMAHD(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

END_MESSAGE_MAP ()

// CAgentGUIView construction/destruction
CAgentGUIView: :CAgentGUIView()
:loopSpeed(MEDIUM_SIMULATION_SPE£D), simulationOn(false),

numFemaleCheetah
antelopeGeneration
chee tahGenera t i on

0,
0,
0;

if (statisticsOn)
(

printAntelopeStatistics (pDC);
printcheetahstatistics (pDC);

)
pDC->SelectObject(&pPenFood);

for (int ix = 0; ix < 10; ix++)
{

pDC->Ellipse(FCOD_L0CATI0N[ix] % MAX X - 30, F00D_L0CATI0N[ix] /
MAX_X - 30,

F00D_LOCATION[ix] % MAX_X + 30, FOOD_LOCATI0N[ixl /
MAX_X ♦ 30);

)
//Paint current male and female Antelope positions on screen
for (pDoc->aix = pDoc->antelopeMap.begin(); pDoc->aix ! =

pDoc->antelopeMap.end(); ++(pDoc->aix))

if(pDoc->aix->second.getGeneration() > antelopeGeneration)
antelopeGeneration = pDoc->aix->second.getGeneration();

if (pDoc->aix->second.getDeathIndicator0 *
{

switch (pDoc->aix->second.getMaxSpeed ())
{

case 5 :

NOT_DEAD)

(

>

pDC->SelectObject(spPenMaleAntelopel);
pDC->SelectObject(sbrushMaleAntelopel);
break;

case 6 :
(

pDC->SelectObj ect(&pPenMaleAntelope2);
pDC->SelectObject(&brushMaleAntelope2);
break;

)
case 7 :
{

pDC->SelectObject(&pPenMaleAntelope3);
pDC->Select0bject(ibrushMaleAntelope3);
break;

)
case 8 :
{

pDC->SelectObject (&pPenMaleAntelope4);
pDC->SelectObject(&brushMaleAntelope4);
break;

)
default://9 and 10

61

statisticsOn(false), simulationTime(O)
(

brushMaleAntelopel.CreateSolidBrushlRGB (200, 0, 0));
pPenMaleAntelopel.CreatePen(PS_SOLID, 1, RGB (200, 0, 0));

brushMaleAntelope2.CreateSolidBrush(RGB (200, 200, 0));
pPenMaleAntelope2.CreatePen(PS_SOLID, 1, RGB (200, 200, 0));

brushMaleAntelope3.CreateSolidBrush(RGB (0, 140, 0));
pPenMaleAntelope3.CreatePen(PS_S0LID, 1, RGB (0, 140, 0));

brushMaleAntelope4.CreateSolidBrush(RGB (0, 140, 200));
pPenMaleAntelope4.CreatePen(PS_SOLID, 1, RGB (0, 140, 200));

brushMaleAntelope5.CreateSolidBrush(RGB (0, 0, 255));
pPenMaleAntelope5.CreatePen(PS_SOLID, 1, RGB (0, 0, 255));

brushMaleCheetah.CreateSolidBrush(RGB (0, 0, 0));
pPenMaleCheetah.CreatePen(PS_SOLID. 1, RGB (0, 0, 0)),-

brushFemaleCheetah.CreateSolidBrush(RGB (150, 150, 150));
pPenFemaleCheetah.CreatePen(PS_SOLID, 1, RGB (150, 150, 150));

pPenFood.CreatePen(PS_SOLID, 1, RGB (150, 200, 150));

)
CAgentGUIView::-CAgentGUIView()

BOOL CAgentGUIView: :PreCreateWindow(CREATESTRUCT4 cs)

return CView::PreCreateWindow(cs);

/ CAgentGUIView drawing

void CAgentGUIView: :OnDraw(CDC* pDC)

CAgentGUIDoc* pDoc = GetDocumentO ;
ASSERT_VALID(pDoc);

static int simTime = 0;
static numAntelopeStarved = 0
static numAntelopeKilled = 0
static numAntelopeDieOfAge = 0
static numAntelopeDieAsInfant = 0

simulationTime = ++simTime;

//four counters to keep track and report how many of each type are
//still alive during this time step
int numMaleAntelope = 0,

numFemaleAntelope = 0,
numMaleCheetah = 0,

)

pDC->SelectObject(4pPenMaleAntelope5);
pDC->SelectObject (ibrushMaleAntelopeS) ,-
break;

)//end switch getSpeedO

if (pDoc->aix->second.getGender() == MALE)

numMaleAntelope++;

else

numFemaleAntelope++;

pDC->Rectangle (pDoc->aix->second.getx 0-2,
pDoc->aix->second.getY()-2,
pDoc->aix->second .getx () +2,
pDoc->aix->second.getY() +2) ,-

)//end if NOT_DEAD

}//end for (aix)

//Paint current male and female Cheetah positions on screen
for <pDoc->cix = pDoc->cheetahMap.begin();

pDoc->cix != pDoc->cheetahMap.end(); ++(pDoc->cix))
{

if(pDoc->cix->second.getGeneration() >cheetahGeneration)
cheetahGeneration = pDoc->cix->second.getGeneration();

if (pDoc->cix->second.getDeathmdicator() == N0T_DEAD)

if (pDoc->cix->second.getGender{) == MALE)

numMaleCheetah++;
pDC->SelectObject (ipPenMaleCheetah) ,•
pDC->SelectObject(ibrushMaleCheetah);

)
else
(

numFemaleCheetah++;
pDC->SelectObject (SpPenFemaleCheetah) ,-
pDC->SelectObject (ibrushFemaleCheetah) ;

pDC->Rectangle(pDoc->cix->second.getX()-3,
pDoc->cix->second.getY()-3,

. pDoc->cix->second.getX()+3,
pDoc->cix->second.getY()+3);

)//end if NOT_DEAD

)//end for (cix)

updateStatusBar(numMaleAntelope, numFemaleAntelope,
antelopeGeneration, numMaleCheetah, numFemaleCheetah,
cheetahGeneration, simTime);

}

// CAgentGUrview printing

BOOL CAgentGUlView: :OnPreparePrinting(CPrintInfo* plnfo)

return DoPreparePrinting(plnfo);

void CAgentGUlView::OnBeginPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

void CAgentGUlView::OnEndPrinting(CDC* /*pDC*/, CPrintlnfo* /*pInfo*/)

/ CAgentGUlView diagnostics

tifdef _DEBUG
void CAgentGUlView:;AssertValid() const

CView::AssertValid();

void CAgentGUlView: :Dump(CDumpContext& dc) const

CView::Dump(dc);

CAgentGUIDoc* CAgentGUlView::GetDocument0 ■ // non-debug version is inline

ASSERT (m_pDocument->IsKindOf (RUNTIME_CLASS(CAgentGUIDoc))) ;
return (CAgentGUIDoc*)m_pDocument;

ftendif //.DEBUG

/ CAgentGUlView message handlers

void CAgentGUlView: :OnTimer(UINT nIDEvent)

CRect rect;
GetClientRect (Street) ;
CAgentGUIDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

pDoc->moveAllAnimals();
pDoc->antelopeSensing(simulationTime);
pDoc->cheetahSensing(simulationTime) ;

InvalidateRect(rect);
CView: :OnTimer (nIDEvent);

}

void CAgentGUlView: :OnRunSimulation()

void CAgentGUlView: :OnSpeedFast()

KillTimer(O);
loopSpeed = FAST_SIMULATION_SPEED;
OnRunSimulation();

void CAgentGUlView: :OnSpeedMedium{)

KillTimer(O);
lOOpSpeed = MEDIUM_SIMULATION_SPEED;
OnRunSimulation();

void CAgentGUlView: :OnSpeedSlow{)

KillTimer(O);
loopSpeed = SLOW_SIMULATION_SPEED;
OnRunSimulation();

void CAgentGUlView: :OnUpdateRunSimulation(CCmdUI* pCmdUI)

pCmdUI->SetCheck(simulationOn == true),-

void CAgentGUlView: :OnUpdateStopSimulation(CCmdUI* pCmdUI)

pCmdUI->SetCheck (simulationOn == false);

void CAgentGUlView: :OnUpdateSpeedFast(CCmdUI* pCmdUI)

pCmdUI->SetCheck(loopSpeed == FAST_SIMULATION_SPEED) ;

void CAgentGUlView: :OnUpdateSpeedMedium(CCmdUI* pCmdUI)

pCmdUI->SetCheck (loopSpeed == MEDIUM_SIMULATION_SPEED) ;

void CAgentGUlView: :OnUpdateSpeedSlow(CCmdUI* pCmdUI)

pCmdUI->SetCheck<loopSpeed == SLOW_SIMULATION_SPEED) ;

void CAgentGUlView: :OnLButtonDown(UINT nPlags, CPoint point)

statisticsOn = (statisticsOn == false);

CView::OnLButtonDown(nFlags, point);

65

#if !defined MY_TIMER
«define MY_TIMER
SetTimer (0, loopSpeed, NULL);

ttendif

simulationOn

return;

true;

void CAgentGUlView::OnStopSimulation()
{

KillTimer(O);

simulationOn = falser-

return;
}

void CAgentGUlView::OnStepSimulation()
<

#if defined MY_TIMER
KillTimer(O);

»endif

simulationOn = false;

CRect rect;
GetClientRectt&rect);

CAgentGUIDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

pDoc->moveAllAnimals();
pDoc->antelopeSensing(simulationTime);
pDoc->cheetahSensing(simulationTime);

InvalidateRect(rect);

return;

void CAgentGUlView::OnToggle()
{

if(simulationOn)
{

OnStopSimulationO ;
simulationOn = false;

}
else
{

OnRunSimulation{);
simulationOn = true;

void CAgentGUlView::OnLButtonUp(UINT nFlags, CPoint point)
(

CView::OnLButtonUp(nFlags, point);
)
//
// Method: updateStatusBarO
// Parameters: none
// Return val: none
// Purpose: Updates the numbers of each animal indicated in the Status
// bar (lower left hand side of the window
//
void CAgentGUlView::updateStatusBar(int numMaleAntelope,

int numFemaleAntelope, int antelopeGenerations,
int numMaleCheetah, int numFemaleCheetah,
int cheetahGenerations, int simTime)

{
//get a pointer to the window using the global AfxGetAppO
//function
CKainFrame* p_mFrame = (CMainFrame*)AfxGetAppO->m_pMainWnd;

//CString object is required to print in the status bar - we will
//convert int's to a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = "Antelope - M: ■;

//convert the numMaleAntelope to a string and append it to numbers
integerToString(numMaleAntelope, numbers);

//add the Female count to numbers string
numbers += "F: ";
integerToString(numFemaleAntelope, numbers);

//add the Antelope generation count to numbers string
numbers += "G: ";
integerToString(antelopeGenerations, numbers);

//add the Cheetah Male and Female counts to numbers string
numbers += " Cheetah - M: ";
integerToString(numMaleCheetah, numbers);

numbers += "F: ";
integerToString(numFemaleCheetah, numbers);

//add the Cheetah generation count to numbers string
numbers += "G: ";
integerToString(cheetahGenerations, numbers);

numbers +5= • Simulation Time: ";
integerToString(simTime, numbers);

//call MainFrame's SetPaneText() method, passing the pane# (0)
//we want to change, and the new value it should reflect
p_mFrame->SetPaneText(0, numbers);

//
// Method: integerToStringO
// Parameters: int number - number of which ever animal is passed
II CString numbers - string representation of our population

// Return val: none
// Purpose: Converts our animal numbers into a string of integers for
// use in the status bar. // __

void CAgentGUIView: .-printAntelopeStatistics (CDC *pDC)

CAgentGUIDoc* pDoc = GetDocument() ;
ASSERT_VALID(pDoc);

//CString object is required to print in the status bar - we will
//convert int's to a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = "Antelope die: A: ■;

//convert the numMaleAntelope to a string and append it to numbers
integerToString(pDoc->antelopeDieOfAge, numbers);

//add the Female count to numbers string
numbers += "P: ■;
integerToString(pDoc->antelopeKilled, numbers);

//add the Female count to numbers string
numbers += "IM: ■;
integerToString(pDoc->antelopeDiesAsInfant, numbers);

pDC->SetTextColor (RGB (0,0.0));
pDC->TextOut (200, 20, numbers);

//add the Female count to numbers string
numbers = -Antelope Born: ";
integerToString(pDoc->numAntelopeCreated, numbers);

pDC->SetTextColor (RGB (0,0,0));
pt>C->TextOut (200, 35, numbers);

// ___
// Method: integerToStringO
// Parameters: int number - number of which ever animal is passed
II CString numbers - string representation of our population

// Return val: none
// Purpose: Converts our animal numbers into a string of integers for

int digits = 1;
int quotient;

f (num / FIVE_DIGITS > 0)

divisor = FIVE_DIGITS;
digits = 5;

else if (num / F0UR_DIGITS > 0)

divisor = FOUR_DIGITS;
digits =4;

else if (num / THREE_DIGITS > 0)

divisor = THREE_DIGITS;
digits = 3;

else if (num / TWO_DIGITS > 0)

divisor = TWO_DIGITS;
digits = 2;

else if (num / ONE_DIGIT > 0)

divisor = ONEJDIGIT;
digits = 1;

for (int ix=0; ix<digits; ix++){
switch (Quotient = (int) num/divisor){

case 0:
■0*;

■1';

numbers +=
break;

case 1:
numbers +=
break;

case 2:
numbers +=
break;

case 3:
numbers +=
break;

case 4:
numbers +=
break;

case 5:
numbers +s=
break;

case 6:
numbers += '6■;
break;

case 7:
numbers += '7*;
break;

case 8:

■5';

//
//-

use in the status bar.

void CAgentGUIView:rprintCheetahStatistics (CDC *pDC)

CAgentGUIDoc* pDoc = GetDocument();
ASSERT_VALID(pD0C);

//CString object is required to print in the status bar - we will
//convert int's to a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = "Cheetah die: A: ";

//convert the numMaleAntelope to a string and append it to numbers
integerToString(pDoc->cheetahDieOfAge, numbers);

//add the Female count to numbers string
numbers += "S: ";
integerToString(pDoc->cheetahDieOfStarvation, numbers);

//add the Female count to numbers string
numbers += "IM: ";
integerToString(pDoc->cheetahDiesAsInfant, numbers) ;

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 440, numbers);

//add the Female count to numbers string
numbers = "Cheetah Born: ■;
integerToString(pDoc->numCheetahCreated, numbers);

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 455, numbers);

//add the Female count to numbers string
numbers = "Failed Chases: ";
integerToString(pDoc->numUnsuccessfulChase, numbers);

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 470, numbers);

//
// Method: integerToStringO
// Parameters: int number - number of which ever animal is passed
II CString numbers - string representation of our population

// Return val: none
// Purpose: Converts our animal numbers into a string of integers for
// use in the status bar.
//-
void CAgentGUIView::integerToString(int num, CString ^numbers)

int divisor = 1;

numbers += '8*;
break;

case 9:
numbers += '9' ;
break;

num -= quotient*divisor;
divisor /= 10;

numbers += ■ ■;
}//end integerToStringO

// EXECUTIVE SUMMARY
//File Name: AgentGUIDoc.h
//
//Authors:
//
//
//Description
//
//March 1999, Master Thesis
//**** **** ***

Mark A. Boyd; maboydebigfoot.com
Todd A. Gagnon; todd6gagnon.com

interface of the CAgentGUIDoc class

65

»include <map>
«include "Animal.h"
»include "Antelope.h"
»include "Cheetah.h"

»if
!äe£ined(AFX_AGENTGUIDOC_H_99A2849B_8631_llD2 889B OOOOF8092715
 INCLBDECL)

»define AFX_AGENTGaiDOC_H_99A2819B_8631 11D2_889B OO0OF8092715
 INCLUDED.

»if _MSC_VER >= 1000
»pragma once
»endif // _MSC_VER >= 1000

using namespace std;

typedef map<int, Antelope> POSITION2ANTELOPE;
typedef map<int, Cheetah> P0SITI0N2CHEETAH;

»define FIVE_DIG1TS 10000
»define FODE_DIGITS 1000
»define THREE_DIGITS 100
»define TW0_D1GITS 10
»define 0NE_DIGIT 1

class CAgentGUIDoc : public CDocument
{

protected: // create from serialization only
CAgentGUIDoc();
DECLARE_DYNCREATE(CAgentGUIDoc)

// Attributes
public:

P0SITI0N2ANTEL0PE antelopeMap;
P0SITI0N2CHEETAH cheetahMap;

POSITION2ANTELOPE tempAntelopeMap;
P0SITI0N2CHEETAH tempCheetahMap;

P0SITI0N2ANTEL0PE::iterator aix;
P0SITI0N2CHEETAH::iterator cix;

P0SITI0N2ANTEL0PE::iterator taix;
P0SITI0N2CHEETAH::iterator tcix;

int antelopeDiesAsInfant,
antelopeDieOfAge,
antelopeKilled,
numAntelopeCreated,
cheetahDiesAsInfant,
cheetahDieOfAge,
cheetahDieOfStarvation,
cheetahKilled,
numCheetahCreated,
numUnsuccessfulChase;

// Operations
public:

public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchiveS ar);

// Implementation
public:

void ntoveAllAnimalsO;
void antelopeSensing(int simTime);
void cheetahSensing(int simTime);

virtual -CAgentGUIDoc();
«ifdef _DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) const;

tendif

protected:

// Generated message map functions
protected:

DECLARE_MESSAGE_MAP()

}//end while
antelopeMap.insert (POSITION2ANTELOPE::value„type

(tempAntelope.getLocationt), tempAntelope));

}//end for (antelopeNum)

//Create a group of initial Cheetah
for (int cheetahNum = 0; cheetahNum < NUM_CHEETAH; cheetahNum++)
{

Cheetah tempCheetah;

if (tempCheetah.getGenderO =« FEMALE)
tempCheetah.pregPtr = new Pregnancy;

while(cheetahMap.find(tempCheetah.getLocation()) !=
chee tahMap.end())

{
tempCheetah.avoidCollisionO ;

}//end while
cheetahMap.insert(POSITION2CHEETAH::value_type(

tempCheetah.getLocationt), tempCheetah));

}//end for (cheetahNum)

antelopeDiesAsInfant = 0
antelopeDieOfAge = 0
antelopeKilled *= 0
numAntelopeCreated - 0
cheetahDiesAsInfant = 0
cheetahDieOfAge = 0
cheetahDieOfStarvation = 0
cheetahKilled = 0
numCheetahCreated - 0
numUnsuccessfulChase = 0

CAgentGUIDoc::-CAgentGUIDoc()
{
)
BOOL CAgentGUIDoc::OnNewDocument()
{

if (SCDocument::OnNewDocument())
return FALSE;

return TRUE;

// CAgentGUIDoc serialization
void CAgentGUIDoc::Serialize(CArchive& ar)
{

if (ar.IsStoringO)
{
}
else

«endif

// ****** ** *.**.********* *****
II EXECUTIVE SUMMARY
//File Name: AgentGUIDoc.cpp
//
//Authors: Mark A. Boyd; maboyd@bigfoot.com
// Todd A. Gagnon; todd@gagnon.com
//
//Description: implementation of the CAgentGUIDoc class
//
//March 1999, Master Thesis
//********* *******
«include <ctime>
«include "stdafx.h"
«include "AgentGUI.h-
»include "MainFrm.h"

«include "AgentGUIDoc.h"

«ifdef _DEBUG
«define new DEBUG_NEW
«undef THIS_FILE
static char THIS_FILE[J =
«endif

FILE

IMPLEMENT_DYNCREATE(CAgentGUIDoc, CDocument)

BEGIN_MESSAGE„MAP(CAgentGUIDoc, CDocument)

END_MESSAGE_MAP()

// CAgentGUIDoc construction/destruction

CAgentGUIDoc::CAgentGUIDoc()
{

srand((unsigned)time(NULL));
rand();

//Create a group of initial Antelope
for (int antelopeNum = 0; antelopeNum •
{

Antelope tempAntelope;

NUM_ANTELOPE; antelopeNum++)

if (tempAntelope.getGenderO == FEMALE)
tempAntelope.pregPtr = new Pregnancy;

while(antelopeMap.find{tempAntelope.getLocationt)) !=
antelopeMap.end())

(
tempAntelope.avoidCollisionO ;

// CAgentGUIDoc diagnostics
«ifdef _DEBUG
void CAgentGUIDoc::AssertValid() const

CDocument::AssertValid();

void CAgentGUIDoc::Dump(CDumpContextt dc) const
(

CDocument::Dump(dc);

«endif //„DEBUG

// CAgentGUIDoc commands

Function: CAgentGUIDoc::moveAllAnimals
Return Val: None

None
Steps through the list of alive animals
and updates their position, checks age..

Parameter:
Purpose:

67

// //
// // //
// //
void CAgentGUIDoc: :moveAHAnimals()
{
// MOVE ANTELOPE

for (aix = antelopeMap.begin!); aix != antelopeMap.end0 ; ++aix)
(

//Checks to see what the agent's move goal is and moves
switch(aix->second.getNextAction())
!

case A_MATE :
{

aix->second. setSpeedbfNextMove (REGULAR) ;
aix->second.moveTo(aix->second.getMoveToLocation());
break;

>
case A_NOTHING :
X

if(rand() < RAND_MAX/2)
aix->second. setSpeedOfNextMove (REGULAR) ;

else
aix->second. setSpeedOfNextMove (REST) ;

aix->second.move ();
break;

)
case FEED :
{

aix->second.setSpeedOfNextMove (REGULAR) ;
aix->second.moveTo(aix->second.getMoveToLocation());
break;

)
case HERD :

aix->second. setSpeedOf NextMove (REGULAR);
aix->second.moveTo(aix->second.getMoveToLocation()) ;
break;

)
default:// FLEE
{

aix->second.setSpeedOfNextMove (RUN);
aix->second.moveFrom(aix->second.getMoveFromLocation()) ;
break;

)
)//end switch getNextAction()

//test for collisions of agents and adjust one
while(tempAntelopeMap. find(aix->second.getLocation{)) ! =

tempAntelopeMap.endO)
{

aix->second.avoidCollision{);
}//end while
tempAntelopeMap. insert (P0SITION2ANTELOPE: :value_type

(aix->second.getLocation(), aix->second));

}//end for (aix) Antelope Move Loop

antelopeMap = tempAntelopeMap;
tempAntelopeMap.clear();

// MOVE CHEETAH

for (cix M cheetahMap. begin (); cix != cheetahMap.endO; ++cix)
{

//Checks to see what the agent's move goal is and moves accordingl

switch(cix->second.getNextAction)))
{

case C_MATE :
(

cix->second.setEnergyLevel(cix->second.getEnergyLevel() -
CHEETAH_REGULAH_ENERGY_PENALTY) ;

cix->second. setSpeedOfNextMove (REGULAR) ;

cix->second.moveTo(cix->second.getMoveToLocation());
break;

>
case C_NOTHING :
{

i f (cix->second.isResting())
(

)

cix->second.setEnergyLevel (cix->second.getEnergyLevel ()
♦ 4*CHEETAH_REST_ENERGY_GAIN);

cix->second.setSpeedOfNextMove (REST);

else //if not rest then move normally
(

if(rand() < RAND_MAX/2)

// Purpose:
II
II
II

Steps through the list of alive male and female Antelope
and allows them to sense their environment and decide what
to do for their next action

void CAgentGUIDoc::antelopeSensing(int simTime)
<

for (aix = antelopeMap.begin!); aix != antelopeMap.end(); +taix)
(

if ((simTime%365 > ANTELOPE_START_IN_SEASON) && (simTime%187 <
ANTELOPE_STOP_IN_SEASON))

aix->second.setInSeason(true);
else

aix->second.set!nSeason(false);

int upper = MAX_X * MAX_Y,
lower = MINJC * MIN_y,

currentSensingRange = 0;

switch(aix->second.getSpeedOfNextMove())
(

case REST :
{

currentSensingRange = ANTELOPE_REST_SENSING_RANGE;
lower s aix->second.getLocation() - MAX_X •

ANTELOPE_REST_SENSING_RANGE -
ANTELOPE_REST_SENSING_RANGE ;

upper = aix->second.getLocation{) + MAX X *
ANTELOPE_REST_SEKSING_RANGE +
ANTELOPE_REST_SENSING_RANGE;

break;
}
case REGULAR :

{
cix->second.setEnergyLevel

(cix->second.getEnergyLevel() -
CHEETAH_REGULAR_ENERGY_PENALTY) ;

cix->second.setSpeedOfNextMove (REGULAR);
}
else
{

cix->second.se tEnergyLevel
(cix->second.getEnergyLevel() +

CHEETAH_REST_ENERGY_GAIN) ;
cix->second.setSpeedOf NextMove (REST);

)
)
cix->second.move () ;
break;

)
case AVOID :
(

cix->second.setEnergyLevel(cix->second.getEnergyLevel()
CHEETAH_REGULAR_ENERGY_PENALTY) ;

cix->second.setSpeedOfNextMove (REGULAR) ;
cix->second.moveFrom(cix->second.getMoveFromLocation()) ;
break;

)
default://CHASE
{

cix->second.setEnergyLevel (cix->second.getEnergyLevel ()
CHEETAH_RUN_ENERGY_PENALTY) ;

cix->second. setSpeedOf NextMove (RUN);
cix->second.moveTo(cix->second.getMoveToLocation()) ;
break;

)
} I lend switch getNextAction ()

//test for collisions of agents and adjust one
while(tempCheetahMap.find(cix->second.getLocation()) !=

tempCheetahMap.end())
(

cix->second.avoidCollision();
)I lend while
tempCheetahMap.insert (POSITION2CHEETAH: :value_type

(cix->second.getLocation(), cix->second));

)//end for (cix) Cheetah Move Loop

cheetahMap = tempCheetahMap;
tempChee tahMap. clear {);

) I lend CAgentGUIDoc: :moveAllAnimals ()

//
// Function: CAgentGUIDoc: :antelopeSensing()
// Return Val: None
// Parameter: None

lower = MIN_X * MIN_Y;
if (upper > MAX_X * MAX_Y)

upper = MAX_X * MAX_Y;

int partnerMoveToDistance = 100;
int friendMoveToDistance = 100;
bool mated - false;
bool foundPartner = false;
bool foundFriend s= false;

for (taix = antelopeMap.lower_bound(lower); taix ! =
antelopeMap.upper_bound(upper); ++taix)

if (abs (aix->second.getX ()
currentSensingRange)

taix->second.getX()) <=

(
currentSensingRange = ANTELOPE_REGULAR_SENSING_RANGE;
lower = aix->second.getLocation() - MAX X »

ANTELOPE_REGOLAR_SENSING_RANGE -
ANTELOPE_REGULAR_SENSING_RANGE ;

upper = aix->second.getLocation() + MAX_X *
ANTELOPE_REGULAR_SENSING_RANGE ♦
ANTELOPE_REGULAR_SENSING_RANGE;

break;
)
default://case RUN
(

currentSensingRange = ANTELOPE_RUN_SENSING_RANGE;
lower = aix->second.getLocation() - MAX_X *

ANTELOPE_RUN_SENSING_RANGE -
ANTELOPE_RUN_SENSING_RANGE;

upper = aix->second.getLocation() + MAX X *
ANTELOPE_RUN_SENSING_RANGE *
AHTELOPE_RUN_SENSING_RANGE;

break;
>

)I lend switch

if (lower < MIN_X * MIN_Y)
68

i f <aix->second-getldNvm () != taix->second.getldNum())

if(taix->second.isDead() &&
(taix->second.getDeathIndicator() == PREDATOR))
aix->second.setPredatorKnowledge(TRUE);

if taix->second.canMate(taix->second) && !mated)

mated = true;
aix->second.mate{taix->second);
aix->second.setNextAction(FEED);

>//end if
else if(aix->second.mateEligible(taix->second))
(

foundPartner = true;
if(aix->second.getDistance(taix->second) <

partnerMoveToDistance)
{

partnerMoveToDistance =
aix->second.getDistance (taix->second) ;

aix->second.setMoveToLocation
(taix->second.getLocation());

}//end if
aix->second.setNextAction(A_MATE);

}//end else if mateEligible(taix)
else if('foundPartner)
{

if({aix->second.getDistance(taix->second) <
friendMoveToDistance) &&
(aix->second.getDistance(taix->second) >

FRIEND_STANDOFF_DISTANCE))
{

foundFriend = true;
friendMoveToDistance =

aix->second.getDistance(taix->second);
aix->second.setMoveToLocation

(taix->second.getLocation());
aix->second.setNextAction(HERD);

}//end if
}//end else if

}//end if getldNumO

>//end if <aix->getX)

)//end for taix Antelope Map - sense other antelope

int foodDistance =
foodLocation;

10000,

for(int ix =0; ix < 10; ix++)

while(aix->second.distanceFroinFood(FOOD_LOCATlON[ix]) <
foodDistance)

foodDistance = aix->second.distanceFromFood
(FOOD_LOCATION[ix]);

foodLocation = FOOD_LOCATION[ix];
>//end while

}//end for

//if your not going to mate, if you haven't found found
// a friend or 1/2 the time
// when you have found a friend antelope will move to food
if(!foundPartner)
{

if(!foundFriend]| (randO < RAND_MAX/2))
{

if{foodDistance < FOODJRANGE)
aix->second.setNextAction(A_NOTHING>;

else
{

aix->second.setMoveToLocation(foodLocation);
aix->second.setNextAction(FEED);

}//end else
}//end if

}//end if

int tempMoveDistance = 100;

//check for predators if predator knowledge = true
if (aix->second.getPredatorKnowledge())

for (tcix = cheetahMap.lower_bound(lower); tcix !=
cheetahMap.upper_bound(upper); ++tcix)

if(abs(aix->second.getX() - tcix->second.getX()) <=
currentSensingRange)

if (aix->second.getDistance(tcix->second)< teinpMoveDistance)

{
tempMoveDistance = aix->second.getDistance

(tcix->second);
aix->second.setMoveFromLocation

{tcix->second.getLocation(J);
}//end if

antelopeDieOfAge++;

//Last thing we do is check to make sure the antelope didn't die
//two time steps ago. if so take out of world otherwise increment

//counterthis allows the other animals to sense this one and
//learn how it died

if ((aix->second.getDeathlndicatorO != NOT_DEAD) &&
(aix->second.getDeathCounter0 < 2))

aix->second.setDeathCounter{aix->second.getDeathCounter{) + 1);
while(tempAntelopeMap.find(aix->second.getLocation{)) !=

tempAntelopeMap.endO)
{

aix->second.avoidCollision();
>//end while

tempAntelopeMap.insert < POSITION2ANTELOPE::value_type
(aix->second.getLocation(), aix->second));

}//end if getDeathlndicatorO
else if(aix->second.getDeathlndicatorO == NOT_DEAD)

while(tempAntelopeMap.find(aix->second.getLocation()) !=
tempAntelopeMap.end())

(
aix->second.avoidCollision();

}//end while
tempAntelopeMap.insert(POSITION2ANTELOPE::value_type

(aix->second.getLocation(), aix->second));
}//end if else getDeathlndicatorO

>//end for taix) Antelope Sensing Loop

// antelopeMap.clear 0;
antelopeMap = tempAntelopeMap;
tempAnte1opeMap.clear();

}//end CAgentGUIDoc::antelopeSensing()

//
// Function: CAgentGUIDoc::cheetahSensing()
// Return Val: None
// Parameter: None
// Purpose: Steps through the list of alive male and female Cheetah
// and allows them to sense their environment and decide what
// to do for their next action
//-
void CAgentGUIDoc::cheetahSensing(int simTime)

for (cix = cheetahMap. beginO; cix != cheetahMap.endO; ++cix)
{

if (cix->second. isRestingO)

if(cix->second.getEnergyLevelO > CHEETAH_RESUME_HUNTING_LEVEL) (9

aix->second.setNextAction{FLEE);
}//end if aix->getx{)

)//end for tcix - CheetahMap - sense cheetahs
}//end if (aix->second.getPredatorKnowledgeO

//NOW THAT THEY HAVE SENSED AND DECIDED WHAT TO DO, DO IT
//ANTELOPE ACTION
if(aix->second.isPregnant())

if<aix->second.pregPtr->gestationTime== ANTELOPE_GESTATION_PERIOD)

int litter = aix->second.litterSize();

numAntelopeCreated += litter;

Antelope *babyAntelope;
1; ix litter; ix++) for {int ix :

babyAntelope = aix->second.giveBirth
(aix->second.pregPtr->maleSpeed,

aix->second-getMaxSpeed{),
aix->second.getGeneration{),

aix->second.getLocation{));

i f{babyAntelope->diesAsInfant())

babyAntelope->setDeathIndicator(INFANT_MORTALITY);
antelopeDiesAsInfant++;

)
if {babyAntelope->getGender() =^ FEMALE)

babyAntelope->pregPtr = new Pregnancy;
while(tempAntelopeMap.find{babyAntelope->getLocation()) !=

tempAntelopeMap.end())
{

babyAntelope->avoidCollision();
}//end while
tempAntelopeMap.insert(POSITION2ANTELOPE::value_type

(babyAntelope->getLocation(), *babyAntelope));
)7/end for (ix) - create litter of size litter

aix->second.setPregnant(false);
}//end if pregancy gestation time > ANTELOPE_GESTATION_TIME
else
{
aix->second.pregPtr->gestationTime++;
}//end else

}//end if aix->isPregnant{)

aix->second.grow01der{);

//check age and if over MAX_AGE then set deathlndicator to OLD_AGE
if(aix->second.getAge() == MAX_ANTELOPE_AGE)

aix->second.setDeath!ndicator(OLD_AGE);

numUnsuccessfulChase++;
cix->second.setRest(false);

>
}
else
(

if {(simTime%365 > CHEETAH_START_IN_SEASON) && {simTime%365 <
CHEETAH_STOP_IN_SEASON))

cix->second.setInSeason(true);
else

cix->second.setInSeason(false);

int upper,
lower,
currentSensingRange;

switch(cix->second.getSpeedOfNextMove())
{

case REST :

currentSensingRange = CHEETAH_REST_SENSING_RANGE;
lower = cix->second.getLocation() - MAX_X *

CHEETAH_REST_SENSING_RANGE -
CHEETAH_REST_SENS ING_RANGE;

upper = cix->second.getLocation() + MAXJK *
CHEETAH_REST_SENSING_RANGE +
CHEETAH_REST_SENSING_RANGE;

break;
}
case REGULAR :

currentSensingRange = CHEETAH_REGULAR_SENSING_RANGE;
lower = cix->second.getLocation() - MAX_X *

CHEETAH_REGULAR_SENSING_RANGE -
CHE£TAH_REGULAR_SENSING_RANGE;

upper = cix->second.getLocation() + MAX_X *
CHEETAH_REGULAR_SENSING_RANGE +
CHEETAH_REGULAR_SENSING_RANGE;

break;
)
default://case RUN
{

currentSensingRange = CHEETAH_RUN_SENSING_RANGE;
lower = cix->second.getLocation() - MAX_X *

CHEETAH_RUN_SENSING_RANGE -
CHEETAH_RUN_SENSING_RANGE;

upper = cix->second.getLocation{) + MAX_x *
CHEETAH_RUN_SENSING_RANGE +
CHEETAH_RUN__SENSING_RANGE;

break;
)

}//end switch getSpeedofNextMove

//ensure we aren't trying to sense outside the world

if (lower < MIN_X * MIN_Y)
lower = MIN_X * MIN_Y;

if (upper > MAX_X * MAX_Y)
upper = MAX_X * MAX_Y;

int partnerMoveToDistance = 1000;
int avoidDistance = CHEETAH_AVOID_RANGE;
bool foundPartner = false;
bool mated = false;
bool avoidCheetah = false;

//sense other cheetah
//still only sensing inside range
for (tcix = cheetahMap.beginU; tcix
{

cheetahMap.end{); ++tcix)

tcix->second.getldNum()) i f(cix->second.getldNum()
{

if (cix->second.canMate(tcix->second) && »mated)
{

mated = true;
cix->second.mate(tcix->second);
cix->second.setNextAction(C_NOTHING);

)//end if canMatet)
else if(cix->second.mateEligible{tcix->second))
{

foundPartner « true;
if(cix->second.getDistance(tcix->second) <

partnerMoveToDis tanee)
{

partnerMoveToDistance =
cix->second.getDistance(tcix->second);

cix->second.setMoveToLocation
(tcix->second.getLocation()) ;

}//end if getDistance(tcix)
cix->second.setNextAction(CJMATE);

}//end else if mateEligible(tcix)
else if (Jmated && [foundPartner &&

(cix->second.getDistance
(tcix->second) < avoidDistance))

{
avoidCheetah = true;
avoidDistance = cix->second.getDistance

(tcix->second);
cix->second.setMovePromLocation

(tcix->second.getLocation{));
cix->second.setNextAction(AVOID);

}//end else if (itempMateFlag)

}//end if getldNum()

if(!foundPartner && JavoidCheetah)
cix->second.setNextAction(C_NOTHING);

)//end for (tcix) cheetahMap - sense other cheetahs

int preyMoveToDistance = 1000;

int litter = cix->second.litterSize();

Cheetah 'babyCheetah;
for (int ix = 1; ix <= litter; ix++)
{

numCheetahCreated++;

babyCheetah = cix->second.giveBirth
(cix->second.pregPtr->maleSpeed,
cix->second.getMaxSpeed(),
cix->second.getGeneration(),
cix->second.getLocation()};

i f(babyCheetah->diesAsInfant())

}

babyCheetah->setDeathIndicator(INFANT_MORTALITY);
cheetahDiesAsInfant++;

if (babyCheetah->getGender() == FEMALE)
babyCheetah->pregPtr = new Pregnancy;

while(tempCheetahMap.find(babyCheetah->getLocation()) J=
tempCheetahMap.end())

{
babyCheetah->avoidCollision();

>//end while
tempCheetahMap.insert(POSITION2CHEETAH: :value_type

(babyCheetah->getLocation(>, *babyCheetah)7;

)//end for (ix) create litter of size litter

cix->second.setPregnant(false);

}//end if pregPtr->gestationTime() == CHEETAH_GESTATION_TIME
else ~
('

cix->second.pregPtr->gestationTime++;
}//end else pregPtr->gestationTime() != CHEETAH_GESTATION_TIME

}//end if cix->ifPregnant()

cix->second.growOlder();

//check age and if over MAX_AGE then set deathlndicator to OLD AGE
if (cix->second.getAge() =*= MAX_CHEETAH_AGE)

}

cix->second.setDeathlndicator(OLD_AGE);
cheetahDieOfAge++;

if{(cix->second.getEnergyLevel() < CHEETAH_STARVATION_LEVEL) &.&
(cix->second.getDeathIndicator() == NOT_DEAD))

{
cix->second.setDeathlndicator(STARVATION);
cheetahDieOfStarvation++;

)

if (!foundPartner && !(cix->second.isResting()) &&
(cix->second.getEnergyLevel() < CHEETAH_HIGH_ENERGY_LEVEL))

(
//now sense antelope in world
for (taix = antelopeMap.lowerJbound(lower); taix !=

antelopeMap.upper_bound(upper); ++taix)
{

ifUabs(cix->second.getX() - taix->second.getX()} <=
currentSensingRange) &&
(taix->second.getDeathIndicator() == N0T_DEAD))

{
if(cix->second.canKill(taix->second))
{

cix->second.setEnergyLevel
(cix->second.getEnergyLevel() +
CHEETAH„ENERGY_BOOST);

' taix->second.setDeathIndicator{PREDATOR);
antelopeKilled++;
cix->second,setNextAction(C_NOTHING);

}//end if canKill()
else
{

if(cix->second.getDistance(taix->second) <
preyMoveToDis tance)

{
preyMoveToDistance =

cix->second.getDistance(taix->second>;
cix->second.setMoveToLocation

(taix->second.getLocation());
}//end if getDistance

cix->second.setNextAction (CHASE) ;
}//end if else canxill(taix)

}//end if cix->getX()

//check to make sure still has enough energy to hunt
if(cix->second.getEnergyLevel{) <

CHEETAH_STOP_HUNTING_LEVEL)
{

cix->second.setRest(true) ,-
cix^->second.setNextAction(C_NOTHING);

)//end if

}//end for taix AntelopeMap - cheetah sensing antelope

}//end if {»foundPartner)

)//end else if isRestingO

//PUT IN CHEETAH ACTION CODE

if(cix->second.isPregnant())
{

if(cix->second.pregPtr->gestationTime==CHEETAH_GESTATION_PERIOD)

//last thing we do is check to make sure the antelope didn't die two
//time steps ago. if so take out of world otherwise increment counte

//this allows the other animals to sense this one and learn how it di

if ((cix->second.getDeathIndicator() != NOT_DEAD) &&
(cix->second.getDeathCounter() < 2))

{
cix->second.setDeathCounter(cix->second.getDeathCounter() + 1);

while(tempCheetahMap.find{cix->second.getLocation()) !=
tempCheetahMap.end())

{
cix->second.avoidCollision();

}//end while
tempCheetahMap.insert(POSITION2CHEETAH::value_type

(cix->second.getLocation(), cix->second));
}//end if getDeathlndicatort)
else if (cix->second.getDeathlndicatort) == NOT_DEAD)
{

while(tempCheetahMap.find(cix->second.getLocation()) ! =
tempCheetahMap.end())

{
cix->second.avoidCollision();

}//end while
tempCheetahMap.insert(POSITION2CHEETAH::value_type

(cix->second.getLocation(), cix->second));
}//end if else getDeathlndicatort)

}//end for (aix) Antelope Sensing Loop

cheetahMap = tempCheetahMap;
tempCheetahMap.clear{);

)//end CAgentGUIDoc::cheetahSensing();

70

BAMBOO IMPLEMENTATION

FUNCTION PROTOTYPE SPECIFICATIONS

class AGENT_API npsAgent : public npsGeometry,
public bbSafeClass<npsAgent>,
public bbListedClass<npsAgent>.
public bbNamedObject

private:
char "agentType;
int speed.

age.
sensingRange
energyLevel;

bool remove;

agentReletionsVector taiownPredators,
knovnPrey,
knownFriends,
knownEnemies,
knownFood,
unknownAgents;

npsAgent{);
// disable default construtor

protected:
// Never create protected member variables as they »ay
// be corrupted by threads accessing them via objects
// instantiated from derived classes. Note that even
// internal routines must be concious when accessing
// them directly.

npsAgent(bbCallbackFunc *callbackFunc);
// contruetor for derived agent

virtual -npsAgent(J « 0;
// Destruct a device object

//get distance between two agents
float getDistancefnpsAgent (agent);
float getDistanceFroniLocation(npsVec3f location);

void setAgentType(char "at);
char* getAgentTypeO;
bool isSameAgentType(npsAgent *agent);

void addToPredators(char *name);
void addToFriendsCchar •name);
void addToEnemiesCchar 'name};
void addToFood(char *name);
void addToUnknown(char "name);

void setRandomPosition();

71

// EXECUTIVE SUMMARY
// Module Name: npsAgent.h
//
// Authors: Mark A. Boyd maboydSbigfoot.com
// Todd A. Gagnon todd8gagnon.com
//
// Description: Declaration for the npsAgent class. This abstract class
// implements the base functionality used by all agents

// March 1999 Master Thesis
It ****••• *•*•* *....*.*..* ***** ******

tifndef _npsAg«nt_h
tdefine _npsAgent_h

// "* ** *******.**...*.*.**.,
// INCLUDES AND EXTERNS // * ..*-*-*.......*.***..-.......*-*-* .*..*-

linclude
•include
•include
linclude
•include
linclude
linclude
linclude
•include

'bbThread.h"
' npsGeomet ry. h "
bbSafeClass.h*
bbNamedObject.h"
bbListedClass.h"
npsVisualApi .h"

1 vector, h"
npsAgentApi.h"
snath. h>

fl **....*..***..*..**..*.*..*.*»—**••*•**•—*••**•«
•define X 0
•define Y 1
•define Z 2
•define MIN_X -50
•define MAX_X 50
•define MIN_Y -50
•define MAX_Y 50
»define MIN_2 -50
•define MAX_Z 50

enum AGENT_RELATIONSHIPS {PREDATOR, ENEMY, FRIENDLY, FOOD, UNKNOWN);
typedef vector<char*> agentRelationsvector;

class npsAgent;

»ifdef _npsAgent_c
ACE_EXPORT_SINGLETON_DECLARATION(bbSafeClass<npsAgent>);
ACE_EXPORT_SINGLETON_DECLARATION(bbListedClass<npsAgent>);

•else
ACE_IMPORT_SINGLETON_DECLARATION(bbSafeClass<npsAgent>) ;
ACE_IMPORT_SINGLETON_DECLARATION(bbListedClass<npsAgent>) ;

•endif

void setSpeed (int s),-
int getSpeed (};

void setAge (int a);
int getAge();
void gxow01der();

void setSensingRange(int sr);
int getSensingRange();

void setEnergyLeveKint el);
int getEnergyLevel() ;

void setRemoveO;
bool getRemove();

AGENT_RELATIONSHIPS npsAgent: :getRelationship (npsAgent »agent);

virtual void updatePositiontint time) ■ 0;
virtual void sense(int time) ■ 0;
virtual bool isKilled(npsAgent tagent) = 0;

//general utilities that might be useful
double rayRand ();
char* npsAgent::integerToString(int inNum);

// INLINED MEMBER FUNCTIONS
n ..•..••.....••„•..**.•.•*.*••...••..***—*

inline void npsAgent::setAgentType(char *at)
I

agentType = at;
)
inline char* npsAgent::getAgentTypeO
(

return(agentType);
)
inline void npsAgent::setSpeed (int s)
(

speed = s;
)
inline int npsAgent::getSpeed ()
(

return speed;
)
inline void npsAgent::setAge {int a)
(

age - a;
)
inline int npsAgent::getAge()

return age;
}

inline void npsAgent::grow01der()
t

age++;
)
inline void npsAgent::setSensingRange(int sr)
t

sensingRange = sr:
)
inline int npsAgent::getSensingRange()
{

return sensingRange;
)
inline void npsAgent::setEnergyLevel(int el)
{

energyLevel »el;
)
inline int npsAgent::getEnergyLevel()
(

return energyLevel;
)
inline void npsAgent::setRemove{)
{

remove ■ true;
)
inline bool npsAgent::getRemove()
(

return(remove);
J

iendif // _npsAgent„h

//
// EXECUTIVE SUMMARY
// Module Name: npsAgent.c
//
// Authors: Mart A. Boyd maboyd«bigfoot.com
// Todd A. Cagnon todd0gagnon.com
//
// Description: Implementation for the npsAgent class. This abstract class
// implements the base functionality used by all agents

// March 1999 Master Thesis

INCLUDES AND BXTERNS

rand{);
thread = new bbThreadtupdateFunc, 0, CYCLE_RATE, 100.0);
firsttime » 0;

npsAgent::-npsAgent{)
{

//do nothing

//
// Function: npsAgent::getRelationship (bbType)
// Return Val: AGENT.JtELATIONSHIPS
II Parameter: bbType
// Purpose: Allows an agent to get the class type of another
// agent and determine what relationship it has with the
// new agent. If // _

AGENT_RELATIONSHIPS npsAgent::getRelationship (npsAgent "agent)
{

AGEKT_RELATTONSHIPS relationship ■ UNKNOWN;
agentRelationsVector::iterator it;

if < iknownPredators. empty {))
t

for (it ■ knownPredators.begind; it !« knownPredators.endf); it**)
(

if(!{stremp{agent->getAgentType(),»it)))
relationship » PREDATOR;

if(IknownFriends-empty ())
(

for (it - JenownFriends.beginO; it !■ knownFriends.endO; it**)
{

iff! (strcmp(agent->getAgentType().,,it)))

relationship ■ FRIENDLY;

ifCknownEnemies.empty())
(

if(!(strcmp(agent->getAgentType(),"it)))

if(agent->getAgentType()
relationship * ENEMY;

if (lIcnownFood. empty ())

72

»define _npsAgent_c
»include "npsAgent.h"
tinclude <GL/gl.h>

DEFINES & FILE SCOPE VARIABLES

bbThread "thread;

// CODE

void updateFune(bbThread "thread, bbData "data)
{

static int time * 0;
npsAgent "agent, "sensedAgent;

int numAgents » bbListedClass<npsAgent>::getNumObjects();
for (int i - 0; i < numAgents; i++)
(

agent ■ bbListedClass<npsAgent>:;getObject(i);
agent->sense(tiine);

for (int j ■ 0; j < numAgents; j**)
(

agent * bbListedClass<npsAgent>::getObject(j);
agent->updatePosition(time);
if (agent->getRemove())
{

delete agent;
//decrement counters to account for deleted object
j—; numAgents—;

)
if (tirae%100 « 0)
(

cout«"simulation time » ■ « time«endl;
cout«"num Agents = '«numAgents«endl;

J
time**;

npsAgent::npsAgent(bbCallbaekFunc *_callbackFunc)
: npsGeometry(_callbackFunc), speed(-l), age(-l). sensingRange(-l),
energyLeveU-1), agentTypefnpsAgenf)

(
static bool firsttime '■ 1;

// first cheek/set this class's type
if (firsttime)

srandt(unsigned)time(NULL)); //seed the random number generator

for (it « knownFood.beginO; it !■ knownFood.end(); it*+)
(

if(!(strcmp(agent->getAgentType()."it)))
relationship • FOOD;

)

iff iunknownAgents.emptyO)
(

for (it ■ unlcnownAgents.beginO; it ■■ unknownAgents.end(); it++)
{

if(!(strcmp(agent->getAgentType(),"it)))
relationship ■ UNKNOWN;

return (relationship);

//Function: getDistance(npsAgent)
//Return Val: int distance between two agents
//Parameter:
//Purpose: determine distance between two' agents
//
float npsAgent::getDistance(npsAgent iagent)
(

npsvec3f thisPosition, agentPosition;
int xSquare, zSquare;
float answer;

this->getPosition(thisPosition);
agent.getPosition(agentPosition);

xSquare - <thisPosition[X] - agentPositiontX]) • (thisPosition[X]
agentPositiontX]),-

2Square = (thisPosition[Z] - agenCPositionIZ]) • (thisPositiontZO
agentPosition[Z]);

answer - (sqrt(xSquare + zSguare));

return (answer);

)//end npsAgent::getDistance()

// -
//Function: distanceFromLoeation()
//Return Val: int between animal and food
//Parameter:
//Purpose: determine distance between animal and food //
float npsAgent::getDistaneeFromLocation(npsVec3f location)
(

npsVec3f thisPosition;
int xSquare, zSquare;
float answer;

this->getPosition(thisPosition);

(thisPositiontX] -

(thisPositiontZ] -

xSquare = (thisPositiontX] - loeation[X])
locationrx]);

zSquare ■ (thisPosition[Z] - location[Z))
loeationfZ]);

answer * (sort(xSquare + zSquare));

return (answer),-

}//end npsAgent::distanceFromLocation()

// - - "
//Function: isSameAgentType(npsAgent»)
//Return Val: bool
//Parameter: npsAgent
//Purpose: return true if the passed agent is the same type as this

// - "
bool npsAgent: :isSameAgentType(npsAgent *agent)

(
retum(this->getAgentType() ■■ agent->getAgentType());

}//end npsAgent::isSameType()

// " " "
//Function: setRandomLocation()
//Return Val:
//Parameter:
//Purpose: allows an agent to be placed in a random location. The
// altitude remains constant at three so if you want to set
// a random altitude as well then you must overload this func
// -
void npsAgent::setRandomPosition()

I
npsVec3f position;

float x, y, X = 0.0;

X - M3N_X + myRandO • (MAX_X - MN_X);
X - MIN_Z «• myRandO * (HAX_Z - MIN_Z);
//use constant altitude for now

position.set(x,y.z);
this->setPosition(position);

//
//Function: addToPredator(char*)
//Return Val:
//Parameter: char* - agentType
//Purpose: will add the agentType to vector of known predators
//-
void npsAgent: :addToPredators(char »name)

(
knownPredators.insert(knownPredators.end(), naaie);

randomNumber = rand()/double(RAND_MAX);

return randomNumber,-

}//end Animal ::»yRand()

//
// Method: integerToStringO
// parameters: int number - number id which ever animal is passed
// Return val: char*
// Purpose: Can be used by agent classes to convert integers to string
// values
//-
char* npsAgent::integerToString(int inNum)

{
int divisor • 1;
int digits ■ 1;
int quotient;

if (inNum / 10000 > 0)
{

divisor = 10000;
digits « 5;

else if (inNum / 1000 > 0)

divisor - 1000;
digits * 4;

else if (inNum / 100 > 0}

divisor
digits ■ 3;

J
else if (inNum / 10 > 0)
{

divisor - 10;
digits B 2;

)
else if (inNum / 1 > 0)
{

divisor =1;
digits - If

char outNum f64];
strcpy(outNum, *■);
for {int ix«0; ix<digits; ix++)(

switch (quotient = (int) inNum/divisor){
case 0:

strcat{outNum, "0');
break;

case 1:
l");

street(outNum, "2");

strcatloutNum,
break;

73

// "
//Function: addToFriends[char")
//Return Val:
//Parameter: char* - agentType
//Purpose: will add the agentType to vector of known Friends
//
void npsAgent::addToFriends(char *name)

(
knownFriends.insert(knownFriends.end(), name);

//- "
//Function: addToEnemies(char*)
//Return Val:
//parameter: char* - agentType
//Purpose: will add the agentType to vector of known enemies

// "
void npsAgent::addToEnemies(char *name)

{
knownEnemies.insert(knownEnemies.end(), name):

// -
//Function: addToFood(char*)
//Return Val:
//Parameter: char* - agentType
//Purpose; will add the agentType to vector of known Food
//-.
void npsAgent::addToFood(char *name)

(
knownFood.insert(knownFood.end(J, name);

// " * '
//Function: addToUnknowntchar*)
//Return Val:
//Parameter: char* - agentType
//Purpose: will add the agentType to vector of known unknown agents

// ~ —
void npsAgent::addToUnknown(char "name)
{

unknownAgents.insert(unknownAgents.end{), name);

// Function: npsAgent: :myRand ()
// Return Val: double - a pseudorandom number between 0.0 and 1.0
// Parameter:
// Purpose: return random number between 0.0 and 1.0
//
double npsAgent::myRand ()

double randomNumber;

break;
case 3:

strcat[outNum, "3");
break;

case 4:
street(outNum, "4");

break;
case 5:

strcatloutNum, "5");
break;

case fi:
strcatloutNum, "6"};

break;
case 7:

street(outNum,
break;

-7-);

strcat(outNum, "8");
break;

case 9:
strcat(outNum, "9");

break;
)
inNum -= quotient*divisor;
divisor /> 10;

)
strcat(outNum, " ");

return (ioutNum[0]);
)//end integerToString()

// EXECUTIVE SUMMARY
// Module Name: agentDisplayApp.h
//
// Authors: Mark A. Boyd maboyd9bigfoot.com
// Todd A. Gagnon todd9gagnon.com

//
// Description: Declaration of class that creates an openGL window to
// display agents in world
//
// March 1999 Master Thesis

tifndef „agentDisplayApp_h
•define _agentDisplayApp_h

// FUNCTION PROTOTYPE SPECIFICATIONS
// * #...***•••#...*•.#•.**••••■

void initAgentDisplayApp();

tendif // _agentDisplayApp_h

' EXECUTIVE SUMMARY
' Module Name: agentDisplayApp.c

// Authors: Hark A. Boyd maboyd9bigfoot.com
Todd A. Gagnon toddflgagnon.com

// Description: Implementation of class that creates an OpenGL window to
// display agents in world
//
// March 1999 Master Thesis

INCLUDES AND EXTERNS

tinelüde
tinclude
•include
•include
tinclude
•include
•include
•include
•include
•include

"agentDisplayApp.h*
■bbGlobals.h'
"npsVisual.h"
■npawindow.h"
"npsViewport.h"
"npsFlyingCamera.h"
•npsKeyboard.h"
"bbEventResponse.h"
"bbCallbaek.h-
■npsGeometry.h■

tinclude <nath.h>
tinclude <GL/gl.h>

DEFINES t FILE SCOPE VARIABLES

bbCallbaek
npsHindow
npsCamera
npsVec3f
npsQuaternion
npsViewport
npsGeometry

•callback;
"window;
•camera;
position;
rotation;
•viewport;
•boidl;

void initAgentDisplayAppO
C
void initKeyboardModule O;
void initVisualModule();

initKeyboardModule{);
initVisualModule () ;

)//end InitAgentDisplayAppO

< new npsFlyingCamera(npsFlyingCamera::MOUSE);
camera->setKameCcameral");

a->setFarClip(400.0f);
->setGeometry(boidl) ;

position.«et(0.Of, 3.Of, -lO.Of);
camera->setPosition(position);
rotation.setEulerslNPS_DEG2RAD(lS0.Of),O.Of,O.Of);
camera->setOrientatien(rotation);
caaera->setciearcolor(0.66f, 0.$6f, l.Of, l.Of);

vievport->setCamera(camera);
window-»addvievport(viewport);

J//end initcheckerboardFunc(]

void escFunclvoid *object, bbData "data]

exit(O);
)//end escFunct)

void resetFunc(void *objeet, bbData "data!

npsVec3f
npsQuaternion

initPosition;
initRotation;

initPosition.set(0.Of, 3.Of, -lO.Of);
initRotation.setEulers(NPS_DEG2RAD(180.Of),O.Of,O.Of);
caaera->setPosition(initPosition);
camera->setOrientation(initRotation);

}//end resetFunct)

void sideViewFunc(void "object, bbData »data)

npsVec3f
npsQuaternion

initPosition;
initRotation;

initPosition.set(0.Of, 50.Of, 100.Of);
initRotation.setEulersfO.Of,NPS_DEG2RAD[-30.Of),O.Of);
camera->setPosition(initPosition);
camera->setOrientationlinitRotation);

)//end sideViewFunc()

void topViewFunc(void "object, bbData "data)
(
npsVec3f initPosition;
npsQuaternion initRotation;

initPosition.set(0.Of, 150.Of, O.Of);
initRotation.setEulers(0.Of,NPS_DEG2RAD(-90.Of),O.Of) ;
camera->secFosition[initPosition);
camera->setOrientaticn(initRotation);

)//end topViewFunc()

void initcheckerboardFunc(void "object, bbData "data)
I
npsGeometry "geometry; 74

void initKeyboardModule()
(
void escFunc{void »object, bbData "data);
void resetFunc(void "object, bbData "data);
void sideViewFunc(void "object, bbData "data);
void topViewFuncfvoid "object, bbData *data) ,-
npsKeyboard "keyboard:
bbEventResponse "eventResponse;
bbCallbaek •callback;

// get the keyboard device
keyboard ■ npsKeyboard::getlnstance();

// set up exit key
eventResponse ■ new bbEventResponsefnpsKeyboard::KEY_ESC |

npsKeyboard::UP_TRANS);
callback ■ new bbCallbackO ;
callback->setFune(escFunc);
eventResponse->addCallbackLast(callback);
keyboard->addBventResponse(eventResponse);

// set up reset key
eventResponse « new bbEventResponse(npsKeyboard: :KEY_sPACE |

npsKeyboard::UP_TRANS);
callback = new bbCallbackO;
callback->setFunc(resetFunc);
eventResponse->addCallbackLast[callback);
keyboard->addEventResponse(eventResponse);

// set up side view looking down from above key
eventResponse ■ new bbEventResponse(npsKeyboard::KEY_T j

npsKeyboard::UP_TRANS);
callback = new bbCallbackO ;
callback->setFunc(sideViewFunc);
eventResponse->addCallbaekLnst(callback);
keyboard->add£ventResponse(eventResponse);

// set up top down view key
eventResponse ■ new bbEventResponse(npsKeyboard:

npsKeyboard:
npsKeyboard:

callback ■ new bbCallbackO;
callbeek->setFunc(topViewFune);
•ventResponse->addCallbackLast(callback);
keyboard->addEventResponse(eventResponse)j

I//end initKeyboardFuncO

void initVisualModuleO

:KEY_T J
:CTRL_MASK |
:UP_TRANS);

{
void initCheekerboardFunctvoid "object, bbData •data);

// init terrain geometry
new npsGeometry(initCheckerboardFunc);

// open a window, viewport, and camera/ownship
window ■ new npsHindow(800, 600);

viewport - new npsViewport(0.Of, l.Of, O.Of, l.Of);

u_int displayListNum;
const float CELL_LENGTH ■ 5.0;
const u_int NUM_CELLS_L0NG * 25;
const U_int NUM_CELLS_WIDE - 25;
const u_int NUM_VERTS_L0NG * SUM_CELLS_L0MG ♦ 1;
const u_int NUM_VERTS_WIDE » NUM„CELLS_WIDE ♦ 1;
const U_int T0TAL_NUM_VERTS « NUM_VERTS_L0NG * NUM_VERTS_WIDE;
u_int i, j, currVert;
bool colorToggle;

GLfloat coords[T0TAL_NÜM_VERTSJ[3J;

// init Vals
colorToggle ■ 0;
for (i-0; i<NUMwVERTS_LONG; i*+)

[
for (j-0; j<NUM_VERTS_WIDE; j+*)

(
currVert ■ i,NUM_VERTS_WID£ + j;

coords[currVertJ[01 ■ (CELL_LENGTH * i) -
(NUM_CELLS_LONG"CELL_LEKGTH*0.5f);

coordsfcurrVert][1] ■ O.Of;
coords[currVert][2] ■ {-CELL_LENGTH " j) +

lNUM_CELLS_WIDE'CELL_LENGTH"0.5f);

displayListNum ■ glGenLists(l);
glNewList (displayListNum, GL_C0KPILE);
(
glShadeModel(GL_FLAT);

colorToggle ■ 0;
for (i-0; i<NUM_CELLS_L0NG; i++)
(

glBegin(GL_TRIANGLE_STRIP);
(
for (j=0; j<NUM_VERTS_WIDE; j++)
(

if (colorToggle)
(

colorToggle * 0;
glColor3f(O.Sf, 0.9f, 0.8f);

)
else
(

colorToggle * 1;
glColor3f(0.85f, 0.95f, 0.85f>;

currVert " i"NUM_VERTS_WIDE + j;
glVertex3fv(coords[currVert]);

currVert ■ (i+l)*NUM_VERTS_WIDE + j;
glVertex3fv(eoords[currVertJ);

if (NUM_CELLS_WIDE & 0x1)

if {eolorToggle) struct Pregnancy(

eolorToggle ■ 0; int partnerId;

else int tnaleSpeed;

colorToggle « 1; int gestationTime;

J int sessonCounter;

)
glEnd();
) class Animal;

glShadeModel(CL_SM0OTH); •ifdef _Animal_c
) ACE_EXPORT_SINGLETON_DECLARATION(bbSafeClass<Aninal>);

glEndList(); ACE„EXPORT_SINGLETON_DECI*RATION(bbListedClass<Aninal>);
•else
ACE_IMP0RT_SINGLETON_DECLARATION(bbSafeClasS<Animal>J;

// sec displaylist and remove callback func ACE_IMPORT_SINGLETON_DECLARATION(bbListedClass<Animal>};

geometry ■ (npsGeoraetry*)object; •endif
geometrY->setDisplayListNum(di3playListNum);
geometry->setCallbaekFunc(0);

]//end initCheckerboardFuncf)

// FUNCTION PROTOTYPE SPECIFICATIONS

class AGENT..API Animal: public npsAgent{

private: // EXECUTIVE SUMMARY
// Module Kane: animal.h
// DESIRED_ACTION nextAction;

// Authors: Mark A. Soyd maboyd8bigtoot.com MOVE_SPEED speedOfNextMove;

// Todd A. Gagnon todd9gagnon.com DEATH_INDICATOR deathIndicator;

//
// Description: Definition of the animal class agent for use in npsAgent int generation.

// mateAge,

// March 1999 Master Thesis deathCounter;

npsVec3f moveToLocation,

tifndef _animal_Ji moveFromLoca t i on;

tdefine _animal_h
char gender,

•killer;

bool pregnant,
inSeason,

// INCLUDES AND EXTERNS

•include "npsAgent.h" resting;

•include "npsAgentApi.h"
•include "npsVec3f.h" protected:

//Constructor
AnimaKbbCallbackFunc •callbackFunc);

public:

// DEFINES

«nun DESIRED_>CTION (NOTHING, MATE, FEED, GATHER, AVOID, CHASE, FLEE);
«nun HOVE_SPEED {REST, REGULAR. RUH);
enum DEATH_INDICATOR (INFANT_MORTALITY, OLD_AGE, PREDATION, STARVATION, //Default Destructor - does nothing at this tine

NOT_DEAD); -Aninal{);

•define HALE -M" //default move methods provided to all animals: X-Z planar

•define FEMALE 'F" void move();
•define HATE_AGE 2 void moveTo(npsVec3f .position);

•define MAT£_DISTAKCE .5 void moveFron{npsvec3f „position);

•define MOVE_INCREKENT 0.2S
//get and set the desired next action for the Animal

DESIRED_ACTION getNextActionf);
void setNextAction (DESIRED_ACTION na); //see if aninal needs to rest

bool isResting();

//get and set the choice of speed for next move void setResttbool r);

MOVE__SPEED getSpeedOfNextMoveO;
void setSpeedOfNextMove(MOVE_SPEED ms); //main methods to let agents interact

virtual void updatePositiontint time) * 0;
//get and set reason for animals death virtual void sense(int time) = 0;
DEATH_INDICATOR getDeathlndicator();
void setDeathIndicator(DEATH_INDICATOR di); void setKillertehar *k);

char *getKiller();
//return random Animal litter size based on upper and lower bounds
int randomLitterSizetint lower, int upper); //pointer to Pregancy struct

Pregnancy* pregPtr;
//return true if Animal dies as infant based on mortality rate provided
cool diesAsInfant(double mortalityRate); };

//can the Aninal mate
cool canMate(Animal "potentialMate);
void mate(Animal "mate);
bool aateEligible (Aninal "potentialMate);

//get and set deathCounter

// INLINED MEMBER FUNCTIONS

int getDeathCounter(); inline DESIRED_ACTION Aninal::getNextAetion()

void setDeathCounter{int dc); (
return nextAction;

//get and set generation of animal)
int getGenerationO;
void setGeneration(int g); inline void Animal::setNextAction {DESIRED_ACTION na)

{

//get and set location to move Co nextAction * na;
npsVec3f getMoveToLocationl); }
void setMoveToLocation(npsVec3f mtl);

inline MOVE_SPEED Aninal::getSpeedOfNextMoveO
//get and set location to move from (
npsVec3f getMoveFromLocationO; return (speedOfNextMove);
void setMoveFromLocation(npsVec3f mfl); }

//get and set the mate age variable inline void Aninal::setSpeedOfNextMove(MOVE_SPEED ns)
int getMateAgeO; (
void setMateAge(int ma); speedOfNextMove * ms; '

j

//test to see if one animal can kill another
virtual bool isKilled(npsAgent fcagent) = 0; inline npsVec3f Animal::getMoveToLocation()

//get and set the gender for an aninal return (moveToLocation);
char getGender();)
void setGender(char g);

inline void Aninal::setMoveToLocationtnpsVec3f mtl)
//see if female is pregnant {
bool isPregnantO; moveToLocation ■ mtl;
void setPregnant(bool p);)
//see if the aninal is in season inline npsVec3f Aninal::getMoveFromLocation()
bool isInSeasonO; {
void setlnSeasonlbool is); return (moveFromLocation);

//see if animal is dead
bool isDead(); f S inline void Animal::setMoveFromLocation(npsVec3f nfl)

ooveFromLocation * mfl;
}

inline DEATH_INDICA.TOR Animal::getDeathIndicator!)
{

return (deathlndieator);
}

inline void Aninal::setD*athIndicator(DEATH_INDICATOR di)
(

deathlndieator s di;
)
inline int Animal::getDeathCounter()
{

return (deathCounter);

inline void Animal::setDeathCounter(int dc)
{

deathCounter * dc;

inline int Animal: :getGeneration(]
(

return (generation);

inline void Animal::setGeneration(int g)
{

generation ■ g,-

inline int Animal::getMateAge[)
(

return (mateAge);

inline void Animal: :setHateAge(int ma)

nateAge * ma;

inline char Animal::getGender(>

return (gender);

inline void Animal::aetGender(char g)

inline bool Animal::isPregnant()
[

return (pregnant);

INCLUDES AND EXTERNS
// '
•include "Animal.h"
•include <stdio.h>
•include <iostream.h>
•include <stdlib.h>
•include <ctime>

//•'
// DEFINES AND FILE SCOPE CONSTANTS

static int numAnimal ■■

// _ _
// Function: Animal::Animal()
// Return Val: None
// Parameter: None
// Purpose: Default constructor //
Animal: :Animal (bbCallbaekFunc *_callbaekFunc)

:npsAgent(_callbackFunc), nextAction (NOTHING), _,
speedOfNextMove(REGULAR), death!ndicator(NOT_DEAD), pregPtr(NULL),
pregnant(false), inSeason(false), generation(l), resting(false)

(
)//end Animal::Animal(]

//
// Function: Animal::-Animal()
// Return Val: None
// Parameter: None
// Purpose: Default destructor //
Animal:: -Animal {)

//do nothing at this point
)//end Animal::-Animal()

// _ __
// Function: Animal::move ()
// Return Val: void
// Parameter: None
// Purpose: Provides the basic movement in the XZ plane which should
// suffice for most animals. This can be overloaded in a sub-
// class if needed

)
inline void Animal::setpregnant(bool p)
1

pregnant ■ p;
)
inline bool Animal:: ismseason [)
(

return (inSeason);
)

//
void Animal ::move()

int changeX ■ 0,
change? •> 0;

76

inline void Animal::setInSeason(bool is)
(

inSeason * is;
)
inline bool Animal::isDead()
{

return (deathlndieator !« N0T_DEAD);
}

inline bool Animal::isResting(]
(

return (resting);
J

inline void Animal::setRest(bool r)

inline void Animal::setKiller(ehar *k)

inline char • Animal::getKiller()

return(killer);

»endif // „Animal

EXECUTIVE SUMMARY
' Module Name: animal.c

// Authors: Mark A. Boyd maboydSbigfoot.com
Todd A. Cagnon todd0gagnon.com

// Description: Implementation of the animal class agent used in npsAgent
// ;

// March 1999 Master Thesis
fl *•.*•.••**.*......•.*........*...........„....„....*„„....»....,,..

•define _animal_c

npsVec3f tempPosition;
npsQuaternion tempRotation;

this->getPosition(tempPosition);
tempRotation.getEulers(hpr);

if(this->getSpeedOfNextMove() I- REST)
(

float tempx ■ tempPosition[X],
tempY ■ tempPosition[Y],
tempZ » tempPosition[Z];

double randX ■ npsAgent::myRand();
double randY ■ npsAgent::myRand(); //don't need to change altitude
double randZ » npsAgent::myRand();

if (randX <- 0.5}
(

tempX — MOVE_INCREMENT;
changeX ■ -1;

J
else
{

tempX ** MOVE_INCREMEHT;
changeX ■ 1;

J

if (randZ ■ ■ O.S)

tempZ -B MOVE_INCREMENT; // this moves the animal up one row
changeZ * -1;

)
else
{

tempZ += MOVE_INCREMENT; // this moves the animal down one ro*
changeZ * 1;

ifltempX <* MINJX)
tempX « MIN_X + 1;//bring the animal back one unit

if(tempX >= MAX_X)
tempX = MAX_X - 1;//bring the animal back one unit

if(tempZ <■ MIN_Z)
tempZ = MIN_Z + 1; //move the animal down one row

ifftempZ >= MAX_Z)
tempZ ■ MAX_Z - 1; //move the animal up one row

if(changeX > 0)
(

if(changeZ > 0)
hpr[0) - NPS_DEC2RAD(4S.0f); //+

else iflchangeZ < 0)
hprtO] » NFS_DEG2RAD(«.0f); //-

else
hpr[0) ■ 0;

)
else if (changeX < 0) //else

{ if((thisTempX - moveToX) > 0)

if(ehangeZ > 0) (
hprIO] » NPS_DEG2RAD(135.0f); //♦ thisTempX — MOVE_INCREKENT;

else if(ehangeZ < 0) changeX ■ -1;
hprrOJ « MPS_DEG2RAD(135.0f>; II-)

else else if((thisTempX - moveToX) < 0)

hpr[0] - NFS_DEG2RAD(180.0f); t
} thisTempX ♦■ MOVE_INCREMENT;
else changeX = 1;

) (
if (ehangeZ > 0)

hpr[0] = BPS_DEG2RAD(9O.0f>; if((thisTempZ - moveToZ) > 0)

else if {ehangeZ < 0) t
hpr[0J * NPS_DEG2RAD(90.0f); thisTempZ -« MOVE_INCREMENT;

else changeZ * -1;

hpr[0] - 0; }

J else if((thisTempZ - moveToZ) < 0)

tempRotation.setEulers(hpr); (
this->setOrientation(tempRotation); thisTempZ +- MOVE_INCREMENT;

changeZ = 1;

tempPosition.setltempX, tempY, tempZ);)
this->setPosition(tempPosition);)//end if

}//end if not at REST else//RUN
{

return; if((thisTempX - moveToX) > 0)

)//end Animal::move() thisTempX -■ (MOVE_INCREMENT * 0.05"this->getSpeed());
ChangeX ■ -1;

else if[(thisTempX - moveToX) < 0)
(// Function: Animal::moveTo ()

// Return Val: void thisTempX ♦« (MOVE_INCREMENT + 0.05*this->getSpeed());
// Parameter: Hone changeX « 1;
// Purpose: Provides the basic movement to a position in the XZ plane)
// Which should suffice for most animals. This can be
// overloaded in a subclass if needed if((thisTempZ - moveToZ) > 0)

{
thisTempZ — (MOvE_INCREM£NT + 0.05*this->getSpeed()); void Animal::raoveTo(npsVee3f position)

(ehangeZ ■ -1;
int changeX ■ 0,)

changeZ ■ 0; else if((thisTempZ - moveToZ) < 0)

float hpr[3]; thisTempZ +■ (HOVE_INCREMENT ♦ 0.05*this->getSpeed());
ehangeZ ■ 1;

npsVec3f tempPosition;)
npsQuaternion tempRotation;)//end else

this->getPosition(tempPosition); //check for going out of bounds
tempRotation.getEulers(hpr); if(thisTempX <■ MIN_X)

thisTempX ■ hTN_X + 1;//bring the animal back one unit
float moveToX ■ position[X), iffthisTempX » KAX_X)

inoveToY ■ positiontY], thisTempX ■ HAX_X - 1;//bring the animal back one unit
moveToZ ■ position[Z], if(thisTempZ <- MTN_Z)
thisTempX ■ tempPosition[X], thisTempZ * HZN_Z ♦ 1; //move the animal down one row
thisTempY ■ tempPosition[Y], if(thisTempZ >= MAX_Z)
thisTempZ ■ tempPosition[Z]; thisTempZ * MAX_Z - 1; //move the animal up one row

if(this->getSpeedOfNextMove() -- REGULAR) //set orientation

{ if(changeX > 0)//plusX)

{ moveToY ■ _position[YJ, //don't need for now
iflchangeZ > 0)//plusZ) //x*l,z«l moveToZ ■ _position[Z],

hpr[0] * NPS_DEG2RAD(45.0f); //+ thisTempX * tempPosition[X],

else if{changeZ < 0)//x=l,z—1 thisTempY ■ tempPosition[Y], //don't need for now :

hpr[0J » NPS_DEG2RAD(4S.0f); //- thisTempZ » tempPosition[Z];

else
hpr[0I « 0; if [this->getSpeedOfNextMove () « REGULAR)

)
else if (changeX < 0) //else if((thisTempX - moveToX) > 0)

{
iffchangeZ > 0) //plus2) //x*-1.2=l thisTempX ♦« MOVE_INCREM£NT;

hprtO] ■ SPS_OEC2RAD(13S.0f); //* changeX * 1;
else if(changeZ < 0) //x*-l,z«-l)

hpr[0] ■ NPS_DEG2RAB[13S.0f); II- else if((thisTempX - moveToX) < 0]
else//x—1,Z«0 {

hpr[0] - NPS_DEG2RAD(180.0f); thisTempX — MOVE_INCREHENT;

} changeX ■ -1;
else//x=0)
t

if (change2 > 0)//x«0,z«l if({thisTempZ - moveToZ) > 0)
hprtO) « SPS_PEG2RAD(90.0f); {

else if (ehangeZ < 0}//x«0,z«-l thisTempZ +■ MOVE_INCREMEST;
hprtO] - NPS_DEG2RAn[90.0f); ehangeZ = 1;

else J
hprtO] - 0; else if((thisTempZ - moveToZ) < 0)

)
thisTempZ -» MOVE_INCREKENT;

tempPosition.aet(thisTempX, thisTempY, thisTempZ); ehangeZ ■ -1;
tempRotation.setEulers(hpr);)
this->setPosition(tempPosition);)//end if
this->setOrientation(teiBpRotation); else//RUN

return; if({thisTempX - moveToX) > 0)

}//end Animal::moveTo() thisTempX +* (MOVE_INCREMENT + 0.05*this->getSpeed());
changeX = 1;

else if((thisTempX - moveToX) < 0)
(// Function: Animal::moveFrom()

// Return Val: void thisTempX -= (MOVE_INCREHEBT ♦ 0.05*this->getSpeed()};
// Parameter: None changeX - -1;
// Purpose: Provides the basic movement from a position in the XZ plane J
// which should suffice for most animals, mis can be
// overloaded in a subclass if needed if{(thisTempZ - moveToZ) > 0)

[
thisTempZ ♦* (MOVE_INCREMENT ♦ 0.05*this->getSpeed(>); void Animal::moveFrom(npsVec3f „position)

{ ehangeZ ■ 1;
int changeX ■ 0,)

ehangeZ » 0; else if((thisTempZ - moveToZ) < 0)

float hpr[3); thisTemp2 -= {MOVE_INCREMENT + 0.0S*this->getSpeed());
ehangeZ ■ -1;

npsVec3 f tempPos it ion;)
npsQuaternion tempRotation;)//end else

this->getPosition{terapPosition); //check for going out of bounds
tempRotation.getEulers(hpr); if(thisTempX <» MIN_X)

thisTempX ■ MIN_X + 1;//bring the animal back one unit
float moveToX ■ „position[X], f *7 iftthisTempX >- MAX_X)

thisTempX - HAX_X - 1;//bring the animal bock one unit
if (thisTempZ <= MIN_Z)

thisTempZ ■ MIN_Z + 1; //move the animal down one row
if (thisTempZ >■ MAX_Z)

thisTempZ ■ MAX_Z - 1; //move the animal up one row

//set orientation
if(cnangeX > 0)//plusX)
{

if(changeZ > 0)//plusZ)
hprlO] • NPS_DEG2RAD(45.0f); //♦

else if(changeZ < 0}
hpr[0] ■ NPS_DEG2RAD(«S.0f); //-

else
npr[0] - 0;

)
else if (changeX < 0) //else
(

if(changeZ > 0) //plusZ)
hpr[0] = NPS_DEG2RAD(135.0£); //♦

else if{changeZ < 0)
hprrOJ ■ NPS_D£G2RAD(13S.0f); //-

else
hpr[0J - NPS_DEG2RAD(180.0f);

)
else
{

if {changeZ > 0)
hpr[0] ■ NPS_DEG2RAD(90.0f);

else if (changeZ < 0)
hprtO] * NPS_DEG2RAD(90.0f);

else
nprtOJ - 0;

tempPosition.setfthisTempX, thisTempY, thisTempZ);
tempRotation.setEulers(hpr);
this->setPosition(tempPosition);
this->setOrientation(tempRotation);

return;

)//end Animal: tmoveFrotnf]

// - -
// Function: boo! Animal: iraateEligibled
// Return Val:
// Parameter:
// Purpose: return whether Animal is eligible to mate //
bool Animal: :mateEligible(Animal fcpotentialMate)
t

bool aateEligibleFlag ■ false;

if (this->getAgentType() •■■ potentialMate.getAgentType())
{

if (fthis->getGenderO « BALE) kk
(potentialMate.getGenderO » FEMALE))

//-■

//Function: Animal: :maee ()
//Return Val:
//Parameter: mate
//Purpose: begin pregnancy once two animals »ate
// --
void Animal: :mate(Animal £mate)
[

if (this->getAgem:Type{) == mate.getAgentTypeO)
{

iflthis->getGender() == HALE)
{

nate.setPregnant(true);
mate.pregPtr~>maleSpeed ■ this->getspeed();
mate.pregPtr->gestationTime ■ 0;

)
else
I

this->setPregnant(true);
th£s->pregPtr->maleSpeed ■ mate.getSpeedO;
this->pregPtr->gestationTime «= 0;

return;
}//end function Animal::mate{)

//
// Function: randomLitterSize(int lower, upper)
// Return Val: int - number in litter

lower, upper
return a random number of Animals in a litter bounded by
the upper and lower bounds provided

// Parameter
// Purpose:

//
int Animal::randomLitterSize(int lower, int upper)
1

return (npsAgent: :myRand{) • upper + lower);

(//end Animal::litterSize()

//
// Function; diesAsInfant(double)
// Return Val: bool
// Parameter: mortalityRate
// Purpose: return whether infant dies or not
// -
bool Animal::diesAsInfant(double mortalityRate)
(

double randWum » npsAgent::myRand();

return (randNum < mortalityRate);

}//end Animal::mortality()

78

mateEligibleFlag ■ (!lpotentialMate.isPregnant()) kk
(potentialMate.isInSeasonO) kk
(potentialMate.getAgeO >= potentialMate.getMateAgeO)&t
(this->getAge() >- this->getMateAge()));

)
else if((this->getGender() »■ FEMALE) kk

(potentialMate.getGenderO -«MALE))
{

mateEligibleFlag * (!(this->isPregnant()) kk
(this->isInSeason()) kk
(potentialMate.getAgeO >= potentialMate.getMateAgeO)kk
(this->getAgc() >* this->getMateAge()));

)//end if else getGender()...

]//end if getAgentType()

return mateEligibleFlag;

)//end Animal::mateEligible

// - -- -
// Function: .bool Animal::canMate()
// Return Val:
// Parameter:
// Purpose: return whether Animal can mate or not //
bool Animal::canMate(Aniraal tpotentialMate)
(

bool mateFlag > false;

if (this-»getAgentTypeO ■= potentialMate.getAgentType())
{

if((this->getGender() "MALE) kk
(potentialMate.getGenderO « FEMALE))

(
mateFlag ■ ((!(potentialMate.ispregnantf))) kk

(this->getNextAction() « MATE) kk
(potentialMate.getNextActionl) ««MATE) kk
(potentialMate.getAgeO >» potentialMate.getMateAgeO)kk
(this->getAge() >=■ this->getMateAge()) kk
(this->getDistance(potentialMate) <= MATE_DISTANCE));

)
else if((this->getGender() « FEMALE) kk

(potentialMate.getGenderO »MALE))
{

mateFlag ■ ((i(this->isPregnantO)) **
(this->getNextAetion[) « MATE) kk
(potentialMate. getNextActionO == MATE) kk
(potentialMate.getAgeO >■ potentialMate.getMateAgeO)kk
(this->getAgeO >= this->getMateAge()) kk
(this->getDistance(potentialMate) <- MATE_DISTANCE));

)I lend if getGender()

J//end if getAgentType!)

return (mateFlag);

//end file Animal.c

EXECUTIVE SUMMARY
' Module Name: antelope.h

// Authors: Mark A. Boyd maboyd9bigfoot.com
Todd A. Gagnon todd8gagnon.com

' Description: Definition of the t

• March 1999 Master Thesis

intelope class agent used in npsAgent

tifndef _antelope_h
■define _antelope_h

INCLUDES AND EXTERNS

•include "npsAgentApi.h*
•include "animal.h"

// ***•'
•define
•define
»define
»define
»define
•define
•define
•define
•define
•define
•define
•define
•define

INFANT_MORTALITY_RATE 0.50
REST_SENSING_RANGE 20
REGULAR_SENSING_RANGE 15
RUN_SENSINS_RANGE 10
FRI£ND_STANDOFF_DISTANCE 1.5
FOOD_RANGE S
MAX.AGE 3650
BEGIN_SEASON 30
END_SEAS0N 75
ONE_YEAR 365
KILLED_RADIUS 0.IS
KILL„PR0BABILITY 0.7
ANTEL0PE_GBSTATI0N_P£RI0D 60

//
FUNCTION PROTOTYPE SPECIFICATIONS

class Antelope: public Animal{

private:

int idNum,
herdsize;

//Constructor
Antelope(bbCallbacJcFunc *callbackFunc);

■ does nothing at this tine

//Constructor
Antelope(),-

//Default Destructor
-Antelope{);

//produce a newborn Antelope from a Bale/female pair
Antelope* giveBirth(int motherSpeed, int fatherSpeed,

int motherGeneration, npsVec3f motherLocation);

//get antelope identification number
int getldNumO;

//set and get herd size
int getHerdSizeO;
void setHerdSizetint hs);

//can the Antelope Bate
bool canMate(Antelope «potentialMate);
void mate(Antelope "mate);

//are the Antelope mate eligible
bool mateEligible[Antelope "potentialMate);

//test to see if antelope is killed by predator
bool isKilled<npsAgent fcagent);

//allow antelope to move through the world
void updatePosition(int time);

//allow the antelope to sense the world
void sense(int time);//npsAgent •sensedAgent);

int litterSizeO;
bool diesAsInfant();

void sensePredators{npsAgent "agent, float fcclosestPredator);
void senseFriendly(npsAgent «agent, float fcclosestFriend,

float iclosestPartner);
void senseFood(npsAgent "agent, npsVee3f fcclosestFoodPosition);
void senseEnemytnpsAgent "agent, float tclosestUnknown);
void senseUnknown(npsAgent "agent, float fcelosestUnknown);

INLINED MEMBER FUNCTIONS

inline int Antelope::getIdNum()
(

return idNum;

inline int Antelope::getHerdSize()

{
return herdSize;

this->setGender(PEHALE);
this->pregPtr ■ new Pregnancy;

)
//assign a random max speed for the animal between 5..10
int maxSpeed ■ myRand(I"10;
if (maxSpeed < 5)

maxSpeed +» 5;
this->setSpeed(maxSpeed);

this->setAge(int(myBand() "KAX^AGE));
this->aetMateAge(MATE_AGE);
this->setSensingRange(RECULAR_SENSING_RANGE);

)//end Antelope::Antelope()

//
// Function: Antelope::-Antelope()
// Return Val: None
// Parameter: None
// Purpose: Default destructor
//--
Antelope::-Antelope ()

//do nothing at this point
)//end Antelope::-Antelope()

//-■

initGeomFunc() // Function:
// Return Val:
// Parameter:
// Purpose: provides OpenGL calls from which Babraoo will draw antelope

// - " ""
void initGeomFunc(void "object, bbData "data)

(
GLfloat coords[4]m » ({ O.Of. O.Of, -0.5f), // front

{-0.3f, O.Of, 0.5C), // back left
(0.3f, O.Of, O.Sf). // back right
(O.Of, 0.4f, O.SfJ // top

);
glShadeModel(GL_FLAT) ;
glBegin(GL_TRIANGLES);

(
glColor3f(0.75f, 0.5f, 0.7Sf); //bottom
glVertex3fv(coordsl0]};
glVertex3fv(coordst2]);
glVertex3fv(coords[11);

glColor3f(0.75f, 0.5f, O.Sf); // left
glVertex3fv(eoordsI0J);
glVertex3fv(coordstl]1;
glVertex3fv[coords[3])r

glColor3f(0.Sf, O.Sf, 0.75f); // right
glVertex3fv[coordstOJ);
glVertex3fv(coordst3]); 79

inline void Antelope::setHerdSizetint hs)

herdSize « hs;

•endif // _antelope_h

EXECUTIVE SUMMARY
Module Name: antelope.c

// Authors: Hark A. Boyd maboyd8bigfoot.com
Todd A. Gagnon todd9gagnon.com

// Description: Implementation of the antelope class agent for use in
/ / npsAgent

//
// March 1999 Master Thesis

// INCLUDES AND EXTERNS
// " ***1' ***'
tinelude "antelope.h"
tinclude <stdio.h>
•include <iostream.h>
tinelude <stdlib.h>
•include <ctime>
•include <math.h>
»include <GL/gl.h>

// DEFINES AND FILE SCOPE CONSTANTS

void initGeomFuncfvoid "object, bbData "data);

static int numAntelope ■ 0;

//
// Function: Antelope::Antelope()
// Return Val: None
// Parameter: None
// Purpose: Default constructor
II-
Antelope::Antelope {)

:AnimaltinitGeomFune), idNum(numAntelope++), herdSize(l)

(
this->setAgentType(-Antelope'>;

double genderRand ■ npsAgent: :myRand() ;

if (genderRand < O.S)
this->setGender(MALE);

else

glVertex3fv{coords[2]) ;

glColor3f(0.75f, O.Sf, 0.7Sf);
glVertex3fv(coords(l]);
glVertex3fv(coords(2]) ,-
glVertex3fv(coords[3]),-
)

glEndO;
glShadeModel[GL_SMOOTH);

J//end Antelope::initGeom{)

//
//Function: Antelope::giveBirth ()
//Return Val: Antelope
//Parameter: »ale speed, female speed
//Purpose: make a new Antelope with speed the average of it's parents

// -
Antelope* Antelope::giveBirth{int motherSpeed, int fatherSpeed,

int motherGeneration, npsVec3f motherLocation)

{
int newSpeed;
char name[64];

Antelope "newBorn:

if (npsAgent: smyRandO < .S)
newSpeed * motherSpeed;

else
newSpeed = fatherSpeed;

newBorn = new Antelope();

strcpylname, "Antelope");
«treat(name, this->integerToString(newBorn->getIdNum()));
newBorn->addToFriends(newBorn->getAgentType());
newBorn->setName(name);

//set values of newborn based on parents' information
newBorn->setSpeed (newSpeed);
newBorn->setPosition(motherLocation);
newBorn->setGeneration(motherGeneration + 1);

return newBorn;
}//end antelope::mated

// - - "
// Function: bool Antelope:scanMateO
// Return Val: \
// Parameter:
// Purpose: return whether Antelope can mate or not
//
bool Antelope: :canMate(Antelope "potentialMate)
(

bool mateFlag ■ false;

if((this->getGender() »= MALE) &&
(potentialMate->getGender() « FEMALE))

[
mateFlag « ((!(potentialMate->isPregnant())) &&

(
mate->setPregnant(true);

(this->getNextAction() » HATE) ££ mate->pregPtr->maleSpeed » this~>getSpeed{);
(potentialMete->getNextAction() ■■ MATE) && mate->pregPtr->gestationTime » 0;
(this->getDistance('pOtentialMate) <= MATE_DISTANCE)); J) else

els« if((this->getGender[) « FEMALE) IS, (
(potentialMate->getGender() «»MALE)) this->setPregnant(true);

{ this->pregPtr->maleSpeed ■ mate->getSpeed();
mateFlag * ((!(this->isPregnant())) kt this->pregPtr~>gestationTime - 0;

(this->getNextAction() ■■ MATE) « J
(pOtentialMate->getNextAction() ■» MATE) ££
(this->getDistanee(*potentialMate) <* MATE_DISTANCE)); return;))//end function Antelope::mate()

return mateFlag;
)//end canHatef) ■,

// Function: updatePositionO
// Return Val:
// Parameter:

// Function: bool Antelope::mateEligible()
// Return Val:
// Parameter:

// Purpose: allow the antelope to update position

void Antelope::updatePosition(int time)
// Purpose: return whether Antelope is eligible to mate {

switch(this->getNextAction())
bool Antelope::mateEligible(Antelope "potentialHate) {
t case MATE :

bool mateEligibleFlag > false; t
this->setSpeedOfNextMcve(REGULAR);

if(Ithis->getGender() == MALE) &« this->moveTo(this->getMoveToLocation());
(potentialMate->getGender() «FEMALE)) break;

mateEligibleFlag « (* (potentialMate->isPregnant ()) &&
)
case NOTHING :

(potentialMate->isInSeason{)) &fc {
(potentialMate->getAge() >■ MATE_AGE) £4 if{rand() < RAND_MAX/2)
(this->getAge() >- MATE_AGE)); this->setSpeedOfNextMove(REGULAR);

} else
else if((this->getGender[) ■■ FEMALE) tt, this->setSpeedOfNextMove(REST);

(potentialMate->getGender() -«MALE)) this->move(); . (break;
mateEligibleFlag * (!(this->isPregnant()) it)

(this->is!nSeason()) tt case FEED :
(potentialMate->getAge() >* MATE_AGE) ii c
(this->getAge() >■ MATE_AGE)): this->setSpeedOfNextMove(REGULAR);) this->moveTo(this->getMoveToLocation());

break;
return mateEligibleFlag; }

)//end Antelope:imateEligibleO ease GATHER :
(

this->setSpeedOfNextMove(REGULAR);
this->moveTo(this->getMoveToLocation()) ;

//Function: Antelope::raate () break;
//Return Val: true / false J /
//Parameter: mate case AVOID :
//Purpose: begin pregnancy once two antelope mate (

this->setSpeedOfNextMove(REGULAR) ;
void Antelope::mate(Antelope "mate)
{

thia->moveTo(this->getMoveFromLocation())j
break;

) if(this->getGender() -■ MALE)

case FLEE : //time steps ago. if so take out of world elsee increment counter
I //this allows other animals to sense this one and learn how it died

this->setSpeedOfNextMove(RUN);
this->moveFrom(this->getMoveFroinLocation());
break;

)
if((this->getDeathIndicator() !» N0T_DEAD) tt

(this->getDeathCounter{) < 2))

default : //CHASE
{

this->setDeathCounter(this->getDeathCounter() + 1);
{)//end if getDeathlndicator()

this->setSpeedOfNextMove(RUN); else if((this->getDeathIndicator() != N0T_DEAD) &&
this->moveFroin{this->getMoveToLocation());
break;

(this->getD«athCounter() >«2)) (
} this->setRemove();

J//end if else getDeathlndicator!)
)//end switch getNextActionU)//end updat«Position[)

if[this->isPregnant())
(

if(this->pregPtr->gestationTime ■■ ANTEL0PE_GESTATI0N_PERIOD) // Function: sensed
{ // Return Val:

int litter * this->littersize(); // Parameter:
npsVec3f tempLocation; // Purpose: allow the antelope to sense environment and decide which
this->getPosition(tempLocation); // action to take next

Antelope 'babyAntelope:
for (int ix - 1; ix <» litter; ix+#)

void Antelope::sense(int time)//npsAgent *sensedAgent)
{

i if((time%ONE_YEAR > BEGIN_SEAS0N) Li (time%ONE_YEAR < END_SEASON))
babyAntelope ■ this->giveBirth(this->getSpeed(), this->setZnSeason(true);

this->pregPtr->malespeed, else
this->getGeneration(), tempLocation); this->setInSeason(false);

if(babyAntelope->diesAsInfant()) int currentSensingRange * 0;

babyAntelope->setDeathIndicator(IKFANT_MORTALITY); float closestPartner ■ 100,)
else

closestFriend = 100,
closestEnetny = 100,
closestUnknown = 100,

//do nothing at this time closestPredator ■ 100;) bool sensedFood = false;
if (babyAntelope->getGender() « FEMALE)

babyAntelope->pregPtr ■ new Pregnancy; npsVec3f raoveToLocation, closestFoodPosition;
J//end for (ix) - create litter of size litter

//initialize to large value to start with
this->setPregnant(false); ClosestFoodPosition.set(MAX_X"5.Of, MAX_Y*5.0f, MAX_Z*5.0f);

)//end if pregancy gestation time > ANT£L0PE_GESTATI0N_T1ME
else
(switch(this->getSpeedOfNextMove())

this->pregPtr->gestationTiaie+*;
(

case REST ;
)//end else {

)//end if aix->ispregnant()
currentSensingRange = REST_SENSIKG_RANGE;

this->growOlder();)
case REGULAR :

//check age and if over MAX_AGE then set deathlndicator to OLD_AGE (
if(this->getAge() ■■ MAX_AGE)
{ currentSensingRange ■ REGULAR_S£NSING_RAHGE;

break;
) this->setDeathIndieator(OLD_JAGE);

} default://case RUN

//Last thing we do is check to make sure the antelope didn't die two O
{

) currentSensingRange * RUN_SENSING_RANGE;

break;
J

l//end switch

this->setNextAction(NOTHING); //reset this for tracking

int numAgents ■ bbListedClass<npsAgent>::getNumObjeets();

for (int j - 0; j < numAgents; j+*)

{
npsAgent «sensedAgent ■ bbListedClass<npsAgent>::getobject(3);

if {(this->getDistance(*sensedAgent) <» eurrentSensingRange) t*
(this->getNaine() != sensedAgent->getName()))

(
switch (this->getRelationship(*ensedAgent))

(
case PREDATOR:

(
sensePredator5(sensedAgent, closestPredator);
break;

case ENEMY:

if(this->getNextAetion() !- FLEE)
senseEnemyfsensedAgent, closestEnewy);

break;

case FRIENDLY:

if (this->getNextAction()

senseFriendlyfsensedAgent. closestFriend,
Ciosestpartner};

case FOOD:

sensedFood * true;
if(ehis->getNextAction() !■ FLEE)

senseFood{sensedAgent, closestFoodPosition);

default: //ease UNKNOWN:

senseUnknown(sensedAgent, closestUnknown);
break;

)//end switch
)//end if (distanceToAgent.,

)//end for (j<nuraAgents)

//if your not going to mate, if you haven't found found a
//friend or 1/2 the time when you have found a friend antelope
//will move to food anyway

if (this->isSaneAgentType(agent)]
(

if (this->canMate((Antelope *)agent)>
(

this-wnatet(Antelope *)agent);
this->setNextAction(FEED); //should feed after mating

}//end ifcanHateO
else if{(this->mat«Eligible[(Antelope *)agent)) fcfc

(distanceToAgent < closestPartner))
{

closestPartner - distanceToAgent;
agent->getPosition(moveToLocation)r
this->setMoveToLoeation(moveToLocation);
this->setNextAetion(HATE);

J//end else if mateEligible(sensedAgent)
else if(this->getNextAction(J !- HATE)
{

if((distanceToAgent < closestFriend) At
(distanceToAgent > FRIEND_STANDOFF_DISTAKCE)I

{
closestFriend * distanceToAgent ,-
agent->getPosition(moveToLocation);
this->setKoveToLoeation(moveToLocation);
this->setNextAction(GATHER);

}//end if (getDistaneeO
}//end else if (getNextAction)

)//end if isSameAgentO
else
{

//no interaction defined for other friendly agents at this time
)//end if/else(isSameAgentType)

)//end senseFriendlyO

//
// Function: senseFood()
// Return Val:
// Parameter: npsAgent, npsVec3f
// Purpose: allow agent to sense a known food source and remember if
// it is the closest one
//-
void Antelope::senseFood(npsAgent »agent, npsVee3f tclosestFoodPosition)

(
if (this->getDistance(*agent) <

this->getDistanceFromLocation{closestFoodPosition))

(
agent->getPosition(closestFoodPosition);

}//end if

(//end senseFood

// - -
// Function: senseEnemyO
// Return Val:
// Parameter: npsAgent, int
// Purpose: allow agent to sense a known predator and decide what to
// next 81

if((this->getNextAction() != HATE) fcfc
(this->getNextAction() !■ FLEE) fcfc sensedFood)

if((this->getNextAction() !« GATHER) [] (npsAgent: :myRand() < O.S))

(
if (this->getDistanceFrowLocation(closestFoodPosition) < FOOD_RANGE)

this->setNextAction(NOTHING);
else
(

this->setMoveToLocation(elosestFoodPosition),-
this->setNextAction(FEED);

)//end if else getDistance
)//end if nextAction !« Gather

J//end if nextAction != MATE...

)//end Antelope::sense()

//
// Function: sensePredators()
// Return Val:
// Parameter: npsAgent, float
// Purpose: allow agent to sense a known predator and decide what to
// next
//-
void Antelope::sensePredators(npsAgent «agent, float tclosestPredator)
(

npsVec3f moveFromLocation;

if(this->isKilled(*agent)}

(
this->setRemove();
this->setDeathIndicator (PREDATION) ;
this->setKiller(agent->getAgentType());

}
else if(this->getDistance(*agentJ < closestPredator)
{

closestPredator « this->getDistance(*agent);
agent->getPosition(moveFromLocation);
this->setHoveFromLocation(moveFromLocation);
this->setNextAction(FLEE);

)//end if

}//end sensePredator

// - * ~
// Function: senseFriendlyO
// Return Val:
// Parameter: npsAgent, float, float
// Purpose: allow agent to sense a known predator and decide what to
// next
II-
void Antelope::senseFriendly(npsAgent "agent, float &closestFriend,

float fcclosestPartner)

(
float distanceToAgent ■ this->getDistance(*agent);

npsVee3f moveToLocation;

void Antelope::senseEnemy(npsAgent "agent, float iclosestEnemy)

//do nothing for
J//end sensePredator

at this time

//
// Punct ion: senseUnknown()
// Return Val:
// Parameter: npsAgent, int
// purpose: allow agent to sense an unknown agent and decide how to
// interact with it
//
void Antelope:: senseUnknown (npsAgent "agent, float fcclosestUnknown)
(

if{!(strcmp[agent->getAgentType(>,-Grass")))

(
)
else if()(stremp(agent->getAgentType(),"Cheetah">)J

{
this->addToPredators(agent->getAgentType());

)
. else

{
this->addToUnknown|agent->getAgentType()) ;

)
)//end sensePredator

this->addToFood(agent->getAgentType()) ;

//
// Function: int Antelope::litterSi2e()
// Return Val: int number in litter
// Parameter:
// Purpose: return a random number of antelope in a litter
// - -

int Antelope::litterSize()

int litter * 1;

if(npsAgent::myRand() >■ 0.9)
litter - 2;

return litter;

)//end Antelope:;litterSize(]

// - -
// Function: bool Antelope::diesAsInfant{)
// Return Val:
// Parameter:
// Purpose: return whether infant dies or not
// —
bool Antelope::diesAs!nfant()

double randNum ■ npsAgent: :myRand{);

return (randNum < INFANT_MORTALITY_RATE);

)//end Antelope:tmortalityO

// _
// Function: isKilled(Animal)
// Return Val: bool
// Parameter:
// Purpose: every animal must be able to determine if it has been
// killed by another animal
//- - -
bool Antelope::isKilled(npsAgent «agent)
{

bool killFlag = false;

if(<this->getDeathIndicat©r() «» NOT_DEAD) U>
(this->getRelationship(iagent) ■■ PREDATOR) it
(this->getDistance(agent) « KILLED_RADIUS) £&
(npsAgent::myRand() < KILL_PROBABILITY))

(
cout«"testing antelope isKilled by "«agent.getName()«endl;
killFlag - true;

return killFlag;
)
//end file Antelope.c

// EXECUTIVE SUMMARY
// Module Name: antelopeApp.h
//
// Authors: Hark A. Soyd maboyd9bigfoot.com
// Todd A. Gagnon toddSgagnon.com
//
// Description: The application class for the Antelope Module - used
// to instantiate Antelope agents when requested
//
// March 1999 Master Thesis

tifndef _antelopeApp_h
tdefine _«ntelopeApp_h

//
// INCLUDES AND EXTERNS

•include "antelope.h"

FUNCTION PROTOTYPE SPECIFICATIONS

void initAntelopeAppO;

)//end initAntelopeAppO

void exitNpsAgentAppO

//do nothing for now - should remove antelope if desired
]//end exitAntelopeAppO

void initlCeyboardModule O
(
void getNumFunc(void "object, bbData »data);
npsKeyboard »keyboard;
bbEventResponse »eventResponse;
bbCallback »callback;

// get the keyboard device
keyboard ■ npsKeyboard: :getInstanceO;

// set up get number of antelope by using the 'a' key
eventResponse o new bbEventResponse (npsKeyboard: :KEY_A |

npsKeyboard: JUP_TRANS) ;
callback = new bbCallbackO;
callback~>setFunc(getNumFunc):
eventResponse->addCallbackLast(callback);
keyboard->addEventResponse(eventRe5ponse);
J

void getNumFunelvoid "object, bbData »data)
{

cout «"How many antelope would you like to create? " « ei
ein » numAntelope;

initAntelopeFunc(numAntelope);

void initAntelopeFunc(int numAntelope)
(

Antelope »myAntelope;
npsvec3f position;

for (int i « 0; i < numAntelope; i++)
t

char name[64];

myAntelope » new Antelope() ;

strcpy(nnme, "Antelope");
strcattname, myAntelope->integerToString(myAntelope->getIdNura())] ;

myAntelope->setRandomPosition();
myAntelope->addToFriends (myAntelope->getAgentType()) ;

myAntelope->setName(name);
' type "«myAntelope->getAgentType () «endl ;

//end antelopeApp.c

void exitAntelopeAppO;

INLINED MEMBER FUNCTIONS

tendif // _AntelopeAppJi

EXECUTIVE SUMMARY
' Module Name: antelopeApp.c

1 Authors: Mark A. Boyd maboyd9bigfoot.com
Todd A. Gagnon toddftgagnon.com

Description: The application class for the Antelope Module - used
to instantiate Antelope agents when requested //

//
// March 1999 Master Thesis

INCLUDES AND EXTERNS
// '
•include "antelopeApp.h"
•include "bbModule.h"
•include "bbThread.h"
•include "bbCallback.h"
•include "npsKeyboard.h"
•include "bbEventResponse.h"

•include <math.h>
•include <GL/gl.h>

DEFINES £ FILE SCOPE VARIABLES

bbThresd
static int

•thread;
numAntelope <

// '
void initKeyboardModule();
void initAntelopeFuncfint numAntelope);
void initBoidFunclvoid "object, bbData "data);
char" integerToStringlint inNum);

void initAntelopeAppO
(

int numAntelope ■ 0;

initKeyboardModuleO;

// EXECUTIVE SUMMARY
//Module Name: cheetah.h

Mark A. Boyd maboydSbigfoot.com
Todd A. Gagnon todd8gagnon.com

// Description: Definition of the cheetah agent for i
//
// March 1999 Master Thesis

•ifndef _cheetoh_h
»define _cheetah_h

INCLUDES AND EXTERNS

•include "npsAgentApi.h"
•include "animal.h"

// "***'
•define
•define
•define
•define
•define
tdefine
•define
•define
•define
tdefine
•define
•define
•define
•define
•define
tdefine
tdefine
•define
•define
•define

INFANTJHORTALITY_RATE
REST_SENSIHG_RANGE
REGULAR_SENSING_RANGE
RUN_SENSING_RANGE
AVOID_DISTANCE
MAX_AGE
BEGIN_SEASON
END_SEASON
ONE_YEAR
GESTATION_PERIOD
ENERGY_BOOST
HIGH_ENERGY_LEVEL
STOP_HUNTING_LEVEL
RESUKE_HUNTING„LEVEL
REGULAR_ENERGY_PENALTY
RUN_ENERGY_PEHALTY
REST_ENERGY_GAIN
AVOID_RANGE
KILLED_RADIUS
KILL_PROBABILITY

150
3650

365
60
200
1200
200
800

10

0.10
0.5

//
// '

FUNCTION PROTOTYPE SPECIFICATIONS

82

class Cheetah: public Animal{

private:

int idNum;

protected:

//Constructor
Cheetah(bbCallbackFune "callbackFune);

//Constructor
Cheetah();

//Default Destructor - does nothing at this time
-CheetahO;

//produce a newborn Cheetah from a rale/female pair
Cheetah* giveBirth(int motherSpeed, int fatherSpeed,

int motherGeneration, npsVec3f motherLocation);

//get cheetah identification number
int getldNum[);

//can the Cheetah mate
bool canMate(Cheetah *potentialMate);
void matefCheetah "mate);

//are the Cheetah »ate eligible
bool mateEligible(Cheetah "potentialMate);

//test to see if cheetah is killed by another agent
bool isKilled(npsAgent tegent);

//allow cheetah to move through the world
void updatePosition(int cine);

//allow the cheetah to sense the world
void sense(int time);

int litterSizeO;
bool diesAsInf ant();

//sense various types of agents
void sensePredatora(npsAgent "agent, float iclosestPredator);
void senseFriendly(npsAgent "agent, float *closestFriend,

float fcelosestPartner);
void senseFood(npsAgent *agent, float SclosestFoodPosition^;
void senseEhemy(npsAgent 'agent, float fcelosestUnknown);
void senseUnknown(npsAgent "agent, float tclosestUnknown);

INLINED MEMBER FUNCTIONS

inline int Cheetah: :getIdNum(]
{

return idNum;

•endif // _cheetah_h

//assign a random max speed for the animal between S..10
int maxSpeed ■ myRand()*12;
if (maxSpeed < 7)

maxSpeed +« 7;
this->setspeed(maxSpeed);

this->setEnergyLevel (1200);

this->setAge(int(myRand() -MAX_AGE));
this->setMateAge<HATE_>GE);
this->setSensingRange(REGULAR_SBNSING_RANGE) ;

)//end Cheetah: :CheetahO

//
// Function: Cheetah::-Cheetah()
// Return Val: None
// Parameter: None
// Purpose: Default destructor
//
Cheetah::-Cheetah ()

//do nothing at this point
)//end Cheetah::-Cheetah()

// -
// Function: initGeomFuncI)
// Return Val:
// Parameter:
// Purpose: provides OpenGL calls from which Babmoo will draw cheetah

fi
void initGeomPunc(void "object, bbData "data}

{
GLfloat coords[4H3J = { { O.Of, O.Of, -0.6f). // front

<-0.4f. O.Of, 0.6f), // back left
{ 0.«, O.Of, 0.6f), // back right
(O.Of, 0.4£, 0.6f] // top

J;

glShadeModel(GL_FLAT);
glBegin(GL_TRIANGLES);

(
glColor3f(0.0f, O.Of. O.Of); // bottom
glVertex3fv(coordst0]);
glVertex3fv(coordsf2]);
glVertex3fv(coords[l]);

glColor3f(0.0f, O.Of, O.Of); // left
glVertex3fv(coords[0]);
givertex3fv(coords[l]);
glVertex3fv[coords[3]);

glColor3f(O.Of, O.Of, O.Of); // right
glVertex3fv(coordo[0]);
glVertex3fv(coords[3]);
glVertex3fv(eoords[2]);

// EXECUTIVE SUMMARY
// Module Name: cheetah.c
//
// Authors: Mark A. Boyd maboyd«bigfoot.com
// Todd A. Gagnon todd8gagnon.com

//
// Description: Implementation of the cheetah agent for use in npsAgent
//
// March 1999 Master Thesis
// * *** *•**•••***• • ♦••**** ** <

II **..................*»**.••««"•••"*••*«•"«•***••*****•'
// INCLUDES AND EXTERNS
II *.....••.*.

»include "cheetah.h"
»include <stdio.h>
»include <iostream.h>
»include <stdlib.h>
»include <ctime>
»include <math.h>
»include <GL/gl.h>

//** ** ** **•**#••••****••***
// DEFINES AND FILE SCOPE CONSTANTS //"** *#*••••**#
void initGeomFunc(void "object, bbData "data);

static int numCheetah - 0;

// •••* « «
// CODE "* **-

// - "
// Function: Cheetah::Cheetah()
// Return Val: None
// Parameter: None
// Purpose: Default constructor
// - - " " _
Cheetah::Cheetah ()

:Animal(init6eomFunc), idNum(numCheetah*-+)

(
this->setAgentType("Cheetah");

double genderRand ■ npsAgent::myRand();

if (genderRand < 0.5)
this->setGender(MALE);

else

this->setGender(FEMALE);
this->pregPtr ■ new Pregnancy;

glColor3f(0.0f, O.Of, O.Of);
glVertex3fv(coords[l]);
glVertex3fv(coords[2]);
glVertex3fv(coordst3]);
)

glEnd();
glShadeModel(GL_SMOOTH);

)//end Cheetah::initGeomFunc(1

// - "
//Function: Cheetah:igiveBirth ()
//Return Val: Cheetah
//Parameter: male speed, female speed
//Purpose: make a new Cheetah with speed of one of it's parents

// - "
Cheetah* Cheetah::giveBirth(int motherSpeed, int fatherSpeed,

int motherGeneration, npsVec3f motherLocation)

(
int newSpeed;

char name[64];

Cheetah "newBorn;

if(npsAgent:jmyRandO < 0.5)
newSpeed ■ motherSpeed;

else
newSpeed * fatherSpeed;

newBorn ■ ; Cheetah(),-

strcpyCname, "Cheetah");
strcat(name, this->integerToString(newBorn->getIdNum()));
newBorn->addToFriends(newBom->getAgentType());
newBorn->setNaaie(name) ;

//set values of newborn based on parents* information
newBorn->setSpeed(newSpeed);
newBorn->setPosition(motherLocation);
newBorn->setGeneration(motherGeneration +1);

return newBorn;
)//end cheetah::giveBirth()

//-
bool Cheetah::canMate()

83

// Function:
// Return Val:
// Parameter:
// Purpose: return whether Cheetah can mate or not
//
bool Cheetah::canMate(Cheetah "potentialMate)
(

bool mateFlag » false;

if((this->getGender() «»MALE) M.
(potentialMate->getGender() « FEMALE))

mateFlag ■• ((!(potentialMate->isPregnant())) it
(this->getNextAction() ■= MATE) U,
(potentialMate->getNextAction() «■ HATE) u
(this->getDistance(*potentialMate) <= MATB_DISTANCE));

)
else ift(this->getGendert) « FEMALE) it

(potentialMate->getGender() «MALE))
(

mateFlag ■ ((! (this->isPregnant())) it,
(this->getNextAction|) « MATE) it
(potentialMate->getNextAction() «« MATE) ti
(this->getDistance(*potentialMate) <* MATE_DISTANCE));

return mateFlag;
}//end Cheetah::canMate()

// -
// Function: bool Cheetah::mateBligible()
// Return Val:
// Parameter:
// Purpose: return whether Cheetah is eligible to mate
//-■

bool Cheetah::mateEligible(Cheetah *potentialMote)
(

bool aateEligibleFlag ■ false;

if{(this->getGender() « MALE) it
(potentialMate->getGender() ■» FEMALE))

{
mateEligibleFlag • (!(potentialMate->isPregnant()) it

(potentialHate->isInSea«on()> it
<potentialHate->getAge() >» MATE_AGE) a
(this->getAge() >• HATEJGE)) ;

)
else if((this->getGenderO « FEMALE) ii

(potentialMate->getGender() «MALE))
(

mateEligibleFlag - {!(this->isPregnant()) ti
(this->isInSea«on()) it
(potentialKate->getAge() >» MATE_AGE) it,
(this->getAge[) >« MATE_AGE));

)
return mateEligibleFlag;

(//end Cheetah::mateEligible()

// -
//Function: Cheetah::mate {)
//Return Val: true / false
//Parameter: mate
//Purpose: begin pregnancy once two cheetah mate
//
void Cheetah: :mate(Cheetah "mate)
{

if (this->getGender() «* MALE)

this-»setSpeedOfNextMove(RUN);
this->setEnergyLevel(this->getEnergyLevel() - RUN_ENERGY_PENALTY);
this->»oveTo[this->getMoveToLoeation());
break;

)
ease GATHER :
(

this->setSpeedOfNextMove(REGULAR);
this->setEnergyLevel(this->getEnergyLevel() - REGULAR_ENERGY_PENALTY);
this->moveTo(this->getMoveToLocation());
break;

)
case AVOID :
{

this->setSpeedOfNextMove(REGULAR);
this->setEnergyLevel(this->getEnergyLevel() - REGULAR_ENERGY_PEMALTY);
thi*->moveFrom(this->getMoveFroraLocation()); ~
break;

)
case FLEE :
t

this->setSpeedOfNextHove(RON);
this->setEnergyLevel(this->getEnergyLevel() - RUN_ENERGY_PENALTY);
this->moveFrom(this->g«tMoveFromLocation());
break;

)
default : //CHASE
t

this->setSpeedOfNextMove(RUN);
this->setBnergyLevel(this->getEnergyLevel() - RUN_ENERGY_PENALTY)-
this->moveTo(this->getMoveToLocation());
break;

)//end switch getNextActionf)

ifIthis->isPregnant())
<

if(this->pregPtr->gestationTime »a GESTATION_PERIOD)
(

inf litter » this->litterSize();
npsVee3f tempLocation;
this->getPosition(tempLocation);

Cheetah •babyCheetah;
for (int ix » 1; ix <■ litter; ix++)
(

babyCheetah = this->giveBirthfthis->getSpeed(), this->pregPtr->maleSpee

this->getGeneration(), tempLocation);

if(babyCheetah->diesAsInfant())
{

babyCheetah->setDeathIndicator(INFANT_M0RTAL1TY);
}
else 84

mate->setPregnant(true);
mate->pregPtr->partnerId * this->getIdNum();
mate->pregPtr->maleSpeed «* this->getSpeed();
mate->pregPtr->gestationTime * 0;

else
t

this->setPregnant|true);
this->pregPtr->partnerId * mate->getIdNum();
this->pregPtr->maleSpeed ■ mate->getSpeed();
this->pregPtr->gestationTime * 0;

return;

)//end function Cheetah::mate()

ti-
ll Function: updatePositionO
// Return Val:
// Parameter:
// Purpose: allow the cheetah to update position
II-
void Cheetah::updatePosition(int time)
(

//check to make sure still has enough energy to keep hunting
if(this->getEnergyLevel() < STOP_HUNTING_LEVEL)
{

this->setRest(true);
this->setKextAction (NOTHING) ;

)//end if

switch!this->getNextAeti n<>)

case MATE :
{

this->setSpeedOfNextMove(REGULAR);
this->setEnergyLevel(this->getEnergyLevel{) - REGULAR_ENERGY_PENALTV);
this->moveTo(this->getMoveToLocation());
break;

J
case NOTHING :

if(this->isResting() || (randO < RAND_MAX/2))
{

this->setSpeedOfNextMove(REST);
this->setEnergyL«v*l(this->getEnergyLevel() ♦ REST_ENERGY_GAIN);

)
else
{

this->setSpeedOfNextMove(REGULAR);
this->setEnergyLevel(this->getEnergyLevel() - REGULAR_ENERGY_PENALTY);

)
this->move();
break;

)
case FEED :

cout«"newborn cheetah"«endl;
)
if (babyCheetah->getGender() « FEMALE)

babyCheetah->pregptr ■ new Pregnancy;
)//end for (ix) - create litter of size litter

this->setPregnant(false);
)//end if pregancy gestation time > GESTATION_TIME
else
{
this->pregPtr->gestationTime++;
)//end else

]//end if aix->isPregnant()

this->grow01der() ;

//check age and if over MAX_AGE then set deathlndicator to 0LD_AGE
if(this->getAge() « MAX_AGE)

this->setDeathIndicator(OLD_AGE) ;

//Last thing we do is check to make sure the cheetah didn't die two
//time steps ago. if so take out of world otherwise increment counter
//this allows the other animals to sense this one and learn how it died

if(<this->getDeathIndieator{) !» N0T_DEAD) it (this->getDeathCounter() < 2))

this->setDeathCounter(this->getDeathCounter() ♦ 1);
}//end if getDeathlndieator()
else if((this->getDeathIndicator() != N0T_DEADJ ti (this->getDeathCounter() :

this->setRemove();
]//end if else getDeathlndieator()

)//end updatePositionO

// _
// Function: sensed
// Return Val:
// Parameter:
// Purpose: allow the cheetah to sense environment and decide which
// action to take next //
void Cheetah::sense(int time)//npsAgent »sensedAgent)
(

if Ithis->isResting())
(

if(this->getEnergyLevel() > RESUKE„HUNTINGWLEVEL)

)
}
else

this->setRest(false);

t senseEnemy (sensedAgent, closestEnemy);
break;

if ({time%ONE_YEAR > 8EGIN_SEAS0N) && (time%ONE_YEAR < END_SEASON))
this->setInSeason(true);

)
case FRIENDLY:

else
this->setInSeason(false),-

int currentSensingRange ■ 0;

if{(this->getNextAetion() != FLEE) ||
(this->getNextAction() != HATE))
senseFriendlytsensedAgent, closestFriend, closestPartner);

break;

float closestParCner ■ 100,
closestPriend - 100,
closestEnemy ■ 100,
closestUnknown » 100,
closestFood ■ 100,
closestPredator * 100;

bool sensedFood ■ false;

)
ease FOOD:

{
if<(this->getNextAction{) !- FLEE) ||

(this->getNextAction() I« HATE))
senseFood(sensedAgent, closestFood);

break;

npsVec3f moveToLocation; default: //case UNKNOWN:

switch(this->getSpeedOfNcxtMove(}) senseUnknown(sensedAgent, closestUnknown);
break;

case REST :

currentSensingRange « REST_S£NSING_RANGE;

)
)//end switch

)//end if (distanceToAgent...)

case REGULAS :

)//end for (j-cnumAgents)
)//end ifelse(isResting)

currentSensingRange » REGULAR_SENSING_RANGE;
break;

)//end Cheetah::sensed

default://case RUB

currentSensingRange - RUN_SENSTNG_RANGE;
break;

}//end switch

this->setNextAction(NOTHING); //reset this for tracking

// Function: •sensePredators()
// Return Val:
// Parameter: npsAgent, float
// Purpose: allow agent to sense o known predator and decide what
// next

to

void Cheetah::sensePredators(npsAgent *agent, float (closestPredator

int numAgents - bbListedClass<npsAgent>::getNumObjects(); {
//nothing defined for predators at this time

for (int j ■ 0; j < numAgents; j++)
)//end sensePredator

npsAgent "sensedAgent * bbListedClass<npsAgent>: :getOb;ject(j);

if ((this->getDistance{*sensedAgent) «currentSensingRange) tt
(this->getName{) !■ sensedAgent->getName()))

(
switch (this->getRelationship(sensedAgent))

(
case PREDATOR:

(
sensePredators(sensedAgent, closestPredator);
break;

// Function: senseFriendlyt)
// Return Val:
// Parameter: npsAgent, float, float
// Purpose: allow agent to sense a known predator and decide what
// next

to

void Cheetah::senseFriendly(npsAgent «agent, float (closestToAvoid,
float (closestPartner)

}
case ENEMY:

{

float distanceToAgent ■ this->getDistance(*agent);

np$Vec3f moveToLocation, moveFromLocation; else

if (this->isSameAgentType(agent)) if(this->getDistance("agent) < closestFood)

if (this~>canMate((Cheetah ")agent)J
(

this->nate{(Cheetah "Jagent); *
this->setNextAction(NOTHING);

)//end if canMatet)
else if([this->mateEligible((Cheetah »(agent)) fcfc

(distanceToAgent < closestPartnerl)
{

ClosestFood ■ this->getDistance("agent);
agent->getPositiontraoveToLoeation);
this->setHoveToLocation(moveToLocation) ,-
this->setKextAction(CHASE);

)//end if getDistance

}//end if else agent->isKilled()
)//end if cix->getX()

closestPartner » distanceToAgent;
egent->getPosition(moveToLocation);
this->setMoveToLocation(raoveToLoeation);
this->setNextAction(MATE);

)//end else if mateEligible(tcix)
else if((this->getNextAction() !* MATE) &fc

(this->getNextAction() l> CHASE))
(

if((distanceToAgent < closestToAvoid) &&
„ (distanceToAgent < AVOIDJtANGE))

closestToAvoid ■ distanceToAgent;
agent->getPosition{raoveFromLocation) ,-
this->setMoveFromLoeation(moveFromLocation);
this->setNextAction(AVOID);

)//end else if (SKATE)

)//end if (SfoundPartner)

}//end senseFood

// Function: senseEnemyO
// Return Val:
// Parameter: npsAgent, int
// Purpose: allow agent to sense a known predator and decide what
// next

to

void Cheetah::senseEnemy(npsAgent "agent, float (closestEnemy)
(

//do nothing for Enemies at this time

)//end if isSaaeAgentl)
else)//end sensePredator

//no interaction defined for other friendly agents at this time
)//end if/else(isSojneAgentType)

)//end senseFriendlyt)

// Function: senseUnknown()
// Return Val:
// Parameter: npsAgent, int
// Purpose: allow agent to sense an unknown agent and decide how to
// interact with it

// Function: senseFoodO
// Return Val:
// Parameter: npsAgent, npsVec3f
// Purpose: allow agent to sense a known food source and remember if
// it is the closest one

void Cheetah::senseUnknown(npsAgent "agent, float (closestUnknown)
{

if (!(strcmp(agent->getAgentTypeO,-Antelope")))
(

this->addToFood(agent->getAgentType());
)
else

'
void Cheetah::senseFood(npsAgent "agent, float (closestFood)
{

npsVec3f moveToLocation;

if(|this->getNextAction() != MATE) ((!(this->isResting()) ((
(this->getEnergyLevelO < HIGH_ENERGY__LEVEL))

{
if(this->getDistanee(*agent) < closestFood)
(

{
//do nothing at this time

)
)//end sensePredator

if(agent->isKilled(-this)}
t

this->setEnergyLevel(this->getEnergyLevel() ♦ ENERGY_BOOST);
this->setNextAction(NOTHING);
cout« "Antelope killed"«endl;

)//end if canKilll) {j

// Function: int litterSizeO
// Return Val: int number in litter
// Parameter:
// Purpose: return a random number of cheetah in a litter

5 " " "

int Cheetah::litterSi2e()
(

int litter « 1;

double randNum * npsAgent::myRand();

if[randNum « 0.05)
litter » 1;

eise if([randNum > 0.OSJ && (randNum <» 0.15))
litter - 2;

eise i£({randNun > 0.15) M (randNum <* 0.3))
litter - 3;

else if([randNum > 0.3) && (randNun <■ 0.7))
litter » 4;

else if[[randNum > 0.7) &£ (randNum <= 0.85)]
Utter - 5;

else if((randNum > 0.85) && (randNum <■ 0.95))
litter « 6;

else //if randNum > .95
litter - 7;

return litter;

l//end Cheetah::litterSize()

// - -
// Function: tool Cheetah::diesAsInfant()
// Return Val:
// Parameter:
// Purpose: return whether infant dies or not // _
bool Cheetah:;diesAsInfant{)
(

return {npsAgent::myRand() < INFANT_MORTALITY_RATE);

J//end Cheetah::mortality()

// -
// Function: isKilled(agent)
// Return Val: bool
// Parameter:
// Purpose: every animal must be able to determine if it can kill
// another animal //
bool Cheetah::isKilled(npsAgent fcagent]
t

bool killFlag - false;

if ((this->getDeathIndieator () ■■ NOT_DEAD) it,
(this->getRelationship{*agent) ■* PREDATOR) &fc
(thia->getDistanee(agent) <■ KILLED_RADIUS) U,
(npsAgent: smyRand () < KILL_PRaBABILITY))

killFlag - true;

return killFlag;

»include "bbEventResponse.h"

•include <math.h>
•include <GL/gl.h>

DEFINES t FILE SCOPE VARIABLES

bblhread "thread;
static int numCheetah ■ 0;

void initKeyboardHodulet);
void initCheetahFunctint numCheetah);
void initBoidFunc(void •object, bbData •data);
char* integerToStringfint inNum);

// '

void initCheetahAppO
(

initKeyboardHodule();

void exitNpsAgentApp{}
(
}

void initKeyboardHodule[)
(

void getNumFuncfvoid "object, bbData "data);
npsKeyboard »keyboard;
bbEventResponse 'eventResponse;
bbCallback "callback;

// get the keyboard device
keyboard = npsKeyboard::getlnstance();

// set up get number of cheetah by using the 'a' key
eventResponse = new bbEventResponselnpsKeyboard::KEY_C J

npsKeyboard::UP_TRANS);
callback * new bbCallbackO ;
callback->setFunc(getNumFunc);
eventResponse->addCallbockLast(callback);
keyboard->addEventResponse{eventResponse);

void getNumFuncfvoid "object, bbData "data)
(

cout «"How many cheetah would you like to create?
ein » numCheetah;

)//end Cheetah::isKilled[)

//end file Cheetah.c

EXECUTIVE SUMMARY
' Module Name: cheetahApp.h

// Authors: Mark A. Boyd maboyd0bigfoot.com
Todd A. Gagnon todd9gagnon.com

// Description: The application class for the Cheetah Module ■
// to instantiate Cheetah agents when requested
//
// March 1999 Master Thesis

tifndef _cheetahApp_h
•define _cheetahApp_h

INCLUDES AND EXTBRNS

•include "cheetah.h"

// FUNCTION PROTOTYPE SPECIFICATIONS

void initCheetahApp();
void exitCheetahApp();

»endif // _CheetahApp_h

// EXECUTIVE SUMMARY
// Module Name: cheetahApp.c
//
// Authors: Mark A. Boyd maboydflbigfoot.com
// Todd A. Gagnon toddtgagnon.com
//
// Description: The application class for the Cheetah Module - used
// to instantiate Cheetah agents when requested
//
// March 1999 Master Thesis

INCLUDES AND EXTERNS
// ***** ****
•include "cheetahApp.h"
•include "bbModule.h"
•include "bbThread.h'
•inelude "bbCallback.h-
•include "npsKeyboard.h"

initCheetahFunc(numCheetah);

void initCheetahFunctint numCheetah)
(

Cheetah "myCheetah;
npsVec3f position;

for (int i * 0; i < numCheetah; i++)
(

char name[64];

strcpyfname, "Cheetah");
street(name, myCheeteh->integerToString(»yCheetah->getIdNum[)));

myCheetah->setRandomPosition();
myCheetah->addToFriends[myCheetah->getAgentType());

myCheetah->setName(nane);
cout«"name » "«name«:<"type •«myCheetah->getAgentType()«endl;

// EXECUTIVE SUMMARY
// Module Name: plant.h
//
// Authors: Mark A. Boyd maboydflbigfoot.com
// Todd A. Gagnon todd9gagnon.com //
// Description: Definition of the Plant agent for use in npsAgent
//
// March 1999 Master Thesis

•ifndef _plant_h
•define _plant_h

INCLUDES AND EXTERNS
// '
»include "npsAgent.h"
•include "npsAgentApi.h"
•include "npsVec3f.h"

class Plant;
•ifdef _Plant_c

ACB_EXPORT_SINGLETON_DECLARATION[bbSafeClass<Plant>);

ACE_EXPORT_SINGLETON_DECLARATION(bbListedClass<Plant>)j
•else
ACE_IKP0RT_SINGLETON_DECLARAT10N {bbSafeClass<Plant>);
ACEJD*P0RT_SINGLETON_DECLARATI0N(bbListedClass<Plant>);

tendif

FUNCTION PROTOTYPE SPECIFICATIONS

class AGENT_API Plant: public npsAgent(

//nothing specific for plants was implemented for this
//project. Attributes and behaviors much like chose in
//the Animal class could be implemented here.

//constructor
Plant(bbCallbackFunc *callbackFunc);

//Default Destructor - does nothing at this time
-Plant();

//update position or sense any other agents
virtual void updatePosition(int time) - 0;
virtual void sense(inc time) - 0;

//check for being killed
virtual bool isKilledfnpsAgent tagent) * 0;

#endif // _Plant

// *•••*•**•***•* *....**
// EXECUTIVE SUMMARY
// Module Name: plant.C
//
// Authors: Hark A. Boyd maboydBbigfoot.com
// Todd A. Gagnon toddAgagnon.com
//
// Descriptions Definition of the Plant agent for >
//
// March 1999 Master Thesis
// ..••..••••..••....•..•.•■■•••••■..••■.***•*•**•<

•define _plant_c

// •*****•* *•*•
// INCLUDES AND EXTERNS

const float PATCJCSIZE ■ 6.Of;

// FUNCTION PROTOTYPE SPECIFICATIONS
/7•..•••.••.•••....*.
class Grass: public Plant!

private:

int idHum;

protected:

public:

//Constructor
Grass(bbCallbackFunc *callbackFunc};

//Constructor
Grass();

//Default Destructor - does nothing at this time
-Grass();

int getldHum();

//will not update position or sense any other agents
void updatePositiontint time);
void sense(int time);
bool isKilledfnpsAgent fcagent);

INLTNED MEMBER FUNCTIONS

inline Grass::getIdNum{)
t

return(idNum);

inline void Grass: :updatePosition(int time)(]
inline void Grass::sense(int time){]
inline bool Grass::isKilled(npsAgent (agent)(return false;)

tendif // _grass_h

87

»include "Plant.h"

// DEFINES AND FILE SCOPE CONSTANTS

static int numPlant « 0;

// -
// Function: Plant::Plant()
// Return Val: None
// Parameter: None
// purpose: Default constructor
//
Plant::Plant (bbCallbackFunc *_callbackFunc)

:npsAgent{_callbackFunc)

(
//nothing to construct at this time

)//end Plant::Plant()

// -
//Function: Plant::-Plant()
// Return Val: None
// Parameter; None
// Purpose: Default destructor
// "
Plant::-Plant ()
(

//do nothing at this point
)//end Plant::-PlantO
//end file Plant.c

//•.........•....•••••..—.••.•.•....•..*.**.*.......••**-**i

// EXECUTIVE SUMMARY
// Module Name: grass.h
//
// Authors: Mark A. Boyd maboyd0bigfoot.com
// Todd A. Gagnon todd9gagnon.com
//
// Description; Definition of the grass agent for use in npsAgent
//
// March 1999 Master Thesis // *******

tifndef _grass_h
•define _grass_h

INCLUDES AND EXTERNS

•include "npsAgentApi.h"
•include "Plant.h"

,,
// EXECUTIVE SUMMARY
// Module Name: grass.c
//
// Authors: Mark A. Boyd maboyd9bigfoot.com
// Todd A. Gagnon todd9gagnon.com
//
// Description: Definition of the grass agent for use in npsAgent
//
// March 1999 Master Thesis //
// •«••*••***•**
// INCLUDES AND EXTERNS
j/••«.••

•include "grass.h"
«include <GL7gl.h>

//*****................*....*
// DEFINES AND FILE SCOPE CONSTANTS
//•...•..•.............••......•...*.....*•.••.•■••■•■*.••<•■■*.....***.

void initGeomFunc(void 'object, bbData *data);

static int numGrass ■ 0;

// - - --
// Function: Grass:;Grass()
// Return Val: None
// Parameter: None
// Purpose: Default constructor
H
Grass::Grass ()

:Plant(initGeomFunc), idNumfnumGrass**)
t

this->setAgentType("Grass");

)//end Grass::Grass()

// - -
// Function: Grass::-Grass!)
// Return Val: None
// Parameter: None
// Purpose: Default destructor
// -r- ~
Grass::-Grass ()
(

//do nothing at this point
(//end Grass::-Grass[)

//
// Function: initGeomFune()
// Return val:
// Parameter:
// Purpose: provides OpenGL calls from which Babmoo will draw the grass
// - -
void initGeomFune(void "object, bbData *data]
{
GLfloat coordst4][3] - ({ -PATCH_SIZE, -0.5f, -PATCH_SIZEJ,// front

t PATCH_SIZE, -0.5f,-PATCH_SIZE). // back left
(PATCH_SIZE, -0.5f, PATCH_SIZEJ, // back right
C-PATCH_SIZE, -0.5f, PATCH_SIZE) // top

glShadeHodel(GL_FLAT);
glBegin(GLJPOLYGON) ;

{
glColor3f(0.5f. 0.7f. O.Sf); //bottom
glVertex3fv(coord*[0]);
glVertex3fv(coords[l]);
glVertex3fv(coords[2J);
glVertex3fv(coords[3]);
>

glEndf):
glShadeModel(GL_SHOOTH);

}
//end file Grass.c

// EXECUTIVE SUMMARY
// Module Name: grassApp.h //
// Authors: Mark A. Boyd maboydabigfoot.com
// Todd A. Gagnon todd0gagnon.com
//
// Description: Aplication file for the grass agent for use in npsAgent ■
// used to instantiate grass agents
//
// March 1999 Master Thesis

tifndef _grassApp_h
■define _arassApp_h

INCLUDES AND EXTERNS

■include "grass.h"

FUNCTION PROTOTYPE SPECIFICATIONS

void initGrassApp();
void exitGrassApp();

tendif // _GrassApp_h

// EXECUTIVE SUMMARY
// Module Name: grassApp.c

Mark A. Boyd maboydSbigfoot.com
Todd A. Gagnon todd8gagnon.com

npsKeyboard:fUP_TRANS)j
callback = new bbCallbackf) ;
callbeck->setFune<getNumFune),-
eventResponse->addCallbackLast(callback);
keyboard->addEventResponse{eventResponse);

}//end initKeyboardModuleO

void getNumFunetvoid •objeet, bbData 'data)
{

cout «"How many grass agents would you like to create? ■ « endl;
ein » numGrass;

initGra5sPUnc(numGrass);
)//end getNumFuneO

void initGrassFuncfint numGrass)
C

Grass »myGrass ;
npsVec3£ position;

float sqrPtTotal * (MAX_X-MIN,JC)»fMAX_Z-HIN_Z),
sqrFtperPatch - sgxFtTotal/numGrass,
xoffset ■ sqrt(sqrFtPerPatch),
ZOffset ■ xOffset;

int currentX ■ MINJt,
currentZ ■ MIN_Z;

for (int i - 0; i < numGrass; i*+)
(

char name164];

if((currentX+xOffset) <- MAX_X)
currentX ♦= xOffset;

else
{

currentX = MIN_X + xOffset;
if((eurrentz+zoffset) <» MAX_Z)

currentZ *- zOffset;
else

currentZ = MIN_Z + zOffset;

myGrass * new Grass();

strcpyfname, "Grass");
»treat(name, myGrass->integerToString(myGrass->getIdNumO));

myGrass->setRandomPosition();

myGrass->setName(name);

myGrass->getPosition(position);
eout-«"grass "«myGrass->getIdNum()< "in position "«position«endl;

88

// Description: Aplication file for the grass agent for use in npsAgent -
// used to instantiate grass agents
//
// March 1999 Master Thesis

INCLUDES AND EXTERNS
//
•include "grassApp.h*
■include "bbModule.h"
■include "bbThread.h"
■include "bbCallback.h"
■include "npsKeyboard .h"
■include "bbEventResponse.h"

■include <math.h>
■include <GL/gl.h>

DEFINES k FILE SCOPE VARIABLES

static int numGrass >

void initKeyboardModule();
void initGras5Func(int numGrass);

void initGrassApp(}
(

int numGrass * 0;

initKeyboardModuleO;
)//end initGrassApp!)

void eaeitNpsAgentAppO

//do nothing for now
)//end exitGrassApp()

void initKeyboardModuleO
{

void getNumFunc(void »object, bbData "data);
npsKeyboard »keyboard:
bbEventResponse "eventResponse;
bbcallback •callback;

// get the keyboard device
keyboard * npsKeyboard: :getlnstanee();

// set up get number of grass by using the "a" key
eventResponse * new bbEventResponseCnpsKeyboard::KEY_G |

)//end initGrassFune()

//end file grassApp.c

APPENDIXB: GLOSSARY

• adaptability
- Modify rules of behavior and strategies based on interactions.

• agent
- Software object with internal states and a set of associated behaviors.

• Bamboo
- Cross platform, dynamically extensible, virtual environment toolkit.

• emergent behavior
- Behavior patterns that emerge from the interactions of agents but are not inherent

to the agents themselves.

• dynamic extensibility
- Applications have the ability to dynamically reconfigure themselves by adding to

or altering their functionality during runtime.

• event
- A change of object attribute value, an interaction between objects, an instantiation

of a new object, or a deletion of an existing object.

• interaction
- An explicit action taken by an agent that can optionally be directed toward other

agents including the environment.

• model
- A physical, mathematical, or otherwise logical representation of a system, entity,

phenomenon, or process.

• simulation
- A method for implementing a model over time. Also, a technique for testing,

analysis, or training in which real-world systems are used, or where real-world
and conceptual systems are reproduced by a model.

89

90

LIST OF REFERENCES

[I] Zyda, M. and Sheehan, J. (1997). Modeling and Simulation: Linking
Entertainment & Defense. Washington, D.C.: National Academy Press.

[2] Holland, J. H. (1998). Emergence. Reading, MA: Helix Books.

[3] Thinking Tools (1999). Agent Based Adaptive Simulation Technology. [On-
line] (2 Feb. 98). Available at URL:
http://wvvw.minkingtools.com/html/technology.html

[4] Maxis. (1999). The SimCity Story. [On-line] (27 Jan. 99). Available at URL:
http://vvww.simcity.com/3000/general.html

[5] Maxis. (1999). SimCity 2000. [On-line] (27 Jan. 99). Available at URL:
http://www.maxis.com

[6] Williams, R. J. (1995). Using Agent Based Simulations in a Training
Environment. [On-line] (28 Jan. 99). Available at URL:
http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

[7] California Department of Food and Agriculture (1998). The Mediterranean Fruit
Fly Fact Sheet. [On-line] (2 Feb. 99). Available at URL:
http://www.cdfa.ca.gov/pests/medfly/mediterranean fly.html

[8] Axtelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of
Competition and Collaboration. Princeton, NJ: Princeton University Press.

[9] Reynolds, C. (1997). Individual-Based Models. [On-line] (20 Jan. 99)
Available at URL: http://hmt.com/cwr/ibm.html

[10] Axtell, R, and Epstein, J. M. (1996). Growing Artificial Societies: Social
Science for the Bottom Up. Washington, D.C.: The Brookings Institute.

[II] Ziemke, T. (1998). Adaptive Behavior in Autonomous Agents, Presence, volume
7, number 6, December 1998.

[12] Casti, J. L. (1997). Would-be Worlds: How Simulation is Changing the Frontiers
of Science. New York, NY: John Wiley & Sons, Inc.

[13] Hofstadter, D. R (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New
York, NY: Basic Books.

[14] Watsen, K. and Zyda, M. (1998). Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked, Virtual Environments. 1998 IEEE Virtual
Reality Annual International Symposium (VRAIS - 98), Atlanta, GA.

91

[15] Watsen, K. and Zyda, M. (1998). Bamboo - Supporting Dynamic Protocols for
Virtual Environments. 1998 IMAGE Conference, Scottsdale, AZ.

[16] Zyda, M. (1999). Academic Associate and Chair of the Modeling, Virtual
Environments, and Simulation Academic Group, Naval Postgraduate School,
Monterey, CA.

[17] Darken, R. (1999). Assistant Professor of Computer Science and Chair of the
Modeling, Virtual Environments, and Simulation Human-Computer Interaction
Track, Naval Postgraduate School, Monterey, CA.

[18] Watsen, K. (1999). Senior Development Architect for Bamboo, Naval
Postgraduate School, Monterey, CA.

92

BIBLIOGRAPHY

Axtell, R, and Epstein, J. M. (1996). Growing Artificial Societies: Social Science from
the Bottom Up. Washington, D.C.: The Brookings Institute.

Axtelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of
Competition and Collaboration. Princeton, NJ: Princeton University Press.

California Department of Food and Agriculture (1998). The Mediterranean Fruit Fly
Fact Sheet. [On-line] (2 Feb. 99). Available at URL:
http://www.cdfa.ca.gov/pests/medfly/mediterranean fly.html

Campos, A. M. C. and Hill, D. R. C. Web-Based Simulation of Agents Behaviors. [On-
line] (15 Jan. 99). Available at URL: http://www.isima.fr/scs/wbms/d4/Websim.html

Casti, J. L. (1997). Would-be Worlds: How Simulation is Changing the Frontiers of
Science. New York, NY: John Wiley & Sons, Inc.

Deitel, H. M. and Deitel, P. J. (1994). C++How to Program. Englewood Cliffs, NJ:
Prentice Hall.

Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York,
NY: Basic Books.

Holland, J. H. (1995). Hidden Order: How Adaption Builds Complexity. Reading, MA:
Perseus Books. b

Holland, J.H. (1998). Emergence. Reading, MA: Helix Books.

Honegger, B. (1999). VR Project to Simulate Whole Navy. Campus News, volume 6,
issue 8. February 26,1999.

Jennings, N. R. and Wooldridge, M. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, October 1994.

Laird, J. E. (1998). Knowledge-based Multiagent Coordination, Presence, volume 7,
number 6, December 1998.

Liles, S. W., Watsen, K. and Zyda, M. (1998). Dynamic Discovery of Simulation
Entities Using Bamboo and HLA. 1998 Simulation Interoperability Workshop, Orlando,
FL.

Lock, J. D. (1999). To Fight with Intrepidity ... The Complete History of the U.S. Army
Rangers 1622 to Present. New York, NY: Pocket Books.

93

Maxis. (1999). The SimCity Story. [On-line] (27 Jan. 99). Available at URL:
http://www.simcity.com/3000/general.html

Maxis. (1999). SimCity 2000. [On-line] (27 Jan. 99). Available at URL:
http://www.maxis.com

Minar, N., Burkhart, R., Langton, C, and Askenazi, M. (1996). The Swarm Simulation
System: A Toolkit for Building Multi-Agent Simulations. [On-line] (21 Jan. 99)
Available at URL: http://www.santafe.edu/projects/swarm/intro-material.html

Prosise, J. (1996). Programming Windows 95 with MFC. Redmond, WA: Microsoft
Press.

Resnick, M. (1998). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, MA: The MIT Press.

Reynolds, C. (1997). Individual-Based Models. [On-line] (20 Jan. 99) Available at
URL: http://hmt.com/cwr/ibm.html

Thinking Tools (1999). Agent Based Adaptive Simulation Technology. [On-line] (2
Feb. 98). Available at URL: http://www.thinkingtools.com/html/technology.html

Watsen, K. and Zyda, M. (1998). Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked, Virtual Environments. 1998 IEEE Virtual Reality
Annual International Symposium (VRAIS - 98), Atlanta, GA.

Watsen, K. and Zyda, M. (1998). Bamboo - Supporting Dynamic Protocols for Virtual
Environments. 1998 IMAGE Conference, Scottsdale, AZ.

Williams, R. J. (1995). Simulation for Public Order Training and Preplanning. [On-line]
(28 Jan. 99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Williams, R. J. (1995). Using Agent Based Simulations for Training. [On-line] (15 Jan.
99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Williams, R. J. (1995). Using Agent Based Simulations in a Training Environment. [On-
line] (28 Jan. 99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Wooldridge, M. and Jennings, N. R. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, October 1994.

Ziemke, T. (1998). Adaptive Behavior in Autonomous Agents, Presence, volume 7,
number 6, December 1998.

Zyda, M. and Sheehan, J. (1997). Modeling and Simulation: Linking Entertainment &
Defense. Washington, D.C.: National Academy Press.

94

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Road, Ste 0944'
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Capt. Steve Chapman, USN
N6M
2000 Navy Pentagon
Room 4C445
Washington, DC 20350-2000

4. George Phillips
CNO,N6Ml
2000 Navy Pentagon
Room 4C445
Washingon, DC 20350-2000

5. Mike Macedonia
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

6. National Simulation Center (NSC)
ATTN ATZL-NSC (Jerry Ham)
410 Kearney Avenue — Building 45
Fort Leavenworth, KS 66027-1306

7. Director
Office of Science & Innovation
OSI, MCCDC
3300 Russell Road
Quantico, VA 22134-5021

8. Capt. Dennis McBride, USN__
Office of Naval Research (341)
800 No. Quincy Street
Arlington, VA 22217-5660

95

Col. Crash Konwin, USAF.
DMSO
1901 N. Beauregard St.
Suite 504
Alexandria, VA 22311

10. Sid Kissen 1
National Security Agency
Atta: S312
9800 Savage Road
Fort George G. Meade, MD 20755

11. Mark A. Boyd 1
39062 White Fir Lane
Corvallis, Oregon 97330

12. ToddA. Gagnon 1
1278 North Main Street
Brewer, Maine 04412

13. John Hues 1
22 Deer Stalker Path
Monterey, California 93940

14. Commanding Officer 1
Arm: Code 30
Navy Information Warfare Activity
9800 Savage Road
Fort Meade, Maryland 20755-6000

15. Paul Chatelier 1
Office of Science and Technology Policy
Education and Training Initiative
1901 North Beauregard Street, Suite 510
Alexandria, VA 22311

96

