Reproduced From
Best Available Copy

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-
BASED SIMULATION ARCHITECTURES FOR

BAMBOO OR VISUAL C++
by
Mark A. Boyd
Todd A. Gagnon
March 1999
Thesis Advisor: Michael Zyda
Rudolph Darken

Thesis Co-Advisor:

Approved for public release; distribution is unlimited.

19990409 066

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1999 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-BASED SIMULATION
ARCHITECTURES FOR BAMBOO OR VISUAL C++

6. AUTHOR(S)

Boyd, Mark A. and Gagnon, Todd A.
8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Zero-sum budgeting, downsizing, and increased mission requirements make it more challenging for U.S.
Navy leaders to understand the short and long-term consequences of their decisions. An enterprise model of the
Navy could provide decision-makers with a tool to study how their decisions might affect the Navy's ability to
conduct worldwide operations. Agent-based simulation technology provides a flexible platform to model the
complex relationships between the Navy's many components. Agent-based modeling uses software agents to
define each relevant entity of the system. These agents have the ability to interact with their environment and
learn or adapt their behaviors while trying to achieve their goals. The aggregate of these interactions results in
identifiable behavior patterns known as emergent behaviors. This thesis looks at two methods of designing the
underlying architecture for a simple agent-based simulation. A classic predator-prey relationship is modeled
using a Windows/C++ implementation and a dynamically extensible Bamboo implementation.. While the
Windows/C++ implementation is straightforward, it requires definition of all agents before run-time. Bamboo is
more challenging to implement, but allows the introduction of agents on the fly, and can easily be extended for
distributed implementation. Both appear to be viable implementation architectures for an enterprise model of

the Navy.
14. SUBJECT TERMS
Agent-Based Simulation, Autonomous Agents, Bamboo, Emergent Behavior, Adaptive Agents 16. NUMBi%g FPAGES
16. PRICE CODE
17. SECURITY _‘:%]ssgggzlw CLASSIFICATION OF 19. SECURITY CLASSIFI- 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF REPORT Unclassified CATION OF ABSTRACT UL
Unclassified nclassthie Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

METHODOLOGY AND DESIGN OF ADAPTIVE AGENT-BASED SIMULATION
ARCHITECTURES FOR BAMBOO OR VISUAL C++

Mark A. Boyd
Major, United States Army
B.S., Oregon State University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

Todd A. Gagnon
Lieutenant, United States Navy
B.S., United States Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and
MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

— A o

A. Boyd Todd A. Gagnon

Approved by: M@é

Mi@ da, Thesis Advisor

(Aot G ok

Rudolph Darken, Thesis Co-Advisor

TLLNGL

Mlchael Z dz(dé,mxc Associate
Modeling Virtual E ts and Slmulatlon Academic Group

Dan Boger, Ch%a
Department of Computer lence

il

ABSTRACT

Zero-sum budgeting, downsizing, and increased mission requirements make it more
challenging for U.S. Navy leaders to understand the short and long-term consequences of their
decisions. An enterprise model of the Navy could provide decision-makers with a tool to study
how their decisions might affect the Navy's ability to conduct worldwide operations. Agent-
based simulation technology provides a flexible platform to model the complex relationships
between the Navy's many components. Agent-based modeling uses software agents to define
each relevant entity of the system. These agents have the ability to interact with their
environment and learn or adapt their behaviors while trying to achieve their goals. The
aggregate of these interactions results in identifiable behavior patterns known as emergent
behaviors. This thesis looks at two methods of designing the underlying architecture for a
simple agent-based simulation. A classic predator-prey relationship is modeled using a
Windows/C++ implementation and a dynamically extensible Bamboo implementation. While
the Windows/C++ implementation is straightforward, it requires definition of all agents before
~ run-time. Bamboo is more challenging to implement, but allows the introduction of agents
"on-the-fly", and can easily be extended for distributed implementation. Both appear to be

viable implementation architectures for an enterprise model of the Navy.

vi

I. INTRODUCTION 1
A MOTIVATION ...ooiierretiieeeereerreseeerassmansesssassesassasserssssssssossanssnssisessasesssstastassiseossssesiorsessssssssesatnrantsantastonases 1
B. BACKGROUNDcovuttireeerieirireneeererensasearesasssasessssssssssersstaeresssssessssesarasssessssseasssssssasssssstostesesierarssmtmestsnnans 2
C. AGENT-BASED MODELING....c.cctetttitieiesmeaiessraneseeissssosestosssseterinssssssmasmsrssstnsessessstntsttnttimsessetsassssansisssarases 3
D. BAMBOO oeeeeiieeciieeciertraseiererrrressessvnsssssstnssssessarntassssssesensssesnisssssssassssarsseanrsasstssisetresssessstsstsssassansernonesees 5
E. SUMMARY OF CHAPTERScccittttieeerervenrenreressssrrssssssosasasessresasssansssssssosssessasasstosassssssssssssisstessetssrnnsmasasssnnns 9

II. AGENT-BASED MODELING 11
A, INTRODUCTION.uciieiereeeeerereearereersresasasesssemmeroarasssstsrtermessssssssnsrsesssssanmeseeranasssesstssssasetssesssmmsmtsssssssasnsses 11
B. A GENTS cueiierireeuceurernseessseessseessssssssssssssasssasssnssssasnsssssssssessssssssssssssessesnsstessasiesasssssssanessnsssiassesstnrsssssassonas 11

L. IIEETACHION c.eouvereeeeereeniseesrcteceeesaecaessse s sesessessesesssaassentantsusesassssstsnertasessnernsnnssnassesassasnasastsasesmonsntans 12
2. AAPLADIILYveceececeeeereireieaecet ettt s b e 14
C. EMERGENT BEHAVIORS.....uueitrtttreeiererasaresserssneeressossosssesssesntststssetemssetsmssasssnssssssesnsontensistssssssstinnssasasessss 15
D. SUMMARYucuietrerrerrereeeerestesensesssssasssstssessensssssssessentestestess sssssossshssssassasesssssesssnssasensatessesetesessisssnsracs 16

1. BAMBOO 17
A. INTRODUCGTION. ...cuuueiereeneieeeermsesresssrnsesasrensessosssssssnssssssssassssernssssssasssssemenstsessssssssssoressssssiorssussossnsnsasasess 17
B. DYNAMIC EXTENSIBILITY ..cceteteetttemmnnerreresserecessssersessersresssmnsnsssssesssssimsesssstsasesssssosssistatssstantssaetanssnsstsssns 17

1. DEPENAENCY .cocunnierecrercrcmnisiseisiss sttt re e s b s s s st st es e bbbt s st 17
2. CAIIDACKS.eeeuvenrereeieeeeeeeecreesaeseesessessesessessesestete st sseesessesasseo bt sreassanssessaesaes s stasasaasras et entsanentasestsn 19
3. EVENt HANAING ...cuvricenecenesccncccnrncrececstsiiesese b ebe s asssss sttt st st st s s s 20
C. SUMMARY .ouuuirverrierarrvsnsemersressesesssessoressssssssasssssesssssssssseerstaessssasassssssessssnsinssassnssttasssesssesessssssssnsnsesssnasss 20

IV. ARCHITECTURE 21
A. INTRODUCGTION. ...c.euccceeeereeeterevaneessneeessessesresssssarstsrsaessestsenssesesssssossestssssssarssnssaressssssraestnstessasessasssssssssssen 21
B. WINDOWS /C-++ IMPLEMENTATIONccvcoiererecnersenisesnssiosesnssessonsesessssssassssssessassseassesssassnessrssssasannsasnes 23

L. INEOAUCHON. .. c.oceeeeieeeieriesreressessersarsesaeessassesesteneesteseesessesanes et sserassersastsssesssssasssanastassteseastostsesesas 23
2. TIEETTACE ..evveeeeeerceeee e reene st e eeesess et s e s s et s et st e sasetsssasbesmararsssasoassssn e Rt sarsansasesanasenssassestsssasan 23
3. ATCRITECIUTEeeeveeveerereeeteeeeeeeetessesstrenesseessesesaeessssuee e sasesanssbesbeasesassrnnsrssasaassassaannassaassstsstssesanns 25
a. Overall Design................c....... ©ereresetesesteseetras e s e b e et earebeeRae Rt Ae et et e eoteer e e teR i s e bssr b s besn e R s st as 25

Do AGEES ..ttt b e 26

€. BASE CIASS.c.eoeeeeeeeeeeeeeeeeeeeeeraetetasae s e e et seaerees et e e e se b e s st s st s s s e R e e a e r e e ke s aa e bean et e st e 27

Ao SUDCIASSES.....ooeveoeeeeeeeereeeeeeeetreeteeeeesaseseeestesssesaeesstsesteesasseresasaens s e sae s st e e b e e besna e s s s b eaantaseaane 31

€. AGENLS SUMMIATY ...ttt st 34

4, INEETACHIONS. ... eeerverreerrereesrarseeisreseessesrasrassenssssessessesaesssassesessssusostossessessessssssessensasssnssessassasatassessenasen 34
5. Leaning and Adaptation............cccececeeirriiincsirnirisistnmeseesessasstssssssssssssssssesccsssseseasmsssssssssmsassoses 36
6. Emergent BERAVIOIS........cccocveeecererenrieminiicsircis s snsse et ans s e s s s tonssssssessscasessesssasssasaenes 39
7. Windows/C++ Implementation SUMMATYccouvirerermrienirermnirmrseseinsnsssssssssssssssessssssnsssesssessases 41
C. BAMBOO IMPLEMENTATIONcccceorvueaeererineaerarstesssntossesessssesssoressasssssssssnnesasessssssassassassasasasssnsssssarsssens 41
1. TNHEOQUCHON.eeureveterreeiereeeteetesserseeterseseanssessene e st saeesesasessenssnsshessesesaenmenneserssasaseastasasasstentennanssess 41
2. INEEITACE ..c.veevveeeeeeeieeeeecteete e tese e et e se e e s sessesst s e s srtscsesbesans sassrssansrnsanessse st easaastesaassesnesasssassnsaness 42
3. ATCRILECIUTE ...ocveirieeeceeceieceeree e eeeeessrnese s e erasssesaesseeseeseeasansimtssssatasasasesessessessassressensnasensasnsessasnsas 44
Q. OVEIAII DESIGN........cooveeneeeieeceireeiieeis et esas s st s e et e b et se st n 44

B AGEHES ..ttt e e bbb e s 44

Co BASE CIASS. ..ottt ts et te sttt se bt sme s st st b s s Re b e s s sr b ene bt e b e e baaras e e an 45

. SUBCIASSES ...t etere e e ae e e b e st se st e met st eat e sasasssassas e sa s s e e aennrsasaesnseesen 46

4, INEEIaCHONS. ..cvueerrerererareseererserennneseensestraesseeeereesnesesaas eerererereraestessereeraatenrasseeaee st ateeteanentatae s s be Rt et 47
5. Learning and Adaptation.........cccceoeeceeiereetreenmeesoninisssniiissssteseseseesesessessssssssssssnsssssesastsssssensasans 47
6. Bamboo Implementation SUMIMATYc.ooeciiviieuinririsiereeienieseresiesnessssrstsssssssssonsssesesssasssasaenes 48
D. SUMMARY ...ceiitiireeureerereeressasessassssssessessrsssesersrassssssssssssesssessssssssssessasssssssnssesssassenssoseissssosssrsnsntassanassersnnss 49

TABLE OF CONTENTS

vii

V. CONCLUSIONS

A. CONCLUSIONcocotiuintirisiisterenrsssesieteriess st essstsbesastasessesssnsssesesssssstobesasasessasesessessraesnasassesessesassesnesessesesness
B. FUTURE WORKccttuiruiiinreiarientietitetssennaresesaesssssrssassssssesssnssssessssssssssssss sasssassessassassessessssssssassessssssssas
1. SIMNAVY AZENLS ...ceirierieirieriei ittt ereetess e tsae s e s e sesame st ss s asetese s abesessssatesssssesassesesnssssesasessanes
2. Learning and Adaptation...........cocceverrerrnieieeirereronerermessescssneseeseeseseseeestasesessseessesesenseseesnessessesasoes
3. Networked APPLICALIONScoveeviiiieeieiercriceteet ettt ettt eesese s s et et e sssaest s e sase e ssesssensssnenes
4. SIMNAVY ENZINE ...ttt et sese st s sasss st sa s e s s s st sassasesasans s e asans

APPENDIX A: IMPLEMENTATION CODE LISTINGS

APPENDIX B: GLOSSARY

LIST OF REFERENCES

BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

viii

91

93

95

LIST OF FIGURES

Figure 3.1: Bamboo RUNME VIEW......civiuiriririeiiitrsstn sttt es st anes 18
Figure 3.2: Module Dependency VIEW......ccceicueueureusminiesssssssnissistseisessisesscssnssas st sssnss s nsass 19
Figure 3.3: The Callback HandIerccoveueiieiiiiieteieisienessisi sttt 20
Figure 4.1: Savannah Windows/C++ INEITACe.viueiiuriertniirrnensce ittt s 24
Figure 4.2: Savannah Class STTUCIUTEcereemeirmemimninietssns st seasesesessressessasssias s 27
Figure 4.3: Computation of Integer Xy POSItIONcceuvmvmmremeiemcreeisiesnistsssie et 29
Figure 4.4: Method to Determine if Two Animals Can Mate..........cccoeuemrencimiiinnicniinininneiisieienes 32
Figure 4.5: Method to Determine if Cheetah Kills PreYovieiuevernemnicnnnnciniciiisiniicisncncicnens 34
Figure 4.6: Learning and Adaptation in Savannah ..., 38
Figure 4.7: No Predator KNOWIEAZEcueueurmereruiieiiinininren sttt sttt snsan s 39
Figure 4.8: Cheetah Kills ANTEIOPEccuevueiiveiecieireiseieisertsi ettt sttt e anas 39
Figure 4.9: Antelope Learn and FIEe ..ottt 39
Figure 4.10: Savannah 3D with Loaded Modules ..o 43
Figure 4.11: Savannah 3D Class StUCIUTEeveveeiimieernineeesssstsesnes sttt bbbt 45

ix

ACKNOWLEDGEMENTS

The authors would like to express our appreciation to our thesis committee
members, Dr. Mike Zyda and Dr. Rudy Darken for their assistance, direction, and
dedication throughout our course of study.

Also, for his guidance, we are indebted to John Hiles, who introduced us to agent-
based modeling, and showed great patience through many meetings.

We are grateful to Kent Watsen who encouraged and guided the Bamboo
implementation to include porting the simulation to the latest version of Bamboo.

For his technical support in the gréphics lab we must thank Jimmy Liberato.

Finally, for their love and support we thank our families, especially our wives,

Lauren and Kim, and our kids, Courtney, Morgan, and Keegan.

x1

xii

I. INTRODUCTION

- Al MOTIVATION

Every day the Navy’s top leaders make key decisions affecting the flow of money
from its sources down to its resources. These decisions have certain consequences that
impact the Navy’s overall warfare capability, which is a direct measure of the Navy’s
ability to meet the global needs of the nation. Today, with the current trend of military
downsizing and zero-sum budgeting, each decision made has a greater effect on the
Navy’s various components and their abilities to maintain the levels of readiness needed
for a strong, effective force. Often, the effects of budget decisions may not be felt for a
number of years. Under the current process, budget planners regularly make key
decisions with neither the time nor ability to fully model how these decisions might affect
the Navy in the future. An enterprise model of the U.S. Navy that contained the proper
relationships between the Navy’s budget allocation and its warfare capability could assist
leaders in understanding the potential consequences of various decisions. This insight
would help those individuals make more informed decisions in the future.

For years, the entertainment industry has developed modeling and simulation
technology that in some ways surpassed comparable technology developed by the
Department of Defense (DoD). The DoD normally develops modeling and simulation
technology that differs greatly in use from that of the entertainment industry, but has
realized that much of what the entertainment industry produces can replace, or enhance
DoD technology with significant cost savings. A recent study published by the National
Research Council (NRC), “Modeling and Simulation: Linking Entertainment and
Defense,” calls for the DoD to work with and learn from entertainment companies to
better meet the DoD modeling and simulation requirements of the future [1]. As a result
of this study, the Director of Naval Training (N7) requested an enterprise model of the
U.S. Navy be developed that leveraged expertise from the entertainment industry.

The first decision required in the process was to determine what type of modeling
technology existed in the entertainment industry that would provide the best approach for
modeling the U.S. Navy. The Navy is a constantly evolving, complex system made up of

many entities with sometimes-conflicting goals. To model this system requires an

architecture that supports that evolution and the intricate interactions of the various
components. After some consideration, it was determined that agent-based modeling,
which has been used in the private and commercial sectors to successfully model large-
scale, complex systems, would provide the best capabilities with which to develop an
enterprise model of the U.S. Navy. This thesis explores some of the fundamental issues

associated with developing an architecture for agent-based simulations.

B. BACKGROUND

Simulations are used to explore outcomes without having to become involved in
expensive, time-consuming, or sometimes dangerous activities. Within this framework,
simulations provide a way to answer questions, practice skills, or rehearse actions.
Simulations also provide a platform to manipulate things in ways that are impossible to
do with real systems. They can be started, stopped, restarted with new assumptions, and
allow the introduction of entities that do not exist in the real world. Various techniques

“for modeling systems have been around as long as humanity. They have evolved from
arranging stones to model the passing of the seasons, as seen at Stonehenge [2], to highly
complex computer models like the flight simulators used to train pilots.

The fidelity built into a model depends on the kinds of questions the model needs
to answer. The spectrum of fidelity ranges from aggregated or high-level models that
might be used to study a military corps-level, force-on-force battle, to high-resolution or
low-level models that might be used to study the human interactions of a peacekeeping
operation. The ability to increase the fidelity of models has paralleled the development
of high-speed computers. As processors and memory have gotten bigger, faster, and less
expensive, modelers have been able to build simulations that are more intricate.
Although this capability exists, high-resolution models are not appropriate in every
circumstance. They are, however, particularly applicable to modeling systems where
representation down to the entity level is pertinent.

Not only is capturing entity level interaction important to the result, but so is
studying how these entities adapt and adjust based on these interactions. The resulting

complexity of these kinds of simulations led to the development of agent-based

simulations. Because agent-based simulations represent the dynamics of non-linear

interactions and adaptive behaviors, they provide an outstanding environment to practice

decision-making skills, and conduct training and rehearsals [3].

C. AGENT-BASED MODELING

Complex natural environments or complex systems present researchers trying to
model and study them with many difficult issues. Many real world systems, often
referred to as complex adaptive systems, include individual or local entities that have the
ability to adapt to their environment and change their techniques for interacting with
other local entities. A perfect example of this is the Earth, which has thousands of types
(species) of individuals each with its own rules for interacting with and adapting to its
environment. Over time, species adapt to ensure they accomplish their goal, which for
most, is simply the survival of the species. The adaptive properties of the individuals
often affect the system as a whole in variable and unpredictable ways; basically, the
behavior of the whole system does not equal the sum of the individual components’
behaviors. This phenomenon is known as emergent behavior, and when modeling certain
systems tends to render traditional deterministic or stochastic modeling techniques
inferior.

A common method of studying complex adaptive systems is through the use of
computer simulations - called adaptive, agent-based simulations. Researchers trying to
model their system can develop adaptive software agents that represent individual entities
each with its own rules that describe how it should interact with its environment. What
makes the agent adaptive is that it can revise its rules of behavior based on what it has
learned from previous interactions. Adjusting its rules as it learns means the agent
ensures that similar or repeated interactions will certainly produce different outcomes
each time. Provided each agent is properly studied and modeled, the system as a whole
will exhibit the same emergent behaviors as would be found in the real world providing
the researcher with many insights to the behaviors of the entire system.

Agent-based simulations are most commonly used for entertainment and training.
They provide an environment where a player, or person using the simulation, can view
the potential consequences of their decision. Perhaps the most widely recognized

entertainment applications are the simulation games produced by Maxis, in particular,

SimCity Classic and SimCity 2000, which together have sold nearly six million copies,
making them among of the best selling computer games of all time [4]. While gaming is
a big market for agent-based models, the same technology is gaining popularity for
training people on the dynamics of everything from budgeting to crowd control.

In the SimCity games, a player is "given a plot of barren land to zone into
industrial, residential, and commercial areas. As the city grows, the player must deal
with crime, education, and health issues by strategically placing police stations, schools,
and hospitals. Manage traffic, the budget, and the needs of the constituents, or face riots,
ridicule in the press, and eventual impeachment!" [5S] The entity level interactions are
controlled through an agent-based implementation; agents are the constituents. If a
residential zone is provided water and electricity, people will build homes there.
Population growth will stagnate unless industrial and commercial zones are designated
facilitating the growth of schools, police, fire and medical protection, jobs and leisure
opportunities. If an area becomes too crowded or is not properly balanced; agents
interact causing riots, shifting the populations to more attractive locations, and possibly
leaving the city altogether. Much like a real city, these simulated cities persist while
there is constant change taking place.

Although SimCity is an entertainment application, the use of similar agent-based
technology can provide city managers useful insight into the dynamics of city planning
where they are able to view potential consequences of their decisions. For example,
"What happens if we raise property taxes by 5%?", "What happens if we cut the police
force budget or remove some police stations?" or "What happens if we build a zoo on the
North end of the city?" While these simulations will not provide direct answers to the
questions, they do provide the city manager with possible results of his actions. As the
city manager runs through many iterations of one scenario, the new zoo for instance, he
can identify possibilities of how the new zoo might affect the city as a whole - he can
experiment. The zoo may bring in more tourists, cause nearby developments to increase,
decrease, or stagnate, cause traffic problems, or have little effect at all. The bottom line
is the simulation can identify potential issues the city manager might not have considered

otherwise.

An example of a simulation that could easily be adapted for military purposes is
CACTUS, an agent-based simulation developed to train senior police officers in the
dynamics of crowd control [6]. The training simulation used before CACTUS consisted
of a manual, pseudo-control room with incidents story-boarded before executing an
expensive, time-consuming, and inflexible training exercise. Additionally, after action
reviews were very limited, consisting mostly of discussion based on what people could
remember and what few notes had been taken. An agent-based simulation was
introduced because it provided a platform for more realistic incidents to develop, was less
expensive to develop, was very flexible, and could be recorded for playback [6].

The methodology behind CACTUS is easily transferable to training military
participants in the nuances of peacekeeping operations such as those now being
conducted in the republics of the former Yugoslavia. These types of simulations provide
key players the opportunity to plan for and rehearse actions to unexpected situations that
were not realistically represented in the previous planning and training cycle.

An important note on adaptive agent-based simulations is that they do not predict
the future because as events occur, there are infinitely many new states to which the
current state of the environment may transition. These types of simulations only suggest
individual states as possibilities and therefore do not guarantee the real world would
produce the same output. Agent-based simulations simply provide a more abstract level
of output that should help the researcher observe and understand complex cause/effect

relationships.

D. BAMBOO

The academic and commercial sectors have developed many agent-based
simulations over time; SimCity and CACTUS are two examples. Each of these allow
runtime interactions where users can introduce new agents, modify agents’ interaction
rules, adjust behavior parameters, increase or decrease the numbers of agents, etc. These
interactions, although occurring at runtime, are based on a static implementation of the
simulation where all possible future capabilities were decided before the final
compilation of the executable. This technique is reasonable if the simulation is modeling

a system or environment whose limits are well understood and static. But, since agent-

based simulations are often used to model highly complex, unfamiliar systems, a static
implementation can cause certain limitations. Bamboo is a programming environment
that allows users to overcome this limitation by providing a means to dynamically add
functionality to a simulation at runtime. Users can create new functionality and
dynamically link it to the current simulation executing without having to stop or

recompile the whole system.

To illustrate the limitations of a statically implemented agent-based simulation,
consider the scenario where a citrus farmer in southern California wishes to model an
orange grove to help understand the effects of weather, farming techniques, and local
flora and fauna on future crop yield. The farmer gathers facts, statistics, characteristics,
and other pertinent information relating to the local environment, which, for his study,
consists of typical weather in the area and all other plants, animals, and insects that might
affect the orange crop yield. He must consider all known enemies and benefactors in the
environment of the particular orange tree he wishes to grow. This is important because,
like other processes that occur in nature, an orange grove is a very complex system and
the omission of one small detail may cause the simulation to produce output far from
reality.

Once the farmer has collected the information needed, he can design agents for
each entity needed to populate the simulation. For this illustration, assume the year is
1975, and although the Mediterranean fruit fly (Medfly) has been trapped in the United
States before, California has had no confirmed captures of the pest [7]. Because of this,
the farmer never considers the Medfly as a potential threat to his orange grove, and
therefore does not design an agent to represent it in the simulation. After spending
months researching the environment where he plans to grow his oranges, and many more
months designing and implementing a very robust agent-based simulation to model this
environment, the farmer begins his simulation.

The simulation runs for months and begins to provide great insight to potential
patterns in crop yield and tree survivability based on the interactions of all agents in the
simulation. Now the farmer begins to see patterns that aid in planning the real world
orange grove that he may never have considered otherwise. Assume that it is now late

1975 and the Los Angeles Times announces the first confirmed capture of a Medfly in

the southern California [6]. The farmer must now reconsider attempting to grow his
oranges in this area because the Medfly poses a serious threat and must be factored into
his strategy. Because the simulation was originally statically implemented, the farmer
must stop the simulation, design an agent to represent the Medfly, recompile the entire
simulation, and run it all over again.

Had the farmer implemented his simulation using a dynamically extensible
executable like that provided by Bamboo, he would have been able to design a Medfly
agent and load it into the simulation while it was still running. The agents in the
simulation would have been able to interact with new Medfly agent and vice-versa.
These new interactions would begin to produce new behaviors or patterns that might
assist the farmer in his strategic planning. This would have saved the farmer a great deal
of time and money and provided more timely feedback.

Another example to highlight potential drawbacks of statically compiled agent-
based simulations that may be more pertinent to a military audience is a combat
simulation designed to provide insight on the expected success of various warfare tactics:
Consider a scenario where forces are to be deployed on a peacekeeping operation to a
war-torn country. Before actually committing forces in harms way it would be very
productive to run a simulation that might provide some insight as to the potential
outcomes of the operation. This would provide the peacekeepers with a platform to view
potential consequences of their actions and allow them to practice reacting to various
scenarios that might arise. This pre-mission training would hopefully limit the number of
unexpected events during the execution of the actual mission.

As with the orange farmer example, the first thing the modeler of the
peacekeeping scenario must do is gather the pertinent data. He must discover all possible
information about all forces that may be involved in the operation and the environments
where these operations might take place. "Who are the leaders?", "What kinds of tactics
do the forces employ?", "What is the composition of the forces?", "Will they typically
fight in built-up areas or open terrain?", "What are their goals?", "What are their
constraints?" (especially pertinent to the peacekeeping force), etc., are all questions that

need to be answered to build an accurate model.

Agents are then developed to represent entities, aggregate or individual, in the
simulation. After running many iterations of the scenario, the modeler begins to notice
certain behaviors emerge. He may begin to see the warring parties adapt certain tactics
because of the introduction of peacekeepers. The warring parties may band together
against the peacekeepers, they may remain separate but all act hostile towards the

peacekeepers, some may disband or go into hiding and wait things out. The modeler now

begins to experiment with ways to counter the new threats.

For this example, consider that the warring parties have banded together against
the peacekeepers. The peacekeepers deploy to conduct a mission that turns into a full- [
blown conflict with the warring parties. The peacekeeping force commander calls for ‘
assistance - armored jeeps and five-ton trucks loaded with soldiers deploy to assist. |
(Requests by the commander to have tanks and infantry fighting vehicles available were
denied before the initial operation ever began, so they were not built into the simulation.)

The situation continues to escalate with the peacekeeping forces being divided and their
reinforcements being blocked. As the scenario continues the peacekeepers begin taking
heavy casualties.

The simulation has shown that there is potential for a violent conflict, something
neither the commander nor his superiors anticipated. It has also shown that resources
currently available to the peacekeeping force commander are potentially not adequate to
handle extreme situations. The commander has the simulation run again, this time with a
reaction force of tanks and infantry fighting vehicles. Since the simulation was restarted
under different conditions, a conflict similar to the one witnessed in the previous run may
or may not emerge. The commander does not know if this is simply a new outcome or
the result of the introduction of new resources. What he really needed to know was how
the employment of the tank and infantry fighting vehicle reaction force might have
affected the outcome of that scenario. He needed the ability to introduce them as he saw
the situation develop. If the operation had been developed using a Bamboo
implementation, the tanks and infantry fighting vehicles could have been introduced "on
the fly", thereby allowing the commander to see behavior patterns develop based on the

introduction of new resources.

The simulation provides the commander with a tool to view situations as they

arise that he may not have even considered. He can view potential outcomes, and with a
Bamboo implementation, see how weapons not originally included in the simulation
might actually impact the outcome of the mission. At that point he can either come up
with new courses of action or go back to his superiors and request additional resources,
because he has seen the potential for the mission to evolve into more than a peacekeeping
operation.

The last two examples are fictional and contrived, but hopefully serve to illustrate
that agent-based simulations can benefit a great deal from the dynamic extensibility that
Bamboo offers. Bamboo provides the mechanisms where users or systems themselves
can modify the executables on the fly without having to stop the simulation and '
recompile. Bamboo was originally designed to facilitate the development of real-time,
networked virtual environmenté, and one can immediately see the potential for
developing networked agent-based simulations where users from around the world could
design and introduce their own agents into a commonly shared virtual environment

through the Internet.

E. SUMMARY OF CHAPTERS

The remainder of the thesis is organized as follows:

e Chapter II: Agent-Based Modeling. Discusses a definition for agent-based
models to include: the purpose of agent-based models, what makes an agent-
based model different than other models, and what constitutes an agent-based
model.

e Chapter IIIl: Bamboo. Discusses the current implementation of Bamboo and
how its capabilities are suited for dynamically extending virtual environments
and simulations.

e Chapter IV: Architecture. Describes the development of a basic agent-based
simulation architecture, modeling the predator-prey relationship, using both a

Windows/C++ and Bamboo implementation.

e Chapter V: Conclusions. Discusses the limitations discovered during
development and provides ideas as to future work that might be completed in

this area.

10

II. AGENT-BASED MODELING

A. INTRODUCTION

Agent-based models, known by many different names to include bottom-up
models, individual-base models, artificial social systems, or behavior-based models, are
used to study everything from the stock market to ant colonies to the human immune
system [2]. Regardless of their name, their purpose is to allow users to gain an
understanding, through analysis, of the processes that appear in different complex
systems [8].

At the core of agent-based simulations are independent software agents that
represent the model down to the entity level. These agents populate an environment and
interact with each other and the environment. Each agent has the ability to adapt or learn
from these interactions - they evolve over time. While each agent has a relatively small
number of possible behaviors, the sheer number of possible interactions and outcomes
greatly increases the complexity of these simulations. The complexity is further
increased by the inherent non-linearity of those interactions and typically produces
unpredictable large-scale effects. These large-scale effects are known as emergent
behaviors [8]. Agents, their interactions and adaptability, and emergence are what
differentiate agent-based simulations from other types of simulations that typically

aggregate behaviors instead of track individuals through time [9].

B. AGENTS

An agent is simply a software object with internal states and a set of associated
behaviors [10]. Examples of what agents can represent include atoms, fish,
organizations, people, vehicles, or nations [8]. A state represents attributes or properties
of an agent such as identification number, sex, age, or geographic location. Some states,
such as identification, are fixed for the life of the agent, while others, such as energy
level, may change over time as the agent interacts with its environment [10]. An agent's
behaviors provide a set of rules that describe how it should interact with its environment.
These rules are often represented as a set of stimulus-response corﬁbinations, and are

usually coded as IF-THEN statements [2]. An agent typically has an underlying goal

11

such as food, survival, or wealth, and must navigate through the environment, modifying
its behaviors based on interactions, in an attempt to attain that goal. The two major
characteristics of agents found in agent-based simulations are their ability to interact with

their environment, and through learning, their ability to adapt future behavior based on

these interactions.

1. Interaction

An agent interacts with its environment and coordinates with other agents in an
attempt to attain its underlying goal(s) and achieve a progressively better fit to the
requirements of the environment. Their interactions may consist of many things to
include mating, communication, combat or partnership [8].

Many steps must occur for a single interaction to take place. First, an agent must
sense its surroundings, or environment, in order to determine whether or not there are any
other agents with which to interact. Sensing is limited to a set range based on the
expected real-world sensing limitations of the agent. An agent’s sensors may be
programmed explicitly so that each sensor has its own functionality. Another approach is
to implement sensing in an abstract manner where the agent simply knows, or can access
information about everything within its sensing range, but has no physical sensors to do
so. This abstraction is useful when “how an agent senses” is not important compared to
simple fact that it does sense because it allows developers to aggregate many sensors that
an agent might actually use in the real world into one sensing capability. For example,
humans use the five basic senses of touch, smell, sight, hearing, and taste to sense their
environment and decide what action to take next. Rather than implement all five senses
separately, it is often easier to provide a human agent with the ability to simply sense, and
therefore know, everything about all other agents within its sensing range.

Once an agent has sensed its environment, it must gather information about each
agent within its range to determine what course of action is required next. Gathering the
information is usually accomplished through one of two ways; broadcast reception and
direct interrogation. In the first method, an agent broadcasts its own state information to
all other agents within range. This means that an agent within sensing range of the

broadcasting agent will receive that information whether it needs it or not. For example,

12

if two humans are within sensing range of one another. If one agent speaks, its “voice” is

broadcast to any agent within “hearing” range. The second agent will hear that
information whether it needs it or not. In the second method, an agent is allowed to
interrogate another agent for specific information. Normally, the level of information
available through direct interrogation is limited by the designer to match the level of
available information that would be expected in the real world. For example, in the real
world, when a herd of antelope are in mating season, a male antelope can sense whether a
female antelope has already been impregnated. It makes sense then, that a male antelope
agent in a simulation should be able to interrogate a female agent for pregnancy
information and expect a valid reply. It is possible to combine both broadcast and
interrogation techniques in an agent-based simulation since information is normally
passed both ways in the real world.

Once an agent has gathered all the needed information about other agents within
its vicinity, it must then determine what, if any, interactions it should attempt.
Interactions may include attempts to mate, flee, or form alliances. An interaction
normally affects two or more agents, therefore the outcome of that interaction must be
determined fairly and equitably for all those involved. While the outcomes of some
interactions are straightforward and easily determined, others, such as combat, can result
in a large number of potential outcomes. To simplify the process, the outcome of a single
interaction is usually determined by a referee in the simulation. A referee has access to
all pertinent information needed to decide how an interaction should affect each agent
involved. Once an interaction has occurred and the referee has decided the outcome, the
agents involved must update their states and possibly revise their behavior rules.
Referring to the mating example above, once two agents have successfully mated, the
female’s state value for pregnant would become true, and her behavior might be
modified. She may become territorial and avoid other agents instead of moving towards
them or she may require more food and therefore feed more. The level to which behavior

is modified after an interaction again depends on the designer of the simulation.

13

2. Adaptability

The ability to adapt, or adjust, to their environment is one of the essential
components of agents that distinguishes agent-based simulations from other traditional
simulation techniques. Agents adapt by modifying their rules of behavior and strategies
based on what they have learned from previous interactions. This adaptability greatly
increases the level of complexity that can be modeled. Most agents modeled in a
simulation will use two forms of adaptability, short-term and long-term, in order to attain
their desired goals.

Short-term adaptability allows an agent to adjust its behaviors to satisfy some
immediate requirement in the environment. It normally requires the temporary
integration or switching between specific behaviors [11]. A simple example of this might
be an autonomous robot agent that encounters a physical object in its path while
attempting to relocate to a new location. If the robot has no prior knowledge of the
object, and no generic avoidance behavior, it may collide with the obstacle. Once the
collision has occurred, the robot will adjust its behavior by changing direction as needed
to get around the object. The robot may alternate its behaviors between move forward
and move sideways until it has cleared the object at which time it can resume its original
goal of relocating. Switching between these two specific behaviors during the sequence
of interactions is what makes this a short-term adaptation.

Long-term adaptation represents a higher level of learning and normally takes
place over the life of the agent [11]. From the example above, the robot has learned that
the object with which it collided is something it should avoid in the future. It can also
remember basic information about the object, such as size and the most efficient way to
avoid the object in the future. This means the next time the robot encounters the object
while relocating, it will be able to avoid the object while minimizing the delay from its
original goal of relocating. Over time, the robot will develop a new behavior called
obstacle avoidance that represents a higher level of motion control comparéd to simply
moving forward or sideways.

Agents that do not adapt will not be able to find their niche in the environment or
achieve their goal(s). They are the ones that will perish, whether they are stock market

agents trying to buy stock at a certain break point, military tactics agents trying to detect

14

a vulnerability in an enemy’s defense, or agents representing animals in the wild just
trying to survive. As individual agents interact and adapt, group behaviors begin to
emerge. These emergent behaviors are what provide the modeler with a platform to carry

out the what-if scenarios and observe various outcomes.

C. EMERGENT BEHAVIORS

Entity level agents that learn from, and adapt to their environment by interacting
with each other, provide researchers with realistic and useful views of behavior patterns
that might emerge in real-world systems. These patterns, typically referred to as
emergent behaviors, result from the aggregate interactions among, and adaptive nature of,
individual agents [12]. They "... are often surprising because it can be hard to anticipate
the full consequences of even simple forms of interaction" [8].

A good example of emergent behaviors is an ant colony as described by D. R.

Hofstadter [2, 13].

Individual ants are remarkably automatic (reflex driven). Most of
their behavior can be described in terms of the invocation of one or more
of about a dozen rules of the form "grasp object with mandibles, " " follow
a pheromone trail (scents that encode 'this way to food,' 'this way to
combat,' and so on) in the direction of an increasing (decreasing gradient,"
"test any moving object for 'colony member' scent," and so on. (To
actually perform computer simulation of an ant following these rules, the
description of the rules would have to be somewhat more detailed, but
these phrases give the gist.) This repertoire, though small, is continually
invoked as the ant moves through its changing environment. The
individual ant is at high risk whenever it encounters situations not covered
by the rules. Most ants, worker ants in particular, survive at most a few
weeks before succumbing to some situation not covered by the rules.

The activity of an ant colony is totally defined by the activities and
interactions of its constituent ants. Yet the colony exhibits a flexibility
that goes far beyond the capabilities of its individual constituents. It is
aware of and reacts to food, enemies, floods, and many other phenomena,
over a large area; it reaches out over long distances to modify it
surroundings in ways that benefit the colony; and it has a life-span orders
of magnitude longer than that of its constituents (though for some species
the life-span of the queen may approximate the life-span of the colony).
To understand the ant, we must understand how this persistent, adaptive
organization emerges from the interactions of its numerous constituents.

15

While an individual ant’s behavior rules are fairly small and simplistic, a complex
colony emerges from the large number of ants and their interactions with the
environment. The colony is much more than just the sum of the individual ants. The
emergent behaviors displayed by the ant colony are the types of behaviors that modelers
are looking for when they build agent-based simulations. They can model the individual
entities with very basic states and behavior rules and from that alone, observe many

complex patterns as they emerge.

D. SUMMARY

Agent-based models are very useful for simulating many types of systems. They
are particularly appropriate for modeling realistic environments that consist of many
agents interacting in a non-linear fashion. In an attempt to achieve a better fit with the
environment, agents adapt future behaviors based on these interactions, resulting in
complexity that is typically difficult to model using stochastic or deterministic processes.
It is often more realistic and useful to provide agents with initial behaviors, let them
interact, and then observe the behaviors that emerge. Agent-based modeling provides a
platform where those unexpected behaviors can emerge and provide analysts with greater

insight into the complexity of their models.

16

III. BAMBOO

A. INTRODUCTION

Bamboo is a toolkit that provides an application programmer’s interface (API) for
the development of real-time, networked, virtual environments (VE). Its primary focus
is to provide a means for users to create dynamically extensible code. This means that
applications programmed in Bamboo have the ability to dynamically reconfigure
themselves by adding to or altering their functionality during runtime. It contains a series
of functional modules that extend its basic execution core. Users can further extend the
execution core by adding application specific modules that provide the VE with the
desired capabilities. Although Bamboo was designed to facilitate the development of
networked VEs, its unique features can greatly enhance traditional agent-based
simulations as well. Dynamic extensibility is the most significant feature of Bamboo that

will provide the greatest benefit to agent-based simulations.

B. DYNAMIC EXTENSIBILITY

Dynamic extensibility was the single most influential design issue for the creator
of Bamboo [14]. Bamboo accomplishes this by implementing a plug-in metaphor much
like that popularized by commercial software companies such as Netscape Navigator
[15]. The biggest difference between Bamboo and traditional plug-ins is the fact that
Bamboo does not require an application or system re-start in order to function. Each
Bamboo module represents a plug-in that can extend the existing execution core. It
further extends the plug-in metaphor by adding inter-module dependencies. Bamboo
uses the plug-in concept along with the simple but robust mechanisms of callbacks and

event handling to provide dynamic extensibility.

1. Dependency

Not only does Bamboo support the plug-in metaphor by allowing additional
functionality be added to the executable through external modules, it utilizes modules

itself to create the Bamboo runtime environment. The core executable, or “main”

routine, contains only enough logic to page modules and provide the framework into

17

which plug-ins may hook. The remainder of the functionality in the Bamboo runtime
environment is provided through additional separate modules.

Developers who wish to use Bamboo to create a simulation simply need to create
modules that further extend the capabilities of the existing Bamboo runtime environment.

User application modules are paged into memory and become part of the current

executable. Figure 3.1 provides an abstract view of the Bamboo core with external
modules attached to it. This approach ensures that the programmer makes all decisions
regarding an application’s capabilities and that no decisions are forced by restrictions in
Bamboo itself. All capabilities of an application are defined at runtime when the

application is loaded into Bamboo.

Figure 3.1: Bamboo runtime view

One of the main benefits of using a plug-in concept, is that it allows applications
that need certain functionality not already in memory to load the needed modules. This is
done through a dependency list where a module specifies all other modules on which it
depends. Modules in the dependency list that are not active in memory are simply loaded
before the application without any user interaction. A great advantage to this approach is
that functionality that is not needed to run the current application, is not loaded into
memory thereby saving valuable resources and enhancing system performance.

Specifying every possible module on which an application depends would be

complex and difficult, so Bamboo simplifies the process by requiring an application to

18

list only the immediate modules that it needs in memory. Bamboo then manages the
system of dependencies to ensure that all required modules are loaded into memory in the
correct order. Figure 3.2 depicts an example where module four (M4) is being loaded
into memory. For the example, assume that the numbered modules are the application
specific modules and that M3 has already been loaded into memory. As the system tries
to load M4, it must first verify that M2 is in memory. Since M2 is not already in
memory, the system must load M2. In the process of loading M2, the system must verify
that M1 is already in memory, which it is because it was loaded when M3 was loaded.
Having verified the required modules for M2, the system then loads M2, after which it
can finish loading M4 [14].

CORE

v\»\M1 \M
\MZ / \MB
AN

M4

Figure 3.2: Module dependency view

2. Callbacks

The plug-in concept of Bamboo does help facilitate dynamic exfensibility ofa
simulation, but the ability to extend the executable actually comes from the callback and
callback handler. The callback is a very simple yet powerful component of Bamboo. It
provides the framework to which new code can attach itself and be brought into the same
address space as the executable. A callback enters the execution loop by attaching itself
to a callback handler. A callback handler is a thread in the Bamboo runtime environment
which shares execution time with the “main” routine and other callback handlers. A

callback handler is responsible for sequentially executing each of its attached callbacks

19

every time it itself is executed. Figure 3.3 illustrates how individual callbacks attach

themselves to a callback handler.

}

— >
— D
—_

Figure 3.3: The Callback Handler

Q8T HEEFELQOQ
H O Q3 0 I

3. Event Handling

The event handler provides a useful abstraction for handling system and user
generated events. It does so by using the callback handler to notify registered parties of
an event via callbacks. Since Bamboo uses a callback handler for notification delivery,

multiple callbacks may be executed in response to a single event.

C. SUMMARY

Bamboo breaks the paradigm of statically defined virtual environments and
simulations by providing simple mechanisms to dynamically extend an executable. It
accomplishes this by specifying a convention for defining new program modules,
allowing those new modules to link into the executable through the use of callbacks and
callback handlers, and by loading required modules for any new application without user
interaction. As mentioned earlier, the ability to dynamically extend a simulation during
runtime could greatly increase the utility of traditional statically defined agent-based

simulations.

20

IV. ARCHITECTURE

A. INTRODUCTION

It is very challenging to describe the interactions among agents, especially when
the agents can modify their behaviors thereby changing their rules of interaction with
other agents. Developing an architecture that supports this methodology is also a
daunting task. Object-oriented programming (OOP) languages, such as C++, seem to
provide the best environment to program agent-based simulations. OOP provides many
mechanisms that greatly facilitate the construction of agent-based models; the most
significant of these inch}de encapsulation, inheritance, and polymorphism. Agents and
the environment in which they exist can all be implemented as objects; structures that
hold data and procedures.[10] An agent’s state is comprised of instance variables, while
its behaviors are defined through methods. Inheritance provides a mechanism for
defining a base class and letting modelers define agent specific routines, whereas
polymorphism allows the modeler to redefine or extend the functionality of the base class
if needed.

One of the drawbacks to this type of implementation is the requirement to have
everything set before run time. If a modeler wishes to add a new type of agent - one not
defined at run time - they must stop the simulation, update the code where appropriate,
and then recompile. Bamboo appears to offer an attractive alternative to this because it
affords the modeler the opportunity to define and add new agents "on the fly".

The goal of this thesis was to look at the issues associated with building
architectures for agent-based adaptive simulations. We first designed the architecture
using the Windows/C++ programming environment because of our familiarity with this
programmer interface. As we conducted research and the architecture began to develop,
we realized that the ability to add agents during a run could be very beneficial to the
modeler. Discussions with Mike Zyda [16], Rudy Darken [17], and Kent Watsen [18],
encouraged us to build an architecture using Bamboo, which provides the ability to
implement this new paradigm.

With this in mind, we decided to model a simple predator-prey relationship to see

how speed affects their interactions and the survivability of each species. This scenario

21

afforded us the opportunity to fully exercise and view the core fundamentals of agent-
based modeling, namely - agents, interactions, adaptability, and emergent behaviors. The
agents are Cheetah, Antelope, and grassy feeding areas. Interactions between agents
included: mating, killing, avoiding, herding, fleeing, chasing, and feeding. Through these
interactions, we were able to observe how both the Cheetah and the Antelope adapt their
behaviors to achieve their overall goal; which in this simulation was simply survival of
the species. These interactions also lead to some emergent behaviors that we will discuss
later.

The predator-prey model is called Savannah after the African Savannah where
these real-world interactions take place each day. Much like the real Savannah, the
simulated Antelope roam an open range in herds looking for food and potential mates,
while trying not to fall prey to any predators. They may also die from infant mortality or
age. The Cheetah, being solitary animals, typically avoid each other while hunting for
prey in their own territory. The only time Cheetah come together is during mating
season, when they will seek a mate and then return to their independent lifestyle. Like
the Antelope, they can die from age or infant mortality and also starvation. Both Cheetah
and Antelope have simple sets of rules to govern their behavior.

As is common with many other models, this simulation does not attempt to
intricately model every detail. To attempt to model the predator-prey relationship exactly
as it occurs in nature is unrealistic and is not the focus of this thesis. The normal practice,
‘when deciding how much detail to include in the model, is to determine what is needed in
the model and implement that to a sufficient level of detail. Since we were mainly
interested in looking at architectural issues of agent-based modeling, only a few aspects
of this relationship along with a few major components of each animal were modeled.
For instance, the interactions between the Cheetah and Antelope were modeled in terms
of the hunt-chase-kill cycle that exists for the Cheetah or the watch-flee-escape cycle that
exists for the Antelope. As far as modeling the survivability of each species, other
relationships were modeled such as mating, infant mortality, and aging. To further
simplify the model, some capabilities or conditions were aggregated such as sensing

ability and infant mortality.

22

It is also important to note that other species, which could affect the output a great
deal, were not modeled in the main simulation. Again, this is because the main purpose
of this thesis was not to model a Cheetah-Antelope relationship in the wild, but to

discover architectural development issues of agent-based modeling.

B. WINDOWS/C+ IMPLEMENTATION

1. Introduction

The windows version of Savannah was developed. on an Intergraph TDZ 2000,
400 MHz personal computer (PC) running the Microsoft Windows NT 4.0 Operating
System (OS) using Microsoft Visual C++ 5.0. Visnal C++ and Microsoft Foundation
Class (MFC) libraries provided a straightforward programming environment to produce a
two-dimensional 640 x 480-dpi display of Savannah. Although the simulation was

developed on Windows NT, the precompiled version may be run on any Windows PC.

2. Interface

The user interface for Savannah was developed using Microsoft Developer Studio
97. The display provides the user with a simple, single-document window from which to
view simulation runs. Making changes to the simulation requires Visual C-++ and the
MFC libraries. Figure 4.1 shows a typical screen shot of the interface during a simulation

run.

23

& l’.' ,€
- - CE ")
S . Cp = . e
B *) e{ .
“Antelope - M: 44 F-56 G: 1 Cheetoh-M: 2 F:3.G:'1 | Simulation Time: 1 i |

Figure 4.1: Savannah Wlndows/C;-l; Interface

The environment is initially populated with 100 randomly located Antelope and 5
randomly located Cheetah. The Antelope are color-coded in five increments, based on
speed, using the Red-Green-Blue (RGB) spectrum. Red are the slowest Antelope, and
blue are the fastest. The Cheetah are colored according to gender; male being black, and
female being gray. For ease of identification, Figure 4.1 also identifies Cheetah with a
“C”.

The simulation can be started by either using the simulation pull-down menu or
clicking on the “T” toggle button. The toggle button allows the user to start and stop the
simulation. The simulation pull-down menu not only provides start and stop options, but
also allows the manipulation of the simulation speed from slow to medium to fast, and

the ability to step through the simulation run. The “S” step button, on the toolbar, also

24

provides this step-through capability. Once the simulation has been started, the agents

interact according to the architecture that is described in the following sections.

3. Architecture

a. Overall Design

When designing any model, the first thing to accomplish is to decide what
is to be studied and to what detail. Answering questions such as “What will the
simulation be used for?”, “How much detail is needed?”, “What issues may need to be
studied in the future?”, and “Who will use this simulation?” are often very helpful in
determining an implementation structure.

In the case of Savannah, we wanted to see how speed affects the Antelope-
Cheetah relationship and overall survivability of each species. To develop the
architecture to support this, we initially designed the simulation using four linked lists;
one list each for the male and female Antelope and Cheetah. Because most of the
interactions in the simulétion are based on location and distance between agents, we
quickly found the linked-list implementation to be computationally prohibitive. After
some experimentation, we settled on a hash table implementation using the Map class
from the Standard Template Library (STL). The Map class is one of the collection
classes from the STL and provides a one-to-one mapping of a unique key value and some
associated data. The key can be of any valid type and the data can be a simple element or
a complex data structure. For this simulation, the agents were placed into the Map based
on their unique xy location in the virtual world. This allowed us to easily pare the agents
that were not within sensing range when animals executed their sensing loop.

With the linked list implementation, the sensing loop required o(n?)
computations because each agent had to traverse the entire list to sense those other agents
within range. The Map implementation fequired 1/x O(n®) where the scalar 1/x was
inversely proportional to the number of local groups in the simulation. Since the agents
were able to calculate the xy boundaries of their sensing range, they could then hash into
the Map and only view those records of agents within range. As an example, if the

simulation had 300 agents active, the linked list implementation required each agent to

25

loop through all 300 records in the list so the sensing loop required 300 x 300, or 90000
steps. In the map implementation, each agent only looped through the agents within its
sensing range so if the 300 agents were divided into 10 Antelope herds and 10 Cheetah,
then each agent would loop through an average of 30-40 agents. This would require only
300 x 40, or 12000 steps to complete the sensing loop. So even though the final cost may
appear to be O(n?), the hash table implementation did drastically reduce computational
costs.

The next thing we considered was how to sequence the agent behaviors
and interactions. In initial versions of thé simulation the Antelope would sense their
environment in a sensing loop and decide on what action to take. They would then take
this action in a move loop. After the Antelope finished both loops, the Cheetah would
then sense and take actions in the same manner. This gave the Antelope a one-step
advantage, which would have been unrealistic and produced improper results. Therefore,
in later versions we implemented concurrent sensing and action loops for each species.
This meant that all Cheetah and Antelope would sense their environment and decide on
their next action before any agent was allowed to move. This resulted in interactions that

were more realistic and better matched what we would expect to occur in the real world.
b. Agents

When developing the architecture for an agent-based simulation, it is
important to keep it as simple and generic as possible. It must be simple so that people
can understand the underlying structure. If they do not understand this, then it will be
very difficult to explain or make believable the complex emergent behaviors that result
from the simulation. Making the architecture generic leads to reusability and aids
extensibility. A generic architecture allows modelers to easily develop other agents for
smooth integration into the simulation. Once the basic architecture is understood, adding
a new agent only requires the need to know what basic functionality must be included in
an agent. Also, implementing a different scenario would only require subtle. changes to
or extensions of existing code. The easiest way to implement generic reusability appears
to be through OOP techniques. Figure 4.2 shows the basic class structure that was used

in Savannah and will be discussed in detail in the following section.

26

Animal

(super class)

[gender, speed, age, energy level,
location, pregnant, movement,
death indicator, generation]}

Antelope Antelope

(sub class) (sub class)

[id number, goal for next action] [id number, goal for next action]

Figure 4.2: Savannah Class Structure

C Base Class

The agents in Savannah are designed using an abstract base class with
subclasses for each agent type. The use of a base class allows the identification of
common characteristics and methods for all agents. We identified appropriate common
attributes for animals and put them into the Animal base class. The Animal class state
variables include: speed, age, generation, pregnancy state information, a mating season
flag, location, a death indicator, and energy level. The Animal class includes methods
that allow agents to move around their environment, avoid collisions with other agents,
and virtual functions for mating and killing. The use of virtual functions ensures that
modelers extending the base class include these functions in their specific subclass.

Speed is a statically implemented integer. Initially, each animal is
assigned a random speed based on the minimum and maximum speed variables
determined by the modeler. Cheetah are assigned an additional speed advantage to
account for their sprinting ability when hunting. When a new animal agent is born, it is

assigned the speed of either the mother or the father based on a random distribution.

27

The age and generation integer variables are used to track how old an
animal is, and what generation it belongs to. Age is used to determine that an animal is
old enough to mate, and at some point can cause it to die of old age. Initially, each

animal is assigned a random age between a minimum and maximum age variable set by

the modeler. When a new animal agent is born, it is assigned an age of zero. An

animal’s age increases by one unit during each simulation time step. The generation J
variable is simply a counter used to show how successful each species has been at

reproduction. When an animal agent is born, it receives the generation value of its

mother plus one.

The pregnancy state structure, pregPtr, which is included with every
female agent, is used as a way to carry genetic information about the father. When a new
animal is born, there is the ability to numerically identify both parents, assign it the speed
of either parent, tag a generation identifier to it, and assign it a sequential species
identification number.

The mating season flag, inSeason, simply notifies other agents that the
agent is mate eli‘gible. The modeler can control when a species is in mating season by
setting the appropriate integer ranges before run time. The flag allows agents to
determine if they should attempt to mate with other agents sensed during their sensing
loop. The ability to manipulate the length of the mating season allows the modeler to see
how shorter or longer seasons might affect the population sustainability of each species.

Location is an integer number that represents the current location of an
agent in the environment. The use of a single integer number resulted in quicker position
conflict detection and resolution than using an xy array. The number either conflicts or it
does not, while in an array the agent would have to look at both elements of an array for
all agents within its sensing range to determine if there is a location conflict. While
location is a single integer, it does represent an x and y coordinate location. These
coordinates can be returned through the gezX and getY functions.

Figure 4.3 shows how a two dimensional xy location is converted and
displayed as a single integer. The x position is the product of the maximum x value

multiplied by the y offset plus the x offset for that row as annotated by the equation:

28

max(x)*offset(y)+offset(x). In this example max x = 640, offset(y) = 206, and offset(x) =
255. This results in an xy integer value of 16895.

max(x) = 640

offset{x) = 265

offset(y) = 206

max(y) = 480

int{xy) = 16895

max({x) * offset(y) + offset{x) = int(xy)
640 * 206 + 255 = 16895

Figure 4.3: Computation of Integer xy Position

The death indicator value is a way to update an animals state indicating

how it died. There are five legal entries to the deathIndicator field: age, mortality,

starvation, predator, and the default value of not-dead. When an agent dies its death

indicator is set to the appropriate and the agent remains in the simulation for two time

steps so other agents can sense it to determine how it died. When an agent reaches the

maximum age it sets its

death indicator to age. Every agent created has the probability of

dying from infant mortality. When this occurs, that agent’s death indicator is set to

mortality. When an agent starves to death it sets its death indicator to starvation and

29

when it is killed by a predator, the predator sets the agent’s death indicator to predator.
After two simulation time steps the agent is removed from the simulation with the
destructor method.

The energy level provides a way to put boundaries on agents actions. It
can be used to trigger short-term goals in an agent, thereby dictating a sequence of
possible actions. If the energy level is high enough, then the agent may not have to feed
right away, but if it drops too low, the agent may have to hunt for food. Energy can also
be used to force an agent to abandon a chase, if it expends too much energy, and rest.
Another common use for energy is to determine if an animal has starved to death.

In Savannah, only the Cheetahs are modeled with an energy level. The
integer-based energy level is used to control their hunting desires. In earlier versions,
before the energy level was implemented, Cheetahs could eat a large population of
Antelope in a short time; there was often no population balance. With energy
implemented, every time a Cheetah kills an Antelope its energy level is boosted by a
predetermined amount. The low energy level dictates the level at which the Cheetah
must rest to regain strength. An intermediate level is set high enough so the Cheetah can
start hunting again without immediately going below their low energy level. The high
energy level acts as a hunting cut off, where once above this level, the Cheetah does not
hunt, keeping it from decimating an entire Antelope population.

The animal base class also contains the methods needed to move agents
around the environment. There are three move functions: move, moveTo, and
moveFrom. If an agent is not trying to move away from or towards another agent, the
move function updates the agent’s position based on the speed of its move: either rest or
regular. If the agent is moving away from another agent, such as when an Antelope is
being chased, the moveFrom function is used to update its position. In this chase
example, moveFrom uses the location of the Cheetah to move the Antelope in the
opposite direction based on the Antelope’s maximum speed. Similarly, the moveTo
function is used to update an agent’s position if it is moving toward a specific agent, i.e.,

when animals are attempting to mate.

30

While the agents are free to roam around the environment, the map
implementation does not allow two agents to occupy the same location. Therefore, the
base class also has a method to avoid collisions. This function simply checks to see if the
agent is trying to move to an occupied position, and if so calls the appropriate move
function until the agent has identified a position that is not currently occupied. This is
also realistic in that most simulations need some kind of collision avoidance to maintain
believability of interaction between agents.

As mentioned earlier, the use of virtual functions ensures that every
developer of a subclass will define methods to describe actions needed to complete the
model. In our implementation, we decided that determining if agents could kill or mate
were not actions that should be generalized in the base class since they tend to require
species specific attention. The killing tradeoff between every agent pair is different and
should be decided by the developer of a specific agent.

While it may be considered an over simplification, we modeled the
Cheetah’s ability to kill Antelope based solely on proximity. The virtual function canKill
provides the modeler with the ability to describe the agent-to-agent kill relationship in
any way they would like. Mating was made a virtual function for the same reason.

While cross species mating was not the main concern, we felt it was important to define
the mating relationships within a specific species. This results in finer granularity than

what could be provided in the base class.
d. Subclasses

The use of OOP in our simulation allowed us to develop a base class that
implements attributes and behaviors common to all of the agents. In addition, the use of
the class structure provided a way to implement species specific attributes. In Savannah,
the Antelope subclass includes information on identification, mating, creation of new
Antelope agents, and predator knowledge. The Cheetah subclass includes information on
identification, mating, creation of new Cheetah agents, and killing.

Every agent in a simulation should have a unique identification number.

_There are many reasons why the modeler would want to know information about a
specific agent. In a map or list implementation, agents must be able to identify

themselves when iterating through loops. This prevents them from taking illegal actions

31

on themselves. Additionally, specific identification numbers make it easy to track
information such as; movement, mating, killing, herding, and offspring creation. In
Savannah an integer identification number, idNum, starting with one, is assigned to each
agent based on species.

Mating is also handled in each subclass because even though mating could
be described generically as either yes - they do, or no - they do not, it is more appropriate
to have the flexibility to model species specific mating attributes. Defining mating as a
virtual function in the base class, forces the modeler to determine if a yes or no style
mating function is appropriate or if a more robust function is needed for their simulation.
This provides greater flexibility and allows for agents that are more customizable. For
example, while some species, such as Canadian Geese, pick one mate for life, others such
as Elephant Seals mate in herds with a dominate alpha male spawning most of the
offspring. A generic mating function could not account for the differences between both
of these examples.

In Savannah, the mating routines are very similar in the Antelope and
Cheetah subclasses. In both, the canMate function returns a Boolean expression on the
ability of two agents to mate. Several things factor into determining the outcome of this
Boolean logic to include: distance, age, season, species, sex, and whether or not the
female is pregnant. If the function returns true, the agents then mate and the female agent
begins her gestation period. Figure 4.4 shows the implementation of this logic.

bool Animal::canMate (Animal &potentialMate)
{
bool mateFlag = false;
if(this->getGenderxr () == MALE)
{
mateFlag

((!(potentialMate.isPregnant())) &&
(potentialMate.getBAge() >= MATE AGE) &&
(this->getAge () >= MATE AGE) &&

(abs (this->getX () - potentialMate.getX()) <= MATE_DISTANCE) &&
(abs (this->getY() - potentialMate.getY()) <= MATE_DISTANCE));
}
else
{
mateFlag = ((!(this->isPregnant())) &&

(potentialMate.getAge () >= MATE_AGE) &&
(this->getAge() >= MATE AGE) &&
(abs (this->getX () - potentialMate.getX()) <= MATE_DISTANCE) &&
(abs (this->getY() - potentialMate.getY()) <= MATE DISTANCE));
}
return mateFlag;

Figure 4.4: Method to Determine if Two Animals Can Mate

32

If agents choose to mate, they will execute the mate function. The mate
function is used to initialize the pregnancy information to include setting the females
state to pregnant, recording the male id and speed for genetic information, and starting
the gestation time counter. The gestation counter is simply an integer counter that
increments each time step and can be set to account for species-specific gestation periods.
When the gestation period ends, a series of functions determine how many agents will be
born, and what attributes they will have.

The litter size is determined using a Normal distribution function. Species
specific, minimum and maximum number bom are entered and the conditional probably
distribution function returns an integer for the number of agents created. To account for
infant mortality, each potential agent is then tested to see if it dies as an infant in the
diesAsInfant function. In Savannah, infant mortality includes any agent that would die
within the first two years its life. Since infant mortality rates are also species specific, a
floating point number from 0 to 1, representing the probability of infant mortality, must
be entered for each subclass.

To streamline the simulation, only those agents that do not die of infant
mortality are created. However, there are still methods to track the initial litter size and
number of these that die as infants. New agents are created in the giveBirth function.
This function assigns each new agent a species-specific integer identification number, an
integer speed from either the mother or father, and an initial xy location near the mother.

The Cheetah subclass contains an additional method for killing, canKill.
This method simply tests if the Cheetah is close enough, and has the energy, to kill the
Antelope. Figure 4.5 shows the implementation of canKill. This results in the slower
Antelope typically being killed off first, but also causes the slower Cheetah to eventually
die of starvation. Successful kills result in the Cheetah manipulating the Antelope’s state;

setting its death indicator to Predator.

33

bool Cheetah::cankKill (Animal &prey)

{
bool killFlag = false;

if ((abs(this->getX () - prey.getX()) <= KILL_RADIUS) &&
(abs (this->getY() - prey.getY()) <= KILL_RADIUS))
if (Animal::myRand() > .5)
killFlag = true;
else
killFlag = false;

return killFlag;

Figure 4.5: Method to Determine if Cheetah Kills Prey

While the Antelope does not require a method for killing, the subclass
does contain an additional method for acquiring predator knowledge. This is an attempt
provide actual learning to the agent, thereby facilitating adaptation. It is a Boolean
function that will be described in greater detail in the learning and adaptation subsection

below.
e Agents Summary

Taking advantage of the functionality offered by the C-++ class structure
appears to be an efficient methodology for represénting agents. A generic base class
offers the flexibility to extend it in order to meet almost any need. Once the agents have
been correctly represented, their interactions need to be implemented in such a way as to

produce believable, understandable results.

4. Interactions

Agent interactions are one of the essential characteristics of agent-based models.
While the base architecture describes the state variables and methods of the agents, the
methodology used to sequence interactions is also very important to the underlying
implementation of these simulations. If events are not properly ordered, possible
outcomes can be unrealistic, unbelievable, and very difficult to explain.

As stated above, Savannah is executed in two loops; a sensing loop and a
movement loop. The underlying architecture to include the methods executed during
these loops has already been described. The purpose of this section is to take a high-level

~ look at how and why agent interactions were prioritized.

34

In the sensing loop, Antelope have five possible actions. They can flee, mate,
move toward potential mates, herd, or feed. The priority of these events is very important
to the outcome of the simulation. If the Antelope’s first priority were always to mate,
they would typically not be looking out for predators and could easily fall prey to the
Cheetah. We chose to prioritize the Antelope’s actions based on its current state, and
what it sensed in its environment. The movement loop simply ensures that all agents
simultaneously executed the proper move to achieve their current goal.

If an Antelope has predator knowledge and there is a Cheetah within its sensing
range, it will always flee, no matter whaf the Cheetah is doing. If an Antelope is not
fleeing and is in mating season, its next priority is to mate if it can. If there is not a mate
in proximity and it is mating season, it will move toward the nearest mate eligible
Antelope. If none of the above conditions exist, the Antelope will either try to move
towards other Antelope or feed. The effect is the appearance of herding and searching for
food simultaneously. This priority of actions seemed to result in the most realistic
behaviors and outcomes. .

Once the Antelope’s desired actions are set, the Cheetah iterate through their
sensing loop. This ensures that Cheetah are determining what action to take based on the
current state of the environment. Cheetah have four possible actions to take including
mating, moving towards a mate, avoiding other Cheetah and hunting. Since they have no
predators in Savannah, Cheetah will always mate if in mating season and they are close
enough to a potential mate. Otherwise, if it is mating season they will move toward the
closest potential mate. When not in mating season, Cheetah try to avoid each other, and
when their energy level becomes low enough, they are driven to hunt Antelope. Again,
the Cheetah’s actions are always constrained by their energy level.

Although we set the priorities of the agents, we believe it would be more
appropriate for them to have the ability to set and adjust their own priorities. To do this,
they must have the ability to interrogate other agents to determine other agents’ states.
For example, if an Antelope can sense a Cheetah, it should be able to tell if that Cheetah
is hunting, mating, or taking some other action. Then the Antelope can make a more

intelligent decision on what action to take in the presence of a Cheetah, rather than

35

always fleeing when it senses one. Fleeing may cause it to be sensed when it may have
remained undetected if it had rested.

The interactions also play a major role in determining what learning and
adaptation the agents can accomplish. By setting the priorities for the agents, it appears
we have constricted their ability to learn and therefore adapt. The learning and
adaptation we see is Savannah is very basic. There appears to be a fine line as to how
much guidance we should provide the agents. It is not only very difficult to hard code all
interactions, but also limits the emergence of new behaviors. On the other hand, if they
are just thrown in an environment with no guidance, they do nothing. A few basic rules

to get and keep agents interacting seems to be the key to achieving true learning and

adaptive behaviors.

5. Learning and Adaptation

Providing the agents with the ability to learn and adapt their behaviors is the most
challenging component of agent-based modeling. Once they have been given a set of
simple basic behaviors and interactions, how does one provide the agent with the ability
to learn things that can not be anticipated? Then how can one tell if an agent is actually
learning and adapting its behaviors? To look at these questions Savannah implements a
simple learning routine that allows the adaptive behavior to be easily recognized. A more
robust learning implementation methodology, developed for the Bamboo implementation,
will be discussed in that section.

Savannah implements one learning routine based on a Boolean value. This
method results in constrictive learning, because the agents appear to only have the ability
to learn things that are determined by the modeler. However, some of the emergent
behaviors discussed in the next section indicate learning and adaptations are occurring on
levels that can not be directly traced. To test the Boolean flag method of learning,
Antelope were provided with a “memory” field, called predatorKnowledge, to learn and
store knowledge about predators.

Predator knowledge is a Boolean that indicates the agent either does or does not
have knowledge of predators. To test this method of learning, when Antelope agents are

created their predatorKnowlege flag is either set to true, indicating they have the

36

knowledge that Cheetah are predators, or false, indicating they do not have this
knowledge. In the simulation loop, the predator knowledge field triggers the Antelope to
flee if a Cheetah is within their sensing range.

Antelope who do not have predator knowledge are able to learn it during the
sensing loop. During each loop an Antelope will sense all other Antelope within a
specified range and if it senses a dead Antelope, it will look at the Antelope’s state values
to see how it died. Ifit died from a predator, the sensing Antelope’s predatorKnowledge
flag is set to true. The Antelope has learned that Cheetah are bad and from then on will
adapt its behavior to flee from them if they are within its sensing range. This learning
and adaptation cycle can be seen in figures 4.6, 4.7, 4.8, and 4.9. Figure 4.6 shows the

entire Savannah environment.

37

|~ Savannah Y] ’

“Fle Edt View 'Simulation Help ' Test
D] $x(el Sle]:
-} "
-
N T
o 2 N
i r !
§ ‘ l : :
L oMM N
,,/'é <- “/
Antelope - M: 75 F-69 G: 2 Cheetah-M:4 F-1 G'1 Simulaton Time: 854

Figure 4.6. Learning and Adaptation in Savannah

Figure 4.7 through 4.9 are magnified views of where an interaction results in
learning and behavior adaptation. Figure 4.7 shows a Cheetah that is able to intermingle
with Antelope. Antelope this close to a Cheetah do not have predator knowledge and
therefore do not flee. Figure 4.8 shows the same Cheetah just after it has killed an
Antelope. The nearby Antelope will now observe this interaction the next time they
sense. Figure 4.9 shows that the Antelope within sensing range of the kill are now
attempting to move out of the area. They have learned that Cheetah are predators and

have adapted their behaviors to flee from them.

38

Sim Time: 855 Sim Time: 858 Sim Timei 862

fr—_?‘ //“'Mk.‘ Jf’M*

,»“) ‘ .»'K ‘ ."/ =] *

o, K o
Figure 4.7: No Figure 4.8: Cheetah Figure 4.9: Antelope

Predator Knowledge Kills Antelope Learn and Flee

Both Antelope and Cheetah agents appeér to learn and adapt their
behaviors based on the emergent behaviors that are displayed in Savannah. These

behaviors and what they might indicate are discussed in the following section.

6. Emergent Behaviors

Emergent behaviors are the result of the agent behaviors, interactions, learning
and adaptation as described above. They are identifiable, believable occurrences of
events that emerge from complex adaptive agents interacting in a given environment. The
behaviors are present in virtually every run of the simulation, but when they appear they
may vary drastically based on when the underlying events that cause them occur.

In Savannah, we identified several possible emergent behaviors. All of them
make sense when compared to what is expected in the real world. Some emergent
behaviors are obvious, while others are so subtle they are difficult to differentiate from
behaviors that are programmed to occur. Emergent behaviors noticed in multiple runs of
Savannah include: Antelope herd sizes, Antelope become faster as the species evolves
over time, Cheetah appear to loiter around Antelope feeding sites, and Cheetah eventually
resort to group tactics for hunting faster Antelope.

One of the actions Antelope in Savannah are programmed to do is to find other
Antelope. This results in them eventually forming into herds. While this in itself is not
an emergent behavior, the disposition of the herds appears to be. There is no algorithm to
track or pare the herd size, yet the Antelope typically form into several herds of eight to
twenty members. It is conceivable that all Antelope in Savannah could form one big
herd, but the simple routines that require an Antelope to eat, mate, and flee from Cheetah
all result in a moderation of herd sizes. Within these herds the Antelope populations

typically get faster over time.

39

As seen in the real world, the slower Antelope in Savannah tend to be killed at a
higher rate than the faster Antelope, although Antelope with no predator knowledge have
the same chance of being killed regardless of their speed. The Cheetah does not have the
ability to look at an Antelope’s speed to determine which one to chase. They simply take
up the case if they have the energy and can sense an Antelope. As the Antelope flee, the
slower ones typically fall behind and are eaten by the Cheetah. As one might expect to
see in the real world, it becomes more difficult for the Cheetah to successfully hunt as the
Antelope population gets faster. Two behaviors appear to emerge to offset this
phenomenon. First, Cheetah begin to remain closer to the Antelope feeding sites and
secondly, they begin attacking in groups as they compete for food.

In Savannah, the Cheetah appear to quickly stake out their territory and typically
remain within it as long as there are Antelope present. As the simulation progresses and
the Antelope get faster, it takes more energy for the Cheetah to hunt. Patterns of loitering
near Antelope feeding sites seem to develop. This is probably explained by the fact that
the Cheetah need to conserve energy so they can continue to hunt and mate. Once they
have identified a source of food, they do not need to roam as much to eat. If the Antelope
population becomes fast enough or sparse enough, the Cheetah start to increase their
roaming distance.

As the Cheetah begin to roam bigger areas, they tend to encounter more Cheetah.
If the simulation progresses so that there becomes a competition for food, it appears as if
the Cheetah begin to hunt in groups to corner the faster Antelope. This emergent
behavior is in no way programmed or expected, but does make sense. The need for
energy appears to cause them to modify their behavior in an attempt to corner Antelope,
ensuring at least one of the Cheetah will receive an energy boost. If they were to remain
apart, they would likely all die of starvation although there may be plenty of Antelope
remaining.

Emergent behaviors also often seem to be in the eye of the beholder. What may
appear as emergent to one may not even be recognized by someone else. What is
consistent is that they are non-programmed phenomena that are explainable and
identifiable when one considers all the low-level interactions that occur to make them

emerge.

40

7. Windows/C++ Implementation Summary

An object-oriented architecture appears to be a very good way to implement
agent-based simulations. It offers a structure that allows for easy, straightforward
declaration and extension. Once the base class or classes have been identified, it
becomes very simple for other users to modify the simulation. The Savannah
implementation showed that with a simple, well-defined architecture, the basic elements
of agent-based simulations can be achieved. While there are perhaps many ways the
implement these simulations, it is important to note that believable outcomes will show
whether or not the architecture has truly hit the mark.

Perhaps one weakness in this implementation is the requirement to have all agents
defined at run time. The ability to dynamically extend a running simulation is very
attractive for all the reasons discussed in previous chapters. To take a look at how such
an architecture might be implemented, we next modeled Savannah using Bamboo. We

named this implementation Savannah 3D.

C. BAMBOO IMPLEMENTATION

1. Introduction

The methodology behind the Bamboo architecture implementation is considerably
different from the Windows/C++ implementation, although Bamboo still uses Microsoft
Visual C++ to compile the code. The main difference stems from Bamboo itself, which
is a toolkit that extends the functionality of the preexisting C++ libraries and then
provides an execution layer above the Windows NT kernel. The code executed in
Bamboo runs inside this layer. As a proof of concept for the Bamboo version, we built a
predator-prey relationship very similar to our Savannah simulation and called it Savannah
3D, since its display window provides a three-dimensional (3D) representation of the
simulation.

The following sections describe the Bamboo architecture implementation, but due
to its similarity with the Windows version, we will only highlight the areas where
Savannah 3D is different. For that reason, the emergent behaviors subsection seen in the

Windows version will not be covered since this area did not change.

41

2. Interface

Running on Windows NT 4.0, Bamboo provides the user with a command-line
interface through a DOS shell. Modules can be loaded into or removed from the
execution core during run time with the dynamicPageModule. This is significant in three
ways. First, it allows the modeler to create and load new agents. Second, modelers have
the ability to remove an agent from the world. Third, which combines the first two, a
modeler can remove an agent, redefine and reload it. What differentiates this from the
traditional simulation methodology is that this can all be done without halting the
simulation, providing greater flexibility. Using the dynamicPageModule also results in a
smaller executable because users only load those modules necessary for a given
simulation run.

To convert our Windows/C++ version over to Bamboo, we created five separate
modules. The first module, agentDisplayModule, which simply creates a single-
document, OpenGL window that represents an empty 3D world. Unlike the Windows
version, the OpenGL window used to display the simulation is fully sizeable. The other
four modules — npsAgentModule, antelopeModule, cheetahModule, and grassModule will
be discussed in the following subsections. Figure 4.10 shows the agentDisplayModule

with numerous instances of the Antelope, Cheetah, and Grass modules.

42

i

Figure 4.10: Savannah 3D with Loaded Modules

Users navigate through the world using the mouse to control 3D flight. The left
mouse button controls forward flight, while the right mouse button controls backward
flight. The world also has three predefined views that can be invoked using the
keyboard. The first, invoked by the spacebar, is on ground level at the origin looking in‘
the direction of the negative z-axis. The second, invoked by the “#” key, is 200 units
above the origin looking straight down, and the last, “crl-£” is located at x=50, y=100,
and is looking back to the origin. As users develop modules for the simulation, they can
define other keystrokes to invoke new camera viewpoints. If a user desires any type of
output from the simulation, text can be written to the DOS shell. Functionality that will
soon be implemented in Bamboo will provide a Graphical User Interface (GUI) where
the user will be able to change agent attributes and view output from the simulation in a

separate GUI window.

43

3. Architecture

a. Overall Design

Many of the issues we encountered implementing the Windows version
regarding which data structure to use for object control and manipulation were eliminated
by using Bamboo because it has this functionality built in. Every agent created in the
simulation is based on an underlying object class in Bamboo called bbListedClass, and
has an associated geometry, npsGeometry, that represents the agent in the virtual world.
The bbListedClass automatically places the agent objects on a control list that can be
traversed at any time by obtaining a handle to the list. Although this is a linked-list
implementation, Bamboo is multi-threaded so we were able to fork a new thread to
control the agents’ move and sense loops. Separating computational requirements
' through the use of threads increased performance over our previous version by ensuring
the graphics engine was given access to the processor in regular intervals and allowed to
refresh the world at a decent rate. In Savannah, the graphics draw functions were
executed sequentially in turn with the move and sense loops. This meant that it could
only refresh the display window after all agents had completed one pass through their
move and sense loops, which caused a noticeable screen flicker as more agents populated

the world.
b. Agents

When developing Savannah 3D, most of the agent architecture was similar
to our Savannah version although we did try to further develop the class structure. In the
Bamboo version, the focus was to design a more generic agent-based simulation that
would provide modélers greater flexibility in creating new agents that could seamlessly
plug into a running simulation. To that end, we created a generic npsAgent class as the
base class and then extended it to create our Animal, Plant, Antelope, Cheetah, and Grass

classes. Figure 4.11 shows the class structure as it was implemented.

44

NPS Agent
(super class)
[speed, age, energy level,
sensing range, remove,
agent type]
\
Animal Plant
(sub class) (sub class)
[gender, pregnant, movement,
generation, death indicator, (1
goal for next action]
Antelope Cheetah Grass
(leaf class) (leaf class) (leaf class)
[id number] [id number] [id number]

Figure 4.11: Savannah 3D Class Structure

As arule, every agent class that would eventually be instantiated in the
simulation had a module of its own, and resided as a leaf of that tree, so our simulation
had AntelopeModule, CheetahModule, and GrassModule. Each of these modules
contains the specific class and all application functionality needed to create the agent in
Savannah 3D. All other abstract classes to include npsAgent, Animal, and Plant were

included in the npsAgentModule.
c Base Class

The npsAgent class was designed to implement only the basic state
variables and functionality that might be needed by all future agents. To facilitate the
addition of many different types of agents, we created a generic agent that implemented a
base class with the following state variables — speed, age, sensing range, and energy
level. We also included an agent-type attribute and a Boolean flag that can tell Bamboo
to remove the agent once it is no longer needed in the simulation. To further develop the
learning capabilities of the agents in Savannah 3D, npsAgent contains a set of vectors that
allow an agent to store and remember class names of other agents it has discovered in the

environment. The vectors include knownPredators, knownFriends, knownEnemies,

45

knownEnergySources, and unknownAgents. If an agent discovers a new agent and
establishes a relationship with that agent, it can add the new one to the appropriate vector
and use that information to guide how it interacts with the agent in the future. Ifit can
not determine the relationship, then it must add the agent to its unknown vector. This
implementation is a slightly more robust form of memory than the simple Boolean-flag
mechanism used in Savannah. The extra memory allows an agent to develop a better
database of information about its world and allows it to interact with the environment at
more sophisticated level. The various benefits of this approach will be discussed later.

A location field was not required in the base class with this version
because the Bamboo npsGeometry class included with each agent object contains a 3D-
position field. Bamboo also provides a three-element vector class that can be used to
pass or update the x, y, z coordinates of the geometry’s position field.

Since we did not want the npsA4gent to define the sensing and moving
functions for all its subclasses, we included virtual functions for each to ensure that the
modeler would implement these for every agent developed for a simulation. When a
simulation runs in Bamboo, the only way it can track the agents and allow them to update
their positions is by handling them all as npsAgent class objects. By including the sense
and updatePosition virtual functions, Bamboo can loop through the list of active objects
(which it recognizes as npsAgents) and call the two functions. Polymorphism allows the
simulation to dynamically link to the correct deﬁnition_of the sense and move methods by

checking the derived class hierarchy until it finds where the methods are defined.

d. Subclasses

Savannah has five subclasses. The Animal and Plant are abstract classes
that implement functionality common to all animals and plants respectively. The next
two, Antelope and Cheetah, are subclasses of AnimaZ, and the last, Grass is a subclass of
Plant. Figure 4.8 shows how each of these classes contributed to our architecture.
Animal, Antelope, and Cheetah remain virtually the same as they were in Savannah. The
new subclasses included in Savannah 3D are the Plant and Grass classes. Plant is an
abstract class that defined attributes and methods needed by all derived plant agents.

Grass is a very simple class that extends Plant and implements a grass agent with no

46

interaction or functionality. It was created only to add grass to the simulation to provide

the Antelope with feeding areas.

4. Interactions

The interactions defined and witnessed in Savannah 3D did not differ
significantly from those in Savannah. The one change was the elimination of the referee
that was used in our Windows implementation. As mentioned in chapter I, the outcomes
to interactions between agents is normally decided by a referee that has knowledge of the
whole system including all agents. The referee must decide a fair outcome and indicate
that to the agents. This is easy to accomplish in a statically developed simulation where
all agents that will ever enter the world are known ahead of time.

In Savannah 3D, all agents are derived from the same base class which requires
them to contain enough built-in logic to learn about other agents and determine the
outcomes of interactions on their own. It would be impossible to program a referee that
had knowledge of all potential agents that might enter the world, because Bamboo allows
new agents to be implemented after the simulation has been created and compiled. The
overhead associated with having a referee who could dynamically learn about every agent
to ever enter the simulation would be too costly. ‘Also, the referee would in fact be
performing the interrogate-learn functions that all other agents would be doing, making
the referee no better than any single agent. For these reasons, a referee in a Bamboo

implementation is neither practical nor needed.

5. Learning and Adaptation

This is probably the most important, and, as we mentioned in the Windows
architecture section, the most challenging part of creating an agent-based simulation.
From Savannah, we determined that agents should have memory and corresponding logic
that allowed them to make smarter decisions while navigating through the simulation. A
desire to provide this prompted the creation of the dynamic vectors mentioned in
subsection ¢ above. Each vector allows the agent to store class-names of any agents it

encounters, into groups based on its relationship with each agent. As the relationship

47

develops or possibly changes over time, the agent can move or delete the reference to that
agent to keep track of the appropriate relationship.

In order for the memory mechanisms to benefit the agent, each agent must have
logic that takes advantage of them. While the functionality was included with npsAgent
to manipulate the contents of each memory vector, no logic was provided to tell the agent
what to do with the information. Since every agent pair will establish specific
relationships with each other in ways that minimize cost and maximize payoff, it would
not be possible for the base class to try to provide that logic.

To demonstrate how to implement logic that might complement the memory
provided in Savannah 3D, we implemented the same learning for Antelope that we had
done in the Windows version. In order to facilitate an Animal agent in learning about
any predators or enemies it might have, we included a killer field in the Animal class.
Now, if an Antelope agent is killed by a Cheetah, it will set the killer value to “Cheetah”.
Any other Antelope within sensing range will see the dead Antelope and be able to
determine that the Cheetah agent was the killer. With this knowledge, the Antelope
agents can then add “Cheetah” to their knownPredator list and act accordingly the next
time they sense a Cheetah. Again this is a very simple example, but the goal was only to

explore the possibility of a more robust learning and adaptation method.

6. Bamboo Implementation Summary

The Bamboo toolkit provides the basis for a very dynamic implementation of
agent-based simulations. The predefined functionality hides many of the implementation
details, so the modeler can concentrate on properly extending existing modules with well-
defined agent models.

The real attractiveness of Bamboo though, is dynamic extensibility. The
architecture implementation of Savannah 3D displayed a rudimentary version of this
capability. As mentioned earlier, this greatly increases the flexibility of a simulation.

For example, modelers often define entities to represent specific interactions or
relationships in the real world. After observing simulation runs for a period of time, they
begin to identify new aspects of the entities that should be studied. As they identify

specific attributes of the agents that should have been included in the initial

48

implementation, they can use Bamboo to unplug and redefine the agent to explore new
relationships or interactions. Conversely, the Windows/C++ implementation would
require modelers to stop simulation, redefine the agents, recompile the simulation, and
then start the simulation again. Dynamic extensibility is a robust feature of Bamboo that
provides modelers with unlimited options when deciding on how best to model a
particular agent.

Another very nice feature of Bamboo is the ease with which simulations written
in C++ for other applications can be ported over. Very little of the actual methodology
behind Savannah had to be changed to build Savannah 3D. In fact, since Bamboo
provides functionality not available with other programming libraries, some of the
implementation can actually be streamlined during the conversion process. Again, we
saw this when all of the location functionality of Savannah was removed on the
conversion to Savannah.

Perhaps the biggest benefit to this type of implementation is the fact that modelers
can create and execute simulations on multiple platforms, while the Windows/C++

implementation is constrained to the Windows OS.

D. SUMMARY

The preceding sections provide an overview of two different architectural
implementations for agent-based simulations. The predator-prey models, Savannah and
Savannah 3D, were built to explore issues associated with developing agent-based
simulations. Both the Windows/C++ and Bamboo designs seem to be feasible options
for building these simulations. Both implementations also take advantage of the
functionality offered by OOP languages. These advantages include encapsulation,
inheritance, polymorphism, and the STL.

The Windows/C++ version is a relatively straightforward implementation, in that
it is a convention easily explained and understood. The class structure provides an ideal
way to model agents and their behaviors. Allowing all agents to simultaneously sense
and act on simple rule sets results in realistic interactions among agents, and often
produce complex emergent behaviors that allow the researcher to conduct cognitive

experiments.

49

The Bamboo version is more abstract, but in the long run, a much more attractive
implementation. Not only does it offer all the advantages of the Windows/C++ version,
but also provides the capability to dynamically add agents to a running simulation. This
methodology makes programming very challenging; agents must not only interact and
adapt to agents that are known at run time, they must also do so with agents that were not

defined before run time.

50

V. CONCLUSIONS

A. CONCLUSION

Both the Windows/C++ and Bamboo agent-based simulation architectures appear
to be appropriate for building an enterprise model of the Navy. Input from subject area
experts will allow the proper agent functionality and inter-agent relationships to be
accurately defined. Agents with the ability to learn and adapt in their pursuit of goals
will provide a robust simulation that allows leaders to view the potential outcomes of
their decisions through emergent behaviors.

While we have explored the issues of developing two types of agent-based
simulation architectures, building an enterprise model of the Navy at such a low-level is
probably not appropriate. It appears that the best approach to take when building
SimNavy would be to create a modeling engine that contains the needed functionality to
define specific agents through an easy-to-use interface. This would allow modelers to
focus on developing accurate models of desired agents without having to concern
themselves with code and implementation issues. It could be developed using many of
the same ideas from the architectures we developed. Current students in the Naval
Postgraduate School’s Modeling, Virtual Environments, and Simulation Curriculum plan

further research in this area.
B. FUTURE WORK

The following section lists future projects that could assist in further exploring the
issues associated with using the agent-based simulation methodology to build an

enterprise mode] of the Navy.

1. SimNavy Agents

When developing an enterprise model of the Navy, one of the first issues that
needs to be addressed is to identify what components are required to be modeled. Once
these components have been identified, the level to which they should be modeled, either
as individual entities or aggregated systems, needs to be studied. Close coordination with
all Navy agencies will help with the development of the logic and functionality of these

various Navy agents. This in and of itself will be a very challenging task since it appears

51

that most of the information currently available is stove piped, with very little cross talk

between agencies.

2. Learning and Adaptation

It is very difficult to establish a generic solution for dynamic agent learning and |
adaptation. We explored two methods for providing agents-with this capability. A very
simple Boolean flag method was used to indicate knowledge of predetermined
relationships. The status of the flag provided access to different functionality and
triggered new behaviors, but was very limited. In the Bamboo implementation a more
robust structure using dynamic arrays was implemented to assist in learning. Both seem
to accomplish the goal, but is there a more efficient or dynamic way to do so? Is there a
way to generalize learning even more? How can this learning be tied better to
adaptation? Future work could entail a more detailed exploration of methods to provide

agents with a robust learning ability that allows them to adapt their behaviors.

3. Networked Applications

The Savannah and Savannah 3D architectures were built to run on stand-alone
computers. The Windows/C++ implementation is not directly portable to distributed
applications. The Bamboo toolkit, however, is designed for networked virtual
environments, and provides an outstanding platform to build networked agent-based
simulations. This area is wide open for research. Probably one of the first and most
critical areas that should be studied is how and in what format does agent data need to be
passed across the network so as not to lose any of the functionality of an agent-based

model?

4. SimNavy Engine

Savannah 3D is an attempt to generalize agent-based modeling enough so that it
can be easily modified to execute many different variations of a simulation. To build a
fully functional enterprise model of the Navy is going to require a generalized, yet very
robust architecture. Research in this area is needed to determine what other functionality

can be added to or implemented with Bamboo to begin building a SimNavy engine. Such

52

an engine would provide a simple GUI that could be used to study the numerous dynamic |

relationships that exist throughout the Navy’s structure.

53

54

APPENDIX A: IMPLEMENTATION CODE LISTINGS

Table of Contents for the Code Listings

1. WINDOWS/C++ IMPLEMENTATION 56
A ANIMAL.H. cooiieeeeieceeeeeeceeseesesessseeessesseecsesassusssssssssesessrssssnsassssassssassessassssssassaseessasasbastesssessssorsnsssrssssnnnnns 56
B. ANIMAL.CPP.....ueuetrecrererereseesevreesssssesiosassssnsossssssessasssssessssssassastessesssncessesaneeses sessasmmntessessrsasesssssssssssssnanae 57
€. ANTELOPE.H ...cvteeeeeieteeeeeseeesessesssssesssssesssessssrsssssssssssssessssssssssesssssssesasssansesesssssassaneesessstorsssestessssssssssnnes 59
D, ANTELOPE.CPP.....cteieeteeeseseseeseeessstessesesssnsseessssssssessssnssnssssessassassasassssssssesaseseseesnarenrsssssssssissssnesessasssnssses 60
B, CHEETAH.H c.nuuttieiieeeeeeeeeececseneesssssseeesasssnssessssssnssesssssssseessassassessessanesssesassetessmssastestesssssssnsnssstasssssassnnsees 61
F. CHEETAH.CPPeeeeetieeeeeeeetressssessesesseeeessssesessasessassssssessssasersssasessatesesatosssstsssssessossasssssssesssesssasssnnesessnns 61
G, STDAFXH .eeeeeeeereeeeeeaseresseesssessssssessssseesansersssssssssssessssasssbsssssssssasasesssstessssssessassessessesssssestessrssssassnses 63
H. AGENTGUIVIEW.Heeeiioeetiereeesieieeeecesssseessssassssessassssessssssessacassasesesassrsssessssasssosssssssssssssesssasssnnssesssss 63
I AGENTGUIVIEW.CPP.....oeeeeeeeeeeeeeeereeessssssssssessssessssnsesssasasessssessssssssssesssesssssnesessantossssstersssssteossesassasnnes 64
T, AGENTGUIDOC.H...cccueeeeeeeieeceeeesseressseesesssseesssesssssrssssssssssssenssssesssssssssseesassasssssessosssssessssesssessssssssasessssn 66
K. AGENTGUIDOC.CPPooieeevreereeeesrrrersrsreesssseessnsesssssssssssesssssassessesssasssesacsssssssssnssssessansessssessssnsnsssssassassane 67

. BAMBOO IMPLEMENTATION 71
A NPSAGENT . H. .o eeeereeeerieeissreasssessssseessssserssssssssesssssesssssssarassssesssssesantessssesosasssessstesssssseossstssssesssnsssnsassens 71
B. NPSAGENT.C ..ouvvvrerveesrerecessteeesseressssesssasasssssesssssssssssesssssssssssassssesassasssssscasssasssssnssssssstssssssessrsssnsonsanssanases 72
C. AGENTDISPLAYAPP.H.......ieieeireeeeerseeeiseseesssseessresesssssssassseassssesssnteasassesesmessssssssessssssssseessssistsssssansassses 73
D. AGENTDISPLAYAPP.C..oceooveeirrerererieessrressssseessssesssasssssssasasssssssnsesssassssssesessnsessassssasssssesessnsssessnnessssssansnns 74
. ANIMAL.H ..ueeeeeeescveeseesessssesessssressessssssssssessstasiesssssssssessssasssassssastesssssasssasssasssanbatesessssssiessastesssssnsansses 75
F. ANIMAL.C..eneeeeeiereseesesasseesesssrseesssssssssesesssesssesssssessssesasansessesastessssensatasssosssnsentsssasssssteesssnesssssnarasans 76
. ANTELOPE.H ..ccoeeeeeeieteesieisiteereeseseeessssereessesosssesssssmessssasssssssensasasssssesssssnsesssseaneseessnsssasssssesstosssasossanasans 78
H. ANTELOPE.C ...eueeeececceeessessssesessssasessessssssesssssssssssessssssssssesessssssssasassssesssesasasessessasasesssessssrssssssnssesssnsansans 79
L. ANTELOPEAPP.H ...coccecvetiriereiesereesarereessssssssesesssssscessassenmsasssessssssassassnsesesssssasssossnnnnenssessssssessssssssssssnssasaes 82
T ANTELOPEAPP.C .cceouteeeeeeirereeesseesssassissssssssssesssssressessssssssasssessrassessssesssnessesmeessssttsosssstsssssersssesssnsasnnssesns 82
K. CHEETAH.H....uuuieieeerueressutrsssssesssesesssesessssssssssssssssessassssessssssssssesssssesessesssasessassssesssatsssssesstesssnsssnnanssans 82
L. CHEETAH.Coeoeeeereeeecneereettesssessssesessssssssssesssssesasaressasssesssssessesssesssseessasssoneesesssesessansasssssesssesasasssnnassees 83
M. CHEETAHAPP . H....cceviieeeeerreecisseeesesesssusssiessssssesssssnsansssssssssstesessassesssssssnesesssasansnsesssssssssnsossanssassnsaassars 86
N, CHEETAHAPP.C...ooveeeneeeererseesessssssesssssssassesssssssssssessssssssssssessssesersssessasssrsaamesssintesesssnssessesssssssassssnsnase 86
O PLANT.H «eeeeeteeeeeeeeteeeaeeeasteseessassssssssessssssssessstssssserassssssasssseessssesansrsessssssssssessnsssessstassesessssstessossstessessans 86
P PLANT .C ueeeieeeereetreeeereeeeessetessessssssssassssssssssssseesssssnsssassssssassenssstssesaeessnsesasmtessassssssasenssssossasssnsassesanne 87
Q. GRASSH ..cvoveeireememriensuesentsseniesistetesssesessstsssssanstasstasssasssbessssssesesesssssasssasasssastssasasessesssestacstossssasassssasnss 87
R GRASS.Cunrereeerreeeereeeeraseesssntasssssesssesesssesessssrsssssssssserassssesanssseassssesresssessesessasesesanersnssssssassassssessssssssasenssnns 87
. GRASSAPP.H....ccvvereieeiecececessessssssessestsssssssesssssssssssseesessssssssasssssessesssssasssnessasssasssssssnssssssestosssssnseersssssssssens 88
. GRASSAPP.C..oeveeenerereereessesessesesssesssssssssssseassasesssneessssssasessessasssssasstnsssasssasssessnnessssantssssesssseesessosssasons 88

55

WINDOWS/C++ IMPLEMENTATION

/R rEE R R ek
/7 EXECUTIVE SUMMARY
//File Name: Animal.h
177

//Authors:
1/

//

/7
//March 1999, Master Thesis

ERRREN RN AN NN

Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; todd@gagnon.com

//Description: Package contains definition of Animal class and its
124 member functions to work in a larger simulation

#ifndef __ANIMAL H__
#define _ ANIMAL H

#include “stdafx.h*
#include <math.h>

struct Pregnancy({
int partnerId;
int maleSpeed;
int gestationTime;
int seasonCounter;
¥i

class Animal (

private:

char gender;

int maxSpeed,
age,
generation,
location,
moveToLocation,
moveFromLocation,
deathCounter,
energylevel ;

bool pregnant,
inSeason,
resting;
public:

//Default Constructor
Animal();

MOVE_SPEED speedOfNextMove;
DEATH_INDICATOR deathIndicator;

//Newborn Initialization Constructor

wrrn -

Animal (int s, int gn, int 1);

//Default Destructor - does nothing at this time
~Animal();

//move the animal
void move();

void avoidCollision();
void moveTo(int 1);
void moveFrom(int 1);

//test if two animals are within the provided range of each other
bool inRange{Animal &secondAnimal, int testRange);

//generate a random number
double myRand ();

//get and set the max speed of animal
int getMaxSpeed();
void setMaxSpeed(int s);

//get gender of animal
char getGender{);
void setGender (char g);

//get and set energy level
int getEnergylLevel();
void setEnergyLevel(int el);

//get and set xy coordinate (location) of animal
int getlLocation();

int getX();

int getY():

void setLocation(int xy);

void setLocation(int x, int y);

void setRandomlocation();

//get and set the choice of speed for next move
MOVE_SPEED getSpeedOfNextMove () ;
void setSpeedOfNextMove (MOVE_SPEED ms);

//get and set reason for animals death
DEATH_INDICATOR getDeathIndicator();
void setDeathiIndicator (DEATH_INDICATOR di);

//get and set deathCounter
int getDeathCounter():
void setDeathCounter(int de};

//get age of animal
int getAge();
void setAge(int a);

//get and set generation of animal
int getGeneration();
void setGeneration(int g);

int getMoveToLocation();

int getMoveFromlocation();

//can the animals mate

//age animal one year
void growOlder();

//see if female is pregnant

bool isPregnant();
void setPregnant(bool p);

bool isInSeason();

void setInSeason(bool is);
//see if animal is dead
bool isDead();

bool isRestingl);
void setRest(bool r);

Pregnancy* pregPtx;

//see if animal needs to rest

//pointer to Pregancy struct

//get and set location to move to

void setMoveToLocation(int mtl);

//get and set location to move from

void setMoveFromLocation(int mfl);

virtual bool canMate(Animal &potentialMate);
virtual void mate(Animal &mate){};

//test to see if predator can kill the prey
virtual bool canKill(Animal &prey);

//get distance between two animals

int getDistance(Animal &animal);
int.distanceFromFood(int 1);

//see if the animal is in season

/7 xw EERRER AT, wwn
// INLINE FUNCTIONS
JIxvew rrwn EREXRRNAEATERERE AR

{
return maxSpeed;

maxSpeed = s;
56

inline int Animal::getMaxSpeed()

inline void Animal::setMaxSpeed(int s)
{

}
inline char Animal::getGender ()

return 'gender ;

inline void Animal::setGender (char g)
{

gender = g;

inline int Animal::getEnergylLevel ()
{

return energylevel;
}

inline void Animal::setEnergylevel (int el)
{

energylevel = el;

inline int Animal::getMoveToLocation{)

return moveToLocation;

inline void Animal::setMoveToLocation(int mtl)

moveToLocation = mtl;

inline int Animal::getMoveFromLocation()

return movePromLocation;

inline void Animal::setMoveFromLocation{int mfl)

moveFromLocation = mfl;
}

inline int Animal::getLocation()

return location;
)

inline int Animal::getX()
return (location % MAX X);

inline int Animal::getY()

{

return (location / MAX X);
} .

inline void Animal::setLocation(int xy)
{

}

inline void Animal::setLocation(int x, int y)

location = xy;

location = y * MAX X + X; -
}

inline void Animal::setRandomLocation()
{

location = int(myRand() * MAX_X * MAX_ Y);
}

inline MOVE_SPEED Animal::getSpeedOfNextMove ()

return speedOfNextMove;
}

inline void Animal::setSpeedOfNextMove (MOVE_SPEED ms)

speedOfNextMove = ms;

inline int Animal::getdge()
(

return age;

}
inline void Animal::setAge{int a)

age = a;
}

inline int Animal::getGeneration()

return generation; ,

inline void Animal::setGeneration(int g) -~

generation = g;

inline bool Animal::isPregnant{)

¢ return pregnant;

}

:;.nline void Animal::setPregnant (bool p}

pregnant = p;

inline bool Animal::isInSeason()
{

return inSeason;
}

inline void Animal::setInSeason(bool is)

inSeason = is;

inline bool Animal::isResting(}

return resting;
}

inline void Animal::setRest(bool r)
{

resting = r;

}
inline DEATH_INDICATOR Animal::getDeathIndicator ()

return deathIndicator;
}

inline void Animal::setDeathIndicator (DEATH_INDICATOR di)

deathIndicator = di;

inline int Animal::getDeathCounter()

return deathCounter;

inline void Animal::setDeathCounter{int dc)

deathCounter = dc;
}

inline bool Animal::isDead()
{

return (deathIndicator != NOT_DEAD);

inline void Animal::growOlder ()
{

age++;

#endif

//end file animal.h

7

//'tt' -
1/ EXECUTIVE SUMMARY

//File Name: Animal.cpp

1/

//Ruthors: Mark A. Boyd; maboyd@bigfoot.com

/" Todd A. Gagnon; toddégagnon.com

1/

//Description: Package contains definition of Animal class and its
/ member functions to work in a larger simulation

1/
//March 1999, Master Thesis

J/wwre »

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <ctime>
#include *Animal.h*

1/

// DEFINES AND FILE SCOPE CONSTANTS

//Q*ﬁ"l".&i*t’ LA A »* *n *w
/1

// Function: Animal::Animal()

// Return Val: None

// Parameter: None

// Purpose: Default constructor

Animal::Animal ()

:speedOfNextMove (REGULAR), deathIndicator (NOT_DEAD), pregPtr(NULL),
pregnant(false), inSeason(false), generation(l), moveToLocation(0),
movePromLocation(0), deathCounter(0), energyLevel (800), resting(false)

double genderRand = myRand();
if (genderRand < 0.5)

gender = MALE;
else

gender = FEMALE;

//assign a random max speed for the animal between 5..10
maxSpeed = myRand()*10;

if (maxSpeed < S)
maxSpeed += S;

setRandomLocation{);
. age = int(myRand() * ANIMAL_AGE);

}//end animal::animal()

/7
// Function: Animal::Animal (int s, int x, int y)

// Return Val: None
// Parameter: Speed, XY position
// Purpose: Newborn initialization constructor

/7

Animal::Animal (int s, int gn, int 1)

: speedOfNextMove (REGULAR), deathIndicator (NOT_DEAD), maxSpeed(s),
generation(gn}, age(NEWBORN_AGE), pregnant{false), inSeason(false),
pregPtr(NULL), location(l+l), moveToLocation{0}, moveFromLocation(0),
deathCounter (0), energyLevel(800), resting(false)

{
double genderRand:

genderRand = myRand{();
if (genderRand < 0.5)
{

gender = MALE;
else

gender = FEMALE;
}//end Animal::Animal (int s, char g, int x, int y)

17/

// Punction: Animal::~Animal({)
// Return Val: None

// Parameter: None

// Purpose: Default destructor
/7

Animal::~Animal ()
//do nothing at this point

}//end Animal::~Animal()

/7

// Function: Animal::move ()

// Return Val: void

// Parameter: None

// Purpose: move animals that are not resting
17

void Animal::move()
{

if (speedOfNextMove = REST)
{

int tempX = this->getX().
tempY = this->get¥();
double randX

= myRand () ;

double randY = myRand();

if (randX <= 0.5)
tempX--;

else

tempX++;
if (randYy <= 0.5)

temp¥--; // this moves the animal up one row
else

tempY¥++; // this moves the animal down one row

if (tempX <= MIN_X)

tempX = MIN_X + 1;//bring the animal back one unit
if (tempX >= MAX_X)

tempX = MAX _X-1;//bring the animal back one unit
if (tempY <= MIN_Y)

tempY = MIN. Y + 1; //move the animal down one row
if{tempY >= MAX_Y)

tempY = MAX.Y - 1; //move the animal up one row

this->setLocation(tempX, tempY):
}//end if not at REST
return;

}//end Animal::move ()

17/

// Function: Animal::avoidCollision ()

// Return Val: void

// Parameter: None

// Purpose: keep animals from occuping the same grid space
/7=

void Animal::avoidCollision()

{
int tempX
tempY

this->getX(),
this->getY():

double randX = myRand();
double randY¥ = myRand(};

if (randX <= 0.5)

tempX--;
else
tempX++;

if (randY <= 0.5)

tempY--; // this moves the animal up one row
else

tempY++; // this moves the animal down one row

if (tempX <= MIN_X)

tempX = MIN.X + 1;//bring the animal back one unit
if (tempX >= MAX_X)

tempX = MAX_X-1;//bring the animal back one unit
if (tempY <= MIN_Y)

tempY = MIN Y + 1; //move the animal down one row
if (tempY >= MAX_ Y)

tempY = MAX Y - 1; //move the animal up one row
this->setLocation(tempX, tempY);
return;

}//end Animal::avoidCollision()

1/

// Function: Animal::moveTo ()

// Return Val: void

// Parameter: int location

// Purpose: returns destination for animals next move
17

void Animal::moveTo(int 1)
{
int tempX = 1 § MAX_X,
tempY = 1 / MAX_X, +
thisTempX = this->getX(),
thisTempY = this->getY();

if(speedoENextxove == REGULAR)
{

if ((thisTempX - tempX) > 0)
thisTempX -= UNIT_MOVEMENT;
else if ((thisTempX - tempX) < 0)
thisTempX += UNIT_MOVEMENT;

if((thisTempY ~ tempY) > 0)
thisTempY-= UNIT_MOVEMENT;
else if ({thisTempY - tempY) < 0)
thisTempY += UNIT_MOVEMENT;
}//end if
else//RUN
{

if((thisTempX ~ tempX) > 0)
thisTempX -= this->getMaxSpeed()/2;
else if((thisTempX - tempX) < 0)
thisTempX += this->getMaxSpeed()/2;

if ((thisTempY - tempY) > 0)
thisTempY-= this->getMaxSpeed()/2;
else if ({thisTempY - tempY)} < 0)
thisTempY += this->getMaxSpeed()/2;
}//end else
if (thisTempX <= MIN_X)
thisTempX = MIN_X + 1;//bring the animal back one unit
if (thisTempX >= MAX_X)
thisTempX = MAX_X-1;//bring the animal back one unit
if (thisTempY <= MIN_Y)
thisTempY = MIN_Y + 1; //move the animal down one row
if (thisTempY >= MAX_Y)
thisTempY = MAX_Y - 1; //move the animal up one row
this->setLocation(thisTempX, thisTempY);

return;

}//end Animal::moveTo()

// Function: Animal::moveFrom()

// Return Val: void

// Parameter: int location

// Purpose: returns destination for animals next move

void Animal::moveFrom(int 1)
{

int tempX = 1 % MAX_X,

tempY = 1 / MAX_X,
thisTempX = this->getX(),
thisTempY = this->getY();

if (speedOfNextMove == REGULAR)
{

if ((thisTempX - tempX) > 0)
thisTempX += UNIT_MOVEMENT;
else if((thisTempX - tempX) < 0)
thisTempX -= UNIT_MOVEMENT;
if ((thisTempY - tempY) > 0)
thisTempY += UNIT_MOVEMENT;
else if ((thisTempY - temp¥) < 0)
thisTempY -= UNIT_MOVEMENT;
}//end if
else//RUN
{

if ((thisTempX - tempX) > 0)
thisTempX += this->getMaxSpeed()/2;
else if((thisTempX - tempX) < 0)
thisTempX -= this->getMaxSpeed()/2;
if ((thisTempY - tempY) > 0)
thisTempY += this->getMaxSpeed()/2;
else if ((thisTempY - tempY) < 0)
thisTempY -= this->getMaxSpeed{)/2;
}//end else
if (thisTempX <= MIN_X)
thisTempX = MIN_X + 1;//bring the animal back one unit
if (thisTempX >= MAX_X)
thisTempX = MAX_X-1;//bring the animal back one unit
if (thisTempY <= MIN_Y)
thisTempY = MIN_Y + 1; //move the animal down one row
if (thisTempY >= MAX_Y)
thisTempY = MAX_ Y - 1; //move the animal up one row

this->setLocation (thisTempX, thisTempY);

return;

© }//end Animal::moveFrom()

11
// Function: Animal::myRand ()

// Return Val: double - a pseudorandom number between 0.0 and 1.0
// Parameter: none

// Purpose: return random number

double Animal::myRand ()
double randomNumber;
randomNumber = rand()/double(RAND_MAX) ;
re'!:um randomNumber ;

}//end Animal::myRand()

/7
//Function: Animal::canMate ()

//Return Val: true / false

//Parameter: potentialMate

//Purpose: evaluate whether two like animals can mate

/7
bool 2Animal::canMate{Animal &potentialMate)
{

bool mateFlag = false;

if (this->getGender() == MALE)
{

mateFlag = ((! (potentialMate.isPregnant()))} &&
(potentialMate.getAge() >= MATE_AGE) &&
(this->getage() >= MATE_AGE) && _
(abs (this->getX() - potentialMate.getX()) <=
MATE_DISTANCE) &&
(abs (this->getY() - potentialMate.get¥()) <=
MATE_DISTANCE)) ;
}
else
{
mateFlag = ((!(this->isPregnant()}) &&
(potentialMate.getAge({) >= MATE_AGE) &&
(this->getAge() >= MATE_AGE) &&
{abs (this->getX{) - potentialMate.getX()) <=
MATE_DISTANCE) &&
(abs (this->getY() ~ potentialMate.getY()) <«
MATE_DISTANCE)) ;

}
return mateFlag:;

}//end function Animal::canMate(Animal &potentialMate)

1/
//Function: Animal::canKill ()
//Return Val:

//Parameter:
//Purpose: evaluate whether two like animals can mate

12
bool Animal::canKill(Animal &prey)
{

return false;

}//end bool Animal::cankKill (Animal &prey)

1/
//Function: Animal::getDistance()

//Return Val: int distance between two animals
//Parameter: animal

//Purpose: determine distance between two animals
1/
int Animal::getDistance(Animal &animal)

int xSquare, ySquare, answer;

xSquare = (this->getX{) - animal.getX(}) * (this->getX() -
animal.getX(});

ySquare = (this->getY¥() - animal.getY()) * (this->getY() =
animal.getY());

answer = (sqrt{xSquare + ySquare});

return answer;

}//end Animal::getDistance()

/7
//Function: Animal::distanceFromFood()
//Return Val: int between animal and food
//Parameter: int location

//Purpose: determine distance between animal and food
/

int Animal::distanceFromFood{int 1)

{

int tempX = 1 % MAX X,
tempY = 1 / MAX X,

xSquare = (this->getX() - tempX) * (this->getX() - tempX);
ySquare = (this->getY() ~ tempY) * (this->get¥() - tempY);
answer = (sqrt{xSquare + ySquare)):

return answer;
}//end Animal::distanceFromFood ()

//end file Animal.cpp

I2Ad
/1 EXECUTIVE SUMMARY

//File Name: Antelope.h

/7

//authors: Mark A. Boyd; maboyd@bigfoot.com

/7 Todd A. Gagnon; toddégagnon.com

/1

//Description: Package contains definition of Antelope class and its
17 member functions to work in a larger simulation

7/
//March 1999, Master Thesis

77 w

$ifndef __ANTELOPE H__
#define _ ANTELOPE_H__

#include "animal.h”
class Antelope: public Animal{
private:

ANTELOPE_DESIRED_ACTION nextAction;

int idNum,
herdSize;

bool predatorKnowledge;
public:

//Default Constructor
Antelope() ;

//Newborn Initialization Constructor
Antelope (int s, int gn, int 1);

//Default Destructor - does nothing at this time
~Antelope();

//produce a newborn Antelope from a male/female pair
Antelope* Antelope::giveBirth(int speedOne, int speedTwo,
int motherGeneration, int motherLocation);

//get antelope identification number
int getIdNum();

//set and get herd size
int getHerdSize{():
void setHerdSize(int hs);

//get and set the desired next action for the antelope
ANTELOPE_DESIRED_ACTION getNextAction():
void setNextAction (ANTELOPE_DESIRED_ACTION na);

//return antelope litter size
int litterSize();

e

//return true if Antelope dies as infant
bool diesAsinfant():;

//can the Antelope mate
bool canMate (Antelope &potentialMate);
void mate(Antelope &mate);

//are the Antelope mate eligible
bool mateEligible{Antelope &potentialMate};

//does a Antelope know Cheetahs are bad?
bool getPredatorKnowledge():;
void setPredatorKnowledge(bool pk);

//print Antelope info
void printantelopeInfo():

/7
// INLINE FUNCTIONS

77 e
inline int Antelope::getIdNum()
{

return idNum; \

inline ANTELOPE_DESIRED_ACTION Antelope::getNextAction()
{

return nextAction;

inline void Antelope::setNextAction (ANTELOPE_DESIRED_ACTION na)
{

nextAction = na;

inline bool Antelope::getPredatorKnowledge(}
{

return predatorKnowledge;

inline void Antelope::setPredatorKnowledge (bool pk)
{

predatorkKnowledge = pk;

inline int Antelope::getHerdSize()
{
return herdSize;

inline void Antelope::setHerdSize(int hs)
{

herdSize = hs;

}
#endif

//end file Antelope.h

[7%e v rrerrRrE Ry
/7 EXECUTIVE SUMMARY

//File Name: Antelope.cpp

/i

//Authors: Mark A. Boyd; maboyd@bigfoot.com

17 Todd A. Gagnon; todd@gagnon.com

17/

//Description: Package contains definition of Antelope class and its
17 member functions to work in a larger simulation

i
//March 1993, Master Thesis

17 wxwwEn

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <ctime>
#include *Antelope.h”

wew L e 2

/7
// DEFINES AND FILE SCOPE CONSTANTS

Y7 P L T

static int numAntelope = 0;

/1
// Function: Antelope::Antelope()
// Return Val: None
// Parameter: None
// Purpose: Default constructor
12
Antelope: :Antelope ()
:Animal (), idNum(numAntelope++), nextAction(A_NOTHING),
herdSize(1)

if (Animal::myRand{) < PREDATOR_KNOWLEDGE)
predatorKnowledge = true;

else
predatorKnowledge = false;

}//end Antelope: :Antelope()

117
// Function: Antelope::Antelope(int s, int gn, int x, int y)
// Return Val: None

// Parameter: Speed, generation, and XY position

// Purpose: Initialization constructor for newborn Antelopes

.

1/

Antelope::Antelope(int s, int gn, int 1)

: Animal(s, gn, 1), idNum(numAntelope++), nextAction (A_NOTHING),
herdSize(1)

if (Animal::myRand() < PREDATOR_KNOWLEDGE)
predatorknowledge = true:;

else
predatorknowledge = false;

}//end Antelope::Antelope(int s, int x, int y)

//
// Function: Antelope: :~Antelope ()

// Return Val: None ,
// Parameter: None

// Purpose: Default destructor

/7
Antelope: :~Antelope ()}
(

//dc nothing at this point
}//end antelope: :~Antelope()

/7
//Function: Antelope::giveBirth ()
//Return Val: Antelope

//Parameter: male speed, female speed
//Purpose: make a new Antelope

/7

Antelope* Antelope::giveBirth{int speedOne, int speedTwo,
int motherGeneration, int motherLocation}
{

int newSpeed,
nextGeneration = (motherGeneration + 1);

Antelope *newBorn;

if (Animal::myRand() < .5)
newSpeed = speedOne;

else :
newSpeed = speedTwo;

newBorn = new Antelope(newSpeed, nextGeneration, motherLocation+l);
' #ifdef SPEED_COUT
cout << "ANTELOPE" << * * << *speedOne: * << speedOne << "
<< “speedTwo: " << speedTwo << * . << "newborn speed
<< newSpeed << endl;
#endif
return newBorn;

}//end animal::mate()

1/
//Function: Antelope: :mate ()

//Return Val: true / false

//Parameter: potentialMate

//Purpose: evaluate whether two like animals can mate
/7
void Antelope::mate (Antelope &mate)
{

if (this->getGender{) == MALE)
{

mate.setPregnant (true);
mate.pregPtr->partnerid = this->getIdNum();
mate.pregPtr->maleSpeed = this->getMaxSpeed();
mate.pregPtr->gestationTime = 0;

else
this->setPregnant (true);
this->pregPtr->partnerId = mate.getIdNum();
this->pregPtr->maleSpeed = mate.getMaxSpeed!{);
this->pregPtr->gestationTime = 0;

}

return;

}//end function Antelope::mate()

11
// Punction: void Antelope::printAntelopeInfo()
// Return Val: void

// Parameter: none

// Purpose: Print Antelope information

1/
void Antelope::printAntelopelInfo()
{

if (getGender () == ‘M‘)
{

cout <<" Male Antelope * << idNum;
}
else
{

cout << "Female Antelope * << idNum;

cout <<* => spd = " << getMaxSpeed() .
<<* gndr = " << getGender()
<<" age = * << getAge()
<<" x = " << getX{()
<<® y = * << get¥{)
<< endl;
return;

}//end Antelope Antelope::printAntelopelInfo ()

// Function: int Antelope::litterSize()

// Return Val: int number in litter

// Parameter: ncne

// Purpose: return a random number of antelope in a litter

int Antelope::litterSize()
{

int litter = 1;

if (Animal::myRand() >= 0.9)
litter = 2;

return litter;

}//end Antelope::litterSize()

17/ :

// Function: bool Antelope::diesAsInfant()

// Return Val: true for dies; false for lives
// Parameter: none

// Purpose: return whether infant dies or not
124
bool Antelope::diesAsInfant()
< ¢

double randNum = Animal: :myRand();

return (randNum < ANTELOPE_MORTALITY_RATE);
}//end Antelope::mortality()

/7
// Function: bool Antelope::canMate()

// Return Val: true for yes; false for no
// Parameter: potential mate

, // Purpose: return whether Antelope can mate or not

/!
bool Antelope::canMate (Antelope &potentialMate)
{

bool mateFlag = false;

if ((this->getGender () == MALE) &&
(potentialMate.getGender () == FEMALE))

mateFlag = ((!(potentialMate.isPregnant())}) &&
{this->getNextAction{} == A_MATE) &&
(potentialMate.getNextAction() == A_MATE) &&
(potentialMate.getAge() >= MATE_AGE) &&
(this->getAge() >= MATE_AGE) &&
(abs (this~>getX() - potentialMate.getX()) <=
MATE_DISTANCE) &&

(abs(this->getY() - potentialMate.getY()) <=
MATE_DISTANCE)) ;
}
else if((this->getGender() == FEMALE) &&
(potentialMate.getGender () == MALE))

mateFlag = ((!(this->isPregnant())) &&

(this->getNextAction() == A_MATE) &&

(potentialMate.getNextAction() == A_MATE) &&

(potentialMate.getAge() >= MATE_AGE) &&

(this->getAge() >= MATE_AGE) &&

(abs(this->getX() - potentialMate.getX()) <=
MATE_DISTANCE) &&

(abs(this->get¥() -‘potentialMate.get¥()) <=
MATE_DISTANCE)};

) .

return mateFlag;
}//Antelope: :canMate (Antelope &potentialMate)

// Function: bool Antelope::mateEligible()

// Return Val: potential mate

// Parameter: true for yes; false for no

// Purpose: return whether Antelope is eligible to mate

bool Antelope::mateEligible (Antelope &potentialMate)
{
bool mateEligibleFlag = false;

if ((this->getGender() == MALE) &&
(potentialMate.getGendexr () == FEMALE})

mateEligibleFlag = (! (potentialMate.isPregnant()) &&
(potentialMate.isInSeason()) &&
(potentialMate.getAge() >= MATE_AGE) &&
(this->getAge() >= MATE_AGE))}:;
} !
else if((this->getGender () == FEMALE) &&
(potentialMate.getGender() == MALE))

mateEligibleFlag = (! {this->isPregnant()} &&
(this->isInSeason()) &&
{potentialMate.getAge() >= MATE_AGE) &&
{this->getAge{) >= MATE_AGE}):
}

return mateEligibleFlag;
}//end Antelope: :mateEligible

//end file Antelope.cpp

7As wwww rw

1/ EXECUTIVE SUMMARY

//File Name: Cheetah.h

1/

//Authors: Mark A. Boyd; maboyd@bigfoot.com
/7 Todd A. Gagnon; todd@gagnon.com

1/
//Description: Package contains definition of Cheetah class and its
17 member functions to work in a larger simulation

;;Harch 1998;'Master Thesis

#ifndef __CHEETAH H__

#define __CHEETAH H__

#include *animal.h®

class Cheetah: public Animal{

private:
CHEETAH_DESIRED_ACTION nextAction;
int idNum;

public:

//Default Constructor
Cheetah();

//Newborn initialization constructor
Cheetah (int s, int gg, int 1);

//Default Destructoxr - does nothing at this time
~Cheetah();

//produce a newborn Cheetah from a male/female pair
Cheetah* Cheetah::giveBirth(int speedOne, int speedTwo,
int motherGeneration, int motherlLocation):

//get Cheetah identification number
int getIdNum();

//return Cheetah litter size
int litterSizel();

//get and set the desired next action for the antelope
CHEETAH_DESIRED_ACTION getNextAction();
void setNextAction (CHEETAH_DESIRED_ACTION na);

//return whether or not the Cheetah dies in infancy
bool diesAsInfant();

//check to see if cheetah can kill Antelope
bool canKil;l. (Animal &prey);

N\
//can the Cheetah mate

bool canMate{Cheetah &potentialMate);
void mate(Cheetah &mate);

//are the Cheetahs mate eligible
bool mateEligible(Cheetah &potentialMate);

//print Cheetah info
void printCheetahInfo():;

7/ e reww
// INLINE FUNCTIONS
V7 rrererw rurw

inline int Cheetah::getIdNum{()

return idNum;

inline CHEETAH_DESIRED_ACTION Cheetah::getNextAction()
{

return nextAction;
}

inline void Cheetah::setNextAction (CHEETAH_DESIRED_ACTION na)
{

nextAction = na;

#endif

//end file Cheetah.h

17/
1/ EXECUTIVE SUMMARY

//File Name: Cheetah.cpp

17

//authors: Mark A. Boyd; maboyd@bigfoot.com
1/ Todd A. Gagnon; todd@gagnon.com
1/

//Description: Package contains definition of Cheetah class and its
7/ member functions to work in a larger simulation

17
//March 1999, Master Thesis

17 . - -

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <ctime>
#include "Cheetah.h*

1 *

// DEFINES AND FILE SCOPE CONSTANTS

17* »

static int numCheetah = 0;

// Function: Cheetah::Cheetah() '
// Return Val: Nene

// Parameter: None

// Purpose: Default constructor

Cheetah: :Cheetah ()
:Animal(), idNum(numCheetah++), nextAction{C_NOTRING)
{

int speed = (rand()/double{RAND_MAX})}*10;"
if (speed < 5)
(

L speed += 5;
}

this->setMaxSpeed (speed + CHEETAH_SPEED_ADVANTAGE) ;

}//end Cheetah::Cheetah()

// Function: Cheetah: :Cheetah{int s, int gn, int 1)

// Return Val: None

// Parameter: Speed, generation, and XY position

// Purpose: Initialization constructor for newborn Cheetahs

Cheetah: :Cheetah(int s, int gn, int 1)
: Animal (s, gn, 1), idNum(numCheetah++)}, nextAction(C_NOTHING)

{
}/7end Cheetah::Cheetah(int s, int gn, int 1)

1/
// Function: Cheetah::~Cheetah(}
// Return Val: None
// Parameter: None

// Purpose: Default destructor
/!
Cheetah: :~Cheetah ()

//do nothing at this point

}//end Cheetah::~Cheetah()

/7
//Function: Cheetah::mate ()

//Return Val: Cheetah

//Parameter: speed of two cheetah, female generation and location
//Purpose: create new cheetah

/7 -
Cheetah* Cheetah::giveBirth(int speedOne, int speedTwo,
int motherGeneration, int motherLocation)
{
int newSpeed,
nextGeneration = (motherGeneration + 1);

Cheetah *newBorn;
if (Animal: :myRand{) < .5)
newSpeed = speedOne;
else
newSpeed = speedTwo;
newBorn = new Cheetah(newSpeed, nextGeneration, motherLocation + 1);
return newBorn;

}//end animal::mate{)

/7

//Function: Cheetah::mate ()
//Return Val: none
//Parameter: mate

//Purpose: mate the cheetah

11
void Cheetah: :mate(Cheetah &mate)
{
if (this->getGender () == MALE)
{

mate.setPregnant(true);
mate.pregPtr->partnerld = this->getIdNum();
mate.pregPtr->maleSpeed = this->getMaxSpeed();
mate.pregPtr->gestationTime = 0;

}

else

{
this->setPregnant (true) ;
this->pregPtr->partnerId = mate.getIdNum() ;
this->pregPtr~>maleSpeed = mate.getMaxSpeed();+
this->pregPtr->gestationTime = 0; :

}

return;

}//end function Cheetah::mate(}

/77
// Function: void Cheetah::printCheetahInfo()
// Return Val: void

// Parameter: none

// Purpose: Print Cheetah information

void Cheetah: :printCheetahInfo()

144 -

if (getGender() == MALE)
{

cout <<* Male Cheetah * << idNum;
}
else
{

}

cout << "Female Cheetah * << idNum;

cout << => spd = * << getMaxSpeed()
<<® gndr = * << getGender()
<<" age = * << getAge()
<<" x = * << getX()
<<" y = " << get¥()

return;

}//end void Cheetah::printCheetahInfo()

17
// Function: int Cheetach::litterSize()

// Return Val: int number in litter

// Parameter: none

// Purpose: return a random number of Cheetah in a litter
1/
int Cheetah::litterSize()
{

int litter = 1;
double randNum = Animal::myRand();
if (randNum <= 0.05)

litter = 1;

else if((randNum > 0.05) && (randNum <= 0.15))
litter = 2;

else if((randNum > 0.15) & (randNum <= 0.3))
litter = 3;

else if((randNum > 0.3) && (randNum <= 0.7))
litter = 4;

else if((randNum > 0.7) && (randNum <= 0.85))
litter = 5;

else if((randNum > 0.85) && (randNum <= 0.95))
litter = 6;

else //if randNum > .95
litter = 7;

return litter;

}//end Antelope::litterSize()

/7
// Function: bool Cheetach::diesAsInfant()

// Return Val: number of cheetah that die

// Parameter: none

// Purpose: return whether infant dies or not
144

bool Cheetah::diesAsInfant()
double randNum = Animal::myRand();
return (randNum < CHEETAH_MORTALITY_RATE);

}//end Cheetah: :mortality()

/7
//Function: Cheetah::canKill ()

//Return Val: true if yes; false if no

//Parameter: potential prey

//Purpose: evaluate whether two like animals can kill
/

/
bool Cheetah::canKill (Animal &prey)
bool killFlag = false;

if(//(this->getMaxSpeed() > prey.getMaxSpeed()) &&
(abs (this->getX() - prey.getX()) <= KILL_RADIUS) &&
(abs (this->getY() - prey.getY()) <= KILL_RADIUS))
if (Animal: :myRand() > .5)
killFlag = true;
else
killFlag = false;

return killFlag:;

}//Cheetah: :canKill (Animal &prey)

// Function: bool Cheetah::canMate()

// Return Val: true if yes; false if no

// Parameter: potential mate

// Purpose: return whether Cheetah can mate or not

/7
bool Cheetah::canMate(Cheetah &potentialMate)
{

bool mateFlag = false;

if ((this->getGender() == MALE) &&
(potentialMate.getGender() == FEMALE))

mateFlag = ((!(potentialMate.isPregnant())) &&
(this->getNextAction() == C_MATE) &&
{potentialMate.getNextAction() == C_MATE} &&
{potentialMate.getAge() >= MATE_AGE) &&
{this->getAge() >= MATE_AGE) &&
(abs{this->getX{) - potentialMate.getX()) <=
MATE_DISTANCE) &&

(abs (this->getY() - potentialMate.getY(}) <=
MATE_DISTANCE)) ;

}
else if (({this->getGender() == FEMALE) &&
{potentialMate.getGender () == MALE))

mateFlag = ((!{this->isPregnant()}) &&

{this->getNextAction() == C_MATE) &&

(potentialMate.getNextAction() == C_MATE) &&

(potentialMate.getAge() >= MATE_AGE) &&

(this->getAge() >= MATE _AGE) &&

{abs {this->getX() - potentialMate.getX{)) <=
MATE_DISTANCE) &&

(abs (this->get¥() - potentialMate.getY()) <=
MATE_DISTANCE) };

}

return mateFlag;
}//Cheetah: :canMate {Cheetah &potentialMate)

//
// Function: bool Cheetah::mateEligible{)

// Return Val: true if yes; false if no

// Parameter: potential mate

// Purpose: return whether Cheetah is eligible to mate
144
bool Cheetah::mateEligible(Cheetah &spotentialMate)
{

bool mateEligibleFlag = false:

if((this->getGender () == MALE) &&
{potentialMate.getGender ()} == FEMALE))

mateEligibleFlag = {(!{potentialMate.isPregnant())) &&
(potentialMate.isInSeason()) &&
(potentialMate.getAge () >= MATE_AGE) &&
) {this->getAge() >= MATE_AGE));
else if((this->getGender() == FEMALE) &&
(potentialMate.getGender () == MALE))

mateEligibleFlag = (! (this->isPregnant()) &&
(this->isInSeason()) &&
(potentialMate.getAge() >= MATE_AGE) &&
{this->getAge() >= MATE_AGE));
}

return mateEligibleFlag;
}//Cheetah: :mateEligible(Cheetah &potentialMate)

//end file Cheetah.cpp

P AR A e D L R L P R U Y

/7 EXECUTIVE SUMMARY

//File Name: Stdafx.h
1/
//Authors: Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; toddégagnon.com
77
//Description: Package contains standard Windows MFC settings and
/ simulation globals. include file for standard system
/7 include files, or project specific include files that are
/7 used frequently, but are changed infrequently

- -

/7
//March 1999, Master Thesis
//

#iftdefined (AFX_STDAFX_H__99A28497_8631_11D2_889B_0000F8092715__INCLUDED_)
#define AFX_STDAFX_E__99A28497_8631_11D2_8859B_0000F8092715__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

#define VC_EXTRALEAN // BExclude rarely-used stuff from Windows headers
#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions

#include <afxdisp.h> // MFC OLE automation classes

#ifndef _AFX NO_AFXCMN_SUPPORT

#include <afxcmm.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

/1
// Global Constants used to initialize and/or scale the simulation
// "k RERRERR TR N

enum MOVE_SPEED (REST, REGULAR, RUN};

enum DEATH_INDICATOR ({INFANT_MORTALITY, OLD_AGE, PREDATOR, STARVATION,
NOT_DEAD} ; .

enum ANTELOPE_DESIRED_ACTION {A_NOTHING, A_MATE, HERD, FLEE, FEED);

enum CHEETAH_DESIRED_ACTION {C_NOTHING, C_MATE, AVOID, CHASE};

#define HIGH_NUM

$ifdef HIGH_NUM

#define CHEETAH_KILLS_COUT

#define SPEED_COUT

#define MAX_TIME 10000 //maximum time steps
#define NUM_ANTELOPE 100 //# antelope to create
#define NUM_CHEETAH 5 //# cheetah to create
#define MIN_X 0

//X coordinates range from 0 to MAX_X

#define MAX X 640

/7Y coordinates range from 0 to MAX Y#define MIN_Y

#define MAX_ Y 480
#define ANIMAL_AGE 1825
#define MAX_ANTELOPE_AGE i 2000

#define MAX_CHEETAH_AGE 3650 //8 - 12 years - 10 years

#define MALE ‘M’

#define FEMALE ‘P

#define KILL_RADIUS S

#define MATE_DISTANCE 5

#define MATE_AGE 660 //20-23 months->22 months

#define NEWBORN_AGE 1 //1 day old

#define CHEETAH_SPEED_ADVANTAGE 1

#define ANTELOPE_GESTATION_PERIOD 171 /7171 day gestation period
#define CHEETAH_GESTATION_PERIOD 95 //95 day gestation period

#define ANTELOPE_WAIT_TO_MATE_TIME | 365 //wait for a litter to lve
#define CHEETAH_WAIT_TO_MATE_TIME 700 //wait for a litter to lve
#define CHEETAH_INFANT_AGE - 700 //days until mom moves out

//days until mom moves out
0.90//90% die in first 2 years
0.3//30% Qdie in first 2 years
0 //stop speed of any animal

#define ANTELOPE_INFANT_AGE
#define CHEETAH_MORTALITY_RATE
#define ANTELOPE_MORTALITY_RATE
#define STOP_SPEED

#define CHEETAH_CRUISE_SPEED 3 //medium speed of Cheetah
#define ANTELOPE_CRUISE_SPEED 3 //medium speed of Antelope
#define ANTELOPE_REST_SENSING_RANGE S0

tdefine ANTELOPE_REGULAR_SENSING_RANGE 30

#define ANTELOPE_RUN_SENSING_RANGE 15

#define CHEETAH REST _SENSING_RANGE 175 .

#define CHEETAH_REGULAR_SENSING_RANGE 175

#define CHEETAH_RUN_SENSING_RANGE 100

#define CHEETAH_AVOID_RANGE 150

#define CHEETAH_STARVATION_LEVEL 2

0.5 //% know predator
1 //how many pixels to move

#define PREDATOR_KNOWLEDGE
#define UNIT_MOVEMENT

#define FAST_SIMULATION_SPEED 50
#define MEDIUM_SIMULATION_SPEED 250
#define SLOW_SIMULATION_SPEED 500
#define FRIEND_STANDOFF_DISTANCE 18
#define CHEETAH_ENERGY_BOOST 400
#define CHEETAH_HIGH_ENERGY_LEVEL 800
#define CHEETAH_STOP_HUNTING_LEVEL 200
#define CHEETAH_RESUME_HUNTING_LEVEL 600
#define CHEETAH_LOW_ENERGY_LEVEL 0
#define CHEETAH_REST_ENERGY_GAIN 4
#define CHEETAH_REGULAR_ENERGY_PENALTY 4
#define CHEETAH_RUN_ENERGY_PENALTY 10
#define ANTELOPE_START_IN_SEASON 15
#define ANTELOPE_STOP_IN_SEASON 60
#define CHEETAH_START_IN_SEASON 30
#define CHEETAH_STOP_IN_SEASON 140

#define FOOD_RANGE 25 -
const int FOOD_LOCATION({)={44870, 45370, 109020, 109240, 153670, 154170,
198620, 198840, 262470, 262970);

#endif

//{ {AFX_INSERT_LOCATION})

// Microsoft Developer Studio will insert additional declarations
// immediately before the previous line.

#endif

//"Q * FERRREAR TR R RN NN *
1 EXECUTIVE SUMMARY

//File Name: AgentGUIView.h

1/

//Authors: Mark A. Boyd; maboyd@bigfoot.com

1/ Todd A. Gagnon; todd@gagnon.com

17
//Description: interface of the CAgentGUIView class
/

//March 1999, Master Thesis

J1xw* Teew -

#if!defined (AFX_AGENTGUIVIEW_H__99A2849D_8631_11D2_8898_0000F8092715
__INCLUDED_)

#define AFX_AGENTGUIVIEW_H__99A2849D_8631_11D2_889B_0000F8092715
__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif

class CAgentGUIView : public CView
{

protected: // create from serialization only
CAgentGUIView() ;
DECLARE_DYNCREATE (CAgentGUIView)

// Attributes
public:
CagentGUIDoc* GetDocument();

// Operations
public:

public:)
virtual void OnDraw(CDC* pIXC); // overridden to draw this view
virtual BOOL PreCreateWindow (CREATESTRUCT& c¢s);
protected:
virtual BOOL OnPreparePrinting{(CPrintInfo* plInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
virtual ~CAgentGUIView():
#ifdef _DEBUG
virtual void AssertValid() const:
virtual void Dump (CDumpContext& dc) const;
#endif

protected:

int loopSpeed,
simulationTime;

CPen pPenMaleAntelopel,
pPenMaleAntelope2,
pPenMaleAntelope3,
pPenMaleAnteloped,
pPenMaleAntelopeS,
pPenMaleCheetah,
pPenFemaleCheetah,
pPenFood;

CBrush brushMaleAntelopel,
brushMaleAntelope2,
brushMaleantelope3,
brushMaleanteloped,
brushMaleAntelopeS5,
brushMaleCheetah,
brushFemaleCheetah:

bool simulationOn,
statisticsOn;

void printAntelopeStatistics (CDC *pDC);
void printCheetahStatistics (CDC *pDC);

void updateStatusBar{int numMaleAntelope, int numFemaleantelope,
int antelopeGenerations, int numMaleCheetah,
int numFemaleCheetah, int cheetahGenerations,
int simTime);

void integerToString(int num, CString &numbers);

// Generated message map functions

protected:
afx_msg void OnTimer (UINT nIDEvent);
afx_msg void OnRunSimulation({);
afx_msg void OnStopSimulation();
afx_msg void OnStepSimulation(); R
afx_msg void OnToggle(); !
afx_msg void OnSpeedFast();
afx_msg void OnSpeedMedium();
afx_msg void OnSpeedSlow(};
afx_msg void OnUpdateRunSimulation(CCmdUI* pCmdUI};
afx_msg void OnUpdateStopSimulation (CCm3UI* pCmdUI);
afx_msg void OnUpdateSpeedFast (CCmAUI* pCmdUI);
afx_msg void OnUpdateSpeedMedium(CCmdUI* pCmdUI);
afx_msg void OnUpdateSpeedSlow(CCmdUI* pCmdUI};
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
DECLARE_MESSAGE_MAP ()

}i

#$ifndef _DEBUG // debug version in AgentGUIView.cpp
inline CAgentGUIDoc* CAgentGUIView::GetDocument({()

{ return (CAgentGUIDoc*)m_pDocument; }
#endif

#endif

// Ai A2 2222 - LEE X221 WRRWR*
17 EXECUTIVE SUMMARY

//File Name: AgentGUIView.cpp

17

//Aauthors: Mark A. Boyd:; maboyd@bigfoot.com

/" Todd A. Gagnon; toddegagnon.com

/1

//Description: implementation of the CAgentGUIView class

/7
//March 1999, Master Thesis

/7 *rwww

#include "stdafx.h*
#include *AgentGUI.h*
#include *MainFrm.h"

#include "AgentGUIDoc.h*
#include °*AgentGUIView.h*

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE{] = ___FILE__;
#endif

static int numAntelope

0
static int numCheetah 0

IMPLEMENT_DYNCREATE (CAgentGUIView, CView)

BEGIN_MESSAGE_MAP{CAgentGUIView, CView)
ON_WM_TIMER()
ON_COMMAND (ID_RUN_SIMULATION, OnRunSimulation)
ON_COMMAND (ID_STOP_SIMULATION, OnStopSimulation)
ON_COMMAND {ID_STEP_SIMULATION, OnStepSimulation)
ON_COMMAND (SIMULATION_TOGGLE, OnToggle)
ON_COMMAND (SET_SPEED_FAST, OnSpeedFast)
ON_COMMAND (SET_SPEED_MEDIUM, OnSpeedMedium)
ON_COMMAND {SET_SPEED_SLOW, OnSpeedSlow) i
ON_UPDATE_COMMAND_UT (ID_RUN_SIMULATION, OnUpdatéRunSimulation)
ON_UPDATE_COMMAND_UI (ID_STOP_SIMULATION, OnUpdateStopSimulation}
ON_UPDATE_COMMAND_UI (SET_SPEED_FAST, OnUpdateSpeedFast)
ON_UPDATE_COMMAND_UI (SET_SPEED_MEDIUM, OnUpdateSpeedMedium)
ON_UPDATE_COMMAND_UI (SET_SPEED_SLOW, OnUpdateSpeedSlow)
ON_WM_LBUTTONDOWN ()
ON_COMMAND (SIMULATION_STEP, OnStepSimulation)
ON_WM_LBUTTONUP ()
ON_COMMAND (ID_FILE_PRINT, CView::OnFilePrint) .
ON_COMMAND (ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
ON_COMMAND (ID_FILE_PRINT PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP ()

// CAgentGUIView construction/destruction
CAgentGUIView: :CAgentGUIView()
:loopSpeed (MEDIUM_SIMULATION_SPEED), simulationOn(false),

statisticsOn(false), simulationTime(0)

brushMaleAntelopel.CreateSolidBrush(RGB (200, 0, 0));
pPenMaleAntelopel.CreatePen (PS_SOLID, 1, RGB (200, 0, 0));

brushMaleAntelope2.CreateSolidBrush(RGB (200, 200, 0));
pPenMaleAntelope2.CreatePen (PS_SOLID, 1, RGB (200, 200, 0));

brushMaleAntelope3.CreateSolidBrush (RGB (0, 140, 0));
pPenMaleAntelope3.CreatePen (PS_SOLID, 1, RGB (0, 140, 0));

brushMaleAnteloped.CreateSolidBrush(RGB (0, 140, 200));
pPenMaleAnteloped .CreatePen (PS_SOLID, 1, RGB (0, 140, 200)):

brushMaleAntelope5.CreateSolidBrush(RGB (0, 0, 255));
pPenMaleAntelope$.CreatePen (PS_SOLID, 1, RGB (0, 0, 255)):

brushMaleCheetah.CreateSolidBrush(RGE (0, 0, 0));
pPenMaleCheetah.CreatePen (PS_SOLID, 1, RGB (0, 0, 0));

brushFemaleCheetah.CreateSolidBrush(RGB (150, 150, 150));
pPenFemaleCheetah.CreatePen (PS_SOLID, 1, RGB (150, 150, 150));

pPenFood.CreatePen(PS_SOLID, 1, RGB (150, 200, 150));
, .
CAgentGUIView: :~CAgentGUIView()
)
?OOL CAgentGUIView: : PreCreateWindow (CREATESTRUCTS cs)

return CView::PreCreateWindow(cs);

// CAgentGUIView drawing
void CAgentGUIView::OnDraw(CDC* pDC)
{

CAgentGUIDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc) ;

static int simTime = 0;
static numAntelopeStarved
static numAntelopeKilled
static numAntelopeDieOfAge
static numAntelopeDieAsInfant

LU U 1]
cooo

simulationTime = ++simTime;

//four counters to keep track and report how many of each type are
//still alive during this time step

int numMaleAntelope =0,
numFemaleAntelope =0,
numMaleCheetah =0,

numFemaleCheetah =0,

antelopeGeneration = 0,

cheetahGeneration = 0;
if (statisticsOn)

printAntelopeStatistics (pDC);
printCheetahStatistics (pDC);

pDC->SelectObject (&pPenFood) ;
for(int ix = 0; ix < 10; ix++)

pDC->Ellipse (FOOD_LOCATION([ix] % MAX X - 30, FOOD_LOCATION[ix) /
MAX X - 30,
FOOD_LOCATION([ix] % MAX X + 30, FOOD_LOCATION{ix] /
MAX_X + 30);
}

//Paint current male and female Antelope positions on screen
for (pDoc->aix = pDoc~>antelopeMap.begin(); pDoc->aix !=
phoc->antelopeMap.end() ; ++(pDoc->aix})
if (pDoc->aix->: d. ation() > antel ' ation)
antelopeGeneration = pDoc->aix->second.getGeneration();

if (pDoc->aix->second.getDeathIndicator () == NOT_DEAD)
{
switch(pboc->aix->second.getMaxSpeed())
{

case 5 :

{
pDC->SelectObject (&§pPenMaleAntelopel) ;
pDC->SelectObject (kbrushMaleAntelopel) ;
break:

case 6 :
{

pDC->SelectObject (spPenMaleAntelope?) ;
pDC->SelectObject (&brushMaleAntelope2) ;
break;

}

case 7 :

{
pDC->SelectObject (&pPenMaleAntelope3) ;
pDC->SelectObject (sbrushMaleAntelope3) ;
break;

case 8 :

pDC->SelectObject (&pPenMaleAnteloped) ;
pDC->SelectObject (kbrushMaleAnteloped) ;
break;

}

default://9 and 10

pDC->SelectObject (spPenMaleAntelopeS) ;
pDC->SelectObject (&brushMaleAntelopeS) ;
break;

)//;nd switch getSpeed()
if (pDoc->aix->second.getGender() == MALE)
{ numMaleAntelope++;
else

numFemaleAntelope++;
}
pDC->Rectangle (pDoc->aix->second.getX() -2,
pDoc->aix->second.getY() -2,
pDoc->aix->second.getX(}+2,
pDoc->aix->second.getY({)+2);
}//end if NOT_DEAD

}//end for (aix)

//Paint current male and female Cheetah positions on screen
for (pDoc->cix = pDoc->cheetahMap.begin();

pDoc->cix != pDoc->cheetahMap.end(); ++(pDoc->cix))
{

if (pDoc->cix->second.getGeneration () >cheetahGeneration)
cheetahGeneration = phoc->cix~>second.getGeneration() ;

if (pDoc->cix->second.getDeathIndicator({) == NOT_DEAD)
{ .

if (pDoc->cix->second.getGender() == MALE)

t >

numMaleCheetah++;
pDC->SelectObject (kpPenMaleCheetah) ;
pDC->SelectObject (kbrushMaleCheetah) ;

}

else

{
numFemaleCheetah++;
pDC->SelectObject (¢pPenFemaleCheetah) ;
pPDC->SelectObject (kbrushFemaleCheetah) ;

pPDC->Rectangle (pDoc->cix->second.getX () -3,
pDoc->cix->second.getY () -3,
pDoc->cix->second.getX{)+3,
pDoc->cix->second.getY()+3);

}//end if NOT_DEAD

}//end for (cix)
updateStatusBar (numMaleAntelope, numFemaleAntelope,

antelopeGeneration, numMaleCheetah, numFemaleCheetah,
cheetahGeneration, simTime);

}

// CAgentGUIView printing

BOOL CAgentGUIView::OnPreparePrinting(CPrintInfo* pInfo)

! return DoPreparePrinting ;pInfo) ;

void CAgentGUIView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
;

void CAgentGUIView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
)

// CAgentGUIView diagnostics

#ifdef _DEBUG

void CAgentGUIView: :AssertValid() const

! CView: :AssertValid();

\(/oid CagentGUIView: :Dump (CDumpContext& dc) const

CView: :Dump(dc) ;

CAgentGUIDoc* CAgentGUIView::GetDocument() // non-debug version is inline
{

ASSERT (m_pDocument ->IsKindOf (RUNTIME_CLASS (CAgentGUIDoc) }) ;
return (CAgentGUIDoc*)m_pDocument;

}

#endif //_DEBUG

// CAgentGUIView message handlers

void CAgentGUIView::OnTimer (UINT nIDEvent)

{
CRect rect;
GetClientRect {&rect);
CAgentGUIDoc* pDoc = GetDocument(});
ASSERT_VALID(pDoc) ;
pDoc->moveAllanimals();
pboc->antelopeSensing (simulationTime) ;
pDoc->cheetahSensing{simulationTime);

InvalidateRect (rect);
CView: :0nTimer (RIDEvent) ;

}

void CAgentGUIView::OnRunSimulation()

#if !defined MY_TIMER
f#define MY_TIMER
SetTimer (0, loopSpeed, NULL};
#endif
simulationOn = true;
return;
}
void CAgentGUIView::OnStopSimulation()
{
KillTimer(0);

simulationOn = false;

return;

void CAgentGUIView::OnStepSimulation()
{

#if defined MY_TIMER
KillTimer(0);
#endif

simulationOn = false;

CRect rect:;
GetClientRect (&xect);

CAgentGUIDoc* pDoc = GetDocument():
ASSERT_VALID(pDoc) ;

pDoc->moveAllanimals () ;
pDoc->antelopeSensing (simulationTime) ;
pDoc->cheetahSensing (simulationTime);

InvalidateRect (rect);

return;

void CAgentGUIView: :OnToggle()
{

if(simulationOn)

{

OnStopSimulation();
simulationOn = false;
}
else
{
OnRunSimulation(};
simulationOn = true;

}

void CAgentGUIView: :OnSpeedFast()

{
KillTimer(0);
loopSpeed = FAST_SIMULATION_SPEED;
OnRunSimulation();

}

void CAgentGUIView::OnSpeedMedium{)
{
KillTimer(0);
loopSpeed = MEDIUM_SIMULATION_SPEED;

OnRunSimulation();
}

void CAgentGUIView::OnSpeedSlow()
{
KillTimer(0);
loopSpeed = SLOW_SIMULATION_SPEED:
OnRunSimulation();
}
void CAgentGUIView: :OnUpdateRunSimulation (CCAUI* pCmAUI)

pCmdUI->SetCheck(simulationOn == true);

void CAgentGUIView: :OnUpdateStopSimulation(CCmdUI* pCmdUI)

pCmdUI->SetCheck (simulationOn == false);

void CAgentGUIView::OnUpdateSpeedFast (CCmdUI* pCmdUI)
{

PCmdUI->SetCheck (loopSpeed == FAST_SIMULATION_SPEED);
)

void CAgentGUIView: :OnUpdateSpeedMedium (CCmdUI* pCmdUI}

{
pCmdUI->SetCheck (loopSpeed == MEDIUM_SIMULATION_SPEED);

void CAgentGUIView: :OnUpdateSpeedSlow (CCmdUI* pCmdUI)

{
PCmAUI->SetCheck (loopSpeed == SLOW_SIMULATION_SPEED);

}
void CAgentGUIView: :OnLButtonDown (DINT hl-‘lags, CPoint point)
{

statisticsOn = (statisticsOn == false);

CView: :OnLButtonDown (nFlags, point};

void CAgentGUIView::OnLButtonUp (UINT nFlags, CPeint point)
{ .
CView: :OnLButtonUp(nFlags, point);

1/

// Method: updateStatusBar ()
// Parameters: none

// Return val: none

// Purpose: Updates the numbers of each animal indicated in the Status
/7 bar (lower left hand side of the window
12

void CAgentGUIView::updateStatusBar (int numMaleAntelope,
int numFemaleAntelope, int antelopeGenerations,
int numMaleCheetah, int numFemaleCheetah,
int cheetahGenerations, int simTime)

//get a pointer to the window using the global AfxGetApp()
//function
CMainFrame* p_mFrame = (CMainFrame*)AfxGetApp()->m_pMainWnd;

//CString object is required to print in the status bar - we will
//convert int‘'s toc a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = ®"Antelope - M: *;

//convert the numMaleAntelope to a string and append it to numbers
integerToString (numMaleAntelope, numbers);

//add the Female count to numbers string
numbers += *"F: *;
mr.eger'rosr_nng(numFemaleAntelope, numbers) ;

//add the Antelope generation count to numbers string
numbers += "G: *
integerToString (anr.elopeGenerations . numbers) ;

//add the Cheetah Male and Female counts to numbers string
numbers += * Cheetah - M: *;
integex‘ros:ring {(numMaleCheetah, numbers);

numbers += "F: *;
mteger'l‘osr.x-mg(numl-‘emalecheetah numbers) ;

//add the Cheetah generation count to numbers string
numbers += "G: *;
integerToString (r‘hpn.

Y ations, bers) ;

numbers += * Simulation Time: *;
integerToString(simTime, numbers);

//call MainFrame's SetPaneText() method, passing the pane# (0)
//we want to change., and the new value it should reflect
p_mFrame->SetPaneText (0, numbers);

1/
1
1/
124

I
/7
/7
/7

Method: integerToString()
Parameters: int number - number of which ever animal is passed
CString numbers - string representation of our population

Return val: none
Purpose: Converts our animal numbers into a string of integers for
use in the status bar.

void CAgentGUIView::printAntelopeStatistics (CDC *pDC)
{

17
/17
/1
/7

/7
/7

CAgentGUIDoc* pDoc = GetDocument () ;
ASSERT_VALID(pDoc) ;

//CString object is required to print in the status bar - we will
//convert int's to a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = “Antelope die: A: *;

//convert the numMaleAntelope to a string and append it to numbers
integerToString(pDoc->antelopeDieOfAge, numbers);

//add the Female count to numbers string
numbers += *P: *;
integerToString (pDoc->antelopeKilled, numbers);

//add the Female count to numbers string
numbers += *IM: °;
integerToString(pDoc->antelopeDiesAsInfant, numbers);

pDC~>SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 20, numbers);

//add the Female count to numbers string
numbers = "Antelope Born: ";
integerToString (pDoc: 1itelopeCreated,

s);

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 35, numbers);

Method: integerToString()
Parameters: int number - number of which ever animal is passed
CString numbers - string representation of our population

Return val: none
Purpose: Converts our animal numbers into a string of integers for

/7
1/

use in the status bar.

void CAgentGUIView::printCheetahStatistics (CDC *pDC)

{

CAgentGUIDoc* pDoc = GetDocument () ;
ASSERT_VALID{(pDoc) ;

//CString object is required to print in the status bar - we will
//convert int's to a string of ints
CString numbers;

//start developing the coordinates string with number of male Antelope
numbers = "Cheetah die: A: *;

//convert the numMaleAntelope to a string and append it to numbers
integerToString (pDoc->ch hDieOfAge, bers) ;

//add the Female count to numbers string
numbers += "S: *;
integerToString (pDoc->cheetahDieOfStarvation, numbers) ;

//add the Female count to numbers string
numbers += "IM: *;
int ToString (pDoc->ch ahDiesAsInfant, numbers);

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 440, numbers);

//add the Female count to numbers string
numbers = *Cheetah Born: *; .
integerToString (pDoc->numCheetahCreated, numbers);

pDC->SetTextColor (RGB (0,0,0));
pDC->TextOut (200, 455, numbers); .

//add the Female count to numbers string
numbers = *Failed Chases: *; .
integerToString (pDoc->numl fulChase, bers) ;

pDC->SetTextColor (RGB (0,0,0));
pDC~>TextOut (200, 470, numbers);

}

/7

// Method: integerToString ()

// Parameters: int number - number of which ever animal is passed

1t CString numbers - string representation of our population
// Return val: none

// Purpose: Converts our animal numbers into a string of integers for
/7 use in the status bar.

144

void CA GUIView: :int ‘ToString (int num, CString &numbers)

int divisor = 1;

*int digits = 1;

int quotient:
if (num / FIVE_DIGITS > Q)
{

divisor = FIVE_DIGITS;
digits = S;

else if (num / FOUR_DIGITS > 0)
{

divisor = FOUR_DIGITS:
digits = 4;

}
else if (num / THREE_DIGITS > 0)
(

divisor = THREE_DIGITS;
digits = 3;

else if (num / TWO_DIGITS > 0)
{

divisor = TWO_DIGITS;
digits = 2;

}
else if (num / ONE_DIGIT > 0)
{

divisor = ONE_DIGIT;
digits = 1;

for (int ix=0; ix<digits; ix++)({
switch (quotient = (int) num/divisor){
case 0:
numbers +=
break;
case 1:
numbers += ‘1°;
break;
case 2:
numbers += *2°;
break;
case 3:
numbers += '3°;
break:
case 4:
numbers += *4°;
break;
case 5:
numbers += 'S*';
break;
case 6:
numbers += '6';
break;
case 7:
numbers += *7°;
break;
case 8:

0°;

numbers += '8°;
break;
case 9:
numbers += '9°;
break;
}

num -= quotient*divisor;
divisor /= 10;
}

numbers += * *;

}//end integerToString()

Y7221 .

1/

//File Name:
/7

EXECUTIVE SUMMARY
AgentGUIDoc.h

//Authors: Mark A. Boyd; maboyd@bigfoot.com
/7 Todd A. Gagnon; toddegagnon.com

77

//Description: interface of the CAgentGUIDoc class
/7

//March 1999, Master Thesis

Jlmewken

LA R L L T T T P ey

#include <map>
#include *Animal.h*®
#include "Antelope.h®
#include *Cheetah.h*

*¥if

!defined (AFX_AGENTGUIDOC_H.

99A2849B_8631_11D2_889B_0000F8092715

—INCLUDED_)

#define AFX_AGENTGUIDOC_H__99A2849B_8631_11D2_889B_0000F8052715

—INCLUDED_

#if _MSC_VER >= 1000
#pragma once
¥endif // _MSC_VER >= 1000

using namespace std;

typedef map<int, Antelope> POSITION2ANTELOPE;
typedef map<int, Cheetah> POSITION2CHEETAH;

#define FIVE_DIGITS 10000
#define FOUR_DIGITS 1000
#define THREE DIGITS 100
#define TWO_DIGITS 10
#define ONE_DIGIT 1

élass CAgencGUIboc : public CDocument
{

protected: // create from serialization only
CAgentGUIDoc();
DECLARE_DYNCREATE (CAgentGUIDoc)

// Attributes
public:

POSITION2ANTELOPE antelopeMap;
POSITION2CHEETAH cheetahMap;

POSITION2ANTELOPE tempAntelopeMap;
POSITION2CHEETAH tempCheetahMap;
POSITION2ANTELOPE: :iterator aix;
POSITION2CHEETAH: :iterator cix;

POSITION2ANTELOPE: :iterator taix;
POSITION2CHEETAH: :iterator tcix; i

int antelopeDiesAsInfant,
antelopeDieOfAge,
antelopeKilled,
numAntelopeCreated,
cheetahDiesAsInfant,
cheetahDieOfAge,
cheetahDieOfStarvation,
cheetahKilled,
numCheetahCreated,
numUnsuccessfulChase:

// Operations
public:

public:
virtual BOOL OnNewDocument():
virtual void Serialize(CArchive& ar);

// Implementation
public:

void moveAllAnimals();
void antelopeSensing(int simTime);
void cheetahSensing(int simTime};

virtual ~CAgentGUIDoc();
#ifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;
#endif

protected:
// Generated message map functions

protected:
DECLARE_MESSAGE_MAP ()

#endif
P urerrenRrnTn P T AR AR RRE
1 EXECUTIVE SUMMARY
//File Name: AgentGUIDoc.cpp
1/
//Authors: Mark A. Boyd; maboyd@bigfoot.com
Todd A. Gagnon; todd@gagnon.com
/7

//Description: implementation of the CAgentGUIDoc class
1/

//March 1999, Master Thesis

//b"'*t.t.ttt"'!ltt*'nQtw‘~wtt'Q'h&t't&iit't'b'1'!MQﬁt’twﬁw'itvwi‘*tt'w'.'*'

#include <ctime>
#include “stdafx.h”
#include "AgentGUI.h*
#include "MainFrm.h®

#include "AgentGUIDoc.h®

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE(} = __FILE_;
#endif

IMPLEMENT_DYNCREATE (CAgentGUIDoc, CDocument)
BEGIN_MESSAGE_MAP (CAgentGUIDoc, CDocument)
END_MESSAGE_MAP()
// CAgentGUIDoc construction/destruction
CAgentGUIDoc: : CAgentGUIDoc ()
{
srand{ {unsigned)time (NULL)) ;
rand();
//Create a group of initial Antelope
for (int antelopeNum = 0; antelopeNum < NUM_ANTELOPE; antelopeNum++}
{
Antelope tempAntelope;
if (tempAntelope.getGender () == FEMALE)
tempAntelope.pregPtr = new Pregnancy;

while{antelopeMap. find(tempAntelope .getl:ocacion)
antelopeMap.end(})

tempAntelope.avoidCollision() ;

}/7end while
antelopeMap.insert (POSITION2ANTELOPE: :value_type
(tempAntelope.getlocation{), tempAntelope));

}//end for (antelopeNum)

//Create a group of initial Cheetah
for (int cheetahNum = 0; cheetahNum < NUM_CHEETAH; cheetahNum++)
{

Cheetah tempCheetah;

if {tempCheetah.getGender() == FEMALE}
tempCheetah.pregPtr = new Pregnancy;

while (cheetahMap. find (tempCheetah.getLocation{)) !=
cheetahMap.end(}}

tempCheetah.avoidCollision(};

}//end while

cheetahMap. insert (POSITION2CHEETAH: :value_type (
tempCheetah.getlocation(), tempCheetah)):

}//end for (cheetahNum)

antelopeDiesAsInfant
antelopeDieOfAge
antelopeKilled
numAntelopeCreated
cheetahDiesAsInfant
cheetahDieOfAge
cheetahnxeofsr.arvatxon
cheetahKilled
numCheetahCreated
numUnsuccessfulChase

}
CAgentGUIDoc: :~CAgentGUIDoc ()
{
}

BOOL CAgentGUIDoc: :OnNewDocument (}
{

LI N L L U (O}
[-X-Y-X-Y-Y-¥-¥-¥-]

if (!CDocument::OnNewDocument (})
return FALSE;

return TRUE;

// CAgentGUIDoc serialization
void CAgentGUIDoc::Serialize(CArchives ar)
{

if (ar.IsStoring())

{

}
else

}

// CAgentGUIDoc diagnostics

#ifdef _DEBUG

void CagentGUIDoC: :AssertValid() const

CDocument: :AssertValid() ;
}

void CAgentGUIDoc: :Dump (CDumpContext& de) const
(
CDocument : : Dump (dc) ;
}
#endif //_DEBUG

// CAgentGUIDoc commands

/7
// Function: CAgentGUIDoc: :moveAllAnimals
// Return Val: None
// Parameter: None

// Purpose: Steps through the list of alive animals
/! and updates their position, checks age...
/7

void CAgentGUIDoc::moveAllAnimals ()

{

// MOVE ANTELOPE
for (aix = antelopeMap.begin(); aix != antelopeMap.end(); ++aix)
{

//Checks to see what the agent's move goal is and moves
switch(aix~>second.getNextAction())
{

case A_MATE :
{

aix->second.setSpeedOfNextMove (REGULAR) ;
aix->second.moveTo (aix->second.getMoveToLocation(});
break;

case A_NOTHING :
1

if(rand() < RAND_MAX/2)

aix->second. setSpeedOfNextMove (REGULAR) ;
else

aix->second.setSpeedOfNextMove (REST) ;
aix->second.move(};
break;

}

case FEED :

{
aix->second.setSpeedOfNextMove (REGULAR) ;
aix->second.moveTo (aix->second.getMoveToLocation{());
break;

}
case HERD :

aix->second.setSpeedOfNextMove (REGULAR) ;
aix->second.moveTo (aix->second.getMoveToLocation());
break;

}
default:// FLEE
{

aix-»>second. setSpeedOfNextMove (RUN) ;
aix->second.moveFrom(aix->second.getMoveFromLocation());
break;

}

}//end switch getNextAction()

//test for collisions of agents and adjust one
while(tempAntelopeMap. find (aix->second.getLocation()) !=
tempAntelopeMap.end())

aix->second.avoidCollision();

}//end while

tempAntelopeMap.insert (POSITION2ANTELOPE: :value_type
(aix->second.getLocation(), aix->second)};

}//end for (aix) Antelope Move Loop

antelopeMap = tempAntelopeMap;
tempAntelopeMap.clear():

// MOVE CHEETAH

for (cix = cheetahMap.begin{); cix != cheetahMap.end(); ++cix)

//Checks to see what the agent's move goal is and moves accordingl

cix~->second.setEnergyLevel
(cix->second.getEnergyLevel ()} -
CHEETAH_REGULAR_ENERGY_PENALTY) ;
cix->second.setSpeedOfNextMove (REGULAR) ;
}
else
{
cix->second.setEnergylevel
(cix->second.getEnergyLevel () +
CHEETAH_REST_ENERGY_GAIN) ;
cix->second.setSpeedOfNextMove (REST) ;

}
cix->second.move(};
break;

}
case AVOID :
(

cix->second.setEnergyLevel (cix->second.ge tEnergylevel() -
CHEETAR_REGULAR_ENERGY_PENALTY) ;

cix->second. setSpeedOfNextMove (REGULAR) ;

cix->second.moveFrom(cix->second.getMoveFromLocation (}) ;

break;

}
default://CHASE
{

cix->second.setEnergyLevel (cix->second.getEnergylevel () -
CHEETAH_RUN_ENERGY_PENALTY) ;

cix->second. setSpeedOfNextMove (RUN) ;

cix->second.moveTo (cix->second.getMoveToLocation());

break;

)
}//end switch getNextAction()

{

void CAgentGUIDoc: :antelopeSensing(int simTime)

for (aix = antelopeMap.begin(); aix != antelopeMap.end(); ++aix)
{
if ((simTime$365 > ANTELOPE_START_IN_SEASON) && (sSimTime$187 <
ANTELOPE_STOP_IN_SEASON))
aix->second.setInSeason (true) ;
else
aix->second.setInSeason (false);

int upper = MAX_X * MAX Y,
lower = MIN_X * MIN_Y,
currentSensingRange = 0;

switch(aix->second.getSpeedOfNextMove ())
case REST :
{

currentSensingRange = ANTELOPE_REST_SENSING_RANGE;

lower = aix->second.getlocation() - MAX_X +
ANTELOPE_REST_ SENSING_RANGE -
ANTELOPE_REST_SENSING_RANGE;

upper = aix->second.getlocation({) + MAX X *
ANTELOPE_REST_SENSING_RANGE +
ANTELOPE_REST_SENSING_RANGE;

break;

}
case REGULAR :
{

currentSensingRange = ANTELOPE_REGULAR_SENSING_RANGE;

lower = aix->second.getlocation{) - MAX_X *
ANTELOPE_REGULAR_SENSING_RANGE -
ANTELOPE_REGULAR_SENSING_RANGE;

upper = aix->second.getLocation() + MAX_X *
ANTELOPE_REGULAR_SENSING_RANGE +
ANTELOPE_REGULAR_SENSING_RANGE;

break;

}
default://case RUN
{

currentSensingRange = mmbPE_RUN_SmSING_RANGE;

lower = aix->second.getlocation() - MAX_X *
ANTELOPE_RUN_SENSING_RANGE -
ANTELOPE_RUN_SENSING_RANGE;

upper = aix->second.getlocation() + MAX_X *
ANTELOPE_RUN_SENSING_RANGE +
ANTELOPE_RUN_SENSING_RANGE;

break;

}
}//end switch

if (lower < MIN_X * MIN_Y)

Y
switch{cix->second.getNextAction())
{ //test for collisions of agents and adjust one
case C_MATE : while (tempCheetahMap.find (cix->second.getLocation{()) !=
{ : tempCheetahMap.end())
cix->second.setEnergyLevel (cix->second.getEnergylevel () - {
CHEETAH_REGULAR_ENERGY_PENALTY) ; cix->second.avoidCollision{();
cix->second. setSpeedOfNextMove (REGULAR) ; }//end while
tempCheetahMap. insert (POSITION2CHEETAH: :value_type
cix->second.moveTo (cix->second.getMoveToLocation()); (cix->second.getLocation(), cix->second));
break;
} }//end for (cix) Cheetah Move Loop
case C_NOTHING :
{ cheetahMap = tempCheetahMap;
if(cix->second.isResting()) tempCheetahMap.clear();
{
cix->second.setEnergyLevel (cix->second.getEnergyLevel () }//end CAgentGUIDoc::moveAllAnimals ()
+ 4*CHEETAH_REST_ENERGY_GAIN);
cix->second.setSpeedOfNextMove (REST) ;
} /1
else //if not rest then move normally // Function: CAgentGUIDoc: :antelopeSensing()
// Return Val: None
if(rand() < RAND_MAX/2) // Parameter: None
// Purpose: Steps through the list of alive male and female Antelope lower = MIN_X * MIN_Y;
// and allows them to sense their environment and decide what if (upper > MAX_X * MAX_Y)
17 to do for their next action upper = MAX_X * MAX_ Y
144

int partnerMoveToDistance = 100;
int friendMoveToDistance = 100;
bool mated = false;

bool foundPartner = false;

bool foundFriend = false;

for (taix = antelopeMap.lower_bound(lower); taix !=
antelopeMap.upper_bound (upper); ++taix)

if (abs(aix->second.getX() - taix->second.getX()) <=
currentSensingRange)

if(aix->second.getIdNum() != taix->second.getIdNum())
{

if(taix->second.isDead() &&
(taix->second.getDeathIndicator() == PREDATOR))
aix->second.setPredatorknowledge (TRUE) ;

if (aix->second.canMate(taix->second) && !mated)

mated = true;
aix->second.mate(taix->second) ;
aix->second.setNextAction (FEED) ;
}//end if
else if(aix->second.mateEligible(taix->second))
(
foundPartner = true;
if (aix->second.getDistance (taix->second) <
partnerMoveToDistance)

partnerMoveToDistance =
aix->second.getDistance (taix->second) ;
aix->second.setMoveToLocation
(taix->second.getLocation());
}//end if
aix->second.setNextAction (A_MATE) ;
}//end else if mateEligible(taix)
else if(!foundPartner)
{
if ({aix->second.getDistance(taix->second) <
friendMoveToDistance) &&
(aix->second.getDistance (taix->second) >
FRIEND_STANDOFF_DISTANCE))

foundPriend = true;

friendMoveToDistance =
aix->second.getDistance (taix->second) ;

aix->second.setMoveToLocation
(taix->second.getLocation()) ;

aix->second.setNextAction (HERD) ;

}//end if :
}//end else if

}//end if getIdNum()
}//end if (aix->getX)
}//end for taix Antelope Map - sense other antelope

int foodDistance = 10000,
foodLocation;

for(int ix = 0; ix < 10; ix++)

while(aix->second.distanceFromFood (FOOD_LOCATION[ix]) <
foodbistance)

- foodDistance = aix->second.distancePromFood
(FOOD_LOCATION[ix]) ;
foodLocation = FOOD_LOCATION(ix];
}//end while
}//end for

//if your not going to mate, if you haven't found found

// a friend or 1/2 the time .

// when you have found a friend antelope will move to food
if (! foundPartner)

if(1foundFriend || (rand() < RAND_MAX/2))

if (foodDistance < FOOD_RANGE)
aix->second.setNextAction (A_NOTHING);

else

{
aix->second.setMoveToLocation (foodLocation) ;
aix->second.setNextAction (FEED);

}//end else

}//end if
}//end if

int tempMoveDistance = 100;

//check for predators if predator knowledge = true
if (aix->second.getPredatorKnowledge())

{
for (tcix = cheetahMap.lower_bound(lower); tecix !=
cheetahMap.upper_bound(upper); ++tcix)

if(abs(aix->second.getX(} - tcix->second.getX()) <=
currentSensingRange)

if (aix->second.getDistance (tcix->second)< tempMoveDistance)
{

Dii. = ai: d.getDistance
(tecix->second) ;
‘aix->second.setMoveFromLocation
{tcix->second.getLocation(});
}//end if

aix->second.setNextAction (FLEE);
y//end if aix->getX()

}//end for tcix - CheetahMap ~ sense cheetahs
}//end if (aix->second.getPredatorKnowledge()

//NOW THAT THEY HAVE SENSED AND DECIDED WHAT TO DO, DO IT
//ANTELOPE ACTION
if (aix->second.isPregnant())
(
if (aix->second.pregPtr->gestationTime== ANTELOPE_GESTATION_PERIOD)

{
int litter = aix->second.litterSize(};

numAntelopeCreated += litter;

Antelope *babyAntelope;
for (int ix = 1; ix <= litter; ix++)

babyAntelope = aix->second.giveBirth
{aix->second.pregPtr->maleSpeed,
aix->second.getMaxSpeed(),
aix-»second.getGeneration(),
aix->second.getLocation());

if (babyAntelope->diesAsInfant(})

babyantelope->setDeathIndicator (INFANT_MORTALITY);
antelopeDiesAsInfant++;

}

if (babyAntelope-> der() == FEMALE)
babyAntelope->pregPtx = new Pregnancy;

while (tempAntelopeMap. find (babyAntelope->getLocation(})) =
tempAntelopeMap.end ()}

babyAntelope->avoidCollision();
}//end while
tempAntelopeMap. insert (POSITION2ANTELOPE: :value_type
{babyantelope->getLocation(), *babyAntelope) };
y//end for (ix) - create litter of size litter

aix->second.setPregnant (false);
}//end if pregancy gestation time > ANTELOPE_GESTATION_TIME
else
{
aix->second.pregPtr->gestationTime++;
}//end else
}//end if aix->isPregnant(}

aix->second.growOlder (};

//check age and if over MAX_AGE then set deathIndicator to OLD.)_AGE
if (aix->second.getAge () == MAX_ ANTELOPE_AGE}
{

aix-»>second. setDeathIndicator (OLD_AGE) ;

antelopeDieOfAge++;

}
//Last thing we do is check to make sure the antelope didn't die
//two time steps ago. if so take out of world otherwise increment

//counterthis allows the other animals to sense this one and
//learn how it died

if ((aix->second.getDeathIndicator() != NOT_DEAD) &&
(aix->second.getDeathCounter () < 2))
{ P
aix->second.setDeathCounter (aix->second.getDeathCounter () + 1);
while(tempAntelopeMap. find(aix->second.getLocation(}) (=
tempAntelopeMap.end()) .

{
aix->second.avoidCollision(};
}//end while
tempAntelopeMap.insert (POSITION2ANTELOPE: :value_type

(aix->second.getLocation(), aix->second));

}//end if getDeathIndicator()

else if(aix->second.getDeathIndicator() == NOT_DEAD)

{

while (tempAntelopeMap.find(aix->second.getlocation(}) !=
tempAntelopeMap.end())

(
aix->second.avoidCollision();
}//end while
tempAntelopeMap.insert (POSITION2ANTELOPE: :value_type
(aix->second.getLocation(), aix->second));
}//end if else getDeathIndicator()

}//end for (aix) Antelope Sensing Loop
// antelopeMap.clear();
antelopeMap = tempAntelopeMap;
tempAntelopeMap.clear ();

}//end CAgentGUIDoc::antelopeSensing(}

1
// Function: CAgentGUIDoc::cheetahSensing()
// Return Val: None
// Parameter: None

// Purpose: Steps through the list of alive male and female Cheetah

Iz and allows them to sense their environment and decide what
/7 to do for their next action

17

void CAgentGUIDoc::cheetahSensing(int simTime)
for (cix = cheetahMap.begin(); cix != cheetahMap.end(}; ++cix)
{
if (cix->second.isResting())

if (cix~>second.getEnergylevel () > CHEETAH_RESUME_HUNTING_LEVEL)

numUnsuccessfulChase++;
cix->second.setRest (false);
}

else
{

if ((simTime%$365 > CHEETAH_START_IN_SEASON) && {simTime%$365 <
CHEETAH_STOP_IN_SEASON))
cix->second.setInSeason(true);
else
cix->second.setInSeason(false);

int upper,
lower,
currentSensingRange;

switch(cix->second.getSpeedOfNextMove(})

{
case REST :
{

currentSensingRange = CHEETAH_REST_SENSING_RANGE;

lower = cix->second.getLocation() - MAX X *
CHEETAH_REST_SENSING_RANGE -
CHEETAH_REST_SENSING_RANGE;

upper = cix->second.getLocation() + MAX X *
CHEETAH_REST_SENSING_RANGE +
CHEETAH_REST_SENSING_RANGE;

break;

}
case REGULAR :
(

currentSensingRange = CHEETAH_REGULAR_SENSING_RANGE;

lower = cix->second.getlocation() - MAX X *
CHEETAH_REGULAR_SENSING_RANGE -
CHEETAH_REGULAR_SENSING_RANGE;

upper = cix->second.getLocation() + MAX_X *
CHEETAH_REGULAR_SENSING_RANGE +
CHEETAH_REGULAR_SENSING_RANGE;

break;

default://case RUN
{

currentSensingRange = CHEETAH_RUN_SENSING_RANGE;:

lower = cix->second.getlocation() - MAX X *
CHEETAH_RUN_SENSING_RANGE -
CHEETAH_RUN_SENSING_RANGE;

upper = cix->second.getLocation() + MAX X *
CHEETAH_RUN_SENSING_RANGE +'
CHEETAH_RUN_SENSING_RANGE;

break;

}
}//end switch getSpeedofNextMove

//ensure we aren't trying to sense outside the world

if (lower < MIN_X * MIN_Y)
lower = MIN_X * MIN_Y:
if (upper > MAX_X * MAX_Y)
upper = MAX X * MAX_Y;

int partnerMoveToDistance = 1000;

int avoidDistance = CHEETAH_AVOID_RANGE;

bool foundPartner = false;

bool mated = false; N
bool avoidCheetah = false;

//sense other cheetah
//still only sensing inside range
for (tecix = cheetahMap.begin{); tecix != cheetahMap.end(); ++tcix)

if(cix->second.getIdNum() != tcix->second.getIdNum())
{
if (cix->second.canMate(tcix->second) && !mated)
{

mated = true;
cix d.mate (tcix. d);
cix->second.setNextAction (C_NOTHING) ;
}//end if canMate()
else if(cix->second.mateEligible(tcix->second))
{

foundPartner = true;
if (cix->second.getDistance (tcix->second) <
partnerMoveToDistance)

partnerMoveToDistance =
cix->second.getDistance (tcix->second) ;
cix->second.setMoveToLocation
(tcix->second.getLocation());
}//end if getDistance(tcix)
cix->second.setNextAction(C_MATE) ;
}//end else if mateEligible(tcix)
else if (!mated && !foundPartner &&
(cix->second.getDistance
{tcix->second) < avoidDistance))

avoidCheetah = true;
avoidDistance = cix->second.getDistance
{tcix->second) ; -
cix->second. setMoveFromLocation
(tcix->second.getLocation());
cix->second.setNextAction(AVOID) ;
}//end else if (!tempMateFlag)

}//end if getIdNum()

if (!foundPartner && !avoidCheetah)
cix->second.setNextAction (C_NOTHING) ;

}//end for (tecix) cheetahMap - sense other cheetahs

int preyMoveToDistance = 1000;

if (!foundPartner && !(cix~>second.isResting()) &&
(cix->second.getEnergyLevel () < CHEETAH_HIGH_ENERGY LEVEL))

//now sense antelope in world
for (taix = antelopeMap.lower_bound(lower); taix !=
antelopeMap.upper_bound (upper) ; ++taix)

if ((abs (cix->second.getX() - taix->second.getX()) <=
currentSensingRange) &&
{taix->second.getDeathIndicator () == NOT_DEAD))

if(cix~>second.canKill (taix->second))

cix->second.setEnergylLevel
(cix~>second.getEnergyLevel ()} +
CHEETAH_ENERGY_BOOST) ;
taix->second.setDeathIndicator (PREDATOR) ;
antelopeKilled++;
cix~>second.setNextAction (C_NOTHING) ;
}//end if canKill()
else

if(cix->second.getDistance (taix->second) <
preyMoveToDistance)

preyMoveToDistance =
cix->second.getDistance(taix->second) ;
cix->second.setMoveToLocation
(taix->second.getLocation(});
}//end if getDistance
cix->second.setNextAction (CHASE) ;
}//end if else canKill (taix)
}//end if cix->getX()
//check to make sure still has enough energy to hunt
if(cix->second.getEnergylevel() <
CHEETAH_STOP_HUNTING_LEVEL)
{
cix->second.setRest (true) ;
cix->second.setNextAction (C_NOTHING) ;
}//end if
}//end for taix AntelopeMap - cheetah sensing antelope
}//end if (!foundPartner)
}//end else if isResting()
//PUT IN CHEETAH ACTION CODE
if (cix->second.isPregnant())
{

if (cix->second.pregPtr->gestationTime==CHEETAH_GESTATION_PERIOD}
(

int litter = cix->second.litterSize();

Cheetah *babyCheetah;
for (int ix = 1; ix <= litter; ix++)
{

numCheetahCreated++;

babyCheetah = cix->second.giveBirth
(cix->second.pregPtr->maleSpeed,
cix->second.getMaxSpeed (),
cix->second.getGeneration(),
cix->second.getLocation()};

if(babyCheetah->diesAsInfant (})
4

babyCheetah~>setDeathIndicator (INFANT_MORTALITY) ;
cheetahDiesAsInfant++;

}

if (babyCheetah->getGender () == FEMALE)
babyCheetah->pregPtr = new Pregnancy:;

while (tempCheetahMap. find (babyCheetah->getLocation()) !=

tempCheetahMap.end())

{
babyCheetah->avoidCollision();

}//end while

tempCheetahMap. insert (POSITION2CHEETAK: :value_type
(babyCheetah->getLocation(}, *babyCheetah));

}//end for (ix) create litter of size litter
cix->second.setPregnant (false);

}//end if pregPtr->gestationTime() == CHEETAH_GESTATION_TIME
else
|

(
cix->second.pregPtr->gestationTime++;
}//end else pregPtr->gestationTime() != CHEETAH_GESTATION_TIME

}//end if cix->ifPregnant()
cix->second.growOlder() ;

//check age and if over MAX_AGE then set deathIndicator to OLD_AGE
if {cix->second.getAge() == MAX_CHEETAH_AGE)
{
cix->second.setDeathindicator (OLD_AGE) ;
cheetahDieOfAge++;
}

if{(cix->second.getEnergyLevel () < CHEETAH_STARVATION_LEVEL) &&
(cix~>second.getDeathIndicator() == NOT_DEAD))

{
cix->second.setDeathIndicator (STARVATION) ;
cheetahDieOfStarvation++;

//last thing we do is check to make sure the antelope didn't die two
//time steps ago. if so take out of world otherwise increment counte

//this allows the other animals to sense this one and learn how it di
ed

if ((cix->second.getDeathIndicator() != NOT_DEAD) &&
(cix->second.getDeathCounter() < 2))

cix->second.setDeathCounter (cix->second.getDeathCounter() + 1);
while(tempCheetahMap. find(cix->second.getLocation()) 1=
tempCheetahMap.end(})

{
cix->second.avoidCollision():
}//end while
tempCheetahMap. insert (POSITION2CHEETAH: : value_type
(cix->second.getLocation(), cix->second));
}//end if getDeathIndicator()
else if (cix->second.getDeathIndicator() == NOT_DEAD)
{
while(tempCheetahMap. find (cix->second.getLocation())

tempCheetahMap.end(})
{
cix->second.avoidCollision{);
}//end while
tempCheetahMap. insert (POSITION2CHEETAH: :value_type
{cix->second.getLocation(}, cix->second));
}//end if else getDeathIndicator()

/
}//end for (aix) Antelope Sensing Loop

cheetahMap = tempCheetahMap;
tempCheetahMap.clear();

}//end CagentGUIDoc::cheetahSensing();

1 EXECUTIVE SUMMARY
/1 Module Name: npshgent.h

17
// Authors: Mark A. Boyd maboyd@bigfoot.com
1" Todd A. Gagnon toddégagnon.com

17
// Deseription: Declaration for the npsAgent class. This abstract class
7 implements the base functionality used by all agents

/7 March 1999 Master Thesis

BAMBOO IMPLEMENTATION 1"

#ifndef _npsAgent_h
#define _npsigent_h

1 !
I INCLUDES AND EXTERNS

11

#include °*bbThread.h®
#include *npsGeometry.h*
#include °bbsafeClass.h”
#include *bbNamedObject.h®
#include "bbListedClass.h®
#include "npsVisualApi.h"
#include “vector.h”
#include °npsAgentApi.h”
#include «<math.h>

/7

// DEFINES
#define X o
#define Y 1
#define 2 2

#define MIN. X -50
#define MAX X SO
#define MIN_Y =50
#define MAX.Y S0
#define MIN 2 -50
#define MAX_2 SO

enum AGENT_RELATIONSHIPS (PREDATOR, ENEMY, FRIENDLY, FOOD, UNKNOWN):
typedef har*> lati H

class npsAgent;

#ifdef _npsAgent_c

ACE_EXPORT_SINGLETON_DECL {bbsateCl:)
ACE_EXPORT_SINGLETON_DECLARATION(bbListedClass<npsAgent>}:
#else
ACE_TIMPORT_SINGLETON_DECL { 1)
ACE_IMPORT_SINGLETON_DECLARATION (bbListedClass<npsAgent>) ;
#endif
17 void setSpeed (int s);
1 FUNCTION PROTOTYPE SPECIFICATIONS int getSpeed (};
17
void sethge (int a);
class AGENT_API : public Y. int getAge():
public bbsafeClass<npsigent>, void growolder():
public bbListedClass<npsAgent>,
public bbNamedObject void setSensingRange(int sr):
{ . int getSensingRangel();
private:
char *agentType; void setEnergylevel{int el):
int speed, int getEnergylLevel{):
age,
sensingRange, void setRemove():
energyLlevel: bool getRemovel():
bool remove;
AGENT_RELATIONSHIPS npsAgent::getRelationship (npsAgent *agent);
knownPrey, virtual void updatePosition{int time} = 0:
knownFriends, virtual void sense(int time) = 0;
knowvmEnemies, virtual bool isKilled(npsAgent &agent) = 0;
knownFood, '
unknownigents; //general utilities that might be useful
double myRand ()
npsAgent(); char* npsAgent::integerToString(int inNum});
// disable default construtor
¥
protected:
/7 Never create protected member variables they may
// be by threads i them via cbjects 1
/7 instantiated from derived classes. Note that even /" INLINED MEMBER FUNCTIONS
IZE! 1 i must be i when i 12
7/ them directly.
inline void npsAgent::setAgentType{char *at}
(bbcalll *call)i {
7/ contructor for derived agent agentType = at;
)
publie: N
inline char* npsAgent::getAgentType(}
virtual -npsigent{} = 0; 4
// Destruct a device object return(agentType):
)
//get distance between two agents inline void npsAgent::setSpeed (int s)
float getDistance{npsAgent kagent); {
float getDistanceFrombocation(npsVec3f location}; speed = s;
)
void setAgentType(char *at);
char* getAgentType(}:; inline int npsAgent::getSpeed ()
bool isSameAgentType (npsAgent *agent): 4
return speed;
void addToPredatorsichar *name);)
void addToPriends(char *name);
void addToEnemies(char *name}; inline void npsAgent::setAge (int a)
void addToFood{char *name}: {

void addToUnknown (char *name): age = a;
. }

void setRandomPosition();

71 inline int npsAgent::getAge()}

{
return age;
b

inline void npsAgent::growOlder()
4

age+s:

)

inline void npsAgent::setSensingRange(int sr)
{
sensingRange = sr:
)
\
inline int npsAgent::getSensingRange()
{

return sensingRange;

#define _npsigent_c
#include “npsigent.h*
tinclude <GL/gl.h>

1
7 DEFINES &k FILE SCOPE VARIABLES
1

bbThread *thread:

1 ne
17 CODE
17

void updateFunc(bbThread *thread, bbbata *data}

{
static int time = 0;
inline void npsAgent::setEnergylLevel(int el) A t *agent, H
{
energylevel = el; int numAgents = bblistedClass<npsAgent>::getNumObjects();
) for {int { = 0; i < numigents: i+s+)
(
inline int npsAgent::getEnergyLevel{) agent = bbListedClass<npsAgent>::getObject(i);
(agent->sense (time);
return energylLevel:]
)
for {int j = 0; j < numAgents; je+)
inline void npsAgent::setRemove() (
{ agent = bbListedClass<npsAgent>::getObject(j);
remove = true: agent->updatePosition(time);
} if (agent->getRemove())
inline bool npsAgent::getRemove(} delete agent;
{ 7 to for deleted object
return(remove): 3--; numAgents--;
) }
}
fendif // _npsAgent_h
if (time%100 == 0)
§
cout<<®simulation time » * << time<<endl;
1 cout<<"num Agents = °<<numAgents<<endl; 3
// EXECUTIVE SUMMARY }
7/ Module Name: npsigent.c time+s;
1 ¥
// huthors: Mark A. Boyd maboydébigfoot.com
17 Todd A. Gagnon todd@gagnon.com
1 : (bbcallback *_callb)
// Description: Impl ion for the class. This abstract class : npsGeometry{_callbackFunc), speed{-1), age(-1), sensingRange(-1),
17 irplements the base functionality used by all agents 2{-1), 4)
t
7/ Harch 1995 Master Thesis static bool firsttime = 1;
17
// first check/set this class's type
1 if (firsttime)
17 INCLUDES AND EXTERNS {
11 srand{ (unsigned)time({NULL)); //seed the random number generator
.
rand();: for (it = knownPood.begin{}; it != knownFood.end(); it+s)
thread = new bbThread(updatefunc, 0, CYCLE_RATE, 100.0); (
tirsteime = 0; if (! {strcmp(agent->getAgentType{}, *it)))
} relationship = FOOD;
) }
)
if(tunknownAgents.empty(})
npsAgent: :~npsAgent{) { .
{ for (it = unknownhgents.begin(}; it != unknownAgents.end(); ite+)
/7do nothing
} if (! (stremplagent->getAgentType(),*it}})
xelationship = UNKNOWN:
]
1 }
/7 Function: npsAgent: :getRelationship (bbType)
/7 Return Val: AGENT _RELATIONSHIPS return {relationship);
// Parameter: bbType }
/7 Purpose: Allows an agent to get the class type of another
1 agent and determine what relationship it has with the
17 new agent. If 17
1" //Function: getDistance(npsagent)

AGENT_RELATIONSHIPS npsAgent::getRelationship (npsAgent *agent)
{
AGENT_RELATIONSHIPS relationship = UNKNOWN:
sl ic:

if (tknownPredators.empty(})
t

for {it = begin(): it != knownPr cend{); itee)
¢ if (¢ (stromp(agent->getagentType(),*it}))
relationship = PREDATCR:
)
if (knownFriends.empty{))
¢ for (it = knownFriends.begin(); it != knownFriends.end{); ites)
! ?{(! {stromp (agent->getAgentType (), *it))}

relationship = FRIENDLY;
)

}

if (tXnownEnemies.empty())

{
Af (! (stromp(agent->getAgentType(), *it)))
{

if (agent->getAgentType() == *it)
relationship = ENEMY;

)

if (!'knownFood. empty(})
(

//Return Val: int distance between two agents
//Parameter:

//Purpose: determine distance between two agents
1/

float npsAgent::getDistance(npsAgent &agent)
t
npsVec3f thisPosition, agentPosition;
int xSquare, zSquare;
float answer;

this->getPosition(thisPosition):
agent.getPosition{agentPosition};

xSquare = {thisPosition[X] - ag ition{X]) * (thisp on(X) -
agentPosition(X]):

2zSquare = (thisPosition(2) - agentPosition{Z]) * (thisPosition(z) -
agentPosition(z));

answer = (sgrt(xSquare + 2Square));

return (answer):

)//end npsAgent::getDistance()

17
//Function: distanceFromLocation()

//Return Val: int between animal and food

//Parameter:

//Purpose: determine distance between animal and food
17

float ::getDi ion{np £ location)

{

npsVec3f thisPosition;
int xSquare, zSquare;
float answex;

this->getPosition(thisPosition);

xSquare = (thisPosition(X]) - location[X])} * {thisPosition{X] -
location(X]};

zSquare = (thisPosition{Z] - locatien[2}) * (thisPosition{z) -
locationf{2]):

answer = (sqrt(xSquare + zSquare));

return (answer);

}//end np: s:di jon()

1

//Function: isSameAgentType(npsAgent®)

//Return Val: bool

//Parameter: npshAgent .

//Purpose: return true if the passed agent is the same type as this
11

bool EED *agent}
4

return(this->g () == agent->getAy ypel)):

}//end npshgent::issameType()

1"
//Function: setRandomlocation()
//Return Val:

//Parameter: .
//Purpose: allows an agent to be placed in a random location. The

17 altitude remains constant at three so if you want to set
2 a random altitude as well then you must overload this fune
124

void : dition()

npsVec3f position;
float x, y, z = 0.0;

x = MIN_X + myRand() * (MAX_X - MIN.X):
z = MIN_Z + myRand() * (MAX_Z -~ MIN 2):
//use constant altitude for now

y=1;

position.set{x.y.2}:
this->setPosition(position);

14
//Function: addToPredator {char*)

//Return Val:

//Paxameter: char® - agentType

//Purpose: will add the agentType to vector of known predators
/7"
void npshgent::addToPredators(char *name}
{

.insert(end(}, name);

}

1

//Function: addToFriends(char®)

//Return Val:

//Parameter: char* - agentType

//Purpose: will add the agentType to vector of known Friends

124

void npsAgent::addToFriends(char *name)

4

knownFriends.insert{knownFriends.end(), name):

1

//Punction: addToEnemies{char*)

//Return Val:

//Parameter: char* - agentType

//Purpose: will add the agentType to vector of known enemies

1

void npshgent: :addToEnemies(char *name)

ies.inserti ies.end(}, name):

17

//Function: addToFood(char*}
//Return Val:

11

char* - ag

//Purpose: will add the agentType to vector of known Food

12

void npsAgent::addToFood{char *name}

KknownFood. insert (knownFood.end ()}, name);

/17

//Functien: addTeUnknown(char*}
//Return Vval:
//Parameter: char* - agentType

//Purpose: will add the agentType to vector of known unknown agents
1/
void npsAgent::addToUnknown{char *name}
.insert(.end(}, name);

)

7"

/ ion: T [§]

// Return Val: double - a number 0.0 and 1.0
/{ Parameter:

// Purpose: return random nurber between 0.0 and 1.0

1"

double npsAgent::myRand ()

double randomNumber;

randomNumber = rand{)/double (RAND_MAX}):
return randomNumber;

}//end Animal::myRand{}

1/ Method: integerToString()
// Parameters: int number - number id which ever animal iz passed
/1 Return val: char*

1/ Purpose: Can be used by agent classes to convert integers to string
12 values
17

char*® npsAgent::integerToString(int inNum}
{

int divisoxr = 1;

int digits = 1;

int quotient;

if (inNum / 20000 > 0)
{

divisor = 10000;

digits = 5;
)
else if (inNum / 1000 > 0)
{

divisor = 1000;

digits = 4;

b
else if (inNum / 100 > 0}
{

divisor = 100:

digits = 3;

b
else if {inNum / 10 > 0)
{

divisor = 10;
digits = 2;

]
else if (inMum / 1 > 0)
{
divisor = 1;
digits = 1;
}

char outNum {64);
strepy (outNum, *°);
for {int ix=0; ix<digits: ix+s+)(
switch (quotient = {int) inNum/divisor){
case 0:
strcat (outNum, “0°%);
break;
case 1:
strcat (outNum, "1°¢);
break:
case 2:
strcat{outNum, *2°):

_break:;
case 3:
streat (outMum, *3°);
break;
case 4:
strcat (outNum, *4°);
break;
case S:
streat (outNum, °5°);
eak;
case 6:
streat (outNum, "6°}:
break;
case 7:
strcat {outNum, *7°);
break;
case 8:
strcat {outNum, "8%);
break;
case 9:
strcat (outNum, *97):
break:
)

inNum -= quotient*diviser:
divisor /= 10;

strcat (outNum, * *);

return (&outNum([0]};

}//end integerTostring()

1
1
1"
12
12
171
7"
7"
1
1
/7

EXECUTIVE SUMMARY .
Module Name: agentDisplayApp.h

Authors: Mark A. Boyd maboydé@bigfoot.com
Todd A. Gagnon toddégagnon.com
Description: Declaration of class that creates an openGL window to

display agents in world

March 1999 Master Thesis

#ifndef _agentDisplayApp h
#define _agentDisplayApp_h

12
/7
1

FUNCTION PROTOTYPE SPECIFICATIONS

void initAgentDisplayApp(}:

#endif // _agentDisplayApp_h

17
124 EXECUTIVE SUMMARY
/7 Module Name: agentDisplayApp.c

17

// Authors: Mark A. Boyd maboyddbigfoot.com
17 Todd A. Gagnon todddgagnon.com
17

// Description: Implementatijon of class that creates an openGL window to
17 display agents in world

17

/7 March 1999 Master Thesis

1

17

12 INCLUDES AND EXTERNS

I

#include *agentDisplayApp.h®
#include *bbGlobals.h*
#include *npsVisual.h*
#include "npsWindow.h*
finclude °*npsViewport.h*
#include "npsFlyingCamera.h*
#include *npsKeyboard.h=
include “bbEventResponse.h*
tinclude “bbCallback.h”
tinclude °*npsGecmetry.h*

#include <math.h>
#include <GL/gl.h>

1

iz DEFINES & FILE SCOPE VARIABLES

11
bbcallback *callback;
npsWindow *window;
npsCamera *camera:
npsVec3f position;
npsQuaternion rotation:
npsViewport *viewport: .
npsGeometry *boidl;

1

// CODE

1"

void initAgentDisplayApp()

{
void initXeyboardModule():
void initVisualModule():

initKeyboardModule();
initvisualModulet!):
1//end initAgentDisplayApp(}

void initKeyboardModule()
{

void escFunc{void *object, bbData *data):
void resetFunc(void *object, bbData *data);
void sideViewFunc(void *object, bbData *datal;
void topViewFunc{void *object, bbData *data);
npsKeyboard *keyboard:

ev
bbCallback *callback;

// get the keyboard device
-

::get (83

/7 set up exit Xey
= new :KEY_BSC |
npsKeyboard: :UP_TRANS) ;

callback = new bbCallback();
callback->setFunc(escFunc) ;
eventResponse->addCallbackLast {callback);

/1 set up reset key
= new ::KEY_SPACE |
npsKeyboard: :UP_TRANS) ;

callback = new bbCallback();
{

callback

eventResponse->addCallbackLast (callback) ;
{ ¥

// set up side view looking down from above key
= new :KEY_T |
npsKeyboar:

callback = new bbCallback();
callback {sidevi 1
eventResponse->addCallbackLast {callback);
X (¥:

// set up top down view key
= new {

npsKeyboar:
npsKeyboax:

callback = new bbCallback():

callback->setFunc (topViewPunc) ;

eventResponse->addCallbackLast (callback);
§ ¥

}//end initXeyboardFunc({)

void initVisualModule()
{
void initCheckerboardfunc(void *object, bbData *data):

/7 init terrain geometry
new y{initCheck e} s

// open a window, viewport, and camera/cwnship
window = new npsWindow(800, 600);
viewport = new npsViewport(0.0f, 1.0f, 0.0f, 1.0f);

camera = new npsFlyingCamera(npsFlyingCamera::MOUSE) ;
camera->setName (*cameral®);
camera->setFarClip(400.0f
camera->setGeometry(boidl);
position.set(0.0f, 3.0f, -10.0f);
camera->setPosition(position): '
rotation.setBulers (NPS_DEGZRAD(180.0£),0.0£,0.0f);
i tation(ti Y:
camera->setClearColor(0.66f, 0.66f, 1.0f, 1.0f);
viewport->setCamera(camera);
window->addviewport (viewport);
}//end initCheckerboardFunc(})

void escFunc(void *object, bbData *data)
(

exit(0);
)//end escFunc{)

void resetFunc(void *cbject, bbData *data)

npsVec3f initrPosition:
ini ion;

initPosition.set(0.0f, 3.0f, -10.0f);
ini setEulers (NPS_] {180.0£),0.0£,0.0£);
canera->setPosition({initPosition);
camera->setOrientation(initRotation};

}//end resetFunc{()

void sideViewFunc(void *cbject, bbData *data)

npsVecdf initPosition;
i ini ion:

initPosition.set({0.0f, 50.0f, 100.0f):
initRotation.setEulers(0.0f, NPS_DEG2RAD(-30.0£),0.0f);
camera->setPosition(initPosition);
canera->setOrientation{initRotation);

)//end sideViewFunc()

void topViewFunc{void *object, bbData *data)
{

npsVecif initPosition;
npsQuaternion initRotation;

initPosition.set(0.0f, 150.0f, 0.0f);
initRotation.setBulers(0.0f,NPS_DEG2RAD(-90.0£),0.0f};
tion(ini ion);
ienlini 3;
}//end tapvimunf()

void initCheckerboardrunc(void *object, bbbata *data)
{

npsGecmetry *geometry:;

u_int displayListNum;

const float CELL_LENGTH = 5.0;

const u_int NUM_CELLS_LONG = 25:

const u_int NUM_CELLS_WIDE = 25;

const u_int NUM_VERTS_LONG = NUM_CELLS_LONG + 1;

const u_int NUM_VERTS_WIDE = NUM_CELLS_WIDE + 1;

const u_int TOTAL_NUM_VERTS = NUM_VERTS_LONG * NUM_VERTS_WIDE:
u_int i, j, curxVert;

bool colorToggle;

GLfloat coords [TOTAL_NUM_VERTS] {3}

// init vals
colorToggle = 0;
tor (i=0; i<NUM_VERTS_LONG; i+s}
(
for (j=0; j<NUM_VERTS_WIDE: j+e}
{

currvert = {*NUM_VERTS_WIDE + j;

coords [curxVert]) (0] = (CELL_LENGTH * i) -
NUM_CELLS_LONG*CELL, LENGTH*0.5£) ;
coords (currVert) (1] = 0.0f;
coords [currVert) [2] = {-CELL_LENGTH * j) +
{NUM_CELLS,_WIDE*CELL_LENGTH*0.5f) :
)
}

displaylListNum = glGenLists(l);
glNewList (displayListNum, GL_COMPILE);
(

glsShadeModel (GL_FLAT) ;

colorToggle = 0:
for {is0; i<NUM_CELLS_LONG; ie++)
{

glBegin {GL_TRIANGLE_STRIP);
for (j=0: j<NUM_VERTS_WIDE; j++)
(

if (colorToggle)

{
colorToggle = 0;
glColor3£(0.8f, 0.9f, 0.8f);

else
{ .
colorToggle = 1:

glColor3£{0.85f, 0.95f, 0.85f);

currVert = i*NUM_VERTS_WIDE + j;
glVertex3fv(coords(currVert)};

currVert = {i+1)*NUM_VERTS_WIDE + j:
glvVertex3fv{coords{currVert});

1

if (NUM_CELLS_WIDE & Ox1)

{

if {colorToggle)
colorToggle = 0;
else
colorToggle = 1;
)
)
glEnd();

b

glshadeModel (GL_SMOOTH) ;

}
glEndList():
77 set displaylist and remove callback func
geometry = (npsGeometry*)object;

v DisplayLi (displayListNum) ;
geometry->setCallbackFunc(0);

1//end initCheckerboardFunc()

17 EXECUTIVE SUMMARY
/1 Module Name: animal.h

1 .
// Authors: Mark A. Boyd maboyd@bigfoot.com
17} Todd A. Gagnon toddégagnon.com
1"

/1 Description: Definition of the animal class agent for use in npsAgent

// March 1999 Master Thesis

#ifndef _animal h
#define _animal h

12
/7 INCLUDES AND EXTERNS
/71

#include "npsAgent.h®
#include *npsAgentApi.h*
#include *npsvVec3f.h® *

77
// DEFINES
17

enum DESIRED_ACTION (NOTHING, MATE, FEED, GATHER, AVOID, CHASE, FLEE};
enum MOVE_SPEED {REST, REGULAR, RUN};
enum DEATH_INDICATOR {INFANT _MORTALITY, OLD_AGE, PREDATION, STARVATION,

NOT_DEAD};
#define MALE M
#define FEMALE *F*
#define MATE_AGE 2
#define MATE_DISTANCE .5

#define MOVE_INCREMENT 0.25

struct Pregnancy(
int partnerId:
int maleSpeed:
int gestationTime;
int seasonCounter;
1

class Animal:

#$ifdef _Animal_c¢
ACE_EXPORT_SINGLETON_DECLARATION(bbSafeClass<Animal>);
ACE_EXPORT_SINGLETON_DECLARATION(bbListedClass<Animal>);

#else
ACE_IMPORT_SINGLETON_DECLARATION(bbSafeClass<Animal>):
ACE_IMPORT_SINGLETON_DECLARATION(bbListedClass<Animal>};

fendit

1"
1" FUNCTION PROTOTYPE SPECIFICATIONS

1"
class AGENT_API Animal: public npsAgent(
private:
DESIRED_ACTION nextAction;
MOVE_SPEED speedOfNextMove;
DEATH_INDICATOR deathlndicator;
int generation,
mateAge,
deathCounter;

npsVec3f moveToLocation,
moveFromLocation;

char gender,
*killer:

bool pregnant,
inSeason,
resting;
protected:

//Constructor
Animal {bbCallback *calll i

public:
//Default Destructor - does nothing at this time
~Animal();

//default move methods provided to all animals: X-Z planar
void move();

void moveTo(npsVeclf _position):

void moveFrom{npsVec3f _position);

//get and set the desired next action for the Animal

DESIRED_ACTION getNextAction();
void setNextAction {DESIRED_ACTION na};

//get and set the choice of speed for next move
MOVE_SPEED getSpeedOfNextMove():
void setSpeedOfNextMove (MOVE_SPEED ms);

//get and set reason for animals death
DEATH_INDICATOR getDeathlIndicator();
void setDeathIndicator (DEATH_INDICATOR di);

//return random Animal litter size based on upper and lower bounds
int randomLitterSize(int lower, int upper):

//return true if Animal dies as infant based on mortality rate provided
bool diesAsInfant{double mortalityRate);

//can the Animal mate

bool canMate(Animal *potentialMate);
void mate(Animal *mate);

bool mateEligible({Animal *potentialMate}:

//get and set deathCounter
int getDeathCounter(}:
veid setDeathCounter{int dc):

//get and set generation of animal
int getGeneration():
void setGeneration(int g}:

//get and set location to move to
npsVeclf getMoveToLocation(};
void setMoveToLocation(npsVec3f mtl):

//get and set location to move from
tion{);

Ip: g
void don(3f mfl);

//get and set the mate age variable
int getMateAge():
void setMateRge(int ma);

//test to see if one animal can kill another
virtual bool isKilled(npsAgent &agent) = 0;

//get and set the gender for an animal
char getGender{);
void setGender(char g);

//see if female is pregnant
bool isPregnant{);
void setPregnant{bool p):

//see if the animel is in season
bool isInSeason(}:
void setInSeason(bool is):

//see if anima) is dead
bool isDead{);

//see if animal needs to rest
bool isRestingl):
void setRest{bool r);

//main methods to let agents interact
virtual void updatePosition{int time)
virtual void sense{int time} = O:

"
o

void setKiller (char *k):
char *getKiller():

//pointer to Pregancy struct
Pregnancy* pregPtr;

1
/1 INLINED MEMBER FUNCTIONS
71 v

inline DESIRED ACTION Animal::getNextAction()

return nextAction;
)

inline veid Animal::setNextAction (DESIRED_ACTION na)

nextAction = pa:

}
inline MOVE_SPEED Animal::getSpeedOfNextMove()
{

return (speedOfNextMove);

inline void Animal::setSpeedOfNextMove (MOVE_SPEED ms)

speedOfNextMove = ms; N

inline Vec3f Animal::g tion()

return {moveToLocation):
)]

inline void Animal::setMoveTolocation{npsVec3f mtl)

moveTolocation = mtl:
}

inline np: £ Animal::g cien{)
{

return (moveFromLocation);

)

inline void Animal: ti 3£ mfl)

{
moveFromLocation = mfl;
}
inline DEATH_INDICATOR Animal::getDeathIndicator(}
{

Teturn {d@eathIndicator):
}

inline void Animal::setDeathIndicator {DEATH_INDICATOR di}
(

deathIndicator = di;
3

inline int Animal::getDeathCountex()
{
return {deathCounter):
}
inline void Animal::setDeathCounter(int dc)
{

deathCounter = dc:

inline int Animal::getGeneration()

return (generation}:
}

inline void Animal::setGeneration(int g)
{
generation = g:
3
inline int Animal::getMatenge()
{

return (materge):
)

inline void Animal::setMateAge(int ma}
{

mateAge = ma;
}

inline char Animal::getGender()
{
return (gender):
inline void Animal::setGender(char g)
{
gender = g:
}
inline Bool Animal::isPregnant()
t

return (pregnant);

)
inline void Animal::setPregnant(bool p)
{

pPregnant = p;
}

inline bool Animal::isInSeason()
{

return (inSeason);

}
inline void Animal::setInSeason(bool is)
{

inseason = is;
)

inline bool Animal::isDead()
{

return (deathIndicator != NOT_DEAD);

inline bool Animal::isResting()
{

return (resting);

inline void Animal::setRest(bool r)

(

resting = x:

inline void Animal::setKiller(char *k}

killer = k;

inline char * Animal::getKiller()
{
returnikiller):

#endif // _Animal

17
17 EXECUTIVE SUMMARY
/1 Module Name: animal.c

7

// Authors: Mark A. Boyd maboyddbigfoot.com
1 Todd A. Gagnon toddégagnon.com
17

7/ Description: Implementation of the animal class agent used in npsAgent
1 -

// Maxrch 1999 Master Thesis

#define _animal ¢

123
124 INCLUDES AND EXTERNS
12

#include ®Animal.h*
#include <stdio.h>
#include <iostream.h>
tinclude <stdlib.h>
#include <ctime>

17
// DEFINES AND FILE SCOPE CONSTANTS
117

static int numAnimal = 0;

17
/7 Punction: Animal::Animal()
// Return Val: None
// Parameter: None

12 Default
17
Animal::Animal (bbCallb: c *_callb. c)

(_call une), ion (NOTHING),
speedOfNextMove (REGULAR), deathIndicator (ROT_DEAD), pregPtr(NULL),
(false}, i {false), ion(1), g{false)

t

)//end Animal::Animal{)

17
/7 Punction: Animal::-Animal(}
// Return Val: None

/! Parameter: None

1/ Burpose: Default destructor
17
Animal::~Animal (}
4

/740 nothing at this point
}//end Animal::~Animal(}

17
// Function: Animal::move {)

/7 Return Val: void

// Parameter: None

7/ Purpose: Provides the basic movement in the XZ plane which should
7 suffice for most animals. This can be overloaded in a sub-
171 class if needed

void Animal::move()
{

int changex = 0,

changeZ = 0:

float hpr{3);

npsVec3f tempPosition;
npsQuaternion tempRotation;

chi.l->getPosition(tmp?asiiion) 3
tempRotation.getEulers (hpr):

if(this->getSpeedofNextMove() != REST)
(

float tempX = tempPosition(X],
tempY = tempPositien{Y),
tempZ = tempPosition(Z);

double randX = npsAgent::myRand():
124 double randY = npsAgent::myRand(}; //don't need to change altitude
double randZ = npsAgent::myRand(};

if (randX <= 0.5)
(

tempX -= MOVE,_INCREMENT;
changeX = -1;

)

else

{
tempX <= MOVE_INCREMENT;
changeX = 1;

if (randZ <= 0.5)
{

tempZ -= MOVE_INCREMENT: // this moves the animal up one row
changeZ = -1:

}

else

{ .
tempZ += MOVE_INCREMENT; // this moves the animal down one row
changeZ = 1;

}

if{tempX <= MIN_X)

tempX = MIN_X + 1;//bring the animal back one unit
if (tempX >= MAX_X)

tempX = MAX_X - 1;//bring the animal back one unit
if(tempz <= MIN_2)

tempZ = MIN.Z + 1: //move the animal down one xow
if(tempZ >= MAX Z)

tempZ = MAX_ 2 - 1: //move the animal up one row

if(changeX > 0)
(

if (changez > 0)
hpr(0] = NPS_DEG2RAD(45.0f); //+
else if(changeZ < 0)
hpri0] = NPS_DEG2RAD(45.0f); //-
else
hpri{o) = 0;
)
else if {changeX < 0) //else

if (changeZ > 0)
hpr{0) = NPS_DEG2RAD(135.0f}: //+
else if (changeZ < 0)
hpr{0} = NPS_DEG2RAD(135.0f}: //-
else
hpr(0] » NPS_DEGZRAD(180.0f);
)
else
{
if (changeZ > 0}
hpr{0) = NPS_DEG2RAD{90.0f}:
else if (changeZ < 0}
hpri0) = NPS_DEG2RAD{90.0f):
else
hpr{ol = 0;
}
tempRotation.setEulers{hpr);
this->setOrientation(tempRotation):

tempPosition.set(tempX, tempY, tempZ):
thi. ition{temp: ion);
}//end if not at REST

return;

}//end Animal::move()

17
// Function: Animal::moveTo ()
// Return Val: void
// Parameter: None

17 PO ides the basic to a position in the XZ plane
/" which should suffice for most animals. This can be

11 overloaded in a subclass if needed

/1

void Animal::moveTo(npsVecdf position)
{
int changeX = 0,
changeZz = 0;

tloat hpr(3):

ition;

P! P!
i on:

this->getPosition(tempPosition);
tempRotation.getEulers{hpr);

tloat moveToX = position(X).
moveToY = positionl[Y],
moveToZ = position(2],
thisTespX = tempPosition[X].
thisTempY = tempPosition[Y],
thisTempZ = tempPosition(Z):

if (this->getSpeedOfNextMove() =e REGULAR)
{

if ((thisTempX - moveToX} > 0)

{
thisTempX -= MOVE_INCREMENT;
changeX = -1;

)
else if{{thisTempX - moveToX} < 0}
t

thisTempX += MOVE_INCREMENT;
changeX = 1;
}

if((thisTempZ - moveToZ) > 0)
t

thisTempZ -= MOVE_INCREMENT;
changez = -1;
}
else if((thisTemp2 - moveToZ) < 0)
(
thisTempZ += MOVE_INCREMENT;
changeZ = 1;
)
}//end if
else//RUN

if ((thisTempX - moveToX) > 0)
4

thisTempX -= (MOVE_I + 0.0S*thi [$3 5]
changeX = -1;

}
else if((thisTempX - moveToX) < 0}
4

thisTempX += (MOVE_INCREMENT + 0.05*this->getSpeed(});
changeX = 1;
)

if{(thisTempZ - moveToZ)} > 0}
{

thisTempZ -= (MOVE_INCREMENT + 0.05*this->getSpeed()};
changeZ = -1;:

}

else if ({thisTempZ - moveToZ) < 0)

¢
thisTempZ += (MOVE_INCREMENT + 0,05*this->getSpeed()}:
changeZ = 1:

}
)//end else

//check for going out of bounds
if (thisTempX <= MIN_X)

thisTempX = MIN_X + 1;//bring the animal back one unit
if (thisTempX >= MAX_X)

thisTempX = MAX_X ~ 1://bring the animal back one unit
if(thisTempZ <= MIN_2)

thisTempZ = MIN_Z + 3; //move the animal down one row
if(thisTempZ >= MAX_ Z)

thisTempZ = MAX.Z -~ 1; //move the animal up one row

//set orientation
if (changeX > 0)//plusX)

if (changeZ > 0)//plus2) //x=1,z=l
hpr(0) = NPS_DEGZRAD(45.0f);: //+
else if{changez < 0)//x=1,z=~-1
hpr(0] = NPS_DEG2RAD(4S5.0f£); //-
else
hpr(0] = O;

)
else if (changeX < 0) //else
{
if (changeZ > 0) //plus2} //x=-1,2=1
hpr(0] = NPS_DEG2RAD(135.0f}; //+
else if (changeZ < 0) //x=-1,z=-1
hpr(0) = NPS_DEG2RAD(135.0f); //-
else//x=-1,z=0
hpr{0) = NPS_DEG2RAD(180.0f});

}
else//x=0
{
if (changeZ > 0)//x=0,z=1
hpr(0) = NPS_DEG2RAD(90.0f):
else if (changeZ < 0}//x=0,z=-1
hpr{0] = NPS_DEG2RAD({90.0f);
else
hpri{od] = 0;
)

tempPosition.set(thisTempX, thisTempY, thisTempZ);
tempRotation.setBulers(hpr):

thi, {tion(tempPosition) ;

hi i ion(ion});

return;

}1//end Animal::moveTo(}

17
// Function: Animal::moveFrom()
/! Return Val: void
// Parameter: None

/1 Purpose: Provides the basic movement from a position in the XZ plane
1 which should suffice for most nni{als. This can be

1" overloaded in a subclass if needed

17

void Animal::moveFrom{npsVec3df _positioen)
{
int changeX = 0,
changez = 0;

float hpri3}:

npsVecif texpPosition:

ion;

this->getPosition(tempPosition);
tempRotation.getEulers(hpr);

float moveToX = _position(X].

moveToY = _position(Y], //don‘t need for now
moveToZ = _position(Z).

thisTempX = tempPosition([X),

thisTempY = tempPosition(Y], //don't need for now
thisTempZ = tempPosition[Z]);

if (this->getSpeedOfNextMove(} == REGULAR)
4

if ((thisTempX - moveToX) > 0}

4

thisTempX += MOVE_INCREMENT;
changeX = 1;

}
else if((thisTempX - moveToX) < 0)
{
thisTempX -= MOVE_INCREMENT;
changeX = -1;
}

if({thisTempZ - moveToZ} > 0)
{

thisTempZ += MOVE_INCREMENT;
changez = 1;

}
- else if{{thisTempZ - moveToz) < 0]

thisTempZ -= MOVE_INCREMENT;
changeZ = -1:
}
}7/end it
else//RUN
{

if ({thisTempX - moveToX) > 0)
(3

thisTempX += (MOVE_INCREMENT + 0.05*this->getSpeed()}:
changeX = 1;

}

else if((thisTempX - moveToX) < 0}

{

thisTempX - (MOVE_INCREMENT + 0.05*this->getSpeed()}:
changeX = -1:
}

if{(thisTempZ - moveToZ) > 0)
(

thisTemp2 += (MOVE_INCREMENT + 0.05*this->getSpeed());
changez = 1;

}
else if ({thisTempZ - moveToZ) < 0)
{

thisTempz -= {MOVE_INCREMENT + 0.0S*this->getSpeed(}};
change2 = -1;
}
}//end else

//check for going out of bounds
if(thisTempX <= MIN_X)

thisTempX = MIN_X + 1;//bring the animal back one unit
if (thisTempX >= MAX_X)

thisTempX = MAX_X - 1:;//bring the animal back one unit
if (thisTempZ <= MIN_Z) .

thisTempZ = MIN_Z + 1: //move the animal down one row
if (thisTempZ >= MAX_2)

thisTempZ = MAX_2 - 1; //move the animal up one row

//set orientation
if (changeX > 0)//plusX)
{
if{changeZ > 0)//plusz)
hpr{0) = NPS_DEG2RAD(45.0f); //+
else if(changeZ < 0}
hpr(0) = NPS_DEG2RAD(45.0f); //-
else
hpr{o) = 0;

3
else if (changeX < 0) //else
(

if{changez > 0) //plusz)
hpri0) = NPS_DEG2RAD{135.0f): //+
else if{changeZ < 0)
hpr{0) = NPS_DEG2RAD{135.0f); //-
else
hpr{0] = NPS_DEG2RAD(180.0f};
}
else
{
if {changez > 0}
hpr{0) = NPS_DEG2RAD(90.0f):
else if (changez < 0)
hpr(0) = NPS_DEG2RAD(90.0f);
else
hpr(0) = 0:
}

tempPosition.set(thisTempX, thisTempyY, thisTempZz):
tempRotation.setEBulers(hpr);

this->setPosition{tempPosition);
thi. i fon(i

)i

return;

}//end Animal::moveFrom{()

17

/7 Function: bool Animal::mateEligible(}

// Return Val:

// Parameter:

/1 Purpose: return whether Animal is eligible to mate

bool Animal::mateEligible(Animal &potentialMate)
{
bool mateEligibleFlag = false:

if (thi ype() e= 1Mate (93]

if({this->getGender(} == MALE) &&

ialMate () == FEMALE))

mateEligibleFlag = (!{potentialMate.isPregnant{}} &&
{potentialMate.isInSeason()) &&
(potentialMate.getAge(} >= potentjalMate.getMateAge())&&
{this->getAge() >= this->g On;

1
else if{(this->getGender() == FEMALE) &k
(potentialMate.getGender() == MALE))
{
mateEligibleFlag = (!{this->isPregnant()) &&
{this->isInSeason{}) &&
(potentialMate.getAge() >= potentialMate.getMateRge()})ak
(this->getAge() >= this->getMateAge()});
}//end if else getGender()...
N

1//end if getAgentType()
return mateBligibleFlag:

}//end Animal::mateEligible

77
// Function: .bool Animal::canMate()

// Return Val:

// Parameter:

1/ Purpose: return whether Animal can mate or not

bool Animal::canMate(Animal &potentialMate)
{
bool mateFlag = false:
if (this->getAgentType() == potentialMate.getAgentType())

if{(this->getGender() == MALE) &k
(potentialMate.getGender() == FEMALE})
t .
mateFlag = ((!{potentialMate.isPregnant{))) &&
{this->getNextAction() == MATE) &&

ialMate. ion{) == MATE) &&
(potentialMate.getAge() >= potentialMate.getMateAge())i&
(this->getAge() >= this->g () &&
(thi istance(ialMate) <= MATE_! 1

)
else if{(this->getGender() == FEMALE) &i&
(potentialMate.getGender(} == MALE))
{
mateFlag = ((!({this->isPregnant()}) &&

(this->getNextAction() == MATE) &&
{ ialMate ction() == MATE) &&
(potentialMate.getAge(} >= potentialMate.getMateAge())&&
{this->getAge() >= this->getMateAge()) &&
{this->getDistance({potentialMate) <= MATE_DISTANCE)):

}//end if gerGender(}

}1//end if getAgentType()

return (mateFlag):

17

//Function: Animal::mate ()

//Return Val:

//Parameter: mate

17Purpose: begin pregnancy once two animals mate
11

void Animal::mate{Animal &mate)
if (this->getAgentType!) == mate.getAgentTypel))
{
if (this->getGender() == MALE)
{

mate.setPregnant (true);
mate.pregPtr->maleSpeed = this->getSpeed();
mate.pregPtr->gestationTime = 0;

)

else

{
this->setPregnant{true};
this->pregPtr~>maleSpeed = mate.getSpeed():
this->pregPtr->gestationTine = 0;

}

return:
}//end function Animal::mate()

17

/7 Function: randomlitterSize(int lower, upper)

// Return Val: int - number in litter

/! Parameter: lower, upper

/] Purpose: return a random number of Animals in a litter bounded by
1" the upper and lower bounds provided

11
int Animal::randomlLitterSize(int lower, int upper)
{

return (npsAgent::myRand{) * upper + lower);

}/7end Animal::littersSize(}

17

/{ Function: diesAsInfant{double)

/7 Return Val: bool

/7 Parameter: morxtalityRate

/7 Purpose: return whether infant dies or not

17
bool Animal::diesAsInfant{double mortalityRate)
{

double - H 0;

return {randNum < mortalityRate};

}/7end Animal::mortality()

78

//end file Animal.c

7
/1 EXECUTIVE SUMMARY
// Module Name: antelope.h

1

/! Authors: Mark A. Boyd maboydebigfoot.com
/77 Todd A. Gagnon toddégagnon.com
17

// Description: Definition of the anntelope class agent used in npsAgent
1"

// March 1999 Master Thesis
7"

#ifndef _antelope_h
#define _antelope h

1
77 INCLUDES AND EXTERNS
17

#include “npsAgentapi.h*
#include *animal.h*

17

/7 DEFINES

i

#define INFANT MORTALITY RATE 0.50
Mdefine REST, _SENSING_RANGE 20
tdefine REGULAR_SENSING_RANGE 15
#define RUN_SENSING_RANGE 10
#define FRIEND_STANDOFF_DISTANCE 1.5
#define FOOD_RANGE s
#define MAX_AGE . 3650
#define BEGIN_SEASON 30
#define END_SEASON 75
#define ONE_YEAR 365
tdefine KILLED RADIUS 0.15
#define KILL_PROBABILITY 0.7
#define ANTELOPE_GESTATION_PERIOD 60
77

17 FUNCTION PROTOTYPE SPECIFICATIONS
77

class Antelope: public Animal{
private:

int Sé}!um.
herdsize;

public:

//Constructor
Antelope{bbCallbackFunc *callbackfunc):

//Constructor
Antelope():

//Default Destructor - does nothing at this time
~Antelope{):

//produce a newborn Antelope from a male/female pair
Antelope® giveBirth{int int ¢ d,
int motherGeneration, npsVec3f motherlocation):

/7get antelope identification number
int getIdNum(}:

//set and get herd size
int getHerdSize():
void setHerdSize(int hs);

//can the Antelope mate
bool Antelope ialMate};
void mate(Antelope *mate);

//are the Antelope mate eligible
bool mateEligible(Antelope *potentialMate}:

//test to see if antelope is killed by predator
bool isKilled(npsAgent &agent);

//allow antelope to move through the world
void updatePosition(int time);

//allow the antelope to sense the world
void sense{int time);//npsAgent *sensedAgent);

int littersize(}:
bool diesAsInfant(};

void sensePredators{npsAgent vagent, float &closestPredator):
void senseFriendly(npsigent *agent, float &closestPriend,

float &closestPartner);
void d *agent, np: £ &el tion);
void sensefnemy(npsAgent *agent, float kclosestUnknown):
void senseUnknown(npsAgent *agent, float &closestUnknown);

1
/7 INLINED MEMBER FUNCTIONS
1

inline int Antelope::getIdNum()
{

return idNum;
)

inline int Antelope::getHerdsize()
{
return herdsize;

}

inline void Antelope::setHerdSize(int hs)

herdSize = hs;
)

#endif // _antelope_h

// EXECUTIVE SUMMARY
/! Module Name: antelope.c

/1 '

/! Ruthors: Mark A. Boyd maboyddbigfoot.com
1 Todd A. Gagnon toddégagnon.com
17

// Deseription: Implementation of the antelope class agent for use in
1 npsigent

// March 1999 Master Thesis

/7 INCLUDES AND EXTERNS

#include “antelope.h*
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <ctime>
#include <math.h>
#include <GL/gl.h>

1/ *
// DEFINES AND FILE SCOPE CONSTANTS
1

void initGeomPunc{void *object, bbData *data);

static int numAntelope = 0;

// Function: Antelope::Antelope(}
// Return Val: Nene
// Parameter: None

// Purpose: Default constructor
17
Antelope: :Antelope {}
:Animal(ini). i lope++), herdSize(1)

(
this->setAgentType("Antelope®);

double = T ooy):

if (genderRand < 0.5)
this->setGender (MALE};
else

{
this->setGender (FEMALE) ;
thi, pregPtr = new Preg 241

)

//assign a random max speed for the animal between 5..10
int maxSpeed = myRand()*10: :
if (maxSpeed < S}
maxsSpeed += 5;
this->setSpeed (maxSpeed) ;

this->setAge(int {myRand() * MAX_AGE}):

this->setMateAge (MATE_AGE) ;

this->setSensingRange (REGULAR_SENSING_RANGE);
)//end Antelope::Antelope()

1!
1" 3 lope:: lope{)
/{ Return Val: None

// Parameter: None

/1 Purpose: Default destructor
1

Antelope: :~Antelope (}
(

/740 nothing at this point
}//end Antelope::~Antelope()

/7 Function: initGeomFunc()
/7 Return Val:
// Parameter:
// Purpose: provides OpenGL calls from which Babmoo will draw antelope
11
void initGeomFunc{void *cbject, bbData *data)
{
GLfloat coords[41{3} = { { 0.0f, 0.0f, -0.5f}, // front
{-0.3£, 0.0f, 0.5f}, 1/ back left
(0.3£, 0.0f, 0.5f), /¢ back right
{ 0.0f, 0.4f, 0.5f} // top
}:

glshadeModel (GL_FLAT) ;
glBegin (GL_TRIANGLES) ;
(
glColor3f(0.75£, 0.5f, 0.75f); // bottom
glvertex3fv(coordsio]};
glVertex3dfv{coords(2]}: -
glVertex3tv{coords{1});

glColor3£(0.75¢, 0.5%, 0.5f): // left
glVertex3dfv(coordsio)};
glVertex3dfvicoords{1)}:
glvertex3fv{coords(3]};

glColor3f{0.5¢, 0.Sf, 0.75f); // right
glVertex3fvicoords{0}):
glVertex3fvicoords{3]);

glVertex3dfv{coords[2]);

glColor3£(0.75£, 0.5f, 0.75f): // back
glVertex3fv(coords(1]);
glvertex3fv(coords(2]);
glvertex3fv(coords(3]);
}

glEnd{};

glshadeModel (GL_SMOOTH) :

}//end Antelope::initGeom()

11
//Function: Antelope::giveBirth ()

//Return Val: Antelope

//Parameter: male speed, female speed

//Purpose: make & new Antelope with speed the average of it's parents

17
Antelope* Antelope::giveBirth{int int d
int motherGeneration, npsVec3f motherlLocation)

{
int newSpeed;
char name[64];

Antelope *newBorn:

if (npsAgent: :myRand{} < .S}
newSpeed = motherSpeed;
else
newSpeed = fatherSpeed;

newBorn = new Antelope();

strcpy (name, °Antelope*}:

strcat (name, this->i ToString IdNum(}});
B ToFriends ype()):

newBorn->setName (name) ;

//set values of newborn based on parents® information
¢ Q) ;

Position (mof ocation) :
i + 1};
return newBorn;

}//end antelope::mate()
1"
/1 Function: bool Antelope::canMate()
// Return Val: \
// Parameter: :
// Purpose: return whether Antelope can mate or not
17
bool Antelope: Antelope ialMate)

{
bool mateFlag = false;

if ((this->getGender(} == MALE) &&
(potentialMate->getGender{) == FEMALE))

mateFlag = {(!(potentialMate->isPregnant()}) &&
(this->getNextAction{) == MATE) &k
(petent!nuhte»qetﬂexuction() == MATE) &&
{thi (*po alMate) <= MATE_DISTANCE)):

)
else if((this->getGender() == FEMALE) &&
(potentialMate->getGender() == MALE))
{
mateFlag = ((!(this->isPregnant(})} k&
(this->getNextAction{) == MATE) &&
alM \nn() == MATE) &&
(th:.s~>getDzs:an=e('pcten::.amate) <= MATE_DISTANCE)):

}

return mateFlag;
}//end canMate()

1
/7 Function: bool Antelope::mateEligible{)

/7 Return Val:

// Paxameter:

// Purpose: return whether Antelope is eligible to mate

bool Antelope::mateEligible(Antelope *potentialMate)
(
bool mateEligibleFlag = false:

if ((this->getGender() == MALE) &&
{potentialMate->getGender() == FEMALE))

mateEligibleFlag = ('(po:entialnnt.e->isl>reqnmc()) &k
ialM, 1) &k
(po:entinlmte->geuge() >» MATE_AGE) &&
{this->getAge(} >= MATE_AGE}}:

1
else if({this->getGender() == FEMALE) &&
(potentialMate->getGender() =s MALE))
t
mateEligibleFlag = {!(this->isPregnant()) &&

(this->isInSeason{}) &&
(potentialMate->getAge(} >x MATE_AGE) &é&
{this->getAge() >= MATE_AGE}):

}

return mateEligibleFlag:
}//end Antelope::mateEligible()

4

//Function: Antelope: :mate ()

//Return Val: true / false

//Parameter: mate

//Purpose: begin p once two 1 mate
17
void Antelope::mate{Antelope *mate)

if (this->getGender{) == MALE)

mate->setPregnant (true);
mate->pregPtr->maleSpeed = this->getSpeed();
mate->pregPtr->gestationTime = 0;

}

else

(
this->setPregnant {true):
this->pregPtr->maleSpeed = mate->getSpeed():
this->pregPtr~>gestationTime = 0;

}

return;
)//end function Antelope::mate()

11
// Function: updatePosition(}

// Return Val:

// Parameter:

/1 Purpose: allow the antelope to update position

void Antelope::updatePosition(int time)
{

switch(this->getNextAction())

t

case MATE :
4
this->setSpeedOfNextMove (REGULAR) ;
thi {thi ion{}):

break:
}
case NOTHING :

if(rand() < RAND_MAX/2)
this->setSpeedofNextMove (REGULAR) ;
else
this->setSpeedOfNextMove (REST) ;
this->movel(); .
break;
3
case FEED :
(

this->setSpeedofNextMove (REGULAR) ;
thi {this->g ion(});
break;

}

case GATHER :

{
this->setSpeedOfNextMove (REGULAR) ;
thi: To (this->g ocation());
break:

} /
caze AVOID :
(

this->setSpeedOfNextMove (REGULAR) ;
thi.

{thi.

tion(});
break;

case FLEE :

{
this->setSpeedOfNextMove (RUN) ; -
thi (th: g don());

break;
)
default : //CHASE
{

thu-)setspeedcmexmove(nwl 3
rom(thi ion{)):

bxeak :
}

)//end gwitch getNextAction{)
if (this->isPregnant()}
{
if {this->pregPtr->gestationTime == ANTELOPE_GESTATION_PERIOD)
t

int litter = this->litterSize();
npsVec3f tempLocation;
this->getPosition(tempLocation);

Antelope *babyAntelope:
for (int ix = 1; ix <= litter; ix++)
{
babyAntelope = this->giveBirth(this->getSpeed(),
:his-»pzeg?:r ->maleSpeed,

on(), tempLocation);

if (babyAntelope->diesAsinfant()}
{

1 Indi (INFANT_MORTALITY);

else
{
//do nothing at this time

i (babymtelope-wetcmdet() == FEMALE)
T = new
)//end for (ix) - create litter of size ntzez

this~>setPregnant (false);
)//end if pregancy gestation time > ANTELOPE_GESTATION_TIME
else
4
this->pregPtr->gestationTimes+;
)//end else
}//end if aix->isPregnant()

this->growolder():

//check age and if over MAX_AGE then set deathIndicator to OLD_AGE
4if{this->getAge() a= MAX_AGE)
{
this->setDeathIndicator (OLD_AGE) :
3}

//Last thing we do is check to make sure the antelope didn't die two

//time steps ago. if so take out of world elsee increment counter
/7this allows other animals to sense this one and learn how it died

if{{this->getDeathIndicator{) != NOT_DEAD) &&
(this->getDeathCounter() < 2))
{
this er (thi: 0+ 2);
}//end if getDeathIndicator()
else if((this->getDeathindicator{) != NOT_DEAD) &&
{this->getDeathCountex() >=2))

(
this->setRemove();
}//end if else getDeathIndicator()
}//end updateposition()

17

// Function: sense{)
/7 Return Val:

// Parameter:

/7 Purpose: allow the antelope to sense environment and decide which
2 action to take next
17

void Antelope::sense{int time)//npsAgent *sensedAgent)
{
if {(time¥ONE_YEAR > BEGIN_SEASON) &k (time¥ONE_YEAR < END_SEASON))
this->setInSeason(true);
else
this->setInSeason(false);

int currentSensingRange = 0;

float closestPartner = 100,
closestFriend = 100,
closestEnemy = 100,
closestUnknown = 100,
closestPredator = 100;

bool sensedFood = false;

£ tion, ¢l ition:

//initialize to large value to start with
closestFoodPosition.set (MAX_X*5.0f, MAX_Y*S5.0f, MAX_Z*5.0f);

switch(this~>getSpeedOfNextMove(})
t .

case REST :

{
curren:sensingkange = REST_SENSING_RANGE;
break;

}

case REGULAR :

{
currentSensingRange = REGULAR_SENSING_RANGE:
break:

}

default://case RUN

{

O cur = RUN_SENSING_RANGE:

break:
}
1//end switch

this->setNextAction (NOTHING); //reset this for tracking

int numAgents = bbListedCl s jects();

for (int j = 0; j < numAgents: j++)
{
npsAgent *sensedAgent = bbListedClass<npsigent>::getObject(j);

if ((this->getDistance() <= cur i &
{this->g () =)}

¢
switch (this->getRelationship{sensedAgent)) '
(

case PREDATOR:
{

break:
}
case ENEMY:

if (this->getNextAction() t!= FLEE}

el 153

break;
)
case FRIENDLY:
if (this->getNextAction{) != FLEE)
{

sensefriendly(sensedigent, closestFriend,
closestPartner);
)
break;
}
case FOOD:
(
sensedFood = true;
if (this->getNextAction(} != FLEE)
{

a(1 ition);
)
break:

H
default: //case UNKNOWN:
t

t !)s

break;

}
}//end switch
}//end if (distanceToAgent...)

}//end for (j<numAgents)

77if your nmot going to mate, if you haven‘'t found found a
//friend or 1/2 -the time when you have found a friend antelope
//4ill move to food anyway

if{ (this->getNextAction(} != MATE) &&
(this->getNextAction({) != FLEE) && sensedFood)

§f((this->getNextAction() != GATHER) |] (npsAgent::myRand() < 0.5})
if (this->getDi tion{cl ition) < FOOD_RANGE}
this->setNextAction {NOTHING) :
else
{
thi tion{cl ition);

this->setNextAction{FEED);
}//end if else getDistance
)//end if nextAction != Gather
}//end if nextAction != MATE...

}//end Antelope::sense(}

1
// Function: sensePredators()

// Return Val:

// Parameter: npsAgent, float

/! Purpose: allow agent to Sense a known predator and decide what to
11 next

11t
void Antelope::sensePredators(npsAgent *agent, float &closestPredator)
npsVec3f moveFromLocation; -

if (this->isKilled(*agent)}
{
this->setRemove();
thi! Indicator (ON) ;
thi Killer{ag e()):

}
else if (this->getDistance(*agent} < closestPredator)
4

closestPredator = this->getDistance(*agent):

g g ition (move tion);
this->setMoveFromLocation (moveFromLocation) ;
this->setNextAction(FLEE) ;

}//end if

}//end sensePredator

/7
// Function: senseFriendly()}

/1 Return Val:

// Parameter: npsAgent, float, float

// Purpose: allow agent to sense a known predator and decide what to
17 next

1
void Antelope::senseFriendly(npsAgent *agent, float &closestFriend,
float &closestPartner)

float distanceToAgent = this->getDistance{*agent);

npsVec3f moveToLocation:

if (this->isSameAgentTypelagent))
{
if (this->canMate((Antelope *}agent)}
(
this->mate((Antelope *lagent):
this->setNextAction{FEED): //should feed after mating
}//end ifcanMate(}
else if{{this->mateEligible({Antelope *]agent)] &&

{di < cl tner))
{
el tner = di
g g tion tion):
thi tion tion) :

this->setNextAction (MATE) ;
}//end else it mateEligible(sensedAgent)
else if(this->getNextAction(} != MATE)
{

if((ai < el iend) &&
{distanceToAgent > FRIEND_STANDOFF_DISTANCE))
{

1 iend = di
agent->g ition ion};
thi tion(ion}:

this->setNextAct ion(GATHER) ;
}//end if{getDistance()

}//end else if (getNextAction)
}//end if isSameAgent{)
else
{

7/no interaction defined for other friendly agents at this time
}/7end if/else{isSameAgentType)

)//end sensePriendly()

1"
// Function: senseFood()
// Return Val:

1 : P

/! Purpose: allow agent to sense a known food source and remember if
17 it is the closest one

1

void Antelope:: (*agent, Rnp: el ition)

{
if (this->getDistance(*agent) <
thi Di tion{cl ition})

tion(cl tion):

g g
}//end if

}//end senseFood

17
7/ Function: senseEnemy()

// Return Val:

// Parameter: npsAgent, int

1/ Purpose: allow agent to sense a known predator and decide what to
71 next

17
void Antelope::senseEnemy{npsAgent *agent, float iclosestEnemy)
{

//do nothing for Enemies at this time
}//end sensePredator

/1 Function: senseUnknown()

// Return Val:

// Parameter: npsAgent, int

// Purpose: allow agent to sense an unknown agent and decide how to
17 interact with it

void Antelope::senseUnknown(npsigent *agent, float &closestUnknown)

(
if {1 (strcmp (agent->getAgentType(), "Grass*})}
{

thi { yre());:

}

else if(!(P t ypel), "Ch h"})}
this-> (ag ype()):

H

else

{
thi. (ag (825

)

1//end sensePredator

11

// Punction: int Antelope::litterSize()

/7 Return Val: jint number in litter

// Parameter:

/1 Purpose: return a random number of antelope in a litter
1 -

int Antelope::litterSize()
int litter = 1;

if (npsAgent::myRand() >= 0.9}
litter = 2;

revurn litter;

)//end Antelope::littersize()

11
// Function: bool Antelope::diesAsInfant()

// Return Val:

/! Parameter:

// Purpose: return whether infant dies or not

14
bool Antelope::diesAsInfant()
{

double = 1:my {):

return (randNum < INFANT_MORTALITY _RATE):

}//end Antelope::mortality()

17

// Function: isKilled(Animal)
/7 Return Val: bool

// Parameter:

/1 Purpose: every animal must be able to determine if it has been

17 killed by another animal

bool Antelope::isKilled(npsAgent &agent)
{
bool killFlag = false;

if ({this->getDeathindicator() == NOT_DEAD) k&

{this->getRelationship{kagent) == PREDATOR) &k
{this->getDistance(agent) <= KILLED_RADIUS) &&

(npsAgent: :myRand () < XILL_PROBABILITY)})

cout<<"testing antelope isKilled by “<<agent.getName()<<endl:

killFlag = true:
)
return killPlag;

)
/7end file Antelope.c

1 EXECUTIVE SUMMARY
1/ ¥odule Name: antelopeApp.h

17

/7 Authors: Mark A. Boyd maboydébigfoot.com

17 Todd A. Gagnon toddégagnon.com

17

// Description: The application class for the Antelope Module - used
17 to instantiate Antelope agents when requested

1

// March 1999 Master Thesis

17

#ifndef _antelopeApp h
#define _antelopeApp_h

1
/] INCLUDES AND EXTERNS

17

tinclude *antelope.h”

17
17 FUNCTION PROTOTYPE SPECIFICATIONS

1

void initAntelopeApp(};

void exitAntelopeApp():

7"

" INLINED MEMBER FUNCTIONS
7"

#endif // _AntelopeApp h

12
// EXECUTIVE SUMMARY

// Module Name: antelopeApp.c
/

/

// Authors: Mark A. Boyd maboyddbigfoot.com

7" Todd A. Gagnen toddégagnon.com

/"

// Description: The application class for the Antelope Module - used
17 to instantiate Antelope agents when requested
1

// March 1999 Master Thesis

1"

12

/7 INCLUDES AND EXTERNS

1

#include *antelopeApp.h*
#include *bbMedule.h”
#include *bbThread.h*
#include “bbCallback.h*
#include *npsKeyboard.h*
#include "bbEventResponse.h®

#include <math.h>
#include <GL/gl.h>

7"
1" DEFINES & FILE SCOPE VARIABLES

/1

bbThread *thread;
static int numAntelope = 0;

1"
/! CoDE

12
void initKeyboardModule{):

void initAntelopeFunc{int numAntelope);

void initBoidPunc(void *object, bbData *data):
char* integerToString(int inNum);

void initAntelopeApp(}

{

int numAntelope = 0;

initKeyboardModule();

)//end initAntelopeApp(}

void exitNpsAgentApp!()
{

//do nothing for now - should remove antelope if desired

}//end exitAntelopeApp()

void initKeyboardModule({)
{

void getNumFunc(void *object, bbData *data):
npsKeyboard *keyboard:
bbCallback *callback:

7/ get the keyboard device
-

:get s

/! set up get number of antelope by using the ‘a
event: = new (

* key
tKEY_A |

npsKeyboard: :UP_TRANS) ;

callback = new bbCallback():
callback~->setFunc (getNumFunc) ;
eventResponse->addCallbackLast {(callback) ;

§ 1

}

void getNumFunc(void *object, bbData *data)
{

cout <<*How many antelope would you like to create? * << endl:

€in >> numAntelope:

initAntelopeFunc (numAntelope) ;
)

void initAntelopeFunc{int numAntelope)
{

Antelope *myAntelope;
npsvVec3t position:

for (int i = 0; i < numAntelope; i++)
t .
char name(64]:
myAntelope = new Antelope():

strepy{name, =Antelope®);

"

strcat (name,

myAntelope->setRandomPosition();

myAntel iends

ToString (myAntel

myAntelope->setName {name) ;
cout<<"name = *<<name<<®type

ypel()):

IdNum{)));

'ype()<<endl;

)

)
//end antelopeApp.c

I

// EXECUTIVE SUMMARY
// Module Name: cheetah.h

17

// Authors: Mark A. Boyd maboydébigfoot.com
Todd A. Gagnon toddégagnon.com

177

/1 Description: Definition of the cheetah agent for use in npsAgent
11 ‘

// March 1999 Master Thesis
/

2

#ifndef _cheetah h
kdefine _cheetah h

1
// INCLUDES AND EXTERNS
1"

#include “npsAgentApi.h®
#include “animal.h®

17 wes
/! DEFINES

1

#define INFANT MORTALITY.RATE .80
#define REST_SENSING_RANGE 50
#define REGULAR_SENSING_RANGE 35
#define RUN_SENSING_RANGE 20
#define AVOID_DISTANCE 150
#define MAX_AGE 3650
#define BEGIN_SEASON 30
#define END_SEASON 75
#define ONE_YEAR 365
#define GESTATION_PERIOD 60
#define ENERGY_BOOST 200
#define HIGH_ENERGY_LEVEL 1200
#define STOP_HUNTING_LEVEL 200
#define RESUME_HUNTING_LEVEL 800
#define REGULAR_ENERGY_PENALTY 4
#define RUN_ENERGY_PENALTY 10
#define REST_ENERGY_GATN 4
#define AVOID_RANGE 10
#define KILLED_RADIUS 0.10
#define KILL_PROBABILITY 0.5
1

// FUNCTION PROTOTYPE SPECIFICATIONS
17

<lass Cheetah: public Animal(
private:
int idNum;

protected:

public:

¥
1"
"
IZ;

in:

}

//Constructor
Cheetah (bbCallbackFune *callbackFunc);

//Constructor
Cheetah();

//Default Destructor - does nothing at this time
—Cheetah({};

//produce a newborn Cheetah from a male/female pair
Cheetah* giveBirth{int d, int

int motherGeneration, npsVecdf motherLocation):

//get cheetah identification number
int getIdNum();

/ican the Cheetah mate
bool h jalMate);
void mate(Cheetah *mate):

//are the Cheetah mate eligible

bool mateEligible(Cheetah *potentialMate): .
//test to see if cheetah is killed by another agent
bool isKilled{npsAgent &agent);

//allow cheetah to move through the world
void updatePosition(int time}:

//allow the cheetah to sense the world
void sense(int time};

int litterSize();
bool diesAsInfant():

//sense various types of agents

void sensePredators{npsAgent *agent, float &closestPredator);

void senseFriendly(npsAgent *agent, float kclosestFriend,
float &closestPartner);

void senseFood (npsAgent *agent, float &closestFoodPosition):

void senseEnemy(npsAgent *agent, float kclosestUnknown):

void senselmknown(npsAgent *agent, float &closestUnknown);

INLINED MEMBER FUNCTIONS

line int Cheetah::getIdNum()

return idium;

#endif // _cheetah h

12 EXECUTIVE SUMMARY
// Module Name: cheetah.c

i

// Authors: Mark A. Boyd maboydébigfoot.com
12 Todd A. Gagnoen todd@gagnon.com
"

ion of the agent for use in npsAgent

// Description: Impl
I

// ¥arch 1999 Master Thesis

7"
1z INCLUDES AND EXTERNS

7"

#include “cheetah.h”
#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <ctime>
#include <math.h>
#include <GL/gl.h>

i
// DEFINES AND FILE SCOPE CONSTANTS
1
void initGeomFunc(void *object, bbData *data);

static int numCheetah = 0;

17
// CODE

1

// Function: Cheetah::Cheetah()
// Return Val: None
// Parameter: None

// Purpose: Default constructor
12
Cheetah: :Cheetah ()
:Animal {ini), & }

(.
this->setAgentType("Cheetah®);

double = np. somy Y

if (genderRand < 0.5)
this->setGender (MALE);

else
(
this->setGender (FEMALE) ;
thi. pregPtr = new gt Yi

)7

17
7t
1"
1"
1
17
h
{

3

124
7"
7"
1
/"
143

//assign a random max speed for the animal between §5..10
int maxSpeed = myRand(}*12;
if (maxSpeed < 7)
maxspeed += 7;
this->setSpeed (maxSpeed) ;

this->setEnergylevel {1200} ;
this->setAge{int{myRand(} * MAX_AGE)):
this->setMateAge {(MATE_AGE):
this->setSensingRange (REGULAR_SENSING_RANGE):

/end Cheetah::Cheetah{}

PFunction: Cheetah::~Cheetahi()
Return Val: None
Parameter: None
Purpose: Default destructor

eetah: : ~Cheetah ()

/7do nothing at this point
/end Cheetah::-Cheetah()

Function: initGeomFunc{)
Return Val:
Parameter:

Purpose: provides OpenGL calls from which Babmoo will draw

cheetah

void initGeomPunc{void *object, bbData *data}

{
GLfloat coords[4}(3] = ({ 0.0f, 0.0f, -0.6f), // front

{-0.4f, 0.0f, 0.6f}, /7 back left
{ 0.4f, 0.0f, 0.6f), /7 back right
(0.0f, 0.4f, 0.6f) // top

}:

glShadeModel {(GL_FLAT) ;

glBegin (GL_TRIANGLES) ;
{
glColoxr3£{0.0f, 0.0f, 0.0f):; // bottom
glVertexdfv(coords(0]):
glvertex3fv(coords(2]}:
glvertexifvicoords(1]}:

glColor3£(0.0f, 0.0f, 0.0f);: // left
glVertex3fv{coords(0]);
glvertex3fv{coordsfi]);
glVertex3dfv(coords(3]};

glColor3£(0.0f, 0.0f, 0.0f); // right
glVertex3fv(coords(0]};
glvertex3fv{coords(3}};
glvertex3dtv{coords{2});

83

glColor3£(0.0f, 0.0f, 0.0f): // back
glvertex3fv(coords(1]);
glVertex3fv{coords{2]):
glVertex3dfv{coords{3]}:
)

glEnd(}:

¢lshadeModel (GL_SMOOTH) ;

}//end Cheetah::initGeomFunc()

"
//Punction: Cheetah::giveBirth (}
//Return Val: Cheetah

//Parameter: male speed, female speed

//Purpose: make a new Cheetah with speed of one of it's parents
1
Cheetah* Cheetah: :giveBirth(int int
int motherGeneration, npsVec3f motherLocation)
(
int newSpeed;

chax name(&4);
Cheetah *newBorn;

if (npsAgent: :myRand{) < 0.5)
newSpeed = motherSpeed;
else
newSpeed = fatherSpeed;

newBorn = new Cheetah();

strepy{name, "Cheetah®);

strcat {name, this->integerToString(newBorn->getIdNum()}};
'Tiends ype()):

newBorn->setName (name) ;

//set values of newborn based on parents‘ information

ition(ion)
n ionf{;

ion + 1);

Teturn newBorn: '
}//end cheetah::giveBirth(} . .

/! Function: bool Cheetah::canMate()
/! Return Val: .
/! Parameter:

// Puxpose: return vhether Cheetah can mate or not
/1
bool Ch h: (Cheetah ialMate)

bool mateflag = false;

if({this->getGender() == MALE) &&
(potentialMate->getGender() == FEMALE))
(

mateFlag = ((!{potentialMate->isPregnant())) &&
(this->getNextAction() == MATE) &k
{ alM ion{) == MATE) &&
{this- 1 * ialMate) <= MATE_DI 1

)
else if(({this->getGender() == FEMALE) &&
{potentialMate->getGender() == MALE})
{
mateFlag = ((!{this->isPregnant(})) &&

{this->getNextAction() ==z MATE) &&
{potentialMate->getNextAction() == MATE) &&
(thi " 1Mate} <= MATE_DISTANCE)}:

}

return mateFlag:
}//end Cheetah::canMate()

17
/7 Function: bool Cheetah::mateEligible()
// Return Val:
// Parameter:
/1 Purpose: return whether Cheetah is eligible to mate
17
bool Cheetah::mateEligible{Cheetah *potentialMate)
(

bool mateEligibleFlag = false;

if {(this->getGender() == MALE) &&
{potentialMate->getGender() »= FEMALE})

mateEligibleFlag = (!{potentialMate->isPregnant()) &&
{potentialMate->isInSeason{}) &&
{potentialMate->getAge() >= MATE_AGE) k&
(this->getAge() >= MATE_AGE));
}
else if{(this->getGender() == FEMALE) a&
{potentialMate->getGender{) == MALE))

mateEligibleFlag = (!(this->isPregnant(}) &&
{this->isInSeason{}) &&
(potentialMate->getAge{) >= MATE_AGE) &k
(this->getAge(} >= MATE_AGE)):
}

return mateEligibleflag;

}//end Cheetah::mateBligible()

1
//Function: Cheetah::mate {)

//Return Val: true / false

//Parameter: mate

//Purpose: begin pr once two ch mate

void Cheetah::mate{Cheetah *mate)
{
if (this->getGender() == MALE)

mate->setPregnant (true):

mate->pregPtr->partnerId = this->getIdNum({):

mate->pregPtr->maleSpeed = this->getSpeed();
PYegPLy ~>g ionTime = 0;

}

else

(
this->setPregnant (true);
this->pregPtr->partnerId = mate->getIdNum():
this->pregPtr->maleSpeed = mate->getSpeed();
this->pregPtr->gestationTime = 0;

)

return:

)/tend function Cheetah::mate()

17
// Function: updatePosition()

/! Return Val:

// Parameter: .

// Purpose: allow the cheetah to update position
12
void Cheetah::updatePosition(int time)
{

//check to make sure still has enough energy to keep hunting
if (this->getEnergylevel({) < STOP_HUNTING_LEVEL)
{

this->setRest (true);
this->setNextAction (NOTHING) ;
}//end if

switch{this->getNextAction(})
(
case MATE :
{
this->setSpeedOfNextMove {REGULAR) ;
this->setEnergylLevel {this->getEnergyLevel() - REGULAR_ENERGY_PENALTY) ;

thi (this->g tion()};
break;

)

case NOTHING :
if (this->isResting() || (rand() < RAND_MAX/2)}
{

this->setSpeedofNextMove (REST) ;
thi. avel (thi,

yLevel{) + REST_ENERGY_GAIN};
}
else

this->setSpeedOfNextMove (REGULAR) ;
thi. eve) (thi. gYL 1() - REGULAR_ENERGY_PENALTY) ;

)
this->move();
break;

}

case FEED :

this->setSpeedOfNextMove (RUN) ;

thi. yLevel (thi. yLevel () - RUN_ENERGY_PENALTY) :;
this->moveTo (this->getMoveToLocation()};
break;
)
case GATHER :
4
this->setSpeedOfNextMove (REGULAR) ;
thi, 1 (thi, 1() - REGULAR_ENERGY_PENALTY)
thi (this~>g tion{}):
break;
}
case AVOID :
t
this->setSpeedOfNextMove {REGULAR) ;
thi. 1 {thi. g gyLevel(} - REGULAR_ENERGY_PENALTY):
thi. (this->g cation());
break:
)
case FLEE :

{
this->setSpeedOfNextMove (RUN) ;

thi; gyLevel {thi. 1() - RUN_ENERGY_PENALTY) :
thi. {this->g tion{));
break:

}
default : //CHASE
(

this->setSpeed0fNextMove (RUN) ;

thi yLevel (thi. Y’ 1() - RUN_ENERGY_PENALTY);
thi. {this->g fon());

break:

}

}//end switch getNextAction()

if ({this->isPregnant()}
{
if (this->pregPtr->gestationTime == GESTATION_PERIOD}
(
int’ litter = this->littersize():
npsVec3f templLocation;
this->getPosition(tempLocation);

Cheetah *babyCheetah;
for (int ix = 1; ix <= litter; ix++)
t

babyCheetah = this->giveBirth{this->getSpeed(}), this->pregPtr->maleSpee

x> d,

thi ion(), tempL ion);

if (babyCheetah->diesAsInfant())
{

babyCheetah->setDeathIndicator { INFANT_MORTALITY) ;
}

else

{
cout<<*newborn cheetah=<<endl:
}
if (babyCheetah->getGender() == FEMALE}
babyCheetah->pregPtr = new Pregnancy:
'}//end for (ix) - create litter of size litter

this->setPregnant(false);
}//end if pregancy gestation time > GESTATION_TIME
else
{
this->pregPtr->gestationTime++;
}//end else
1//end if aix->isPregnant()

this->growolder():

//check age and if over MAX_AGE then set deathIndicator to OLD_AGE
if(this->getAge() == MAX_AGE}
{
this->setDeathIndicator (OLD_AGE) ;
1

//Last thing we do is check to make sure the cheetah didn't die two
//time steps ago. if so take out of world otherwise increment counter
//this allows the other animals to sense this one and learn how it died

if({this->getDeathIndicator() != N&T,DEAD) && (this->getDeathCounter{) < 2})
{

thi. (thi {) » 1);
}//end if getDeathIndicator()
else if{(this->getDeathIndicator() != NOT_DEAD} && {this->getDeathCounter{) >
==x> =2))
{

this->setRemove();
1//end if else getDeathIndicator(}

}//end updatePosition{)

17
// Function: sense{)

// Return Val:

// Parameter:

// Purpose: allow the cheetah to sense environment and decide which
/" action to take next

1/
void Cheetah::sense({int time)//npsAgent *sensedAgent)

if (this->isResting())

{
if (this->getEnergyLevel() > RESUME_HUNTING_LEVEL)
{

this->setRest (false);

else

if({timeSONE_YEAR > BEGIN_SEASON) && (timeSONE_YEAR < END_SEASON))
this->setlnSeason(true):

else
this->setInSeason{false);

int currentSensingRange = 0;

float closestPartner = 100,

closestFriend = 100,
closestEnemy = 100,
closestUnknown = 100,
closestFood = 100,
closestPredator = 100;
bool sensedFood = false;

npsVec3f moveToLocation:
switch(this->getSpeedOfNextMove(})

case REST :

{
currentSensingRange = REST_SENSING_RANGE;
break;

)

case REGULAR :

{
currentSensingRange = REGULAR_SENSING_RANGE; .
break;

)
default://case RUN
{
currentSensingRange = RUN_SENSING_RANGE:
break;
)
}//end switch
this->setNextAction (NOTHING); //reset this for tracking

int = bbListedCl H jects():

for {int j = 0; j < numAgents; j++)

npsAgent *sensedAgent = bbListedClass<npsAgent>::getObject(j);

if ((this->getDistance() <= 4) k&
{thi)} ta on
{

switch (thi tionship(.)
(

case PREDATOR:
(

break;
]
case ENEMY:
{

break;
}
case FRIENDLY:
{

if{{this->getNextAction() != FLEE) }|
{this->getNextAction() != MATE)}

sensebFriendly(el riend, ¢l

break;
}
case FOOD:
{

if{(this->getNextAction(} != FLEE) ||
{this->getNextAction({) != MATE))
ac d

, €l ¥

break:

}
default: //case UNKNOWN:
{

senseUn) a;

break;
}
}//end switch
}//end if (distanceToAgent...}

}//end tor (j<numAgents)
)//end ifelse(isResting)

}//end Cheetah: :sense{)

/! Function: -sensePredators{)

// Return Val:

/1 Parameter: npsAgent, float

// Purpose: allow agent to sense a known predator and decide what to
17 next

void s:sen: (np. *agent, float &closestPredator}

//nothing defined for predators at this time

}//end sensePredator

/¢ Function: senseFriendly()
/! Return Val:
/! Parameter: npsAgent, float, float

// Purpose: allow agent to sense a known predator and decide what to
1 next
11

void Cheetah::senseFriendly(npsAgent *agent, -float &closestToAvoid,
float &closestPartner)

4
£loat 4i = this->getDistance(*agent);

tner) ;

npsVec3f moveToLocation, moveFromlLocation:

if (this->isSameAgentType(agent})

{
if (this->canMate({Cheetah *)agent)})
{

this->mate((Cheetah *}agent): -
this->setNextAction {NOTHING} ;

)//end if canMate(}

else if ((this->mateEligible({Cheetah *)agent)) &k

(ai < clo tner})
{
1 artner = di :
g ition tion)
thi. tion tion);

this->setNextAction {MATE) ;
}//end else if mateEligible{tcix)
else if ((this->getNextAction() != MATE) &&
{this->getNextAction{) 1= CHASE)}

if{tai < cl oid) &&
\{aistanceToAgent < AVOID_RANGE))
1 id = di

agent->getPosition{moveFromLocation);
thi. ion (movi ion);
this->setNextAction{AVOID);

}//end else if (!MATE)

}//end if isSameAgent()
else

{
//no interaction defined for other friendly agents at this time

}//end if/else(isSameAgentType}

)//end senseFriendly()

// Punction: senseFcod()

// Return Val:

// Parameter: npsAgent, npsVec3f

1/ Purpose: aliow agent to sense a known food scurce and remember if

1" it 'is the closest one
12
void : *agent, float &closestFood)

npsVec3f moveTolocation:

if{(this->getNextAction() != MATE) && !(this->isResting()) &&
{this->getEnergyLevel () < HIGH_ENERGY LEVEL))

{
if (this->getDistance(*agent) < closestFood}

if {agent->isKilled(*this)}
{

thi. Y 1 (Lhi: gyLevel() + ENERGY_BOOST);
this->setNextAction (NOTHING) ;
cout<<*Antelope killed®<<endl:

1//end if canXilll)

else
if {this->getDistance("agent) < closestFood)

closestFood = this->getDistance(*agent);
g g ition tion);
thi. tion(tion);
this->setNextAction (CHASE);

}//end if getDistance

}7//end if else agent->isKilled()
}//end if cix->getX()

}//end if (!foundPartner)

}//end senseFood

// Function: senseBnemy{)
// Return Val:
// Parameter: npsAgent, int

/! Purpose: allow agent to sense a known predator and decide what to
11 next

11

void h:: *agent, float &cClosestEnemy}

//do nothing for Enemies at this time

}//end sensePredator

// Function: senseUnknown(}
// Return Val:
// Parameter: npsAgent, int

// Purpose: allow agent to sense an unknown agent and decide how te
14 interact with it

143

void s *agent, float &closestiUnknown)

if (! {strcmp{agent->getAgentType(), *Antelope™})}
{

this->addToFood(agent->getAgentType());
}
else
{

//do nothing at this time

}//end sensePredator

/1 Function: int litterSize()

// Return Val: int number in litter

// Parameter:

/! Purpose: return a random number of cheetah in a litter

11

int Cheetah::litterSize(}
int litter = 1;
double randNum = npsAgent::myRand({):

if (randNum <= 0.05)
litter = 1;

else if{(randNum > 0.05) &k {randNum <= 0.15))
litter = 2;

else if((randNum > 0.15) && (randNum <= 0.3))
litter = 3;

else if({(randNum > 0.3) && (randNum <= 0.7))
litrer = 4;

else if(([randNum > 0.7) && (randNum <= 0.85))

litter = 5;

else if{{randNum > 0.85) && (randNum <= 0.95))
litter = 6:

else //if randNum > .95
litter = 7;

return litter:

}1//end Cheetah::litterSize()

7"
7/ Function: Dbool Cheetah::diesAsInfant()

// Return Val:

1/ Parameter:

1/ Purpose: return whether infant dies or not

17
bool Cheetah::diesAsInfant()
{

return {npsAgent::myRand(} < INFANT_MORTALITY_RATE);

}//end Cheetah: :mortality()

17
1/ Function: isKilled{agent)
// Return Val: bool .

/1 Parameter:
1/ Purpose: every animal must be able to determine if it can kill
1 another animal

17
bool Cheetah::isKilled(npsAgent kagent)
{

bool killFlag = false;

if ((this->getDeathIndicator() == NOT _DEAD) &&
{this->getRelationship{kagent) == PREDATOR) &k
(this->getDistance(agent) <= KILLED_RADIUS) &k
(npsAgent: :myRand{) < KILL_PROBABILITY))
killFlag = true:

return killFlag:

}//end Cheetah::isKilled(}

//end file Cheetah.c

17
// EXECUTIVE SUMMARY
/1 Module Name: cheetahApp.h

2

// Authors: Mark A. Boyd maboydébigfoot.com

1 Tedd A. Gagnon toddédgagnon.com

1

// Description: The application class for the Cheetah Module - used
/11 to instantiate Cheetah agents when requested

7"

// March 1999 Master Thesis

1"

#ifndef _cheetahApp h
#define _cheetahApp_h

Iz
// INCLUDES AND EXTERNS

12

#include “cheetah.h*

7
123 FUNCTION PROTOTYPE SPECIFICATIONS

17

void initCheetahapp();
void exitCheetahApp();

#endif // _CheetahApp h

1 EXECUTIVE SUMMARY
// Module Name: cheetahApp.c

1

/7 Authors: Mark A. Boyd maboydébigfoot.com
1 Todd A. Gagnon todddgagnon.com
17

// Description: The application class for the Cheetah Module - used
1 to instantiate Cheetah agents when requested

1"
// March 1999 Master Thesis

11

7
// INCLUDES AND EXTERNS

1

#include “cheetahapp.h®
#include *bbModule.h*
#include *bbThread.h®
#include *bbCallback.h®
#include °*npsKeyboard.h*

finclude “bbEventResponse.h*

#include <math.h>
#include <GL/gl.h>

1
// DEFINES & FILE SCOPE VARIABLES

1"

bbThread *thread;
static int numCheetah = O;

void initKeyboardModule():

void initCheetahFunc(int numCheetah):

void initBoidPunc(void *object, bbData *data):
char® integerToString{int inNum):

1"
/1 CODE

17
void initCheetahApp()
{

initKeyboardModule(}:

void exitNpsAgentApp(}
{

void initKeyboardModule(}
4

wvoid getNumPunc{void *object, bbData *data);
npsKeyboard *keyboard;

ev
bbCallback *callback;

/! get the keyboard device
keyboard = npsKeyboard::getInstance();

/! set up get number of cheetah by using the ‘a’ key
= new d::KEY_C |
npsKeyboard: :UP_TRANS) ;

callback = new bbCallback():

callb: un 1
eventResponse->addCallbacklast (callback):

{ H

void getNumFune(void *cbject, bbData *data)

4
cout <<“How many cheetah would you like to create? * << endl:
cin >> numCheetah:

initCheetahFunc (numCheetah) ;

void initCheetahFunc(int numCheetah}
(

Cheetah *myCheetah; .
npsVec3f position;

for (int i = 0; i < numCheetah; i++)
{

char name{64]:

myCheetah = new Cheetah():

strcpy (name, “Cheetah®);
strcat (name, myCh th ToString (myCh th IdNum())) ;

myCheetah->setRandomPosition(};
. mych h iends {myCh h O):

myCheetah->setName (name) ;
cout«<<"name = * type *<<my pe{)<<endl:

17
1 EXECUTIVE SUMMARY
// Module Name: plant.h

" .

// Authors: Mark A. Boyd maboyd@dbigfoot.com
12 Todd A. Gagnon toddégagnon.com
17

// Description: Definition of the Plant agent for use in npsagent

// March 1999 Master Thesis

#ifndef _plant_h
#define _plant_h

1
1t INCLUDES AND EXTERNS

17

#include “npsAgent.h”
#include *npsAgentApi.h*®
#include *npsVec3f.h*®

11
1 DEFINES

1

class Plant;
#ifdef _Plant_c¢
ACE_EXPORT_SINGLETON_DECLARATION(bbSafeClass<Plant>);

ACE_EXPORT,_SINGLETON_DECLARATION (bbListedClass<Plant>};
felse

ACE_IMPORT_SINGLETON_DECLARATION (bbSafeClass<Plant>);

ACE_IMPORT_SINGLETON_DECLARATION ({bbListedClass<Plant>);

#endif

"

1" FUNCTION PROTOTYPE SPECIFICATIONS
124

class AGENT_API Plant: public npsAgent(
private:
//nothing specific for plants was implemented for this
/lproject. Attributes and behaviors much like those in
//the Animal class could be implemented here.
protected:
/ /Constructor
Plant (bbCallbackFune *callbackFunc);
public:

//Default Destructor - does nothing at this time
~Plant(};

//update position or sense any other agents
virtual void updatePosition(int time) = 0;
virtual void sense(int time} = 0;

//check for being killed
virtual bool isKilled(npsAgent &agent) = 0;

¥

#endif // _Plant

77
1" EXECUTIVE SUMMARY
// Hodule Name: plant.C

#include "Plant.h®

1"
// DEFINES AND FILE SCOPE CONSTANTS
1

static int numPlant = 0;

1"
// Punction: Plant::Plant({)
// Return Val: None

// Parameter: None

// Purpose: Default constructor

17

Plant::Plant (bbCallback »_call)
inpsAgent {_callbackFunc)

(
//nothing to construct at this time

}//end Plant::Plant()

1

// Punction: Plant::~Plant()

// Return Val: Nene

/! Parameter: None

/! Purpose: Default destructor
12
Plant::~Plant {)
¢

//80 nothing at this point
}//end Plant::-Plant{}
//end file Plant.c

14
/" EXECUTIVE SUMMARY

// Module Name: grass.h

1"

// Authors: Mark A. Boyd maboydébigfoot.com
11 Todd A. Gagnon toddégagnon.com

// Description: Definition of the grass agent for use in npsigent

7"

#/ Authors Mark A. Boyd maboyd@bigfoot.com

12 Todd A. Gagnon toddégagnon.com // March 1939 Master Thesis

7" 17"

/7 Description: Definition of the Plant agent for use in npsAgent

1 #ifndef _grass_h

// March 1999 Master Thesis #define _grass_h

i
/" .

#define _plant _c // INCLUDES AND EXTERNS -
I

1"

17 INCLUDES AND EXTERNS #include “npsAgentApi.h”

1 #include *Plant.h”
1
1 EXECUTIVE SUMMARY

1/ /! Module Name: grass.c

// DEFINES I

1 // Authors: Mark A. Boyd maboydébigfoot.com
1" Todd A. Gagnon toddégagnon.com
7

const f£loat PATCH _SIZE = 6.0f;

7
17 FUNCTION PROTOTYPE SPECIFICATIONS
17

class Grass: public Plant(
private:
int idNum;

protected:

public:

//Constructor
Grass (bbCallbackFunc *callbackFunc}:

//Constructor

Grass(};

//Default Destructor - does nothing at this time
~Grass();

int getIdNum();

//will not update position or sense any other agents
void updatePosition(int time);
void sense(int time);

bool isKilled{npsAgent &agent);

¥

12
1" INLINED MEMBER FUNCTIONS
1

inline Grass::getIdNum()
(

Teturn{idNum};
}

inline void Grass::updatePositien(int time)()
inline void Grass::semnse(int time)(}
inline bool Grass::isKilled{npsAgent kagent)(return false;}

#endif // _grass_h

87

/! Description: Definition of the grass agent for use in npsigent

// March 1999 Master Thesis

// INCLUDES AND EXTERNS

#include *grass.h*
#include <GL/g¢l.h>

17"
// DEFINES AND FILE SCOPE CONSTANTS
7"
void initGeomFunc{void *object, bbData *data);

static int numGrass = 0;

12
/! Function: Grass::Grass()
// Return Val: None
// Parameter: None

// Purpose: Default constructor
11
Grass: :Grass ()
sPlant {ini), idNum(;)

{
this->setAgentType{“Grass*);

}//end Grass::Grass()

/! Function: Grass::~Grass{)

/1 Return Val: None

/! Parameter: None

/1 Purpose: Default destructor

Grass: :~Grass ()
{

//do nothing at this point
}//end Grass::~Grass()

/! Function: initGeomFunc()
// Return Val:
// Parameter:

/1 Purpose: provides OpenGL calls from which Babmoo will draw the grass

void initGeomFunc(void *object, bbData *data)

GLfloat cooxds4)[3] = { { -PATCH_SIZE, -0.5f, -PATCH_SIZE},// front

{ PATCH_SI2E, -0.5f,-PATCH_SIZE}. /7 back left
{ PATCH_SIZE, -0.5f, PATCH_SIZE}, // back right
{-PATCH_SIZE, ~0.5f, PATCH_SIZE)} // top

)

glShadeModel {GL_FLAT) ;

glBegin (GL_POLYGON) :
{
glcolox3£(0.5£, 0.7f, 0.5f); // bottom
glVertex3tv(cooxds[0));
glVertex3fv(coords(1)):
glVertex3fv(coords(2]):
glVertex3dfv(coords(3]);
}

glEnd{):

glShadeModel (GL_SMOOTH) ;

]
//end tile Grass.c

17
/" EXECUTIVE SUMMARY
/1 Module Name: grassApp.h

12

/1 Authors: Mark A. Boyd maboydibigfoot.com

1 Todd A. Gagnon todd@gagnon.com

77

// Description: Aplication file for the grass agent for use in npsAgent -
17 used to instantiate grass agents

1"

// March 1999 Master Thesis

17

tifndef _grassApp_h
fdefine _grassApp_h

1"
12 INCLUDES AND EXTERNS
12

#include *grass.h"

1"
/! FUNCTION PROTOTYPE SPECIFICATIONS
1

void initGrassApp():
void exitGrassApp(}:

fendif // _GrasaApp_h

124
// EXECUTIVE SUMMARY
// Module Name: grassApp.c

1

/! Authors: Mark A. Boyd maboyd@bigfoot.com
1 Todd A. Gagnon todddgagmon.com
117

// Description: Aplication file for the grass agent for use in npsigent -
17 used to instantiate grass agents

/"
// March 1999 Master Thesis
1

1
7" INCLUDES AND EXTERNS
17

#include °grassApp.h®
#include “bbModule.h®
#include *bbThread.h®
#include *bbCallback.h*
#include “npsXeyboard.h"
tinclude *bbEventResponse.h”

#include <math.h>
#include <GL/gl.h>

1
// DEFINES & FILE SCOPE VARIABLES
123

static int numGrass = 0;

void initKeyboardModule();
void initGrassFunc(int numGrass);

17
123 CODE
12

void initGrassApp()
{

int numGrass = 0;

initXeyboardModule();
)//end initGrassApp()
void exitNpsAgentApp()

{

/7do nothing for new
)//end exitGrassipp()
void initXeyboardModule()
{

void getNumFunc (void *object, bbbata *data);
npsKeyboard *keyboard;

ev.
bbCallback *callback;

// get the keyboard device
* -

tiget 0

// set up get number of grass by using the 'a‘ key
= new ::KEY.G |

npsKeyboard: :UP_TRANS) ;
callback = new bbCallback():
eallback):
eventResponse->addCallbackLast (callback) ;
{ev)i

}//end initKeyboardModule()

void getNumFPunc{veid *object, bbData *data}
{

cout <<"How many grass agents would you like to create? * << endl;
cin >> numGrass;

initGrassFunc (numGrass);
}//end getNumFunc()

void initGrassPunc{int numGrass)
{

Grass myGrass;

npsVec3f position;

float sqrFtTotal = (MAX_X-MIN_X}*[MAX_Z-MIN_ 2},
sgrFtPerPatch = sqrFtTotal/numGrass,
xoffset = sqrt{sqxFtPerPatch),
ZOffset = xOffset;

int currentX = MIN X,
currentZ = MIN_2:

for (int i = 0; i < numGrass; i+s)
char name{64):

if{(currentXexoffset) <= MAX_X)
currentX += xOffset;
else
{
currentX = MIN_X + xOffset;
if ({currentZ+zOffset) <= MAX_Z)
currentZ += zOffset;
else
currentZ = MIN_Z + zOffset:
}

myGrass = new Grass():

strepy(name, “Grass®):
strcat(name, myGr 3 ToString (my IdNum{}));

ass->; sition():

myGrass->setName (name) ;

myGrass->getPosition(position);
cout<< grass “<<myGrass->getIdNum()<<*in position "<<position<<endl;

)//end initGrassPunc()

//end file grassApp.c .

APPENDIX B: GLOSSARY

adaptability
- Modify rules of behavior and strategies based on interactions.

agent
- Software object with internal states and a set of associated behaviors.

Bamboo
- Cross platform, dynamically extensible, virtual environment toolkit.

emergent behavior
- Behavior patterns that emerge from the interactions of agents but are not inherent
to the agents themselves.

dynamic extensibility
- Applications have the ability to dynamically reconfigure themselves by adding to
or altering their functionality during runtime.

event
- A change of object attribute value, an interaction between objects, an instantiation
of a new object, or a deletion of an existing object.

interaction
- An explicit action taken by an agent that can optionally be directed toward other
agents including the environment.

model
- A physical, mathematical, or otherwise logical representation of a system, entity,
phenomenon, or process.

simulation

- A method for implementing a model over time. Also, a technique for testing,
analysis, or training in which real-world systems are used, or where real-world
and conceptual systems are reproduced by a model.

89

90

(1]

2]

(3]

[4]

[5]

(6]

[7]

(8]

[%]

[10]

[11]

[12]

[13]

[14]

LIST OF REFERENCES

Zyda, M. and Sheehan, J. (1997). Modeling and Simulation: Linking
Entertainment & Defense. Washington, D.C.: National Academy Press.

Holland, J. H. (1998). Emergence. Reading, MA: Helix Books.

Thinking Tools (1999). Agent Based Adaptive Simulation Technology. [On-
line] (2 Feb. 98). Available at URL:
http://www.thinkingtools.com/html/technology.html

Maxis. (1999). The SimCity Story. [On-line] (27 Jan. 99). Available at URL:
http://www.simcity.com/3000/general.htm]

Maxis. (1999). SimCity 2000. [On-line] (27 Jan. 99). Available at URL:
http://www.maxis.com

Williams, R. J. (1995). Using Agent Based Simulations in a Training
Environment. [On-line] (28 Jan. 99). Available at URL:
http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

California Department of Food and Agriculture (1998). The Mediterranean Fruit
Fly Fact Sheet. [On-line] (2 Feb. 99). Available at URL:
http://www.cdfa.ca.gov/pests/medfly/mediterranean fly.html

Axtelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of
Competition and Collaboration. Princeton, NJ: Princeton University Press.

Reynolds, C. (1997). Individual-Based Models. [On-line] (20 Jan. 99)
Available at URL: http://hmt.com/cwr/ibm.html

Axtell, R., and Epstein, J. M. (1996). Growing Artificial Societies: Social
Science for the Bottom Up. Washington, D.C.: The Brookings Institute.

Ziemke, T. (1998). Adaptive Behavior in Autonomous Agents, Presence, volume
7, number 6, December 1998.

Casti, J. L. (1997). Would-be Worlds: How Simulation is Changing the Frontiers
of Science. New York, NY: John Wiley & Sons, Inc.

Hofstadter, D. R. (1979). Gédel, Escher, Bach: An Eternal Golden Braid. New
York, NY: Basic Books.

Watsen, K. and Zyda, M. (1998). Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked, Virtual Environments. 1998 IEEE Virtual
Reality Annual International Symposium (VRAIS - 98), Atlanta, GA.

9

[13]

[16]

[17]

[18]

Watsen, K. and Zyda, M. (1998). Bamboo - Supporting Dynamic Protocols for
Virtual Environments. 1998 IMAGE Conference, Scottsdale, AZ.

Zyda, M. (1999). Academic Associate and Chair of the Modeling, Virtual
Environments, and Simulation Academic Group, Naval Postgraduate School,
Monterey, CA.

Darken, R. (1999). Assistant Professor of Computer Science and Chair of the
Modeling, Virtual Environments, and Simulation Human-Computer Interaction
Track, Naval Postgraduate School, Monterey, CA.

Watsen, K. (1999). Senior Development Architect for Bamboo, Naval
Postgraduate School, Monterey, CA.

92

BIBLIOGRAPHY

Axtell, R., and Epstein, J. M. (1996). Growing Artificial Societies: Social Science from
the Bottom Up. Washington, D.C.: The Brookings Institute.

Axtelrod, R. (1997). The Complexity of Cooperation: Agent-Based Models of
Competition and Collaboration. Princeton, NJ: Princeton University Press.

California Department of Food and Agriculture (1998). The Mediterranean Fruit Fly
Fact Sheet. [On-line] (2 Feb. 99). Available at URL:
http://www.cdfa.ca.gov/pests/medfly/mediterranean fly.html

Campos, A. M. C. and Hill, D. R. C. Web-Based Simulation of Agents Behaviors. [On-
line] (15 Jan. 99). Available at URL: http://www.isima.fr/scs/wbms/d4/Websim. html

Casti, J. L. (1997). Would-be Worlds: How Simulation is Changing the Frontiers of
Science. New York, NY: John Wiley & Sons, Inc.

Deitel, H. M. and Deitel, P. J. (1994). C++ How to Program. Englewood Cliffs, NJ:
Prentice Hall.

Hofstadter, D. R. (1979). Godel, Escher, Bach: An Eternal Golden Braid. New York,
NY: Basic Books.

Holland, J. H. (1995). Hidden Order: How Adaption Builds Complexity. Reading, MA:
Perseus Books. .

Holland, J. H. (1998). Emergence. Reading, MA: Helix Books.

Honegger, B. (1999). VR Project to Simulate Whole Navy. Campus News, volume 6,
issue 8. February 26, 1999.

Jennings, N. R. and Wooldridge, M. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, October 1994.

Laird, J. E. (1998). Knowledge-based Multiagent Coordination, Presence, volume 7,
number 6, December 1998.

Liles, S. W., Watsen, K. and Zyda, M. (1998). Dynamic Discovery of Simulation
Entities Using Bamboo and HLA. 1998 Simulation Interoperability Workshop, Orlando,
FL.

Lock, J. D. (1999). To Fight with Intrepidity ... The Complete History of the U.S. Army
Rangers 1622 to Present. New York, NY: Pocket Books.

93

Maxis. (1999). The SimCity Story. [On-line] (27 Jan. 99). Available at URL:
http://www.simcity.com/3000/general.html

Maxis. (1999). SimCity 2000. [On-line] (27 Jan. 99). Available at URL:
http://www.maxis.com

Minar, N., Burkhart, R., Langton, C., and Askenazi, M. (1996). The Swarm Simulation
System: A Toolkit for Building Multi-Agent Simulations. [On-line] (21 Jan. 99)
Available at URL: http://www.santafe.edu/projects/swarm/intro-material.html

Prosise, J. (1996). Programming Windows 95 with MFC. Redmond, WA: Microsoft
Press.

Resnick, M. (1998). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, MA: The MIT Press.

Reynolds, C. (1997). Individual-Based Models. [On-line] (20 Jan. 99) Available at
URL: http://hmt.com/cwr/ibm.html

Thinking Tools (1999). Agent Based Adaptive Simulation Technology. [On-line] (2
Feb. 98). Available at URL: http://www.thinkingtools.com/html/technology.html

Watsen, K. and Zyda, M. (1998). Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked, Virtual Environments. 1998 IEEE Virtual Reality
Annual International Symposium (VRAIS - 98), Atlanta, GA.

Watsen, K. and Zyda, M. (1998). Bamboo - Supporting Dynamic Protocols for Virtual
Environments. 1998 IMAGE Conference, Scottsdale, AZ.

Williams, R. J. (1995). Simulation for Public Order Training and Preplanning. [On-line]
(28 Jan. 99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Williams, R. J. (1995). Using Agent Based Simulations for Training. [On-line] (15 Jan.
99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Williams, R. J. (1995). Using Agent Based Simulations in a Training Environment. [On-
line] (28 Jan. 99). Available at URL: http://cbl.leeds.ac.uk/rodw/papers/eurosim-95/

Wooldridge, M. and Jennings, N. R. (1995). Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, October 1994.

Ziemke, T. (1998). Adaptive Behavior in Autonomous Agents, Presence, volume 7,
number 6, December 1998.

Zyda, M. and Sheehan, J. (1997). Modeling and Simulation: Linking Entertainment &
Defense. Washington, D.C.: National Academy Press.

94

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School

411 Dyer Rd.

Monterey, California 93943-5101

N6M

2000 Navy Pentagon

Room 4C445

Washington, DC 20350-2000

George Phillips
CNO, N6M1
2000 Navy Pentagon

Room 4C445

Washingon, DC 20350-2000

Mike Macedonia

Chief Scientist and Technical Director
US Army STRICOM

12350 Research Parkway

Orlando, FL 32826-3276

ATTN:ATZL-NSC (Jerry Ham)
410 Kearney Avenue --- Building 45
Fort Leavenworth, KS 66027-1306

Director
Office of Science & Innovation

OSI, MCCDC

3300 Russell Road

Quantico, VA 22134-5021

Capt. Dennis McBride, USN
Office of Naval Research (341)

800 No. Quincy Street

Arlington, VA 22217-5660

95

10.

11.

12.
13.

14.

15.

Col. Crash Konwin, USAF
DMSO

1901 N. Beauregard St.
Suite 504

Alexandria, VA 22311

Sid Kissen

National Security Agency

Attn: S312

9800 Savage Road

Fort George G. Meade, MD 20755

Mark A. Boyd
39062 White Fir Lane
Corvallis, Oregon 97330

Todd A. Gagnon
1278 North Main Street
Brewer, Maine 04412

John Hiles

22 Deer Stalker Path
Monterey, California 93940

Commanding Officer
Attn: Code 30

Navy Information Warfare Activity
9800 Savage Road

Fort Meade, Maryland 20755-6000

Paul Chatelier

Office of Science and Technology Policy

Education and Training Initiative

1901 North Beauregard Street, Suite 510

Alexandria, VA 22311

96

