
STRATEGIES FOR STEGANALYSIS
OF BITMAP GRAPHICS FILES

THESIS
Christopher J. Fogle

Captain, USAF

AFIT/GCS/ENG/99M-05

Approved for public release; distribution unlimited

^o^^n^o^, 19990409 050

The views expressed in this thesis are those of the author and do not necessarily

reflect the official policy or position of the United States Air Force, Department of

Defense, or the United States Government.

AFH/GCS/ENG/99M-05

STRATEGIES FOR STEGANALYSIS

OF BITMAP GRAPHICS FILES

THESIS

Presented to the Faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Christopher J. Fogle, B.S.

Captain, USAF

March 1999

Approved for public release, distribution unlimited

AFIT/GCS/ENG/99M-05

STRATEGIES FOR STEGANALYSIS

OF BITMAP GRAPHICS FILES

THESIS

Christopher J. Fogle, B.S.

Captain, USAF

Approved:
J\

^^cfjZAA-l a^
Dr. Henry Bj. Potoczny
Chairman

, Ph.D. ° (J

Qr4cncU (XA^JU.
Grbgg-HrGunsch, Lt Colonel, USAF

ohn S. Crown, Major, USAF

■~7-&j) j)?;)^)<y

Date

Date

II P*L<ft
Date

Acknowledgments

I would like to express my sincere appreciation to my research advisor, Dr. Henry

Potoczny, for giving me incredible freedom to explore the subject of steganalysis and

perform research that I felt was important. His wit and encouragement made a seemingly

impossible task well worth the effort. I thank my committee members, Lieutenant

Colonel Gregg Gunsch and Major John Crown, for their interest and support of this initial

foray into the unique field of information hiding. Also, to the many government agencies

and fellow academic researchers who shared their insights with me to help me get started,

I thank you.

I must also thank my fellow classmates who endured several, seemingly endless

presentations on steganography and steganalysis. Their kind words of encouragement

made the long research process well worth the journey.

Finally, and most importantly, I would like to express my most heartfelt

appreciation to my wife and best friend, Debbie, and my kids, Stephen and Dayna. Their

love and understanding was the greatest support and comfort to me during the long hours

spent away from home. Without them in my corner, my research most likely would not

have been possible, and almost certainly not fun. We came here as a family, and with

God's help, we succeeded as a family!

Christopher J. Fogle

m

Table of Contents

Page

Acknowledgments iii

Table of Contents iv

List of Figures ix

List of Tables xii

Abstract xv

Strategies for Steganalysis of Bitmap Graphics Files 1

I Introduction 1

1.1 Steganography Defined 1
1.2 Historical Perspective 4
1.3 The Problem 6
1.4 Scope 8
1.5 Approach 11

II Graphics File Formats 13

2.1 Introduction 13
2.2 Image Data Representation 13

2.2.1 Vector Data 14
2.2.2 Bitmap Data 14

2.3 Basics of Computer Bitmap Graphics 15
2.3.1 Color 15
2.3.2 Pixel Depth 16
2.3.3 Color Model 16
2.3.4 Palettes 17
2.3.5 Grayscale 18

2.4 Bitmap Graphics File Formats 19
2.4.1 Bitmap Header 20
2.4.2 Information Header 20
2.4.3 Palette 21
2.4.4 Image Data 22

III Graphics Image Steganography 24

3.1 Introduction 24

iv

3.2 Definitions 24
3.2.1 Hies 25

3.2.1.1 Message File 25
3.2.1.2 Cover File 25

3.2.2 Bytes and Bits 26
3.2.2.1 Message Bits 26
3.2.2.2 Cover Bytes and Bits 26
3.2.2.3 Hiding Bytes and Bits 26

3.3 Examples of Text and Image Data Steganography 27
3.3.1 Substitution Method 27
3.3.2 Selection Method 28
3.3.3 Constructive Method 29
3.3.4 Parity Method 30
3.3.5 Word and Line Shift Encoding 31

3.3.5.1 Technique 32
3.3.5.2 Robustness 33
3.3.5.3 Application 34

3.4 Factors Affecting Steganography Using Bitmap Graphics Files 34
3.4.1 Increase Pixel Depth 35
3.4.2 Grayscale Covers 36
3.4.3 Message Compression and Encryption 36
3.4.4 Cover Image Compression 37
3.4.5 Random Noise 38

3.5 Steganalysis 39
3.5.1 Tool Anomalies 39

3.5.1.1 Flags 39
3.5.1.2 Message Recovery Data 40
3.5.1.3 Application 41

3.5.2 Image Distortions 41
3.5.2.1 Granularity 41
3.5.2.2 Pixel Stuffing and Cropping 44

3.5.3 File Characteristics 44
3.5.3.1 Palette Composition 45
3.5.3.2 Header/Image Inconsistencies 45
3.5.3.3 Byte Frequency Distribution 46

IV Methods 47

4.1 Introduction 47
4.1.1 Problem Definition 47
4.1.2 Problem Statement 48
4.1.3 Scope 48

4.1.3.1 Selected Strategies 48
4.1.3.2 File Format 48
4.1.3.3 Image Library 49
4.1.3.4 Steganography Tools 49
4.1.3.5 Test Parameters 55

4.1.3.6 Test Cases 57
4.2 Method of Evaluation 57

4.2.1 Process Overview 57
4.2.2 Controls 58

4.2.2.1 Cover Files 58
4.2.2.2 Message Files 58
4.2.2.3 Steganography Tools 59

4.2.3 Point-noise Threshold Test 60
4.2.3.1 Overview 60
4.2.3.2 Initial Technique 61
4.2.3.3 Revised Technique 61
4.2.3.4 Bitmap to Intensity Map Conversion 62
4.2.3.5 Point Detection In Images 63
4.2.3.6 Output of Point-noise Threshold Test 67

4.2.4 Byte Frequency Analysis 71
4.2.4.1 Overview 71
4.2.4.2 Technique 71
4.2.4.3 Output of Byte Frequency Test 72

V Results 78

5.1 Introduction 78
5.2 Point-noise Threshold Test 78

5.2.1 Frequency-ordered Partition 78
5.2.1.1 Overall Results 78
5.2.1.2 Threshold Selection and Results 80

5.2.2 Luminance-ordered Partition 87
5.2.2.1 Overall Results 87
5.2.2.2 Threshold Selection and Results 88

5.3 Byte Frequency Analysis 91
5.3.1 Frequency-ordered Partition 91

5.3.1.1 Overall Results 91
5.3.1.2 Target Percentage Selection and Results 94

5.3.2 Luminance-ordered Partition 99
5.3.2.1 Overall Results 99
5.3.2.2 Target Percentage Selection and Results 102

5.4 Ancillary Results 106
5.4.1 Point-noise Threshold Test 106

5.4.1.1 Message File Composition 106
5.4.1.2 Cover File Loading Level 107

5.4.2 Byte Frequency Analysis 108
5.4.2.1 Message File Composition 108
5.4.2.2 Cover File Loading Level 109

VI Conclusion and Recommendations 110

6.1 Conclusion 110

vi

6.2 Validity Ill
6.3 Application of Results 113
6.4 Recommendations for Future Work 114

6.4.1 Characterization of Cover Images 116
6.4.2 Population Statistics and File Signatures 116
6.4.3 Expanding the Problem Space 117
6.4.4 Parameter Modification 117

Appendix A, Test Programs 119

A.l, Byte Count Utility (bytecnt.c) 119

A. 1.1, Overview 119
A. 1.2, Program Code 120
A. 1.3, Sample Output -bytecnt.c 123

A.2, MATLAB Threshold Test Function (scandir.m, getstats.m) 124

A.2.1, Overview 124
A.2.2, Function Code 125

A.2.2.1, scandir.m 125
A.2.2.2, getstats.m 127

A.2.3, Sample Output - scandir.m 127

Appendix B, Point-noise Threshold Test Results 129

B.l, Naming Conventions 129
B.2, Example Point-noise Threshold Test Results 130
B.3, Point-noise Threshold Test Summary - Frequency Ordered Palette... 133

B.3.1, Threshold = 1000 133
B.3.2, Threshold = 750 134
B.3.3, Threshold = 500 135
B.3.4, Threshold = 250 136

B.4, Point-noise Threshold Test Summary - Luminance Ordered Palette . 137
B.4.1, Threshold = 1000 137
B.4.2, Threshold = 750 138
B.4.3, Threshold = 500 139
B.4.4, Threshold = 250 140

B.5, Point-noise Threshold Test Max/Min Values 141

Appendix C, Byte Frequency Test Results 142

C.l, Cumulative Median Byte Frequency 142
C.2, Cumulative Parameter-wise Median Byte Frequency 145

C.2.1, Message File Type 145
C.2.2, Cover File Loading 149

Appendix D, Miscellaneous C-code 153

Vll

D.l, RGB to Grayscale Conversion (rgb2gray.c) 153
D.2, Frequency-ordered Palette Conversion (palfreq.c) 153
D.3, Luminance-ordered Palette Conversion (pallum.c) 153
D.4, Bitmap I/O Header File (bmpio.h) 153

Appendix E, Filtering and Thresholding 154

Bibliography 159

Vita 161

Vlll

List of Figures
Page

Figure 1, Classical Cryptography 2

Figure 2, Steganography 3

Figure 3, Combined Protocol 3

Figure 4, Image with Grid (Pixel) Overlay 15

Figure 5, Image Data as Palette Index 18

Figure 6, Example Substitution Method 28

Figure 7, Parity Method 31

Figure 8, Cover File Capacity 36

Figure 9, Stego-image with Luminance Ordered Palette 42

Figure 10, Stego-image with Grayscale (Intensity) Ordered Palette 43

Figure 11, Stego-image with Frequency Ordered Palette 43

Figure 12, 800x600 Stego-image with Bit Stuffing 45

Figure 13, Comparison of Stego-image: HideSeek vs. S-Tools 52

Figure 14, Original Palette 54

Figure 15, Palette after Embedding with S-Tools 54

Figure 16, S-Tools Palette Sorted by Luminance 55

Figure 17, Experiment Partitions 58

Figure 18, Point-noise Threshold Test Process 62

Figure 19, Original Intensity Map (Grayscale Image) 64

Figure 20, Pixel Neighborhood 64

Figure 21, 3x3 Point-detection Spatial Filter 65

Figure 22, Results of Threshold on Original Intensity Map 67

Figure 23, Sample Threshold Test Results 68

ix

Figure 24, Stego Intensity Map and Threshold Image, T = 1000 (luminance-ordered)... 69

Figure 25, Stego Intensity Map and Threshold Image, T = 1000 (frequency-ordered).... 70

Figure 26, Original Image Byte Frequency Plot (frequency-ordered palette) 73

Figure 27,16-Bin Byte Frequency Plot 73

Figure 28, 8-Bin Byte Frequency Plot 74

Figure 29,4-Bin Byte Frequency Plot 74

Figure 30, HideSeek Image Byte Frequency Plot (frequency-ordered palette) 75

Figure 31, HideSeek Image 4-Bin Byte Frequency Plot (frequency-ordered palette) 76

Figure 32, S-Tools Image Byte Frequency Plot (frequency-ordered palette) 77

Figure 33, S-Tools Image 4-Bin Byte Frequency Plot (frequency-ordered palette) 77

Figure 34, Threshold Test Summary (frequency-ordered palette) 81

Figure 35, Median % Hits with Max-Min (T=250) 82

Figure 36, Median % Hits with Max-Min (T=500) 82

Figure 37, Median % Hits with Max-Min (T=750) 83

Figure 38, Median % Hits with Max-Min (T=1000) 83

Figure 39, Minimum Hit Percentages (frequency-ordered) 87

Figure 40, Threshold Test Summary (luminance-ordered palette) 89

Figure 41, Median Byte Frequency - Non-stego (frequency-ordered) 92

Figure 42, Median Byte Frequency - HideSeek (frequency-ordered) 93

Figure 43, Median Byte Frequency - Steganos (frequency-ordered) 93

Figure 44, Median Byte Frequency - S-Tools (frequency-ordered) 94

Figure 45, Combined Median Byte Frequency (frequency-ordered) 95

Figure 46, Cumulative Percentage of Total Bytes (frequency-ordered) 96

Figure 47, Target Percentage of Total Bytes (frequency-ordered) 98

Figure 48, Median Byte Frequency - Non-stego (luminance-ordered) 100

x

Figure 49, Median Byte Frequency - HideSeek (luminance-ordered) 100

Figure 50, Median Byte Frequency - Steganos (luminance-ordered) 101

Figure 51, Median Byte Frequency - S-Tools (luminance-ordered) 102

Figure 52, Combined Median Byte Frequency (luminance-ordered) 103

Figure 53, Cumulative Percentage of Total Bytes (luminance-ordered) 104

Figure 54, Target Percentage of Total Bytes (luminance-ordered) 104

Figure 55, HideSeek due to Cover File Loading (frequency-ordered) 107

Figure 56, Steganos due to Cover File Loading (frequency-ordered) 108

Figure 57, S-Tools due to Cover File Loading (combined test partition) 109

Figure 58, Point-noise Threshold Test Two-variable Input Mechanism 115

Figure 59, Byte Frequency Analysis Test Two-variable Input Mechanism 115

Figure 60, Naming Convention 129

Figure 61, Initial Image 154

Figure 62, Original Image Data and Filter 155

Figure 63, Padded Image 157

Figure 64, Filtered Image Values 158

Figure 65, Threshold Binary Images 158

XI

List of Tables
Page

Table 1, Structure of Bitmap Header 20

Table 2, Structure of Information Header 21

Table 3, Structure of Palette Tuple 22

Table 4, Master Image Library 51

Table 5, Statistics for Message Files 56

Table 6, Loading Levels Using Steganos Compression 57

Table 7, Test Cases for Sorted and Random Palette Partitions 59

Table 8, Tool Settings and Options 60

Table 9, Threshold Data on Original Intensity Map 66

Table 10, Threshold Data on Embedded Intensity Maps (Threshold = 1000) 68

Table 11, Overall Median Percentage of Hits (frequency-ordered) 79

Table 12, Tool-wise Median Percentage of Hits (frequency-ordered) 79

Table 13, Minimum Hit Percentages by Threshold (frequency-ordered) 81

Table 14, Threshold Test Success Rate (frequency-ordered) 84

Table 15, HideSeek/Steganos Threshold Test Success Rate (frequency-ordered) 85

Table 16, Coin-flip Threshold Test Success Rate (frequency-ordered) 86

Table 17, Coin-flip Threshold Test Success Rate (frequency-ordered) 86

Table 18, Overall Median Percentage of Hits (luminance-ordered) 88

Table 19, Tool-wise Median Percentage of Hits (luminance-ordered) 88

Table 20, Minimum Hit Percentages by Threshold (luminance-ordered) 90

Table 21, Threshold Test Success Rate (luminance-ordered) 90

Table 22, Coin-flip Threshold Test Success Rate (luminance-ordered) 91

Xll

Table 23, Target Percentage / Threshold Value Success Rates (frequency-ordered) 97

Table 24, Target Percentage / Threshold Value Success Rates (frequency-ordered) 98

Table 25, Target Percentage / Threshold Value Success Rates (frequency-ordered) 99

Table 26, Target Percentage / Threshold Value Success Rates (luminance-ordered).... 105

Table 27, Target Percentage / Threshold Value Success Rates (luminance-ordered).... 105

Table 28, Target Percentage / Threshold Value Success Rates (luminance-ordered).... 106

Table 29, Strategy Effectiveness 110

Table 30, Combined Effectiveness Ill

Table 31, Combined Effectiveness with Tool Characterization Ill

Table 32, Naming Convention Element Descriptions 130

Table 33, Example Hit Percentages - Non-Stego, All Thresholds 131

Table 34, Example Hit Percentages Results- HideSeek, T=1000 132

Table 35, Hit Percentages - Summary, T=1000 133

Table 36, Hit Percentages - Summary, T=750 134

Table 37, Hit Percentages - Summary, T=500 135

Table 38, Hit Percentages - Summary, T=250 136

Table 39, Hit Percentages - Summary, T=1000 137

Table 40, Hit Percentages - Summary, T=750 138

Table 41, Hit Percentages - Summary, T=500 139

Table 42, Hit Percentages - Summary, T=250 140

Table 43, Max-Min Hit Percentages (frequency-ordered) 141

Table 44, Max-Min Hit Percentages (luminance-ordered) 141

Table 45, 16-Bin Cumulative Median Byte Frequency (frequency-ordered) 142

Table 46, 8-Bin Cumulative Median Byte Frequency (frequency-ordered) 143

Table 47,4-Bin Cumulative Median Byte Frequency (frequency-ordered) 143

xiii

Table 48, 16-Bin Cumulative Median Byte Frequency (luminance-ordered) 144

Table 49, 8-Bin Cumulative Median Byte Frequency (luminance-ordered) 144

Table 50, 4-Bin Cumulative Median Byte Frequency (luminance-ordered) 145

Table 51, 16-Bin Cumulative Median Byte Frequency (HideSeek, frequency-ordered) 145

Table 52, 16-Bin Cumulative Median Byte Frequency (Steganos, frequency-ordered). 146

Table 53, 16-Bin Cumulative Median Byte Frequency (S-Tools, frequency-ordered).. 146

Table 54, 16-Bin Cumulative Median Byte Frequency (HideSeek, luminance-ordered) 147

Table 55, 16-Bin Cumulative Median Byte Frequency (Steganos, luminance-ordered) 147

Table 56, 16-Bin Cumulative Median Byte Frequency (S-Tools, luminance-ordered).. 148

Table 57, 16-Bin Cumulative Median Byte Frequency (HideSeek, frequency-ordered) 149

Table 58, 16-Bin Cumulative Median Byte Frequency (Steganos, frequency-ordered). 150

Table 59, 16-Bin Cumulative Median Byte Frequency (S-Tools, frequency-ordered) ..150

Table 60, 16-Bin Cumulative Median Byte Frequency (HideSeek, luminance-ordered) 151

Table 61, 16-Bin Cumulative Median Byte Frequency (Steganos, luminance-ordered) 151

Table 62, 16-Bin Cumulative Median Byte Frequency (S-Tools, luminance-ordered).. 152

xiv

Abstract

Steganography is the art and science of communicating through covert channels.

The goal of steganography is to hide the fact that a message is even being transmitted. In

the context of today's digital world, this ancient practice is enjoying resurgence due to

the plethora of hiding places made possible by modern information media. Of particular

concern is the use of graphics image files to conceal both legitimate and criminal

communications.

Steganalysis of graphics files includes methods to detect the presence of

embedded information * and subvert the information channel of a particular container file

by distorting or overwriting the embedded information. While manual investigation of a

file sometimes yields indicators that embedded information is present, the process of

examining thousands of files is painstaking. This thesis explores steganalysis strategies

that could reduce the search space an investigator must confront. Emphasis is placed on

those methods that are easily incorporated in an automated detection tool. Such methods

could be employed in a variety of missions, including information protection,

intelligence, and law enforcement.

When the properties of the original cover file are known a priori, detection is

trivial. This thesis develops two strategies that provide reliable detection of embedded

information when original file characteristics are unknown - a problem known as blind

1 The term information is used throughout this document with the understanding that data is actually being

embedded, and that it becomes information once it is detected, assembled, and interpreted.

XV

steganalysis. The first technique applies a common digital image processing point-noise

detection filter to the steganalysis problem. Pixels in the image that are significantly

different from those around it generate a larger response to the filter than those pixels that

are similar. The percentage of "different" pixels is used to select images that possibly

contain embedded information. The second strategy examines the byte-frequency

distribution of a file. Files that have byte-value distributions which fall outside the

typical population or sample distributions are selected as suspect images.

The results indicate that when the strategies are used in combination, they provide

a high probability of detection in 75% of the search space. The point-noise threshold test

achieves 98% success rates in those cases where the embedding process results in a

visibly distorted image. The byte-frequency analysis test achieves a 100% success rate

against a popular steganography tool that produces no visible distortion.

xvi

Strategies for Steganalysis of Bitmap
Graphics Files

I Introduction

1.1 Steganography Defined

Steganography is an ancient art that has been reborn in the digital world. The

word steganography comes from the ancient Greek words stegos, which means 'covered

or hidden from view,' and graphein -'to write [9]. A more modern definition has been

submitted by steganography researcher Markus Kuhn as the "art and science of

communicating in a way which hides the existence of the communication [1]." Its goal is

to "hide messages inside other 'harmless' messages in a way that does not allow any

'enemy' to even detect that there is a second secret message present" - in other words,

the information is hidden in plain sight. While some might immediately liken

steganography to cryptography, the two are fundamentally different. Hidden information

is not necessarily secure, and secure information is not necessarily hidden. The

distinction between the two is made clear in the following discussion.

In the science of cryptography, information is secured by transforming the

original data into encrypted data via an enciphering scheme. As shown in Figure 1,

encryption produces output, or ciphertext, that is basically unintelligible.

Key Key

Plaintext i r Ciphertext^
ir

Original
Plaintext

*- Decryption fcncry ption

Figure 1, Classical Cryptography

In contrast, steganography leaves the original data unchanged and hides it.

Through the use of an embedding technique, the original information is hidden within an

innocuous cover media. To the casual observer, the cover appears normal. The original

data is eventually recovered by applying the reverse of the original embedding technique,

as shown in Figure 2.

The presumption in cryptography is that an adversary knows communication is

occurring and is able to intercept it. An adversary is often aware that the information is

encrypted and knows the algorithm used to encrypt it. The basis for security, therefore, is

the time and level of resources needed to break the encryption key.

Message
'Info'

Embedding
Cover 'Info'

(Stego)
Recovery

Original
Message
'Info' .

Cover 'Info'

Figure 2, Steganography

In contrast, steganography presumes the enemy is able to intercept a cover, but

cannot ascertain any other information other than the cover message. The information is

merely hidden; no security to the cover or embedded message is implied. A certain

degree of security can be imparted by using keys to both encrypt the data before

embedding it and as a seed for the hiding algorithm. The combination of these two

techniques, shown in Figure 3, has become commonplace in steganographic systems.

Crypto-Key
Crypto-Key

!

Stego-Key Stego-Key

Message
Tnfo'

Embedding
Cover Tnfo'

!

(Stego)
Recovery

Original
Message
Tnfo' .

Cover Tnfo'

Figure 3, Combined Protocol

1.2 Historical Perspective

The ancient art of steganography did not limit the meaning of cover strictly to

forms of communication. In fact, history is replete with examples where secret messages

were concealed in the bodies of dead animals or tattooed on a servant's shaved head [9].

These techniques, although somewhat effective for small amounts of information, are

certainly unproductive in today's information-hungry, digital world. A broad definition

such as this indicates an important historical aspect of successful steganographic systems:

they utilize cover media that does not call undue attention to itself. In doing so, the basic

premise of steganography - concealing the presence of communications - is preserved.

Using this premise as a backdrop, it is not surprising that steganography has

enjoyed a rebirth in the computerized world of today. As computers continue to pervade

the daily routines of millions of people, their use as instruments of steganography makes

perfect sense. Steganography exploits covers that are commonplace and mundane - a

niche that computers fill in today's society.

Steganography's rise in popularity can also be attributed, in part, to the United

States government's prohibition on the exportation of cryptographic material. The

current basis for export control - the Wassenaar Arrangement on Export Controls for

Conventional Arms and Dual-Use Goods and Technologies - was adopted on 13 July

1996, and includes cryptography products on its export control list. Although this stance

has been softened somewhat by a recent executive order that allows vendors to ship

encryption products using 56-bit key-lengths worldwide, it has prompted some to use

steganography as a means to conceal information from casual interception.

Another reason for the rise in popularity of steganography is the large size of the

cover space provided by digital media, particularly in the various computer file formats.

The available hiding space is more or less directly proportional to the size of the cover

file. For example, a file that embeds a bit of information in every byte of cover could

store a file that is one-eighth its size. This figure doubles if two bits are embedded per

byte, and so on. The plethora of hiding places available to the modern steganographer is

truly astounding.

The benefits of using steganography to conceal malicious logic (i.e. computer

viruses and the like) are another reason for the increased attention in information hiding.

Current computer attack methods include protocols for slipping Trojan software past

virus detection mechanisms. The use of steganographic methods to conceal the presence

of the malicious code could allow it to remain undetected until the attack is launched.

The malicious code could be used to decode certain instructions, also possibly hidden via

steganography in other files, and execute the attack. A similar protocol could be

developed where the Trojanized code could be used to decode hidden messages that

reside inside routine communication channels. In this way, the message and the reader

would remain undetectable.

Finally, the foremost reason for the resurgence of steganography is the advent of

digital watermarking. Based on the same principles as digital steganography, this

promising technology is touted by industry as an anti-fraud and forgery godsend.

Industries, particularly music and movies, have spent millions on techniques to hide

company logos and other proprietary markings in digital images, videos, and music

recordings. They have funded a majority of the academic research in steganography,

with an interest in creating robust, tamperproof digital fingerprints. Consequently, this

anti-piracy technology has created collateral interest in basic steganographic techniques.

Even though relatively few companies have begun marketing commercial steganography

products, impressive non-commercial products have been released on the Internet.

As stated above, the majority of the research in both academia and industry has

dealt with digital watermarking. While some research concentrates on making

steganography more secure, pure steganography seems to have taken a back seat to the

more profitable watermarking lobby. Within the Department of Defense (DoD), no

significant unclassified research effort in pure steganography exists. If any other efforts

do exist, they seem to have joined the ranks of other classified projects.

1.3 The Problem

Finding a role for steganography in the DoD is a simple exercise. Intelligence

agencies will certainly benefit from hiding information from casual interception or

observation. However, as with any offensive strategy, an equally important defensive

strategy must exist due to the assumption that adversaries will eventually use the same

methods against you. Cryptography has its antithesis in cryptanalysis, and so the term

coined for attacks on steganographic systems is similar - steganalysis.

The intelligence community is not the only area that might benefit from

steganalysis. Just as computers have permeated family and business settings, their use by

criminal elements has been equally widespread. It was only a matter of time before

criminal elements began using steganographic techniques to hide their information.

While hiding information in unused hard disk partitions and partially used file segments

is one popular form of steganography, the use of graphics image files to hide information

is only beginning to increase. Consequently, law enforcement agencies are becoming

increasingly interested in the benefits of steganalysis as a computer forensics tool.

By definition, steganalysis encompasses discovering and rendering useless covert

messages that are embedded in cover information [8]. It aims to achieve one of three

goals:

• disruption of covert communications,

• detection of hidden channels, or

• recovery of an embedded message.

These three goals represent a logical progression. In the first - disruption of the

communications - an adversary could choose to attack all forms of communications. In

this case, it is not necessary to know for sure whether or not the covert channel exists, as

disruptive countermeasures would be applied across the board.

The second goal - detection - is employed when economy of resources or

prosecution of offenders is important. For instance, the results of detection efforts could

benefit law enforcement personnel in gathering probable cause for further actions.

Reducing the search space would permit law enforcement to concentrate its efforts

against the targets of greatest opportunity and probability of success.

Finally, there is recovery of the embedded message. In order to make recovery

efforts efficacious, the vast number of possible hiding places must be reduced to a much

smaller subset of probable hiding places. Of the three goals, detection seems to be the

key to successful and efficient prosecution of information operations designed to thwart

an adversary's use of covert channels.

In terms of difficulty, the first goal of steganalysis - disrupting the channel - is

relatively trivial to accomplish in the case of graphics image files. Since effective

steganographic techniques do not radically change the appearance of the cover image, the

same techniques can be employed repeatedly with no more adverse visible affects than

the original embedding process. Disruptive attacks on suspected covert channels in

graphics files are easily implemented with simple filters, lossy compression techniques,

and bit-substitution methods.

Assuming a reliable method of detecting steganography existed, achieving the

third goal of steganalysis - recovering the embedded information - could prove a

monumental task. Since steganography is not inherently secure, adversaries combine

cryptography and steganography to improve the security of the covert channel.

Encryption improves steganography and increases the complexity of recovering

the covert message in two ways. First, it secures the information in the event that the

covert channel is compromised. Second, the stochastic property of encrypted information

produces a signature that is less likely to be detected through the use of frequency

analysis. Encryption notwithstanding, the algorithms for selecting hiding places within

graphics images can be computationally secure. Brute force methods would require

extensive computer resources to overcome the time complexities involved.

1.4 Scope

There are virtually no limits to the number of possible methods available for

hiding information in digital media. However, the use of graphics image files appears to

be more common on the Internet than the use of audio or text files. The goal of this

research is to explore avenues for future steganalysis research with the purpose of

8

detecting the presence of embedded information in a graphics file with an automated

process. The focus of this research is the blind steganalysis problem where the original

characteristics of the cover media and the underlying embedded information are

unknown. This research concentrates on steganalytic methods that might be readily

extended to an automated tool or process.

The graphics file format chosen for this research is the Windows© bitmap format

(BMP). It is one of the most common raster data formats for graphics files and can be

stored in an uncompressed state. Other bitmap formats exist, but the majority of them are

compressed for storage. Since manipulating the image data requires it to be logically

uncompressed, less preprocessing is needed. The BMP format accommodates various

pixel depths - the number of bits representing each pixel. The pixel depth chosen for this

research is eight bits due to its popularity and reduced storage requirements. This pixel

depth translates to 256 (= 28) different colors. Finally, BMP is an extremely popular

format with almost universal acceptance. Nearly every image processing application

reads, writes, and converts BMP. [11]

As a side note, it is important to realize that the widespread use of images with a

pixel depth greater than eight bits could possibly alert a forensics investigator to the

presence of criminal behavior. Also, the use of a less-popular format might also flag files

as suspect. Therefore, while the use of eight-bit images affords the least protection, their

use is less likely to garner suspicion.

As mentioned previously, the focus of this research is on the blind steganalysis

problem. Consequently, no assumptions are made about the content of the underlying

embedded information or the cover file. Even though the original files are referenced to

determine the specific properties that change in the embedding process, the files are not

selected on the basis of their content. However, this research is limited to using color

images as cover files. The use of grayscale images as cover yields visibly better output in

the eight-bit formats. However, grayscale images are not all that common on the

Internet. Exclusive use of grayscale images may draw undue attention to an adversary's

communications. This would violate the premise of steganography to keep the existence

of the communications secret.

There are almost as many steganography tools as there are embedding techniques,

and covering them all would be a monumental task. The three tools that were chosen for

this research utilize the most common and effective technique - bit substitution. They

were chosen for the quality of their output, their availability as shareware, and their

ability to handle eight-bit graphics formats. Despite many similarities, the tools

incorporate distinctive differences in the way they manipulate the cover file during the

embedding process.

In summary, although this research is a broad examination of the blind

steganalysis problem, it is conducted within reasonable limits.

• It addresses detection of embedded information and does not confront the

problem of recovery.

• It uses the Windows© BMP format.

• It only operates on the output of three popular steganography tools.

Expanding the scope is discussed in Section 6.4, Recommendations for Future Work.

10

1.5 Approach

This thesis presents a logical sequence of events upon which future research in

steganalysis can be modeled. The opening sections address background that is crucial to

understanding the steganalysis problem mentioned earlier. Chapter 2 introduces graphics

file formats and the principles associated with manipulating digital images. Intricacies of

the BMP format are presented in the context of the Windows© BMP format

specification. Chapter 3 covers basic definitions associated with image steganography

and introduces various methods used to embed information in digital media. It also

highlights several factors that influence the quality of the output from steganography.

Finally, it presents background information on steganalysis.

The background information presented in the first two chapters provides hints to

possible detection strategies. Three primary strategies evolve. The first is to explore

signatures, or anomalies, induced by the steganography tool. The second is to examine

the characteristics of the image data. The third strategy is to examine the characteristics

of the entire file independent of the components that comprise a BMP file. Of these three

strategies, the latter two are examined in depth. The first strategy, examining tool

anomalies, represents a very limited application that would require reinvestigation each

time a new tool is released.

Two techniques emerge as candidates for further investigation. The first

technique examines the image data of a cover file after filtering it with a standard point-

noise detection filter. A point-noise filter is a common filter from image processing and

is typically used in edge detection algorithms. The filter technique is extended here to

provide an indication of the presence of embedded information.

11

The second technique explored in this thesis examines the distribution of bytes in

the cover file as a whole. An elementary byte frequency analysis is used to distinguish an

original cover file from a manipulated copy. This part of the research provides a

foundation upon which future file signatures can be identified. These signatures are key

to detecting files that contain embedded information.

These two strategies are tested on a library of images that contain embedded

information. The images were created using three steganography tools obtained as

shareware from the Internet and commercial vendors. Image processing and data

analysis software was used to examine the results of the tests. The results of these tests

are compared against the results of the same tests applied to the original image files.

Two metrics are developed which indicate possible embedded information for the given

class of files. First, the amount of point noise in an image for a given sensitivity

threshold was used in the first test. For the second test, the frequency of particular byte

values between 0 and 255 were examined. Chapter 4, Methods, describes the two testing

techniques and the specific steps in the data collection phase of this research.

12

// Graphics File Formats

2.1 Introduction

Research in steganalysis of graphics files requires a background in two key areas

- graphics file formats, and steganographic techniques. This chapter introduces the first

area - digital image representations and graphics file formats, specifically bitmap formats

on which this research effort is based. The various methods of storing and representing

graphics image data are explained, and a summary of the popular Microsoft® Windows

bitmap format is presented.

2.2 Image Data Representation

Representing analog data in a digital environment is a classic problem in

communications technologies, and has led to the development of various methods to

translate between analog and digital. The ultimate goal of this process is to maintain as

much of the original image information as possible. While the specifics of analog to

digital translation are beyond the scope of this research, the basic principle involves

sampling the continuous analog signal at a given frequency and quantizing the sampled

signal to a discrete scale. The disparity between the analog signal and the digital signal

decreases as the sampling frequency and the number of discrete quantization levels

increases. A significant tradeoff is in the increased space required to store the digital

13

information. Today, the principal storage schemes for digital images are based upon two

principle methods of representing image data - vector and bitmap formats. [6][10][11]

2.2.1 Vector Data

Vector data considers the image as a collection of objects such as polygons, lines,

and curves. The image is translated into values that specify key points of the objects in

the image. These key points typically include coordinates of intersections, box corners,

or circle radii. Connecting these key points with others and placing the objects within the

image according to some predefined grid renders the image.

Vector data requires attribute information such as line thickness, color, etc., as

well as rules or conventions that aid a program in reproducing the desired image. It is

popular with many CAD/CAM applications because it is easy to scale [11]. Vector data

does not lend itself to the more common steganographic techniques and, as such, is not

considered in this research.

2.2.2 Bitmap Data

Bitmap data is the most common data representation today [10]. It is a set of

numerical values that specifies the color of individual picture elements in the image. A

picture element, or pixel, is the smallest addressable element of an image and is obtained

by first dividing the target image using a rectangular grid like that in Figure 4. The

intensity (or color) value of the image at a particular grid coordinate is the associated

pixel value. Reproducing pixels according to their spatial coordinates renders the image.

Bitmap data patterns its format on raster devices that use a series of rows, or scan

lines, to display images. Unlike vector data, bitmaps are not easy to scale and sometimes

require more memory or disk space to store and process. However, because each pixel

14

can be manipulated independently of the others, bitmap data is an excellent

steganographicinstrument.fi!]

(6,4)^^ X

:=!^4:""-""4:i

" " mJ^
immm^%^m '

\ ■
:::: ;rz z::: ::::=:: ::::::io::: ::::::::

a
' mwp ' : s

■ «■«* i
1 1
^j»| H%ri_" m* a*
i MMM MMHM i

■ »*

 -^H-~x:: ^jm
Mill

;■::::!::: ixtx:::::::::::::::::::::::::::::!

Figure 4, Image with Grid (Pixel) Overlay

2.3 Basics of Computer Bitmap Graphics

This section highlights several terms and concepts involved with bitmap graphics

that are important to researchers working with steganography.

2.3.1 Color

Sir Isaac Newton was the first to discover that sunlight was not simply white, but

rather a continuous spectrum of colors ranging from red to violet. He divided the color

spectrum into six regions - violet, blue, green, yellow, orange, and red - and noticed that

the transition between the regions was smoothly blended [6]. Later scientists would

15

eventually discover that different colors equate to different wavelengths of light, and that

the color we see is actually the wavelength of light reflected off an object. An object that

appears white is actually balanced in all visible wavelengths.

Central to the science of color is the characterization of light. Light is either

chromatic or achromatic. Chromatic light is described using three attributes: radiance,

brightness, and luminance. The first two are generally regarded as the color information

of light, and the latter is the amount of light. Achromatic light is light that is described

only by its amount, also known as intensity. Gray level is a term that is used to describe

achromatic light. It is a scalar measure that ranges from black to white. [6]

2.3.2 Pixel Depth

Pixel depth refers to the number of bits used to represent a single pixel value and

is sometimes called bit depth. The pixel depth determines the number of discrete levels

(or colors) a pixel value can represent. In terms of color images, n-bits can represent 2n

colors. The most common pixel depths are 1, 2,4, 8, and 24 bits. The pixel depth of a

particular image is important in steganography because it influences the format of the

graphics file and affects the choice of steganographic techniques. [11]

2.3.3 Color Model

Most output devices render specific intensity or color levels as a combination of

several components. These components are usually some set of fundamental colors

known as a color model. For instance, on color monitors, the pixel's color is a

combination of red, green, and blue light sources. On color printers, the colors cyan,

magenta, and yellow are used. Each of these color models defines color space within

16

which a device operates. Image data is usually specific to a particular color model and

must be translated before it can be displayed on disparate color model devices. [11]

The purpose of a color model is to standardize the specification of color. It is a

subspace within a three-dimensional coordinate system where every color represents a

single point. One of the most common color models is the red-green-blue model or RGB.

Each pixel value is comprised of a triplet that corresponds to a particular quantity of each

of the three colors. It is convenient to think of these quantities as percentages of each

color; for instance, (0%, 0%, 0%) might be black, and (100%, 100%, 100%) would be

white.

In the Windows© bitmap format, eight bits are allocated for each color, so the

values of each color range from 0 to 255. Zero represents the complete absence of that

color, and 255 represents total saturation. As such, a 24-bit pixel value permits over 16

million (224) possible colors. [6][11]

2.3.4 Palettes

An image palette contains those colors or intensity levels that are used in an

image. Palettes, also known as color maps or color tables, are primarily used to save

space in the file [10] [11]. Each pixel corresponds to a triplet that holds its color

information. In order to represent the widest possible range of colors, a palette is used. It

defines a set of colors in the image and is often represented as an array of three-byte

tuples. The image data, then, is not the three-byte pixel value, but rather an index into the

palette, as shown in Figure 5. Its pixel depth limits the number of colors used in the

image. An 8-bit image such as the Windows© bitmap format has a maximum of 256

colors or palette entries. [11]

17

Palettes are not always optimal features to have because the benefit of using a

palette quickly breaks down above eight-bit pixel depths. A palette with a pixel depth of

24-bits would have approximately 16.7 million entries - one for every possible color.

Such a file would require over 50 megabytes of space for the palette alone.

Consequently, palettes are generally only used for eight-bit pixel depths or less.

0 0

0 1

1 m^M
\. < 1

Palette
INDEX RED GREEN BLUE

+ ° 0 0 0 white

«f 1 255 255 0 yellow

I 2 255 255 255

I I II | ! I ! I
i ii.:

. i . :
:-■ i '.U

■H+t-H-
nim:
j-H-

.4444-14-

.i.-.l W.-\ '...
■ •-• .■- -. :

■ ■:■■ -.I:-! ft, \ rr:cr
mmm,,,v

I ' 'I . I I'

■H4+44-!'+i44H-
mlHimiii _
■H4+H4+HH44+H4
:dii;i::d::Edii:zrQ::i:it
..:..... i .. ■.

f+mH-i-m-HH-rh

wmmmm
j

i^r

jSSSilllll

., .: -: i ■' ^»

XI
4+H4+444fi4+i4-
i:tä:l:H:ö::ö:i:Cn::
+44444444444+14
jirdxGTf'QtrD'
UJ4444444444-I4.

. . . H-++
;■:■:■

.!::•■!

■ ■ I ' ' .1

4-H4+44-
HttCCtt
+4444444-
t:d:rn-i-i"
.-. . i. ■ .

i"Hi"H"t"h

Figure 5, Image Data as Palette Index

2.3.5 Grayscale

The term grayscale refers to an image that contains only shades of gray. This is

not to be confused with binary images that are composed of only black and white [10].

The appearance of a color pixel is a combination of two components: chrominance and

18

luminance. Chrominance combines the color information of radiance and brightness,

while luminance is the brightness of the light [6][11]. A grayscale image, therefore, is a

map of the intensity of each pixel relative to other pixels in the image. It is an image that

has been rendered without its chrominance information [6]. The intensity of each pixel is

translated to a particular grayscale value in the image's palette. A grayscale image's

palette runs the gamut of color values, except the values for each of the three elements in

a tuple is the same. For instance, the triple (127, 127, 127) is a grayscale value.

However, the tuple (127, 127, 128) is not. Although the difference between the two

triples is imperceptible to the human eye, the second triple is a color value and not

grayscale.

2.4 Bitmap Graphics File Formats

Encyclopedia of Graphic File Formats [11] is an excellent source for information

on graphics files standards since it contains over 85 different formats. Such a broad

range poses a considerable challenge to any comprehensive work on digital images. For

the purposes of this research, the Microsoft® Windows bitmap (BMP) format was chosen

as the target format. This section presents background information on the BMP format

that may aid in understanding the image processing techniques used in this research.

Although there are two distinct versions of the BMP format, we will limit the discussion

to the more recent and popular version, version 3.x (Version 3 bitmaps).

The format is designed for Intel-based machines, so the least significant byte

appears in the lowest address in a word. The BMP format varies slightly according to the

pixel depth of the image. It contains three mandatory elements - the bitmap header,

19

information header, and bitmap data - and an optional palette for that is not included with

24-bit pixel depth images.

2.4.1 Bitmap Header

The bitmap header is 14 bytes long and is the first element in a BMP file. The

most noteworthy feature of the bitmap header is the first field. This two-byte value

designates the file as being a BMP file. Other formats have similar identifiers, although

adherence to the standard codes is purely voluntary. Table 1 shows the structure of the

BMP header [11].

Table 1, Structure of Bitmap Header

ImageFileType Always 4D42hex, or "BM" in ASCII.

FileSize Size of the entire file in bytes.

Reserved 1 Not used; always set to 0

Reserved2 Not used; always set to 0

ImageDataOffset Varies according to palette size, if any. For a 256-color
image, the offset is 1079.

2.4.2 Information Header

The next element in a BMP file is the information header. It is 40 bytes long and

contains information about the image data that is used by applications to properly

manipulate and display the image. The most applicable fields in the information header

are the width and height fields, and the number of bits per pixel. Steganography tools use

these fields to determine which bits to manipulate in order to minimize visual distortion.

Table 2 shows the structure of the information header; Murray [11] should be consulted

for further details concerning the information in contained in this header.

20

Table 2, Structure of Information Header

HeaderSize Size of the information header; should equal 40 for v3.x.

ImageWidth Width of the image in pixels.

ImageHeight Height of the image in pixels.

NumberOflmagePlanes Always 1.

BitsPerPixel Pixel depth. Valid values are 1, 4, 8, or 24.

CompressionMethod Bitmaps may be uncompressed or compressed using four
or eight-bit run-length encoding.

SizeOfBitmap Size of the (compressed) image data in bytes.

HorzResolution Horizontal resolution - used in determining proper printing
or displaying parameters.

VertResolution Vertical resolution - used in determining proper printing or
displaying parameters.

NumColorsUsed Number of entries in the palette. If 0, then the palette is
completely filled.

NumSignificantColors Used to determine the most often used colors in the image
in case the display cannot handle all colors.

2.4.3 Palette

The palette appears next in a BMP file that contains eight-bit pixel depth data or

less. Those images that have a pixel depth of 24 bits do not contain a palette. The palette

is a 256-element array of four-byte color values. The color model used in BMP is the

RGB model described earlier, although the data is ordered as blue, green, red (BGR).

21

Each color component is one byte; an unused reserved fourth byte completes the four-

byte tuple. Table 3 shows the structure of a BMP palette tuple [11].

Table 3, Structure of Palette Tuple

Blue Eight-bit blue component.

Green Eight-bit green component.

Red Eight-bit red component.

Reserved Not used - always 0.

It is important to note that the BMP standard does not specify an ordering scheme

for palette color values, although it does provide recommendation [11]. For 16-color

images, it recommends ordering the palette according to the frequency of occurrence for

each color value; that is, those occurring most frequently appear first in the palette. In

practice, a 256-color image might have a palette ordered by frequency of occurrence,

intensity level, or even randomly. This subtle point is an important factor in creating

visibly undetectable steganographic images. Ordering the palette by intensity level prior

to embedding the information tends to produce the highest quality output.

2.4.4 Image Data

The final component in a BMP file is the image data. The current implementation

of BMP allows only a single image in each file; it does not support animation. The image

data in a BMP file is always aligned along byte boundaries. Each row, or scan line, is a

multiple of four bytes in length and is padded when necessary.

When the image has an eight-bit pixel depth or less, the data in the image is an

index into the palette, and it is ordered sequentially according to scan lines in the image.

22

The image is stored with the bottom most scan line first; that is, the lower left pixel in an

image is the first value in the data. Consequently, most steganographic tools embed data

into a BMP image beginning at the bottom of the image and proceeding upwards.

When the image has 24-bit pixel depth, no palette is used and each pixel requires

three contiguous bytes. The data remains byte-aligned according to scan lines and stored

in BGR order. [11]

23

/// Graphics Image Steganography

3.1 Introduction

Once the intricacies of graphics file formats and image representation are

understood, the next step is to formulate steganalysis strategies. Understanding the

various methods used to embed information in graphics image files aids in this effort.

This section focuses on steganography and highlights several unique methods of

embedding information in both image and non-image files. It also presents several

factors which affect steganography and discusses steganalysis and possible detection

strategies.

3.2 Definitions

Over the last several years, an informal dictionary has begun to take shape in

steganography. Its use is reinforced by the efforts of several leading researchers and the

establishment of Information Hiding Workshops sponsored by Cambridge University in

1996 and Intel Corporation in 1998. Additionally, its widespread adoption is evident in

the numerous papers and journal articles published in the past three to five years. This

section presents important terms used in image steganography and throughout the

remainder of this research.

24

3.2.1 Files

The process of embedding information in a graphic or text file usually involves

two classes of files - cover and message files.

3.2.1.1 Message File

The message file is the information that is hidden or embedded during the

steganographic process. It represents a broad range of information sources - voice,

graphics, or text - depending on the type of information a user wishes kept secret. In

reality, if the information is captured in a computer file, it can be embedded. The only

technical restriction on the message file is that it be small enough to fit within another

file. The hiding capacity of a steganographic technique is a function of the method used

to hide the message and the size of the container file.

3.2.1.2 Cover File

The cover file is the medium that contains the message file after the

steganographic process is applied. Once again, the intent of steganography is to maintain

the initial visible quality of the cover file after the message file is embedded.

Consequently, the file should not draw undue attention to itself; it should comprise

features and characteristics generally found in other files of its particular class. The

inherent properties of a file will dictate optimal steganographic techniques for use in

given classes of cover files. Even though steganographic techniques exist for various

types of cover files, this research uses only bitmap graphics files. It should be noted that

cover files are also known as container files or stego-files. The latter term usually only

applies to the cover file after the message file has been embedded.

25

3.2.2 Bytes and Bits

Bytes and bits that comprise the files mentioned above are also named according

to their roles in the steganographic process. The terminology used to describe the bytes

and bits is less standardized, but it is presented here as a basis for future reference. Any

discussion of bits and bytes assumes bit substitution as the underlying steganographic

technique.

3.2.2.1 Message Bits

Message bits comprise the message file and are embedded in cover files. The

notion of message bytes instead of message bits does not make sense in the context of bit

substitution, although the number of bytes in a message file is used to determine a cover

file's ability to embed an entire message file. Message bits are sometimes referred to as

secret bits.

3.2.2.2 Cover Bytes and Bits

Cover bytes and bits comprise the cover file and represent the set of possible

bytes and bits that can be used for hiding information. As such, this definition does not

apply to those bytes and bits which make up the headers and palettes of graphics image

files, since only image data is used to embed message bits. Also, this definition does not

designate the bytes and bits as having been selecting for hiding information.

3.2.2.3 Hiding Bytes and Bits

Also known as a container file, the cover file should appear as an innocent-

looking file. This file may be a graphic image or text, and its bits are known as cover

bits. The next type of file contains the information that needs to be hidden and is known

26

as the "message" file. The bits that comprise this file are known as secret bits. Not every

cover bit is used to hide a secret bit, and the number of secret bits that can be successfully

hidden is limited by several factors discussed later. Those cover bits that are substituted

or otherwise selected to hide secret bits are called hiding bits. Generally, these bits are

among the least significant bits in each word or byte - that is, they are least likely to

cause any detectable distortion.

The hiding bit and hiding byte selection process is an area ripe with opportunities

for optimizing and improving steganographic techniques. Several tools use a random

pattern based upon a secret key supplied by the user, while others opt for an approach

that alters bits at random before embedding the message file. All of these techniques

attempt to disrupt easily discovered patterns and impart a degree of security via

uncertainty. In the sections that follow, other techniques of bit and byte selection are

presented which demonstrate the extent of techniques available.

3.3 Examples of Text and Image Data Steganography

3.3.1 Substitution Method

The substitution method hides information by replacing selected cover bits with

message bits [2]. The technique is easy to implement. In order to set a hiding bit to T, a

bit mask of O's is created with a ' 1' in the desired bit position. Then the mask is applied

to the selected cover bit, or byte, using the logical OR operator. Alternatively, if a '0' is

desired in the cover bit position, the mask used is the 1 's-compliment of a mask of O's

and it is applied to the cover bit using a logical AND. The illustration in Figure 6

demonstrates this technique.

27

Original: 0001 1110 Original: 0001 1111
Mask: *OR' 0000 0001 Mask: *AND' 1111 1110
Resulting byte: 0001 1111 Resulting byte: 0001 1110

Note: The last bit is the desired cover bit (hiding bit).

Figure 6, Example Substitution Method

Replacing the bits is not difficult; this operation can be achieved with minimal

code. What makes this method effective is the algorithm used to select the cover bit for

substitution. One method is to substitute a bit in every cover byte with a bit from the

message file. The algorithm used to select the hiding bit might call for every byte to be

affected sequentially from the beginning of the container file, or the cover byte can be

selected at random. Most implementations of the substitution method construct a

function from some user-defined key or code. This key is then required for recovering

the message from the cover file.

Least-significant bit substitution is the most popular steganographic technique

employed with graphics image files. Despite its popularity, though, the substitution

method is most likely to violate the natural order of bits in the cover file.

3.3.2 Selection Method

One way to preserve the original order of hiding bits in a cover file is by not

embedding information in the first place. This technique, known as selection, is really

more of a semaphore technique than steganography. It starts with repeated scans of an

image and the manipulation of the image between scans via rotation or image

enhancement techniques. Each unique image is stored and reduced to a number using a

message digest algorithm such as a cyclic redundancy code or hash code. The resulting

28

numbers will be different for each image file due to the subtleties introduced between

scans.

Next, some secret information that requires transmission such as a large number,

or some other bit sequence similar to a private key is presented. An adversary could

select a file from the set of those scanned that reduces to the secret number that requires

transmission. The selected file is then transmitted in the clear. At the receiving end, the

file is again reduced using the same message digest algorithm, and the secret number is

recovered.

It is easy to see the benefits of the selection method since the secret information

does not induce any statistical anomalies in bit or byte patterns of the cover file. In fact,

Aura [2] describes this method as similar to a one-time pad in encryption. However, it is

also easy to see that it involves a great deal of work to obtain a reasonably sized library of

possible cover files. The information-carrying capacity - or the amount of information

that can be transmitted in the cover file - is also quite small compared to other

steganographic techniques.

3.3.3 Constructive Method

The idea of maintaining statistically normal properties of the cover file is not

limited to the selection method. A largely theoretical process under investigation is

known as the constructive method. It relies on a sophisticated model of the cover file or

class of files. A message file is transformed to appear like a statistically normal file in

the target class. At the heart of such a model is the concept of a mimic function [2] [13].

In the context of steganography, a mimic function has the effect of changing a message

file so it assumes the statistical signature of a cover file. In order for this method to be

29

successful, a method of obtaining a reliable signature of a class of files must be

developed - a task as daunting as any in the area of steganalysis.

The constructive method works as follows. First, we must assume an accurate

and reliable signature of a particular file class exists - in this case, a word processing

document format such as Microsoft® Word. If an adversary has a digital image message

file to transmit, he can transform the image file using a mimic function. The image file

assumes the statistical characteristics of a Word document and likely escapes detection by

an automated process. Of course, the file would draw suspicion as soon as an attempt is

made to read the file using Word. Since enough work remains to be completed in

determining file signatures, it seems unlikely a solution will result from anything short of

an inordinate amount of work.

3.3.4 Parity Method

Parity embedding methods, like substitution methods, involve altering selected

cover bytes. In this case, however, the parity of the selected byte is the steganographic

element versus the value of its least-significant bit. The hiding byte is altered so that its

parity matches the value of an associated message bit. Although the techniques are

similar, the parity method has the added benefit that any bit within a hiding byte can be

selected as a hiding bit. The determination as to which bit to manipulate is not fixed.

This extra choice allows optimization of embedding algorithms in order to decrease

distortion of the statistical properties of the cover file.

Figure 7 demonstrates how the parity method works. In this example, the parity

of an associated byte is based upon the number of ' 1 's in the hiding byte. A hiding byte

with an even parity equals '0' and an odd parity equals '1.' The embedding process

30

simply matches a hiding byte's parity to the value of an associated message bit.

Recovery, is a matter of retrieving the parity of the hiding bytes and reconstructing the

message with the associated bit values.

Cover bytes: 10110011 10101100 11101000
Parity: odd even odd

Secret Bits: 0 1 1

New cover bytes: 10110001 10101101 11101000
New parity: even odd odd

Figure 7, Parity Method

This method has the advantage that in order to change the parity of the hiding

word, any bit in the word can be flipped. The bit should still be one of the least

significant bits to avoid disrupting the rendered image, but it does not have to be the very

least significant bit.

It is easy to see from the example that the parity method is still likely to distort the

image as in the substitution method. The strength of this method lies in the uncertainty

over which bit was changed in the hiding byte. Taking this one step further, if the

statistical characteristics of the container file are accurately calculated, the hiding bit can

be selected to minimize deviation from these characteristics. Used in this manner, the

parity method can be more secure than a straight-forward substitution. [1]

3.3.5 Word and Line Shift Encoding

Up to this point, the focus has been on methods of embedding information in

digital images that can only be retrieved in electronic form. The embedded information

31

cannot be extracted once the file is rendered (e.g. printed or viewed on a terminal). This

section presents a unique method of marking documents and recovering them after the

document is rendered. Although this method is not currently useful for digital images, it

highlights how truly creative the developers of steganography techniques can become.

3.3.5.1 Technique

Researchers at AT&T Bell Laboratories [3] [4] [5] developed a process known as

shift encoding which uses spatial information to hide data in document images, such as

Postscript documents. This process cannot be used on text word processors since the

positioning of the document's tokens - characters, words, lines, etc. - is not precise.

Graphic images of documents, on the other hand, have exact coordinates for each token.

They are very similar to vector image formats.

The shift encoding method is simple and intuitive, yet it maintains its reliability

even after rendering by some of the noisiest devices in operation - low resolution fax

machines, plain paper copiers, and digital scanners. In a very simplified form, the

method involves altering the position of characters, words, or lines in a document by a

very minute amount - 1/150 of an inch. The alteration is essentially invisible to the

untrained eye. However, when it is overlaid with the original image, the altered tokens

stand out from the surrounding text.

The researchers have characterized the methods according to the token that is

manipulated. Word-shift encoding shifts characters or words horizontally on a line of

text, line-shift encoding involves moving entire lines of text vertically, and feature

encoding alters the font of certain characters to make them different from other similar

letters [3] [4]. Of course, decoding the document to retrieve the embedded information

32

does not actually involve overlaying the original image. Instead, the researchers

developed precise measurement techniques to accomplish the same feat.

Decoding the document image involves scanning it and measuring the minor

alterations relative to their unmanipulated neighbors. Each token has a center of mass

known as a centroid. By measuring the centroid's deflection left or right of the normal

position, the altered token can be detected. An extension of this technique returns a

different bit value depending on the direction of the deflection (e.g. left is T, right is

'0'). In order to recover the tokens reliably, only lines that extend the full width of the

page are selected for shifting. Also, top and bottom lines, and words at either end of a

line are exempt from shifting.

3.3.5.2 Robustness

Although these techniques are remarkable, they are far from foolproof. Feature

encoding is the least robust method since noisy reproduction devices often blur characters

and induce other abnormalities which might make an unaltered character appear altered.

Word and line-shift encoded documents are sensitive to stretching which occurs when the

document is photocopied [4]. The direction in which the paper goes through the copier

determines the skew. Paper that proceeds lengthwise stretches the image vertically, while

an edge-first copier stretches the text image horizontally. Stretching effects the precision

of the centroid measurements. However, of the two shift encoding methods, line-shift

encoding is more reliable since line spacing is assumed to be constant throughout a

document. Because of this unique property, line-shift encoding is recoverable without

use of the original document.

33

3.3.5.3 Application

The amount of information that is embedded using shift encoding is significantly

less than other steganographic techniques, but its application with rendered documents

makes it an ideal technique for encoding copyright or registry information. A typical

scenario might begin when a document is requested from an organization that needs to

protect its documents. The owner of the document verifies the identity of the requester

and produces some unique code from the requester's personal information. This

identifying information is then embedded in the document prior to its transfer to the

requester. Should the authenticity or origin of the document ever be questioned, the

embedded information is retrieved to provide verification - or evidence, depending on

the situation.

3.4 Factors Affecting Steganography Using Bitmap Graphics Files

The four examples presented above highlight a few clever methods in

steganography tools available today. The most popular method employed with graphics

file formats utilizes bit substitution, of which least significant bit (LSB) substitution is the

most common. The LSB substitution method is an easy one to employ and is quite

effective if the proper preprocessing is done to the cover image. Such preprocessing

includes manipulating the colors in the palette, compressing the hidden message prior to

embedding, and inserting random noise throughout the image. The following sections

present several factors that affect steganography. They include techniques that can be

employed to improve the quality of the steganographic output and make it more difficult

to detect the presence of embedded information. Each of these techniques assumes LSB

substitution as the embedding technique.

34

3.4.1 Increase Pixel Depth

Perhaps the most effective method of increasing the visible quality of a

steganographic image is to utilize 24-bit pixel depth. This is easily achieved by

converting the image to a 24-bit image before embedding the message file. The most

overwhelming reason why this method is so successful is due to the absence of the

palette.

As mentioned earlier, 24-bit images do not contain a palette; rather, the pixel

values are the RGB tuples. When the LSB of a pixel is changed, it changes the index into

the palette by one place. Since the palette is not ordered in any specified manner, there is

no guarantee that the new pixel value will be visually similar to the original color. The

resulting steganographic image can appear somewhat grainy. However, when 24-bit

images are used as cover, the altered LSB only increases or decreases the individual color

component - either red, green, or blue - by a very small amount. The result is analogous

to changing the pixel color from red to reddish. The human eye cannot readily detect

such minute changes.

Another reason 24-bit images are superior to lesser pixel depths is the shear

number of possible hiding bits. The amount of information that can be embedded in a

24-bit image is considerable as Figure 8 shows. Even these numbers are conservative

since they assume only one bit per bytes is altered. In reality, two or three bits can be

changed per byte without yielding significant distortion. Unfortunately, the larger file

sizes might draw attention or suspicion if compression is not used.

35

Assumes 640x480 image.

r ■ - ^°^ pixels)x(bytes Per pixel)
8 bits per message byte = 38,400 bytes (8-bit cover)

= 115,200 bytes (24-bit cover)

Figure 8, Cover File Capacity

3.4.2 Grayscale Covers

Grayscale is important in steganography because the output from embedding

messages in grayscale images has no visible distortion. Remember from the previous

section that the embedding process most often results in a new pixel value that indexes a

color above or below the original palette entry. Depending upon the original ordering of

the palette, the color directly above or below another is not necessarily similar. By

contrast, grayscale palettes are ordered sequentially by intensity level. Since grayscale

has 256 levels, the difference between each adjacent byte value is too small to detect. In

fact, the positive effects of ordering a palette are not restricted to grayscale palettes. Any

time a palette is ordered in such a way that adjacent pixel values are similar, the amount

of visible distortion is drastically reduced.

3.4.3 Message Compression and Encryption

In terms of improving the visible quality of the output, both compression and

encryption of the message file accomplish similar results. The idea is to randomize the

bytes in the underlying message to interrupt frequency patterns in the altered bits. Such

patterns would appear as bands of distortion throughout the output image and can

indicate specific underlying file types. For instance, text files could be characterized by

blocks of unaltered bytes due to the amount of '0' bits in ASCII character codes, while

36

binary files could have less distortion due to the broader range of byte values. The lack

of pronounced or definitive frequency patterns makes detection by byte frequency

analysis less conclusive.

Encryption has the added benefit of providing additional security to the

underlying message. When used together, steganography and cryptography are an

effective way to secure covert communications channels.

3.4.4 Cover Image Compression

Unlike compression of the message file, compressing the cover image can be

disastrous to the integrity of the embedded message. This is especially true if an

incorrect compression technique is employed. Some techniques are lossless; that is, 100

percent of the original image data is available after compression. Examples of lossless

compression techniques include run-length encoding (RLE) used in the Windows®

compressed bitmap format and the Lempel-Ziv-Welch (LZW) algorithm used in the

popular graphics interchange format (GIF). [12]

In contrast, other methods compress the image using transforms such as the

discrete cosine transform. These methods are lossy because some of the original image

data is rounded-off during the transform. When the image is expanded, the result is a

best guess image that can appear visibly distorted due to propagated rounding errors. An

example of lossy compression is the Joint Photography Experts Group (JPEG) standard.

[12]

Cover image compression is an effective attack on steganographic channels. The

same techniques that are able to maintain the original quality of the cover image can be

applied repeatedly without excessive degradation.

37

3.4.5 Random Noise

One steganographic technique that is used successfully in a variety of covers is to

embed the hidden message in the noise component of the cover signal. Unfortunately, if

less-sophisticated methods are used to embed the message, the noise can be analyzed for

covert channels. Truly random noise has no apparent pattern, but embedded information

can induce a signal pattern that is both easily detected and recoverable. In order to avoid

this problem, one would only need to model the noise component of the cover signal and

embed the information in such a way that the randomness of the cover noise is not

significantly violated. Such a principle is also applied to graphics cover files.

Sophisticated embedding techniques include a preprocessing step wherein the

cover image is analyzed for areas with a greater variance of pixel values. Since these

areas are characterized as busy areas in the image, distortion would be less noticeable

than in areas of solid color or lower variance. The message is then embedded in the

pixels that comprise these areas. These techniques are commonly employed with digital

watermarks since the image is less distorted and the watermark is harder to detect. Such

preprocessing is not often used in general image steganography.

A related method that is often used in steganographic tools is the insertion of

random noise in the image data prior to embedding the message. This serves two

purposes. First, it interferes with the underlying image byte frequencies under the

assumption that a majority of the altered bits will be restored to their original values. The

output appears less distorted than if the bits were not previously altered. Secondly, it

masks the telltale demarcation between altered and unaltered pixels created when the data

stream from the message file is exhausted. Such a line in the cover image would

38

certainly be noticeable and aid someone trying to retrieve only those bits that make up the

embedded message.

3.5 Steganalysis

After reviewing requisite background information in graphics image files and

steganography, several target-rich areas emerge for further examination into steganalysis

strategies. This section presents three such areas that might warrant further scrutiny.

They are:

• Examination of anomalies or signatures left by the steganography tool.

• Examination of the visible distortions to the image.

• Examination of the file characteristics.

3.5.1 Tool Anomalies

3.5.1.1 Flags

Of the three areas listed above, perhaps the most definitive metric indicating the

presence of embedded information is a flag introduced by the embedding tool. If such a

byte value or pattern could be readily identified, it would provide a definitive means of

detection. It could even indicate the use of a particular tool or version of software. In

this case, automated detection tools would almost certainly behave similar to virus

detection tools.

The notion that a steganography tool would leave behind an explicit flag, though,

contradicts the basic premise of steganography - to go unnoticed. As such, it is unlikely

that such an obvious marking scheme is incorporated into any steganography tool worth

using. In fact, the three tools used in this research do not mark files in such a way that

the tool recognizes them as output files.

39

3.5.1.2 Message Recovery Data

On the other hand, tools must be able to recognize passwords and the selected

hiding bits that were identified during the embedding process. This is often

accomplished by hiding the message recovery information in predetermined locations

within the image data. The choice of the area is certainly not arbitrary. For instance,

embedding information within the header can render the file unreadable - again, drawing

attention to the file. The palette of the Windows© BMP file, on the other hand, offers

extensive space in the fourth byte of the RGB-tuple. However, even though this area is

currently unused, it is typically initialized to zero. Hiding information here could, again,

draw attention to the file.

The only other area left in the file is the image data, and it is in this area that most

tools hide the message recovery data. The message recovery information varies among

tools, but it usually consists of the message file's size and the random number seed used

in the hiding bits' selection algorithm. More sophisticated tools might also include the

tool's version number for compatibility between the embedding and recovery processes,

the original message file's name, or even a user-selected password. The use of the

password also varies among tools. It can be hashed into a number and used as the seed

for selecting hiding bits, or it can be used as a key for encrypting the message file or

message recovery data.

As expected, the specific location for storing the message recovery data within the

image data also varies among tools. The location is most often hard-coded into the

application, although other schemes are certainly possible. The properties of the cover

file, such as the file size or creation date could be used as keys for locating the message

40

recovery data. However, regardless of the specific location or selection method used, if

the location could be reliably determined, then the message recovery data could be

retrieved and possibly exploited.

3.5.1.3 Application

Unfortunately, locating tool anomalies can be a lengthy process. It is also a

process that is especially vulnerable to the traditional cat-and-mouse security game.

When news of a tool's exploitation is announced, the exploit is usually fixed and a new

version released. The process of determining new anomalies must be revisited each time

a new tool is release. For this reason, using tool anomalies to detect the presence of

embedded information generally has limited applications.

3.5.2 Image Distortions

The output from many eight-bit steganography tools can appear visibly distorted.

But visually inspecting each image is time-consuming, if not impractical, especially when

hundreds of images are involved. However, if the distortion is measured quantitatively,

then a tool can be developed to process each image and look for the distortion in the

image data. The first step in determining a distortion metric is to become acquainted with

the types of distortion that can result during the embedding process.

3.5.2.1 Granularity

The most common distortion encountered is an increase in granularity of the

output image, and its severity is affected by several factors. The most dramatic distortion

occurs when the image's palette is ordered by a color's frequency of occurrence in the

image. Recall from Section 3.3.1, the new value of an altered hiding byte indexes a color

value directly above or below the original color. Since there is no guarantee that the new

41

color is similar to the old color, the new color value may be radically different than the

surrounding pixels. The image will appear grainy. However, when the palette is ordered

by luminance or grayscale level, the distortion is less noticeable since the new pixel value

is similar to the old value. The figures below show the output from a typical

steganography tool (HideSeek vl.l Win95) using eight-bit images. Note that the most

distorted output occurs when the palette was ordered by the color's frequency of

occurrence in the image.

lilf§§p

«■!■■«■■■■■■■■■■ iiMillilliilllli
"en* «'«ttSSJ

Figure 9, Stego-image with Luminance Ordered Palette

42

::::::::■::■:::: Saaaaaaai
aaaaiaiaMaa

aaaaaaaaaaaaaita*
aaaaaaaaaaaaas&s
mmmms«

8äKäSS5!?SSSSt<S8iSf&g8$ä8»sS

^J\
llllllltil

m $

Weteflae-iSS £ol*ÄSa<ta£*ä»

Figure 10, Stego-image with Grayscale (Intensity) Ordered Palette

ül /TA ■
-as aaa v-1-.-aaüs

» a

«®>aaa»a.al
i aaaa
«a a

aaaaaaa a «■«■»•••a w® ■■■«•
"S8a*

a«» % 22«
i :•*•*«<'«as

mmmmtm '*....:.aasK»..a..a
a > aaaa«~ - • m

•HP

f(*i <•** » Qtet BJSS »•« 8 ?SK

Figure 11, Stego-image with Frequency Ordered Palette

43

3.5.2.2 Pixel Stuffing and Cropping

A less common image distortion can occur when a cover file is either too large, or

too small, for a given message file. This is undoubtedly a result of poor or incomplete

programming techniques, and it is rarely found in current steganography tool releases. In

the case where a cover image is too small for a message file, portions of the original

image are replicated until the cover image is large enough to accommodate the image.

Conversely, if the cover is too large, the image is cropped to the size necessary to

accommodate the message. Both cases can result in an image that is grossly distorted; it

is no wonder these tools are rarely used.

Another malady that plagued an early - if not prototypical - steganography tool

{HideSeek v5.0for DOS) was a fixed output image size. The program was designed for a

single output file size; however, instead of replicating portions of the original image, it

simply appended black pixels to the image. The resultant image possesses a noticeable

black border. Figure 12 below shows the resultant 800 x 600-pixel image created using

512 x 512-pixel cover. [7]

3.5.3 File Characteristics

While examining images for distortion focuses on changes to the image, a third

area for possible exploitation is examining the characteristics of the BMP file as a whole.

Characteristics that deviate from normal files of the same class might include aberrations

that affect composition of the palette entries, inconsistencies between header fields and

the actual values, or the byte frequency distribution of the file.

44

Figure 12, 800x600 Stego-image with Bit Stuffing

3.5.3.1 Palette Composition

Since palettes do not contain image data, some might conclude they are

unimportant in steganography. However, this is certainly not the case. Many

steganographic tools manipulate the palette to reduce visible distortion induced during

the embedding process. Consequently, examination of an image's palette might offer

clues to the presence of embedded information.

3.5.3.2 Header /Image Inconsistencies

Other possible indicators of embedded information are inconsistencies between

the information in the header and the actual properties of the image. For instance, some

steganographic techniques can result in an increase in the number of colors in an image.

If the tool's author does not update the NumColorsUsed field in the header, then a simple

comparison of the stored value and the number of colors in the image data would reveal

45

tampering. The Height and Width fields might also be used when the tool crops or pads

the image data.

3.5.3.3 Byte Frequency Distribution

Examining the frequency of occurrence of a file's byte values might also offer

clues to the presence of embedded information. It would seem reasonable that a file class

could be categorized according to the distribution of the bytes that comprise the file. It is

especially relevant when a significant portion of the file is byte-oriented like the image

data in a BMP format file. In the case when a palette is ordered by a color's frequency of

occurrence, the pixel values in the image data would be skewed toward lower values.

Consequently, the file's average byte values would also be lower. If the embedding

process alters the typical distribution of bytes, the presence of embedded information

might be detectable.

46

IV Methods

4.1 Introduction

4.1.1 Problem Definition

Most steganography tools available today introduce changes to the cover file as a

byproduct of the embedding process. Manually examining files for these subtle changes

is a labor-intensive exercise, especially in the case where the characteristics of the

original file are unknown. Automating this process would reap significant savings in

time and manpower. An investigator could channel energies toward a subset of cover

files that have a greater likelihood of containing embedded information.

No detailed information is available in the public domain that reports successful

automated techniques for steganalysis of graphics files. An automated test or series of

measurements is needed which can be used to provide a binary output indicating the

presence of embedded information. A reliable pass-fail determination would

successfully partition a larger search space into a more manageable one. It is also a

logical first step in the recovery of the embedded information.

When eight-bit graphic images are used as cover, the resulting image is often

visibly distorted. Therefore, an automated process that effectively recognizes

characteristics of these distortions would be advantageous in combating the blind

steganalysis problem. Another side effect of the bit-substitution process is a change in

47

byte values that comprise the image. Again, automating the process of determining the

differences in the distribution of byte values for a given file class would also aid in blind

steganalysis.

4.1.2 Problem Statement

This research attempts to determine strategies or tests that can be used to reliably

determine the presence of embedded information in eight-bit graphics images. Emphasis

is placed on techniques that can be readily employed in an automated tool or process, and

methods that are minimally specific to a particular steganography application.

4.1.3 Scope

4.1.3.1 Selected Strategies

Three strategies were presented previously: examination of tool signatures,

visible distortion, and file characteristics. The first strategy is too specific to be of

considerable use in the general steganalysis case, since the release of new tools could

require a lengthy re-investigation process. However, the latter strategies are applicable to

a wider range of cases. This research explores methods that could exploit resulting image

distortions and the differences in file byte frequencies between embedded and organic

(untouched) image files.

4.1.3.2 File Format

As presented in Section 1.4, this research is limited to observing the effects of

embedding information in eight-bit Windows © Bitmap (BMP) files. While many other

formats exist, the BMP format was chosen due to its ease of use and small storage

requirements. Despite the differences in format specifications, though, the image data

and palette information are logically identical to other popular formats.

48

4.1.3.3 Image Library

The master image library consists of thirty bitmap images available on the

Internet or scanned from personal photographs. They were not selected on the basis of

their underlying picture composition. In order to standardize the image size and provide

a level of control in the experiment, a target image size was arbitrarily set at 192,500

pixels. This equates to an image that is 550 x 350 pixels in size. Images were selected

only if they were within five percent of the target pixel count. The minimum and

maximum allowable image sizes were 182,875 and 202,125 pixels, respectively. In order

to avoid unnatural distortions, the images were not subjected to shrinking, stretching, or

other image processing techniques. Table 4 lists the individual file statistics.

4.1.3.4 Steganography Tools

Evaluation copies of the selected steganography tools were obtained from Internet

sources. They were selected on the basis of the quality of their output, ease of use, and

ability to use BMP format files as cover files.

HideSeek vl.l for Windows95 - HideSeek vl.l for Windows 95 is a BMP-based

steganography program created by Colin Moroney and available as shareware on the

Internet. This version is a significant improvement over previous versions that were

DOS-based and used CompuServe's GIF ® format.

The hiding technique is least-bit substitution, but it uses a pseudo-random process

to flip non-hiding bits in order to make unauthorized recovery more difficult. HideSeek

uses an optional password or phrase - up to 56-characters - to encrypt recovery

information using the Blowfish encryption algorithm. Such information includes the

49

pseudo-random seed, the length of the file, and HideSeek's version number. This

information is then inserted as a header at the beginning of the image data.

HideSeek does not provide an option to encrypt the message file. Due to

HideSeek's pseudo-random bit-flipping process, the output stego-image appears distorted

even when no data is hidden. Therefore, the size of the message file has little visible

impact on the quality of the stego-image.

Steganos vl.Oa for Win95 - Steganos vl.Oa is a quasi-commercial cryptography

and steganography program marketed by Fabian Hansmann / Sascha Wildgrube / Gabriel

Yoran GbR (Deus Ex Machina Communications) of Frankfurt, Germany. Unlike

HideSeek, Steganos uses a variety of cover file formats, including BMP, ASCII, HTML,

and WAV audio files. However, like HideSeek, it uses least-bit substitution and pseudo-

random bit flipping to embed message files.

In addition, Steganos compresses the message file before embedding it using the

Lempel-Ziv-Welch algorithm. This allows a considerable quantity of information to be

hidden in a relatively small cover file. It also makes frequency analysis of the message

file bytes more difficult. The user also has the option of encrypting the message file

using the HWY1 algorithm, which is purported to be like RC4 ™.

The quality of the output stego-image is similar to HideSeek's. An interesting

feature of Steganos is the option to convert 8-bit cover images to 24-bit prior to hiding.

Although this creates a larger cover file, the quality of the output is practically

indistinguishable from the original cover image.

50

Table 4, Master Image Library

Image Width Height
Image Size

(Pixels)

Percent of
Target

Size

01 540 346 186,840 97.06%
02 540 365 197,100 102.39%
03 558 358 199,764 103.77%
04 524 372 194,928 101.26%
05 601 332 199,532 103.65%
06 558 362 201,996 104.93%
07 550 352 193,600 100.57%
08 572 324 185,328 96.27%
09 541 366 198,006 102.86%
10 540 360 194,400 100.99%
11 390 470 183,300 95.22%
12 436 453 197,508 102.60%
13 400 500 200,000 103.90%
14 526 357 187,782 97.55%
15 524 365 191,260 99.36%
16 388 487 188,956 98.16%
17 516 356 183,696 95.43%
18 522 359 187,398 97.35%
19 519 357 185,283 96.25%
20 524 355 186,020 96.63%
21 522 351 183,222 95.18%
22 528 357 188,496 97.92%
23 352 526 185,152 96.18%
24 520 354 184,080 95.63%
25 545 370 201,650 104.75%
26 536 364 195,104 101.35%
27 519 355 184,245 95.71%
28 536 364 195,104 101.35%
29 519 356 184,764 95.98%
30 523 355 185,665 96.45%

Average 512 378 191,006 99.22%
Max 601 526 201,996 104.93%
Min 352 324 183,222 95.18%

51

S-Tools v4.0 for Windows - S-Tools v4.0 is a freely available steganography tool

that hides files in BMP and GIF graphics files, and WAV audio files. S-Tools provided

many user options including encryption and compression. Even though S-Tools uses

least-bit substitution and pseudo-random dispersion of hiding bits, the quality of the

output is extraordinarily good when compared to the previous tools. Figure 13 shows the

visible output of S-Tools compared to that of HideSeek.

'■4SS*'

 ^ _ . . w«
llHIIiy. <

.jf t *E *P-* ^ 1. **nii4r*JP^ J

HideSeek

S-Tools

Artwork by Gene Lehman, Air Force Institute of Technology

Figure 13, Comparison of Stego-image: HideSeek vs. S-Tools

These remarkable results are due to a unique preprocessing technique employed

by S-Tools on eight-bit color images. It is based upon the fact that an image with only 32

unique colors will never exceed 256 colors as a result of switching the least significant

bits in each of the RGB components that comprise a color. Therefore, it first reduces the

52

number of colors in the original cover image to as close to 32 colors as it can. It does this

through a proprietary color-reduction method based on a median-cut colormap generator.

The help file that accompanies S-Tools contains more information and should be

consulted for further reference.

After the number of colors has been reduced, S-Tools inserts other colors in the

palette that are very similar to the reduced set. These newer colors are appended to the

reduced list, and the palette grows in length. The outcome is a series of groups

comprised from six to eight similar colors. In this way, flipping the least significant bit

results in a new palette index that points to a color that is similar to the original. The

output is similar to the results achieved using a grayscale or luminance-ordered palette.

Unfortunately, the new palette contains blocks of similar colors that vary by only

a bit among the three RGB components. In Figure 14, a palette from a luminance-ordered

file is shown. After the file is embedded using S-Tools, the palette is changed to that

shown in Figure 15. The groups of very similar colors becomes more noticable when the

S-Tools palette is reordered by luminance value, as shown in Figure 16. This signature is

unique to S-Tools stego-images.

53

! Cdit Palette

i Sort otde»:; ilfegfi

a

m *■ ■■■ s* si »«B»«BBPBW u

mm mmmmmmmmmmm
MHMMHftttMftMM
Pafettebtex: 0 Color R:251.G:25t.B:251

DK |

Cancel |

Revert i

JtW>i

Figure 14, Original Palette

Edit Palette

; Sott oidec.: tfA \

H
PI i % W\

j.-i IMS

Ü
a ■ fi M mm mmm

• BBItBIIBBBMBBBBBB
«■' IS
P «üBfillü» vWB
■lllllllli i^ll
■MMBBMBBBBBBBBH

■•■- «HBBBBBBBBBBBB

Palette index: 0 Cola: 8:255.0:255.8:255

iO
Cancel

gevert |

Help

Figure 15, Palette after Embedding with S-Tools

54

Cdit Palette

Swtotdw:; ml

a

111
mmmmmmm

mmmmmmmmmmm.
mmmmfmmmmmmfmmtWmJmm

wm
Cancel

: gev9(t

tiefe

Pal*«» irate* 0 Color R:255.G:2S5.6:255

Figure 16, S-Tools Palette Sorted by Luminance

4.1.3.5 Test Parameters

A preliminary examination of factors that affect the output of steganography tools

indicated three candidates for further scrutiny.

• method of ordering the palette

• characteristics of the underlying message file

• amount of embedded information (loading level)

These factors are the basis for partitioning the experiment into unique test cases.

In order to vary the first parameter, the master image library was converted into two

minor libraries. One library contained the master images with palettes sorted by

luminance, and the other contained the same images with palettes ordered by frequency

of occurrence in the image.

55

The second parameter was manipulated by selecting three different file types as

message files. Each of these file types was selected because their byte frequency and

distribution characteristics differ. The three classes of files are binary (executable),

image, and text files.

The loading level parameter was achieved by selecting message files that were in

the first and fourth quartile; that is, approximately greater than 75% and less than 25% of

the average image size in pixels. These values represent high loading and low loading,

respectively. Both large and small files were selected for each of the above message file

types. Table 5 shows statistics for the message files. The value for the approximate

loading level assumes one message byte requires eight cover pixels. Since a user cannot

disable the compression option in Steganos vl.Oa, the loading levels are not maintained

during the trials using this tool to embed message files. Table 6 shows the actual loading

levels for the Steganos trials.

Table 5, Statistics for Message Files

File Type Size (bytes)

Approx.
Loading
(avg. file

size =
191,006)

Approx.
Loading
(max. file

size)

Approx.
Loading
(min. file

size)

Large Binary 22,016 92.21% 87.19% 96.13%
Large Image 20,118 84.26% 79.68% 87.84%
Large Text 21,973 92.03% 87.02% 95.94%
Small Binary 5,120 21.44% 20.28% 22.36%
Small Image 5,800 24.29% 22.97% 25.32%
Small Text 5,754 24.10% 22.79% 25.12%

56

Table 6, Loading Levels Using Steganos Compression

File Type Size (bytes)
Compressed

File Size
(bytes)

Approx.
Loading
(avg. file

size =
191,006)

Approx.
Loading
(max. file

size)

Approx.
Loading
(min. file

size)

Large Binary 22,016 10805 45.26% 42.79% 47.18%
Large Image 20,118 14,542 60.91% 57.59% 63.49%
Large Text 21,973 9,823 41.14% 38.90% 42.89%
Small Binary 5,120 1,355 5.68% 5.37% 5.92%
Small Image 5,800 3,051 12.78% 12.08% 13.32%
Small Text 5,754 2,603 10.90% 10.31% 11.37%

4.1.3.6 Test Cases

The three parameters mentioned previously form the basis for partitioning the

experiment, as shown in Figure 17. The two test partitions are further divided into 18

unique test cases that account for the application of three different steganography tools.

Each tool is used to embed three types of information - binary, image, and text files - at

low and high loading levels. Table 7 outlines the specific test cases for each partition. In

all, 1,140 image files are examined in this research for each threshold tested.

4.2 Method of Evaluation

4.2.1 Process Overview

The selected steganalysis techniques are applied to each test case in the two

partitions. The byte-frequency test is only conducted once on every test file and original

image file. The results from the stego-files are compared to the non-stego image files.

The point-noise thresholding test is performed once for every test case at each target

57

threshold. The order in which the tests are conducted is irrelevant, since they are

independent of one another and do not alter the file being examined.

Master Images

I I
Luminance-ordered Frequency-ordered

Palette Palette

18 Test Cases 18 Test Cases

Figure 17, Experiment Partitions

4.2.2 Controls

4.2.2.1 Cover Files

The composition of the 36 test cases provides adequate samples from which

comparisons of the effects of the different parameters on the steganalysis strategies can

be made. In addition, the results can be compared against the results of the tests run

against the images that do not contain embedded information. In this way, the effects of

changing single and multiple parameters can be examined for differences from the norm.

4.2.2.2 Message Files

In addition to using the same cover files in each test case, identical message files

are used among the test cases. This provides another level of control in the experiment,

58

and it permits examination of the effects of the characteristics of the message file on the

steganalysis strategy.

Table 7, Test Cases for Sorted and Random Palette Partitions

Steganography Tool Loading
Level

Message File
Format

Case
CO

»2
O

i

CO

c

CO

J3
bo

O Ö

<u

ä
X

H

1 • •
2 • •
3 • •
4 • •
5 • •
6 • •
7 • •
8 • •
9 • •
10 • •
11 • •
12 • •
13 • •
14 • •
15 • •
16 • •
17 • •
18 • •

4.2.2.3 Steganography Tools

The three tools used in this research are unique. They have different interfaces,

algorithms, and options. However, as mentioned previously, these tools provide a good

sampling of the tools in use today. Settings and options used for each tool were identical

59

across test cases and are listed in Table 8. Details concerning each setting and other

available options can be found in the documentation included with each tool.

Table 8, Tool Settings and Options

Tool Settings and Options
HideSeek for Windows95 Password = "password"

Message Encryption = (none available)
Compression = (none available)

Steganos for Windows95 Password = "password"
Message Encryption = Disabled
Compression = Enabled (not configurable)
8-bit to 24-bit conversion = Disabled

S-Tools v4.0 Password = "password"
Message Encryption = Enabled (not configurable)
Compression = Disabled
Encryption Algorithm = IDEA
Median-cut Box Color Reduction = Center
Dimension Choice = Large RGB Distance
Floyd-Steinberg Dithering = Disabled

4.2.3 Point-noise Threshold Test

4.2.3.1 Overview

The threshold test is the more involved test of the two examined. The first step is

to convert the raw bitmap image to an intensity map, or grayscale image. The palette

must be reordered according to luminance, and the image data is renumbered to match

the new palette. The next step is to apply the point-noise filter and create a map of the

resulting pixel values. This map is then converted to a binary {black-and-white) image

where each pixel is converted to a new value based upon a given threshold level. The

final step calculates statistics of the binary image that shows the number of pixels

significantly different from those around it. The output format from the threshold test is a

60

single ASCII text file that lists each file in a test case and the number of hits; that is,

pixels with values above the threshold.

4.2.3.2 Initial Technique

Initially, a combination of C-programs and MATLAB scripts were written to

accomplish the threshold test. The C utilities preprocess the bitmap image by extracting

the image data from the file and converting it to a grayscale image. The palette is also

extracted and converted to a luminance-ordered palette. A series of MATLAB scripts

and user-developed functions are used to filter the image and perform the threshold

procedure on the grayscale data. The resulting binary image can be displayed in

MATLAB. The data file containing the percentage of hits in the threshold image is a tab-

delimited text file that can be read into either MS-Excel or MATLAB for analysis.

4.2.3.3 Revised Technique

This multiple step process is slow due to the preprocessing requirement and the

iterative approach to manipulating the image data in MATLAB. A search of the

MATLAB web site revealed that a newer image processing toolkit was available that

read different image formats and performed the grayscale conversion using MATLAB

functions optimized for matrices. By replacing the previous C code with the newer

MATLAB functions, the time involved decreases by nearly 50%. In addition, MATLAB

provides a function that takes a user-defined filter and performs the filter operation on a

given matrix. Using this function with the point-noise filter further reduced the time to

perform the threshold test.

The result of combining the newer functions was a single, more efficient, user-

developed MATLAB function. It works on each bitmap file in its directory and performs

61

the actions shown in Figure 18. The grayscale and binary images are stored to disk for

supplementary examination, if needed.

Test Case's
Bitmap Files

■►B

Apply threshold to
grayscale and create

binary image „^^ ^ £===]

Figure 18, Point-noise Threshold Test Process

4.2.3.4 Bitmap to Intensity Map Conversion

As mentioned in Section 2.3, color is a three-dimensional description of light

encompassing radiance, brightness, and luminance. In order to quantify a pixel's value

relative to those around it, we use its luminance (amount) [6]. Converting the three-

dimensional value to an associated intensity level is a matter of averaging the three

62

components that comprise the pixel's color. The intensity, /, of a pixel is given by the

equation:

I = -(R + G + B)
3

In order to convert a bitmap file into a grayscale image, the palette is first

converted to a grayscale palette. Each RGB component is replaced with the intensity of

the color. (Recall from Section 2.3 that a grayscale palette has equivalent color values

for each of the RGB bytes.) The palette is then ordered according to intensity level.

The final step involves renumbering the original image data to match the new

palette indices. This step requires a vector to be constructed that matches the old color

index to a corresponding new grayscale index. Once the image is renumbered, the vector

can be discarded. The grayscale image is then saved with its new grayscale palette.

Figure 19 shows a resulting grayscale image, or intensity map, of an originally color

bitmap.

4.2.3.5 Point Detection In Images

The purpose of point detection is to identify pixels that are significantly different

than those around it. Gonzalez and Woods [6] describe a neighborhood as those pixels

around a central pixel, p, denoted by (x,y). Their coordinates are given by Figure 20.

Point detection then becomes a two-step process involving spatial filtering and

thresholding.

63

 i

Artwork by Gene Lehman, Air Force Institute of Technology

Figure 19, Original Intensity Map (Grayscale Image)

(x-1, y+1) (x, y+1) (x+1, y+1)

(x-l,y) (x,y) (x+l,y)

(x-l,y-l) (x,y-l) (x+1, y-1)

Figure 20, Pixel Neighborhood

64

4.2.3.5.1 Spatial Filtering

In image processing, spatial filters are sometimes referred to as spatial masks.

The idea behind using a mask in this research is to calculate a response to a given pixel

such that the result is small if the pixel is similar in value to its neighbors, and large if the

pixel is significantly different. A common implementation is a 3 x 3 mask with negative

coefficients on the outside edge and a positive value in the center.

The response of a mask, R, is calculated by the equation

R = wxzx + w2z2 +... + w9z9
9 ,where

IX-z<-
1=1

wx w2 w3

w4 w5 w6

w7 w8 w9

and zi is the intensity of the pixel associated with the mask coefficient w,.

The filter used in this experiment is shown in Figure 21. The sum of the

coefficients is zero so that if the mask is applied to an area of constant or slightly varying

intensity, its response is zero or very small. The response of the mask is defined with

respect to the center pixel. If the mask is centered on a pixel on the edge of the image, its

response is calculated using only that portion of the mask that resides over pixels in the

image. [6] See Appendix E, or consult Gonzalez and Woods [6], for more information on

filters.

-1 -1 -1

-1 8 -1

-1 -1 -1

Figure 21, 3x3 Point-detection Spatial Filter

65

4.2.3.5.2 Thresholding

Thresholding is used in this experiment to isolate those pixels that are

significantly different from its neighbors. It measures the weighted-differences between

the center pixel and its neighbors and is a straightforward process. A pixel is said to be

detected if \R\ > T , where T is a nonnegative threshold and R is the response of the

mask. The result of thresholding is a binary image in which those pixels that are below

the threshold are black, and those above are white.

Selecting an appropriate threshold for this experiment was accomplished through

empirical observation. The idea is to determine a threshold where an image that does not

have embedded information will result in very few hits. The results of a series of tests on

the image in Figure 19 are shown in Table 9. The corresponding binary images are

shown in Figure 22. (The images are shown in negative to enhance visibility during

printing; the original images indicate hits as white.) Notice that the number of hits

decreases as the threshold increases. An increase in the threshold is conceptually a

decrease in the sensitivity of the spatial filter.

Table 9, Threshold Data on Original Intensity Map

Image Total Pixels Hits Percent
Threshold = 250 194,400 8,935 4.5961 %
Threshold = 500 194,400 2,052 1.0555 %
Threshold = 750 194,400 158 0.0813 %
Threshold = 1000 194,400 8 0.0041 %

66

.. ■•■■'■■■ ,v- ^--;i§^x^^ '*

)

. ,7- "'■/

Threshold = 250 Threshold = 500

Threshold = 750 Threshold =1000

Figure 22, Results of Threshold on Original Intensity Map

4.2.3.6 Output of Point-noise Threshold Test

The output of this test is a (threshold, percentage) pairing that can be used in a

binary test for embedded information. This is accomplished by comparing a total number

of hits for a given threshold. The sensitivity of the test (threshold) and the minimum

percentage of hits can be varied in order to achieve a binary test for the presence of

embedded information. Table 10 displays the results of a sample trial showing the

corresponding hits for the same grayscale image after information is embedded. In this

case, differences exist between the two cases of palette ordering. It shows that luminance

ordered palettes might be somewhat more resistant to the point-noise threshold test at the

67

same threshold level. The visible results of the sample test on the embedded images are

shown in Figure 24 and Figure 25.

Table 10, Threshold Data on Embedded Intensity Maps (Threshold = 1000)

Image Total Pixels Hits Percent
Luminance-ordered
palette

194,400 7 0.0036 %

Frequency-ordered
palette

194,400 1,082 0.5566 %

Plotting the percentage of hits as a simple bar chart can visually show the results

of the threshold test. For example, the results of the test shown in Table 10 are compared

against a similar threshold test done on the original image and displayed in Figure 23.

This method is used to ascertain possible (Threshold, Hit Percentage) pairings for use in

a binary test for embedded information.

Sample Threshold Test Results

0.5566%

w

0.0%
0.0041% 0.0036%

Non-Stego Luminance-ordered Frequency-ordered

Test Case

Figure 23, Sample Threshold Test Results

68

Artwork by Gene Lehman, Air Force Institute of Technology

Q = area with "hits"

Figure 24, Stego Intensity Map and Threshold Image, T = 1000 (luminance-ordered)

69

M
^Ipi^ltPlllil llli^illl Uli 11 mm

i^$

lillS^sll
IllpHlli

Artwork by Gene Lehman, Air Force Institute of Technology

Figure 25, Stego Intensity Map and Threshold Image, T = 1000 (frequency-ordered)

70

4.2.4 Byte Frequency Analysis

4.2.4.1 Overview

The byte frequency test entails tallying each of the 256 possible byte values found

in an image file. The output of this test is a single text file for each case that contains

byte counts for each file. The output format is an ASCII file structured as a 256 x 30,

comma-delimited matrix. From this output, the number of bytes of each value can be

compared to the total number of bytes in the file. The data can be plotted and analyzed as

a frequency chart or histogram.

4.2.4.2 Technique

The byte-frequency analysis is designed to examine what changes occur to a file

when information is embedded in it. The basis for this analysis is the frequency and

distribution of byte values in a file. Collecting the byte frequency data is accomplished

with a user-developed utility written in C. The utility reads a list of files and scans each

one, in turn. The user can select the output format through a command-line parameter.

There are two options:

• comma-delimited (MS-Excel format)

• space-delimited (MATLAB format)

Before data is collected on embedded cover files, the frequency plots of non-stego

files are examined to establish a baseline metric against which further data can be

compared and differences detected.

71

4.2.4.3 Output of Byte Frequency Test

The output of this test is the percentage of the total bytes in a file that are above or

below a certain byte value. As mentioned above, the output of the byte frequency test

can be examined as a frequency plot. For example, Figure 26 shows the corresponding

plot of the image in Figure 19. This particular version of the image has a frequency-

ordered palette and its byte distribution is a result of the ordering of the palette. The

majority (99.4%) of the file's byte values is in the image data area of the file, and the byte

values that occur most frequently are indices to the most common colors in the image.

Therefore, the colors appearing most often in the image equate to lower indices and, thus,

lower byte values.

The byte frequency plot shown in Figure 26 is a discrete frequency plot with 256

bins where each bin represents the total number of bytes for a single byte value. Such a

distribution is difficult to succinctly characterize, and its application to an automated tool

may become cumbersome. However, reducing the number of bins provides an adequate

partitioning of the results that still lends itself to a binary test for the presence of

embedded information.

Three plots are shown in Figure 27, Figure 28, and Figure 29 below. They

represent arbitrarily chosen bin counts of 16, 8, and 4 bins. By decreasing the number of

bins, the relative differences in the distribution become more pronounced and are more

readily discriminated. The reduced-bin, bar graph format is used in subsequent test cases

to determine possible byte value ranges and distributions that might indicate the presence

of embedded information.

72

 """""
h- O) T- co
in CD oo en o CM

CM CM CM CM

CO
in
CM

Byte Value

Figure 26, Original Image Byte Frequency Plot (frequency-ordered palette)

45%

40%

35%
co
f, 30%
CO
■S 25%

ß 20%

O 15%
^S

10%

5%

0% ^

16-Bin Byte Frequency Plot

...II M......M...
% <8, TO

CP s
01 CP O5, Cp

-A
CO

TO CO >
CD
CP

CO
-1 % TO

CP

t
TO

co
ro

CP

Bin Values

Figure 27,16-Bin Byte Frequency Plot

73

8-Bin Byte Frequency Plot

50% •
CO
<D
% 40% -
CQ

iS 30% -
o

O 20% 4—
^9

10% 4— Illlll

I I I : HÄI1

o 8 $ ->
s *°-, £

-> Ö> tO

Bin Values

CO
CT»

Figure 28, 8-Bin Byte Frequency Plot

80%

70% +-

m 60%
CD

£ 50%

Ü 40% o
H
•5 30%

55 20%

10%

0% 4-

4-Bin Byte Frequency Plot

cP
<§■

&
%

t
Bin Values

%

%

Figure 29, 4-Bin Byte Frequency Plot

74

It is important to note that subtle differences in the frequency distribution are lost

as the number of bins is reduced. For example, Figure 30 shows the byte frequency plot

of the same image used in Figure 26 after hiding information using HideSeekfor

Windows 95. Although the general shape of the original distribution is maintained, there

are slight variances caused when byte values are changed to indices immediately above

and below the original palette indices. These differences are essentially lost when the

number of bins is reduced. A quick comparison of Figure 31 with Figure 29

demonstrates this problem.

12000

10000

_ 8000
c

HJiUlWUlWlUUUlmmiuii mm.mini """""""""""""" "
coir)h>-c»i-cou5h-cni-coior^05i-c<3ioi^-0)T-co
T-N(l)^<DSO)010Ntl)tK)(D(00)0'-N^io

l-i-T-T-T-T-T-^CMCMCMCMCVI

Byte Value

I10myhhb.bmp

Figure 30, HideSeek Image Byte Frequency Plot (frequency-ordered palette)

75

4-Bin Byte Frequency Plot

80%

70%

c„ 60%

I* 50%
■2 40%
1-
•g 30%

°^ 20%

10%

0% r ■!

%
01

CP

Bin Values

Figure 31, Hide Seek Image 4-Bin Byte Frequency Plot (frequency-ordered palette)

In other cases, the differences in the frequency distributions between the test cases

and the non-stego files are pronounced enough to make this test successful. Figure 32

shows the byte frequency plot of the same image after using S-Tools v4.0. The four-bin

plot of this data, shown in Figure 33, reveals enough contrast to make this test worthy of

further examination.

76

12000

10000

«- 8000
c

O 6000
CD

m 4000

2000

■i-coir)i^-o)i-coinr^-a>i-coirtN-05->-comt^03i-co
T-<Mco'>*cDiv-ooo)oc>jcoTi-incDooa>oi-CM'!i-io

l-T-T-l-T-T-T-l-CMCMCVICMCVI

Byte Value

H 10myshb.bmp

Figure 32, S-Tools Image Byte Frequency Plot (frequency-orderedpalette)

60%

50%

o 40%

CO

S 30%

20%

10%

0%

4-Bin Byte Frequency Plot

to
CO

Bin Values

t°.

Figure 33, S-Tools Image 4-Bin Byte Frequency Plot (frequency-orderedpalette)

77

V Results

5.1 Introduction

This chapter is divided into two main areas. Section 5.2 discusses the results of

the point-noise threshold test, and Section 5.3 examines the outcome of the byte

frequency analysis. Finally, ancillary results showing the effects of cover file loading

levels and message file composition are discussed in Section 5.4.

5.2 Point-noise Threshold Test

The first test conducted on the library of test cases was the point-noise threshold

test. This test operates on the image data in its logical spatial format. The results of the

point-noise threshold test are presented below according to the two major partitions in the

experiment: frequency-ordered and luminance-ordered palettes.

5.2.1 Frequency-ordered Partition

5.2.1.1 Overall Results

The initial results of the threshold test indicated differences in the median

percentage of hits between the stego and non-stego images in each of the four thresholds,

as shown in Table 11. The variability of the image data within the library of images was

considerable, so the median statistic was used because it is less sensitive to outliers than

the mean.

78

Table 11, Overall Median Percentage of Hits (frequency-ordered)

| 250 500 750 1000

Non-stego 7.386% 1.009% 0.185% 0.007%

Stego 1 29.039% 9.698% 3.038% 0.962%

When the results in the stego cases of Table 11 are broken down further, as shown

in Table 12, there is little difference in the median percentage of hits between the non-

stego images and the images embedded by S-Tools. Therefore, the remaining tools -

HideSeek and Steganos - accounted for the most significant differences. The chart in

Figure 34 shows the relative differences in the median percentage of hits broken down by

steganography tool. In each of the target thresholds, S-Tools produced results similar to

the non-stego case, and both HideSeek and Steganos were significantly different.

Table 12, Tool-wise Median Percentage of Hits (frequency-ordered)

250 500 750 1000

Non-stego 7.386% 1.009% 0.185% 0.007%

S-Tools 8.042% 1.156% 0.172% 0.022%

HideSeek 33.171% 12.304% 5.607% 2.272%

Steganos 47.400% 21.783% 8.451% 2.756%

79

5.2.1.2 Threshold Selection and Results

Since each tested threshold reveals significant differences between the {Non-

stego, S-Tools} and {HideSeek, Steganos} test cases, the next step is to determine which

(Threshold, Hit Percentage) setting would be best suited for an automated detection

technique. Recall from Table 9 and Figure 22 that a threshold of 1000 on a non-stego

image produced a signature with very little noise, in the form of hits, relative to the other

thresholds. Proceeding under the assumption that a non-stego image must have a hit

percentage of 0%, the appropriate acceptable hit percentage can be selected for each

target threshold.

By plotting the median percentage of hits along with the maximum and minimum

values in each data set, a reasonable estimate of the optimal threshold can be determined.

The minimum hit percentages shown in Table 13 were gathered from the test results

displayed in Figure 35 through Figure 38. The percentages are approximately equal to

the maximum values of the non-stego test case. The assumption is that non-stego files

should exhibit a negative response to the threshold filter since they do not contain

embedded information. See Appendix B.4 for the overall maximum and minimum values

for each threshold.

80

50%

45%

40%

35%

30%

X 25%

20%

15%

10%

250

Threshold Test Summary
(frequency-ordered palette)

ri

500 750

Threshold

1000

INon-Stego PS-Tools ■HideSeek ■Steganos|

Figure 34, Threshold Test Summary (frequency-ordered palette)

Table 13, Minimum Hit Percentages by Threshold (frequency-ordered)

250 500 750 1000
%Hits > 28.00% >6.10% > 1.00% >0.17%

81

Median Percent Hits with Max-Min
(Threshold = 250)

/U7o "

i >

o%- &££ •
Non-Stego S-Tools HideSeek

Tool Results

Steganos

Figure 35, Median % Hits with Max-Min (T-250)

Median Percent Hits with Max-Min
(Threshold = 500)

Ä

ss

0%- mm i I** mm
Non-Stego S-Tools HideSeek

Tool Results

Steganos

Figure 36, Median % Hits with Max-Min (T=500)

82

Median Percent Hits with Max-Min
(Threshold = 750)

18%

16%

14%

12%

10%

8%

6%

4%

2%

0%

J T
Non-Stego S-Tools HideSeek

Tool Results
Steganos

Figure 37, Median % Hits with Max-Min (T=750)

9%

8%

7%

6%

5%

4%

3%

2%

1%

0%
Non-Stego

Median Percent Hits with Max-Min
(Threshold = 1000)

 1 __[„ :

S-Tools HideSeek

Tool Results
Steganos

Figure 38, Median % Hits with Max-Min (T=1000)

83

Operating under this assumption, the success rate of the test on the frequency-

ordered palette test cases can be calculated. A file is marked as detected if the hit

percentage exceeds the minimum hit percentage from Table 13 for a given threshold.

Table 14 shows the success rate for each test case. The success rate for the non-stego

case is always 100% with no false positives.

From Table 14 it can be seen that S-Tools beats the threshold test in almost all test

cases. If the S-Tools results are removed from the analysis, the combined success rate for

the HideSeek/Steganos pairing jumps considerably, as shown in Table 15. The fact that

the threshold test is easily defeated by S-Tools makes sense since the threshold test

detects visible distortion, which is something S-Tools is careful to minimize.

Table 14, Threshold Test Success Rate (frequency-ordered)

Threshold Test Case
Total

Detected
Success Rate (Detected /#

cases)
Failure

Rate
250

>28%
HideSeek 112 62.22% 37.78%
Steganos 168 93.33% 6.67%
S-Tools 6 3.33% 96.67%
Combined 286 52.96% 47.04%

500
>6.1%

HideSeek 159 88.33% 11.67%
Steganos 174 96.67% 3.33%
S-Tools 6 3.33% 96.67%
Combined 339 62.78% 37.22%

750
>1%

HideSeek 174 96.67% 3.33%
Steganos 180 100.00% 0.00%
S-Tools 0 0.00% 100.00%
Combined 354 65.56% 34.44%

1000
> 0.17%

HideSeek 174 96.67% 3.33%
Steganos 174 96.67% 3.33%
S-Tools 10 5.56% 94.44%
Combined 358 66.30% 33.70%

84

Table 15, HideSeek/Steganos Threshold Test Success Rate (frequency-ordered)

Threshold Test Case
Total

Detected
Success Rate (Detected /#

cases)
250 HideSeek/Steganos 280 77.78%
500 HideSeek/Steganos 333 92.50%
750 HideSeek/Steganos 354 98.33%
1000 HideSeek/Steganos 348 96.67%

Maintaining a minimum hit percentage such that 100 percent of the non-stego

images provide a negative response to the threshold test may not be the most realistic

application of this strategy. The failure rates in Table 14 represent Type I errors; that is,

not detecting a file that has embedded information. A Type II error - detecting a file that

does not contain embedded information - is not considered in Table 14 since no non-

stego images respond positively to the test. However, if a certain amount of Type II

errors are allowed, the number of Type I errors will decrease. If we suppose law

enforcement agency can tolerate coin-flip probabilities of detecting non-stego images,

then the success rates of the threshold test improve. Table 16 shows the corresponding

success rates and new minimum hit percentages for each threshold. Again, 50% of the

non-stego images were detected. Table 17 shows the results of the HideSeek/Steganos

pairing.

For the general case of determining an appropriate (Threshold, Hit Percentage)

pairing, the results above can be combined to give the minimum hit percentage curves

shown in Figure 40. The lines that connect the data points do not represent the actual

population statistics, but do provide a reasonable estimate of the (Threshold, Hit

Percentage) pairings between points based on the sample. Again, since the data points

85

represent lower bounds, any hit percentage above the data point would decrease the

amount of Type II errors while increasing the chance of a Type I error.

Table 16, Coin-flip Threshold Test Success Rate (frequency-ordered)

Threshold Test Case
Total

Detected
Success Rate {Detected /#

cases)
Failure

Rate

250
>8%

HideSeek 180 100.00% 0.00%
Steganos 180 100.00% 0.00%
S-Tools 90 50.00% 50.00%
Combined 450 83.33% 16.67%

500
>1%

HideSeek 180 100.00% 0.00%
Steganos 180 100.00% 0.00%
S-Tools 103 57.22% 42.78%
Combined 463 85.74% 14.26%

750
> .1842%

HideSeek 180 100.00% 0.00%
Steganos 180 100.00% 0.00%
S-Tools 79 43.89% 56.11%
Combined 439 81.30% 18.70%

1000
> 0.009%

HideSeek 180 100.00% 0.00%
Steganos 180 100.00% 0.00%
S-Tools 110 61.11% 38.89%
Combined 470 87.04% 12.96%

Table 17, Coin-flip Threshold Test Success Rate (frequency-ordered)

Threshold Test Case
Total

Detected
Success Rate (Detected /#

cases)
250 HideSeek/Steganos 360 100.00%
500 HideSeek/Steganos 360 100.00%
750 HideSeek/Steganos 360 100.00%
1000 HideSeek/Steganos 360 100.00%

86

Minimum Hit Percentages
(frequency-ordered)

30%

——•
250 500 750 1000

Threshold

■Optimal Coin-Flip

Figure 39, Minimum Hit Percentages (frequency-ordered)

5.2.2 Luminance-ordered Partition

5.2.2.1 Overall Results

Unlike the frequency-ordered test cases, luminance-ordered images were

remarkably resistant to the threshold test. The data collected from the luminance-ordered

test cases was the same as the previous test partition, and the analysis also proceeded

along similar lines. Again, the potentially non-homogenous nature of the image data

necessitated the use of the median statistic over the mean because it is less sensitive to

outliers. The overall median percentage of hits is shown in Table 18, and Table 19 shows

the tool-wise percentages.

87

Table 18, Overall Median Percentage of Hits (luminance-ordered)

| 250 500 750 1000

Non-stego 7.375% 1.055% 0.283% 0.022%

Stego 1 7.947% 1.087% 0.264% 0.022%

Table 19, Tool-wise Median Percentage of Hits (luminance-ordered)

250 500 750 1000

Non-stego 7.375% 1.055% 0.283% 0.022%

S-Tools 7.947% 1.174% 0.200% 0.024%

HideSeek 7.355% 1.053% 0.283% 0.022%

Steganos 7.359% 1.060% 0.272% 0.022%

It is evident from Table 19 that the differences between the non-stego and stego

cases are negligible. If fact, in some test cases the non-stego image produced a slightly

higher hit percentage than stego images. In either case, the differences were not

significant enough to use as a discriminator. The results of the threshold test on the

luminance-ordered palette test partition are shown Figure 40.

5.2.2.2 Threshold Selection and Results

Due to the results shown previously in Table 19, no appropriate (Threshold, Hit

Percentage) setting can be obtained for luminance-ordered palette images. However, for

the purposes of comparison, the same process used in the first test partition was applied.

Remember the assumption from Section 5.2.1.2 that a non-stego image must have a hit

percentage of 0% in order to select the appropriate acceptable hit percentage for each

target threshold. Based on this assumption, the minimum hit percentages for the

88

luminance-ordered test partition are shown below in Table 20. The success rates based

upon these minimum hit percentages are shown in Table 21. The corresponding results

of the HideSeek/Steganos pairing are not presented here since the differences between all

test cases were insignificant. See Appendix B.4 for the overall maximum and minimum

values for each threshold.

9%

Threshold Test Summary
(luminance-ordered palette)

250 500 750 1000

Threshold

INon-Stego DS-Tools BHideSeek BSteganos

Figure 40, Threshold Test Summary (luminance-ordered palette)

89

Table 20, Minimum Hit Percentages by Threshold (luminance-ordered)

250 500 750 1000
%Hits > 28.00% >6.10% > 1.00% > 0.34%

Table 21, Threshold Test Success Rate (luminance-ordered)

Threshold Test Case
Total

Detected
Success Rate (Detected /#

cases)
Failure

Rate
250

> 28.00%
HideSeek 0 0.00% 100.00%
Steganos 3 1.67% 98.33%
S-Tools 6 3.33% 96.67%
Combined 9 1.67% 98.33%

500
> 6.10%

HideSeek 0 0.00% 100.00%
Steganos 0 0.00% 100.00%
S-Tools 6 3.33% 96.67%
Combined 6 1.11% 98.89%

750
> 1.00%

HideSeek 0 0.00% 100.00%
Steganos 0 0.00% 100.00%
S-Tools 0 0.00% 100.00%
Combined 0 0.00% 100.00%

1000
>0.34%

HideSeek 0 0.00% 100.00%
Steganos 0 0.00% 100.00%
S-Tools 1 0.56% 99.44%
Combined 1 0.19% 99.81%

The success rates for the coin-flip case, where 50 percent of the non-stego images

were detected, is shown in Table 22. Once again, the success rates are not significantly

different than the non-stego case, and in many cases they are worse.

90

Table 22, Coin-flip Threshold Test Success Rate (luminance-ordered)

Threshold Test Case
Total

Detected
Success Rate (Detected /#

cases)
Failure

Rate
250

>8.3%
HideSeek 90 50.00% 50.00%
Steganos 90 50.00% 50.00%
S-Tools 90 50.00% 50.00%
Combined 270 50.00% 50.00%

500
> 1.05%

HideSeek 90 50.00% 50.00%
Steganos 91 50.56% 49.44%
S-Tools 102 56.67% 43.33%
Combined 283 52.41% 47.59%

750
>.28%

HideSeek 90 50.00% 50.00%
Steganos 84 46.67% 53.33%
S-Tools 73 40.56% 59.44%
Combined 247 45.74% 54.26%

1000
> 0.0225%

HideSeek 89 49.44% 50.56%
Steganos 84 46.67% 53.33%
S-Tools 92 51.11% 48.89%
Combined 265 49.07% 50.93%

5.3 Byte Frequency Analysis

The second test performed on the library of test cases was the byte frequency

analysis test. This test operates on the entire bitmap file rather than only the image data.

The results of the byte frequency analysis test are presented below according to the two

major partitions in the experiment: frequency-ordered and luminance-ordered palettes.

5.3.1 Frequency-ordered Partition

5.3.1.1 Overall Results

In Figure 26, the frequency distribution had a distinct shape that was concentrated

at lower byte values. In fact, this frequency distribution was typical of images with

frequency-ordered palettes. Since 99.4 percent of a file's bytes are palette indices in the

91

image data, the frequency-ordering nature of the palette will produce a greater number of

lower index values. The median byte frequency distribution plots for each test case are

shown below. The non-stego file results are shown in Figure 41.

6%

5%

5>4%
c
3

g 3%

Median Byte Frequency - Non-stego
(frequency-ordered)

mtjiiinrof '

cowr^-OjT-eoinr^ro-i-eowr^ro-i-oowh-cn-i-cr ■i-c\ico'<tcor«-coa>oc\jco-<frincDcoo>o-i-c\j"tfir)
T-T-T-1--I--I-T-T-CMCMCMCMOJ

Byte Value

Figure 41, Median Byte Frequency - Non-stego (frequency-ordered)

Compare this plot to the plots shown below representing the HideSeek (Figure 42)

and Steganos (Figure 43) embedded files. The distributions are, not surprisingly, quite

similar. The technique employed in both HideSeek and Steganos is a simple least-bit

substitution with no palette manipulation. Consequently, the resulting new indices are

either above or below the old index, and by no more than a single value. Therefore, the

resulting files have relatively similar byte frequency distributions as the original.

92

Median Byte Frequency - HideSeek
(frequency-ordered)

co m f-
i- CM CO

co in i^ o>
N (O O) O

^^^^^^■■■■^■■MMMIMIIIiaiMiiiBBIII

T-coLOi^c»-i-coLnt^-c»-i-co
CMco-sriococooo-i-CMTi-LO
1-1-T-1-T--I-T-CMCMCMCMCM

Byte Value

Figure 42, Median Byte Frequency - HideSeek (frequency-ordered)

Median Byte Frequency - Steganos
(frequency-ordered)

7%

6%

—""^^"m" "' ' " ■

comNOT-niiisoiT-cowsoirnwso)!-
i-CMCOTj-CDI^-OOa>OCMCO'«tmcOOOOOi-(N'<t

CO
IS)

CM CM CM CM CM

Byte Value

Figure 43, Median Byte Frequency - Steganos (frequency-ordered)

93

The results were radically different in the case of the S-Tools embedded files.

The median byte frequency plot for this test case is shown below in Figure 44. The

extreme variances at the higher byte values are a result of the unique manner in which S-

Tools manipulates the palette. (See Section 4.1.3.4, S-Tools.) When the image is

renumbered to match the new palette, the result is a marked increase in higher palette

indices in the image to account for the increased use of the newer colors.

3%

3%

£2%
c

2 2%
Li.
CD

m 1%

1%

0%

Median Byte Frequency - S-Tools
(frequency-ordered)

_*i««*la4iaiilMLJ

J
fFTTl^

jj -dl
■i-comh-o-i-comh-cn-i-comh-oiT-coLnr^ro-i-co

T-NCO*(BNeOO)ONn*IO(DOOO>OT-N*lO
1-i-T-T-i-T-i-T-CVICMCVICVICVI

Byte Value

Figure 44, Median Byte Frequency - S-Tools (frequency-ordered)

5.3.1.2 Target Percentage Selection and Results

Using the technique described in Section 4.2.4, the median byte frequency values

are combined into an eight-bin frequency distribution plot as shown in Figure 45. From

94

this figure, it is easy to see that HideSeek and Steganos do not exhibit any significant

differences compared to the non-stego files.

Median Byte Frequency (frequency-ordered)

Bin Values

I Non-Stegoa S-Tools DHideSeek ElStegcnc6

Figure 45, Combined Median Byte Frequency (frequency-ordered)

The next step in determining the utility of the byte frequency analysis test is

selecting appropriate parameters to use in detecting the presence of embedded

information. Since the results for HideSeek and Steganos were nearly identical to the

non-stego cases, they are ignored. Only the S-Tools test case is used in this step since it

produced results significantly different from the non-stego files. Consequently, this test

is evaluated as a detection tool for S-Tools files from this point forward.

The desired metric in this step is a minimum cumulative percentage of bytes that

exceed a particular threshold byte value or fall within a specified range. The results of

the frequency-ordered palette test cases are shown in Figure 46. In this plot, the median

95

of the non-stego, HideSeek, and Steganos files are combined and compared against the S-

Tools. An appropriate (Target Percentage, Threshold Value) pairing can be selected

below the line connecting the S-Tools data points. For instance, one such pairing might

be (60%, 127). In this case, if more than 60% of a file's byte values exceed 127, then the

file is selected. Of course, the percentage shown is a median value, so any value less than

60% would also work with the threshold of 127. It is important to note that the results

shown in Figure 46 are discrete data points and not a continuous distribution. The line

connecting the points is displayed to highlight the trend of the data set.

Median Cumulative % of Total Bytes
(frequency-ordered)

100%

>31 >63 >95 >127 >159 > 191 > 223

Threshold Byte Value Range

■Non/HS/Steg S-Tools

Figure 46, Cumulative Percentage of Total Bytes (frequency-ordered)

Although selecting a lower minimum percentage would increase the probability of

success, a user's acceptable level of Type I and Type II errors must factors into selecting

96

the appropriate (Target Percentage, Threshold Value) pairing. Selecting a target

percentage above the upper line would likely result in success rates worse than coin-flip

probabilities, since the line indicates points where 50% of the population are above and

50% are below. Therefore, the optimal or target percentage would lie somewhere

between the two so-called exceedence curves. As the target percentage decreases towards

the lower line, the number of Type I errors decreases, but the number of Type II errors

increases.

A reasonable technique to employ for obtaining an effective pairing is to split the

difference between the two sets of data points. In Figure 47, the middle data points

represent the differences between the upper and lower cumulative percentages. Using

these values, the success rate of the byte frequency test on the frequency-ordered images

is shown in Table 23.

Table 23, Target Percentage / Threshold Value Success Rates (frequency-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

74.71% >31 100.00% 0.00%
63.35% >63 100.00% 0.00%
54.88% >95 100.00% 0.00%
46.43% >127 100.00% 0.00%
38.90% >159 100.00% 0.00%
31.43% > 191 99.44% • 0.00%
18.64% >223 96.67% 0.00%

The lower set of data points in Figure 47 represents a reasonable lower bound for

selecting a target percentage. The success rates using this new set of pairings is shown in

97

Table 24. The percentages listed in the non-stego column are the rates at which non-

stego files are detected and represent Type II errors.

Target Cumulative % of Total Bytes
(frequency-ordered)

100%

(/) 80%
03
%
CO
**— o 60%

0 >
To 40%
3
E
3
O 20%

0%
>31 >63 >95 >127 > 159 > 191 > 223

Threshold Byte Value Range

■Non/HS/Steg -A-S-Tools Target %

Figure 47, Target Percentage of Total Bytes (frequency-ordered)

Table 24, Target Percentage I Threshold Value Success Rates (frequency-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

50.72% >31 100.00% 50.00%
30.35% >63 100.00% 60.00%
18.58% >95 100.00% 46.67%
9.83% >127 100.00% 50.00%
4.88% >159 100.00% 50.00%
2.08% > 191 100.00% 50.00%
0.25% >223 100.00% 100.00%

98

Conversely, if the upper set of data points are used, the rate of Type I errors

increases as the rate of Type II errors decreases. The success rates using the upper set of

data points as target percentages are shown in Table 25. The results from Table 23

support the claim that the optimal target percentages for given threshold values lie near

the middle data points.

Table 25, Target Percentage I Threshold Value Success Rates (frequency-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

98.70% >31 45.00% 0.00%
96.35% >63 50.56% 0.00%
91.18% >95 45.56% 0.00%
83.02% >127 40.00% 0.00%
72.93% > 159 43.89% 0.00%
60.78% > 191 38.33% 0.00%
37.03% >223 43.89% 0.00%

5.3.2 Luminance-ordered Partition

5.3.2.1 Overall Results

Once again, a luminance-ordered palette resulted in a less definitive demarcation

between non-stego images and those embedded using HideSeek and Steganos. Unlike the

smooth distribution shown in Figure 41, ordering the palette by luminance value resulted

in a less deterministic distribution of byte value frequencies. The byte value frequency

distributions for the non-stego, HideSeek, and Steganos test cases are shown in Figure 48

through Figure 50, respectively.

99

Median Byte Frequency - Non-stego
(luminance-ordered)

2.5%

2.0%
o

§ 1.5%

CD

CD

1.0%

0.5% ii ■ I
lTF^IIl'Tri|^pninniFTWl|lff"Tr,l"F,W"l,lfflFll

0.0%
i- CO in

CM CO
O) T- CO K) S ■<*■ co r-- co en O CM

co
CO

m r--
io

c» i-
CO oo

co
O)

in N-
o i-

05
CM

CO

CM CM CM CM CM

Byte Value

Figure 48, Median Byte Frequency - Non-stego (luminance-ordered)

Median Byte Frequency - HideSeek
(I um inance-ordered)

2.5%

2.0%
o c
§ 1.5%-
cr
CD

CD
%.
00

1.0%

0.5%

0.0%

^liiiwrwiw. T|TTi

coinh-a>i-comr-c»i-coLOh--c»i-comh-cn-i-co
i-cMco-<tcor-ooo30CMco-<tif)cocoo)Oi-cM^i-in

T-I-I--I-I-I-I-I-CMC\ICMCMC\I

Byte Value

Figure 49, Median Byte Frequency - HideSeek (luminance-ordered)

100

2.0%

Median Byte Frequency - Steganos
(luminance-ordered)

coLOh-05-i-coir)h~o)-i-coir)r^.o)i-coinKo>i-co
■f-C\ICOt<OI^COO>Oe\ICO'*in<DCOO>Oi-CVI<5|-in

T-T-T-t-T-l-T-T-CMCVlOJCVlOJ

Byte Value

Figure 50, Median Byte Frequency - Steganos (luminance-ordered)

Once again, the byte frequencies almost mirror one another. The slight variations

in the HideSeek and Steganos files from the non-stego files are due to the least-bit

substitution method of embedding. The resulting new indices are either above or below

the old indices, and by no more than a single byte value.

Surprisingly, the S-Tools files have nearly identical byte value frequency

distributions as their frequency-ordered equivalents. This suggests that the method used

by S-Tools to reduce and then repopulate the palette is relatively unaffected by the palette

ordering scheme. The frequency distribution for the S-Tools files is shown in Figure 51.

101

Median Byte Frequency - S-Tools
(luminance-ordered)

3.0%

2.5%

c 2.0% 0

£ 1.5%

£, 1.0%
m

0.5%

0.0%
.. ^1L..^ [^uMäMm

comi-~.a>i-coif)is~-a3i-coLorv-a)T-cou5N.o>i-co
i-CMCO'tCDh-OOC350CMCO'*tnCD00030i-CVI^-m

rrrrri-rrNNNMN

Byte Value

Figure 51, Median Byte Frequency - S-Tools (luminance-ordered)

5.3.2.2 Target Percentage Selection and Results

Using the techniques outlined in Section 5.3.1.2, the byte frequencies are

combined into eight bins as shown in Figure 52. Once again, the negligible differences

between the non-stego, HideSeek, and Steganos files are highlighted.

In order to obtain a minimum cumulative percentage of bytes that exceed a

particular threshold byte value, the median percentages are plotted as shown in Figure 53.

The median of the non-stego, HideSeek, and Steganos files are combined and compared

against the S-Tools files.

In Figure 54, the differences between the upper and lower data points is plotted.

The new mean cumulative percentages are then used to determine the success of the test

on the luminance-ordered test library. The results, shown in Table 26, again support the

102

claim that the byte frequency test works well to determine S-Tools embedded images.

However, the amount of Type II errors represented by the non-stego column is

significantly higher than in the frequency-ordered test partition (shown in Table 23).

Median Byte Frequency (luminance-ordered)

55%

50%

45%

</> 40%
(D
%. 35%
DD
« 30%
P 25%

INon-Stego HS-Tools DHideSeek USteganos

Figure 52, Combined Median Byte Frequency (luminance-ordered)

If the lower and upper sets of data points are used as target percentages, the test

yields the success rates shown in Table 27 and Table 28, respectively. When the upper set

of data points is used, the rate of Type I errors again increases as the rate of Type II errors

decreases.

103

Median Cumulative % of Total Bytes
(luminance-ordered)

>31 >63 >95 >127 > 159 > 191 > 223

Threshold Byte Value Range

■Non/HS/Steg -A-S-Tools

Figure 53, Cumulative Percentage of Total Bytes (luminance-ordered)

100%

Target Cumulative % of Total Bytes
(luminance-ordered)

> 31 > 63 > 95 > 127 > 159 > 191 > 223

Threshold Byte Value Range

F^-Non/HS/Steg -*-S-Tools -»■ Target %|

Figure 54, Target Percentage of Total Bytes (luminance-ordered)

104

The results below again show that the optimal target percentages for given

threshold values lie near the middle data points.

Table 26, Target Percentage / Threshold Value Success Rates (luminance-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

93.34% >31 96.11% 13.33%
85.54% >63 92.78% 13.33%
76.74% >95 91.67% 16.67%
66.56% >127 89.44% 16.67%
55.77% >159 82.78% 16.67%
42.38% > 191 83.33% 16.67%
24.64% >223 75.00% 26.67%

Table 27, Target Percentage I Threshold Value Success Rates (luminance-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

87.99% >31 100.00% 50.00%
75.39% >63 100.00% 60.00%
62.23% >95 100.00% 66.67%
50.26% >127 100.00% 60.00%
37.19% > 159 100.00% 60.00%
25.24% > 191 100.00% 60.00%
13.02% >223 100.00% 50.00%

105

Table 28, Target Percentage I Threshold Value Success Rates (luminance-ordered)

Target
Percentage

Threshold
Value S-Tools Non-Stego

98.69% >31 47.22% 0.00%
95.69% >63 48.89% 3.33%
91.25% >95 42.22% 3.33%
82.86% >127 43.33% 3.33%
74.35% > 159 41.67% 6.67%
59.52% > 191 42.22% 6.67%
36.26% >223 46.11% 13.33%

5.4 Ancillary Results

So far, only the differences between luminance and frequency ordered palettes

have been considered as factors affecting detection. As indicated in Section 4.1.3.5, two

other factors are also examined in an effort to discover rudimentary relationships and

their impact on steganalysis. Each of these two factors - characteristics of the message

file, and cover file loading levels - is discussed below within the context of the selected

strategies.

5.4.1 Point-noise Threshold Test

5.4.1.1 Message File Composition

Three types of message files were used - binary, image, and text files. There

were no significant differences in the hit percentages between the three file types for a

given tool and threshold. This was true in both the luminance and frequency ordered

palette test partitions. See Appendix B for results of each test case.

106

5.4.1.2 Cover File Loading Level

The two loading levels, designated High and Low, were described in Section

4.1.3.5. Noticeable differences in the hit percentages were detected only in the case of

HideSeek embedded images, but not for the other two tools evaluated. This was true only

for the frequency-ordered test partition; differences among luminance-ordered images

remained negligible or non-existent. The median hit percentages in the HideSeek test

cases for each threshold tested are shown in Figure 55.

HideSeek Cover File Loading
(frequency-ordered)

50%

40%

,» 30%

20%

10%

0%

[High

I Low

■■■■■■
1000

2.44%

2.05%

750

7.79%

4.59%

500

19.47%

9.74%

250

42.27%

25.53%

Threshold

Figure 55, HideSeek due to Cover File Loading (frequency-ordered)

Since Steganos and HideSeek embed information using very similar techniques, it

was surprising to discover Steganos did not display the dramatic differences between

high and low loading. The most likely explanation lies with Steganos's use of

compression. Since Steganos always compresses files prior to embedding them, the

107

results of this test for the loading parameter cannot be used for an unbiased comparison

against HideSeek. The median hit percentages in the Steganos test cases for each

threshold tested are shown in Figure 56. See Appendix B for detailed results of each test

case.

Steganos Cover File Loading
(frequency-ordered)

50%

40%

30%

20%

10%

0%

I High

I Low

1000

2.76%

2.74%

750

8.45%

8.43%

500

21.80%

21.77%

250

47.40%

47.40%

Threshold

Figure 56, Steganos due to Cover File Loading (frequency-ordered)

5.4.2 Byte Frequency Analysis

5.4.2.1 Message File Composition

Once again, there were no appreciable differences in byte frequency distribution

between the three message file types within the test cases. This was true across tool

boundaries and palette ordering test partitions. See Appendix C.2.1 for the complete

results of the byte frequency test with respect to message file composition.

108

5.4.2.2 Cover File Loading Level

The cover file's loading level noticeably affected only the S-Tools test cases in

both test partitions. (See Figure 57, below.) The S-Tools files displayed a greater

percentage of higher byte values in the low loading cases than they did during high

loading. It is not surprising that both test partitions were affected similarly since S-Tools

appears to be unaffected by palette ordering. The reasons for the differences due to the

loading are not intuitive and require further investigation before they can be used as a

discriminator in an automated detection process. See Appendix C.2.2 for the complete

results of the byte frequency test with respect to cover file loading.

50%
45%
40%

S-Tools Loading Level
Byte Frequency Plot

CP, <3>
tO >

CD ->•-*-* to
ö> tO G> CO to

, CP O tO s>
_->->-> tO
0> ro ö> to to

, CP o to s*
51 IB >
CP in to

^4
> > JO to
en to N> q>
CD -> CP CT>

en CD
CP CF ^ > > to to

ca co to, in
CD -* CP CX»

Threshold Byte Value
Frequency-ordered Luminance-ordered

I High BLow

Figure 57, S-Tools due to Cover File Loading (combined test partition)

109

VI Conclusion and Recommendations

6.1 Conclusion

The tests developed and utilized in this research represent two viable strategies for

detecting the presence of embedded information: through visible distortions and byte

frequency analysis. Neither test proved to be a panacea; however, each proved effective

in a subset of the overall problem space. A strategy was considered effective if the

differences between identical statistics of a stego and non-stego file or image were large

enough to make a detection rule from it. Minimal consideration was given to the amount

of Type I and Type II errors, since it involves a tradeoff that is best left to the user's

discretion. The effectiveness of each strategy is summarized in Table 29 according to

test partition and steganography tool. Their combined effectiveness - that is, when the

strategies are considered as complimentary tools - is shown in Table 30.

Table 29, Strategy Effectiveness

Strategy
Frequency-ordered Palette Luminance-ordered Palette

HideSeek Steganos S-Tools HideSeek Steganos S-Tools
Point-noise
Threshold
Test

• •
Byte I
Frequency
Analysis |

• •
•" Indicates an effective strategy

110

Table 30, Combined Effectiveness

Frequency-ordered Palette Luminance-ordered Palette
HideSeek Steganos S-Tools HideSeek Steganos S-Tools

• • • •
• Indicates an effective strate

Furthermore, since HideSeek and Steganos represent similar file manipulation and

embedding techniques, their results might be considered synonymous. S-Tools, on the

other hand, is relatively unique in its methods and is representative of a different category

of steganography tools. The effectiveness of the combined tool set when categories of

tools are considered is shown in Table 31.

Table 31, Combined Effectiveness with Tool Characterization

Frequency-ordered Palette Luminance-ordered Palette
HS/Steg S-Tools HS/Steg S-Tools

• • •
• Indicates an effective strategy

6.2 Validity

Any discussion of effectiveness should consider the limitations of the research

that produced the results. The problem space examined in this research consisted of

eight-bit images embedded using the least-significant bit substitution (LSB) method.

While not all-inclusive, it likely represents a preponderance of real-world steganography

cases since eight-bit images and LSB are both widely used. Also, the steganography

111

tools evaluated here are continually being improved. The methods used in this research

may become less effective as more advanced steganography tools are released. Even so,

the strategies of looking for visible distortions and analyzing byte frequency distributions

are likely to be part of any future automated detection process.

This research ultimately produced both expected and unexpected results. In the

case of the point-noise threshold test, HideSeek and Steganos were expected to be

vulnerable since both tools produce images that are visibly distorted when the palette is

ordered by frequency of occurrence. However, the degree to which palette ordering

impacts the results was more extreme than anticipated.

The byte frequency analysis test results were more unexpected, overall. Since

palette ordering had such an extreme impact on the success of the previous test, it was

anticipated to have similar influence on this test. However, luminance-ordered S-Tools

images revealed similar vulnerabilities as frequency-ordered images. This result is

significant because it means an entire category of steganography products, namely S-

Tools, can be reliably detected regardless of palette ordering. If an investigator had other

clues as to the method of embedding, such as S-Tools being loaded on the suspect system,

then the target images could be retrieved for further examination.

With regard to the ancillary results, it was expected that cover file loading levels

and underlying message file composition would have a greater impact than shown.

Certainly, there are differences, but they are at a much finer level of detail than would be

expected in an automated tool using these tests. Perhaps as reliable signatures of normal

files are developed, the differences due to loading and message file composition will

become more significant.

112

The goal of this research was to determine viable automated strategies for

detecting the presence of embedded information in graphics files. From the results

presented above, explicit parameters for detection are possible. For instance, from Figure

47 we can conclude a file likely contains embedded information if more than 50 percent

of its bytes are above 127 in value. The results also comply with the blind steganalysis

requirement since they do not use the original characteristics of the image or file for

detection.

6.3 Application of Results

This research supports the claim that steganography which defeats the eye is

susceptible to statistical analysis of the file, and vice versa. The point-noise threshold test

is significant because it automates a process that is typically performed manually by

viewing a rendered image. In that case, even the byte frequency analysis test reveals

indicators that would normally be detected by viewing the image's palette.

Consequently, any useful detection toolkit should include tests for both cases.

During this research, each test was performed in a rather labor-intensive manner.

Data was collected using tools and scripts, but the analysis was conducted manually.

However, now that detection parameters are known, the problem of creating an

automated process is simply a matter of creating the interface.

Consideration should be given to increasing the speed of the point-noise

thresholding process. The scripts used in this research were executed under MATLAB

v5.2 and would not be as helpful as compiled applications. Before the utility of

MATLAB was fully realized, several such routines were developed in C and used to

manually prepare and convert the images for thresholding. Appendix D contains

113

instructions for obtaining C-code for a routine that converts an RGB bitmap to grayscale.

Also available is code that converts a bitmap image to a frequency-ordered file, and

conversely to a luminance-ordered file. Fortunately, MATLAB scripts and functions are

C-like in structure and convention, so the conversion from MATLAB to a compiled

routine should be trivial.

The output from each of the tests used in this research is a pairing of parameters -

a parametric tuple, so to speak. The point-noise threshold test produced optimal

(Threshold, Hit Percentage) pairings, and the byte frequency analysis test provided

(Target Percentage, Threshold Values). Therefore, an automated tool should incorporate

these findings through the use of a two-variable input mechanism. This concept is

presented in Figure 58 and Figure 59 below. Armed with automated tools such as these

and the results of this research, an investigator would be able to sift quickly and reliably

through extraordinary amounts of evidence to segregate files of interest.

6.4 Recommendations for Future Work

Since this research reflects a high-level view on the prospects of detecting

embedded information through the use of automated processes, surely more work

remains. A number of recommendations for future efforts are presented here. Each

respects the blind steganalysis problem, so they do not include such things as known-

cover or known-message attacks. Also, they only deal with graphics file cover medium.

114

2
ö
w
ai

250

500

750

1000

0% 10% 20%
Hit Percentage

30%

Figure 58, Point-noise Threshold Test Two-variable Input Mechanism

0% 20% 40% 60%
Target Percentage

80%

Figure 59, Byte Frequency Analysis Test Two-variable Input Mechanism

115

6.4.1 Characterization of Cover Images

The results of this research suggest that the images in the test library were

different; that is, they do not represent a homogenous sample. Some images had

predominantly dark colors, while others were light. Some were more uniformly colored,

while others contained a broader mix of hues. Still others contained natural colors

(photographs), while others consisted of artificial tones (artwork).

While no attempt was made to characterize the images a priori, the differences

seemed to affect the statistics enough to decrease their predictability. Data points that at

first appeared to be outliers may actually be valid for images that share a common set of

characteristics.

The lack of image characterization made analysis of the mean statistic unfeasible.

In fact, the reason the median statistic is used throughout is due to its decreased

susceptibility to outliers. Very few files had statistics that were normally distributed, and

the remaining files were not all equally distributed. This made an analysis of the variance

of the mean impossible, as well as precluded the use of non-parametric tests.

Characterizing images and defining categories would serve two purposes. First, it

may reveal a finer level of detail than was possible using a heterogeneous sample.

Secondly, it would allow tests to be optimized for particular types of images. Filters,

thresholds, and percentages would be matched to these categories and result in more

reliable tests.

6.4.2 Population Statistics and File Signatures

Related to characterizing images is the idea of collecting enough sample statistics

to better represent the true population statistics. Future research in this area should

116

contribute to the overall database of file statistics so that the sample is large enough to

more reliably reflect the true population statistics. As a corollary to this, work should be

done to accurately identify the statistics that represent a typical, unembedded file

according to its kind. Bitmap files will have a different signature than word processing

documents, and both are likely to be different from spreadsheet or CAD/CAM files. As

these file signatures become more precise, detecting embedded information would be

reduced to comparing a file against the signature of the file it purports to be.

6.4.3 Expanding the Problem Space

Certainly, a logical step in future research would be to apply the techniques of this

research to a larger problem space. This includes examining their effectiveness against

different steganography tools, as well as various pixel depths. Since the palette plays

such a crucial role in the success of these tests, it would be interesting to see the results

when they are applied to 24-bit images, which have no palettes, or grayscale images that

have uniformly distributed palettes.

Future research might also consider if detection indicators exist in the image

transform space. This is related to the idea of characterizing images, except the image is

examined using common signal processing techniques such as the Fast Fourier

Transform.

6.4.4 Parameter Modification

The tests conducted during this research were done with several fixed parameters.

Subsequent research should study the affects of modifying these parameters. Such

modifications include the following:

117

• Change the filter dimensions and/or coefficients used in the point-noise threshold

test.

• Expand the byte frequency analysis to polybyte and polybit combinations. While

this is likely to be necessary with 24-bit images since a pixel is represented by

three bytes instead of a single byte palette index, it may also have utility applied

to lower pixel depths.

118

Appendix A, Test Programs

A.l, Byte Count Utility (bytecnt.c)

A.l.l, Overview

The bytecnt.c program is used to collect data for the byte frequency analysis test.

It takes as input a list of bitmap file names, minus their extensions, and processes each

file in turn. Since there are only 256 possible byte values, the totals for each byte value

are stored in a 256 record array. The byte value that is read from the bitmap file is used

to index the array.

The output of this utility is a comma-delimited, ASCII text file named bytecnt.dat.

In order to facilitate import into MS-Excel, each file is represented by a single column in

the output file. Each line, therefore, contains the totals for a given byte value for each file

processed. A portion of a sample output from this utility is shown in Section A. 1.3.

119

A.1.2. Program Code

FILE: bytecnt.c
AUTHOR: Capt Chris Fogle

AFIT, GCS-99M

DESCRIPTION: This program facilitates a basic byte analysis
of a file. It is a generic routine that counts the quantity
of each byte value in a file and outputs the totals to a text
file. The text file can then be processed by Excel or MATLAB.

ASSUMPTIONS:
-- The file for reading is present in the current directory.
-- The files for reading have a ".bmp" extension.
-- The filenames to process are in a text file named

"files.txt"
-- Limited to 40 files.

-* /

#include <stdio.h>

#define NAMESIZE 40
#define MAXFILES 40

int main(int arge, char **argv) {

/* Function Prototypes
char * GetNextFileName(char *, FILE *);
void DoError();

/* Variables Definitions
FILE *listfile = fopen("files.txt", "r");
FILE *infile; /* bitmap file */
FILE *outfile_byt = fopenCbytecnt.dat", "w");

/* output info */

char filename[NAMESIZE];
char filenamebmp[NAMESIZE];
char filenamebyt[NAMESIZE];

long byteCounts[256][MAXFILES];
static int i, j, fe-
int byteVal;
static int formatOption = 0;

/* defaults to MATLAB output */
/* _

/* check for command line parameters */
if (arge > 2) DoError();
if (arge == 2)

if (strcmp(argv[l], "-X") == 0)
formatOption = 1;
else if (strcmp(argv[l], "-M") != 0)

DoError();

120

}
/*=

/* initialize the array space */
for(i=0; i<256; i++)

for (j=0; j<MAXFILES; j++)
byteCounts[9][10] = 0;

/* process files */
printf("Creating output file... \n", filename);
fc = 0;
while(GetNextFileName(filename, listfile) != NULL) {

strcpy(filenamebmp, filename);
infile = fopen((char *) strcat(filenamebmp, ".bmp"), "rb");
printf("Processing data for %s...\n", filename);
while (!feof(infile)) {

byteVal = fgetc(infile);
byteCounts[byteVal][fc] ++;

}
close(infile);
fc++;
}

printf ("Outputting byte count array in %s format...\n\n",
(formatOption == 0 .? "MATLAB" : "EXCEL"));

switch (formatOption) {
case 0: /* MATLAB output */

for(i=0; i<256; i++) {
for (j=0; j<fc; j++)

fprintf(outfile_byt, "%d ", byteCounts[9][10]);
fprintf(outfile_byt, "\n");

}
break;

case 1: /* Excel output */
for (i=0; i<256; i++) {

for (j=0; j<fc; j++) {
fprintf(outfile_byt, "%d", byteCounts[9][10]);
if (j<(fc-l)) fprintf(outfile_byt,",");

}
fprintf(outfile_byt, "\n");

}
break;

}

printf("Done.\n\n");
close(listfile);
close(outfile_byt);

121

/* This routine extracts the next filename from the list of
/ files to process. It assumes the file of filenames is already
/ opened. It strips the '\n' (newline) character from the
/ filename so that it can be used for further processing.
*/

char * GetNextFileName(char * filename, FILE *listfile) {
int i=0;

if (fgets(filename, NAMESIZE, listfile) != NULL) {
i=0;
/* strip off the newline char */
while (filename[9] != '\n') i++;
filename[9] = ' \0';
return(filename);

} else return(NULL);
}

void DoError()
{

printf("\nImproper command.\n");
printf("USAGE: bytecnt [-X or -M]\n");
printf("\n");
printf("X -- output in Excel format, comma delimited, and row

aligned\n");
printf("M -- output in MATLAB matrix format, and column

aligned\n\n");
exit(-1);

}

122

A.1.3. Sample Output - bvtecntc

Within the ASCII text file, the data appears as follows:

296,293,1010,296,1307,1075,1001,294,1416,296
13,1,25,10,1,13,6,5,14,153
13,2,36,98,2,16,118,4,27,1
2,2,10,13,1,28,25,4,33,3
14,1,25,97,0,41,12,9,19,1
11,11,5,542,5,2,26,52,189,3
77,25,3,530,1,73,12,25,187,10
24,62,118,102,3,6,6,14,183,7
17,60,6,9,26,60,151,112,178,14
2,51,148,27,2,41,6,119,152,157
66,20,46,59,120,22,41,5,993,820

Once the file is imported into an Excel spreadsheet, it is stored as shown below.

Each column represents a single test file:

Byte
Value File 01 File 02 File 03 File 04 File 05 File 06 File 07 File 08 File 09 File 10

00 296 293 1010 296 1307 1075 1001 294 1416 296
01 13 1 25 10 1 13 6 5 14 153
02 13 2 36 98 2 16 118 4 27 1
03 2 2 10 13 1 28 25 4 33 3
04 14 1 25 97 0 41 12 9 19 1
05 11 11 5 542 5 2 26 52 189 3
06 77 25 3 530 1 73 12 25 187 10
07 24 62 118 102 3 6 6 14 183 7
08 17 60 6 9 26 60 151 112 178 14
09 2 51 148 27 2 41 6 119 152 157
10 66 20 46 59 120 22 41 5 993 820

123

A.2, MATLAB Threshold Test Function (scandir.m, getstats.m)

A.2.1. Overview

These MATLAB functions work under MATLAB v5.2 and represent the top-

level function in the point-noise threshold test. The first, scandir, relies on several

vendor provided functions to perform the filter operation and various conversions of the

bitmap image. The user-defined function, getstats, calculates the number of hits in the

threshold image and the hit percentage.

The output from scandir is a space-delimited, ASCII text file. Each output data

file represents a single test case. Each line in the data file represents the hit percentage

statistics for a single file. In addition to compiling the hit percentage statistics, this

function also saves the resulting grayscale and threshold images as bitmap files for

further visual examination.

124

A.2.2. Function Code

A.2.2.1, scandir.m

function filtimg = scandir(mask, threshold, start, stop)

% This function launches the data collection routines for the
% point-noise filter trials. It takes as input a mask which
% indicates which data files to operate on, and a threshold
% value which is applied to the threshold routine in the
% filter operation.
%
% USAGE: scandir(mask, threshold, start, stop)
%
% mask -> usually 'mY.bmp1

% threshold -> filter threshold
% start -> file to start with (01 to 30)
% stop -> file to stop at (01 to 30)
%
% Assumes:
% — all files begin with 01 to 30
% -- the remainder of files' names are identical
%

mask
threshold

%point-noise filter
filtmask = [-1 -1 -1; ...

-18-1;...
-1 -1 -1];

dbstop if error

% initialize matrix that will hold values produced in this run
alldata = [];

for x = start:stop
if x < 10

% prepends a x 0' for single digit numbers
filename = ['0' int2str(x) mask];

else
filename = [int2str(x) mask];

end

disp(filename)
disp(' Loading bitmap.. . ')
eval(['[img pal] = imread(' '''' filename

'''bmp'');']);

iiii i

i i i i i

% write back to file to fix any errors for next time
eval(['imwrite(img, pal,' '''' filename

'"bmp");']);

125

% convert color bitmap to intensity map
imap = ind2gray(img, pal);

% convert intensity map to grayscale
[img2 pal2] = gray2ind(imap, 256);

% save the grayscale image to disk
grayfilename = ['gray_' filename];
eval(['imwrite(img2/ pal2,' '''' grayfilename '''' ', '

'''bmp1•);']);

% filter the image with point noise filter
filtimg = filter2(filtmask, img2);

% perform thresholding on the filtered image
[maxrows, maxcols] = size(filtimg);

disp(' Begin Threshold...')
for r = 1:maxrows

for c = l:maxcols
if abs(filtimg(r,c)) > threshold

filtimg(r,c) = 256; %set to white
else

filtimg(r,c) = 1; %set to black
end
end

end

% save threshold image as bitmap file
threshfilename = [int2str(threshold) 'filt_' filename];
eval(['imwrite(filtimg, pal2,' '''' threshfilename ''''

', ' "'bmp•,);•]);

disp(' Begin Stats...')
dispC ')

[pix,hits,pent,meanx,stddevx] = getstats(filtimg);

disp(sprintf(' Pixels = %7d',pix))
disp(sprintf(' Threshold= %7d',threshold))
disp(sprintf(' Hits = %7d',hits))
disp(sprintf(' Percent = %7.6f',pcnt))
disp(sprintf(' Mean = %7.3f',meanx))
disp(sprintf(' Std Dev = %7.3f',stddevx))
disp(' ')

% add a new line of stats to the matrix of all files' stats
newline = [x pix hits pent meanx stddevx];
alldata = [alldata; newline];

end

% Write the run's data values to a text file,
datafile = ['Trial_' int2str(threshold) mask '.dat'];
eval(['save ' datafile ' alldata -ascii -tabs']) ;
disp('Done.')

126

A.2.2.2, getstats.m

function [pixcnt,hits,percent,meanval,stdev] = getstats(x)

%
%
%
%
%
%
%

This function calculates the statistics of the output from
the filter/threshold operation. It calculates the number of
hits in an image as a percentage of the total number of pixels
in the image. It returns a matrix with the following values:

[pixelcount hits percentage mean stdev]

USAGE: [pixcnt,hits,percent,meanval,stdev] = getstats(img)

meanval = mean(x(:)) ,
stdev = std(x(:)) ;
pixcnt = size(x,l) *
[maxrows, maxcols] =
hits = 0;
for r = 1:maxrows

for c = l:maxcols
if x(r,c) == 256

hits = hits +
end
end

end
percent = hits/pixcnt;

size(x,2);
size(x);

1;

A.2.3, Sample Output - scandir.m

Within the ASCII text file, the data appears as follows:

1 0000000e+00 1 8684000e+05 1 6367000e+04 8 7599015e- -02 2 3337749e+01 7 2091461e+01
2 0000000e+00 1 9710000e+05 4 8757000e+04 2 4737189e- -01 6 4079833e+01 1 1002888e+02
3 0000000e+00 1 9976400e+05 2 0422000e+04 1 0223063e- -01 2 7068811e+01 7 7252792e+01
4 0000000e+00 1 9492800e+05 5 4735000e+04 2 8079599e- -01 7 2602976e+01 1 1459424e+02
5 0000000e+00 1 9953200e+05 4 6470000e+04 2 3289497e- -01 6 0388218e+01 1 0778262e+02
6 0000000e+00 2 0199600e+05 1 1526000e+04 5 7060536e- -02 1 5550437e+01 5 9149501e+01
7 0000000e+00 1 9360000e+05 1 4649000e+04 7 5666322e- -02 2 0294912e+01 6 7438360e+01
8 0000000e+00 1 8532800e+05 2 2512000e+04 1 2147112e- -01 3 1975136e+01 8 3302089e+01
9 0000000e+00 1 9800600e+05 1 8910000e+04 9 5502157e- -02 2 5353050e+01 7 4946548e+01
1 0000000e+01 1 9440000e+05 1 7314000e+04 8 9063786e- -02 2 3711265e+01 7 2633314e+01
1 1000000e+01 1 8330000e+05 3 1146000e+04 1 6991817e- -01 4 4329133e+01 9 5768289e+01
1 2000000e+01 1 9750800e+05 3 3369000e+04 1 6895012e- -01 4 4082280e+01 9 5550745e+01
1 3000000e+01 2 0000000e+05 2 3708000e+04 1 1854000e- -01 3 1227700e+01 8 2428051e+01
1 4000000e+01 1 8778200e+05 3 0729000e+04 1 6364188e- -01 4 2728680e+01 9 4337575e+01
1 5000000e+01 1 9126000e+05 5 9081000e+04 3 08904'lle- -01 7 9770548e+01 1 1782089e+02
1 6000000e+01 1 8895600e+05 2 9736000e+04 1 5736997e- -01 4 1129342e+01 9 2858300e+01
1 7000000e+01 1 8369600e+05 6 4224000e+04 3 4962111e- -01 9 0153384e+01 1 2159715e+02
1 8000000e+01 1 8739800e+05 4 3515000e+04 2 3220632e- -01 6 0212612e+01 1 0767147e+02
1 9000000e+01 1 8528300e+05 3 7721000e+04 2 0358587e- -01 5 2914396e+01 1 0267971e+02
2 0000000e+01 1 8602000e+05 2 6408000e+04 1 4196323e- -01 3 7200624e+01 8 8998407e+01
2 1000000e+01 1 8322200e+05 6 5934000e+04 3 5985853e- -01 9 2763926e+01 1 2238981e+02
2 2000000e+01 1 8849600e+05 4 4781000e+04 2 3757003e- -01 6 1580357e+01 1 0852683e+02
2 3000000e+01 1 8515200e+05 4 6712000e+04 2 5229001e- -01 6 5333953e+01 1 1075363e+02
2 4000000e+01 1 8408000e+05 3 5097000e+04 1 9066167e- -01 4 9618726e+01 1 0017010e+02
2 5000000e+01 2 0165000e+05 5 3831000e+04 2 6695264e- -01 6 9072923e+01 1 1280397e+02
2 6000000e+01 1 9510400e+05 6 1216000e+04 3 1376087e- -01 8 1009021e+01 1 1832552e+02
2 7000000e+01 1 8424500e+05 5 2749000e+04 2 8629814e- -01 7 4006025e+01 1 1526807e+02
2 8000000e+01 1 8476400e+05 4 9944000e+04 2 7031240e- -01 6 9929662e+01 1 1325120e+02
3 0000000e+01 1 8566500e+05 6 2245000e+04 3 3525436e- -01 8 6489861e+01 1 2038055e+02

127

After the file is imported into an Excel spreadsheet, it is stored as shown below.

The statistic mean pixel value was used only as a general indication of the image's

overall hit percentage. Since a black pixel had a value of one, darker threshold images

would have mean pixel values closer to one, as well. The statistic standard deviation was

calculated but not used in this analysis.

File Number Total Pixels Hits Hit % Mean Pixel Std Dev

01 186840 16367 8.76% 23.34 72.09
02 197100 48757 24.74% 64.08 110.03
03 199764 20422 10.22% 27.07 77.25
04 194928 54735 28.08% 72.60 114.59
05 199532 46470 23.29% 60.39 107.78
06 201996 11526 5.71% 15.55 59.15
07 193600 14649 7.57% 20.29 67.44
08 185328 22512 12.15% 31.98 83.30
09 198006 18910 9.55% 25.35 74.95
10 194400 17314 8.91% 23.71 72.63
11 183300 31146 16.99% 44.33 95.77
12 197508 33369 16.90% 44.08 95.55
13 200000 23708 11.85% 31.23 82.43
14 187782 30729 16.36% 42.73 94.34
15 191260 59081 30.89% 79.77 117.82
16 188956 29736 15.74% 41.13 92.86
17 183696 64224 34.96% 90.15 121.60
18 187398 43515 23.22% 60.21 107.67
19 185283 37721 20.36% 52.91 102.68
20 186020 26408 14.20% 37.20 89.00
21 183222 65934 35.99% 92.76 122.39
22 188496 44781 23.76% 61.58 108.53
23 185152 46712 25.23% 65.33 110.75
24 184080 35097 19.07% 49.62 100.17
25 201650 53831 26.70% 69.07 112.80
26 195104 61216 31.38% 81.01 118.33
27 184245 52749 28.63% 74.01 115.27
28 184764 49944 27.03% 69.93 113.25
30 185665 62245 33.53% 86.49 120.38

128

Appendix B, Point-noise Threshold Test Results

This appendix contains summaries of each test case for the four thresholds

examined. Only an example of the output is shown in Section B.2. Summary data for the

frequency-ordered and luminance-ordered test partitions are shown in Sections B.3 and

B.4 respectively.

B.l, Naming Conventions

A unique naming standard was employed to accurately track the files in the image

library and various test cases. The filename elements are shown in Figure 60 and

described in Table 32. References to an entire test case will omit the File ID element.

Non-stego cases use only the first three elements and the bitmap extension.

##mxab c. bmp

File ID-

Library Tag

Palette Ordering

Steganography Tool'

Loading Level;

Message File Type'

Bitmap Extension'

Figure 60, Naming Convention

129

Table 32, Naming Convention Element Descriptions

File ID: Two-digit numeric value that identified the cover file. Since there were 30
images in the master library, the values range from "01" to "30".

Library Tag: Designates which library the images were from. Since only one library (the
master library) was utilized in this research, the only valid value was "m".

Palette Ordering: Designates the palette-ordering scheme. The valid values are:
• "x" for luminance-ordered,
• "y" for frequency-ordered palettes.

Steganography Tool: Single alphanumeric value designating the tool used to embed the
message file. This element was not included in non-stego files. The valid values are:
• "h" for HideSeek,
• "g" for Steganos,
• "s" for S-Tools.

Loading Level: Designates the loading level, the ratio of the total message bytes to image
pixels. This element was not included in non-stego files. The valid values are:
• "h" for high,
• "1" for low.

Message File Type: Designates the underlying file type that is embedded in the cover file.
This element was not included in non-stego files. The valid values are:
• "b" for binary file,
• "i" for image file,
• "t" for text file.

Bitmap Extension: File extension for bitmap files.

B.2, Example Point-noise Threshold Test Results

The tables shown below are examples of the data collected in the point-noise
threshold test. The entire data set can be obtained by contacting:

130

Dr. Henry Potoczny
Air Force Institute of Technology
2950 P. Street
Wright-Patterson AFB, OH 45433-1111

Table 33, Example Hit Percentages - Non-Stego, All Thresholds

Test Case

File
my

(T=1000)
my (T=750) my (T=500) my (T=250)

01 0.03% 0.19% 0.35% 1.14%
02 0.00% 0.00% 0.32% 0.90%
03 0.00% 0.63% 0.87% 3.21%
04 0.00% 0.09% 1.05% 10.08%
05 0.00% 0.00% 0.80% 1.40%
06 0.00% 0.01% 0.26% 3.76%
07 0.00% 0.00% 0.02% 0.52%
08 0.00% 0.02% 0.18% 1.96%
09 0.00% 0.00% 0.19% 1.15%
10 0.00% 0.08% 1.06% 4.60%
11 0.00% 0.03% 0.71% 6.23%
12 0.00% 0.03% 0.86% 5.57%
13 0.00% . 0.00% 0.29% 1.31%
14 0.16% 0.31% 0.82% 2.66%
15 0.06% 0.48% 1.75% 10.76%
16 0.00% 0.05% 0.97% 11.09%
17 0.10% 0.96% 6.09% 27.94%
18 0.07% 0.50% 2.49% 10.05%
19 0.11% 0.44% 1.95% 8.54%
20 0.00% 0.00% 0.51% 1.81%
21 0.01% 0.20% 1.72% 13.29%
22 0.02% 0.26% 2.44% 15.21%
23 0.02% 0.30% 1.72% 8.67%
24 0.01% 0.18% 1.58% 11.41%
25 0.01% 0.18% 1.64% 8.62%
26 0.07% 0.82% 5.29% 23.72%
27 0.00% 0.02% 0.42% 1.23%
28 0.02% 0.24% 2.21% 11.99%
29 0.16% 0.77% 4.16% 20.63%
30 0.08% 0.68% 3.98% 19.28%

Median 0.01% 0.18% 1.01% 7.39%

131

Table 34, Example Hit Percentages Results- HideSeek, T=1000

Test Case

File myhhb myhhi myhht myhlb myhli myhlt

01 0.58% 0.61% 0.60% 0.49% 0.47% 0.48%

02 6.13% 6.38% 6.50% 4.65% 4.99% 4.99%

03 0.71% 0.66% 0.66% 0.46% 0.42% 0.43%

04 3.77% 4.01% 4.07% 2.88% 2.91% 2.75%

05 2.15% 2.06% 2.14% 2.31% 2.31% 2.27%

06 0.13% 0.10% 0.10% 0.06% 0.06% 0.07%

07 0.81% 0.98% 1.03% 0.78% 0.79% 0.82%

08 1.81% 1.92% 1.98% 1.53% 1.56% 1.51%

09 0.36% 0.42% 0.46% 0.29% 0.32% 0.33%

10 0.56% 0.65% 0.61% 0.54% 0.56% 0.54%

11 1.79% 1.92% 1.86% 1.54% 1.63% 1.64%
12 1.40% 1.50% 1.53% 1.32% 1.40% 1.37%

13 0.34% 0.33% 0.34% 0.32% 0.32% 0.32%

14 3.01% 2.83% 3.05% 2.17% 2.16% 2.12%

15 5.75% 6.08% 6.51% 3.23% 3.27% 3.19%

16 2.37% 2.35% 2.34% 1.52% 1.51% 1.51%

17 5.33% 4.82% 5.24% 3.04% 3.24% 3.06%

18 1.99% 2.06% 2.18% 1.43% 1.47% 1.44%

19 3.71% 3.59% 3.70% 2.28% 2.35% 2.31%
20 0.98% 0.86% 0.94% 0.62% 0.60% 0.60%
21 5.00% 4.83% 5.20% 3.55% 3.70% 3.78%
22 2.33% 2.08% 2.25% 1.48% 1.50% 1.54%

23 5.28% 5.32% 5.60% 3.12% 3.27% 3.34%
24 2.52% 3.11% 3.07% 1.79% 1.98% 1.98%
25 4.92% 4.54% 4.88% 2.88% 3.03% 2.96%
26 4.15% 4.12% 4.36% 2.75% 2.77% 2.74%
27 4.62% 4.59% 4.75% 2.76% 2.90% 3.00%
28 6.00% 5.82% 6.40% 2.86% 3.04% 3.07%
29 4.96% 4.79% 5.07% 2.55% 2.59% 2.59%
30 5.80% 6.20% 6.51% 3.30% 3.65% 3.78%

Median 2.44% 2.59% 2.70% 1.98% 2.07% 2.05%

132

B.3. Point-noise Threshold Test Summary - Frequency Ordered Palette

B.3.1, Threshold = 1000

Table 35, Hit Percentages - Summary, T=1000

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.03% 0.02% 0.54% 0.68%
02 0.00% 0.00% 5.61% 6.67%
03 0.00% 0.03% 0.56% 0.67%
04 0.00% 0.01% 3.40% 4.35%
05 0.00% 0.01% 2.21% 2.25%
06 0.00% 0.01% 0.09% 0.16%
07 0.00% 0.09% 0.87% 1.16%

08 0.00% 0.00% 1.72% 1.98%

09 0.00% 0.01% 0.36% 0.51%

10 0.00% 0.00% 0.58% 0.67%
11 0.00% 0.01% 1.73% 1.93%

12 0.00% 0.00% 1.42% 1.57%
13 0.00% 0.00% 0.33% 0.34%

14 0.16% 0.22% 2.56% 3.04%
15 0.06% 0.06% 4.67% 7.71%

16 0.00% 0.00% 1.93% 2.47%
17 0.10% 0.09% 4.12% 5.33%
18 0.07% 0.10% 1.76% 2.18%
19 0.11% 0.06% 2.99% 3.84%
20 0.00% 0.00% 0.77% 0.91%
21 0.01% 0.03% 4.34% 5.64%
22 0.02% 0.02% 1.86% 2.32%
23 0.02% 0.03% 4.32% 5.78%
24 0.01% 0.01% 2.41% 3.30%
25 0.01% 0.02% 3.87% 5.31%
26 0.07% 0.09% 3.48% 4.79%
27 0.00% 0.02% 3.77% 5.01%
28 0.02% 0.02% 4.53% 7.46%
29 0.16% 0.16% 3.76% 5.29%
30 0.08% 0.10% 4.87% 7.37%

Median 0.01% 0.02% 2.31% 2.76%

133

B.3.2, Threshold = 750

Table 36, Hit Percentages - Summary, T=750

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.19% 0.08% 2.12% 2.74%

02 0.00% 0.00% 9.80% 13.43%

03 0.63% 0.57% 2.39% 3.03%

04 0.09% 0.13% 8.27% 12.37%

05 0.00% 0.03% 6.32% 8.96%

06 0.01% 0.02% 0.69% 1.08%

07 0.00% 0.17% 1.91% 2.89%

08 0.02% 0.03% 3.91% 5.43%

09 0.00% 0.04% 1.96% 2.55%

10 0.08% 0.10% 1.96% 2.62%

11 0.03% 0.09% 4.70% 6.31%
12 0.03% 0.03% 4.26% 6.07%

13 0.00% 0.00% 1.74% 2.25%
14 0.31% 0.36% 5.49% 7.49%

15 0.48% 0.52% 9.06% 15.75%
16 0.05% 0.08% 4.32% 6.17%
17 0.96% 0.93% 11.24% 15.51%
18 0.50% 0.43% 6.37% 8.52%

19 0.44% 0.39% 7.44% 10.21%

20 0.00% 0.00% 3.32% 4.39%
21 0.20% 0.25% 10.85% 16.07%

22 0.26% 0.26% 6.25% 8.34%

23 0.30% 0.36% 8.53% 12.47%
24 0.18% 0.18% 5.55% 7.85%
25 0.18% 0.19% 8.70% 12.46%
26 0.82% 0.86% 8.83% 12.62%
27 0.02% 0.04% 8.50% 12.17%
28 0.24% 0.29% 9.25% 15.57%
29 0.77% 0.82% 8.50% 12.12%
30 0.68% 0.74% 10.61% 16.53%

Median 0.18% 0.18% 6.29% 8.43%

134

B.3.3, Threshold = 500

Table 37, Hit Percentages - Summary, T=500

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.35% 0.37% 6.04% 8.69%
02 0.32% 0.32% 17.12% 24.77%
03 0.87% 0.98% 8.97% 10.32%
04 1.05% 1.43% 18.90% 28.05%
05 0.80% 0.81% 14.84% 23.23%
06 0.26% 0.30% 3.72% 5.72%
07 0.02% 0.25% 5.53% 7.53%
08 0.18% 0.22% 8.20% 12.14%
09 0.19% 0.26% 6.34% 9.52%
10 1.06% 1.10% 6.73% 8.82%
11 0.71% 0.81% 11.51% 17.02%
12 0.86% 0.97% 10.54% 16.74%
13 0.29% 0.26% 8.42% 11.87%
14 0.82% 1.04% 11.18% 16.27%
15 1.75% 1.79% 18.83% 30.83%
16 0.97% 1.21% 10.78% 15.77%
17 6.09% 6.22% 26.21% 34.84%
18 2.49% 2.36% 17.27% 23.19%
19 1.95% 1.90% 14.48% 20.37%
20 0.51% 0.54% 10.04% 14.20%
21 1.72% 1.90% 24.11% 35.98%
22 2.44% 2.38% 17.41% 23.82%
23 1.72% 1.82% 17.32% 25.37%
24 1.58% 1.55% 13.34% 18.97%
25 1.64% 1.82% 18.49% 26.88%
26 5.29% 5.41% 22.63% 31.46%
27 0.42% 0.47% 19.16% 28.58%
28 2.21% 2.64% 18.91% 30.75%
29 4.16% 4.32% 19.68% 27.05%
30 3.98% 4.15% 23.14% 33.69%

Median 1.01% 1.16% 14.66% 21.78%

135

B.3.4, Threshold = 250

Table 38, Hit Percentages - Summary, T=250

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 1.14% 1.58% 20.15% 29.00%
02 0.90% 1.19% 32.78% 46.78%
03 3.21% 3.09% 34.10% 51.08%
04 10.08% 12.68% 43.05% 56.64%
05 1.40% 1.50% 33.19% 49.35%
06 3.76% 4.17% 18.65% 26.56%
07 0.52% 1.05% 19.34% 28.27%
08 1.96% 2.47% 17.60% 24.25%
09 1.15% 1.31% 20.08% 30.57%
10 4.60% 5.66% 23.51% 30.41%
11 6.23% 7.16% 30.81% 42.42%
12 5.57% 6.68% 30.38% 44.26%
13 1.31% 1.82% 28.98% 44.32%
14 2.66% 3.81% 23.35% 32.23%
15 10.76% 11.51% 42.70% 58.52%
16 11.09% 13.19% 32.08% 41.33%
17 27.94% 29.43% 54.87% 63.90%
18 10.05% 10.89% 38.39% 47.96%
19 8.54% 8.72% 32.84% 42.14%
20 1.81% 2.38% 26.77% 39.64%
21 13.29% 14.04% 50.81% 65.93%
22 15.21% 16.07% 42.87% 54.07%
23 8.67% 9.61% 39.50% 52.77%
24 11.41% 12.32% 34.03% 44.22%
25 8.62% 9.87% 38.37% 51.74%
26 23.72% 24.62% 51.64% 63.59%
27 1.23% 1.32% 41.07% 58.87%
28 11.99% 12.44% 42.52% 58.24%
29 20.63% 21.85% 46.03% 56.80%
30 19.28% 20.35% 49.59% 61.27%

Median 7.39% 7.94% 33.61% 47.37%

136

B.4, Point-noise Threshold Test Summary - Luminance Ordered Palette

B.4.1, Threshold = 1000

Table 39, Hit Percentages - Summary, T=1000

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.03% 0.02% 0.03% 0.03%
02 0.00% 0.00% 0.00% 0.00%
03 0.00% 0.06% 0.00% 0.00%
04 0.00% 0.01% 0.00% 0.00%
05 0.00% 0.06% 0.00% 0.00%
06 0.18% 0.09% 0.18% 0.16%
07 0.21% 0.07% 0.21% 0.21%
08 0.00% 0.00% 0.00% 0.00%
09 0.00% 0.00% 0.00% 0.00%
10 0.00% 0.00% 0.00% 0.00%
11 0.00% 0.00% 0.00% 0.00%
12 0.00% 0.00% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00%
14 0.33% 0.31% 0.33% 0.33%
15 0.06% 0.06% 0.06% 0.06%
16 0.00% 0.00% 0.00% 0.00%
17 0.10% 0.09% 0.10% 0.10%
18 0.07% 0.12% 0.07% 0.07%
19 0.11% 0.10% 0.11% 0.10%
20 0.00% 0.00% 0.00% 0.00%
21 0.20% 0.09% 0.20% 0.20%
22 0.02% 0.02% 0.02% 0.02%
23 0.02% 0.03% 0.02% 0.02%
24 0.01% 0.01% 0.01% 0.01%
25 0.02% 0.02% 0.01% 0.01%
26 0.07% 0.09% 0.07% 0.07%
27 0.12% 0.06% 0.12% 0.12%
28 0.02% 0.02% 0.02% 0.02%
29 0.17% 0.16% 0.17% 0.17%
30 0.16% 0.17% 0.15% 0.16%

Median 0.02% 0.03% 0.02% 0.02%

137

B.4.2, Threshold = 750

Table 40, Hit Percentages - Summary, T-750

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.19% 0.08% 0.19% 0.19%
02 0.00% 0.00% 0.00% 0.00%
03 0.63% 0.51% 0.63% 0.63%
04 0.09% 0.13% 0.09% 0.10%
05 0.30% 0.18% 0.31% 0.30%
06 0.29% 0.21% 0.29% 0.26%
07 0.30% 0.16% 0.30% 0.31%
08 0.02% 0.03% 0.02% 0.02%
09 0.28% 0.00% 0.28% 0.28%
10 0.08% 0.10% 0.09% 0.09%
11 0.03% 0.09% 0.03% 0.03%
12 0.03% 0.03% 0.03% 0.03%
13 0.00% 0.00% 0.00% 0.00%
14 0.67% 0.45% 0.69% 0.67%
15 0.48% 0.52% 0.48% 0.48%
16 0.05% 0.08% 0.05% 0.06%
17 0.96% 0.94% 0.95% 0.95%
18 0.77% 0.43% 0.77% 0.76%
19 0.62% 0.47% 0.62% 0.61%
20 0.00% 0.00% 0.00% 0.00%
21 0.40% 0.40% 0.41% 0.40%
22 0.26% 0.26% 0.26% 0.26%
23 0.30% 0.36% 0.30% 0.29%
24 0.18% 0.18% 0.18% 0.18%
25 0.46% 0.32% 0.45% 0.31%
26 0.82% 0.85% 0.82% 0.82%
27 0.21% 0.12% 0.20% 0.21%
28 0.24% 0.29% 0.26% 0.26%
29 0.80% 0.88% 0.77% 0.78%
30 0.86% 0.89% 0.86% 0.86%

Median 0.28% 0.20% 0.28% 0.27%

138

B.4.3, Threshold = 500

Table 41, Hit Percentages - Summary, T=500

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 0.35% 0.37% 0.35% 0.35%
02 0.32% 0.32% 0.32% 0.32%
03 0.87% 0.96% 0.88% 0.88%
04 1.05% 1.43% 1.05% 1.05%
05 0.82% 0.84% 0.83% 0.82%
06 0.55% 0.54% 0.57% 0.58%
07 0.60% 0.29% 0.60% 0.60%
08 0.18% 0.22% 0.18% 0.18%
09 0.54% 0.46% 0.54% 0.54%
10 1.06% 1.10% 1.06% 1.07%
11 0.72% 0.83% 0.72% 0.72%
12 0.86% 0.96% 0.86% 0.86%
13 0.29% 0.26% 0.29% 0.29%
14 1.41% 1.19% 1.41% 1.42%
15 1.75% 1.79% 1.75% 1.75%
16 0.97% 1.21% 0.97% 0.97%
17 6.09% 6.21% 6.07% 6.06%
18 2.49% 2.34% 2.48% 2.48%
19 1.95% 1.85% 1.94% 1.94%
20 0.51% 0.54% 0.51% 0.51%
21 1.89% 2.01% 1.90% 1.90%
22 2.44% 2.38% 2.44% 2.44%
23 1.72% 1.82% 1.72% 1.72%
24 1.58% 1.54% 1.58% 1.57%
25 1.64% 1.80% 1.65% 1.65%
26 5.29% 5.38% 5.31% 5.32%
27 0.57% 0.52% 0.57% 0.57%
28 2.21% 2.64% 2.22% 2.22%
29 4.16% 4.68% 4.16% 4.16%
30 4.01% 4.12% 4.00% 4.00%

Median 1.06% 1.20% 1.05% 1.06%

139

B.4.4, Threshold = 250

Table 42, Hit Percentages - Summary, T=250

Test Case

File Non-Stego S-Tools HideSeek Steganos

01 1.14% 1.57% 1.42% 1.53%
02 0.90% 1.19% 0.91% 0.92%
03 3.21% 3.17% 3.18% 3.17%
04 10.08% 12.65% 10.08% 10.08%
05 1.42% 1.56% 1.43% 1.42%
06 3.95% 4.31% 4.43% 4.75%
07 1.12% 1.19% 1.41% 1.62%
08 1.96% 2.47% 1.96% 1.97%
09 1.69% 1.91% 1.71% 1.71%
10 4.60% 5.65% 4.63% 4.65%
11 6.21% 7.28% 6.22% 6.22%
12 5.57% 6.63% 5.56% 5.58%
13 1.31% 1.82% 1.31% 1.31%
14 3.24% 3.95% 3.25% 3.25%
15 10.76% 11.52% 10.78% 10.80%
16 11.09% 13.19% 11.11% 11.13%
17 27.94% 29.37% 27.98% 28.00%
18 10.05% 10.89% 10.02% 10.01%
19 8.54% 8.55% 8.50% 8.49%
20 1.81% 2.38% 1.80% 1.80%
21 13.29% 14.02% 13.32% 13.35%
22 15.21% 16.06% 15.28% 15.27%
23 8.67% 9.60% 8.67% 8.68%
24 11.41% 12.25% 11.44% 11.44%
25 8.62% 9.70% 8.63% 8.62%
26 23.72% 24.59% 23.76% 23.75%
27 1.23% 1.35% 1.23% 1.24%
28 11.99% 12.42% 12.02% 12.00%
29 20.63% 22.73% 20.63% 20.63%
30 19.28% 20.13% 19.30% 19.31%

Median 7.37% 7.92% 7.36% 7.36%

140

B.5. Point-noise Threshold Test Max/Min Values

Table 43, Max-Min Hit Percentages (frequency-ordered)

Frequency Ordered Palette

Tool
Threshold

1000 750 500 250

Non-Stego Max 0.16% 0.96% 6.09% 27.94%

Min 0.00% 0.00% 0.02% 0.52%

S-Tools Max 0.30% 0.95% 6.25% 29.48%

Min 0.00% 0.00% 0.17% 0.91%

HideSeek Max 6.51% 15.10% 33.95% 63.60%

Min 0.06% 0.48% 2.51% 12.05%

Steganos Max 7.80% 16.59% 36.14% 66.07%

Min 0.15% 1.04% 5.67% 24.16%

Table 44, Max-Min Hit Percentages (luminance-ordered)

Luminance Ordered Palette

Tool
Threshold

1000 750 500 250

Non-Stego Max 0.33% 0.96% 6.09% 27.94%

Min 0.00% 0.00% 0.18% 0.90%

S-Tools Max 0.36% 0.95% 6.25% 29.48%

Min 0.00% 0.00% 0.21% 1.06%

HideSeek Max 0.33% 0.96% 6.08% 28.00%

Min 0.00% 0.00% 0.18% 0.90%

Steganos Max 0.33% 0.96% 6.07% 28.02%

Min 0.00% 0.00% 0.18% 0.92%

141

Appendix C, Byte Frequency Test Results

The data collected on each file consisted of a 256-element array for each file.

Each test case consisted of 30 files, and there were 18 test cases in each of 2 test

partitions. The shear volume of the data collected in the byte frequency analysis test

makes it incompatible with printed media. The complete byte frequency data set used in

this research is available upon request. (See Appendix B.2) The following sections

present the cumulative median byte frequency test results.

C.l, Cumulative Median Byte Frequency

Table 45,16-Bin Cumulative Median Byte Frequency (frequency-ordered)

Non-Stego
16 Bins

S-Tools HideSeek Steganos Bin Range
0-15

16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223

224 - 239

36.13% 0.67% 36.27% 36.13%
14.72% 0.94% 14.73% 14.72%
10.62% 1.42% 10.62% 10.62%
8.23% 1.88% 8.19% 8.23%
6.56% 2.29% 6.56% 6.56%
5.30% 3.21% 5.30% 5.30%
4.33% 3.67% 4.33% 4.33%
3.60% 3.94% 3.61% 3.60%
3.00% 4.67% 3.00% 3.00%
2.44% 5.51% 2.44% 2.44%
1.96% 6.17% 1.96% 1.96%
1.55% 6.85% 1.55% 1.55%
1.14% 8.81% 1.14% 1.14%
0.73% 11.10% 0.73% 0.73%
0.35% 14.35% 0.35% 0.35%

142

Table 46, 8-Bin Cumulative Median Byte Frequency (frequency-ordered)

Non-Stego
8 Bins

S-Tools HideSeek Steganos Bin Range
0-31

32-63
64-95

96-127
128-159
160-191
192-223
224 - 255

50.85% 1.62% 50.99% 50.85%
18.86% 3.30% 18.81% 18.86%
11.86% 5.50% 11.86% 11.86%

7.93% 7.61% 7.93% 7.93%

5.43% 10.18% 5.43% 5.43%
3.51% 13.02% 3.51% 3.51%
1.87% 19.91% 1.87% 1.87%

0.44% 36.53% 0.44% 0.44%

Table 47, 4-Bin Cumulative Median Byte Frequency (frequency-ordered)

Non-Stego
4 Bins

S-Tools HideSeek Steganos Bin Range
0-63

64-127
128-191
192-255

69.71% 4.92% 69.81% 69.71%
19.79% 13.11% 19.79% 19.79%
8.95% 23.19% 8.94% 8.95%
2.30% 56.44% 2.30% 2.30%

143

Table 48,16-Bin Cumulative Median Byte Frequency (luminance-ordered)

Non-Stego
16 Bins

S-Tools HideSeek Steganos Bin Range
0-15

16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223

224 - 239

8.37% 0.65% 8.55% 8.44%

6.06% 0.90% 6.06% 6.06%
5.64% 1.32% 5.64% 5.64%

5.35% 1.95% 5.35% 5.35%
5.46% 2.45% 5.46% 5.46%
5.90% 3.17% 5.90% 5.90%
5.10% 3.51% 5.10% 5.10%

5.33% 3.78% 5.33% 5.33%

5.65% 4.62% 5.65% 5.65%
5.47% 5.32% 5.47% 5.47%
5.37% 6.35% 5.37% 5.37%
5.03% 7.07% 5.03% 5.03%
5.34% 8.94% 5.34% 5.34%
5.86% 10.96% 5.86% 5.86%
6.55% 13.43% 6.55% 6.55%

Table 49, 8-Bin Cumulative Median Byte Frequency (luminance-ordered)

Non-Stego
8 Bins

S-Tools HideSeek Steganos Bin Range
0-31

32-63
64-95

96-127
128-159
160-191
192-223
224 - 255

14.43% 1.55% 14.61% 14.50%
10.99% 3.27% 10.99% 10.99%
11.36% 5.62% 11.36% 11.36%
10.43% 7.28% 10.43% 10.43%
11.12% 9.95% 11.12% 11.12%
10.40% 13.42% 10.40% 10.40%
11.20% 19.90% 11.20% 11.20%
20.05% 35.98% 20.03% 20.03%

144

Table 50, 4-Bin Cumulative Median Byte Frequency (luminance-ordered)

Non-Stego
4 Bins

S-Tools HideSeek Steganos Bin Range
0-63

64-127
128-191
192-255

25.43% 4.82% 25.60% 25.50%

21.79% 12.90% 21.79% 21.79%

21.51% 23.37% 21.51% 21.51%

31.25% 55.87% 31.23% 31.23%

C.2. Cumulative Parameter-wise Median Byte Frequency

C.2.1, Message File Type

Table 51,16-Bin Cumulative Median Byte Frequency (HideSeek, frequency-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

36.02% 36.01% 35.96%
14.59% 14.59% 14.59%
10.52% 10.52% 10.52%
8.11% 8.12% 8.16%
6.50% 6.50% 6.50%
5.25% 5.25% 5.25%
4.29% 4.29% 4.29%
3.57% 3.57% 3.57%
2.97% 2.97% 2.97%
2.42% 2.42% 2.42%
1.94% 1.94% 1.95%
1.53% 1.53% 1.54%
1.13% 1.13% 1.13%
0.69% 0.68% 0.68%
0.35% 0.35% 0.35%
0.08% 0.08% 0.08%

145

Table 52,16-Bin Cumulative Median Byte Frequency (Steganos, frequency-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

35.80% 35.80% 35.80%
14.59% 14.59% 14.59%
10.52% 10.52% 10.52%
8.16% 8.16% 8.16%
6.50% 6.50% 6.50%
5.25% 5.25% 5.25%
4.29% 4.29% 4.29%
3.57% 3.57% 3.57%
2.97% 2.97% 2.97%
2.42% 2.42% 2.42%
1.95% 1.95% 1.95%
1.54% 1.54% 1.54%
1.13% 1.13% 1.13%
0.69% 0.69% 0.69%
0.35% 0.35% 0.35%
0.08% 0.08% 0.08%

Table 53,16-Bin Cumulative Median Byte Frequency (S-Tools, frequency-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

0.76% 0.78% 0.78%
1.12% 1.03% 1.02%
1.46% 1.45% 1.53%
2.16% 1.89% 2.19%
2.20% 2.53% 2.55%
3.30% 3.13% 3.31%
4.01% 3.20% 4.14%
3.95% 4.33% 3.82%
4.56% 5.05% 4.90%
5.30% 5.71% 5.58%
6.42% 6.14% 6.60%
7.38% 7.12% 7.28%
9.28% 8.82% 8.34%

10.22% 10.57% 10.56%
14.45% 14.17% 14.40%
22.65% 23.15% 22.28%

146

Table 54,16-Bin Cumulative Median Byte Frequency (HideSeek, luminance-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

8.53% 8.53% 8.53%
6.05% 6.05% 6.05%
5.64% 5.64% 5.64%
5.34% 5.34% 5.34%
5.45% 5.45% 5.45%
5.89% 5.89% 5.89%
5.09% 5.09% 5.09%
5.32% 5.32% 5.32%
5.64% 5.64% 5.64%
5.46% 5.46% 5.46%
5.36% 5.36% 5.36%
5.02% 5.02% 5.02%
5.34% 5.34% 5.34%
5.45% 5.34% 5.36%
6.54% 6.54% 6.54%

13.45% 13.45% 13.45%

Table 55,16-Bin Cumulative Median Byte Frequency (Steganos, luminance-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

8.43% 8.43% 8.43%
6.05% 6.05% 6.05%
5.64% 5.64% 5.64%
5.34% 5.34% 5.34%
5.45% 5.45% 5.45%
5.89% 5.89% 5.89%
5.09% 5.09% 5.09%
5.32% 5.32% 5.32%
5.64% 5.64% 5.64%
5.46% 5.46% 5.46%
5.36% 5.36% 5.36%
5.02% 5.02% 5.02%
5.34% 5.34% 5.34%
5.38% 5.38% 5.38%
6.54% 6.54% 6.54%

13.45% 13.45% 13.45%

147

Table 56,16-Bin Cumulative Median Byte Frequency (S-Tools, luminance-ordered)

Binary
16 Bins
Image Text Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

0.74% 0.66% 0.76%

1.09% 1.07% 1.03%
1.46% 1.39% 1.70%

2.10% 2.05% 2.11%
2.41% 2.63% 2.42%

3.27% 3.19% 3.37%
3.81% 3.38% 3.81%
3.84% 4.05% 3.94%
4.61% 4.86% 4.90%
5.44% 5.37% 5.56%
6.25% 6.54% 7.00%

7.39% 7.31% 6.79%
9.22% 9.21% 8.96%

10.42% 10.24% 10.87%
14.17% 14.22% 13.52%
22.94% 22.77% 22.51%

148

C.2.2, Cover File Loading

Table 57,16-Bin Cumulative Median Byte Frequency (HideSeek, frequency-ordered)

16 Bins
Hiah Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

36.03% 35.96%
14.59% 14.59%
10.52% 10.52%
8.10% 8.16%
6.50% 6.50%
5.25% 5.25%
4.29% 4.29%
3.57% 3.57%
2.97% 2.97%
2.42% 2.42%
1.94% 1.95%
1.53% 1.54%
1.13% 1.13%
0.69% 0.68%
0.35% 0.35%
0.08% 0.08%

149

Table 58,16-Bin Cumulative Median Byte Frequency (Steganos, frequency-ordered)

16 Bins
High Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

35.80% 35.80%
14.59% 14.59%
10.52% 10.52%
8.16% 8.16%
6.50% 6.50%
5.25% 5.25%
4.29% 4.29%
3.57% 3.57%
2.97% 2.97%
2.42% 2.42%
1.95% 1.95%
1.54% 1.54%
1.13% 1.13%
0.69% 0.69%
0.35% 0.35%
0.08% 0.08%

Table 59,16-Bin Cumulative Median Byte Frequency (S-Tools, frequency-ordered)

16 Bins
High Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

1.14% 0.41%
1.69% 0.43%
2.23% 0.73%
3.44% 0.72%
3.74% 1.12%
3.60% 2.90%
4.54% 3.03%
4.82% 3.25%
6.54% 3.14%
6.20% 4.86%
6.42% 6.34%
7.86% 6.66%
8.54% 9.09%
9.67% 11.23%

10.95% 17.73%
18.07% 27.31%

150

Table 60,16-Bin Cumulative Median Byte Frequency (HideSeek, luminance-ordered)

16 Bins
High Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

8.53% 8.53%
6.05% 6.05%
5.64% 5.64%
5.34% 5.34%
5.45% 5.45%
5.89% 5.89%
5.09% 5.09%

' 5.32% 5.32%
5.64% 5.64%
5.46% 5.46%
5.36% 5.36%
5.02% 5.02%
5.34% 5.34%
5.45% 5.31%
6.54% 6.54%

13.45% 13.45%

Table 61,16-Bin Cumulative Median Byte Frequency (Steganos, luminance-ordered)

16 Bins
High Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

8.43% 8.43%
6.05% 6.05%
5.64% 5.64%
5.34% 5.34%
5.45% 5.45%
5.89% 5.89%
5.09% 5.09%
5.32% 5.32%
5.64% 5.64%
5.46% 5.46%
5.36% 5.36%
5.02% 5.02%
5.34% 5.34%
5.38% 5.38%
6.54% 6.54%

13.45% 13.45%

151

Table 62,16-Bin Cumulative Median Byte Frequency (S-Tools, luminance-ordered)

16 Bins
High Low Bin Range

0-15
16-31
32-47
48-63
64-79
80-95

96-111
112-127
128-143
144-159
160-175
176-191
192-207
208 - 223
224 - 239
240 - 255

1.03% 0.41%
1.70% 0.42%
2.43% 0.60%
3.34% 0.83%
3.88% 1.10%
3.60% 2.95%
4.40% 2.93%
4.78% 3.10%
6.19% 3.39%
6.27% 4.64%
6.64% 6.55%
7.74% 6.58%
9.22% 9.04%
9.53% 11.49%

10.61% 17.33%
17.75% 27.72%

152

Appendix D, Miscellaneous C-code

The source code for the following C/C++ routines can be obtained by contacting:

Dr. Henry Potoczny
Air Force Institute of Technology
2950 P. Street
Wright-Patterson AFB, OH 45433-1111

D.I. RGB to Grayscale Conversion (rgb2gray.c)

D.2, Frequency-ordered Palette Conversion (palfreq.c)

D.3, Luminance-ordered Palette Conversion (pallum.c)

D.4. Bitmap I/O Header File (bmpio.h)

153

Appendix E, Filtering and Thresholding

This appendix provides additional information on calculation of the response of

the point-noise filter and the subsequent creation of a binary image using thresholding.

The image shown in Figure 61 will be used to demonstrate each step. Note that the light

pixels have a value of 127, and the dark pixels have a value of 255.

D = 127

■ =255

r i I !'&.- WJ '"
1m

^m
ISpj

^MM"
üfe

H

— __

im

IBl Bp ■**—

MA =

I ü pMiH

?^f<fcyp

pSi =
^f^!
^W' ^

PIP

j||{l{iiir|j!|lif:
k kr

Sfe
5 1, p}}

Figure 61, Initial Image

154

For the purposes of this demonstration, we will only calculate the response of the

image area that represents the window of the house as shown below in Figure 62. The

3x3 matrix of coefficients is the point-noise filter used in this research, and it is applied to

the image data in a row-major fashion. The center coefficient is applied to the target

pixel, while the surrounding coefficients are applied to its neighbors.

-1 -1 -1

-1 8 -1

-1 -1 -1

Point-noise filter

127 127

266

2»

2»

127

127

2G5

256

266

127

127

2S6

2»

266

127

127 127

127 127 127

127 127 127

127 127 127

127 127 127

127 127 127 127 127 127

Image data

Figure 62, Original Image Data and Filter

The first step is to calculate the response of the filter on the image. The response,

R, is calculated by the equation

R = w,z, + w2z2 + ■■■ + w9z9

9

1=1

,where

Wj w2 w3

w4 w5 w6

w7 w8 w9

and Zi is the intensity of the pixel associated with the coefficient w,. Obviously,

the edges of the image are an area of concern since the filter overlaps the image in these

155

areas. There are several methods of handling the boundary pixels. The pixels at the

boundaries can be ignored so that the first row of calculations is row two, and the first

column is column two. Such a method is easy to implement and works well with large

images where the number of boundary pixels is small compared to the total pixels in the

image.

Another method would be to calculate a partial response along the edges. This

involves reducing the center coefficient such that it equals one less than the number of

pixels covered by the filter.

Still another method involves padding the image with additional rows and

columns. While several methods exist to determine the value of the new boundary pixels,

the easiest is to duplicate the existing boundary rows and columns. This method is shown

in Figure 63 and is used for the remainder of this example. The new boundary pixel

values reflect the old boundary.

The response of the filter on the first (top left) pixel in the original image is given

by:

R = (-1X127) + (-1)(127) + (-1X127) +

(-1X127) + (8X127) + (-1X127) +

(-1X127)+ (-l)(127) + (-1X255)+

= -128

The results of the remaining calculations are shown below in Figure 64. Note

how the response of the filter goes to zero when the target pixel is identical to all of its

neighboring pixels.

156

-1 -1 -1

-1 8 -1

-1 -1 -1
127

127

127

127

127

127

127

127

127 127 127 ! 127 127 127 ! 127

127 127

266

266

266

127

127

265

266

266

127

127

266

266

266

127

127 127 127

127 127 127 127

127 127 127 127

127 127 127 127

127 127 127 127 !
i i

127 127 127 127 127 127 127

127 127 I 127 1
i

127 127 ! ! 127!
i

127

Figure 63, Padded Image

The remaining step in the process is to apply a threshold to the new calculated

image values. In order to construct a binary image, the filtered image is converted by

applying the following rule, where R is the response of the filter and T is the threshold:

If \R\ > T, then pixel value = 255 (black),

else pixel value = 0 (white).

The three images in Figure 65 show the affects of three arbitrary thresholds: 250,

300, and 400. Notice how lower thresholds correspond to greater sensitivity.

157

-128 -256

640

384

640

-256

-384

384

0

384

-384

-256

640

384

640

-256

-128 0

-256 -256 0

-384 -384 0

-256 -256 0

-128 -128 0

0 0 0 0 0 0

Figure 64, Filtered Image Values

|R| > 250 | I i ■

0 1 0 0

1 1 1 0

1 0 i a
1 1 i 0

0 1 0 0 ÜÜÜÜÜ
0 D 0 0 0 a

|Rj>300 I : i
0 0 1 0 0 a | 111111 1
0 1 1 i 0 0

1 1 0 i 1 0 mm ■■■I
0 1 1 i a 0 I
D 0 1 a 0 0 I
0 0 0 0 a 0

 i i i i
|R|>400 ! i i

0 0 a 0 0 a
0 1 0 1 0 0

0 0 a 0 0 0
0 1 a i 0 0

0 0 0 0 0 0
0 0 0 a 0 a

Figure 65, Threshold Binary Images

158

Bibliography

[I] Anderson, Ross, and Fabien Petitcolas. On the Limits of Steganography.
University of Cambridge, Computer Laboratory: Cambridge, UK. September
1997. Published in IEEE Journal on Special Areas in Communications v 16 no 4
(May 98) pp 463—473. Available at URL:
http://www.cl.cam.ac.uk/~fapp2/papers/jsac98-limsteg/

[2] Aura, Tuomas. Invisible Communication, Proceedings of Information Hiding
Workshop 1996. Helsinki Univ. of Technology, Finland, November 1995.
Available at URL: ftp://saturn.hut.fi/pub/aaura/aura-ihws96.ps

[3] Brassil, J., S. Low, N.F. Maxemchuck, L. O'Gorman. Hiding Information in
Document Images. AT&T Bell Laboratories, Murray Hill, NJ. Available at URL:
ftp://ftp.research.att.eom/dist/brassil/1994/infocom94a.ps.Z

[4] -- Electronic Marking and Identification Techniques to Discourage Document
Copying. Published in IEEE Infocom '94. AT&T Bell Laboratories, Murray
Hill, NJ. Available at URL: ftp://ftp.research.att.com/dist/brassil/infocom94.ps

[5] « Document Marking and Identification Using Both Line and Word Shifting.
Published in IEEE Infocom '95, Boston, MA. April 1995. Available at URL:
www.epm.ornl.gov/~dunigan/stega.html and
ftp://ftp.research.att.eom/dist/brassil/1995/ciss95.ps.Z

[6] Gonzalez, Rafael C. and Richard E. Woods. Digital Image Processing. Addison-
Wesley: Reading, MA. 1993.

[7] Johnson, Neil F. and Sushil Jajodia, Exploring Steganography: Seeing the unseen,
IEEE Computer, Vol. 31, No. 2, February 1998, pages 26-34.

[8] — Steganalysis of Images Created Using Current Steganography Software,
Preproceedings of the Second Information Hiding Workshop, Portland OR, 1998.

[9] Kahn, David. The Codebreakers: The Story of Secret Writing. Macmillan
Company: NY. 1967.

[10] Kay, David C. and John R. Levine. Graphic File Formats. TAB Books, Blue
Ridge Summit, PA. 1992.

[II] Murray, James D. and William vanRyper. Encyclopedia of Graphic File Formats.
O'Reilly & Associates, Inc.: Sebastopol, CA. 1994.

159

[12] Nelson, Mark and Jean-Loup Gailly. The Data Compression Book 2nd Ed. M&T
Books, New York, NY. 1996.

[13] Wayner, Peter. Mimic Functions. Department of Computer Science, Cornell
University: Ithaca, NY. Published in Cryptologia v XVI no 3, pp 193 - 214, July
1992.

160

Vita

Captain Christopher J. Fogle was born on 17 May 1964 in Dover, Delaware. He

graduated from Radford High School, Honolulu, Hawaii, in 1982 and entered the United

States Coast Guard Academy in New London, Connecticut. He enlisted in the United

States Air Force in July 1985 and continued his undergraduate studies with the University

of Maryland, European Division. He graduated Magna Cum Laude with a Bachelor of

Science degree in Computer Science in May 1992. He was commissioned on 21 January

1994 upon graduation from Officer Training School.

His assignments include duty as a military working dog handler at Carswell AFB,

Texas; Kwang Ju AB, Republic of Korea; Bitburg AB, Germany; and Laughlin AFB,

Texas. As a commissioned officer, he was assigned to Howard AFB, Panama, as the

Chief, Base Network Control Center, and Support Flight Commander. In August 1997,

he entered the School of Engineering, Air Force Institute of Technology. His follow-on

assignment is to the Air Force Information Warfare Center, Kelly AFB, Texas.

Permanent Address: 1700 N. Ainger Rd.
Charlotte, MI 48813

161

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999 Master's Thesis
4. TITLE AND SUBTITLE

STRATEGIES FOR STEGANALYSIS OF BITMAP GRAPHICS FILES

6. AUTHOR(S)

Christopher J. Fogle, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology (AFIT)
2950 P Street
Wright-Patterson AFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Henry B. Potoczny, PhD
Professor of Computer Science and Computer Engineering
Air Force Institute of Technology (AFIT)
2950 P Street
Wright-Patterson AFB. OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Advisor: Dr. Henry B. Potoczny, PhD

(937) 255-6565 ext 4282 (DSN 785-6565 ext 4282)
potoczny@afit. af.mil

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Steganography uses covert channels to hide the presence of communications, and the use of graphics image files to conceal
criminal communications is increasing. Steganalysis includes methods to detect the presence of embedded information;
however, manually investigating thousands of files is painstaking work. This thesis explores steganalysis strategies that
reduce the search space an investigator must confront. Emphasis is placed on methods that are easily incorporated in an
automated detection tool.
This thesis develops two strategies that reliably detect embedded information when original file characteristics are unknown -
a problem known as blind steganalysis. One strategy uses a point-noise detection filter to determine if pixels in an image are
significantly different from its neighbors. The percentage of "different" pixels is used to select images that possibly contain
embedded information. The second strategy examines a file's byte-frequency distribution. Files that have byte-value
distributions outside the norm are selected as suspect images.
The results indicate these strategies provide reliable detection mechanisms for 75% of the search space. The point-noise
threshold test achieves 98% success rates in cases where the embedding process results in a visibly distorted image. The
byte-frequency analysis test achieves a 100% success rate for a subset of images containing no distortions.

14. SUBJECT TERMS
steganography; steganalysis; covert channels; cryptography; secure communications;
information security

15. NUMBER OF PAGES

179
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

