
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

COMPARISON OF QUATERNION AND EULER
ANGLE METHODS FOR JOINT ANGLE

ANIMATION OF HUMAN FIGURE MODELS

by
Umit Y. Usta

March 1999

Thesis Co-Advisors: Robert B. McGhee
Michael J. Zyda

Approved for public release; distribution is unlimited.

DTIC QUALITY WaXBOfSSD 3

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Comparison of Quaternion and Euler Angle Methods for Joint Angle Animation of Human
Figure Models

6. AUTHOR(S)
Usta, Umit Y.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis presents articulated rigid body kinematics models for humans. The main area of research is
to investigate models for real-time computer graphics applications in Virtual Environments (VE). Existing
models have singularity problems and become too slow once the number of humans in view becomes large.

The approach taken is to develop a full body kinematics model with quaternions. Another common
method, Euler angles, has singularity and interpolation problems. Both methods are compared for memory,
computation and user input considerations. The implementation includes joint angle constraints. The model
is then manipulated with user inputs by a mouse. As part of this research, the real-time display of human arm
tracking with two inertial sensors, human walking, inverse kinematics, and key frame animation is also
demonstrated.

The major conclusion of this thesis is that a kinematics model with quaternions can eliminate the
singularity problems of existing models. Joint orientation interpolation is also more direct and less convoluted
with quaternions. Neither representation exhibits a decisive advantage over the other in terms of computational
speed. For memory considerations, the Euler angle method is best. To apply joint constraints, quaternion
representations are converted to Euler angles, which causes additional computation for the system.

14. SUBJECT TERMS

virtual environment, articulated humans, human modeling, kinematics, sensors, postural
control

15. NUMBER OF
PAGES

223
16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

n

Approved for public release; distribution is unlimited.

COMPARISON OF QUATERNION AND EULER ANGLE METHODS
FOR JOINT ANGLE ANIMATION OF HUMAN FIGURE MODELS

Umit Y. Usta
Lieutenant JG., Turkish Navy

B.S.O.R., Turkish Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1999

Author:

Approved by:

Umit Y. Usta

&juk- Q». <tokUC.
Robert B. McGhee, Thesis Co-Advisor

/'

Michael J. X^dWrThesis Co-Advisor

Dan Boger,^cnaflTftian
Department of Computer Science

ni

IV

ABSTRACT

This thesis presents articulated rigid body kinematics models for humans. The main

area of research is to investigate models for real-time computer graphics applications in

Virtual Environments (VE). Existing models have singularity problems and become too

slow once the number of humans in view becomes large.

The approach taken is to develop a full body kinematics model with quaternions.

Another common method, Euler angles, has singularity and interpolation problems. Both

methods are compared for memory, computation and user input considerations. The

implementation includes joint angle constraints. The model is then manipulated with user

inputs by a mouse. As part of this research, the real-time display of human arm tracking

with two inertial sensors, human walking, inverse kinematics, and key frame animation is

also demonstrated.

The major conclusion of this thesis is that a kinematics model with quaternions can

eliminate the singularity problems of existing models. Joint orientation interpolation is also

more direct and less convoluted with quaternions. Neither representation exhibits a

decisive advantage over the other in terms of computational speed. For memory

considerations, the Euler angle method is best. To apply joint constraints, quaternion

representations are converted to Euler angles, which causes additional computation for the

system.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. GOALS 1

C. ORGANIZATION 1

H. BACKGROUND 3

A. GEOMETRY OF HUMAN MODELS (Modeling) 4

1. Skeleton Definition 5

2. Appearance 7

a. Body Segments and Joints 8

b. Clothes and Attached Objects 9

c. Level of Detail 9

B. BEHAVIOR OF HUMAN MODELS (Animation) 10

1. Transformation Hierarchy 10

2. Segment and Joint Deformation 12

3. Special Segments 13

4. Clothes and Attach Objects 14

C. MANIPULATION OF HUMAN MODELS 14

1. Interactive Motion Control System 15

2. Scripting System 17

3. Hybrid Systems 17

vu

D. SUMMARY 18

III. KINEMATIC MODELS 19

A. MDH NOTATION 19

B. JOINT TRANSFORMATION MATRIX 25

C. DISPLACEMENT ELEMENTS 29

D. SUMMARY 30

IV. COMPARISON OF QUATERNION AND EULER ANGLE MODELS 33

A. INTRODUCTION 34

B. VECTOR ROTATION 35

C. CONVERSION TO HOMOGENEOUS MATRIX 41

D. INTERPOLATION AND SINGULARITY 45

E. CONSTRAINT DEFINITION 48

F. HARDWARE, SOFTWARE AND NETWORK CONSIDERATION 49

G. USER INTERACTION 50

H. SUMMARY 51

V. FORWARD AND INVERSE KINEMATICS 53

A. DEFINITION 53

B. COMPUTATION 54

C. SENSOR PLACEMENT 59

D. SUMMARY 61

VI. IMPLEMENTATION AND RESULTS 63

A. HIERARCHY 64

B. USER INPUTS : 67

viu

C. CONSTRAINTS 70

D. MOTION TRACKING 70

E. RESULTS 72

VII. SUMMARY AND CONCLUSION 77

A. SUMMARY 77

B. CONCLUSIONS AND FUTURE WORK 78

APPENDDC A: USER MANUAL 81

APPENDDC B: 3D HUMAN FIGURE SIMULATION SOFTWARE 85

LIST OF REFERENCES 201

INITIAL DISTRIBUTION LIST 205

IX

LIST OF FIGURES

Figure 1 : Images fromGeri's Game, 1997 (Pixar Animation Studios). [WEBREF1] 5

Figure 2 : Articulated Rigid Body Structure 6

(a) Minimal Model (b) More Realistic Model

Figure 3 : Position of Joints 7

Figure 4 : Handling Joint Deformation by Half-Angle Vertex Rotation 13

Figure 5 : IPORT Human Sensing Technology [SKOP96] 16

Figure 6 : Human Body Motion Tracking System from Polhemus. [WEBREF2] 16

Figure 7 : MDH Method Frame and Parameter Assignment [SKOP96] 20

Figure 8 : MDH Notation of Full Human Body Articulated Structure 22

(a) Minimal Model (b) More Realistic Model

Figure 9 : Rotation in 2D 36

Figure 10: Euler Angles 37

Figure 11: Vector-Angle Pair, (p is rotated on v by 0) 37

Figure 12: Comparison of Methods for an Orientation 43

Figure 13: Comparison of Methods for A Rotation from Existing Orientation 44

Figure 14: Gimbal Lock (Airplane is attached to innermost ring) [WEBREF3] 45

Figure 15: Loop for Rigid Body Dynamics 47

Figure 16: A 2D Graphical Interaction Method for Vector-Angle Pair 50

Figure 17: Human Arm 56

Figure 18: A Minimally Sensed Human [SKOP96] 60

XI

Figure 19: Proposed Hybrid Human Tracking Sensor Config. [FREY96] 60

Figure 20: Object Diagram of the Human Program 64

Figure 21: Segment Hierarchy 65

Figure 22: Drawing Left Arm 66

Figure 23: Draw Function of Segment Class 66

Figure 24: Calculating the Vector that is Perpendicular to the Screen 68

Figure 25: Response to Quaternion Input 68

Figure 26: Rotation of an Existing Orientation with a Vector-Angle Pair 69

Figure 27: Constraints for Quaternion Representation 70

Figure 28: Sensor Tracking Method 71

Figure 29: Construction of the Segment Transformation Matrix 71

Figure 30: Quaternion Interpolation 72

(a) User Defined Key Frames (b) Computed In-between Frames

Figure 31: The Left Hand and the Left Foot Motions by Inverse Kinematics 73

Figure 32: Demonstration of Joint Constraints 74

(a) Impossible Motion for Elbow (b) Accepted Motion for Elbow

Figure 33: Walking as a Procedural Animation 74

Figure 34: The Motion Tracking of Right Shoulder and Right Elbow with two Inertial

Sensors and the Quaternion Attitude Filter 75

(a) Initial Posture (b) Initial Posture from another Point of View

(c) Elbow Motion (d) Elbow and Shoulder motion

(e) Shoulder has 90 degrees elevation (No singularity)

xn

LIST OF TABLES

Table 1. MDH Kinematics Parameters of Pelvic, Waist and Neck 23

Table 2. MDH Kinematics Parameters of Shoulders 23

Table 3. MDH Kinematics Parameters of Elbows and Wrists 24

Table 4. MDH Kinematics Parameters of Hips 24

Table 5. MDH Kinematics Parameters of Knees and Ankles 25

xm

XIV

ACKNOWLEDGMENTS

Many thanks to all those whose helped make this thesis possible. Special thanks to

my two thesis advisors. My sincerest thanks to Dr. Robert McGhee for his patience,

encouragement, and devotion to his students. His vast experience and unbounded

enthusiasm have made working with him a true delight. To Dr. Michael Zyda I owe much

for his guidance in Computer Graphics. I would also like to thank to Eric Bachmann and

John Falby for their many hours of instruction over the past two years that have brought

me a long way in understanding the science of computers.. Finally many thanks to all

members of NPSNET Research Group and to all of the faculty, students and staff of the

Computer Science Department who helped in numerous ways.

xv

XVI

I. INTRODUCTION

A. MOTIVATION

There is a growing requirement for realistic virtual environments (VE) in which

humans can interact. Recent advances in computer and motion sensor technologies have

made it feasible to insert humans into the VE and permit them to interact with their

environments. For realism, one of the major requirements is that the response time of the

simulated human model must be real time and the motion must be smooth. The motions

of the human are represented in the model with transformation of body parts. One of the

most popular representations of a transformation is to use Euler angles. While this is easy

to understand and use, it has singularity problems, which causes unrealistic motion and

divide-by-zero errors in the system. An alternative method is the use of unit quaternions.

The quaternion method experiences no singularities at any orientation. The interpolation

is also more direct and less convoluted with quaternions.

B. GOALS

The purpose of this thesis is to compare two different methods used for

transformation matrices and model the human body with quaternions. The model

manipulation is demonstrated by user inputs with a mouse. The singularity problems are

examined for both methods. For realism, joint angle limits are added to the model. This

thesis also demonstrates the real-time display of human arm tracking with two inertial

sensors.

C. ORGANIZATION

Chapter II of this thesis provides background information regarding human models.

Chapter III provides an overview of kinematics models and discusses joint transformation

matrices. Chapter IV compares two methods used to construct joint transformation

matrices. Chapter V introduces forward and inverse kinematics and makes a comparison

of their computational speed and input requirements. Chapter VI contains the

implementation details and presents results obtained from this research. The last chapter,

Chapter VII, provides some conclusions and discusses recommendations for future

enhancements and research relating to the work of this thesis.

II. BACKGROUND

Research in three fields is relevant to the problem of animating human motion:

robotics, biomechanics, and computer graphics [HODG95]. Today many applications in

these fields use human figures or basic principles that can be used to design control

strategies for humanlike models. Walking machines [MCGH86], human figure

simulation programs [BADL93a], and character animation tools [WAVE98] are some of

these applications.

Today, many tasks can be accomplished by using computer graphic applications that

feature human figures. Human factors design engineers or ergonomics analysts can study,

analyze, assess, and visualize human motor performance, fit, reach, view, and other

physical tasks in a workplace environment by using computer simulated humans in the

early design stages [BADL93a]. Animators can create human characters that can walk,

jump, and even dance with incredible realism for games, cartoons, video-clips, movies

and advertisements by using character animation tools. The representation of the human

figure in a real-time interactive 3D virtual environment (VE) is a long sought for goal of

the VE research community [DURL95]. Simulated autonomous human agents are needed

in VE application areas such as training, education, and entertainment. Human motion

capture systems, which help to insert individual users in VE, also use mathematical

models of human figures. All these applications have different requirements for

computation speed, appearance realism, motion realism, and usability of human figures.

This chapter provides background information regarding computer representation of

human figures. While human figures are introduced under modeling, animation and

interaction sub topics, none of them can be separated from each other and all are affected

by the trade-off between realism and computation speed. Because the main area of this

research is to investigate human figures for real-time computer graphic applications in

VE, all issues of human figure representation and modeling are examined for

computation speed. Currently available realistic models are also briefly introduced, but

the focus is on the skeletal system of the human body.

A. GEOMETRY OF HUMAN MODELS (Modeling)

For realism, one would expect a human model to be structured like the human

skeletal system, to have a humanlike appearance, and to be sized according to permissible

human dimensions. Appearance involves a compromise between realism and display

speed. No one is likely to mistake the figure for a real person; on the other hand, the

movements and the speed of control are good enough to convey a suitably responsive

attitude [BADL93a].

Today it is possible to create human models that have a realistic appearance and

motion. These models also have skin and muscle animation. Their hair and clothes are

animated as they move in real world. They can talk, look around, and make facial

expressions. They can grasp or make a gesture with their hands. But they can not do all of

these in real-time. Figure 1 is an example of realistic human figures. While making a

geometrical definition of the model, it is also necessary to consider animation issues like

manipulation and deformation algorithms and their input parameters. Decisions regarding

animation techniques effects the modeling phase and many animation techniques that are

used for realism are not applicable for real-time systems.

 ■■.•<:■■*»■.—— ._^ «L.~-

Figure 1: Images from Geri's Game, 1997 (Pixar Animation Studios). [WEBREF1]

1. Skeleton Definition

Most animation of clothed structures is controlled by animating an underlying

skeleton of some description and then rendering the final images with flesh or clothes

[WATT92]. A representation of the skeleton under the skin of a human model amounts to

an articulated rigid body [CRAI89].

An articulated structure is made up of connected segments that move relative to each

other for the definition of the human posture. Each link, or human link segment, has its

physical dimensions. Links are connected each other with joints, and constitute a

composition hierarchy that has a tree structure. Each joint angle defines an orientation for

the outboard links. The number of independent position variables necessary to specify the

state of the joint is called its "degrees of freedom" (DOF). The DOF of an articulated

structure is the total DOF of all joints. Each link motion, joint displacements and

rotations, is also carried to child links.

The hierarchy between rigid body segments changes when the root link of the tree is

changed. Changing the root link does not effect the relation between links; it only effects

the transformation hierarchy of segments. That is why leaf nodes of the hierarchy tree

never change. Leaf nodes are hands, feet and head, also known as "end-effectors"

[CRAI89]. The tree structure for the model used in this thesis is shown in Figure 2.

Head

Shoulder,

Pelvis (ROOT)

Torso L_UpLeg

Neck L_UpArm RJJpArm L_LowLeg

Head L LowArm R_LowArm L_Foot

L Hand R Hand

R_UpLeg

R_LowLeg

R Foot

Figure 2: Articulated Rigid Body Structure

While there are over 200 joints in the human skeletal system it is unnecessary and

impractical to model each segment as an articulated rigid body. The number of human

segments must be chosen to supply both realism and sufficient computation speed.

Toward this end, it can be noted that there are mainly 15 major body segments in the

human body; namely: head, torso, pelvis, upper arms, forearms, hands, upper legs, lower

legs, and feet. A neck can be added as 16th segment. Each added segment supplies more

realism, while decreasing computation speed. Figure 3 demonstrates two different

articulated bodies. Figure 3a has minimal 15 joints and 34 DOF. Figure 3b adds 5 more

joints and 11 more DOF, while representing the torso by a spine.

©

(a) Minimal Model (b) More Realistic Model

Figure 3: Position of Joints

In some applications; it is not possible to treat some special segments as rigid bodies.

These segments are the head, torso, hands and feet. Hands have their own articulated

rigid bodies. Feet can be modeled as two articulated rigid bodies (toe and heel). Eyes are

articulated bodies of the head. The torso can be defined as a spine.

2. Appearance

The number of human link segments and their sizes effect the realism of a graphics

model. In addition, each human segment has its own shape, and all have the same

geometrical definition. While shapes are the main concern for appearance, their

geometrical definition is important for animation. The realistic appearance of the human

segment shapes or whole body figure may be lost once animation is started. Geometrical

definition of the shape is very important for the trade-off between realism and

computation speed.

a. Body Segments and Joints

Segment shapes may be sticks, naked skin, or parts of clothing. Segment

geometry may be surface models, volume models, or solid geometry models.

Surface models are polygons and patches. Polygon models are relatively simple to

define, manipulate, and display. They are the most common models processed by

graphics workstation hardware and commercial graphics software. All viable interactive

human figure models are done with polygons. Several hundred polygons can look

acceptably human like; accurate skin models require thousands of polygons [BADL93a].

Joints may be drawn by overlapping segments or by using patches. Patches are curved

surfaces and are usually defined by cubic polynomials. Control points and tangent vectors

define the shape of the patch. For the human figures that are modeled by patches, each

human segment has its own control points. Adjacent segments share the control points of

a joint patch. While patches add realism at joints for smoothness and proper bending,

they are not as yet applicable for real-time systems.

Volume models or solid geometry models are composed of non-intersecting

elements within a spatial partition, such as voxels or oct-trees, or created from (possibly

overlapping) combination of inherently 3D primitive volumes [BADL93a]. Voxel models

are used for modeling the anatomic structure of a human body, but not for modeling

human figures. Primitive solid geometry models are very old and unrealistic.

An interesting generalization of spheres (metaballs) is a potential function with a

center and a field function that decreases monotonically from the center outward.

Metaballs were originally used to model molecules. They represent a very slow, but an

interesting possibility for highly realistic models in the future [BADL93a].

The head is a special segment and needs a combination of different types of

geometric models. For facial animation, the face should be modeled as patches. Hair may

be a fuzzy object. Segment shapes are skin or parts of clothing for human figures used for

real-time computer graphic applications in VE. Geometrical definitions are polygons and

segments overlap at joints, so the head doesn't present any special concerns.

b. Clothes and Attached Objects

It is possible to attach some objects to some body segments. Attached objects will

behave as a new articulated body. They may have their own geometric definition and

animation. They may be attached or detached dynamically at run-time. Clothes may be

defined as attached objects, which necessitates time-consuming algorithms. For real-time

computer graphic applications, clothes are treated as body segment shapes and the

geometry of all attached objects is polygon. They may be textured for realism.

c. Level of Detail (LOD)

Multi-resolution models are very important for real-time systems. In such an

approach, model details and size reduce with increasing distance from the observer. Since

finer details are less pronounced, they need not be rendered and may be left out of the

model thereby putting fewer polygons into the graphics pipeline, allowing for higher

frame rates. It is important to note that when polygons transform to less than one pixel,

they effectively combine [PRAT93]. As distances increase, this natural occurrence aids

in reducing visual detail and supports the use of LOD models. For low-resolution human

models, the number of links needed for skeletal representation and the number of

polygons needed for segment shapes are reduced. Animation algorithms that define some

procedural motions like walking may be simplified for low-resolution models.

B. BEHAVIOR OF HUMAN MODELS (Animation)

For realism, a human model should move or respond like a human and should exist,

work, act and react within a three-dimension VE [BADL93a]. The main animation of the

human model is to create posture, which is controlled by the articulated skeletal structure.

Input parameters of the system are the DOF of this structure. By defining simple sets of

rules for how segments behave, input parameters may be reduced for the user. This is

also needed for realistic behavior of skeletons. Constraints and control mechanisms may

warn users of unacceptable inputs. Some motions may be generated automatically to

simplify user control. After defining articulated structure animation, secondary

animations like muscle and clothing may be added for realism. Facial and hand

animations are other special topics for realistic human figures.

1. Transformation Hierarchy

The main concern for human posture modeling is the skeleton, its articulated

structure. The articulated structure represents tree-structured human segments through a

hierarchy and defines the position and orientation of each human segment. Link motions

have constraints, depending on the model definition.

A kinematics model specifies motion independent of the underlying forces, which

defines geometrical and time related properties of motion, such as position, velocity and

acceleration of each link. A kinematics model also sets the positional and angular

10

constraints of the human segments. For forward kinematics, all transformations are

specified to control the motion of the end-effectors. For inverse kinematics, a goal is

specified for the end-effector and the system computes the transformations required to

achieve the goal. It is possible to think of inverse kinematics as a numerical engine that

can be attached to any part of the skeleton whose purpose is to specify the position and

orientation of all the nodes between the end node and base node [WATT92]. It is also

possible to apply more than one type of model to the same skeletal structure. For

example, while the torso and head use forward kinematics, arms and legs could use

inverse kinematics, where hands and feet are end-effectors, and shoulders and hips are

base nodes. For combined models, base and root nodes may be redefined at run time.

Redefining the skeletal hierarchy at run time adds more control over human segments,

while decreasing computation speed. One example of changing the root node at run time

is the animation of legs from the hip down during the transfer phase of the walking cycle

and from the foot up during the support phase, which prevents the collision between foot

and the floor.

A dynamic model specifies motion taking into account physical attributes, properties,

and laws. It introduces physical properties, such as mass and moments of inertia. It is

possible to simulate human motion realistically with detailed dynamic models. However,

the cost of this realism is a high degree of computational complexity. When more

detailed models are chosen, the response time of the simulated human model increases. A

more realistic approach may be to consider the connection between limb segments as not

rigid [BEDI97]. In this approach, joints behave as springs. A dynamic model may also be

implemented as a forward or inverse dynamics system. For inverse dynamics, the motion

11

of each segment is given and the forces and torque are computed. From this, a direct

dynamics model may be derived [KOOZ83]

In computer graphics, joints are usually defined as rotary (revolute) joints, although

there exist other types, such as prismatic (sliding) joints. Mathematical models of joints

should supply the necessary transformations. The most popular representation of spatial

transformations of point vectors is the 4x4 real matrix (also termed homogeneous

transform), based on the idea of homogeneous coordinates. The appeal of homogeneous

transforms is mostly due to their matrix manipulation by a computer. On the other hand,

such matrices are highly redundant, using 16 numbers (of which four are trivial) to

represent rotation and position. This redundancy can introduce numerical problems in

calculations, wastes storage, and often increases the computational cost of algorithms.

Despite these drawbacks, matrix-based representations remain the dominant choice for

most robotic system applications [FUND90]. Two types of methods can define the

rotation part of the matrix: Euler angles and angle/vector pair. An alternative

representation for a vector-angle pair is the quaternion. Each method has pros and cons.

The quaternion method is the only one that can rotate vectors without using matrix

multiplication, which can eliminate the need of generating and applying homogeneous

transform matrices. The following chapters of this thesis will focus on comparison of

quaternion and Euler angle methods.

2. Segment and Joint Deformation

Segments may have their own animation. Muscles can be treated as soft objects and

animated by free form deformation (FFD) blocks, which adds additional computation.

Joint deformation can be handled by using patches. Another way is the using polygon

12

subdivision algorithm for the joints. The last adds more realism and solves the continuity

problem of patches. If the geometry of segments is a "metaball", the joint surface

problem is solved in its definition. Segment and joint deformations are not applicable for

human figures in today's real-time VE. Figure 4 demonstrates a joint deformation, which

rotates waist vertices through the half angle of the orientation of outboard torso segment

and scales the same vertices relative to the orientation. This solution is simple, and works

well for small joint motions, but produces unrealistic results for large joint motions. To

the author's knowledge, there is, as yet, no satisfactory real-time algorithm for realistic

representation of joint deformation in human figure models.

End of
Torso

Waist
Points

Head of
Pelvis

Figure 4: Handling Joint Deformation by Half-Angle Vertex Rotation

3. Special Segments

Torso and end-effectors need special animation techniques. It is possible to treat all

as single rigid bodies for real-time systems. Some real-time systems that use the Cyber-

Glove as an interaction device need hand models and animation algorithms. Non-real

13

time applications like character animation tools have special models and animation

techniques for these segments.

To achieve a higher degree of realism, the torso needs to be treated as supported by a

flexible spine rather than a rigid body. The head needs hair motion and facial animation.

The face needs eye motion, lips and skin motion. The face usually uses a parametric

muscle model that controls the deformation of a polygonal mesh representation. Hands

are also complex objects. There are many links in a hand and each must react realistically

with each other. Accurate hand simulation needs grasping algorithms depending on the

target object and the grasp type. A foot model could supply toe and heel articulation.

4. Clothes and Attached Objects

If clothes are defined as attached objects, they may be animated independent of, but

constrained by the segments. Dynamic behavior and collision detection algorithms must

be defined for the attached clothing. Clothing also constrains movement by effecting joint

angle limits. For real-time simulation, attached clothes like a hat or glasses and other

attached objects like rifle or bag are always static objects. They don't have their own

animation, and do not effect joint angle limits at run-time while they may be attached or

detached at run-time.

C. MANIPULATION OF HUMAN MODELS

An interactive software tool must be designed for usability. Existing interaction

paradigms (such as pop-up menus or command line completions) should be followed

when they are the most efficacious for a particular task, but new techniques will be

needed to manage and control three-dimensional articulated structures with standard

graphical input tools [BADL93a].

14

A high-level animation system allows the animator to specify the motion in abstract

general terms, whereas a low-level system requires the animator to specify individual

motion parameters manually. High-level commands describe behavior implicitly in terms

of events and relationships, whereas lower level commands are far more explicit

[WATT92]. The purpose of high level control is to reduce the number of control

parameters for the system and leave those low-level parameters to the computer to

generate. For example, inverse kinematics for hand motion is high-level motion control.

Animation systems may use some forms of procedural animation, like walking, running,

jumping, grasping, bending, facial expressions, talking and many others for high-level

motion control systems. Here, motion is described by a mathematical model/algorithm.

These animations can take place with minimum inputs for real-time systems. For

example, in the Individual Soldier Mobility System, a soldier sits in a room called the

Walk-in Synthetic Environment on a pedal-based mobility simulator. The soldier moves

through the environment by pedaling. Pedaling speed is used by the "Jack" model to

provide realistic joint angles for lower body [BADL93a]. The lower body is rendered as

standing, walking and running. The I-PORT system component is shown in Figure 5.

On the other hand, human body motion tracking systems provide low-level control

for each joint, which defines more realistic motions for each user in real-time. Figure 6

shows a human body motion tracking system.

1. Interactive Motion Control System

A simple interactive motion control system allows a user to set up a sequence by

interactively specifying a path and kinetic characteristics, using two-dimensional

interactive graphics devices. Other expensive interactive motion control systems use

15

Figure 5: IPORT Human Sensing Technology [SKOP96]

Figure 6: Human Body Motion Tracking System from Polhemus. [WEBREF2]

16

motion tracking devices. Currently, there are five types of motion trackers: mechanical,

acoustic, optical, electromagnetic and inertial trackers. All have pros and cons. Optical

and electromagnetic trackers are mostly used for motion tracking of body segments.

Currently, inertial trackers are being developed to track human body segments

[DUMA99]. Optical trackers are also popular for tracking facial expressions. Different

types of Cyber-Gloves are used for hand motion tracking.

For human body motion tracking systems, control parameters must be checked for

validity by using human model constraints. For example, the Jack model checks upper

body angles in the Individual Soldier Mobility System. If the sensors track only the end-

effector's motion, a human model must control reachable space and compute motion of

in-between links by using inverse kinematics or inverse dynamics.

2. Scripting System

For character animation, a user can write a script to define the motion. This is the

earliest type of motion control systems. For a scripting system, the user needs skill in the

language. The advantage is the definition of high-level motions to create motion libraries.

Most of the animations today are done on an interactive system rather than scripting

systems, which supports real-time animation.

3. Hybrid Systems

There are some systems that use both control types. Today, most well known

character animation tools use hybrid systems. Some procedural motions may be defined

by using motion capture and key-frame animation. Motion libraries can be created for

each procedural motion or combination of more than one procedural motion.

17

Accumulated expertise is an advantage in the use of scripted languages to edit a

sequence, to build up libraries and to approach more and more complex problems.

D. SUMMARY

There are many issues for modeling human figures. New methods are developing for

more realism and automatic control of the figures. But, the real-time requirement usually

constrains the animation to consist of flat or Gouraud-shaded polygons with texture

mapping [WATT92]. For real-time systems, joint motions still must be realistic, after

making a high level of abstraction for the appearance. Articulated structure is the most

important part of the human figure to define realistic postures and human segment

motions. Computation using this structure is demanding for real-time systems.

Redefining structure at run time adds more control over human segments, while

decreasing computation speed. If the real-time system is a networked synthetic

environment, the state vector of the articulated structure should be minimized for

efficient network traffic. The following chapters will focus on efficient articulated

structure representations and the comparison of quaternion and Euler angle methods that

construct joint transformation matrices. An articulated rigid body with quaternions is

introduced in Chapter IV.

18

III. KINEMATIC MODELS

Kinematics models specify motion independent of the underlying forces, which

defines geometrical and time related properties of motion, such as position, velocity and

acceleration of each link. For forward kinematics, all joints are specified explicitly by the

animator. The motion of the end-effector is determined indirectly as the accumulation of

the transformations that lead to that end-effector, as the tree of the structure is descended.

For inverse kinematics, sometimes called "goal directed" motion, the animators define

the end-effector only. Inverse kinematics solves for the position and the orientation of all

joints in the link hierarchy that leads to the end-effector [WATT92]. Usually, forward

kinematics is used to render predefined postures, while inverse kinematics is used for

processing motion tracker data and motions paths of end-effectors. These two types of

kinematics are detailed in Chapter V. In this chapter, kinematics notation for the human

body articulated structure and transformation matrices are discussed.

A. MDH NOTATION

Two common methods to represent an articulated figure mathematically are the

Danevit-Hartenberg (DH) notation and the Craig notation that is also known as the

modified DH method (MDH). These methods were originally developed for robotic

manipulations. Both describe the kinematics of each link relative to its neighbors by

attaching a coordinate frame to each link. Each joint has 1 DOF. The MDH method

attached the coordinate origin for each link to its inboard joint motion axis while the DH

method attaches the origin to the link's outboard motion axis. The base joint is numbered

as joint 0 for both methods. Numbering is always increase from root link to outward

[CRAI89].

19

Links and the link's inboard joints have the same index number for the MDH

notation. Figure 7 shows MDH method frame and the parameter assignments. The Z-axis

is coincident with the joint motion axis. The X-axis that is the common normal of the link

and is directed from the link's inboard joint towards it's outboard joint. The X-axis

intersects both joint axes at right angles. The Y-axis completes a right hand orthogonal

set and is needed only for specifying the 3D shape of a link.

Four parameters are needed to describe the relation of two consequent frames. Link

length is the distance along the X-axis between the joints of a given link. Link twist is the

angle between inboard joint axis and outboard joint axis measured about the X-axis. Link

offset is the distance measured at the inboard link motion axis from the preceding X-axis

to the current link X-axis. Joint angle is the rotation measured at inboard joint motion

axis from the previous link X-axis to the current link X-axis.

• inboard link length

aj.j = distance from z j.-j to z\ measured along Xj.j

• inboard link twist

a;.] = angle between ZJ.J and z\ measured about Xj.j

• outboard link offset

d; = distance from Jc;.j to x-x measured along z-i

• outboard joint angle

0 j = angle between JCJ.J to x-f measured about z i

i-ink;
Link;

Figure 7: MDH Method Frame and Parameter Assignment [SKOP96]

20

Outboard joint position and orientation relative to inboard joint can be computed by

these four parameters. Four steps of this computation are rotation about X-axis as inboard

link twist, displacement along X-axis as inboard link length, rotation about outboard joint

axis as outboard joint angle and displacement along outboard joint axis as outboard link

offset. All these rotations and displacements are represented by individual homogeneous

transformation matrices. On the other hand, a single transformation matrix can define all

four motions by multiplying these four transformation matrices in the specific order with

the following result.

T =Rx(oci-i)Dx(ai-i)Rz(0i)Dz(di) (3.1)

This produces the matrix:

T =
cosGi -sinGi 0 ai-i

sinGi cos(o= i-i) cosQi cos(°= i-i) -sin(°= i-i) -sin(°<: i-i) di
sinGi sin(°<= i-i) cosGi sin(°= i-i) cos(o= i-i) cos(°=i-i)di

0 0 0 1

(3.2)

The last row of the matrix given by Eq.(3.2) is redundant and contains no information

about the relation. First three elements at the last column represent the local

displacements. Other nine elements that constitute a 3x3-matrix represent the rotation.

Later sections in this chapter focus on this matrix. This notation is used to describe linked

structures where the joints have a single DOF.

Ball joints can be represented as multiple single DOF joints located at the same point

in space [WATT92]. Figure 8 represents a full human body articulated structure defined

by MDH. Only the Z-axes of MDH frames are shown. Joints that have more than 1 DOF

have more than one Z-axis originating at the same point, where in-between link offsets

and link lengths are all zero. The root segment is the pelvis, and the first frame is the

21

twist axis of this segment. The standard MDH numbering system differs at branching

points of the tree structure.

28
zn^zi2

zio.

-~\
"(•)Z9 Z18 ,.-^19

rZ17
*

Z13/

Z15

Z5 \

A
Z20.O.

Z16

T 72 J
X Z14 * ^~N

>26

Z4
Z22

"Q
Z23

.»yiZ3

/ ^Zl-sZO

rZ21

225 ^.<r'Z26

4224

232 >-, Z33

^ Z31

Z27, Z34_|,

229 Js 230

^ Z28

Z36 AZ37

2351

(a) Minimal Model

Z17
Z16

Z15T

Zisf»)

Z14

I Z13

Z20

^

Z21

Z19

Zll _ Z12

I ZIO
Z8

*)z9

1 Z7 „—

Z5 _

Z2
1»

L»J-23

/' JZKZ! zi>zo

Z23 225 „226

..,".y-^
V JZ24

22 ▼

Z32 ^'233

A 231

Z34,

V. Z41
Z40 W

^Z39

Z36 ,4 237

,Z35

Z44 ^JXZ45

Z43

Z46

A

Z27(»i

229 ,~

(b) More Realistic Model

1,
Z30

Z28

Figure 8: MDH Notation of Full Human Body Articulated Structure

Table 1-5 provides kinematic parameters of the minimal model that also has a neck

joint. The frame's X-axes are also drawn to determine the sign of the twist angles. Notice

that, in this notation, knees and elbows have 1 DOF and all other joints have 3 DOF. Joint

limits are also defined, but they will be discussed in the next chapter.

22

Z8
kX8

y X7^
<29

Z7

Z5

Z2

Z6

Z4

NiZ3

ZLZO

iX5

X4'

XI

-f X6

'X2

Inboard

link twist

OC j_!

Inboard

link length

ai-i

Outboard

link offset

di

Outboard

link angle

0i

0
MIN

0
Pelvic MAX

HZ l 0 0 0 0 - -

Ry 2 90 0 0 0 - -

R7 3 90 0 0 0 - -

Waist
twist 4 90 0 Waist_Y 0 -95 95

lean 5 90 0 Waist_X 0 -160 40

bow 6 90 0 Waist_Z 0 -30 30

Neck
twist 7 90 0 Neck Y 0 -50 50

lean 8 90 0 Neck X 0 -45 30

bow 9 90 0 Neck_Z 0 -30 30

X3

X0

Table 1. MDH Kinematics Parameters of Pelvic, Waist and Neck

Zll
^—(•

Z12 Z18
■*—(•'

Z10
■\ / ,r

25 V
■^—(• ;z6

Z41 ■

Z19

Z17

LX14

X13

X21

Inboard

link twist

Inboard

link length

an

Outboard

link offset

di

Outboard

link angle

0i
0i

MIN
0i

1 FFT Rhoulrifir
INDEX MAX

twist 10 90 -Shoulder X Shoulder Y 0 0 180

swing 11 90 0 0 0 -80 180

roll 12 90 0 Shoulder Z 0 -180 30

RIGHT Shouldei
twist 19 90 Shoulder X Shoulder_Y 0 -180 0

swing 20 90 0 0 0 -80 180

roll 21 90 0 Shoulder Z 0 -30 180

Table 2. MDH Kinematics Parameters of Shoulders

23

zu -,Z12

zio

Z13

o^

Z15 --K.Z16

1
T

Z14

Xll

xioOV
^ X12

X13

X15

X14GV>
^ X16

Inboard

link twist

OC ;.!

Inboard

link length

ai-i

Outboard

link offset

di

Outboard

link angle

0i

0
MIN

0
L_Elbow MAX

roll 13 0 upArmLength 0 0 0 100

R Elbow
roll 20 0 upArmLength 0 0 -100 0

L_Wrist
twist 14 90 0 Wrist Y 0 -20 20

swing 15 90 0 Wrist X 0 -20 20

roll 16 90 0 Wrist_Z 0 -30 70

FLWrist
twist 21 90 0 Wrist_Y 0 -20 20

swine 22 90 0 Wrist X 0 -20 20

roll 23 90 0 Wrist_Z 0 -70 30

Table 3. MDH Kinematics Parameters of Elbows and Wrists

Z2 ,_ v Z3
X2l

V Z32 "
jvZ33

XI

X28| /

1
Z24

T
Z31 X27 H X3

X35.Pj T~*° X3

Inboard Inboard Outboard Outboard

link twist link length link offset link angle

OC j_i ai-i di 0i
0i

MIN
0i

INDEX MAX
LEFT Hip

twist 24 90 -Hip_X Hip_Y 0 -30 30

swing 25 90 0 0 0 -50 100

roll 26 90 0 Hip_Z 0 -90 10

. RIGHT Hip
twist 31 90 Hip_X Hip_Y 0 -30 30

swing 32 90 0 0 0 -50 100

roll 33 90 0 Hip_Z 0 -10 90

Table 4. MDH Kinematics Parameters of Hips

24

Z25

Z27

Z29

sZ26

Z24

■i
Z30

Z28

kX25 f
X24g)

ix26

X27f

X29

^ X30

Inboard

link twist

OC i_l

Inboard

link length

ai-i

Outboard

link offset

di

Outboard

link angle

0i
e

MIN

0
L_Knee MAX

swing 27 90 0 HipLength 0 -100 0

R Knee
swing 34 90 0 HipLength 0 -100 0

L_Ankle
twist 28 90 0 Leg_Y 0 -20 20
swing 29 90 0 Leg_X 0 -70 30
roll 30 90 0 LegJZ 0 -20 20

R_Ankle
twist 35 90 0 Leg_Y 0 -20 20
swing 36 90 0 Leg_X 0 -70 30
roll 37 90 0 Leg_Z 0 -20 20

Table 5. MDH Kinematics Parameters of Knees and Ankles

B. JOINT TRANSFORMATION MATRIX

All joints in the human articulated structure are revolute rigid joints. That is why the

inboard link length, inboard link twist, and outboard link offset are constant values. They

can be set at the construction phase of the human figure. The only variable is the

outboard joint angle. Because of the fact that two displacement and one rotation matrices

don't change at run-time, constructing a transformation matrix for MDH notation may be

an advantage against making unnecessary four matrix multiplications at run time.

Another advantage occurs when a twist angle is defined as a right angle or a zero

angle since either the sine or cosine of the angle will be zero in this case. For the joints

that have more than 1 DOF, the order of DOF can be chosen arbitrarily. This helps to

define twist angles for DOF of the same joints and consequent joints. It is possible to

choose the order of DOF, as shown in Figure 8, so that all inboard link twist angles are

25

ninety degrees except for elbows that have a zero twist angle. This approach simplifies

the transformation matrix for the MDH notation, because the transformation matrix uses

the cosine and sine functions of the twist angle which are 1 and 0 in this case. Eq.(3.2) is

correspondingly simplified in the following equations.

T =
cosGi -sinGi 0
0 0-1
sin0i cos0i 0
0 0 0

Tknee =

cos0i -sin0i
0 0

sin0i cos0i
0 0

ai-i
-di

0
1

0 HipLength
-1 0
0 0
0 1

(3.3)

(3.4)

For elbows, since °= i-i = 0, and consequently sin(°= i-i) = 0 and cos(°<= i-i) = 1, it

follows that 5

COS0i -sin0i 0 ai-i

T = sin0i COS0i 0 0
0 0 1 di

0 0 0 1
(3.5)

Telbow =

cos0i -sin0i 0 upArmLength
sin0i cos0i 0 0
0 0 10
0 0 0 1

(3.6)

Using Eq.(3.4) and Eq.(3.6) are more efficient than making four matrix

multiplications at run-time. Other segment joints that have more than one DOF may also

use Eq.(3.3) or Eq.(3.5) for the same reason. Another simplification occurs when it is

recognized that human segments are drawn after applying all DOF transformations of the

inboard joints. Instead of multiplying DOF transformation matrices of the same segment

26

joint at run-time, constructing one transformation matrix for each segment joint in the

initialization process eliminates unnecessary matrix multiplications. The transformation

matrix given by Eq.(3.7) is an analytic solution for segment joints that have 2 DOF. This

solution is defined by multiplication of two transformation matrices that are in the form

of Eq.(3.3). The transformation matrix for 3 DOF is also solved and given by Eq.(3.8).

Abbreviations in these equations are "1" for "01", "2" for "02", "3" for "03", " c" for

cosine function, and "s" for sine function.

The T matrix for two consecutive joints where both inboard link twists are right

angles is;

cl*c2 -cl*s2 si cl*al +sl*d2 + a0
-s2 -c2 0 -dl
c2*sl -sl*s2 -cl sl*al-cl*d2

0 0 0 1

(3.7)

The T matrix for three consecutive joints where all three inboard link twists are right

angles is;

T =

clc2c3-sls3 -clc2s3 + c3sl cls2 clc2a2+cls2d3+clal+sld2+a0

-c3s2 s2s3 c2 -s2a2 + c2d3 + dl

c2c3sl - cls3 -c2sls3 - clc3 sls2 c2sla2+sls2d3+slal-cld2

0 0 0 1

(3.8)

Element multiplication may be simplified by defining common products as

cl3=cl*c3, sl3 =sl*s3, cs31 =c3*sl, and csl3 =cl*s3.

27

The expression given by Eq.(3.10) and Eq.(3.11) provide specific segment joint

matrices. The transformation matrix of the pelvis in Eq.(3.9) is applied to the whole

human figure. It is the world coordinate of the articulated structure as a root segment.

Tpelvis = R3x3
0 0 0

0
0
0
1

(3.9)

For waist, neck, wrist, and ankle, aO = al = a2 = 0 and dl is jointName_Y, d2 is

jointName_X, and d3 is jointName_Z. This,

TjointName =

cl* s2*jointNameJZ + s*jointNameJL
O- _ c2* jointName JL + jointName _Y

0 0
sl*s2* jointName JL - cl* jointName _X

0 1

(3.10)

For shoulder and hip, al = a2 = dl =0, aO is jointName_X , dO is jointName_Y, and

d2 is jointName_Z. Consequently,

TjointName =

cl*s2* jointName JL - jointName JL
R3x3 c2* jointName _Z + jointName _Y

s 1 *s2* jointName JL
0 0 0 1

(3.11)

Hardware characteristics also need to be examined to decide whether using these

matrices or making run-time matrix multiplication is better. Today, matrix multiplication

is provided in hardware, which increases the computation speed of graphics systems.

Therefore constructing these matrices in software may be more expensive than making

multiplication of three 4x4-transformation matrices. On the other hand, a minimal

articulated structure model has 10 segment joints that have 3 DOF. This means that 30

redundant matrix multiplications are made to draw the human figure. If 150 human

28

figures are simulated in a large scale networked VE, a computer would make 4500

redundant matrix multiplications. If the system used more complex models that have

more joints with 3 or 2 DOF, the number of redundant matrix multiplications would

increase. If matrix multiplication is implemented in software, 64 multiplication and 48

additions are needed for only two 4x4-matrix multiplications. Reduction for the last

redundant row results in 36 multiplies and 27 adds. The number of these computations

for 4500 redundant 4x4-matrix multiplications are 162000 multiplies and 121500 adds.

When segment joint transformation matrices are used for the minimal model, only 15

matrix multiplications are calculated at run-time. While this sounds reasonable, a new

challenge is the minimizing the computation for construction of segment joint matrices.

C. DISPLACEMENT ELEMENTS

Last column of the homogeneous matrix contains the displacement elements of the

transformation. These are translations of the current joint on x, y, and z-axes of the

previous joint local coordinates. From Eq.(3.8), the displacement elements are computed

as:

Translation_X = (cl*c2*a2) + (cl*s2*d3) + (cl*al) + (sl*d2) +a0

Translation _Y = (-s2*a2) + (c2*d3) + dl

Translation _Z = (c2*sl*a2) + (sl*s2*d3) + (sl*al) - (cl*d2)

These computations are needed because transitions are calculated for frame 3 relative

to frame 0, where all offsets and lengths are local to previous frames, not to frame 0.

Defining segment translation relative to previous segments local coordinates eliminates

these calculations. If these transitions are set at the initialization phase, no computation

takes place for displacement at run-time. Even though jointName_X, jointName_Y,

jointName_Z in Eq.(3.10) and Eq.(3.11) are local to frame 0, the articulated structure

29

Joint_X
Joint Y
Joint_Z
1

definition treats those constants as they are defined relative to in-between frames. This

leads to unnecessary computations. A segment joint transformation matrix can be defined

as in Eq.(3.12) whether it has 1, 2 or 3 DOF. The idea behind this is that every joint

translates and then rotates on local coordinates of previous joint and by doing this, it

defines its own local coordinates for its outboard segment vertices and next outboard

segment joints. Thus, in general

Joint_y\.
R3x3 Joint_Y (3.12)

0 0 0

D. SUMMARY

An articulated structure is a mathematical model that defines posture for human

figures. Computation of this model is important for real-time systems, especially when

large scale networked VE are constructed that can control and display up to 150 human

figures at the same time. Making this structure static avoids all run-time computations

that are needed for dynamic reconstruction of the hierarchy. Another issue is the

mathematical model of the joints. While MDH notation is the most common method, it

results in redundant matrix multiplication for the human body articulated structure. Using

the segment joint transformation matrix that is given in Eq.(3.12) reduces the number of

matrix multiplications. This approach also incorporates branching joints and links.

Displacement elements are also defined more efficiently in the last method. In the first

method, numbering and choosing DOF order is a complicated task and may lead to

errors, while the second method is easier to understand and uses 15 segment joint

coordinates instead of 37 frame coordinates. Rotation parts of the segment joint

transformation matrices can be defined by two methods: Euler angles and vector-angle

30

pair. Quaternions provide another representation of vector-angle pair. The next chapter of

this thesis compares quaternion and Euler methods with regard to the efficiency of the

system.

31

32

IV. COMPARISON OF QUATERNION AND EULER ANGLE

MODELS

Transformation of moving objects is usually represented by a homogeneous matrix,

which is a 4x4-transformation matrix. The idea behind this is that matrix formulation

facilitates easy and efficient manipulation by a computer. On the other hand, all 16

elements of this matrix are not needed to represent a transformation. Last row is trivial,

but it is necessary to resize the matrix in square form. This allows calculation of the

inverse of a homogeneous matrix. If a given system doesn't use the inverse of this matrix,

3 transition elements and one 3x3-rotation matrix can represent a transformation. The

first three elements of the last column include translation information and the embedded

3x3-matrix represents rotation. Both Euler angles and vector-angle pair methods that

represent a rotation can be formed in a 3x3-matrix, which is useful for the same reason as

using homogeneous matrix forms. Today, many 3D graphic engines, such as OpenGL,

use homogeneous matrices for transformations.

Coordinate systems should be defined to apply translations. The coordinate system of

the whole scene is called "world coordinates" and any coordinate system that a

transformation creates is called the "local" coordinates of that transformation. For all 3D

coordinate systems, the user defines 3 axes. The direction and name of these axes is very

important for translations. Local axes are the transformations of world axes, so they have

the same directions and names relative to the local origin. These definitions are also very

important for Euler angle methods. It is possible to name these axes in different ways. In

this study, world coordinate axes have the same directions and symbols with OpenGL

definition, where x-axis is horizontal and the positive direction is right, y-axis is

33

perpendicular and positive direction is up, and z-axis goes into screen and positive

direction is out. These names and directions are disagree with standard aerospace usage

for earth-fixed coordinate systems that takes north, east and down directions as basic

reference. This must be remembered whenever dynamic models on earth relative

navigation are involved in a simulation study.

A. INTRODUCTION

The most common method that is used to parameterize rotations is to use Euler

angles. While it is easy to understand for users, it is inadequate for representing all

rotations. Another approach is the vector-angle pair, which eliminates many problems of

Euler angles. However, this method isn't efficient for consecutive rotations. Quaternions

define the vector-angle pair in another way, which adds new features to the

representation. Both methods have pros and cons, which are discussed throughout this

chapter.

Euler angles describe rotation as a sequence of rotations about three mutually

orthogonal coordinate axes fixed in space. These axes may be world or local coordinates,

where rotations act on points in the space. Rotations do not rotate the coordinate axes,

which remain fixed. The rotations are applied in a fixed order and subsequent rotations

have the effect of rotating in space the axes about which the preceding rotations have

been applied [WATT92]. There are 6 possible ways to order 3 sequential rotations on

different axes. The precise order in which these rotations are applied lead to different

orientations. Instead of fixing axes, these three axes may be embedded in each other like

in a Gimbal mechanism. Then, outboard axes rotate inboard axes. This is what happens

when MDH notation is used for a joint that has 3 DOF. For human segment motions in

34

this study, swing and bend rotations are applied on openGL x-axis, twist rotations are

applied on openGL y-axis, and bow rotations are applied on openGL z-axis.

A vector-angle pair describes a rotation by a rotation angle about a specific axis. This

axis may be defined in any direction, but it passes through the origin of current

coordinate system. This notation has 4 elements, 1 angle element (0) and 3 position

elements (x, y, z) for the vector head that defines the rotation axis. The other

representation of this method, the quaternion, was discovered by Sir William Hamilton in

1843. Even though quaternions have been around for more than 150 years, the use of the

unit quaternion gained popularity in the graphics community only in the mid 1980's. A

quaternion is like a complex number with one real and three imaginary parts. While a

complex number represents a rotation in two-dimensions, a quaternion represents rotation

in three-dimensions. A vector-angle pair is included in its formulation. This notation is

hard to understand and use, but it solves many problems of Euler angle methods.

B. VECTOR ROTATION

In this section, 4 types of product are used: scalar multiplication (*), vector dot

product (.), vector cross-product (x), and quaternion product (®). Figure 9 represents the

basic 2D rotation of a vertex in XY-plane. This rotation is solved analytically by using

polar coordinate representation. Eq.(4.4) includes both polar and planar forms of the

representation. Eq.(4.5) represents Eq.(4.4) in matrix form.

Euler angles method defines the rotation on three body fixed orthogonal axes by

extending 2D rotations to 3D for each axis. Figure 10 shows Euler angles rotations.

Eq.(4.6), Eq.(4.7) and Eq.(4.8) represent individual rotation matrices. Matrix

multiplication of these matrices produces rotation matrices for multiple rotations. Notice

35

that different sequences result in different rotation matrices. Eq.(4.9) is an example for

rotation in the order of belly, side and nose.

y2

(xl.yl)

xl X

Figure 9: Rotation in 2D

V|/2 =V|/1 +\|/ (4.1)

r = sqrt(xl*xl + yl*yl) = sqrt(x2*x2 + y2*y2) (4.2)

(xl, yl) = r* (cos \j/1, sin \|/1) (4.3)

(x2, y2) = r *(cos \\f 2, sin \|/ 2)

= r* (cos (\|/ 1 + \|/), sin (\|/1 + \|/))

= r* (cos \y 1 * cos \\f - sin \j/ 1 * sin \|/, cos \|/1 * sin \j/ + sin \|/1 * cos \|/)

= (xl* cos \j/ - yl* sin \|/ , xl * sin \|/ + yl * cos \\f) (4.4)

x2

y2

C\J/ -s\(/

S\|/ C\|/

xl

yi

(4.5)

Figure 11 demonstrates the other method, rotation by vector-angle pair. By using

vector algebra, Eq.(4.14) is computed. Further solution is possible by replacing p and v

with coordinate values. Vector pi is the projection of p on v.

36

Y (side / elevation) f 0

X (nose / roll)

y Z (belly / azimuth)

R(q>) =

R(0) =

R(\|/) =

Ry R0 Rep =

Figure 10: Euler Angles

1
0
0

0
ccp
scp

0
-scp
ccp

(4.6)

ce
0
s0

0
1
0

-se
0

ce
(4.7)

—"

cy -sv|/ 0
S\|/

0
c\j/ 0

o 1_

c\j/*ce
sy*ce

-se

(4.8)

scp *s0*c\|/ - ccp *s\j/
SCp*se*S\|T + CCp* CVJf

scp *c6

ccp*s6*c\|/ + scp*s\|/
ccp*s6*s\|/ - scp*c\|/

ccp*c6
(4.9)

p2

*'p3

Pi

Figure 11: Vector-Angle Pair, (p is rotated on v by 6)

37

pi = lpl*cos(<pv)*(v/lvl) = (p.v)*v (4.10)

p2 = p-pl =p-(p.v)*v (4.11)

p3=pxv (4.12)

p2_rotated = (cos 8)*p2 + (sin 9)*p3_rotated (4.13)

p_rotated = pl_rotated + p2_rotated

= (p.v)*v + (cos 6)*(p - (p.v)*v) + (sin 0)*(p x v)

= (cos 9)*p + (1-cos 0)*(p.v)*v + (sin 6)*(p x v) (4.14)

The quaternion representation for vector-angle pair is the hardest one. People are used

to Euler-angles that make sense to imagine orientation of the object. But with a

quaternion, it is impossible to imagine orientation. At the same time, visual

demonstration of how the quaternion makes a 3D rotation is also impossible. Actually, a

quaternion makes the same rotation as in Figure 11, but with a different approach. To

understand quaternions, the representation and algebra of this notation should be covered.

Eq.(4.15) gives various representations of quaternions. Eq.(4.16), Eq.(4.17), Eq.(4.18),

and Eq.(4.19) introduce the quaternion product for imaginary parts. Notice that it is

different than vector cross product. It has a cyclic permutation i->j->k->i. Eq.(4.20) and

Eq.(4.21) shows scalar product and quaternion addition respectively. The most important

operation is the quaternion multiplication Eq.(4.22.), which allows a quaternion to rotate

vectors in 3D space. Eq.(4.23.) is the quaternion product for the other representation of

quaternion.

Representation :

q=(w, v) = (wxyz) = w+ x*i +y*j +z*k (4.15)

38

Imaginary part properties (i, j, k have the value sqrt(-l)):

i®i = j®j = k®k = -l (4.16)

i®j = k = -j®i (4.17)

j®k = i = -k®j (4.18)

k®i = j = -i®k (4.19)

Operations :

s * q = (s*w, s*v) (4.20)

ql + q2 = ((wl+w2) (xl+x2) (yl+y2) (zl+z2)) (4.21)

ql ® q2 = (wl*w2 - vl.v2, wl*v2 + w2*vl + vl x v2) (4.22)

= (wl*w2-xl*x2 -yl*y2-zl*z2)

+ (wl*x2 + xl*w2 + yl*z2 - zl*y2)

+ (wl*y2- xl*z2 + yl*w2+zl*x2)

+ (wl*z2 + xl*y2 - yl*x2 + zl*w2) (4.23)

Conjugate :

q =(w,-v) (4.24)

Norm :

N(q) = q®q* = w*w + Ivl * Ivl = w*w + v.v = Iql * Iql (4.25)

Magnitude :

M(q) = sqrt(N(q)) (4.26)

Normalized unit quaternion:

q/M(q) (4.27)

39

Quaternion inverse:

(normal) qr^q/Ntq) (4.28)

(Unit quat.) q = (f (4.29)

Eq.(4.29) is also one of the most important properties of the quaternion, which

permits the use of Eq.(4.24) to obtain the inverse of a unit quaternion and gives an

advantage to the system in computation speed.

Quaternion multiplication of two quaternions results a new quaternion that represents

rotation of first quaternion by the second one Eq.(4.30). Eq.(4.22) has a vector cross-

product (vl x v2), which means quaternion product is not commutative Eq.(4.31). But it

is associative Eq.(4.32). To rotate a vertex by a quaternion, 3 steps are taken. First, vertex

is written in quaternion form by adding a 0 scalar part Eq.(4.33). Second, the quaternion

is normalized and formed in a unit quaternion Eq.(4.34). Last step is the applying

Eq.(4.35). This equation uses inverse of the unit quaternion, which is an efficient

computation. Another useful rule is that quaternion multiplication of two unit quaternion

always results a single unit quaternion. This is so important for efficient computation to

apply rotation consequences. Rotations are expressed in body fixed coordinates.

quaternion (ql) is rotated by quaternion (q2) :

ql_rotated = ql ® q2 (4.30)

ql®q2*q2®ql (4.31)

ql®(q2®q3) = (ql®q2)®q3 (4.32)

vertex (p) is rotated by quaternion (q):

quat_p = (0, p) (4.33)

unit_q = q / M(q) (4.34)

40

rotated_quat_p = unit_q ® quat_p ® unit_q" = (0, rotated_p) (4.35)

vertex (p) is rotated by vector (v) -angle (0):

q = (cos(9 IT), sin(6 II) * v) (4.36)

Eq.(4.36) gives the representation of a vector-angle pair by a quaternion. This helps

to imagine quaternion rotation. Because, it is possible to extract vector-angle pair form

quaternion definition or to input quaternion to the system as a vector-angle pair. If

analytic solution is made for Eq.(4.35) by using Eq.(4.36) and Eq.(4.22), result is the

same withEq.(4.14) for rotated_p, Eq.(4.37).

rotated_quat_p = (0, (cos0) p + (l-cos6) (p.v) v + (sin6)(p x v))

= (0, rotated_p) (4.37)

In composing successive quaternions to obtain the resultant total rotation quaternion,

it is important to remember that rotation about body-fixed axes multiply on the right

while rotations about earth fixed axes multiply on the left, of course, the same is also true

of matrix representation of rotations.

C. CONVERSION TO HOMOGENEOUS MATRIX

Next step is to define homogeneous matrices with these methods. Eq.(4.9) gives the

rotation matrix of 3 Euler angles. Eq.(4.38) is constructed by adding displacement

elements to this matrix. As mentioned before, a redundant last row is also added.

Simplifications are made to gain computation speed (ccpy =c(p*ciy, s(p\|/ =sq>*s\|/,

cs\|/(p =c\y*s(p , and cscpxj/ =c<p*s\y).

R\|/R9R(p =
c\|/*c6 cs\|/(p *s6 - cscpy
s\j/*c0 s(f>\|/ *s0 + ccp\)/
-s0 scp *c0

0 0

c(p\|/ *s0 + scp\|/ X
cs(p\|/ *s0 - csv|/cp Y

ccp*c0 Z
0 1

(4.38)

41

The second method, vector-angle pair, is given by Eq.(4.14). Further analytical

solution of this equation produces the matrix form of this rotation. Eq.(4.40) represents

the simplified matrix form for vector-angle pair rotation. Eq.(4.39) is used in OpenGL for

transforming objects.

R(v(x,y,z), 9)=
x*x*(l-c0)+c0 y*x*(l- c0)+ z*s0 x*z*(l- c0)+y*s0 X
y*x*(l-c0)+z*s0 y*y*(l-c0)+c0 y*z*(l- ce)+ x*s0 Y
z*x*(l-c0)+y*s0 y*z*(l-c0)+x*s0 z*z*(l-c0)+c0 Z

0 0 0 1
(4.39)

Simplifications are made as ci =l-c0, xyci = y*x*ci, xzci = z*x*ci, zyci = y*z*ci,

xs = x*s0, ys = y*s0, and zs = z*s0. The result is:

R(v(x,y,z), 0) =
x*x*ci + c0 xyci + zs xzci + ys X
xyci + zs
xzci + ys

0

y*y*ci + c0
zyci + xs

0

zy ci + xs
z*z*ci + c0

0

Y
Z
1

(4.40)

Eq.(4.35) gives quaternion rotation for a vertex. Analytic solution of this equation

can be done by using Eq.(4.23). This solution results the 3x3-matrix form of the rotation

embedded in Eq.(4.42).

-l
R = [q®i®q q®j®q q®k®q (4.41)

or
1. 2*y*y - 2*z*z 2*x*y - 2*w*z 2*x*z + 2*w*y

R(w, v(x,y,z)) =\ 2*x*y + 2*w*z 1- 2*x*x - 2*z*z 2*y*z + 2*w*x
2*x*z . 2*w*y 2*y*z - 2*w*x 1- 2*x*x - 2*y*y

0 0 0

X
Y
z
1

(4.42)

Simplifications are made as xx = x*x, zz = z*z, yy = y*y, xy = x*y, zy = z*y,

xz = x*z, wx = w*x, wx = w*x, and wx = w*x, resulting in:

R(w, v(x,y,z)) =
l-2*(yy+zz) 2*(xy-wz) 2*(xz-l-wy) X
2*(xy + wz) l-2*(xx+zz) 2*(yz-wx) Y
2*(xz-wy) 2*(yz-wx) 1-2*(xx+yy) Z

0 0 0 1

(4.43)

42

Even though all three notations may use other formulations instead of using

homogeneous matrix form, computation efficiency for construction of segment joint

transformation matrices are discussed in this section because of the reasons reviewed in

Chapter III. Figure 12 shows a graph to compare three notations for rotating a segment

joint that has a 3 DOF. This rotation also represents the orientation, because it is relative

to the origin of the local coordinate system. Notice that quaternion notation doesn't use

trigonometric functions, which is an advantage for computation speed.

The quaternion normalization process also adds extra computation. But as

mentioned before successive quaternion products of unit quaternions results in a unit

quaternion, which means that normalization is not needed in each step, but only

periodically, to correct for accumulated round off effects,

INPUT - hard

MEMORY -4 unit

INPUT - easy

MEMORY -4 unit

Rotating a
point
—*-
(Vector)

* 1 : 16

Trig. :6
+,- : 12
without last

*,/ : 12 row

+,- :4
»9, +9

INPUT - easy

MEMORY -# of DOF (1,2,3) unit

Figure 12: Comparison of Methods for an Orientation

43

Another important comparison of notations is for rotations on existing orientations.

Existing orientations and applied rotations are used to compute the new orientations. A

pair of Euler-angles that each represents 3 DOF can be added to compute total rotation,

but there are many combinations of these additions. Matrix multiplication of two

homogeneous matrices may be a solution for this. Rotations of two vector-angle pair can

be merged by using two homogeneous matrices, or they can be converted quaternion to

create single unit quaternion. The last approach is more efficient [Figure 13].

Trig. :6

*,/ : 12

+,- :4

Figure 13: Comparison of Methods for a Rotation from an Existing Orientation

44

D. INTERPOLATION AND SINGULARITY

A software system may interpolate between two orientations to fill the gaps in

motion. Interpolation is very important for key frame systems. Motion should be smooth

in the desired direction and speed. For rotating objects, all three notations (Euler angles,

vector-angle pair and quaternion) may be used to define the key frames.

If Euler angles used for joints that have more than 1 DOF, motion between two key

frames will be undefined unless some constraints on Euler angle rates are applied, such

as, for example linear interpolation of all angles. Even in such as a case, however, a

change in the order of rotation axis will produce a different motion. Euler angles are

therefore undesirable for interpolation and should be converted other forms for

interpolation purposes. This adds extra computation at run time.

Figure 14 shows the singularity of Euler angles. When the elevation angle reachs 90

or -90 degrees, 1 DOF is lost. Specifically, roll and azimuth have the same effect. In this

case, only two angles are needed to specify the orientation of a rigid body. For example,

elevation angle (pitch) and the azimuth (heading) of the belly vector of the body are one

such set of angles.

Figure 14: Gimbal Lock (Airplane is attached to innermost ring) [WEBREF3]

45

Two vectors can represent two orientations of a rigid body. These two vectors lie in a

single plane in 3D. Rotation about the normal vector of this plane guarantees a smooth

rotation independently of the choice of the coordinate systems or Euler angles. If vector-

angle pairs define orientations, calculating the normal vector and rotation angle requires

computation time. On the other hand, there is an efficient way to interpolate between two

quaternions. Two vector-angle pairs can use this method after being converted to two unit

quaternions. Spherical interpolation between two unit quaternions, ql and q2 is given by

[WATT92]. The parameter u in Eq.(4.45) is increased from 0 to 1 during interpolation,

ql . q2 = cos Q. (4.44)

q(u) = ql*sin((l-u)*ß)/sinQ + q2* sin(Q*u) / sin Q. (4.45)

In the above, a problem occurs for the direction of interpolation. Every 3D rotation

has two representations in quaternion space. The effect of q and -q are the same. This

means that interpolation can be computed using either quaternion, which causes two

motions in opposite directions during interpolation. To solve this ambiguity,

interpolations should occur either between quaternion pairs ql and q2 or ql and -q2 for

the shortest path [WATT92]. Another potential problem arises as Q. is 0 or n since in this

case sinQ is 0. However, this problem is not real, since in this case, interpolation is not

needed.

Another advantage of the quaternion method comes up when the system uses body

rates. An example is rigid body dynamics. A state chart for such a computation is shown

in Figure 15. This system computes linear and angular velocities in earth coordinates by

using linear and angular accelerations in body coordinates. Eq.(4.46) represents the

matrix to calculate angular rates in earth coordinates for Euler angle methods. This

46

equation can be understood by observing Figure 14. Analytic solution of this matrix

results Eq.(4.47). The secant function introduces the singularity problem of this approach,

when G is 90 degrees.

State Vector

ngular velocity^
in body coord.

(pqr)

Derivative of
State Vector

_^ Linear velocity
in world coord.

/Linear acceleration^
\^in body coord

(ngular accelerations
in body coord.

Figure 15: Loop for Rigid Body Dynamics

Ev (cp 6 \|/): Angular velocity in earth coordinate

Bv (p q r): Angular velocity in body coordinate

Ev = R\|/ R6

— -*~ — — — ~~*

<P 0 0

0 + Ry e + 0

0 0 _v

= R\|/ R6 R(p Bv (4.46)

47

<P

e

1 tan9*sinq> tan9*coscp

0 coscp -sincp

0 sec0*sin(p sec6*cosq>

P

q (4.47)

On the other hand, as shown by Eq.(4.48) below, the quaternion method shows no

singularity to convert body rates to earth coordinates [COOK92].

q-earth = q ® (0 p q r) / 2 (4.48)

E. CONSTRAINT DEFINITION

Computer simulation of articulated bodies may involve constraints on motion. One

important type of constraint is the joint angle constraint. For example, an animator can

work easier after defining joint angle constraints, so impossible motions are disregarded

or corrected by the simulation system. Another example is motion-tracking systems,

where system software checks sensor inputs for validity. Defining joint constraints by

quaternions is almost impossible, because a quaternion is a 4D vector and doesn't have a

graphical representation. Vector-angle pairs may be used for constraint definition. But a

more intuitive way is to use Euler angle methods. Table 1-5 in Chapter HI gives

constraints for each joint DOF. They are reasonable and understandable. But these

constraints, as given are not realistic for human motion. This is because joint motion

limits are not independent. For example for the human shoulder joint, the maximum

values for roll and elevation depend on each other and also upon shoulder azimuth.

In addition to such considerations, constraints should also prevent segment

collisions. If a system uses quaternions to represent joint orientations, conversion to Euler

angles should be done to set constraints at run-time. This can be accomplished by

48

computing an equivalent rotation matrix for the quaternion, and then solving the inverse

kinematics problem for the matrix to obtain Euler angles.

F. HARDWARE, SOFTWARE AND NETWORK CONSIDERATIONS

Existing hardware implementations and 3D graphic APIs support matrix forms and

multiplication, as an important advantage for real-time systems. This is why the

homogeneous matrix computation is useful and most common. On the other hand, the

quaternion method may be used without converted to homogeneous matrix notation. This

approach uses some advantages of unit quaternion methods. A quaternion can be

normalized with a minimal amount of computational expense, whereas normalization of a

rotational matrix requires substantially more effort. In a situation where continuous

chains of transformational products are relatively rare and highly parallel hardware is

available, homogeneous matrices may prove superior to quaternion/vector pairs.

Conversely, if the nature of a computation necessitates frequent renormalization of

rotational operators, then the quaternion/vector approach arises as the better alternative

[FUND90]. Notice that Euler angles have to be converted to homogeneous matrix form to

be normalized.

Inserting human models into networked synthetic environments necessitates the

exchange of posture information between network nodes. Posture information in a

protocol data unit (PDU) includes all DOF of an articulated rigid body. Another approach

is sending only the updated DOF. But the last method needs extra computation for

packing and unpacking of PDUs, which makes the first method better. The number of

bytes representing articulation of a minimal model is 34 when Euler angles method is

used. This number becomes 56 when quaternions are used. The difference is 22 bytes and

increases when complex articulated bodies are used. The quaternion method adds 1 byte

49

for 3 DOF, 2 bytes for 2 DOF and 3 bytes for 1 DOF to the number of bytes needed by

Euler angle methods. When more than 150 humans are inserted to a simulation, the

quaternion representation requires 3300 extra bytes for minimal articulated bodies.

G. USER INTERACTION

When low level-motion control systems are used, user interaction techniques for all

three notations should be defined. Input boxes or a script console may be used for vector-

angle and Euler methods. But quaternion numbers don't make sense to an animator.

Using a mouse as an interaction device and choosing 2D graphical interaction is the

most common way used today for human figure control. Objects may be embedded in

their local coordinate circles to make visual perception much stronger. Figure 16 shows

an intuitive way for vector angle pairs.

Figure 16: A 2D Graphical Interaction Method for Vector-Angle Pair

50

In this system, mouse inputs are used to rotate the whole world when the mouse is

moved, and the same motion defines a 2D angle when mouse button is first clicked on a

segment. Angles are calculated by converting of mouse cursor position from screen

coordinates to world coordinates. This is achieved by reversing the projection process.

An angle is measured on a plane that is parallel to the screen and passes through a joint

origin. The vector is perpendicular to the screen and the direction is out. This method

may also be used for quaternion notation after a vector-angle pair is converted to a unit

quaternion. Actually this interaction lets the user experience the advantages of unit

quaternions.

Another method for low-level inputs is to use motion-tracking systems. Miniature

angular rate sensors may be used to measure angular rates of individual human segments

in body coordinates with drift connection from accelerometers and magnetometers. When

a system uses these inputs to calculate posture information in earth coordinates, Euler

angles method fails for 90 degrees rotation on second axes. Using quaternions overcome

this singularity [DUMA99].

H. SUMMARY

All three notations have cons and pros. A system may use a combination of all for

optimization purposes. From a computation perspective, quaternions seem to have some

advantages. But these advantages are not so decisive and may be lost when hardware

implementations for matrix notation are considered. Look-up tables may be added to a

software system for trigonometric functions. The quaternion method eliminates the

singularity problems of the Euler angle method. The Euler angle method is inadequate for

interpolation, but it is better for construction of PDUs and to set constraints for joints.

51

52

V. FORWARD AND INVERSE KINEMATICS

Kinematics models were developed and used by researchers in robotics long before

computer graphics came along, and so there is a wide body of literature devoted to them

[CRAI89]. All kinematics models specify motion independent of the underlying forces

and include all geometrical and time related properties of motion, such as position,

velocity and acceleration. Kinematics animation of articulated structures usually falls into

one of two categories: forward and inverse kinematics. Both have been used in computer

animation.

A. DEFINITION

In forward kinematics, all transformations are specified to control motion of an end

effector. This is simple and has low computation requirements. The importance of

interactive real-time design in animation makes forward kinematics systems attractive. In

this approach, the animator has direct control over the figure's position. All issues that

are introduced in Chapter HI and Chapter IV of this thesis are related to forward

kinematics. This chapter introduces inverse kinematics and compares both methods.

In inverse kinematics, a goal position and orientation is specified for the end effector

and the system computes the transformations required to achieve this goal. This is also

called "goal directed motion" since the animator only specifies the end effector's position

and orientation. The system software then solves for set of joint angles that place the end

effector in the desired posture. This method is generally very expensive with expect to

computational requirements. However, the importance of automatic motion control

makes inverse kinematics systems attractive for some applications, where movement of

an end effector drives the animation. In such cases, forward kinematics solutions are

53

counterintuitive and tedious. Inverse kinematics can be used where precise motion

control is not required, as with, for example, autonomous agents in a networked virtual

training and simulation environment.

Hybrid models may be constructed by using both methods. For example, arms and

legs can be controlled by inverse kinematics, while the torso and neck are simulated by

forward kinematics. Inverse kinematics algorithms can compute orientations of the

shoulder, elbow and wrist to reach an object in space. Leg motions are also computed in

the same way to control the interaction between toes and the ground. Another example is

a human figure sitting on a bicycle. The end nodes of the hands are constrained to be on

the handles and those of the feet to the pedals. As the pedals are made to revolve, or as

the handle bar turns, then the feet and hands follow accordingly [WATT92].

B. COMPUTATION

Both methods become harder to use as the complexity of the articulation increases.

Complexity can increase due to an increase in the number of DOF and number of links.

Chapter III introduces computational issues of forward kinematics. While forward

kinematics should check joint constraints and collisions, inverse kinematics should

additionally check reachable space.

Inverse kinematics solutions are grouped into two broad classes: closed form

solutions and numerical solutions. Numerical solution is a whole field of study itself and

is beyond the research of this thesis, but some computational issues of this method are

discussed below. A numerical solution is also called an iterative solution. This method

uses the relation between end effector velocities and state variable rates. In generally, if X

is end effector state vector (position and orientation) and 0 is system state vector

54

(orientations of in-between links), there is a function f of 6 to compute X, which is given

as: X = f(0). The derivative of both sides of this equation gives a relation between

velocities (dX = J(6)d6). The matrix J is called the Jacobian, which maps velocities in

state space to velocities in cartesian space. The general inverse kinematics problem is

given as: G =f (X). But the function f is highly nonlinear, rapidly becoming more and

more complex as the number of links increases, and so the inversion of this function soon

becomes impossible to perform analytically. The problem can be made linear, however,

by localizing about the current operating position and inverting the Jacobian to give:

-1
do =J dX [WATT92]. The matrix J can be constructed by the information extracted

from transformation matrices that already exist in the graphics pipeline. The first problem

is that J is not square in many cases. In such cases pseudo inversion techniques can be

used to compute J . Iterating end effector state variables, described as dX, is the second

problem, which needs extra computations to correct tracking errors. Singularity problems

and joint constraints are other issues to be solved when an end effector is iterated.

Because of these problems, numerical solutions are much slower than the corresponding

closed form solution and not preferred in many cases. They are not always real-time and

lead to only one solution even though there is more than one solution to reach the goal in

many cases.

Closed form solutions are based on analytic expression and can be hard coded, which

is real-time and more preferable. This method is also grouped into two sub classes:

algebraic and geometric solutions. The two methods differ perhaps in approach only

[CRAI89]. The problem of closed form solutions is that when the number of joints

increases, the inverse kinematics problem is generally not solvable. When a manipulator

55

has less than six degrees of freedom, it cannot attain general goal positions and

orientations in 3D space. In many realistic situations, manipulators with four and five

degrees of freedom are employed which operate out of a plane, but clearly cannot reach

general goals. A sufficient condition that a manipulator with six revolute joints will have

a closed form solution is that three neighboring joint axes intersect at a point [CRAI89].

Another problem is that the more nonzero link parameters there are, the more ways there

will be to reach a certain goal. Only one solution should be chosen at run time, which

necessitates extra algorithms and computations.

Figure 17(a) shows a human arm with 6 DOF, where the shoulder has 2 DOF, the

elbow has one DOF and the wrist has 3 DOF. The third segment translation, d2, is on the

fourth axis. Thus, the translation d2 and rotation 94 has the same effect as rotation 64 is

applied before d2 displacement. This allows the alternative of a 2 DOF elbow. Figure

17(b) shows this change. Eq.(5.1-6) give transformation matrices for Figure 17(b).

1 ^ 1

f dl > dl

> d2 >■ d2

(a) (b)

Figure 17: Human Arm

56

The position and orientation of a hand is defined by matrix multiplication in the

order of Rl, R2, Tl, R3, T2, R4, R5, and R6. This multiplication can be re-ordered as Rl,

R2, Tl, R3, R4, T2, R5, and R6. Consequent homogeneous matrices are defined as HI,

H2, H3 H4, H5, and H6 as follows:

H1=R1 =

H2= R2

10 0 0
0 cl -si 0

0 si cl 0
.0 0 0 1.

c2 -s2 0 0
s2 c2 0 0
0 0 10
0 0 0 1

H3 = Tl R3 =
c3 -s3
s3 c3
0 0
0 0

0
0
1
0

0
dl
0
1

H4= R4 =
c4
0

-s4
0

0 s4 0
1 0 0
0 c4 0
0 0 1

H5 = T2 R5 =
1 0
0 c5
0 s5
0 0

0
-s5
c5
0

0
d2
0
1

H6= R6 =
c6
s6
0
0

s6 0 0
c6 0 0
0 1 0
0 0 1 J

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Notice that 1 DOF (twist) has been omitted at the shoulder, which may be important

for some applications that necessitate accurate representation of human motions. Since,

axis 4,5 and 6 are intersecting, there is a solution for this system that has 6 DOF. Eq.(5.9)

and Eq.(5.13) can be computed by using Eq.(5.7) and Eq.(5.8). The approach in this

57

method is the inverting homogeneous matrices in specific order, bringing to the left side

and solving for the equation where there is only one unknown. If no more equations can

be found, invert next matrix and solve further. Eq.(5.17) is found after second step

Eq.(5.14). Last step is given by Eq.(5.18-19), which allows the solution of angle 4

through angle 6 Eq.(5.21-27).

H = TR=> H = RT=RT (5.7)

HI _1 Hhand = H2 H3 H4 H5 H6 (5.8)

Angle 1 = arctan (Dz/Dy) (5.9)

a = -2*dl*(cl*Dy + sl*Dz) (5.10)

b = 2*Dx*dl (5.11)

c = d22 - dl2 - Dx2 - (cl*Dy + sl*Dz) 2 (5.12)

Angle 2 =arctan(b/a) ± arctan(V(a2 +b2 -c2) / c) (5.13)

H2_1 Hi" Hhand = H3 H4 H5 H6 (5.14)

s3 = (c2*Dx + s2*cl*Dy + s2*sl*Dz) /-d2 (5.15)

c3 = (-s2*Dx + c2*cl*Dy + c2*sl*Dz-dl) 162 (5.16)

Angle 3 = arctan(s3 / c3) (5.17)
-i -i -l -l

H4 H3 H2 HI Hhand = H5 H6 (5.18)
-l -l -l

(R3R4) Tl (H1H2) Hhand = H5 H6 (5.19)

0 = c4*(Dx*c23 + s23*((cl*Dy) +(sl*Dz)) - dl*s3) - s4*(-sl*Dy + cl*Dz) (5.20)

Angle 4 = arctan((Dx*c23 + Dy*s23*(cl+sl) - dl*s3) / (-sl*Dy + cl*Dz)) (5.21)

c5 = s4*(Ax*c23 + s23 *((cl*Ay) +(sl*Az)) - dl*s3) + c4*(-sl*Ay + cl*Az) (5.22)

s5 =s3*(c2*Ax + cl*s2*Ay + sl*s2*Az)
- c3 *(-s2*Ax + cl*c2*Ay + sl*c2*Az -dl) (5.23)

Angle 5 = arctan(s6 / c6) (5.24)

58

c6 = c4*(Nx*c23 + s23 *((cl*Ny) +(sl*Nz)) - dl*s3) - s4*(-sl*Ny + cl*Nz) (5.25)

s6 = -c4*(Ox*c23 + s23 *((cl*Oy) +(sl*Oz)) - dl*s3) + s4*(-sl*0y + cl*Oz) (5.26)

Angle 6 = arctan(s6 / c6) (5.27)

This solution can be applied to both arms. A similar solution can be found for the

legs, where the twist motion of hips has been omitted in this model. The solution of all

these equations are specified for the given axis order. If the drawing system uses a

different axis order, extra computations are needed to switch between different axis

systems. This is because the solutions above are based on Euler angles. There isn't a

similar study for algebraic solution of quaternions. [FUND90] uses quaternion/vector pair

for a formalism to solve the inverse kinematics problem for a six-jointed revolute

manipulator with a spherical wrist. This is a quaternion-based solution to compute Euler

angles.

C. SENSOR PLACEMENT

One of the important application areas that use human figure models is motion

tracking systems. These systems may use both forward and inverse kinematics. Actually,

choosing one or the other is a trade-off for realism. Figure 18 shows an inverse

kinematics approach. Four sensors are used to track the human upper body. The

advantage of this approach is that user encumbrance is reduced by using a minimal

number of sensors. The disadvantage is that more computations are needed. Also,

because of multiple solutions, the result may be inaccurate. The position of end-effectors,

the hand's position in this case, must be tracked as well as orientations, which is another

disadvantage.

59

A second approach is introduced in Figure 19. Using 15 sensors, it is possible track

each limb segment by using forward kinematics. The system tracks only one segment's

position and needs only the orientations of all other segments. [SKOP96] demonstrates

the tracking of an arm in real-time by using forward kinematics. [SKOP96] also uses

inverse kinematics solutions to determine joint angles associated with physical limb on

which the tracker is mounted. This is because of his use of solutions based on Euler

angles. Another approach is to use quaternions. [DUMA99] explains a quaternion filter

that computes a unit quaternion from sensor data. When quaternions are used for a

forward kinematics approach, there is no need for inverse kinematics computations.

Figure 18: A Minimally Sensed Human Figure 19: Proposed Hybrid Human
[SKOP96] Tracking Sensor Config.[FREY96]

60

D. SUMMARY

Both forward and inverse kinematics have application areas in computer graphics. It

is also possible to model a human articulated rigid body system with inverse kinematics.

But the main concern is that some DOF may need to be omitted for real-time animation.

Inverse kinematics solutions will also lead to multiple postures and system software will

choose one of them, which may be inaccurate in special cases. Iterative solutions can be

used when human models are used in non real-time applications. Another problem with

the iterative approach is that the end effector path must be well defined. In many cases,

an animator needs to switch to forward kinematics to correct inverse kinematics

solutions.

[FREY96] shows that an entire human body can be tracked by using only orientation

data for each body part. This result eliminates the need for human body motion capture

systems to track the position of each body part as well as the need to create highly

complex kinematics models of the human body based on joint angles. Using unit

quaternion data simplifies the system further and permits the construction of an

articulated body that doesn't use inverse kinematics computations [DUMA99].

61

62

VI. IMPLEMENTATION AND RESULTS

The simulation program of this thesis is developed by using OpenGL and GLUT

libraries and allows a user to define human figure postures by means of mouse inputs.

Further, in this thesis, a key frame animation system is also developed to interpolate

between user-defined frames. Both forward kinematics algorithms in [WATT92] and

inverse kinematics algorithms in [BEDI97] are used to demonstrate walking of the figure.

The main purpose of the program in Appendix B is to build the human articulated

structure with quaternions. Approaches to define user interaction and joint constraint

definition for quaternions are represented in detail in following paragraphs of this

chapter.

There are currently 20 classes in the program (Figure 20). The main class is

GlutBaseClass uses GLUT library and constructs a window to draw the human figure

and to collect user inputs. Sub-main classes are Human, UserControl, ProceduralAnim

and KeyFrameAnim classes. These classes are static and instantiated once. Three types of

control of the figure are implemented in the last three sub main classes that have a pointer

to a human object for direct manipulation. The KeyFrameAnim object stores and

manages the orientation key values of segments in Posture objects as quaternions, and

interpolates between currently stored frames for animation. The ProceduralAnim object

controls the human figure for walking. The UserControl object tracks mouse motion and

creates manipulation of segments, depending on user choice of control type. Control

types are forward kinematics with Euler angles, forward kinematics with quaternions and

simple algebraic inverse kinematics. The UserControl object feeds back user inputs by

animation of a GimbalSystem object for Euler angles and by animation of Cursor3D

63

objects for quaternions and inverse kinematics. Menus that are represented by

GlutBaseClass allow choices for control type, scene navigation type, and segment shape.

The GlutBaseClass also animates a floor object trivially to demonstrate walking.

Another control type uses sensor inputs. [DUMA99] demonstrates a quaternion

filter, which produces a unit quaternion by using three types of sensors. This system can

track a human segment in real-time. His Qaef object is embedded into a SensorSytem

object, which tracks the upper-arm of the human figure.

Inverse
Kinematics

Cursor3D

Circle

KeyFraml
Posture

H Matrix

S4 Triangle
FaceSet

H Matrix3DOF

A
Quaternion H MatrixlDOF

Figure 20: Object Diagram of the Human Program

A. HIERARCHY

The Human object has the interface for manipulation of human figure. Hierarchy

details and algorithms are embedded into this object or in its component object classes. A

64

human object initiates 16 segment objects and 15 joint objects. The Joint objects manage

joint vertices trivially and may be removed for computational speed. Segment objects

have a TriangleFaceSet object, which reads polygon vertices from a file for that segment

shape. Segment shapes are originally parts of a VRML object that is downloaded from

the Internet. These shapes may be drawn in wire-frame or smooth shaded modes. A Box

object is defined for the outer bound of each shape. Box objects are used for two

purposes: drawing stick figures and detecting mouse clicks.

The hierarchy between segment objects is hard coded in the Human class (Figure 21).

Notice that this structure is static. If dynamic hierarchy management is required, a new

class should handle Figure 21 as a tree structure.

void Human::draw()
{

//Root
drawRoot();
glPushMatrix();

//Body
drawBodyO;

glPushMatrix();
//Neck and Head
drawHead();

glPopMatrix();
gIPushMatrixO;

//LeftArm
drawLeftArmO;

gIPopMatrixO;
glPushMatrix();

//RightArm
drawRightArm();

g!PopMatrix();
glPopMatrix();
gIPushMatrixO;

//LeftLeg
drawLeftLegO;

glPopMatrix();
gIPushMatrixO;

//RightArm
drawRightLeg();

glPopMatrix();

return;
}

Figure 21: Segment Hierarchy

65

Each sub draw function in Figure 21 calls draw functions of individual segments in

sequential order as in Figure 22.

void Human::drawLeftArm(){

// Right Upper Arm
segment[L_UPPER_ARM]->draw(points,normals);

// Right Fore Arm
segment[L_FORE_ARM]->draw(points,normals);

//Right Hand
segment[L_HAND]->draw(points,normals);
return;

}
Figure 22: Drawing Left Arm

Figure 23 shows how segment objects draw.

void Segment::draw(GLfloat ** points, GLfloat ** normals)
{

//make translation and orientation to set posture
localMatrix ->applyToCurrentMatrix();

//draw model
switch(modelType){

case STICK : ...
stick ->draw();
break;

case SKIN
shape ->drawTriangles(points, normals);
break;

caseWIRE_FRAME:...
shape ->drawTriangles(points, normals);
break;

default :
break;

}
return;

}
Figure 23: Draw Function of Segment Class

The main focus of this research is the localMatrix object, which is an H_Matrix object.

This is a component object of the Segment class. Each segment object's orientation and

position are defined in localMatrix objects. The H_Matrix class is actually an abstract class

66

and can't be instantiated. Joint transformation matrices for 1 and 3 DOF (eq.4.3-6) are

hard coded in different classes that are inherited from H_Matrix class. The reasons for

this implementation are introduced in Chapters 3 and Chapter 4. The hand, upperArm,

foot, upperLeg, head, neck and upperBody objects have H_Matrix3DOF objects, while

the lowerArm and lowerLeg objects have HJMatrixlDOF objects. In general, these

objects supply conversion functions for three types of rotation methods: Euler angles,

quaternions, and vector-angle pair. Conversions are supplied from these representations

to homogeneous matrices and vice versa. Direct conversion between quaternion and

vector-angle pair representations is also supported. For quaternion algebra, the H_Matrix

class uses a Quaternion object interface.

B. USER INPUTS

Double clicking on a segment switches to Euler angle inputs and draws a gimbal

mechanism. Current Euler angles are read from an H_Matrix object for initialization of

the corresponding gimbal mechanism. This mechanism has 1 or 3 Circle class objects.

Dragging these circles changes Euler angles. These circles demonstrate gimbal lock and

show joint angle limits that are important when quaternion inputs are converted.

The second input type, quaternion inputs, are entered by a mouse, which is read as

vector-angle pairs. The vector is always perpendicular to the screen. Rotating a scene

actually rotates this vector. Thus this vector is calculated by inverting the scene

orientation matrix (Figure 24).

67

GLdouble

ex =cos(-viewRotX * DEG_TO_RAD),
sx =sin(-viewRotX * DEG_TO_RAD),
cy =cos(-viewRotY * DEG_TO_RAD),
sy =sin(-viewRotY * DEG_TO_RAD);

// construct rotation vector from study angle
orientation[X] =(GLfloat) (cx*sy);
orientation[Y] =(GLfloat) (-sx);
orientation[Z] =(GLfloat) (cx*cy);

Figure 24: Calculating the Vector that is Perpendicular to the Screen

The Z-axis is directed to out of screen in OpenGL coordinates. Thus, the last column

of the inverse matrix gives the current Z-axis relative to the initial coordinate frame.

Segment angles in 2D can be tracked in Window coordinates. A segment's joint center is

the peak vertex of the angle, which can be easily found in the transformation matrix of

that segment. A segment angle is measured between a mouse clicked point to a mouse

released point. By using these three points, the cosine theorem is applied to calculate

angles. Actually, joint centers are in world coordinates, while the other two points are in

window coordinates. 3DCursor objects are used to project and unproject these points to

draw 3D cursors and to calculate angles. The code of Figure 25 is run when the mouse

button is released.

void UserControI::quaternionMotion(const GLintWIN_X, const GLint WIN_Y)
{

GLfloat
oldX =(GLfloat)selectionMark ->getWorldX(),
oldY =(GLfloat)selectionMark ->getWorldY(),
newX =(GLfloat)cursor3D ->getWorldX(),
newY =(GLfloat)cursor3D ->getWorldY();

//gets angle between selected mouse coord. & joint & current mouse coord
orientation[3] =getAngleFm3Points(selectedSegmentJx,selectedSegmentjy,

oldX, oldY,
newX, newY);

}

//rotate segment with this rot ang. & vec.
human ->modifyPosture(VECTOR_ANGLE, selectedSegment, orientation);

Figure 25: Response to Quaternion Input

68

The modifyPosture method of a human object calls other methods which ends with

calling the rotate method of H_Matrix (Figure 26). This method is called by a

VECTOR_ANGLE parameter, because the actual input is a vector-angle pair. But the

next method, rotateByVecAng, converts this input to a quaternion to apply rotation. As

Figure 13 demonstrates, applying vector-angle pair rotations to existing orientations is

accomplished more efficiently by using quaternion algebra than by calling the glRotate3f

method that leads to matrix construction and matrix multiplication.

boolean H_Matrix::rotate(const ROTATION_METHODS method,
const GLfloat* orientation)

{
boolean rotationAccepted =FALSE;

switch(method){
case VECTOFLANGLE:

rotationAccepted =rotateByVecAng(orientation);

}
return rotationAccepted;

}

boolean H_Matrix::rotateByVecAng(const GLfloat * orientation)
{

boolean rotationAccepted =FALSE;

Quaternion rotation(orientation);

//apply rotation on existing quaternion orientation
Quaternion newOrientation =rotation * quaternion;

//checks if rotation in boundaries
if(isRotationAcceptable(newOrientation)){

quaternion =newOrientation;

quatToMatrix();

rotationAccepted =TRUE;// if it is, return accepted
}

return rotationAccepted;
}

Figure 26: Rotation of an Existing Orientation with a Vector-Angle Pair

69

C. CONSTRAINTS

As seen in Figure 26, the rotateByVecAng function calls the isRotationAccepted

function by the new quaternion object. There is no way to constraint a quaternion, so the

new orientation is converted to Euler angles by using homogeneous matrix conversion

and vice versa (Figure 27). This causes additional computation at run-time.

boolean H_Matrix3DOF::isRotationAcceptable(QuaternionR & newOrientation)
{

boolean accepted =FALSE; //default, don't accept rotation

H_Matrix3DOF tmp;

tmp.quaternion = newOrientation;
tmp.quatToMatrix();
tmp.matrixToEuler();

if(tmp.isRotationAcceptable(tmp.angle)){accepted =TRUE; }

return accepted;
}

Figure 27: Constraints for Quaternion Representation

D. MOTION TRACKING

This program supports forward kinematics for 16 body segments to draw a human

figure. Each segment multiply its local homogeneous matrix with the current model view

matrix in the graphics pipeline to obtain its posture in the world coordinates. There is no

need for inverse kinematics to apply the inputs of an inertial sensor tracking system.

Instead, quaternion filter outputs are directly applied to segments. The code of Figure 28

is to import the Qaef object that is described and implemented in [DUMA99].

But the applyToCurrentMatrix function of H_Matrix class should be changed as in

Figure 29 for the quaternion filter outputs. Because the quaternion filter produces unit

quaternions in earth coordinates that are independent from previous joint transformations.

But the joint position is still effected by previous joint transformations.

70

voidSensorSystem::trackSegment()
{

Quaternion vecAng = (q1 ->getResult()).toAxisAngIes();
orientation[X] =vecAng.getX();
orientation[Y] =vecAng.getY();
orientation[Z] =vecAng.getZ();
orientation[3] =vecAng.getW();

human -> setPosture(VECTOR_ANGLE, R_UPPER_ARM, orientation);

vecAng = (q2 ->getResult()).toAxisAngles();
orientation[X] =-vecAng.getX();
orientationfY] =vecAng.getY();
orientation[Z] =-vecAng.getZ();
orientation[3] =vecAng.getW();

human -> setPosture(VECTOR_ANGLE, R_FORE_ARM, orientation);

Figure 28: Sensor Tracking Method

void H_Matrix:: applyToCurrentMatrix (GLfloatview[16])
{
GLfloat tempMatrix[16];

//position is effected by parent joints transformation and camera motions
//At this point, all parent joints transformations & camera motions is already
//applied to graphic pipeline
glTranslatef(joint_x, joint_y, joint_z);

//hold transformed joint position
glGetFloatv(GL_MODELVIEW_MATRIX, tempM);
GLfloat

transformed_x = tempMatrix [12],
transformed_y = tempMatrix [13],
transformed_z = tempMatrix [14];

//orientation is not effected by parent joints transformations
// (defined in earth coord., stored in joint_matrix[])
//but, orientation is also effected by camera motions
tempMatrix [12] = tempMatrix [13] = tempMatrix [14] =0;
for(GLinti=0;i<12;i++)

tempMatrix[i] =joint_matrix[i];
glLoadMatrixf(view);
glMultMatrixf(tempMatrix);

//construct result transformation matrix
glGetFloatv(GL_MODELVlEW_MATRIX, tempMatrix);
tempMatrix [12] = transformed_x;
tempMatrix [13] = transformed_y;
tempMatrix [14] = transformed_z;

}

//apply result transformation matrix
glLoadMatrixf(tempMatrix);

Figure 29: Construction of the Segment Transformation Matrix

71

The code given in Figure 29 is different from the code that is given in Appendix B.

Inputs may be checked by angle constraints, which causes extra conversion

computations. Quaternions are applied to the graphics pipeline directly by using

Eq.(4.42), which is efficient. The quaternion system doesn't use any trigonometric

function and requires just 16 matrix multiplications.

E. RESULTS

For interpolating quaternions, Eq.(4.45) is also implemented. As stated in Chapter IV,

there is no singularity with this interpolation. This algorithm can be used for dead

reckoning of human segments in large scale networked virtual environments. Figure 30

shows two key frames and the in-between frames of interpolation.

(a) User Defined Key Frames

(b) Computed In-between Frames

Figure 30: Quaternion Interpolation

72

Algebraic inverse kinematics solutions that are given in Chapter V are also coded in

the InverseKinematics class, which is a component object of the UserControl class. But

details and accuracy are not the focus of this research. Figure 31 is an example for hand

and foot motions.

Figure 31: The Left Hand and the Left Foot Motions by Inverse Kinematics

The main result of this study is the demonstration of a human articulated body model

with quaternions, which allows efficient computation and eliminates the singularity

problems of Euler angles. The joint constraints are also applied to the model when

quaternion and Euler angle inputs are entered by a mouse. Figure 32 shows two mouse

inputs for elbow. First one force the elbow to make an impossible motion. The second is

a normal elbow rotation. The program rejects the first motion.

73

(a) Impossible Motion for Elbow (b) Accepted Motion for Elbow

Figure 32: Demonstration of Joint Constraints

Figure 33 shows six frames of walking as a procedural animation.

Figure 33: Walking as a Procedural Animation

74

Figure 34 shows the right arm motion tracking with two inertial sensor inputs for the

right shoulder and the right elbow. The quaternion attitude filter filters the inputs.

(a) Initial Posture (b) Initial Posture from another Point of View

(c) Elbow Motion (d) Elbow and Shoulder motion

(e) Shoulder has 90 degrees elevation (No singularity)

Figure 34: The Motion Tracking of Right Shoulder and Right Elbow
with two Inertial Sensors and the Quaternion Attitude Filter

75

The TriangleFaceSet class reads data from the given file. Thus, replacing human

segment shapes are easy, when new vertices are calculated. The object-oriented design of

the model also facilitates new implementations for different purposes.

76

VII. SUMMARY AND CONCLUSION

A. SUMMARY

This study presents a human articulated rigid body with quaternions that can be used

for real-time computer graphics applications in Virtual Environments (VE). There are

many issues for modeling human figures. New methods are developing for more realism

and automatic control of the figures. But, the real-time requirements usually constrain the

animation to consist of flat or Gouraud-shaded polygons with texture mapping

[WATT92]. For real-time systems, the joint motions still must be realistic after making a

high level of abstraction for the appearance. The articulated structure is the most

important part of the human figure to define the realistic postures. Computation and the

behavior of the articulated structure and the input devices are the case for real-time

human figure simulation systems.

There are two different approaches to construct the human articulated structure. In

robotics and computer graphics, many applications use MDH notation to build articulated

structures [SKOP97]. A different method uses only segment orientations represented by

Euler angles to make the postures of the human figure [FREY96]. Chapter 3 of this thesis

discusses the efficiency issues of these two methods. With the second method, each

segment joint of the human figure has a transformation matrix. This study brings a new

approach to represent the transformations of joints by using the quaternions as the state

vectors of the joints.

When quaternions are used, it is possible to rotate vertices of segment shapes and the

positions of child joints without using homogeneous matrices. But, today's most common

graphic engines use homogeneous matrices, and the author chose to construct joint

77

transformation matrices for rendering purposes. Nevertheless, using quaternions is still

powerful for many computations. The most important superiority of the quaternion

representation is that it is independent of coordinate axes and shows no singularity at any

value. Besides that, making consecutive rotations on existing orientation necessitates less

computation than making matrix multiplications. The other method, Euler angles, is

inadequate for interpolation and should be converted other forms for interpolation

purposes. This adds extra computation at run time.

The program that is developed in this study can be used for the experimental

purposes, which demonstrates Euler angle and quaternion methods and lets users define

posture with forward and inverse kinematics. Joint constraints are applied to the mouse

inputs. The real-time display of human arm tracking with two inertial sensors, key-frame

animation, and walking are the other features of the program. Other human figures can

also be used by changing joint positions and segment vertex data in the vertex files. The

user manual of the program is given in Appendix A.

B. CONCLUSIONS AND FUTURE RESEARCH

Chapter IV of this thesis compares quaternion and Eujer angle methods for many

considerations. The quaternion method solves singularity problems of the Euler angle

methods. It is also more powerful than the Euler angle method when frequent

renormalizations of rotational operators are needed. On the other hand, Euler angle

method is the only solution to add constraint to joint angles. When quaternions are used

as the state vector of the articulated structure, PDU packets are longer than those

constructed by Euler angles. Today, there are many graphic hardware implementations

that support matrix algebra, which reduces the computational expense of the Euler angle

78

method. Using one or the other method depends on the application purposes. Both

methods may be used within the same software for the best performance.

An important future research is to combine this study with [DUMA99] that introduces

quaternion attitude filter. This filter is designed to compensate many problems that are

encountered with Euler angle methods and produces unit quaternions as orientation data.

These outputs can be used to track human segments. The human model that is introduced

in this thesis can define human postures with quaternion data. A body suit that has 15

inertial motion tracker sensor that each uses a quaternion attitude filter can track a whole

human body.

79

80

APPENDIX A: USER MANUAL

The program developed for this thesis runs only on Windows95/98 and WindowsNT

platforms. Glut library is used for window specific tasks and OpenGL is used for 3D

modeling and rendering. The main interaction device of the program is a mouse.

Keystrokes are also processed as hot keys for key frame and procedural animations. Pop-

up menus are the only user interface to switch between different modes of the program.

The main pop-up menu is reached when the right mouse button is pressed. The other pop-

up menus are the sub menus of the main menu.

A. NAVIGATION MODE

When the left mouse button is pressed in the screen space and the mouse is dragged,

the mouse motions cause the camera motions. There are 3 different navigation modes of

the program. The Walk mode translates the camera position on 3 axes. The Pan mode

translates the camera position only on OpenGL X and OpenGL Y axes (Horizontal and

vertical axes of the screen). The Study mode rotates the camera on 3 axes. These three

navigation type can be chosen from the first sub menu of the main menu.

B. MODEL TYPE

The second sub menu lets user to chose the model type of the human. It can be a Stick

model or a Wire Frame model or a Smooth Shaded model.

C. POSTURE CONTROL MODE

There are 3 types of posture control mode: inertia! sensor tracking, mouse control,

and procedural animation. Key frames can be set and can be interpolated when the

posture control mode is the mouse control. These modes are selected from the third sub

menu.

81

1. Inertial Sensor Tracking

There must be two inertial sensors that are connected to the system to switch to this

option. The program code that is given in Appendix B should also be modified as in

Figure 29. For real-time concerns, the model type should be stick model or the code may

be modified to draw only the arm as smooth shaded polygons and the rest of the body as

stick figure.

2. Mouse Control

A selection occurs when the left mouse button is pressed while the cursor is on a

segment or on a circle of the gimbal mechanism.

a. Forward Kinematics

There are two options to change the orientation of the selected segment. If the left

mouse button is released after a segment selection without changing the mouse cursor

position, a gimbal system appears on the top left corner of the screen. Each circle on the

gimbal system represents a DOF of the selected segment (Knees and elbows have only 1

DOF, and the all other segments have 3 DOF). At this point, mouse drags do not cause

the camera motions. If any circle is selected, the mouse drags cause the segment and the

circle rotations. Rotations are restricted by joint constraints. The left mouse button should

be pressed and released on the same segment to quit from this option.

As a second option after a segment selection, the mouse is dragged in any

direction to make a 2D angle and then released to apply a quaternion rotation. If this

rotation is accepted by joint constraints, the segment change its posture as defined. The

detailed explanation of this option is given in Chapter IV.

82

b. Inverse Kinematics

In this mode, user can select only feet and hands. User can define a goal position

for the selected end-effector by dragging mouse. If the motion is acceptable, the program

calculates in-between joint orientations and applies to reach to the goal position.

3. Procedural Animation

User can apply walking procedures to the human figure. There are 2 types of walking

procedures, which are defined by inverse kinematics and forward kinematics. The up and

down arrows are used to speed up and slow down the walking procedures.

4. Key Frame Animation

Key frames are defined by mouse control. User can add, insert, and remove key

frames from a linked list either by keystrokes or by sub menu item selections. It is

possible to switch between key frames. When all keys are set, run option makes the

interpolation.

83

84

APPENDIX B: 3D HUMAN FIGURE SIMULATION SOFTWARE

Box.h 86
Box.cpp 87
Circle.h 91
Circle.cpp 92
Cursor3D.h 94
Cursor3D.cpp 95
Floor.h 98
Floor.cpp 99
GimbalSystem.h 101
GimbalSystem. .cpp 102
GlutBaseClass.h 104
GlutBaseClass.cpp 106
H_Matrix.h 116
H_Matrix.cpp 117
H_MatrixlDOF.h 123
H_Matrix.lDOF.cpp 124
H_Matrix.3DOF.h 128
H_Matrix.3DOF.cpp 129
Human.h 132
Human, cpp 134
InverseKinematics.h 142
Inverse Kinematics.cpp 143
Joint.h 147
Joint.cpp 148
KeyFrameAnim.h 152
KeyFrameAnim.cpp 153
Posture.h 158
Posture.cpp 159
Procedural Anim.h 160
ProceduralAnim.cpp 161
QuaternionR.h 167
QuaternionR.cpp 168
Segment.h 172
Segment.cpp 174
SensorSysterah 179
SensorSystem.cpp 180
TriangleFaceSet.h 181
TriangleFaceSet.cpp 182
UserControLh 185
UserControLcpp 187
utility.h 194
utility.cpp 196

85

// FILE : Box.h
// DESCRIPTION: Used for bounding boxes and stick models

#ifndef BOX_H_
#define BOX_H_

#include <GL/glut.h>
#include "utility.h"

enum BOX_VOLUME_TERMS {
BOTTOM_PLATE, TOPJPLATE, TWO_PLATES, THREE_POINTS, FOUR_POINTS

class Box{

public :// P U B LI C

//CONSTRUCTORS
Box(const GLfloat END_X,

const GLfloat END_Y,
const GLfloat END_Z);

Box(const GLfloat END_Y,
const GLfloat POS_X,
const GLfloat NEG_X,
const GLfloat POS_Z,
const GLfloat NEG_Z);

Box(GLfloat vol[TWO_PLATES][FOUR_POINTS][THREE_D]);
Box(Box &);

//DESTRUCTOR
~Box();

//OPERATORS
Box& operator=(const Box &);

//FUNCTIONS
void draw();
void show();
GLfloat getHeight();

private :// P RIV A T E

//VARIABLES
GLfloat

volume[TWO_PLATES] [FOUR_POINTS] [THREE_D],
height;

#endif

86

// FILE : Box.cpp
// DESCRIPTION: implementation of bounding boxes and stick figures

#include "Box.h"

//_
Box::Box(GLfloat vol[TWO_PLATES][FOUR_POINTS][THREE_D])

{
for(GLint plate=0; plate<TWO_PLATES; plate++){

for(GLint point=0; point<FOUR_POINTS; point-H-){

for(GLint axis=0; axis<THREE_D; axis++){

volume[plate] [point] [axis] =vol [plate] [point] [axis];
}

}

//
Box::Box(const GLfloat END_X,

const GLfloat END_Y,
const GLfloat END_Z)

{
static const Glfloat DELTA_X =0.08f,

DELTA_Z =0.05f;

GLint platel =BOTTOM_PLATE,
plate2 =TOP_PLATE;

if(END_Y < 0) {

platel =TOP_PLATE;
plate2 =BOTTOM_PLATE;

}

for(GLint point=0; point<FOUR_POINTS; point++){

volume[platel] [point] [Y] =0;
volume[plate2] [point] [Y] =END_Y;

volume[platel][0][X] =-DELTA_X;
volume[platel][0][Z] =-DELTA_Z;
volume[platel][l][X] =-DELTA_X;
volume[platel][l][Z] =DELTA_Z;
volume[platel][2][X] =DELTA_X;
volume[platel][2][Z] =DELTA_Z;
volume[platel][3][X] =DELTA_X;
volume[platel][3][Z] =-DELTA_Z;

volume[plate2] [0] [X] =END_X-DELTA_X;
volume[plate2] [0] [Z] =END_Z-DELTA_Z;

87

volume[plate2] [1] [X] =END_X-DELTA_X;
volume[plate2] [1] [Z] =END_Z+DELTA_Z;
volume[plate2] [2] [X] =END_X+DELTA_X;
volume[plate2] [2] [Z] =END_Z+DELTA_Z;
volume[plate2] [3] [X] =END_X+DELTA_X;
volume[plate2] [3] [Z] =END_Z-DELTA_Z;

height =(END_Y > 0) ? END_Y : -END_Y;

//.
Box::Box(const GLfloat END_Y,

const GLfloat POS_X,
const GLfloat NEG_X,
const GLfloat POS_Z,

const GLfloat NEG_Z)

{
GLint platel =BOTTOM_PLATE,

plate2 =TOP_PLATE;

if(END_Y < 0) {

platel =TOP_PLATE;
plate2 =BOTTOM_PLATE;

for(GLint point=0; point<FOUR_POINTS; point++){

volume[platel] [point] [Y] =0;
volume[plate2] [point] [Y] =END_Y;

volume[platel][0][X] =NEG_X;
volume[platel][0][Z] =NEG_Z;
volume[platel][l][X] =NEG_X;
volume[platel][l][Z] =POS_Z;
volume[platel][2][X] =POS_X;
volume[platel][2][Z] =POS_Z;
volume[platel][3][X] =POS_X;
volume[platel][3][Z] =NEG_Z;

volume[plate2][0][X] =NEG_X;
volume[plate2][0][Z] =NEG_Z;
volume[plate2][l][X] =NEG_X;
volume[plate2][l][Z] =POS_Z;
volume[plate2][2][X] =POS_X;
volume[plate2][2][Z] =POS_Z;
volume[plate2][3][X] =POS_X;
volume[plate2][3][Z] =NEG_Z;

height =(END_Y > 0) ? END_Y : -END_Y;

//
Box::Box(Box & box)
{

//INITIALIZE
for(GLint plate=0; plate<TWO_PLATES; plate++){

for(GLint point=0; point<FOUR_POINTS; point-H-){

for(GLint axis=0; axis<THREE_D; axis++){

volume[plate] [point] [axis] =box. volumefplate] [point] [axis];
}

height =box.height;

//
Box::~Box()
{

II-
Box& Box::operator=(const Box& box)
{

for(GLint plate=0; plate<TWO_PLATES; plate++){

for(GLint point=0; point<FOUR_POINTS; point-H-){

for(GLint axis=0; axis<THREE_D; axis-H-){

volumefplate] [point] [axis] =box. volumefplate] [point] [axis];
}

}
}

return (*this);

II
void Box::draw()
{

static const GLint
FACES =6,
INDICES [FACES] [FOUR_POINTS] [2] ={

{{ BOTTOM_PLATE, 0 },{ BOTTOM_PLATE, 3 },{ BOTTOM_PLATE, 2 },{ BOTTOM_PLATE, 1 }},
{ { TOP_PLATE, 0 }, { TOP_PLATE, 1 }, { TOP_PLATE, 2 }, { TOPJPLATE, 3 } },
{ { BOTTOM_PLATE, 0 }, { BOTTOM_PLATE, 1 }, { TOP_PLATE, 1 }, { TOP_PLATE, 0 } },
{ { BOTTOM_PLATE, 1 }, { BOTTOMJPLATE, 2 }, { TOP_PLATE, 2 }, { TOP_PLATE, 1 } },
{ { BOTTOM_PLATE, 2 }, { BOTTOM_PLATE, 3 }, { TOPJPLATE, 3 }, { TOP_PLATE, 2 } },
{ { BOTTOM JPLATE, 3 }, { BOTTOM_PLATE, 0 }, { TOPJPLATE, 0 }, { TOP_PLATE, 3 } }

89

GLfloat
normals[FACES][3] ={

{ 0,-1,0 }, { 0,1,0 }, {-1,0,0 }, { 0,0,1 }, { 1,0,0 }, { 0,0,-1 }

for(GLint face =0; face<FACES; face++){

glBegin(GL_POLYGON);
glNormal3fv(normals [face]);

for(GLint point=0; point<FOUR_POINTS; point++){

glVertex3fv(volume[INDICES[face][point][0]][INDICES[face][point][l]]);

}
glEndO;

}

II
void Box ::show()

{
glBegin(GL_QUAD_STRIP);

for(GLint i=0; i<FOUR_POINTS; i++){

glVertex3fv(volume[TOP_PLATE][i]);
glVertex3fv(volume[BOTTOM_PLATE][i]);

}
glVertex3fv(volume[TOP_PLATE][0]);
glVertex3fv(volume[BOTTOM_PLATE][0]);

glEnd();

return;

//
GLfloat Box::getHeight()
{

return height;
}

90

// FILE : Circle.h
// DESCRIPTION: Used for circles of Gimbal Mech.

#ifndef CIRCLE_H_
#define CIRCLE_H_

#include <GL/glut.h>
#include "utility.h"

class Circle{

public ://- P U B LI C

//CONSTRUCTORS
Circle(GLint); //default
Circle(Circle &); //copy

//DESTRUCTOR
-CircleO;

//FUNCTIONS
void draw();
void increment();
void decrement^);

GLfloat getAngleO;
void setAngle(GLfloat);

private :// P RIV A T E

//CONSTs
static const GLfloat DELTA;

//OPERATORS
Circle& operator=(const Circle &);

//VARIABLES
GLfloat radius,

angle;

};

#endif

91

// FILE : Circle.cpp
// DESCRIPTION:

#include "Circle.h"

//*##********#*JNJTJALJ2E STATIC DATA MEMBERS ***********************

const GLfloat Circle::DELTA =5;

//**************END STATIC DATA MEMBER INITIALIZATION ****************

//
Circle: :Circle(GLint axis){

//INITIALIZE
angle =0;

switch(axis){

case 0:radius =6;
break;

case l:radius=8;
break;

case 2:radius =10;
break;

default:break;
}

Circle: :~Circle(){

}

//_
void Circle: :increment(){

angle +=DELTA;
if(angle > 360) angle -=360;

}

//
void Circle::decrement(){

angle -=DELTA;
if(angle < 0) angle +=360;

}

//
GLfloat Circle: :getAngle(){

return angle;
}

92

//
void Circle::setAngle(GLfloat a){

angle =a;

//
void Circle: :draw()

if(angle != OUTJRANGE){

glRotatef(angle, 0, 1, 0);
glutSolidTorus(0.5f, radius, 5 ,20);
//cones
glPushMatrixO;

//upper cone
glTranslatef(0, radius, 0);
glRotatef(-90, 1, 0, 0);
glutSolidCone(0.8, 2, 6, 1);
//lower cone
glTranslatef(0, 0, -2 * radius);
glRotatef(180, 1,0,0);
glutSolidCone(0.8, 2, 6, 1);

glPopMatrixO;
}
return;

93

// FILE : Cursor3d.h
// DESCRIPTION: Used for creating 3D cursor effects for tracking

#ifndef CURSOR3D_H_
#define CURSOR3D_H_

#include <GL/glut.h>
#include "utility.h"

class Cursor3D{

public :// P U B LI C

//CONSTRUCTORS
Cursor3D(); //default
Cursor3D(Cursor3D &); //copy

//DESTRUCTOR
-Cursor3D();

//FUNCTIONS
void setWindowCoord(const GLint WIN_X,

const GLint WIN_Y,
const GLint WIN_Z);

void setWindowCoord(const GLint WIN_X, const GLint WIN_Y);
void setWorldCoord(const GLdouble WORLD_X,

const GLdouble WORLD_Y,
const GLdouble WORLD_Z);

GLdouble getWorldX();
GLdouble getWorldY();
GLdouble getWorldZ();

void draw();

private :// P RI V A T E

//OPERATORS
Cursor3D& operator=(const Cursor3D &);

//FUNCTIONS
void drawCoordSystemO;

//OBJECTS

//VARIABLES
GLdouble

windowCoord[THREE_D],
worldCoord[THREE_D];

};

#endif

94

// FILE : Cursor3D.cpp
// DESCRIPTION:

#include <math.h>
#include "Cursor3D.h"

//
Cursor3D::Cursor3D()
{

//INITIALIZE
for(GLint axis =0; axis <THREE_D; axis++){

worldCoord [axis] =0;
windowCoordf axis] =0;

}

//
Cursor3D::~Cursor3D()
{

}

//.
void Cursor3D::draw(){

drawCoordSystem();
}

//.
void Cursor3D::drawCoordSystem()
{

static const GLfloat LENGTH =0.5f;

//worldCoord[X]worldCoord[Y]worldCoord[Z] lines
glBegin(GL_LINES);

glColor3f(0, 0.5f, 1);
glVertex3d(worldCoord[X]-LENGTH,worldCoord[Y],worldCoord[Z]);
glVertex3d(worldCoord[X]+LENGTH,worldCoord[Y],worldCoord[Z]);
glColor3f(0, 1, 0);
glVertex3d(worldCoord[X],worldCoord[Y]-LENGTH,worldCoord[Z]);
glVertex3d(worldCoord[X],worldCoord[Y]+LENGTH,worldCoord[Z]);
glColor3f(l, 0, 0);
glVertex3d(worldCoord[X],worldCoord[Y],worldCoord[Z]-LENGTH);
g!Vertex3d(worldCoord[X],worldCoord[Y],worldCoord[Z]+LENGTH);

glEnd();

return;

95

//
void Cursor3D::setWindowCoord(const GLint WIN_X,

const GLint WIN_Y,
const GLint WIN_Z)

{
windowCoordfZ] =WIN_Z;

setWindowCoord(WIN_X, WIN_Y);

return;

II-
void Cursor3D::setWindowCoord(const GLint WIN_X, const GLint WIN_Y)

{
GLint viewPort[4];
GLdouble modelViewMatrix[16], projectionMatrix[16];

// read current viewPort, model and project matrix values
glGetIntegerv(GL_VIEWPORT, viewPort);
glGetDoublev(GL_MODELVffiW_MATRIX, modelViewMatrix);
glGetDoublev(GLJPROJECTION_MATRIX, projectionMatrix);

windowCoordfX] =WIN_X;
windowCoord[Y] =viewPort[3] -WIN_Y-1;

// window to world func.
gluUnProject(windowCoordfX], windowCoordfY], windowCoordfZ],

modelViewMatrix, projectionMatrix, viewPort,
& worldCoordfX], & worldCoordfY], & worldCoordfZ]);

return;
}

//.
void Cursor3D::setWorldCoord(const GLdouble WORLD_X,

const GLdouble WORLD_Y,
const GLdouble WORLD_Z)

{
GLint viewPort [4];
GLdouble modelViewMatrix [16], projectionMatrix [16];

// read current viewPort, model and project matrix values
glGetIntegerv(GLJVIEWPORT, viewPort);
glGetDoublev(GL_MODELVIEW_MATRIX, modelViewMatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projectionMatrix);

worldCoord[X] =WORLD_X;
worldCoordfY] =WORLD_Y;
worldCoordfZ] =WORLD_Z;

// world to window func.
gluProject(worldCoordfX], worldCoordfY], worldCoordfZ],

modelViewMatrix, projectionMatrix, viewPort,
& windowCoordfX], & windowCoordfY], & windowCoordfZ]);

return;
}

96

// .
GLdouble Cursor3D::getWorldX()
{

return worldCoord[X];
}

//
GLdouble Cursor3D::getWorldY()
{

return worldCoordfY];
}

//.
GLdouble Cursor3D::getWorldZ()
{

return worldCoord[Z];
}

97

;/**^#***

// FILE : Floor.h
// DESCRIPTION: Simulates floor fow walking
/;***

#ifndef FLOOR_H_
#define FLOOR_H_

#include <GL/glut.h>
#include <Math.h>
#include "utility.h"
#include "ProceduralAnim.h"

class Floor {

public :// P U B LIC

//CONSTRUCTORS
Floor(); //default
Floor(Hoor &); //copy

//DESTRUCTOR
~Floor();

//FUNCTIONS
void draw();
void slide();
void increaseFrameRate();
void decreaseFrameRate();

private :// P RIV A T E

//CONSTs
static const GLfloat

LENGTH, HEIGHT, BAND_WIDTH;

//OPERATORS
Floor& operator=(const Floor &);

//VARIABLES
GLfloat

frameAcc,
frameRate,
maxFrameRate,
minFrameRate,
bandZ;

};

#endif

98

//#####*#*####*#*#*#***
// FILE : Floor.cpp
// DESCRIPTION:

#include "Floor.h"

/y*************jj>fl
T]TIAL]ZE STATIC DATA MEMBERS ***********************

const GLfloat
Floor: :LENGTH =2,
FIoor::HEIGHT =-4.275f,
Hoor::BAND_WIDTH =0.5f;

//**************END STATIC DATA MEMBER INITIALIZATION ****************

//
Floor: :Floor(){

//INITIALIZE
frameRate =0.2f;
bandZ =0;

GLfloat
syncRatio =((2*LENGTH)-BAND_WIDTH) / PI;

frameRate =frameAcc =syncRatio * ProceduralAnim.FRAME_ACC;
maxFrameRate =syncRatio * ProceduralAnim.MAX_FRAME_RATE;
minFrameRate =syncRatio * ProceduralAnim.MIN_FRAME_RATE;

}

//
Floor::~Floor(){

}

//.
void Floor: :draw()
{

static const GLfloat BAND_HEIGHT =0.015f;

glDisable(GL_LIGHTING);

//draw floor
glColor3f(0.8f, 0.8f, 0.8f);
glBegin(GL_POLYGON);

glNormal3f(0,1,0);
glVertex3f(-LENGTH, HEIGHT, -LENGTH);
glVertex3f(-LENGTH, HEIGHT, LENGTH);
glVertex3f(LENGTH, HEIGHT, LENGTH);
glVertex3f(LENGTH, HEIGHT, -LENGTH);

glEnd();

99

//draw band on the floor
glColor3f(1,0,0);
glBegin(GLPOLYGON);

glNormal3f(0, 1,0);
glVertex3f(-LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-BAND_WIDTH-bandZ);
g!Vertex3f(-LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-bandZ);
glVertex3f(LENGTH, HEIGHT+BANDJHEIGHT, LENGTH-bandZ);
glVertex3f(LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-BAND_WIDTH-bandZ);

glEnd();

glEnable(GL_LIGHTING);
return;

II
void Floor ::slide()

{
bandZ += frameRate; //update animation const

if(bandZ > (2*LENGTH)-BAND_WIDTH) bandZ =0;
}

II
void Floor: :increaseFrameRate()
{

frameRate +=frameAcc;

if(frameRate >maxFrameRate) frameRate =maxFrameRate;

return;

II
void Floor::decreaseFrameRate()
{

frameRate -=frameAcc;

if(frameRate <minFrameRate) frameRate =minFrameRate;

return;

100

//**#**************************

// FILE : GimbalSystem.h
// DESCRIPTION: Interaction tool for Euler inputs
//***

#ifndef GIMBALS YSTEM_H_
#define GIMBALSYSTEM_H_

#include <GL/glut.h>
#include "Utility.h"
#include "Circle.h"

class GimbalSystem{

public :// P U B LIC

//CONSTRUCTORS
GimbalSystemO; //default
GimbalSystem(GimbalSystem &); //copy

//DESTRUCTOR
-GimbalSystemO;

//FUNCTIONS
void draw();
void drawMouseDetectorsO;
void increment AXIS);
void decrement(AXIS);

void setAngle(GLfloat * const);

void getAngle(GLfloat * const);

private :// P RIV A T E

//OPERATORS
GimbalSystem& operator=(const GimbalSystem &);

//OBJECTS
Circle *x_axis,

*y_axis,
*z_axis;

};

#endif

101

// FILE : GimbalSystem.cpp
// DESCRIPTION:

#include "GimbalSystem.h"

//
GimbalSystem: :GimbalSystem() {

// INITIALIZE
x_axis =new Circle(X);
y_axis =new Circle(Y);
z_axis =new Circle(Z);

//
GimbalSystem::~GimbaISystem(){

delete x_axis;
delete y_axis;
delete z_axis;

//
void GimbalSystem: :increment(AXIS axis){

switch(axis){
case X :x_axis->increment();

break;
case Y :y_axis->increment();

break;
case Z :z_axis->increment();

break;
}

}

//
void GimbalSystem::decrement(AXIS axis){

switch (axis) {
case X :x_axis->decrement();

break;
case Y :y_axis->decrement();

break;
case Z :z_axis->decrement();

break;
}

}

//.
void GimbalSystem: :getAngle(GLfloat * const eulerAngle)
{

eulerAngle[X] =x_axis ->getAngle();
eulerAnglefY] =y_axis ->getAngle();
eulerAngle[Z] =z_axis ->getAngle();
return;

}

102

//
void Gimba]System::setAngle(GLfloat * const eulerAngle)
{

x_axis ->setAngle(eulerAngle[X]);
y_axis ->setAngle(eulerAnglefY]);
z_axis ->setAngle(eulerAngle[Z]);

//.
void GimbalSystem::draw()

{
//NOSE (openGL....z-axis)
glColor3f(0, 0, 1);
glRotatef(90, 1,0,0);
glRotatef(90, 0, 1, 0);
z_axis->draw();

//AZIMUTH (openGL....y-axis)
glColor3f(0, 1,0);
glRotatef(-90, 0, 1, 0);
glRotatef(-90, 1,0,0);
y_axis->draw();

//ELEVATION (openGL....x-axis)
glColor3f(1,0,0);
glRotatef(90, 1,0,0);
glRotatef(-90, 0, 0, 1);
x_axis->draw();

//
void GimbalSystem: :drawMouseDetectors()
{

gllnitNamesO;
glPushName(O);

//NOSE (openGL....z-axis)
glLoadName(Z);
glRotatef(90, 1, 0, 0);
glRotatef(90, 0, 1, 0);
z_axis->draw();

//AZIMUTH (openGL....y-axis)
glLoadName(Y);
glRotatef(-90, 0, 1, 0);
glRotatef(-90, 1,0,0);
y_axis->draw();

//ELEVATION (openGL....x-axis)
glLoadName(X);
glRotatef(90, 1, 0, 0);
glRotatef(-90, 0, 0, 1);
x_axis->draw();

return;
}

103

// FILE : GlutBaseClass.h
// DESCRIPTION: Covers glut functions and is used for windowing tasks

#ifndef GLUTBASECLASS_H_
#define GLUTBASECLASS_H_

#include <GL/glut.h>
#include <iostream.h>
#include "utility, h"
finclude "Human.h"
#include "Floor.h"
#include "ProceduralAnim.h"
#include "UserControl.h"
#include "KeyFrameAnim.h"
#include "SensorSystem.h"

// ENUMS
enum VIEW_TYPE { WALK, PAN, STUDY }; // view mode types

enumPOSTURE_CONTROL_TYPE { USER_CONTROL, WALKING, KEY_FRAME, SENSOR };

// CLASS DEFINITION
class GlutBaseClass {

public ://- P U B LI C

//CONSTRUCTORS
GlutBaseClassO; //default
GlutBaseClass(GlutBaseClass &); //copy
GlutBaseClass(GLint arge, char **argv); //others

private ://- P RIV A T E

//CONSTs
static const short VIEWPOINT_Z;
static const GLint WIN_POS_X,

WINJPOS_Y;

//OPERATORS
GlutBaseClass& operator=(const GlutBaseClass &);

//FUNCTIONS
//Event handling functions

static void display(); // set view and calls draw functions
static void keyboard(unsigned char key, GLint x, GLint y); //handle keyboard

static void activeMouseMotion(GLint x, GLint y); //handle mouse motion

static void visibility(GLint status); // set idle function for window visibility
static void menuStatus(GLint status, GLint x, GLint y); //set idle function for

static void reshape(GLint w, GLint h); // change window settings for reshape
static void animate(); // makes animation, called by idle func

104

// Menu Functions
static void mainMenu(GLint value); // handle sub menus
static void viewSwitchMenu(GLint value); // handle view (STUDY, WALK, PAN), RESTORE
static void modelSwitchMenu(GLint value); // handle drawing (realistic, wireframe, stick)
static void UserControlMenu(GLint value); // handle motion control
static void ProceduralAnimMenu(GLint value);
static void KeyFrameAnimMenu(GLint value);

// viewing functions
static void setView(GLint x, GLint y);

// Initialization Functions
void setDisplayModeO;
void positionAndSizeWindowsO;
void createDrawingData();
void openGlInit();
void setUpMenusO;
void registerCallBacksO;

// change view coord.(camera coord.)

//sets display mode
// sets initial coord, and size for window
// for Display List creation
// initialize settings of world (light, drawing,...)

//OBJECTS
static Human
static Floor
static ProceduralAnim
static UserControl
static KeyFrameAnim
static SensorSystem

humanObj; // objects that is controled, manupulated and drawn
floor;
procedure;
userControl;
keyFrame;
sensorSystem;

#endif

// camera coord.
// camera orientation

//VARIABLES
static GLfloat

viewPointX, viewPointY, viewPointZ,
rotationX, rotationY;

static GLint
topMenu, menu View, menuModel, menuMotion, // Menu identifiers
menuUserControl, menuProceduralAnim, menuKeyFrameAnim,
winSizeX, winSizeY, // Window dimensions
oldMouseX, oldMouseY; // holds old mouse coord, before motion

static VffiWJTYPE
viewPointMode; // view mode

};

static POSTURE_CONTROL_TYPE
postureControlMode;

105

// FILE : GlutBaseClass.cpp
// DESCRIPTION: window specific functions

#include "GlutBaseClass.h"

^*************jjsjpj^Lj2E STATIC DATA MEMBERS ***********************

Human GlutBaseClass::humanObj;
Floor GlutBaseClass::floor;
ProceduralAnim GlutBaseClass::procedure(&humanObj);
UserControl GlutBaseClass::userControl(&humanObj);
KeyFrameAnim GlutBaseClass::keyFrame(&humanObj);
SensorSystem GlutBaseClass::sensorSystem(&humanObj);

const short GlutBaseClass::VIEWPOINT_Z =13; // initial view coord, for Z

const GLint GlutBaseClass::WIN_POS_X =50,
GlutBaseClass::WIN_POS_Y =50;

GLint GlutBaseClass::winSizeX(600),
GlutBaseClass::winSizeY(600),
GlutBaseClass: :topMenu,
GlutBaseClass: rmenu View,
GlutBaseClass::menuModel,
GlutBaseClass::menuMotion,
GlutBaseClass::menuUserControl,
GlutBaseClass::menuProceduralAnim,
GlutBaseClass::menuKeyFrameAnim,
GlutBaseClass::oldMouseX,
GlutBaseClass::oldMouseY;

GLfloatGlutBaseClass::viewPointZ(VIEWPOINT_Z),
GlutBaseClass::viewPointY(0),
GlutBaseClass:: viewPointX(O),
GlutBaseClass::rotationX(0),
GlutBaseClass::rotationY(0);

VIEW_TYPEGlutBaseClass::viewPointMode(STUDY);

POSTURE_CONTROL_TYPE GlutBaseClass: :postureControlMode(USER_CONTROL);

//**************END STATIC DATA MEMBER INITIALIZATION ****************

//.
GlutBaseClass::GlutBaseClass(GLint arge, char **argv)

{
glutlnit(&argc, argv); // Initialize the GLUT library and negotiate

// a session with the window system.
setDisplayModeO; // Set up INITIAL display mode

positionAndSizeWindows(); // Set up the INITIAL windows

registerCallBacks(); // Register INITIAL event handling functions

106

setUpMenusO; // Set up INITIAL Menus

openGlInit(); // Complete OpenGL rendering initialization

glutMainLoopO; // Enter the GLUT event processing loop.

}

//.
voidGlutBaseClass::setDisplayMode()
{

// Set initial display mode for double buffering and RGBA color
glutInitDisplayMode(GLUT_DOUBLE I GLUT.RGB);

}

//.
void GlutBaseClass: :position AndSizeWindows()
{

// Specify window placement
// Default placement is left to the window system
glutInitWindowPosition(WIN_POS_X,WIN_POS_Y);

// Specity window placement
// Default window size is 300 x 300
glutInitWindowSize(winSizeX, winSizeY);

// Create a window entitled "Planets" and make it the current window
glutCreateWindow("Body Motions");

//.
void GlutBaseClass: :openGlInit()
{

//Polygon drawing
glShadeModel (GL.SMOOTH); // Explicitly set shade model to default
glCullFace(GLJBACK); // discard back faces
glEnable(GLCULLFACE);

//Depth test
glClearDepth(l.Of); // Specify value to clear the depth buffer
glDepthFunc(GL_LEQUAL); // Specify value used for depth compares
glEnable(GL_DEPTH_TEST); // Enable Depth tests

//Material
const GLfloat AMBIENT[3] ={ 0.6f, 0.430792f, 0.379119f},

SPECULAR[3]={ 0, 0,0.5f };

glMaterialfv(GL_FRONT, GL_AMBIENT, AMBIENT);
glMaterialfv(GL_FRONT, GL.SPECULAR, SPECULAR);
glMaterialf(GL_FRONT, GL_SHININESS) 5);

glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL.DIFFUSE);

107

//Lights
// LIGHT 0

const GLfloat POSITION_0[4]={ 0,0,10,0};

glLightfv(GL_LIGHTO, GL_POSITION, POSITION_0);
glLightfv(GL_LIGHT0, GL_SPECULAR, SPECULAR);
glEnable(GLJLIGHTO);

glEnable(GL_LIGHTING);

createDrawingData();

//.
void GlutBaseClass: :createDrawingData()

{
// Set Up Display Lists

}

//.
void GlutBaseClass: :registerCallBacks()
{

glutDisplayFunc(display);

glutKeyboardFunc(keyboard);

glutSpecialFunc(specialKeys);

glutMouseFunc(mouseButton);

glutMotionFunc(activeMouseMotion);

glutMenuStatusFunc(menuStatus);

glutReshapeFunc(reshape);

glutVisibilityFunc(visibility);

glutldleFunc(animate);

// callback for window redisplay

// callback for ascii character input

// callback for special keystrokes

// callback for mouse button events

// callback for mouse motion with the
// buttons depressed.

// callback for menu exposures

// callback for window size changes

// callback for visibility changes

// idle callback

//
void GlutBaseClass::setUpMenus()
{

// Create viewPoint submenu
menu View = glutCreateMenu(viewSwitchMenu);

// Specify menu items and their GLinteger indentifiers
glutAddMenuEntryC'Pan", 1);
glutAddMenuEntryC'Walk", 2);
glutAddMenuEntryfStudy", 3);
glutAddMenuEntryC'Restore view", 4);

108

// Create Model submenu
menuModel = glutCreateMenu(modelSwitchMenu);

glutAddMenuEntryC'Stick", 1);
glutAddMenuEntryC'Skin", 2);
glutAddMenuEntryC'Wire Frame", 3);

// Create motion submenu
menuUserControl = glutCreateMenu(UserControlMenu);

glutAddMenuEnrryC'Forward Kinematics", 1);
glutAddMenuEntryC'Inverse Kinematic", 2);
glutAddMenuEntryC'Restore posture", 3);

menuProceduralAnim = glutCreateMenu(ProceduralAnimMenu);
glutAddMenuEntry("Walking(INV. KIN.)", 1);
glutAddMenuEntry("Walking(FWD. KIN.)", 2);

menuKeyFrameAnim = glutCreateMenu(KeyFrameAnimMenu);
glutAddMenuEntry("(a)dd", 1);
glutAddMenuEntry("(i)nsert", 2);
glutAddMenuEntry("(d)elete", 3);
glutAddMenuEntry("(f)irst", 4);
glutAddMenuEntry("(l)ast", 5);
glutAddMenuEntry("(n)ext", 6);
glutAddMenuEntry("(p)revious", 7);
glutAddMenuEntry("(r)un", 8);
glutAddMenuEntry("(s)top", 9);

menuMotion = glutCreateMenu(mainMenu);
glutAddMenuEntryC'InertialSensor", 1);
glutAddSubMenu("User Control", menuUserControl);
glutAddSubMenu("ProceduralAnim", menuProceduralAnim);
glutAddSubMenu("KeyFrameAnim", menuKeyFrameAnim);

// Create main menu
topMenu = glutCreateMenu(mainMenu);

glutAddSubMenu("View Mode", menu View); // Attach view Menu
glutAddSubMenu("Model Mode", menuModel); // Attach model Menu
glutAddSubMenu("Posture Control", menuMotion); // Attach motion Menu

glutAttachMenu(GLUT_RIGHT_BUTTON); // Attach menu to right mouse button
}

//_
void GlutBaseClass::mainMenu(GLint value)
{

switch (value) {
case(l):postureControlMode = SENSOR;

break;
default:

cout« "Unknown Main Menu Selection!" « endl;
}

}

109

//
void GlutBaseClass::viewSwitchMenu(GLint value)
{

switch (value) {
case(l):

viewPointMode =PAN;
break;

case(2):
viewPointMode =WALK;
break;

case(3):
viewPointMode =STUDY;
break;

case(4):
viewPointX =0;
viewPointY =0;
viewPointZ =VDEWPOINT_Z;
rotationX =0;
rotationY =0;
break;

default:;
//do nothing

}
// Signal GLUT to call display callback
glutPostRedisplayO;

//—-
void GlutBaseClass::modelSwitchMenu(GLint value)
{

switch (value) {
case(l):

humanObj.setModelType(STICK);
break;

case(2):
humanObj.setModelType(SKIN);
break;

case(3):
humanObj.setModelType(WIRE_FRAME);
break;

default:;
//do nothing

}
// Signal GLUT to call display callback
glutPostRedisplayO;

II-
void GlutBaseClass::UserControlMenu(GLint value)
{

if(postureControlMode ==WALKTNG){

humanObj.initializePosture();
}
postureControlMode =USER_CONTROL;

110

switch (value) {
case(l):

userControl.setControlType(QUATERNION_CONTROL);
break;

case(2):
userControl.setControlType(INVERSE_CONTROL);
break;

case(3):
humanObj.initializePostureO;
break;

default:;
//do nothing

}

// Signal GLUT to call display callback
glutPostRedisplayO;

II
void GlutBaseClass::ProceduralAnimMenu(GLint value)

{
humanObj .initializePosture();

userControl.setControlType(QUATERNION_CONTROL);
postureControlMode =WALKING;

switch (value) {
case(l):

procedure.setWalkingMethod(INVERSE);
break;

case(2):
procedure.setWalkingMethod(FORWARD);
break;

default:;
//do nothing

}
// Signal GLUT to call display callback
glutPostRedisplayO;

II.
void GlutBaseClass::KeyFrameAnimMenu(GLint value)
{

if(postureControlMode == USER_CONTROL) {

keyFrame.keyPressed('a' + value);

if(value=8){

userControl.setControlType(QUATERNION_CONTROL);
postureControlMode =KEY_FRAME;

111

*************** lRVPNT HANDLERS ***************************************

void GlutBaseClass::display()

glClear(GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT);
glLoadldentityO; // Reset the modelview matrix

if(postureControlMode == USER_CONTROL) {

userControl.mouseDragAt(oldMouseX, oldMouseY);
}

// Set the view point
gluLookAt(viewPointX, viewPointY, viewPointZ,

viewPointX, viewPointY, viewPointZ-VIEWPOINT_Z,
0.0,1.0, 0.0);

glRotatef(rotationX, 1,0,0);
glRotatef(rotationY, 0, 1, 0);

floor.draw(); //draw the floor

humanObj.drawO; //draw human obj

glutSwapBuffersO; // Hush all drawing commands and swapbuffers

II-
void GlutBaseClass::reshape(GLint w, GLint h)
{

winSizeY = (h==0)?l:h;
winSizeX = (w == 0) ? 1 : w;

glViewport(0, 0, winSizeX, winSizeY); // Set viewport to entire client area

glMatrixMode (GL_PROJECTION); // Projection matrix stack

glLoadldentityO; I I Reset the projection marix stack

// Set up a perspective projection matrix
gluPerspective(45.0f, (GLfloat)winSizeX/(GLfloat)winSizeY, l.Of, 50.0f);

}
glMatrixMode (GL_MODELVIEW); // Modelview matrix stack

II
void GlutBaseClass::keyboard(unsigned char key, GLint x, GLint y)

{
if(postureControlMode == USER_CONTROL) {

keyFrame.keyPressed(key);

112

if(key=='r'){
userControl.setControlType(QUATERNION_CONTROL);
postureControlMode =KEY_FRAME;

}

glutPostRedisplayO;

//_
void GlutBaseClass::specialKeys(GLint key, GLint x, GLint y)

{
switch(key) {

case(GLUT_KEY_UP):
if(postureControlMode == WALKING){

procedure.increaseFrameRateO;
fioor.increaseFrameRate();

}
break;

case(GLUT_KEY_DOWN):
if(postureControlMode == WALKING){

procedure.decreaseFrameRateO;
floor.decreaseFrameRateO;

}
break;

case(GLUT_KEY_RIGHT):
break;

case(GLUT_KEY_LEFT):
break;

default:
break;

}
}

II
void GlutBaseClass::mouseButton(GLint btn, GLint state, GLint x, GLint y)
{

switch (btn) {
case (0)://Left button

if(postureControlMode == USER_CONTROL) {

(state == GLUT_DOWN) ?
userControl.mouseHitAt(x, y, rotationX, rotationY)

userControl.mouseReleasedAt(x, y);

break;
case (1)://Center button

break;
case (2)://Right button

break;
default://Unknown button

break;
}
oldMouseX =x; oldMouseY=y;
glutPostRedisplayO;

113

//.
void GlutBaseClass::activeMouseMotion(GLint x, GLint y)
{

if (userControl.isTrackingO == FALSE) {
// if there is no selection on body parts,
// this mouse motion is for view transformations
setView(x,y);

}

// capture mouse coord
oldMouseX =x; oldMouseY=y;

glutPostRedisplayO;

//.
void GlutBaseClass::setView(GLint x, GLint y)
{

static const GLfloat VDEW_STEP =0.5f; // step in world coord for WALK & PAN mode

static const GLfloat ROTATION_STEP =20;// step of rotation on Y-axis for STUDY

// oldMouseY chances affect viewPointY or viewPointZ or rotationX
if(y-oldMouseY>0){

(viewPointMode = WALK) ? (viewPointZ+=VIEW_STEP):
((viewPointMode = PAN) ? (viewPointY-=VIEW_STEP):

(rotationX+=ROTATIONSTEP));
}
else if(y-oldMouseY < 0){

(viewPointMode = WALK) ? (viewPointZ-=VTEW_STEP):
((viewPointMode = PAN) ? (viewPointY+=VIEW_STEP):

(rotationX-=ROTATION_STEP));
}

// oldMouseX chances affect viewPointX or rotationY (depending on viewPointMode)
if(x-oldMouseX > 0) {

(viewPointMode = STUDY) ? (rotationY+=ROTATION_STEP):
(viewPointX+=VIEW_STEP);

}
else if(x-oldMouseX < 0){

(viewPointMode = STUDY) ? (rotationY-=ROTATION_STEP):
(viewPointX-=VIEW_STEP);

}
}

//
void GlutBaseClass::visibility(GLint status)
{

if (status = GLUTVISIBLE) {
glutldleFunc(animate); // Turn on animation

}

114

else {
glutldleFunc(NULL); // Turn off animation

}

//.
void GlutBaseClass::menuStatus(GLint status, GLint x, GLint y)
{

if (status == GLUT_MENU_IN_USE) {
glutldleFunc(NULL); // Turn off animation

}
else {

glutldleFunc(animate); // Turn on animation
}

}

//.
void GlutBaseClass::animate()
{

if(postureControlMode == WALKING){

procedure. walk();
floor.slideO;
displayO; //draw again

}
else if(postureControlMode = KEY_FRAME){

if(IkeyFrame.playO){

postureControlMode =USER_CONTROL;
}
displayO; //draw again

}
else if(postureControlMode = SENSOR){

sensorSystem.trackSegmentO;
displayO; //draw again

115

// FILE : H_Matrix.h
// DESCRIPTION: general purpose homogeneous matrix

#ifndef H_MATRIX_H_
#define H MATRIX H

#include <GL/glut.h>
#include "QuaternionR.h"

class H_Matrix{

public :// P U B LI C
//CONSTRUCTORS
H_Matrix(); //default
H_Matrix(H_Matrix &); //copy

//DESTRUCTOR
~H_Matrix();

//FUNCTIONS
virtual void setBoundaries(const GLfloat*) =0;
void setTranslation(const GLfloat, const GLfloat, const GLfloat);
boolean setOrientation(const ROTATION_METHODS ,const GLfloat*);
void getOrientation(const ROTATION_METHODS , GLfloat * const);
boolean rotate(const ROTATION_METHODS, const GLfloat *);
void applyToCurrentMatrixO;

protected ://- P R O T E C T E D
//OPERATORS
H_Matrix& operator=(const H_Matrix &);

//FUNCTIONS
void quatToMatrix();
void vecAngToMatrixO;
void matrixToQuatO;
void quatToVecAngO;
void vecAngToQuat();
boolean rotateByVecAng(const GLfloat * orientation);

virtual void eulerToMatrix() =0;
virtual void matrixToEuler() =0;
virtual void setEuler(const GLfloat *) =0;
virtual void getEuler(GLfloat * const) =0;
virtual boolean rotateByEuler(const GLfloat *) = 0;
virtual boolean isRotationAcceptable(QuaternionR &) =0;

//OBJECTS
QuaternionR quaternion;

//VARIABLES
GLfloat angle, vector_x, vector_y, vector_z,

matrix[16], *boundaries;
ROTATION_METHODS lastUpdateMethod;

};
#endif

116

// FILE : H_Matrix.cpp
// DESCRIPTION:

«include "H_Matrix.h"

//
H_Matrix:: H_Matrix() {

//INITIALIZE
quatToMatrixO;
matrix[3] = 0;
matrix[7] = 0;
matrix[ll] = 0;
matrix[15] = 1 ;

}
lastUpdateMethod =QUATERNION;

//_
H_Matrix: :-H_Matrix() {

}

//.
void H_Matrix::applyToCurrentMatrix()
{

glMultMatrixf(matrix);
}

//.
void H_Matrix::setTranslation(const GLfloat XX,

const GLfloat YY,
const GLfloat ZZ)

{
matrix[12] = XX;
matrix[13] = YY;
matrix[14] = ZZ;

return;
}

//.
boolean H_Matrix::setOrientation(const ROTATION_METHODS method,

const GLfloat* orientation)
{

lastUpdateMethod =method;

boolean rotationAccepted =FALSE;

117

switch(method){

case VECTOR_ANGLE: {

QuaternionR newOrientation(orientation);

rotation Accepted =isRotationAcceptable(newOrientation);

if (rotation Accepted){

angle =orientation[3];
vector_x =orientation[X];
vector_y =orientation[Y];
vector_z =orientation[Z];
vecAngToMatrixO;

}
}break;

case QUATERNION: {

QuaternionR newOrientation;
newOrientation.setValues(orientation);

rotationAccepted =isRotationAcceptable(newOrientation);

if (rotation Accepted){

quaternion= newOrientation;
quatToMatrixO;

}
} break;

case EULER:

rotationAccepted =rotateByEuler(orientation);
break;

case MATRIX: {
matrixToQuatO;
QuaternionR old =quateraion;
matrix[0] =orientation[0]; matrix[4] =orientation[3]; matrix[8] =orientation[6];
matrixfl] =orientation[l]; matrix[5] =orientation[4]; matrix[9] =orientation[7];
matrix[2] =orientation[2]; matrix[6] =orientation[5]; matrixflO] =orientation[8];
matrixToQuatO;
rotationAccepted =isRotationAcceptable(quaternion);
if(Irotati on Accepted){

quaternion =old;
quatToMatrixO;

}
Jbreak;

}

if(rotationAccepted) lastUpdateMethod =method;

return rotationAccepted;

118

//
void H_Matrix::getOrientation(const ROTATION_METHODS method,

GLfloat* const orientation)
{

switch(method){
case VECTORANGLE:

if(lastUpdateMethod !=VECTOR_ANGLE) matrixToQuat();

quatToVecAngO;

orientation [3] =angle;
orientation [X] =vector_x;
orientation [Y] =vector_y;
orientation [Z] =vector_z;
break;

case QUATERNION:

if(lastUpdateMethod ==VECTOR_ANGLE) vecAngToQuat();
else if(lastUpdateMethod !=QUATERNION) matrixToQuat();

quaternion.getValues(orientation);
break;

case EULER:
if(lastUpdateMethod !=EULER) matrixToEuler();

getEuler(orientation);
break;

case MATRIX://never called
break;

}
}

//
boolean H_Matrix::rotate(const ROTATTON_METHODS method,

const GLfloat* orientation)
{

boolean rotationAccepted =FALSE;

switch(method){
case VECTOR_ANGLE:

if(lastUpdateMethod !=VECTOR_ANGLE) matrixToQuat();

rotationAccepted =rotateByVecAng(orientation);

if(rotationAccepted) lastUpdateMethod =QUATERNION;

break;
case QUATERNION://never called

break;
case EULER:

rotationAccepted =rotateByEuler(orientation);

if(rotationAccepted) lastUpdateMethod =EULER;

break;

119

case MATRIX://never called
break;

return rotationAccepted;
}

II-
boolean H_Matrix::rotateByVecAng(const GLfloat * orientation)

{
boolean rotationAccepted =FALSE;

QuaternionR rotation(orientation);

// apply rotation on existing quaternion orientation
QuaternionR newOrientation =rotation * quaternion;

//checks if rotation in boundaries
if(isRotationAcceptable(newOrientation)){

quaternion =newOrientation;

quatToMatrix();

rotationAccepted =TRUE;// if it is, return accepted

}

}

return rotationAccepted;

II-
void H_Matrix::quatToVecAng()
{

GLfloat vectorScalar,
quat[THREE_D+l];

quaternion.getValues(quat);

angle = acos(quat[3]) * 2;
vectorScalar = sin(angle/2);
if(vectorScalar !=0){

vector_x = quat[X] / vectorScalar;
vector_y = quat[Y] / vectorScalar;
vector_z = quat[Z] / vectorScalar;

}
else{

vector_x =vector_y =vector_z =0;
}
angle = angle / DEG_TO_RAD;

120

//
void H_Matrix::vecAngToQuat()

{
quaternion =QuaternionR(vector_x ,vector_y ,vector_z, angle);

quaternion.normalize();

return;
}

//.
void H_Matrix::matrixToQuat()

{
GLfloat quat[THREE_D+l];

quat[3] =(GLfloat) sqrt((matrix[0]+matrix[5]+matrix[10]+l)/4);

GLfloat w4 =4*quat[3];

quat[X] =(matrix[6]-matrix[9]) / w4;

quat[Y] =(matrix[8]-matrix[2]) / w4;

quat[Z] =(matrix[l]-matrix[4]) / w4;

quaternion.setValues(quat);
}

//.
void H_Matrix::quatToMatrix(){

GLfloat quat[THREE_D];

quaternion.getValues(quat);

GLfloat
xx =quat[X]*quat[X], yy =quat[Y]*quat[Y], zz =quat[Z]*quat[Z],
xy =quat[X]*quat[Y], xz =quat[X]*quat[Z], yz =quat[Y]*quat[Z],
wx =quat[X]*quat[3], wy =quat[Y]*quat[3], wz =quat[Z]*quat[3];

matrixfO] = 1 - (2* (yy+zz));
matrix[l] = 2* (xy + wz);
matrix[2] = 2* (xz - wy);

matrix[4] = 2* (xy - wz);
matrix[5] = 1 - (2* (xx+zz));
matrix[6] = 2* (yz + wx);

matrix[8] = 2* (xz + wy);
matrix[9] = 2* (yz - wx);
matrixflO] = 1 - (2* (xx+yy));

return;
}

121

void H_Matrix::vecAngToMatrix()

{
GLfloat

s =(GLfloat) sin(angle*DEG_TO_RAD),
c =(GLfloat) cos(angle*DEG_TO_RAD),
ci =1 - c,
xyci =vector_x*vector_y*ci,
xzci =vector_x*vector_z*ci,
yzci =vector_y*vector_z*ci,
xs =vector_x*s , ys =vector_y*s , zs =vector_z*s;

matrix[0] = (vector_x*vector_x*ci) + c ;
matrixfl] =xyci+zs;
matrix[2] =xzci-ys;

matrix[4] = xyci -zs ;
matrix[5] = (vector_y*vector_y*ci) + c ;
matrix[6] = yzci + xs;

matrix[8] = xzci + ys ;
matrix[9] = yzci - xs ;
matrix[10] = (vector_z*vector_z*ci) + c ;

122

//»let:***

// FILE : H_MatrixlDOF.h
// DESCRIPTION: special functions for 1 DOF
/;*******###***

#ifndef H MATRIX1DOF H
#define __H_MATRIX1D0F_H_

include <GL/glut.h>
#include "H_Matrix.h"

class H_MatrixlDOF: public H_Matrix{

public :// P U B LIC

//CONSTRUCTORS
HMatrix 1D0F(AXIS); //default
H_MatrixlDOF(H_MatrixlDOF&); //copy

//DESTRUCTOR
~H_MatrixlDOF();

//FUNCTIONS
void setBoundaries(const GLfloat*);
boolean rotateByEuler(const GLfloat *);
void setEuler(const GLfloat *);
void getEuler(GLfloat * const);

private :// P RIV A T E

//OPERATORS
H_MatrixlDOF& operator=(const H_MatrixlDOF &);

//FUNCTIONS
void matrixToEulerO;
void eulerToMatrixO;
void eulerXToMatrix(GLfloat, GLfloat)
void eulerYToMatrix(GLfloat, GLfloat)
void eulerZToMatrix(GLfloat, GLfloat)

boolean isRotationAcceptable(QuaternionR &);
boolean isRotationAcceptable(GLfloat);
boolean isMatrixFit();

//VARIABLES
GLfloat

angle, minAngle, maxAngle;

AXIS axis;
};

#endif

123

// FILE : H_MatrixlDOF.cpp
// DESCRIPTION:

#include "H MatrixlDOF.h"

//.
H_MatrixlDOF::H_MatrixlDOF(AXIS a){

//INITIALIZE
axis =a;
angle =0;

}

//.
H_MatrixlDOF::~H_MatrixlDOF(){

//.
void H_MatrixlDOF::setBoundaries(const GLfloat* boundaries)
{

minAngle =boundaries[2*axis];
maxAngle =boundaries[(2*axis)+l];

}

//
void H_MatrixlDOF::setEuler(const GLfloat * eulerAngle)
{

switch(axis){
case X: angle =eulerAngle[X];

break;
case Yrangle =eulerAngle[Y];

break;
case Z:angle =eulerAngle[Z];

break;
}

eulerToMatrixO;

//.
void H_MatrixlDOF::getEuler(GLfloat * const eulerAngle)
{

eulerAnglefX] =OUT_RANGE;
eulerAnglefY] =OUT_RANGE;
eulerAngle[Z] =OUT_RANGE;

eulerAnglefaxis] =angle;
}

II.
boolean H_MatrixlDOF::rotateByEuler(const GLfloat *eulerAngle)
{

boolean rotationAccepted =FALSE;

124

//checks if rotation in boundaries
if(isRotationAcceptable(eulerAngle[axis])){

angle =eulerAngle[axis];

eulerToMatrixO;

rotationAccepted =TRUE;// if it is, return accepted
}

return rotationAccepted;
}

//
boolean H_MatrixlDOF::isRotationAcceptable(QuaternionR & newOrientation)
{

boolean accepted =FALSE; //default, don't accept rotation

H_MatrixlDOF tmp(axis);

tmp.minAngle =minAngle;
tmp.maxAngle =maxAngle;

tmp.quaternion = newOrientation;

tmp.quatToMatrixO;

tmp.matrixToEulerO;

if(tmp.isRotationAcceptable(tmp.angle) && tmp.isMatrixFit()){

accepted =TRUE;
}

return accepted;
}

//.
boolean H_MatrixlDOF::isRotationAcceptable(GLfloat a)
{

if(a>180)a-=360;

if(a <minAngle II a >maxAngle){

return FALSE;
}

return TRUE;
}

//
boolean H_MatrixlDOF::isMatrixFit()
{

boolean accepted =FALSE; //default, don't accept rotation

125

if(

){

(axis ==X && matrixfO] =1 && matrix[l] =0 &&
matrix[2] ==0 && matrix[4] ==0 && matrix[8] ==0)

II
(axis ==Y && matrixfl] =0 && matrix[4] =0 &&
matrix[5] ==1 && matrix[6] ==0 && matrix[9] ==0)

II
(axis ==Z && matrix[2] ==0 && matrix[6] ==0 &&
matrix[8] ==0 && matrix[9] ==0 && matrixflO] ==1)

accepted =TRUE;
}

return accepted;

}

//.

void H_MatrixlDOF::matrixToEuler()
{

switch(axis){
case Xrangle =(GLfloat) acos(matrix[5]) / DEG_TO_RAD;

if(matrix [6] < 0) angle =360-angle;
break;

case Y:angle =(GLfloat) acos(matrix[0]) / DEG_TO_RAD;
if(matrix[8] < 0) angle =360-angle;
break;

case Z:angle =(GLfloat) acos(matrix[0]) / DEG_TO_RAD;
if(matrixfl] < 0) angle =360-angle;
break;

}
}

II
void H_MatrixlDOF::eulerToMatrix()
{

GLfloat
ca =(GLfloat) cos(angle * DEG_TO_RAD),
sa =(GLfloat) sin(angle * DEG_TO_RAD);

switch(axis){
case X:eulerXToMatrix(ca, sa);

break;
case Y:eulerYToMatrix(ca, sa);

break;
case Z:eulerZToMatrix(ca, sa);

break;

II-
void H_MatrixlDOF::eulerXToMatrix(const GLfloat cosAngle,

const GLfloat sinAngle)
{

matrixfO] = 1
matrixfl] = 0;
matrix[2] =0:

126

}

matrix[4] =0;
matrix [5] = cos Angle;
matrix[6] = sinAngle;

matrix[8] =0;
matrix[9] =-sinAngle;
matrix[10] = cosAngle;

//
void H_MatrixlDOF::eulerYToMatrix(const GLfloat cosAngle,

const GLfloat sinAngle)
{

matrix[0] = cosAngle;
matrix[l] =0;
matrix[2] =-sinAngle;

matrix[4] =0;
matrix[5] = 1;
matrix[6] =0;

matrix[8] = sinAngle;
matrix[9] =0;
matrix[10] = cosAngle;

}

//.
void H_MatrixlDOF::eulerZToMatrix(const GLfloat cosAngle,

const GLfloat sinAngle)
{

matrix[0] = cosAngle;
matrixfl] = sinAngle;
matrix[2] =0;

matrix[4] =-sinAngle;
matrix[5] = cosAngle;
matrix[6] =0;

matrix[8] =0;
matrix[9] =0;
matrix[10] = l;

127

// FILE : H_Matrix3DOF.h
// DESCRIPTION: Special functions for 3 DOF

#ifndef H MATRIX3DOF H
#define H MATRTX3DOF H

#include <GL/glut.h>
#include "H_Matrix.h"

class H_Matrix3DOF: public H_Matrix{

public :// P U B LIC

//CONSTRUCTORS
H_Matrix3DOF(); //default
H_Matrix3DOF(H_Matrix3DOF &); //copy

//DESTRUCTOR
~H_Matrix3DOF();

//FUNCTIONS
void setBoundaries(const GLfloat*);
boolean rotateByEuler(const GLfloat *);
void setEuler(const GLfloat *);
void getEuler(GLfloat * const);

private :// P RIV A T E

//OPERATORS
H_Matrix3DOF& operator=(const H_Matrix3DOF &);

//FUNCTIONS
void matrixToEulerO;
void eulerToMatrix();

boolean isRotationAcceptable(QuaternionR &);
boolean isRotationAcceptable(const GLfloat *);

//VARIABLES
GLfloat

angle[THREE_D],
minAngle[THREE_D], maxAngle[THREE_D];

};

#endif

128

// FILE : H_Matrix3D0F.cpp
// DESCRIPTION:

#include "H_Matrix3DOF.h"

//.
H_Matrix3DOF: :H_Matrix3DOF() {

//INITIALIZE
angle[X] =angle[Y] =angle[Z] =0;

//_
H_Matrix3DOF: :~H_Matrix3DOF() {

}

//.
void H_Matrix3DOF::setBoundaries(const GLfloat* boundaries)
{

for(GLint i=X; i<=Z; i++){

minAnglefi] =boundaries[2*i];
maxAngle[i] =boundaries[(2*i)+l];

//
boolean H_Matrix3DOF::rotateByEuler(const GLfloat *eulerAngle)

{
boolean rotationAccepted =FALSE;

//checks if rotation in boundaries
if(isRotationAcceptable(eulerAngle)){

setEuler(euler Angle);

rotationAccepted =TRUE;// if it is, return accepted
}

return rotationAccepted;
}

//
void H_Matrix3DOF::setEuler(const GLfloat * eulerAngle)
{

for(GLint i=X; i<=Z; i++){

angle[i] =eulerAngle[i];
}

eulerToMatrixO;

129

//.
void H_Matrix3DOF::getEuler(GLfloat * const eulerAngle)
{

for(GLint i=X; i<=Z; i++){

eulerAnglefi] =angle[i];

boolean H_Matrix3DOF::isRotationAcceptable(QuaternionR & newOrientation)
{

boolean accepted =FALSE; //default, don't accept rotation

H_Matrix3DOF tmp;

for(GLint i=X; i<=Z; i++){

tmp.minAngle[i] =minAngle[i];
tmp.maxAngle[i] =maxAngle[i];

}

tmp.quaternion = newOrientation;

tmp.quatToMatrixO;

tmp. matrixToEulerO;

if(tmp.isRotationAcceptable(tmp.angle)){

accepted =TRUE;

return accepted;
}

//.
boolean H_Matrix3DOF::isRotationAcceptable(const GLfloat *eulerAngle)
{

for(GLint i=X; i<=Z; i++){

GLfloat a =eulerAngle[i];
if(a>180)a-=360;

if(a <minAngle[i] II a >maxAngle[i]){

return FALSE;
}

}

return TRUE;
}

130

//
void H_Matrix3DOF::matrixToEuler()
{

angle[Y] =(GLfloat) asin(-matrix[2]);

GLfloat
cy =(GLfloat) cos(angle[Y]),

cz =matrix[0] /cy,
sz =matrix[l] /cy,
sx =matrix[6] /cy,
ex =matrix[10]/cy;

angle[Z] = acos(cz) / DEG_TO_RAD;
if(sz < 0) angle[Z] =360-angle[Z];

anglefX] = acos(cx) / DEG_TO_RAD;
if(sx < 0) anglefX] =360-angle[X];

angle[Y] /=DEG_TO_RAD;
if(angle[Y] < 0) angle[Y] +=360;

II
void H_Matrix3DOF::eulerToMatrix()
{

GLfloat
ex =(GLfloat) cos(angle[X] * DEG_TO_RAD),
cy =(GLfloat) cos(angle[Y] * DEG_TO_RAD),
cz =(GLfloat) cos(anglefZ] * DEG_TO_RAD),
sx =(GLfloat) sin(anglefX] * DEG_TO_RAD),
sy =(GLfloat) sin(angle[Y] * DEG_TO_RAD),
sz =(GLfloat) sin(angle[Z] * DEG_TO_RAD),

cxz =cx*cz, sxz =sx*sz, cszx =cz*sx, csxz =cx*sz;

matrix[0] =cz*cy;
matrix[l] = sz*cy;
matrix[2] =-sy;

matrix[4] = (cszx * sy) - csxz;
matrix[5] = (sxz * sy) + cxz;
matrix [6] = sx*cy;

matrix[8] = (cxz * sy) + sxz;
matrix[9] = (csxz * sy) - cszx;
matrixflO] = cx*cy;

131

//**##**#*******#*****#***********#************************************

// FILE : Human.h
// DESCRIPTION: Composition of Segment objects
;/#:K##;|:* »if:*** ****************

#ifndef HUMAN H
#define HUMAN H

#include <GL/glut.h>
#include <iostream.h>
#include "Segment.h"
#include "JoinLh"

//ENUMs
enum SEGMENTS { ROOT, BODY, NECK, HEAD, //names of human body segments

L_HIP, L_LEG ,L_FOOT,
L_UPPER_ARM, L_FORE_ARM, L_HAND,
R_HIP, R_LEG ,R_FOOT,
R_UPPER_ARM, R_FORE_ARM, RJHAND,

NONE};

enum JOINTS { WAIST, BODY_NECK, NECK_HEAD, //names of human body joints
L_HEP_JOINT, L_KNEE ,L_ANKLE,
L_SHOULDER, L_ELBOW, L_WRIST,
R_HIP_JOINT, R_KNEE ,R_ANKLE,
R_SHOULDER, R_ELBOW, R_WRIST };

//CLASS DEF.
class Human {

public :// P U B LIC

//CONSTRUCTORS
HumanO;
Human(Human &);

//DESTRUCTOR
~Human();

//FUNCTIONS
void draw();
void drawMouseDetectors();

void initializePosture();
void setModelType(MODEL_TYPE);

boolean setPosture(const ROTATION_METHODS, const SEGMENTS, const GLfloat *);
void getPosture(const ROTATION_METHODS, const SEGMENTS, GLfloat * const);
boolean modifyPosture(const ROTATION_METHODS, const SEGMENTS, const GLfloat *);

void getJointCenters(const SEGMENTS ,GLfloat &, GLfloat &, GLfloat &);
void getEarthMatrix(SEGMENTS, GLfloatf 16]);
GLfloat getSegmentLength(SEGMENTS);

132

private ://- P RIV A T E

//OPERATORS
Human& operator=(const Human &);

//FUNCTIONS
void constructHumanModelO;
void construcJointsO;
void constructSegmentShapesO;

void drawRoot(); // draw functions for segments
void drawBodyO;
void drawHead();
void drawLeftArm();
void drawRightArmO;
void drawLeftLegO;
void drawRightLegO;
void transformJoints(SEGMENTS); //calls humanJoint objects for transform of joint points

//OBJECT POINTERS
Segment *segment[NUMBER_OF_SEGMENTS];
Joint *joint[NUMBER_OF_JOINTS];

//VARIABLES
GLint

numberOfPoints; // number of points that are used to draw human
GLfloat

**points, //points to draw human
**normals; //normals of all points

MODELJTYPE modelType;

};

#endif

133

n** *************************

// FILE : Human.cpp
// DESCRIPTION:

#include "Human.h"

//.
Human: :Human()
{

//INITIALIZE
normals =points =NULL;
modelType =STICK;

for(GLint segmentNo=0; segmentNoc NUMBER_OF_SEGMENTS; segmentNo++){

AXISdof=XYZ;
if(segmentNo ==L_LEG II segmentNo ==R_LEG){ dof =X; }
else if(segmentNo =L_FORE_ARM II segmentNo =R_FORE_ARM){ dof =Z; }

segment[segmentNo] =new Segment(segmentNo, dof);
}

for(GLint jointNo=0; jointNo< NUMBER_OF_JOINTS; jointNo++){

joint[jointNo] =NULL;

segment[HEAD] ->setStickShape(Box(1, 0.25f, -0.25f, 0.25f, -0.25f).);

Box hand(-0.7f, 0.08f, -0.08f, 0.2f, -0.2f);
segment[L_HAND]->setStickShape(hand);
segment[R_HAND]->setStickShape(hand);

Box foot(-0.25f, 0.2f, -0.2f, 0.8f, -O.lf);
segment[L_FOOT]->setStickShape(foot);
segment[R_FOOT]->setStickShape(foot);

//.
Human: :~Human()
{

for(int i=0; i<numberOfPoints; i++){

delete [] pointsfi];
delete [] normals [i];

}

delete [] points;
delete [] normals;

for(GLint segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){

delete segment[segmentNo];

134

for(GLint jointNo=0; jointNcK NUMBER_OF_JOINTS; jointNo++){

delete jointf jointNo];
}

}

//
void Human::initializePosture()

{
GLfloat resetOrientation[4] ={0,0,0,1};

for(int segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){

segment[segmentNo] ->setOrientation(QUATERNION, resetOrientation);

}

return;

//.
boolean Human::setPosture(const ROTATION_METHODS method,

const SEGMENTS SEGMENT,
const GLfloat * orientation)

{

return segment[SEGMENT] ->setOrientation(method, orientation);

}

//.
void Human::getPosture(const ROTATION_METHODS method,

const SEGMENTS SEGMENT,
GLfloat * const orientation)

{
segmentfSEGMENT] ->getOrientation(method, orientation);

}

//.
boolean Human::modifyPosture(const ROTATION_METHODS method,

const SEGMENTS segmentNo,
const GLfloat *orientation)

{
return segment[segmentNo] ->rotate(method, orientation);

}

//.
void Human ::drawMouseDetectors()
{

gllnitNamesO;
glPushName(O);

for(GLuint i=0; i<NUMBER_OF_SEGMENTS; i++){
glLoadName(i);
segment[i] ->drawDetectionVolume();

}
return;

}

135

/###*###**##*##*##*##***## DRAWING FUNC ******************************/

//
void Human::draw()
{

//Root
drawRootO;
glPushMatrix();

//Body
drawBodyO;

glPushMatrix();
//Head
drawHeadO;

glPopMatrixO;
glPushMatrix();

//LeftArm
drawLeftArmO;

glPopMatrixO;
glPushMatrix();

//RightArm
drawRightArmO;

glPopMatrixO;
glPopMatrixO;
glPushMatrixO;

//LeftLeg
drawLeftLegO;

glPopMatrixO;
glPushMatrixO;

//RightArm
drawRightLegO;

glPopMatrixO;

return;
}

//.
void Human::drawRoot()
{

glColor3f(0, O.Olf, 0.8f);

//Root
transforrrJoints(ROOT);
segment[ROOT] ->draw(points,normals);
return;

}

//.
void Human ::drawBody(){

//Body
transformJoints(BODY);
segment[BODY]->draw(points,normals);

return;
}

136

//.
void Human::drawHead(){

glColor3f(0.6f, 0.430792f, 0.379119f);

//Neck
transformJoints(NECK);
segment[NECK]->draw(points,normals);

// Head
transformJoints(HEAD);
segment[HEAD]->draw(points,nonnals);

return;
}

void Human::drawLeftArm(){

glColor3f(0, O.Olf, 0.8f);

// Right Upper Arm
transformJoints(L_UPPER_ARM);
segment[L_UPPER_ARM]->draw(points,normals);

// Right Fore Arm
transformJoints(L_FORE_ARM);
segment[L_FORE_ARM]->draw(points,normals);

glColor3f(0.6f, 0.430792f, 0.379119f);

// Right Hand
transformJoints(L_HAND);
segment[L_HAND]->draw(points,normals);
return;

}

//_
void Human::drawRightArm(){

glColor3f(0, O.Olf, 0.8f);
// Right Upper Arm
transformJoints(R_UPPER_ARM);
segment[R_UPPER_ARM]->draw(points,normals);

// Right Fore Arm
transformJoints(R_FORE_ARM);
segment[R_FORE_ARM]->draw(points,normals);

glColor3f(0.6f, 0.430792f, 0.379119f);
// Right Hand
transformJoints(R_HAND);
segment[R_HAND]->draw(points,normals);
return;

137

//_
void Human::drawLeftLeg(){

glColor3f(0, O.Olf, 0.8f);

// Left Hip
transformJoints(L_HIP);
segment[L_HIP]->draw(points,normals);

// Left Leg
transformJoints(L_LEG);
segment[L_LEG]->draw(points,normals);

glColor3f(0.6f, 0.430792f, 0.379119f);

// Left Foot
transformJoints(L_FOOT);
segment[L_FOOT]->draw(points,normals);
return;

II.
void Human::drawRightLeg(){

glColor3f(0, O.Olf, 0.8f);

// Left Hip
transformJoints(R_HIP);
segment[R_HIP]->draw(points,normals);

//Left Leg
transformJoints(R_LEG);
segment[R_LEG]->draw(points,normals);

glColor3f(0.6f, 0.430792f, 0.379119f);

// Left Foot
transformJoints(R_FOOT);
segment[R_FOOT]->draw(points,normals);

return;
}

^*******************gjsJD DRAWING FUNC *************************#*****/

void Human::transformJoints(SEGMENTS segmentName){

if(modelType ==SKIN II modelType ==WIRE_FRAME){

switch(segmentName){

case ROOT:
joint[WAIST]->transformToEnd(points);
joint[R_HEP_JOINT]->transformToEnd(points);

138

case BODY:

case NECK:

case HEAD :

case L UPPER ARM :

case L_FORE_ARM:

case LJHAND:

case R UPPER ARM :

case R_FORE_ARM :

case R HAND:

case LfflP:

case L LEG:

case L FOOT:

case R HIP:

case R_LEG:

joint[L_HIP_JOINT]->transformToEnd(points);
break;

joint[WAIST]->transformToHead(points);
joint[L_SHOULDER]->transformToEnd(points);
joint[R_SHOULDER]->transformToEnd(points);
joint[BODY_NECK]->transformToEnd(points);
break;

joint[BODY_NECK]->transformToHead(points);
joint[NECK_HEAD]->transformToEnd(points);
break;

joint[NECK_HEAD]->transformToHead(points);
break;

joint[L_SHOULDER]->transformToHead(points);
joint[L_ELBOW]->transformToEnd(points);
break;

joint[L_ELBOW]->transformToHead(points);
joint[L_WRIST]->transformToEnd(points);
break;

joint[L_WRIST]->transformToHead(points);
break;

joint[R_SHOULDER]->transformToHead(points);
joint[R_ELBOW]->transformToEnd(points);
break;

joint[R_ELBOW]->transformToHead(points);
joint[R_WRIST]->transformToEnd(points);
break;

joint[R_WRIST]->transformToHead(points);
break;

joint[L_HIP_JOINT]->rransformToHead(points);
joint[L_KNEE]->transformToEnd(points);
break;

joint[L_KNEE]->transformToHead(points);
joint[L_ANKLE]->transformToEnd(points);
break;

joint[L_ANKLE]->transformToHead(points);
break;

joint[R_HIP_JOINT]->transformToHead(points);
joint[R_KNEE]->transformToEnd(points);
break;

joint[R_KNEE]->transformToHead(points);
joint[R_ANKLE]->transformToEnd(points);
break;

139

case R FOOT:

default:// do nothing
break;

joint[R_ANKLE]->transformToHead(points);
break;

}// end of switch()

}//endofif

return;

void Human::constructHumanModel()

{
cout« "Reading points..."« endl;
points =readPoints("points.dat", numberOfPoints);

cout« "Reading normal vectors..."« endl;
normals =readPoints("normals.dat", numberOfPoints);

if(points !=NULL && normals !=NULL){

// construct datas of joint objects
constructTointsO;

modelType =SKIN;

// construct datas of segment objects
constructSegmentShapesO;

}
else{

cout« "Program terminated abnormally." « endl;
exit(O);

cout« endl« "Human body is constructed."« endl;
}

//_
void Human: :constructJoints()
{

cout« "Waiting for JOINTs construction..."« endl;

for(GLint jointNo=0; jointNo< NUMBER_OF_JOINTS; jointNo++){

joint[jointNo] =new Joint(jointNo, points);

if(joint[jointNo]->isConstructed() ==FALSE){

cout« "Joints can't be constructed.Program terminated."« endl;
exit(O);

}
}

140

//
voidHuman::constructSegmentShapes()
{

cout« "Waiting for SEGMENTS construction..."« endl;

for(GLint segmentNo=0; segmentNcx NUMBER_OF_SEGMENTS; segmentNo++){

Joint * jointPoint =NULL;
if(segmentNo!= ROOT) jointPoint =joint[segmentNo -1];
transformJoints((SEGMENTS) segmentNo);
if(segmentfsegmentNo] ->constructShape(points, jointPoint) =FALSE){

cout« "Segments can't be constructed.Program terminated."« endl;
exit(O);

}

II-
void Human::setModelType(MODEL_TYPE type)
{

if(points ==NULL) constructHumanModel();

for(GLint segmentNo=0; segmentNcx NUMBER_OF_SEGMENTS; segmentNo++){

segmentfsegmentNo] ->setModelType(type);
}

modelType =type;

return;

}

//
void Human::getEarthMatrix(SEGMENTS segmentNo, GLfloat h_matrix[16])
{

segmentfsegmentNo] ->getEarthMatrix(h_matrix);
}

.//.
GLfloat Human::getSegmentLength(SEGMENTS segmentNo)
{

return segmentfsegmentNo] ->getLength();
}

//.
void Human::getJointCenters(const SEGMENTS SEGMENT,

GLfloat & jointX, GLfloat &jointY, GLfloat &jointZ)
{

segmentfSEGMENT] ->getJointCenters(jointX, jointY, jointZ);
}

141

//He**

// FILE : InverseKinematics.h
// DESCRIPTION: functions for inv. kinematics of end-effectors

#ifhdef INVERSEKINEMATICS H
#define INVERSEKINEMATICS H

#include <GL/glut.h>
#include "utility.h"
#include "Human.h"

class InverseKinematics{

public :// P U B LIC

//CONSTRUCTORS
InverseKinematics(Human *); //default
InverseKinematics(InverseKinematics &); //copy

//DESTRUCTOR
-In verseKinematics();

//FUNCTIONS
void initialize(SEGMENTS);
void setEarthOrientation(const GLfloat rotX, const GLfloat rotY);
void algebraicSolution(const GLfloat x, const GLfloat y, const GLfloat z);

private ://- P RIV A T E

//OPERATORS
InverseKinematics& operator=(const InverseKinematics &);

//FUNCTIONS
void calculateAllAnglesForArm();
void calculateAllAnglesForLegO;
void calculateEndEffectorH_Matrix(const GLfloat x, const GLfloat y, const GLfloat z);
void calculateSegmentLengthsO;
void eulerToMatrix_YXZ(GLdouble, GLdouble, GLdouble);

//OBJECTS
Human *human;

//VARIABLES
GLdouble

base_l,base_2[2],
secondJointAng[2];

GLfloat
viewRotX, viewRotY,
h[16], dl, d2;

};
#endif

SEGMENTS
baseSegment, secondSegment, endSegment;

142

// FILE : InverseKinematics.cpp
// DESCRIPTION:

#include <math.h>
#include "InverseKinematics.h"

//.
InverseKinematics::InverseKinematics(Human * man)
{

//INITIALIZE
human =man;

}

//
InverseKinematics::~InverseKinematics(){
}

//.
void InverseKinematics::setEarthOrientation(const GLfloat rotX,

const GLfloat rotY)
{

viewRotX =rotX;
viewRotY =rotY;

}

//.
void InverseKinematics::initialize(SEGMENTS end)
{

if(end=L_HAND){

baseSegment =L_UPPER_ARM;
secondSegment =L_FORE_ARM;
endSegment =L_HAND;

}
else if(end =R_HAND){

baseSegment =R_UPPER_ARM;
secondSegment =R_FORE_ARM;
endSegment =R_HAND;

}
else if(end =R_FOOT){

baseSegment =R_HIP;
secondSegment =R_LEG;
endSegment =R_FOOT;

}
else if(end =L_FOOT){

baseSegment =L_HIP;
secondSegment =L_LEG;
endSegment =L_FOOT;

}
calculateSegmentLengths();

143

//.
void InverseKinematics::algebraicSolution(const GLfloat x, const GLfloat y, const GLfloat z)

{
boolean accepted =FALSE;
calculateEndEffectorH_Matrix(x,y,z);

if(endSegment =L_HAND II endSegment ==R_HAND){

calculateAllAnglesForArm();
GLint index=-l;

do{ ++index;
eulerToMatrix_YXZ(base_l, 0, base_2[index]);
accepted =human ->setPosture(MATRIX, baseSegment, h);

if(accepted){
h[Z] =(GLfloat) secondJointAng[index]/DEG_TO_RAD;
accepted =human ->setPosture(EULER, secondSegment, h);

}
}while(laccepted && index <=0);

}
else{

calculateAll AnglesForLegO;
GLint index=-l;

do{ ++index;
h[X] =(GLfloat) base_2[index]/DEG_TO_RAD;

h[Y] =0;
h[Z] =(GLfloat) base_l/DEG_TO_RAD;
accepted =human ->setPosture(EULER, baseSegment, h);

if(accepted){
h[X] =(GLfloat) secondJointAng[index]/DEG_TO_RAD;
accepted =human ->setPosture(EULER, secondSegment, h);

}
}while(laccepted && index <=0);

//_
void InverseKinematics: :calculateSegmentLengths()
{

dl =human ->getSegmentLength(baseSegment);
d2 =human ->getSegmentLength(secondSegment);

}

II.
void InverseKinematics: :calculateEndEffectorH_Matrix(const GLfloat x, const GLfloat y, const GLfloat z)
{

GLfloat baseJc[THREE_D];
human ->getJointCenters(baseSegment, base_jc[X], base_jc[Y], base_jc[Z]);

' h[0]=l;h[4]=0;h[8]=0;h[12]=base_jc[X]-x;
h[l]=0;h[5]=l; h[9]=0;h[13]= baseJc[Y] -y;
h[2]=0;h[6]=0;h[10]=l;h[14]= baseJc[Z] -z;
h[3]=0;h[7]=0;h[ll]=0;h[15]= 1;

144

}

glPushMatrixO;
glLoadldentityO;
glRotatef(-viewRotX, 1, 0, 0);
glRotatef(-viewRotY, 0, 1, 0);
glMultMatrixf(h);
glGetFloatv(GL_MODELVIEW_MATRIX, h);
glPopMatrix();

//.
voidInverseKinematics::calculateAHAnglesForArm()
{

GLdouble
Cl,sl,c2[2],s2[2],c3[2],s3[2];

//Angle 1
base_l=atan2(h[14],h[13]);
cl =cos(base_l);
si =sin(base_l);

//Angle 2
GLfloat

d = (cl*h[13]) + (sl*h[14]),
a = -2*dl*d,
b = 2*h[12]*dl,
c = (d2*d2) - (dl*dl) - (h[12]*h[12]) - (d*d),
e =atan2(b,a),
f =atan2(sqrt(fabs((a*a)+(b*b)-(c*c))), c);

base_2[0] = e + f;
base_2[l] = e-f;

for(GLint i=0; i<2; i++){

c2[i] =cos(base_2[i]);
s2[i] =sin(base_2[i]);

}

//Angle 3
for(i=0; i<2; i++){

s3[i] = ((c2[i]*h[12]) + (s2[i]*cl*h[13]) + (s2[i]*sl*h[14])) / (-d2);
c3[i] = ((-s2[i]*h[12]) + (c2[i]*cl*h[13]) + (c2[i]*sl*h[14]) - dl) / d2;

secondJointAng[i] = atan2(s3[i], c3[i]);

//_
void InverseKinematics: :caIculateAHAnglesForLeg()
{

GLdouble
Cl,sl,c2[2],s2[2],c3[2],s3[2];

//Angle 1
base_l =-l*atan2(h[12], h[13]);
cl =cos(base_l);

145

si =sin(base_l);

//Angle 2
GLfloat

d = (sl*h[12])-(cl*h[13]),
a = 2*dl*d,
b = -2*h[14]*dl,
c = (d2*d2) - (dl*dl) - (h[14]*h[14]) - (d*d),
e =atan2(b,a),
f =atan2(sqrt(fabs((a*a)+(b*b)-(c*c))), c);

base_2[0] = e + f;
base_2[l] = e-f;

for(GLinti=0;i<2;i++){

c2[i] =cos(base_2[i]);
s2[i] =sin(base_2[i]);

//Angle 3
for(i=0;i<2;i++){

s3[i] = ((c2[i]*h[14]) - (s2[i]*cl*h[13]) + (s2[i]*sl*h[12])) / d2;
c3[i] = ((-s2[i]*h[14]) - (c2[i]*cl*h[13]) + (c2[i]*sl*h[12J) + dl) / (-d2);

secondJointAngfi] = atan2(s3[i], c3[i]);

}

//•
void InverseKinematics::eulerToMatrix_YXZ(GLdouble angle_x, GLdouble angle_y, GLdouble angle_z)

{
GLfloat

ex =(GLfloat) cos(angle_x),
cy =(GLfloat) cos(angle_y),
cz =(GLfloat) cos(angle_z),
sx =(GLfloat) sin(angle_x),
sy =(GLfloat) sin(angle_y),
sz =(GLfloat) sin(angle_z),

cyz =cy*cz, syz =sy*sz, cszy =cz*sy, csyz =cy*sz;

h[0] = cyz + (syz*sx);
h[l] = cx*sz;
h[2] =-cszy+(csyz*sx);

h[3] = -csyz + (cszy*sx);
h[4] =cx*cz;
h[5] = syz + (cyz*sx);

h[6] = sy*cx;
h[7] =-sx;
h[8] = cx*cy;

146

// FILE : Joint.h
// DESCRIPTION: Handling joint vertices

#ifndef__JOINT_H_
#define JOINT H
#include <GL/glut.h>
#include <iostream.h>
#include "QuaternionR.h"
#include "utility.h"

const short NUMBER_OF_JOINTS =15; // number of humanJoint objects that are created

class Joint {
public :// P U B LIC

//CONSTRUCTORS
Joint(const GLint, GLfloat **);
Joint(Joint &);

//DESTRUCTOR
~Joint();

//FUNCTIONS
void setRotation(const GLfloat ANGLE, const GLfloat VX,const GLfloat VY.const GLfloat VZ);
void transformToEnd(GLfloat **);// assign pointsAsEnd to associated points
void transformToHead(GLfloat **)jl assign pointsAsHead to associated points
boolean isConstructed();

private ://- P RIV A T E
//CONSTs
static const char JOINT_FILE_NA]vffiS[NUMBER_OFJO]NTS][MAX_FILE_NAME];
static const GLfloat END_TRANSLATIONS[NUMBER_OFJOINTS][THREE_D];

//OPERATORS
Joint& operator=(const Joint &);

//FUNCTIONS
void transformPointsToHeadO;// transform joint points to end, set pointsAsEnd
void transformPointsToEndO;// transform joint points to head, set pointsAsHead

//OBJECT POINTERS
QuaternionR *rotation;

//VARIABLES
GLint

numberOfJointPoints, //number of points that both segments have
*indices; ////index numbers for these joint points

GLfloat
**jointPoints, **pointsAsEnd, **pointsAsHead, // initial and manipulated

//joint points
endTranslation[THREE_D], //translation values
scaleFactor; //scaling factor

};
#endif

147

;/*#**#**

// FILE : Joint.cpp
//DESCRIPTION:
//***

#include <math.h>
#include <string.h>
#include "Joint.h"

//*************rNTT7AT j7p STATIC DATA MEMBERS ***********************

// file names of datas for index of points
const char Joint::JOI>nr_F^E_NAMES[NUMBER_OF_JOINTS][MAX_FILE_NAME] ={

"Waist","BodyNeck","NeckHead",
"LJiipJoint", "L_Knee", "L_Ankle",
"L_Shoulder", "L_Elbow", "L_Wrist",
"R_hipJoint", "R_Knee", "R_Ankle",
"R_Shoulder", "R_Elbow", "R_Wrist"

};
//translation values of points
const GLfloatIoint::EM)_TRANSLATIONS[NUMBER_OF_JOINTS][THREE_D] ={

{ 0, 0.836942f, 0.145047f }//body
{ 0, 1.88292f, -0.145047f },//neck
{ 0, 0.391884f, 0.303044f }//head
{ 0.24161f, -0.349661f, -0.0217056f },//L_HIP
{ 0.1682516f, -1.60171t -0.041123f},
{-0.038406f, -1.88919f, -0.255575f},
{ 0.851806f, 1.64695f, -0.145047f },//L_UPPER_ARM
{ 0.358544f, -1.38687f, -0.2f},
{0.028006f,-1.10184f,0.2f},
{-0.24161f, -0.349661f, -0.0217056f }//R_HIP
{-0.1682516f, -1.60171f, -0.041123f},
{ 0.038406f, -1.88919f, -0.255575f },
{-0.851806f, 1.64695f, -0.145047f },//R_UPPER_ARM
{-0.358544f, -1.38687f, -0.2f},
{ -0.028006f, -1.10184f, 0.2f}

};

//**************END STATIC DATA MEMBER INmALIZATION ****************

//_
Joint::Joint(GLint jointNo, GLfloat ** points)
{

scaleFactor =1;
numberOfJointPoints =0;
jointPoints =NULL;
pointsAsHead =NULL;

pointsAsEnd =NULL;
rotation = new QuaternionR();

// reading indices
char fname[MAX_FILE_NAME];
strcpy(fname, JOINT_FILE_NAMES[jointNo]);
strcat(fname, ".dat");

148

indices =readIndices(fhame,numberOfTointPoints);

if(indices!=NULL){
// INITIALIZE joint points
jointPoints =new GLfloat*[numberOfJointPoints];
pointsAsHead =new GLfloat*[numberOfJointPoints];
pointsAsEnd =new GLfloat*[numberOfJointPoints];

for(GLint i=0; i<numberOfJointPoints ;i++){

jointPointsfi] =new GLfloat[THREE_D];
pointsAsHeadfi] =new GLfloat[THREE_D];
pointsAsEndp] =newGLfloat[THREE_D];

for(GLint j=0; j<THREE_D; j++){

jointPointsfi] [j] =points [indices [i]][j];
}

}

// SET translations
for(i=0; i<THREE_D; i++){

endTranslation[i]=END_TRANSLATIONS[jointNo][i];
}
transformPointsToHeadO;
transformPointsToEndO;

}

//.
Joint: :~Joint()
{

for(int i=0; i<numberOfTointPoints ;i++){

delete [] jointPoints[i];
delete [] pointsAsHead[i];
delete [] pointsAsEnd[i];

}
delete [] jointPoints;
delete [] pointsAsHead;
delete [] pointsAsEnd;
delete [] indices;
delete rotation;

}

//.
void Joint: :transformToEnd(GLfloat ** points)
{

for(GLint i=0; i<numberOfJointPoints ;i++){
for(GLint j=0; j<THREE_D; j++){

points[indices[i]][j]=pointsAsEnd[i]|j];
}

}
}

149

//
void Joint: :transformToHead(GLfloat ** points)
{

for(GLint i=0; i<numberOfJointPoints ;i++){
for(GLint j=0; j<THREE_D; j++) {

points[indices[i]] [j]= pointsAsHead[i] fj];
}

}
}

//
void Joint::setRotation(const GLfloat ANGLE, const GLfloat VX.const GLfloat VY.const GLfloat VZ)

{
♦rotation =QuaternionR(ANGLE, VX, VY, VZ);

//scale factor depends on orientation
scaleFactor =fabs (cos(ANGLE * DEG_TO_RAD));

transformPointsToHeadO;
transformPointsToEndO;

return;
}

//.
void Joint: :transformPointsToEnd()
{

GLfloat tmp[THREE_D+l];

//for all indices
for(GLint i=0; i<numberOfJointPoints ;i++){

//const, temp, point from initial joint points
for(GLint j=0; j<THREE_D; j++){

tmp[j] =jointPoints[i][j];
}
//rotate it forward
QuaternionR tmpQ =rotation ->rotate(QuaternionR(tmp[X],tmp[Y],tmp[Z]));

tmpQ.getValues(tmp);
pointsAsEnd[i][X]= (tmp[X]*scaleFactor) + endTranslation[X];
points AsEnd[i][Y]= (tmp[Y]*scaleFactor) + endTranslation[Y];
pointsAsEnd[i][Z]= (tmp[Z]*scaleFactor) + endTranslationfZ];
}

return;

//.
void Joint: :transformPointsToHead()
{

GLfloat tmp[THREE_D+l];

//for all indices
for(GLint i=0; i<numberOfJointPoints ;i++){

150

}
return;

}

//.

//const, temp, point from initial joint points
for(GLint j=0; j<THREE_D; j++) {

tmp[j] =jointPoints[i][j];
}
// get inverse of quaternion
QuaternionR inverseRotation =- (*rotation);

//rotate point backward
QuaternionR tmpQ=inverseRotation.rotate(QuaternionR(tmp[X],tmp[Y],tmp[Z]));

tmpQ.getValues(tmp);
pointsAsHead[i][X]=(tmp[X]*scaleFactor);
pointsAsHead[i][Y]=(tmp[Y]*scaleFactor);
pointsAsHead[i] [Z]= (tmp[Z]*scaleFactor);

boolean Joint: :isConstructed()
{

boolean status =FALSE;

if (indices !=NULL){

status =TRUE;
}

return status;

151

// FILE : KeyframeAnim.h
// DESCRIPTION: Functions to handle frame list
//***

#ifndef KEYFRAMEANIM_H_
#define KEYFRAMEANIM_H_
#include <GL/glut.h>
#include "utility.h"
include "Posturch"

class KeyFrameAnim{

public :// P U B LIC
//CONSTRUCTORS
KeyFrameAnim(Human *); //default
KeyFrameAnim(KeyFrameAnim &); //copy

//DESTRUCTOR
~KeyFrameAnim();

//FUNCTIONS
void keyPressed(GLint key);
boolean play();

private :// P RIV A T E
//OPERATORS
KeyFrameAnim& operator=(const KeyFrameAnim &);

//FUNCTIONS
void add();
void insert();
void remove();
void next();
void previousO;
void startO;
void stop();
void gotoFirst();
void gotoLast();

void setPosture(Posture *);
void getPosture(Posture *);

boolean switchToNextKey();
void reducelnterpolationO;
void interpolateO;

//OBJECTS
Posture *first, *last, *current,*iterator, *nextIterator;
Human *human;

//VARIABLES
GLint numberOfUnmatch;
GLfloat time, orientation[THREE_D+l];
SEGMENTS unmatchf NUMBER_OF_SEGMENTS];

};
#endif

152

//***

// FILE : KeyFrameAnimxpp
// DESCRIPTION:
//* **

#include "KeyFrameAnim.h"

//-
KeyFrameAnim::KeyFrameAnim(Human * man){

//INITIALIZE
human =man;
iterator =nextIterator =first =last =current =NULL;

time =0;

//.
KeyFrameAnim: :~KeyFrameAnim() {
}

//.
void KeyFrameAnim::keyPressed(GLint key)
{

switch(key){

case 'a' :add();

case 'n' :next();

case 'p' :previous();

case 'd' :remove();

case 'i' :insert();

case 'r' :start0;

case's' :stop();

case 'f :gotoFirst();

case T :gotoLast();;

};

break;

break;

break;

break;

break;

break;

break;

break;

break;

//.
void KeyFrameAnim::setPosture(Posture * p)
{

for(GLint segmentNo=0; segmentNcK NUMBER_OF_SEGMENTS; segmentNo++){

human ->setPosture(QUATERNION, (SEGMENTS)segmentNo,
p ->getQuaternion((SEGMENTS)segmentNo));

153

//.
void KeyFrameAnim::getPosture(Posture * const p)
{

for(GLint segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){

human ->getPosture(QUATERNION, (SEGMENTS)segmentNo,
p ->getQuaternion((SEGMENTS)segmentNo));

//
void KeyFrameAnim::add()
{

if(first =NULL){

else{

current =last =first =new Posture();
getPosture(first);

Posture *tmp =new Posture();
getPosture(tmp);
last ->addNextPosture(tmp);
current =last =tmp;

//
void KeyFrameAnim::insert()
{

if(first =NULL){

}
else{

add();

Posture *tmp =new Posture();
getPosture(tmp);
tmp ->addNextPosture(current ->getNextPosture());
current ->addNextPosture(tmp);
if(last=cunrent){

last =tmp;
}

current =tmp;

//.
void KeyFrameAnim::remove()
{

if(first =NULL){ //do nothing

154

else if(current =first){

if(last == first){

}
else{

}

last =first =NULL;
human ->initializePosture();

first =first ->getNextPosture();
setPosture(first);

}
else{

delete current;
current =first;

Posture* tmp=first;

while(tmp ->getNextPosture() != current){
tmp =tmp ->getNextPosture();

}

tmp ->addNextPosture(current->getNextPosture());
if(last ==current){

last =tmp;
}
delete current;
current =tmp;
setPosture(current);

//.
void KeyFrameAnim::next()
{

if(current !=last){

current =current ->getNextPosture();
setPosture(current);

}
}

//
void KeyFrameAnim::previous()
{

if(current != first){
Posture* tmp=first;

while(tmp ->getNextPosture() != current){
tmp =tmp ->getNextPosture();

}
current =tmp;
setPosture(current);

155

//.
void KeyFrameAnim::start()
{

time =0;

numberOfUnmatch =0;

iterator =first;

nextlterator =first ->getNextPosture();

setPosture(first);

reducelnterpolationO;
}

//.
boolean KeyFrameAnim::pIay()
{

boolean running =TRUE;

if(time <1){

interpolate();
}
else{

time =0;
running =switchToNextKey();

}

}
return running;

//.
boolean KeyFrameAnim::switchToNextKey()
{

boolean running =FALSE;

if(nextlterator != last){

iterator =iterator ->getNextPosture();
nextlterator =iterator ->getNextPosture();

reducelnterpolationO;

interpolateO;

running =TRUE;
}

return running;

156

//.
void KeyFrameAnim: :reduceInterpolation()
{

for(GLint segmentNo=0; segmentNcK NUMBER_OF_SEGMENTS; segmentNo++){

GLfloat
*ql =iterator ->getQuaternion((SEGMENTS)segmentNo),
*q2 =nextIterator ->getQuaternion((SEGMENTS)segmentNo);

if(ql[X]!=q2[X] II ql[Y]!=q2[Y] II ql[Z]!=q2[Z] II ql[3]!=q2[3]){

unmatchf numberOfUnmatch++] =(SEGMENTS)segmentNo;
}

}

//.
void KeyFrameAnim::interpolate()
{

static const GLfloat DELTAJT =0.1f;

for(GLint i=0; i<numberOfUnmatch; i++){

quatInterpolation(iterator ->getQuaternion(unmatch[i]),
nextIterator->getQuatemion(unmatch[i]),
time,
orientation);

human ->setPosture(QUATERNION, unmatch[i], orientation);
}
time +=DELTA_T;

}

II.
void KeyFrameAnim::stop()
{
}

II
void KeyFrameAnim: :gotoFirst()
{

current =first;
setPosture(current);

}

II-
void KeyFrameAnim::gotoLast()
{

current =last;
setPosture(current);

157

// FILE : Posture.h
// DESCRIPTION: Nodes of Frame List

#ifndef POSTURE_H_
#define POSTURE_H_

#include <GL/glut.h>
#include "utility.h"
#include "Human.h"

class Posture{

public :// P U B LIC

//CONSTRUCTORS
Posture(); //default
Posture(Posture &); //copy

//DESTRUCTOR
~Posture();

//FUNCTIONS
void setQuaternion(const SEGMENTS, const GLfloat * const);
GLfloat* getQuaternion(const SEGMENTS);

void addNextPosture(Posture * const);
Posture * getNextPostureO;

private ://- P RIV A T E

//OPERATORS
Posture& operator=(const Posture &);

//FUNCTIONS

//OBJECTS
Posture *next;

//VARIABLES
GLfloat segmentQuaternion[NUMBER_OF_SEGMENTS][THREE_D+l];

#endif

158

// FILE : Posture.cpp
// DESCRIPTION:

#include "Posturch"

//.
Posture: :Posture(){

//INITIALIZE
next =NULL;

}

II-
Posture: :~Posture() {
}

//.
void Posture: :setQuaternion(const SEGMENTS NO, const GLfloat * const QUAT)
{

for(GLint i=0; i<(THREE_D+l); i++){

segmentQuaternionf NO][i] =QUAT[i];
}

}

//.
GLfloat* Posture::getQuaternion(const SEGMENTS NO)
{

return segmentQuaternionf NO];
}

//.
void Posture: :addNextPosture(Posture * const pos)
{

next =pos;
}

//.
Posture * Posture: :getNextPosture()
{

return next;
}

159

//**#*************#****************************#***********************
// FILE : ProceduralAnim.h
// DESCRIPTION: Forward & Inverse Kinematics Walking procedures
//***

#ifhdef PROCEDURALANIM H
#define PROCEDURALANIM H
#include <GL/glut.h>
#include "Human.h"
#include "utility.h"
#include "QuaternionR.h"
enum KINEMATIC_TYPE {INVERSE, FORWARD };

class ProceduralAnim{
public :// P U B LI C

//CONSTRUCTORS
ProceduralAnim(Human *); //default
ProceduralAnim(ProceduralAnim &); //copy

//DESTRUCTOR
-ProceduralAnimO;

//CONSTs
static const GLfloat MAX_FRAME_RATE, MIN_FRAME_RATE, FRAME_ACC;

//FUNCTIONS
void increaseFrameRate();
void decreaseFrameRate();
void setWalkingMethod(KINEMATIC_TYPE);
void walk();

private :// P RIV A T E
//CONSTs
static const Glfloat SUPPORT_PHASE,

TTME_2, TTME_2B, TTME_3, TIME_3B, TTME_4, TIME_5;
//OPERATORS
ProceduralAnim& operator=(const ProceduralAnim &);

//FUNCTIONS
void walk_ik(); //runs walking cycle
void walk_fk();
void step_ik(const SEGMENTS , const SEGMENTS , const GLfloat TIME);
void step_fk(const SEGMENTS , const SEGMENTS .const SEGMENTS , const GLfloat TIME);
void synchronizeArm(const SEGMENTS hip,

const GLfloat FflP_ANGLE, const GLfloat KNEE_ANGLE);
void walkingBodyMotion();
GLfloat hipMotion(const GLfloat);
GLfloat kneeMotion(const GLfloat);
GLfloat ankleMotion(const GLfloat);

//OBJECT POINTERS
Human * human;

//VARIABLES
GLfloat orientationf THREE_D+1], time, frameRate;
KINEMATIC_TYPE walkingMethod;

};
#endif

160

II***

// FILE : ProceduralAnim.cpp
// DESCRIPTION:
ii***

#include "ProceduralAnim.h"

//*************J^YTIALIZE STATIC DATA MEMBERS ***********************

const GLfloat
ProceduralAnim::MAX_FRAME_RATE =0.9f,
ProceduraIAnim::MIN_FRAME_RATE =0.1f,
ProceduralAnim::FRAME_ACC =0.1f,
ProceduralAnim::SUPPORT_PHASE =(GLfloat)PI,
ProceduralAnim: :TIME_2 =(GLfloat)PI / 4,
ProceduralAnim::TIME_3 =(GLfloat)PI,
ProceduralAnim: :TIME_2B =TIME_3 - (SUPPORTJPHASE/2),
ProceduralAnim: :TTME_3B =TIME_3 + (SUPPORT_PHASE/2),
ProceduralAnim: :TIME_4 =7*(GLfloat)PI / 4,
ProceduralAnim: :TIME_5 =2*(GLfloat)PI;

/7**************END STATIC DATA MEMBER DSflTIALIZATION ****************

//.
ProceduralAnim::ProceduralAnim(Human * man){

//INITIALIZE
human =man;
time =0;
walkingMethod =FORWARD;
frameRate =FRAME_ACC;

}

//
ProceduralAnim:: ~ProceduralAnim() {
}

//.
void ProceduralAnim: :setWalkingMethod(KINEMATIC_TYPE method)

{
walkingMethod =method;

}

//.
void ProceduralAnim: :increaseFrameRate()

{
frameRate +=FRAME_ACC;

if(frameRate >MAX_FRAME_RATE) frameRate =MAX_FRAME_RATE;

return;

161

//.
void ProceduralAnim: :decreaseFrameRate()
{

frameRate -=FRAME_ACC;

if(frameRate <MIN_FRAME_RATE) frameRate =MIN_FRAME_RATE;

return;
}

//
void ProceduralAnim:: walk()
{

if(human != NULL){

(walkingMethod ==FORWARD) ? walk_fk(): walk_ik();
}

}

//
void ProceduralAnim: :walk_ik()
{

(time > TIME_5) ? time =frameRate : time+=frameRate;

step_ik(R_fflP, RJLEG, time);

GLfloat ttime =time+TIME_3;
if(ttime > TEVDE_5) ttime-=TIME_5;
step_ik(L_HIP, L_LEG, ttime);

walkingBodyMotionO;

return;

II-
void ProceduralAnim: :step_ik(const SEGMENTS upLeg,

const SEGMENTS lowLeg,
const GLfloat TIME)

{
static const GLfloat MAX_STEP_ANGLE =-20;

GLfloat upLegLength =human -> getSegmentLength(R_HIP),
lowLegLength =human -> getSegmentLength(RJLEG),
legLength =upLegLength + lowLegLength;

// calc. pathAngle
GLfloat pathAngle =MAX_STEP_ANGLE * sin(TIME);

// calc. pathRadius
GLfloat pathRadius =legLength * cos(pathAngle * DEG_TO_RAD);

// Recovery Leg Motion (FORWARD step)
if(TIME < TIME_2 II TIME >TIME_4){

pathRadius *=0.95f;

162

// calc. (y,z) for end-effector
GLfloat y = pathRadius * cos(pathAngle * DEG_TO_RAD),

z = pathRadius * sin(pathAngle * DEG_TO_RAD),
hipAngle, kneeAngle;

// calc. angles
twoLink2D(z, y,

upLegLength, lowLegLength,
hipAngle, kneeAngle);

// motion
orientation [X] =1;
orientation [Y] =0;
orientation [Z] =0;
orientation[3] =hipAngle;
human -> setPosture(VECTOR_ANGLE, upLeg, orientation);
orientation[3] =kneeAngle;
human -> setPosture(VECTOR_ANGLE, lowLeg, orientation);

synchronizeArm(upLeg, hipAngle, kneeAngle);

//.
void ProceduralAnim::walk_fk()
{

(time > TTME_5) ? time =frameRate : time+=frameRate;

step_fk(R_HTP, R_LEG, R_FOOT, time);

GLfloat ttime =time+TTME_3;
if(ttime > TTME_5) ttime-=TIME_5;
step_fk(L_HIP, L_LEG, L_FOOT, ttime);

walkingBodyMotion();

//.
void ProceduralAnim::step_fk(const SEGMENTS upLeg, const SEGMENTS lowLeg,

const SEGMENTS foot, const GLfloat TIME)
{

GLfloat hipAngle =hipMotion(TIME);
orientation [X] =-1;
orientation [Y] =0;
orientation[Z] =0;
orientation[3] =hipAngle;
human -> setPosture(VECTOR_ANGLE, upLeg, orientation);

GLfloat kneeAngle =kneeMotion(TTME);
orientation [3] =kneeAngle;
human -> setPosture(VECTOR_ANGLE, lowLeg, orientation);

GLfloat footAngle =ankleMotion(TIME);
orientation[3] =footAngle;
human -> setPosture(VECTOR_ANGLE, foot, orientation);
synchronizeArm(upLeg, -hipAngle, -kneeAngle);

163

//.
GLfloat Procedural Anim::hipMotion(const GLfloat TIME)
{

static const Glfloat HALFJPI =(GLfloat) PI/2;

GLfloat result;

if(TIME<=TIME_2){

GLfloat t =linearInterpolate(HALF_PI, TIME_2, TIME);
result = 45 * sin(t);

}
else if(TIME >TIME_2 && TIME <=TIME_3){

GLfloat t =linearInterpolate(HALF_PI, TIME_3 -TIME_2 , TIME -TIME_2);
result = 45 * sin(t +HALF_PI);

}
else if(TIME >TIME_3 && TIME <=TIME_4){

GLfloat t =linearInterpolate(HALF_PI, TME_4 -TIME_3 , TIME -TIME_3);
result = -35 * sin(t);

}
else{

GLfloat t =linearInterpolate(HALF_PI, TIME_5 - TIME_4, TIME - TIME_4);
result = -35 * sin(t +HALF_PI);

}

return result;
}

//.
GLfloat ProceduralAnim::kneeMotion(const GLfloat TIME)
{

static const GLfloat
MAX_ANGLE =-35;

GLfloat result;

if(TIME <=TIME_2B){

GLfloat t=linearInterpolate((GLfloat)PI, TTME_2B, TIME);
result =MAX_ANGLE * sin(t);

}
else if(TIME >=1TME_3B){

GLfloat t =linearInterpolate((GLfloat)PI, TIME_5 - 1TME_3B, TIME - TIME_3B);
result =MAX_ANGLE * sin(t);

}
else{

result =0;
}

return result;

164

.//-
GLfloat ProceduralAnim::ankleMotion(const GLfloat TIME)

{
GLfloat result;

if(TIME<TIME_2B){

GLfloat t =linearInterpolate((GLfloat)PI, TIME_2B, TIME);
result =-20 * sin(t);

}
else if(TIME >= TIME_2B && TIME <= TEME_3){

result =0;
}
else if(TIME > TIME_3 && TIME < UME_3B) {

GLfloat t =linearInterpolate((GLfloat)PI, TIME_3B - TIME_3 , TIME - TIME_3);
result =10* sin(t);

}
else{

GLfloat t =linearInterpolate((GLfloat)PI, TIME_5 - TIME_3B , TIME - TIME_3B);
result =-5 * sin(t);

}

return result;

//.
void ProceduralAnim::synchronizeArm(const SEGMENTS upLeg,

const GLfloat HIP_ANGLE, const GLfloat KNEE_ANGLE)

{
static const GLfloat

HIP_TO_SHOULDER =0.7f,
KNEE_TO_ELBOW =0.3f;

// move arm (no computation, synchronize with leg, by using some constant vals.)
SEGMENTS upArm =R_UPPER_ARM,

lowArm =R_FORE_ARM;

if(upLeg==R_HIP){

upArm =L_UPPER_ARM;
lowArm =L_FORE_ARM;

}

//up arm synchronization
orientation [X] =1;
orientation[Y] =0;
orientation[Z] =0;
orientation[3] =HIP_ANGLE * HIP_TO_SHOULDER;
human -> setPosture(VECTOR_ANGLE, upArm, orientation);

165

if(KNEE_ANGLE<0){
//lower arm synchronization if angle is neg.
orientation[3] =-KNEE_ANGLE * KNEE_TO_ELBOW;
human -> setPosture(VECTOR_ANGLE, lowArm, orientation);

}
else{

//lower arm synchronization if angle is pos.
orientation [3] =0;
human -> setPosture(VECTOR_ANGLE, lowArm, orientation);

}
return;

}

//_
void ProceduralAnim:: walkingBodyMotion()

{
GLfloat pelvicRot =5 *sin(time);
orientation [X] =0;
orientation [Y] =1;
orientation [Z] =0;
orientation [3] =pelvicRot;
human -> setPosture(VECTOR_ANGLE, ROOT, orientation);

GLfloat pelvicTilt =4 *sin(time);
orientation [Y] =0;
orientation [Z] =1;
orientation[3] =pelvicTilt;
human -> setPosture(VECTOR_ANGLE, BODY, orientation);

// whole body translation (h = -0.08 * sin(2 pi f t), here f=l/2*PI
glTranslatef(0, (-0.08f * sin(fabs(time-PI))), 0);

return;

166

// FILE : Quatemion.h
// DESCRIPTION: functions for quaternion algebra

#ifndef _QUATERNIONR_H_
#define _QUATERNIONR_H_
#include <GL/glut.h>
#include <iostream.h>
#include <iomanip.h>
#include "utility.h"
#define PI 3.14159265358979323846

class QuaternionR{

// overloaded operator«
friend ostream &operator«(ostream &,const QuaternionR &);

public :// P U B LIC
//CONSTRUCTORS
QuaternionR (); //default
QuaternionR (const QuaternionR &); //copy
QuaternionR (const GLfloat VX,const GLfloat VY.const GLfloat VZ, const GLfloat ANGLE);
QuaternionR (const GLfloat *);
QuaternionR (const GLfloat QX,const GLfloat QY,const GLfloat QZ);

//DESTRUCTOR
~QuaternionR();

//OPERATORS
// quaternion product
QuaternionR operator*(const QuaternionR &) const;
// Quaternion addition
QuaternionR &operator*=(const QuaternionR &);
// quaternion inverse (conjugate)
QuaternionR operator+(const QuaternionR &) const;
// quaternion assignment
QuaternionR &operator=(const QuaternionR &);
// quaternion product and assignment
QuaternionR operator-();

//FUNCTIONS
void QuaternionR: :setValues(const GLfloat *);
void QuaternionR: :getValues(GLfloat * const);
// rotate a quaternion about a 3D vector (w=0)
QuaternionR rotate(const QuaternionR &);
// dot product
QuaternionR dotProduct(const QuaternionR &);
// quaternion to axis angles
void normalizeO;

private ://- P RIV A T E
//VARIABLES

GLfloat w,x,y,z;
};

#endif

167

//***

// FILE : QuaternionR.cpp
// DESCRIPTION:
//***********************#***

#include <math.h>
#include "QuaternionR.h"

QuaternionR: :QuaternionR()
{

w=l;
x= y= z= 0;

}

//_
QuaternionR: :QuaternionR(const GLfloat *vecAng)

{
*this =QuaternionR(vecAng[X], vecAng[Y],vecAng[Z],vecAng[3]);

}

//.
QuaternionR: :QuaternionR(const GLfloat VX.const GLfloat VY,const GLfloat VZ,

const GLfloat ANGLE)
{

GLfloat sinAngle =(GLfloat) sin(ANGLE*DEG_TO_RAD/2);

x =VX * sinAngle;
y =VY * sinAngle;
z =VZ * sinAngle;

w =(GLfloat) cos(ANGLE*DEG_TO_RAD/2);

normalizeQ;

QuaternionR::QuaternionR(const GLfloat QX,const GLfloat QY,const GLfloat QZ)
{

x=QX;
y=QY;
z =QZ;
w=0;

}

I/. z.—
QuaternionR:: ~QuaternionR()
{
}

//
QuaternionR: :QuaternionR(const QuaternionR &QUAT)
{

w = QUAT.w;
x = QUAT.x;

168

y = QUAT.y;
z = QUAT.z;

}

II.
QuaternionR & QuaternionR::operator=(const QuaternionR &QUAT)
{

w = QUAT.w;
x = QUAT.x;
y = QUAT.y;
z = QUAT.z;

return (*this);
}

//.
QuaternionR QuaternionR: :operator*(const QuaternionR &QUAT) const
{

QuaternionR dest;

dest.w = QUAT.w * w - QUAT.x * x - QUAT.y * y - QUAT.z * z;
dest.x = QUAT.w * x + QUAT.x * w - QUAT.y * z + QUAT.Z * y;
dest.y = QUAT.w * y + QUAT.y * w - QUAT.z * x + QUAT.x * z;
destz = QUAT.w * z + QUAT.z * w - QUAT.x * y + QUAT.y * x;

return(dest);
}

//
QuaternionR & QuaternionR: :operator*=(const QuaternionR &QUAT)
{

*this = *this * QUAT;

return (*this);
}

//.
QuaternionR QuaternionR: :operator+(const QuaternionR &QUAT) const
{

QuaternionR add;

add.w = w + QUAT.w;
add.x = x + QUAT.x;
add.y = y + QUAT.y;
add.z = z + QUAT.z;

return (add);
}

//.
QuaternionR QuaternionR: :operator-()
{

QuaternionR temp;

temp.w = w;
temp.x = -x;

169

temp.y = -y;
temp.z = -z;

return (temp);
}

//.
QuaternionR QuaternionR::rotate(const QuaternionR &QUAT)
{

QuaternionR temp;

temp = *this * (QUAT * (-(*this)));

return (temp);
}

//.
QuaternionR QuaternionR: :dotProduct(const QuaternionR &QUAT)

{
QuaternionR temp;

temp.w = w + QUAT.w;
temp.x = x + QUAT.x;
temp.y = y + QUAT.y;
temp.z = z + QUAT.z;

return (temp);
}
//.
void QuaternionR: :normalize()
{

GLfloat magnitude;

magnitude = sqrt((x * x) + (y * y) + (z * z) + (w * w));

if(magnitude > 1){

x = x / magnitude;
y = y / magnitude;
z = z / magnitude;
w = w / magnitude;

}
return;

}

//
ostream &operator«(ostream &output, const QuaternionR &q)
{

output«'['
« " w_"«q.w
«" x_"«q.x
« " y_"«q.y
« " z_"«q.z

return output;
}

170

//.
void QuaternionR::setValues(const GLfloat *val)
{

x =val[X];
y=val[Y];
z=val[Z];
w =val[3];

}

//.
void QuaternionR::getValues(GLfloat * const val)
{

val[X] =x;
val[Y] =y;
val[Z] =z;
val [3] =w;

}

171

// FILE : Segment.h
// DESCRIPTION: Individual segment functions

#ifndef SEGMENT_H_
#define SEGMENT_H_

#include <GL/glut.h>
#include <iostream.h>
#include "utility.h"
#include "TriangleFaceSet.h"
#include "H_Matrix3DOF.h"
#include "H_MatrixlDOF.h"
#include "Jointh"

//ENUMs
enum MODEL_TYPE{ STICK, SKIN, WIRE_FRAME }; //model types

//CONSTs
const GLshort NUMBER_OF_SEGMENTS =16; // number of humanSegment objects that are created

//CLASS DEF
class Segment{

public ://- P U B LIC

//CONSTRUCTORS
Segment(const GLint SEGMENT.NO, const AXIS DOF);
Segment(Segment &);

//DESTRUCTOR
~Segment();

//FUNCTIONS
boolean constructShape(GLfloat **, Joint *);

void draw(GLfloat **, GLfloat **);
void drawDetectionVolumeO;

void setModelType(MODELJTYPE);
void setStickShape(Box&);

boolean setOrientation(const ROTATION_METHODS .const GLfloat*);
void getOrientation(const ROTATION_METHODS , GLfloat * const);
boolean rotate(const ROTATTON_METHODS, const GLfloat *);

void getJointCenters(GLfloat &, GLfloat &, GLfloat &);
void getEarthMatrix(GLfloat[16]);
GLfloat getLengthO;

172

private ://- P RIV A T E

//CONSTs
// file names of datas for index of points

static const char
SEGMENT_FELE_NAMES [NUMBER_OF_SEGMENTS] [MAX_FILE_NAME];

//translation values of points
static const GLfloat TRANSLATIONS [NUMBER_OF_SEGMENTS][THREE_D];
// constraint of segment orientation

static const GLfloat ROTATION_BOUNDARTES[NUMBER_OF_SEGMENTS][2*THREE_D];

//OPERATORS
Segment& operator=(const Segment &);

//FUNCTIONS
void drawJointBallO;

//OBJECT POINTERS
TriangleFaceSet * shape;
Box * stick;
H_Matrix * localMatrix;
Joint * jointPoints;

//VARIABLES
MODEL_TYPE

modelType;// state var. for drawing
GLint

segmentNo; //
GLfloat

modelViewMatrix[16]; //model view matrix of system when this segment is drawn

#endif

173

// FILE : Segment.cpp
// DESCRIPTION:

#include <math.h>
#include <string.h>
#include "Segment.h"

//*************j]sj^pj^Lj2E STATIC DATA MEMBERS ***********************

// file names of datas for index of points
const char

Segment::SEGMENT_FILE_NAMES[NUMBER_OF_SEGMENTS][MAX_FILE_NAME]={

"Root", "Body", "Neck", "Head",
"L_Hip", "L_Leg" ,"L_Foot",
"LJJpperArm", "L_ForeArm", "L_Hand",
"R_Hip", "R_Leg" ,"R_Foot",
"R_UpperArm", "R_ForeArm", "R_Hand"

};

//position values of points
const GLfloat Segment: :TRANSLATIONS[NUMBER_OF_SEGMENTS][THREE_D] ={

{ 0, 0, 0 },//root
{ 0, 0.836942f, 0.145047f }//body
{ 0, 1.88292f, -0.145047f },//neck
{ 0, 0.391884f, 0.303044f }//head
{ 0.24161f, -0.349661f, -0.0217056f },//L_HIP
{ 0.1682516f, -1.60171f, -0.041123f},
{ -0.038406f, -1.88919f, -0.255575f },
{ 0.851806f, 1.64695f, -0.145047f },//L_UPPER_ARM
{ 0.358544f, -1.38687f, -0.2f },
{ 0.028006f,-1.10184f, 0.2f },
{ -0.24161f, -0.349661f, -0.0217056f }//R_HIP
{-0.1682516f, -1.60171f, -0.041123f },
{ 0.038406f, -1.88919f, -0.255575f },
{-0.851806f, 1.64695f, -0.145047f },//R_UPPER_ARM
{ -0.358544f, -1.38687f, -0.2f},
{-0.028006f, -1.10184f, 0.2f }

};

// constraint of segment orientation
const GLfloat
Segment: :ROTATIONJBOUNDARIES [NUMBER_OF_SEGMENTS] [2*THREE_D] = {

//Y =elevation, z =azimuth, x =nose
//{MinY,MaxY,MinZ,MaxZ,MinX,MaxX }
{0,0,0,0,0,0}, //root
{-40,160,-95,95,-30,30}, //body
{-30,45,-50,50,-30,30}, //neck
{-30,50,-45,45,-30,30}, //head
{-100,50,-30,30,-10,90}, //LJfflP
{0,120,0,0,0,0},
{-30,70,-20,20,-20,20},
{-180,80,-90,90,-30,180}, //L_UPPER_ARM

174

{0,0,0,0,-140,0},
{-30,30,-60,60,-80,80},
{-100,50,-30,30,-90,10}, //RHIP
{0,120,0,0,0,0},
{-30,70,-20,20,-20,20},
{-180,80,-90,90,-180,30},//R_UPPER_ARM
{0,0,0,0,0,140},
{-30,30,-60,60,-80,80}

};

//**************END STATIC DATA MEMBER INITIALIZATION ****************

//. .
Segment::Segment(const GLint SEGMENT_NO, const AXIS DOF)
{

segmentNo =SEGMENT_NO;

modelType =STICK;

shape =NULL;
jointPoints =NULL;

//CREATE H_Matrix
if(DOF<=Z){

localMatrix =new H_MatrixlDOF(DOF);
}
else if(DOF ==XYZ){

localMatrix =new H_Matrix3DOF();
}
localMatrix ->setBoundaries(ROTATION_BOUNDARIES[SEGMENT_NO]);

//SET positions
localMatrix->setTranslation(TRANSLATIONS [segmentNo] [X],

TRANSLATIONS[segmentNo][Y],
TRANSLATIONS[segmentNo][Z]);

//SET
if(segmentNo+1 < NUMBER_OF_SEGMENTS){

stick =new Box(TRANSLATIONS[segmentNo+l][X],
TRANSLATIONS [segmentNo+1] [Y],
TRANSLATIONS [segmentNo+1] [Z]);

}
else{

stick =new Box(0,0,0);
}

.//.
Segment: :~Segment()
{

delete shape;
delete localMatrix;
delete jointPoints;
delete stick;

}

175

//
boolean Segment::constructShape(GLfloat ** points, Joint * joint)
{

// reading indices
char mame[MAX_FILE_NAME];

strcpy(fhame, SEGMENT_FlLE_NAMES[segmentNo]);
strcat(fhame, ".dat");

shape =new TriangleFaceSet(fhame,points);

boolean status =shape ->isConstructed();

if(status =TRUE){

jointPoints =joint;
}

return status;
}

void Segment: :draw(GLfloat ** points, GLfloat ** normals)
{

// make translation and orientation to set posture
localMatrix ->applyToCurrentMatrix();

//draw model
switch(modelType){

case STICK :glEnable(GL_LIGHTING);
drawJointBallO;
glColor3f(0.5f,0.5f,l);
stick ->draw();
break;

case SKIN :glEnable(GL_LIGHTING);
glPolygonMode(GL_FRONT, GL_FTLL);
shape ->drawTriangles(points, normals);
break;

case WIRE_FRAME :glDisable(GL_LIGHTING);
drawJointBallO;
glPolygonMode(GL_FRONT, GLJLINE);
glColor3f(l,l,l);
shape ->drawTriangles(points, normals);
break;

default :
break;

}

//hold MODEL VIEW matrix
glGetFloatv(GL_MODELVJJEW_MATRIX, modelViewMatrix);

return;

176

//
void Segment::drawJointBall()
{

glColor3f(l,0,0);
glPolygonMode(GL_FRONT, GLJROLL);
glutSolidSphere(0.1f,10,10);

}

//.
void Segment: :drawDetectionVolume()
{

//set view matrix of this segment
glLoadMatrixf(modelViewMatrix);
(modelType == STICK) ? stick ->show(): shape ->showBounds();

}

//.
boolean Segment::setOrientation(const ROTATION_METHODS method,

const GLfloat *orientation)

{
boolean rotationAccepted = localMatrix ->setOrientation(method, orientation);

if(jointPoints != NULL) {

GLfloat vecAng[THREE_D+l];
localMatrix ->getOrientation(VECTOR_ANGLE, vecAng);
jointPoints -> setRotation(vecAng[3]/2, vecAng[X], vecAng[Y], vecAngfZ]);

}
return rotationAccepted;

}

//.
void Segment::getQrientation(const ROTAHON_METHODS method,

GLfloat * const orientation)
{

localMatrix ->getOrientation(method, orientation);
}

//.
boolean Segment: :rotate(const ROTATION_METHODS method,

const GLfloat *orientation)
{

boolean rotationAccepted =
localMatrix ->rotate(method, orientation);

//checks if rotation in boundaries
if(rotationAccepted){

if(jointPoints != NULL){

GLfloat vecAng[THREE_D+l];
localMatrix ->getOrientation(VECTOR_ANGLE, vecAng);
jointPoints -> setRotation(vecAng[3]/2, vecAngfX], vecAngfY], vecAngfZ]);

}
}

return rotationAccepted;
}

177

//
void Segment: :setModelType(MODELJTYPE type)
{

modelType =type;
}

//.
void Segment: :setStickShape(Box& box)

{
*stick =box;
return;

}

//
void Segment::getEarthMatrix(GLfloat h_matrix[16])

{
for(GLint i=0; i<16; i++){

h_matrix[i] =mode!ViewMatrix[i];

//_
void Segment: :getJointCenters(GLfloat &jointX, GLfloat «fejointY, GLfloat &jointZ)

{
static const GLint POS =12;

jointX =modelViewMatrix[POS+X];
jointY =modelViewMatrix[POS+Y];
jointZ =modelViewMatrix[POS+Z];

return;

//.
GLfloat Segment::getLength()
{

return stick ->getHeight();
}

178

// FILE: SensorSystem.h
// DESCRIPTION: Combines [DUMA99] thesis program with human project
//
// NOTICE : Quaternion class in [DUMA99] is different than
// QuaternionR class of this study
//***

#ifndef SENSORS YSTEM_H_
#define SENSORSYSTEMH.

#include <GL/glut.h>
#include "utility.h"
#include "Human.h"
#include "Qaef.h"
#include "Quaternion.h"

class SensorSystem{

public :// P U B LIC

//CONSTRUCTORS
SensorSystem(Human * man); //default
SensorSystem(SensorSystem &); //copy

//DESTRUCTOR
~SensorSystem();

//FUNCTIONS
void startO;
void trackSegmentO;

private ://- P RIV A T E

//OPERATORS
SensorSystem& operator=(const SensorSystem &);

//FUNCTIONS

//OBJECTS
Human * human;
Quaternion qRotation;
Qaef*ql,*q2;

//VARIABLES
GLfloat orientation[THREE_D+1];

};

#endif

179

// FILE: SensorSystem.cpp
// DESCRIPTION:

#include "SensorSystem.h"

//
SensorSystem::SensorSystem(Human * man){

//INITIALIZE
human =man;

ql=newQaef (1,400,4);
q2=newQaef (2,400,4);

}

//
SensorSystem:: ~SensorSystem() {
}

//
void SensorSystem: :start()
{

ql ->start();
q2 ->start();

}

//.
void SensorSystem: :trackSegment() {

Quaternion vecAng = (ql ->getResult()).toAxisAngles();

orientation [X] =vecAng.getX();
orientation[Y] =vecAng.getY();
orientation [Z] =vecAng.getZ();
orientation [3] =vecAng.getW();

human -> setPosture(VECTOR_ANGLE, R_UPPER_ARM, orientation);

vecAng = (q2 ->getResult()).toAxisAngles();

orientation [X] =-vecAng.getX();
orientation[Y] =vecAng.getY();
orientationfZ] =-vecAng.getZ();
orientation [3] =vecAng.getW();

human -> setPosture(VECTOR_ANGLE, R_FORE_ARM, orientation);

180

//***

// FILE : TriangleFaceSet.h
// DESCRIPTION: Segment shapes are drawn and handled
//***

#ifndef TRIANGLEFACESET H
#define TRIANGLEFACESET H

#include <GL/glut.h>
#include "Box.h"
#include "utility.h"

class TriangleFaceSet{

public :// P U B LIC

//CONSTRUCTORS
TriangleFaceSet(const char *FHE_NAME, GLfloat ** points);
TriangleFaceSet(TriangleFaceSet &);

//DESTRUCTOR
-TriangleFaceSetO;

//FUNCTIONS
void drawTriangles(GLfloat ** points, GLfloat ** normals);
void showBounds();

boolean isConstructed();

private ://- P RIV A T E

//CONSTs
static const GLfloat PORTION;

//OPERATORS
TriangleFaceSet& operator=(const TriangleFaceSet &);

//FUNCTIONS
void constructIndices(const char *FTLE_NAME);
void constructBounds(GLfloat ** points);

//OBJECT POINTERS
Box *bounds;

//VARIABLES
GLint

numberOflndices, //number of points that draw this shape
*indices; //index numbers for points

};

#endif

181

// EDLE : TriangleFaceSet.cpp
// DESCRIPTION:

#include "TriangleFaceSet.h"

//*************TNTTTAT,T7F, STATIC DATA MEMBERS ***********************

const GLfloat TriangleFaceSet::PORTION =10;

7/**************END STATIC DATA MEMBER INITIALIZATION ****************

//.
TriangleFaceSet::TriangleFaceSet(const char *FELE_NAME, GLfloat ** points)

{
//INITIALIZE
indices =NULL;
bounds =NULL;

constructIndices(FILE_NAME);

if(indices !=NULL){

constructBounds(points);
}

}

TriangleFaceSet::-TriangleFaceSet()
{

delete [] indices;
delete bounds;

}

//
void TriangleFaceSet: :constructIndices(const char *FILE_NAME)
{

numberOflndices =0;

indices =readlndices(FILE_NAME, numberOflndices);

if(indices != NULL){

« " TriangleFaceSet is constructed with "
« (numberOflndices 13)11 each polygon has 3 points
« " polygons from "
« FILE_NAME
« endl;

return;
}

182

//.
void TriangleFaceSet::constructBounds(GLfloat ** points){

const GLfloat MAX =1000;

GLfloat minY =MAX, maxY =-MAX,
volume[TWO_PLATES] [FOUR_POINTS] [THREE_D];

// SET min-max Y values of all points of this segment
for(GLint i =0; i<numberOflndices; i++){

minY =(minY < points [indices [i]][Y]) ? minY : points[indices[i]][Y];
maxY =(maxY > points[indices[i]][Y]) ? maxY : points[indices[i]][Y];

}

// initialize VOLUME parameters
for(GLint plate=0; plate<TWO_PLATES; plate++){

volume[plate][0][X] =MAX;
volume[plate][0][Z] =MAX;
volume[plate][2][X] =-MAX;
volume[plate][2][Z] =-MAX;

}

for(GLintpoint=0; point<FOUR_POINTS; point++) {

volume[BOTTOM_PLATE] [point] [Y] =minY;
volume[TOP_PLATE] [point] [Y] =maxY;

}

// find VOLUME values
for(i =0; i<numberOflndices; i++){

for(GLint plate=0; plate<TWO_PLATES; plate++)
for(GLint xyz=0; xyz<THREE_D; xyz++){

if(xyz!=Y&&
// check only for X & Z and if Y values in range length/PORTTON

(// capture minimum and maximum values of X and Z for minumum Y
(plate=BOTTOM_PLATE && points[indices[i]][Y]
< minY+((maxY-minY)/PORTION))

II // capture minimum and maximum values of X and Z for maximum Y

)
){

(plate=TOP_PLATE && points[indices[i]][Y]
> maxY-((maxY-minY)/PORTION))

volume[plate][0][xyz] // put min values in xyzO
=(volume[plate][0][xyz] < points[indices[i]][xyz]) ?
volume[plate][0][xyz] : points[indices[i]][xyz];

volume[plate][2][xyz] // put max values in xyz2
=(volume[plate][2][xyz] >points[indices[i]][xyz]) ?
volume[plate][2][xyz] : points[indices[i]][xyz];

183

// put values from pointO & point2 into pointl & point3
volume[plate] [1] [X] =volume[plate] [0] [X];
volumefplate] [1] [Z] =volume[plate] [2] [Z];
volume[plate] [3] [X] =volume[plate] [2] [X];
volume[plate] [3] [Z] =volume[plate] [0] [Z];

}// end if
}// end of for

}//end of for

bounds =new Box(volume);

return;
}

void TriangleFaceSet::drawTriangles(GLfloat ** points, GLfloat ** normals){

for(GLint i=0; i<numberOflndices; i++){

if((i % 3) ==0) glBegin(GL_TRIANGLES);

glNormal3fv(normals[indices[i]]);
glVertex3fv(points[indices[i]]);

if(((i+1) % 3) ==0) glEndO;
}

return;

//.
void TriangleFaceSet::showBounds()
{

if(bounds != NULL){

bounds ->show();
}

return;

II-
boolean TriangleFaceSet: :isConstructed()
{

boolean status =FALSE;

if (indices !=NULL){

status =TRUE;
}

return status;

184

// FILE : UserControLh
// DESCRIPTION: Interface between GlutBaseClass and motion control classes

#ifndef USERCONTROL_H_
#define USERCONTROL_H_

#include <GL/glut.h>
#include "utility.h"
#include "Human.h"
#include "Segment.h"
#include "Cursor3D.h"
#include "GimbalSystem.h"
#include "InverseKinematics.h"

//ENUMs
enum CONTROL_TYPE{ INVERSE_CONTROL, EULER_CONTROL, QUATERNION_CONTROL };
enum OBJECT_TYPE{ SEGMENT_SHAPES, EULER_CIRCLES };

class UserControl{

public ://- P U B LIC

//CONSTRUCTORS
UserControl(Human *); //default
UserControl(UserControl &); //copy

//DESTRUCTOR
~UserControl();

//FUNCTIONS
void setControlType(CONTROLJTYPE);

void mouseDragAt(const GLint \VTN_X, const GLint WIN_Y);
void mouseReleasedAt(const GLint WIN_X, const GLint WIN_Y);
void mouseHitAt(const GLint \VTN_X, const GLint WIN_Y,

const GLfloat viewRotX, const GLfloat viewRotY);

boolean isTrackingO;

private :// -P RIV A T E

//OPERATORS
UserControl& operator=(const UserControl &);

//FUNCTIONS
GLuint isAnyObjectSelected(const GLint, const GLint, OBJECTJTYPE);
void trackingEndAt (const GLint WIN_X, const GLint WIN_Y);
void trackingStartAt(const GLint WIN_X, const GLint WIN_Y,

const GLfloat viewRotX, const GLfloat viewRotY);
void markVectorAngle(const GLint WIN_X, const GLint WIN_Y);
void initializeGimbalSystem();
void updateGimbalSystem(const GLint WIN_X, const GLint WIN_Y);

void quaternionMotion(const GLint WIN_X, const GLint WIN_Y);

185

};

#endif

boolean isEndEffector(GLuint);

//OBJECT POINTERS
Human * human;
Cursor3D * selectionMark, * cursor3D;
GimbalSystem gimbal;
InverseKinematics *inverseK;

//VARIABLES
GLint oldWinX, oldWinY;

GLfloat
selectedSegmentJx,
selectedSegmentJy,
selectedSegmentJz,
orientation [THREE_D+1];

SEGMENTS selectedSegment;

AXIS selectedAxis;

CONTROL_TYPE controlType;

186

11***

II FILE : UserControl.cpp
// DESCRIPTION:
11***

#include < math.h >
#include "UserControl.h"

UserControl::UserControl(Human * man)
{

//INITIALIZE
controlType =QUATERNION_CONTROL;
human =man;
selectedSegment =NONE;
selectedAxis =UNDEFAXIS;

selectionMark =new Cursor3D();
cursor3D =new Cursor3D();

inverseK =new InverseKinematics (man);

//.
UserControl: :~UserControl()
{

delete cursor3D;
delete selectionMark;

}

//
void UserControl::mouseHitAt(const GLint WIN_X, const GLint WIN_Y,

const GLfloat viewRotX, const GLfloat viewRotY)
{

switch(controlType){

case INVERSE_CONTROL :
//same with quat

case QUATERNION_CONTROL:
trackingStartAt(\VTN_X, WIN_Y, viewRotX, viewRotY);
break;

case EULER_CONTROL: {

GLuint selection =isAnyObjectSelected(WIN_X, WIN_Y, EULER_CIRCLES);

if(selection ==NO_SELECTION){

selection =isAnyObjectSelected(WIN_X, WINY, SEGMENT_SHAPES);
if(selection !=NO_SELECTION &&

selectedSegment==((SEGMENTS) selection)){

//switch to QUATERNION_CONTROL control
selectedSegment =NONE;
controlType =QUATERNION_CONTROL;

187

else{

}

}
break;

default: break;

oldWinX =WIN_X;
oldWinY =WIN_Y;

selectedAxis =(AXIS) selection;

}

//.
void UserControl::mouseReleasedAt(const GLint WIN_X, const GLint WIN_Y)

{
if(selectedSegment != NONE){

switch(controlType){
case ESTVERSE_CONTROL :
//same with quat
case QUATERNION_CONTROL:

if(WIN_X==oldWinX && WIN_Y==oldWinY){

}
else{

//switch to EULER_CONTROL control
controlType =EULER_CONTROL;
initializeGimbalSystem();

trackingEndAt(WIN_X, WIN_Y);
}
break;

case EULER_CONTROL:
selectedAxis =UNDEFAXIS;
break;

default: break;

}

}//end switch
}//endif

//
void UserControl::mouseDragAt(const GLint WIN_X, const GLint WIN_Y)
{

switch(controlType){

case INVERSE_CONTROL :
//same with quat
case QUATERMONCONTROL:

markVectorAngle(WIN_X, WIN_Y);
break;

case EULER_CONTROL:
updateGimbalSystem(WIN_X, WIN_Y);
//hold mouse position
oldWinX =WIN_X;

188

oldWinY =WIN_Y;
break;

default: break;

//.
voidUserControl::initializeGimbalSystem()

{
human->getPosture(EULER, selectedSegment, orientation);
gimbal.setAngle(orientation);

}

//.
void UserControl::updateGimbalSystem(const GLint WIN_X, const GLint WIN_Y)

{
if(selectedAxis !=UNDEFAXIS) {

if(WIN_Y-oldWinY > 0II WIN_X-oldWinX > 0){

gimbal.increment(selectedAxis);
}
else if(WIN_Y-oldWinY < 0II WIN_X-oldWinX < 0){

gimbal.decrement(selectedAxis);
}
gimbal.getAngle(orientation);
if(! human ->modifyPosture(EULER, selectedSegment, orientation)){

initializeGimbalSystemO;

}
}
//draw GimbalSystem
glTranslatef(-3, 3, -10);
glScalef(0.1f,0.1f,0.1f);
gimbal.drawO;
glLoadldentityO;

//.
void UserControl::trackingStartAt(const GLint WIN_X const GLint WIN_Y,

const GLfloat viewRotX, const GLfloat viewRotY)

{
// check whether mouse is on human obj

GLuint selection =isAnyObjectSelected(WIN_X, WIN_Y, SEGMENT_SHAPES);

if(selection ==NO_SELECTION){

selectedSegment =NONE;
}
else if(controlType ==QUATERNION_CONTROL II isEndEffector(selection)) {

inverseK ->setEarthOrientation(viewRotX, viewRotY);
selectedSegment =(SEGMENTS) selection;

189

if(selectedSegment != NONE){

// gets joint centers of selected segment
human ->getJointCenters(selectedSegment,

selectedSegmentJx,
selectedSegmentJy,
selectedSegmentJz);

cursor3D ->setWorldCoord(0, 0, selectedSegmentJz);
if(controlType ==QUATERNION_CONTROL){

selectionMark ->setWorldCoord(0, 0, selectedSegmentJz);
selectionMark ->setWindowCoord(\VIN_X, WIN_Y);

GLdouble
ex =cos(-viewRotX * DEG_TO_RAD),
sx =sin(-viewRotX * DEG_TO_RAD),
cy =cos(-viewRotY * DEG_TO_RAD),
sy =sin(-viewRotY * DEG_TO_RAD);

// const, rot. vector from study angle
orientation[X] =(GLfloat) (cx*sy);
orientation [Y] =(GLfloat) (-sx);
orientation[Z] =(GLfloat) (cx*cy);

}

//_
boolean UserControl::isEndEffector(GLuint selection)
{

SEGMENTS segment =(SEGMENTS) selection;
boolean result =false;

if(segment ==L_HAND II segment =R_HAND II
segment =L_FOOT II segment =R_FOOT)

{
inverseK ->initialize(segment);
result =true;

return result;
}

I/.
void UserControl::trackingEndAt(const GLint WTN_X, const GLint WIN_Y)
{

if(selectedSegment != NONE){
//convert window coord of mouse to world coord
glLoadldentityO; // Reset the modelview matrix
cursor3D ->setWindowCoord(WIN_X, WIN_Y);

if(controlType ==QUATERNION_CONTROL){

quaternionMotion(WIN_X, WIN_Y);
}

190

else{
inverseK ->algebraicSolution((GLfloat)cursor3D ->getWorldX(),

(GLfloat)cursor3D ->getWorldYO,
selectedSegmentJz);

}
// turn selected option off
selectedSegment =NONE;

//.
void UserControl::quaternionMotion(const GLint WIN_X, const GLint WIN_Y)

{
GLfloat

oldX =(GLfloat)selectionMark ->getWorldX(),
oldY =(GLfloat)selectionMark ->getWorldY(),
newX =(GLfloat)cursor3D ->getWorldX(),
newY =(GLfloat)cursor3D ->getWorldY();

// get angle between selected mouse coord. & joint & current mouse coord
orientation[3]=getAngleFm3Points(selectedSegmentJx,selectedSegmentJy,

oldX, oldY,
newX, newY);

// rotate segment with this rot. ang. & vec.
human ->modifyPosture(VECTOR.ANGLE, selectedSegment, orientation);

//.
void UserControl::markVectorAngle(const GLint WIN_X, const GLint WIN_Y)
{

if (selectedSegment != NONE){ // check if a selection occured.
// If it did, draw markers

cursor3D ->setWindowCoord(WIN_X, WIN_Y);

glDisable(GLJLIGHTING);
glLineWidth(3);
//draw cursors
cursor3D ->draw();

if(controlType ==QUATERNION_CONTROL){
selectionMark ->draw();

//draw triangle (marking rotation angle)
glColor3f(l,l,l);
glBegin(GLJJNELOOP);

glVertex3d(selectionMark ->getWorldX(),
selectionMark ->gefWorldY(),
selectionMark ->getWorldZ());

glVertex3f(selectedSegmentJx,
selectedSegment_jy,
selectedSegmentJz);

glVertex3d(cursor3D ->getWorldX(),
cursor3D ->getWorldY(),
cursor3D ->getWorldZ());

glEnd();

191

else{
//draw triangle (marking rotation angle)
glColor3f(l,U);
glBegin(GL_LINES);

glVertex3f(selectedSegmentJx,
selectedSegmentJy,
selectedSegmentJz);

glVertex3d(cursor3D ->getWorldX(),
cursor3D ->getWorldY(),
cursor3D ->getWorldZ());

glEnd();

}

glLineWidth(l);

glEnable(GL_LIGHTING);

//_
void UserControl::setControlType(CONTROL_TYPE type)
{

controlType =type;
}

II.
boolean UserControl::isTracking()
{

return ((selectedSegment = NONE) ? FALSE : TRUE);

}

II.
GLuint UserControl::isAnyObjectSelected(const GLint mouseX, const GLint mouseY,

OBJECT_TYPE objectType)

{
GLuint selectedObject =NO_SELECTION;

GLfloat maxZ =0;
GLuint selectBuffer[64] ={ 0 };
GLint hits =0, viewPort[4];

glSelectBuffer(64, selectBuffer); //init. select buf.

glGetIntegerv(GL_VIEWPORT, viewPort);

glLoadldentityO; // Reset the modelview matrix
glMatrixMode(GL_PROJECTION); //change matrix mode to project
glPushMatrixO;

glRenderMode(GL_SELECT); //change render mode to SELECT
glLoadldentityO; //clear matrix

//track a view volume for detection
gluPickMatrix(mouseX, viewPort[3]-mouseY, 2, 2, viewPort);
gluPerspective(45,(GLfloat)viewPort[2]/(GLfloat)viewPort[3],l,50);

192

glMatrixMode(GL_MODELVIEW);

//draw shapes as detectors
if (objectType == SEGMENT_SHAPES){

human ->drawMouseDetectors();
}
else{

glLoadldentityO;
glTranslatef(-3, 3, -10);
glScalef(0.1f,0.1f,0.1f);
gimbal.drawMouseDetectorsO;

}

glLoadldentityO; // Reset the modelview matrix
glMatrixMode(GL_PROJECTION);

hits =glRenderMode(GL_RENDER); //if any drawn shape hit to viewing volume
//get number of hit objects

if(hits > 0) { //if there are objects which is hit

GLint hitObj =0;
for(GLint i=0; kbits; i++){ // choose the one which has max-Z

if(selectBuffer[(i*4)+2]<selectBuffer[(hitObj*4)+2]) hitObj =i;

// set selection
selectedObject =selectBuffer[(hitObj*4)+3];

}

glMatrixMode(GL_PROJECnON); //set project
glPopMatrixO;
glMatrixMode(GL_MODELVIEW);// change matrix mode to model

return selectedObject;

193

// FILE : Utility.h
// DESCRIPTION: general purpose functions

#ifhdef UTILITY.H
#define UTILITY_H

#include <GL/glut.h>
#include <iostream.h>
#include <fstream.h>
#include <math.h>

#ifhdefNULL
#define NULL 0
#endif

//ENUMS
enum AXIS{ X, Y, Z, XY, XZ, YZ, XYZ, UNDEFAXIS }; // axis names

enumROTATION_METHODS{ QUATERNION, EULER, VECTOR_ANGLE, MATRIX };

// CONSTANTS

// max file name must be equal or greater than actual file names,
const GLbyte MAX_FILE_NAME = 16;

// symbol for 3
const GLbyte THREE_D =3;

// symbol for 2
const GLbyte TWO_D =2;

// degree to radian
const GLfloat DEG_TO_RAD =0.01745f;

const GLuint NO_SELECTION =-1;

const GLfloat OUTRANGE =361.0f;

// FUNCTIONS

// reads integers from the given file to returned int array
GLint* readlndices(const char *const, GLint &);

// reads floats from the given file to a returned float array
GLfloat** readPoints(const char *const INFILE_NAME, GLint &numberOfPoints);

// returns angle which is between line (xl,yl)-(cx,cy) and
// line (x2,y2)-(cx,cy)
GLfloat getAngleFm3Points(const GLfloat, const GLfloat,

const GLfloat, const GLfloat,
const GLfloat, const GLfloat);

194

void twoLink2D(const GLfloat, const GLfloat,
const GLfloat, const GLfloat,

GLfloat &, GLfloat &);

GLfloat HnearInterpolate(const GLfloat VALUE,
const GLfloat TIME, const GLfloat CURRENTJITME);

void quatInterpolation(const GLfloat * const, const GLfloat * const,
const GLfloat, GLfloat * const);

#endif

195

// FILE : utility.cpp
//DESCRIPTION:

#include "utility.h"

//************* AUX. UTELIY FUNC. that are used in this file ***

// utility function that open an input file.Returns TRUE , if successful
boolean openInputFile(ifstream &, const char *const);

// returns the length between (xl.yl) and (x2,y2)
GLfloat length(const GLfloat, const GLfloat,

const GLfloat, const GLfloat);

// returns the angle by cos theorem for given 3 points
GLfloat cosTheory(const GLfloat, const GLfloat, const GLfloat);

/>#### #*##**### Tj'i'ii TV FUNCTIONS *************************************

//.
boolean openInputFile(ifstream &inputFile, const char *const FILE_NAME){

boolean return Value = TRUE ; // return value of this function

inputFile.open(FILE_NAME, ios::in);

if(!(inputFile)){

cout« "Input File open falsed."
« "Can't open " « FTLE_NAME « endl;

return Value = FALSE;
}
return return Value;

}

//.
GLint* readlndices(const char *const INFILE_NAME, GLint & numberOflndices){

ifstream inFile; // input file
GLint *indices =NULL; // return array

if (openInputFile(inFile, INFILE_NAME) ==TRUE){
// file is opened succesfully
GLint value;
numberOflndices =-1;

// count ints in the file
while(!(inFile.eof())){

inFile » value;
++numberOfIndices;

};■

196

// turn pointer to the beggining of the file
inFile.clear();
inFile.seekg(O);

//initialize memory for return array
indices =new GLintfnumberOflndices];

// read file into return array
for(GLint i=0; i<numberOfIndices; i++){

inFile »indicesfi];
}

// close file
inFile.closeO;

}

return indices;
}

//.
GLfloat** readPoints(const char *const INFELE_NAME, GLint &numberOfPoints){

ifstream inFile; // input file
GLfloat **points =NULL;

if (openInputFile(inFile, INFILE_NAME) ==TRUE){
// file is opened succesfully

GLfloat value;
numberOfPoints =-1;

// count floats in the file
while(!(inFile.eof())){

inFile » value;
++numberOfPoints;

};

// turn pointer to the begining of the file
inFile.clearO;
inFile.seekg(O);

//initialize memory for return array
points =new GLfloat* [numberOfPoints];

// read file into return array
for(GLint i=0; i<numberOfPoints; i++){

points[i] =newGLfloat[THREE_D];
for(GLint j=0; j<THREE_D; j++){

inFile » points[i][j];
}

}

197

// close file
inFile.close();

}

return points;
}

//.
GLfloat getAngleFm3Points(const GLfloat centerX, const GLfloat centerY,

const GLfloat xl, const GLfloat yl,
const GLfloat x2, const GLfloat y2)

{

GLfloat angle, angle 1, angle2;

anglel =cosTheory(length(centerX,centerY+l,xl, yl),
length(centerX,centerY,xl, yl),

l);
angle2 =cosTheory(length(centerX,centerY+l,x2, y2),

length(centerX,centerY,x2, y2),
i);

if(xl>=centerX && x2>=centerX){

angle =anglel-angle2;
}
else if(xl<=centerX && x2<=centerX){

angle =angle2-anglel;
}
else if(xl>centerX && x2<centerX){

angle =anglel+angle2;

if(angle>180) angle-=360;
}
else if(xl<centerX && x2>centerX){

angle =-1 *(anglel +angle2);

if(angle<-180) angle+=360;
}

return angle;
}

//.
GLfloat length(const GLfloat xl, const GLfloat yl,

const GLfloat x2, const GLfloat y2)
{
GLfloat dx=xl-x2,

dy=yl-y2;

return (GLfloat) sqrt((dx*dx)+(dy*dy));

}

198

//.
GLfloat cosTheory(const GLfloat a, const GLfloat b, const GLfloat c)
{

GLfloat angle=acos(
((a*a)-(b*b)-(c*c))

/
(-2 * b * c)
);

return (angle / DEG_TO_RAD);

}

//
void twoLink2D(const GLfloat X_POS, const GLfloat Y_POS,

const GLfloat LENGTH_1, const GLfloat LENGTH_2,
GLfloat & tetal, GLfloat & teta2)

{

//calc. of link angles to give posture to system
teta2 =acos(

(
(X_POS*X_POS)

+ (Y_POS*Y_POS)
- (LENGTH_1*LENGTH_1)
- (LENGTH_2*LENGTH_2)

)
/
(2 * LENGTH_1 * LENGTH_2)

);

tetal =atan(X_POS/Y_POS)
- atan(

(LENGTH_2 * sin(teta2))
/
(LENGTHJ + (LENGTH_2*cos(teta2)))

);

//convert angles to rad
tetal/=DEG_TO_RAD;
teta2/=DEG_TO_RAD;

return;

//.
GLfloat linearInterpolate(const GLfloat VALUE,

const GLfloat TIME, const GLfloat CURRENT_TIME)
{

return (CURRENTJTIME * VALUE / TIME);
}

199

//
void quatInterpolation(const GLfloat * const ql,

const GLfloat * const q2,
const GLfloat t, GLfloat * const newQ)

{
static const GLfloat HALF_PI =1.570796f;

if(ql[X]=q2[X] && ql[Y]==q2[Y] && ql[Z]==q2[Z] && ql[3]=q2[3]){

for(GLint i=0; i<4; i++){ newQ[i] =ql[i]; }
}
else{

GLfloat cosOm, omega, sinOm, sclp, sclq;

cosOm =(ql[X]*q2[X]) + (ql[Y]*q2[Y]) + (ql[Z]*q2[Z]) + (ql[3]*q2[3]);

if(cosOm != -1){ //angle between ql and q2 < 180

if(cosOm != 1){//180 > angle > 0

omega =(GLfloat) acos(cosOm);
sinOm =(GLfloat) sin(omega);
sclp =(GLfloat) sin((l-t)*omega) /sinOm;
sclq =(GLfloat) sin (t*omega) /sinOm;

}
else{ //angle =0

sclp =l-t;
sclq =t;

}

for(GLint i=0; i<4; i++){ newQ[i] =(ql[i]*sclp) + (q2[i]*sclq); }
}
else{ //ql is opposite to q2.Angle =180;

newQ[X]=-ql[Y];
newQ[Y]=ql[X];
newQ[Z] =-ql[3];
newQ[3]=ql[Z];

sclp =(GLfloat) sin((1 -t)*HALF_PI);
sclq =(GLfloat) sin(t*HALF_PI);

for(GLint i=0; i<4; i++){ newQ[i] =(ql[i]*sclp) + (newQ[i]*sclq); }

200

LIST OF REFERENCES

[BADL93a] Badler, N. L, Phillips, C. B. and Webber, B. L., "Simulating Humans:
Computer Graphics Animation and Control", Oxford University Press, New
York, 1993.

[BADL93b] Badler, N. I., Hollick, M. J. and Granieri, J. P., "Real-Time Control of a
Virtual Human Using Minimal Sensors," Presence: Teleoperators and
Virtual Environments, Winter 1993, Volume 2, Number 1, pp. 82-86.

[BEDI97] Bediz, Mehmet "A Computer Simulation Study of a Single Rigid Body
Dynamic Model for Biped Postural Control" Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1997.

[COOK92] Cooke, Joseph M., Zyda, Michael J., Pratt, David R., and McGhee, Robert
B., "NPSNET: Flight Simulation Dynamic Modeling Using Quaternions,"
Presence, Fall 1992, Volume 1, Number 4, pp. 405-420.

[CRAI89] Craig, J. John, "Introduction to Robotics, Mechanics and Control", Addison-
Wesley Publishing Company, Inc. 1989, Second Edition.

[DAVI93] Davidson, Sandra L., "An Experimental Comparison of CLOS and C++
Implementations of an Object-Oriented Graphical Simulation of Walking
Robot Kinematics", Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1993.

[DUMA99] Duman, Ildeniz, "Implementation and Testing of a Real-Time Software
System for a Quaternion-Based Attitude Estimation Filter", Master's Thesis,
Naval Postgraduate School, Monterey, California, March, 1999.

[DURL95] Durlach, N. I. and Mavor, A. S., National Research Council, "Virtual
Reality: Scientific and Technological Challenges", National Academy Press,
Washington, D.C., 1995, pp. 188-204, 306-317.

[FREY96] Frey, William, III, "Application of Inertial Sensors and Flux-Gate
Magnetometer to Real-Time Human Body Motion Capture", Master's
Thesis, Naval Postgraduate School, Monterey, California, September 1996.

[FUND90] Funda, J., Taylor, R., PAUL, R. P., "On Homogenous Transform
Quaternions, and Computational," IEEE Transactions On Robotics and
Automation,Vol.6, No. 3, 1990.

[GOET94] Goetz, John Robert, "Graphical Simulation of Articulated Rigid Body
System Kinematics with Collision Detection", Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1994.

201

[GRAN95] Granieri, J. P. and Badler, N. I.,"Simulating Humans in VR," Virtual
Reality Applications, Academic Press, ISBN 0-12-227755-4, 1995, pp.
253-269.

[HODG95] Hodgins, J. K., Wooten, W. L., Brogan, D. C., O'Brien, J. F., "Animating
Human Athletics," Proceedings of SIGGRAPH '95, Los Angeles, CA,
August 6-11, In Computer Graphics, 1995, pp 71-78.

[KOOZ83] Koozekanani, S. H., Barin, K., McGhee R. B., Chang, H. T., "A Recursive
Free-Body Approach to Computer Simulation of Human Postural
Dynamics", IEEE Transactions on Biomedical Engineering, Vol. BME-30,
No. 12, December 1983, pp.788-789.

[MCGH79] McGhee, R. B., "Computer Simulation of Human Movement", CISM
Courses and Lectures No. 263, International Center for Mechanical
Sciences, Springer-Verlag Wien-New York, 1980.

[MCGH86] McGhee, R. B., Nakano, E., Koyachi, N., Adachi, H., "An Approach to
Computer Coordination of Motion for Energy-Efficient Walking Machines",
Bulletin of Mechanical Engineering Laboratory, JAPAN, Number 43,
1986.

[PRAT93] Pratt, David R., "A Software Architecture for the Construction and
Management of Real-Time Virtual Worlds," Dissertation, Naval
Postgraduate School, Monterey, CA, June 1993.

[PRAT94] Pratt, D. R., Barham, P. T., Locke, J., Zyda, M. J., Eastman, B., Moore, T.,
Biggers, K., Douglass, R., Jacobsen, S., Hollick, M., Granieri, J., Ko, H.
and Badler, N. I., "Insertion of an Articulated Human into a Networked
Virtual Environment," Proceedings of the Fifth Annual Conference on AI,
Simulation and Planning in High Autonomy Systems: Distributed
Interactive Simulation Environments, IEEE Computer Society Press,
Gainesville, Florida, December 7-9,1994, pp. 84-90.

[PRAT95] Pratt, S. M., Pratt, D. R., Waldrop, M. S., Barham, P. T., Ehlert, J. F. and
Chrislip, C. A., "Humans in a Large-Scale, Real Time, Networked Virtual
Environments," submitted to Presence, 1996.

[SKOP97] Skopowski, Paul F. "Immersive Articulation of the Human Upper Body in a
Virtual Environment" Master's Thesis, Naval Postgraduate School,
Monterey, California, January 1997.

[WALD95] Waldrop, Marianne S., "Real-time Articulation of the Upper Body for
Simulated Humans in Virtual Environments", Master's Thesis, Naval
Postgraduate School, Monterey, California, September, 1995.

202

[WATT92] Watt, A. and Watt, M., "Advanced Animation and Rendering Techniques:
Theory and Practice", Addison-Wesley Publishing Company, Inc., New
York, 1992, pp. 369-394.

[WEBREF1] Images fromGeri's Game, 1997 (Pixar Animation Studios),
http ://www .pixar.com/shorts/geri/geri .html

[WEBREF2] ULTRATRAK PRO from Polhemus.
http://www.polhemus.com/trackers

[WEBREF3] VRML file that demonstrates Gimbal system
http://www-npsnet.cs.nps.navy.mil/bachmann/orientation/orientation.wrl

[WEBREF4] VRML file of a human body
http://www.ocnus.com/models

[WAVE98] Alias I Wavefront inc., Learning Maya, 1998.

[ZYDA92] Zyda, M. J., Pratt, D. R, Monahan, J. G. and Wilson, K. P., "NPSNET:
Constructing a 3D Virtual World," 1992 Proceedings of Symposium on
Interactive 3D Graphics, pp. 147-156.

203

204

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.,
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, CodeCS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Robert B. McGhee, Professor
Computer Science Department Code CS/MZ
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Michael J. Zyda, Professor
Computer Science Department Code CS/ZK
Naval Postgraduate School
Monterey, CA 93943-5000

6. LTGg) Umit Y. Usta.
Dumlupinar man.
Preveze cad. No: 84
Golcuk/KOCAELI
Turkey

7. Deniz Kuvvetleri Komutanligi
Personel Tedarik ve Yetistirme Daire Baskanligi
Bakanliklar, Ankara 06100
Turkey

8. METU (ODTU)
06531 Ankara
Turkey

205

9. Bogazici University...
80815 Bebek/Istanbul
Turkey

10. Bilkent University
Department of Computer Engineering and Information Science
06533 Bilkent/Ankara
Turkey

206

