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ABSTRACT 

This thesis presents articulated rigid body kinematics models for humans. The main 

area of research is to investigate models for real-time computer graphics applications in 

Virtual Environments (VE). Existing models have singularity problems and become too 

slow once the number of humans in view becomes large. 

The approach taken is to develop a full body kinematics model with quaternions. 

Another common method, Euler angles, has singularity and interpolation problems. Both 

methods are compared for memory, computation and user input considerations. The 

implementation includes joint angle constraints. The model is then manipulated with user 

inputs by a mouse. As part of this research, the real-time display of human arm tracking 

with two inertial sensors, human walking, inverse kinematics, and key frame animation is 

also demonstrated. 

The major conclusion of this thesis is that a kinematics model with quaternions can 

eliminate the singularity problems of existing models. Joint orientation interpolation is also 

more direct and less convoluted with quaternions. Neither representation exhibits a 

decisive advantage over the other in terms of computational speed. For memory 

considerations, the Euler angle method is best. To apply joint constraints, quaternion 

representations are converted to Euler angles, which causes additional computation for the 

system. 
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I. INTRODUCTION 

A. MOTIVATION 

There is a growing requirement for realistic virtual environments (VE) in which 

humans can interact. Recent advances in computer and motion sensor technologies have 

made it feasible to insert humans into the VE and permit them to interact with their 

environments. For realism, one of the major requirements is that the response time of the 

simulated human model must be real time and the motion must be smooth. The motions 

of the human are represented in the model with transformation of body parts. One of the 

most popular representations of a transformation is to use Euler angles. While this is easy 

to understand and use, it has singularity problems, which causes unrealistic motion and 

divide-by-zero errors in the system. An alternative method is the use of unit quaternions. 

The quaternion method experiences no singularities at any orientation. The interpolation 

is also more direct and less convoluted with quaternions. 

B. GOALS 

The purpose of this thesis is to compare two different methods used for 

transformation matrices and model the human body with quaternions. The model 

manipulation is demonstrated by user inputs with a mouse. The singularity problems are 

examined for both methods. For realism, joint angle limits are added to the model. This 

thesis also demonstrates the real-time display of human arm tracking with two inertial 

sensors. 

C. ORGANIZATION 

Chapter II of this thesis provides background information regarding human models. 

Chapter III provides an overview of kinematics models and discusses joint transformation 



matrices. Chapter IV compares two methods used to construct joint transformation 

matrices. Chapter V introduces forward and inverse kinematics and makes a comparison 

of their computational speed and input requirements. Chapter VI contains the 

implementation details and presents results obtained from this research. The last chapter, 

Chapter VII, provides some conclusions and discusses recommendations for future 

enhancements and research relating to the work of this thesis. 



II. BACKGROUND 

Research in three fields is relevant to the problem of animating human motion: 

robotics, biomechanics, and computer graphics [HODG95]. Today many applications in 

these fields use human figures or basic principles that can be used to design control 

strategies for humanlike models. Walking machines [MCGH86], human figure 

simulation programs [BADL93a], and character animation tools [WAVE98] are some of 

these applications. 

Today, many tasks can be accomplished by using computer graphic applications that 

feature human figures. Human factors design engineers or ergonomics analysts can study, 

analyze, assess, and visualize human motor performance, fit, reach, view, and other 

physical tasks in a workplace environment by using computer simulated humans in the 

early design stages [BADL93a]. Animators can create human characters that can walk, 

jump, and even dance with incredible realism for games, cartoons, video-clips, movies 

and advertisements by using character animation tools. The representation of the human 

figure in a real-time interactive 3D virtual environment (VE) is a long sought for goal of 

the VE research community [DURL95]. Simulated autonomous human agents are needed 

in VE application areas such as training, education, and entertainment. Human motion 

capture systems, which help to insert individual users in VE, also use mathematical 

models of human figures. All these applications have different requirements for 

computation speed, appearance realism, motion realism, and usability of human figures. 

This chapter provides background information regarding computer representation of 

human figures. While human figures are introduced under modeling, animation and 

interaction sub topics, none of them can be separated from each other and all are affected 



by the trade-off between realism and computation speed. Because the main area of this 

research is to investigate human figures for real-time computer graphic applications in 

VE, all issues of human figure representation and modeling are examined for 

computation speed. Currently available realistic models are also briefly introduced, but 

the focus is on the skeletal system of the human body. 

A. GEOMETRY OF HUMAN MODELS (Modeling) 

For realism, one would expect a human model to be structured like the human 

skeletal system, to have a humanlike appearance, and to be sized according to permissible 

human dimensions. Appearance involves a compromise between realism and display 

speed. No one is likely to mistake the figure for a real person; on the other hand, the 

movements and the speed of control are good enough to convey a suitably responsive 

attitude [BADL93a]. 

Today it is possible to create human models that have a realistic appearance and 

motion. These models also have skin and muscle animation. Their hair and clothes are 

animated as they move in real world. They can talk, look around, and make facial 

expressions. They can grasp or make a gesture with their hands. But they can not do all of 

these in real-time. Figure 1 is an example of realistic human figures. While making a 

geometrical definition of the model, it is also necessary to consider animation issues like 

manipulation and deformation algorithms and their input parameters. Decisions regarding 

animation techniques effects the modeling phase and many animation techniques that are 

used for realism are not applicable for real-time systems. 
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Figure 1: Images from Geri's Game, 1997 (Pixar Animation Studios). [WEBREF1] 

1.   Skeleton Definition 

Most animation of clothed structures is controlled by animating an underlying 

skeleton of some description and then rendering the final images with flesh or clothes 

[WATT92]. A representation of the skeleton under the skin of a human model amounts to 

an articulated rigid body [CRAI89]. 

An articulated structure is made up of connected segments that move relative to each 

other for the definition of the human posture. Each link, or human link segment, has its 

physical dimensions. Links are connected each other with joints, and constitute a 

composition hierarchy that has a tree structure. Each joint angle defines an orientation for 

the outboard links. The number of independent position variables necessary to specify the 

state of the joint is called its "degrees of freedom" (DOF). The DOF of an articulated 



structure is the total DOF of all joints. Each link motion, joint displacements and 

rotations, is also carried to child links. 

The hierarchy between rigid body segments changes when the root link of the tree is 

changed. Changing the root link does not effect the relation between links; it only effects 

the transformation hierarchy of segments. That is why leaf nodes of the hierarchy tree 

never change. Leaf nodes are hands, feet and head, also known as "end-effectors" 

[CRAI89]. The tree structure for the model used in this thesis is shown in Figure 2. 

Head 

Shoulder, 

Pelvis (ROOT) 

Torso L_UpLeg 

Neck       L_UpArm RJJpArm L_LowLeg 

Head      L LowArm       R_LowArm L_Foot 

L Hand R Hand 

R_UpLeg 

R_LowLeg 

R Foot 

Figure 2: Articulated Rigid Body Structure 

While there are over 200 joints in the human skeletal system it is unnecessary and 

impractical to model each segment as an articulated rigid body. The number of human 

segments must be chosen to supply both realism and sufficient computation speed. 

Toward this end, it can be noted that there are mainly 15 major body segments in the 

human body; namely: head, torso, pelvis, upper arms, forearms, hands, upper legs, lower 



legs, and feet. A neck can be added as 16th segment. Each added segment supplies more 

realism, while decreasing computation speed. Figure 3 demonstrates two different 

articulated bodies. Figure 3a has minimal 15 joints and 34 DOF. Figure 3b adds 5 more 

joints and 11 more DOF, while representing the torso by a spine. 

© 

(a) Minimal Model (b) More Realistic Model 

Figure 3: Position of Joints 

In some applications; it is not possible to treat some special segments as rigid bodies. 

These segments are the head, torso, hands and feet. Hands have their own articulated 

rigid bodies. Feet can be modeled as two articulated rigid bodies (toe and heel). Eyes are 

articulated bodies of the head. The torso can be defined as a spine. 

2.  Appearance 

The number of human link segments and their sizes effect the realism of a graphics 

model. In addition, each human segment has its own shape, and all have the same 

geometrical definition.  While shapes are the main concern for appearance, their 



geometrical definition is important for animation. The realistic appearance of the human 

segment shapes or whole body figure may be lost once animation is started. Geometrical 

definition of the shape is very important for the trade-off between realism and 

computation speed. 

a.   Body Segments and Joints 

Segment shapes may be sticks, naked skin, or parts of clothing. Segment 

geometry may be surface models, volume models, or solid geometry models. 

Surface models are polygons and patches. Polygon models are relatively simple to 

define, manipulate, and display. They are the most common models processed by 

graphics workstation hardware and commercial graphics software. All viable interactive 

human figure models are done with polygons. Several hundred polygons can look 

acceptably human like; accurate skin models require thousands of polygons [BADL93a]. 

Joints may be drawn by overlapping segments or by using patches. Patches are curved 

surfaces and are usually defined by cubic polynomials. Control points and tangent vectors 

define the shape of the patch. For the human figures that are modeled by patches, each 

human segment has its own control points. Adjacent segments share the control points of 

a joint patch. While patches add realism at joints for smoothness and proper bending, 

they are not as yet applicable for real-time systems. 

Volume models or solid geometry models are composed of non-intersecting 

elements within a spatial partition, such as voxels or oct-trees, or created from (possibly 

overlapping) combination of inherently 3D primitive volumes [BADL93a]. Voxel models 

are used for modeling the anatomic structure of a human body, but not for modeling 

human figures. Primitive solid geometry models are very old and unrealistic. 



An interesting generalization of spheres (metaballs) is a potential function with a 

center and a field function that decreases monotonically from the center outward. 

Metaballs were originally used to model molecules. They represent a very slow, but an 

interesting possibility for highly realistic models in the future [BADL93a]. 

The head is a special segment and needs a combination of different types of 

geometric models. For facial animation, the face should be modeled as patches. Hair may 

be a fuzzy object. Segment shapes are skin or parts of clothing for human figures used for 

real-time computer graphic applications in VE. Geometrical definitions are polygons and 

segments overlap at joints, so the head doesn't present any special concerns. 

b. Clothes and Attached Objects 

It is possible to attach some objects to some body segments. Attached objects will 

behave as a new articulated body. They may have their own geometric definition and 

animation. They may be attached or detached dynamically at run-time. Clothes may be 

defined as attached objects, which necessitates time-consuming algorithms. For real-time 

computer graphic applications, clothes are treated as body segment shapes and the 

geometry of all attached objects is polygon. They may be textured for realism. 

c. Level of Detail (LOD) 

Multi-resolution models are very important for real-time systems. In such an 

approach, model details and size reduce with increasing distance from the observer. Since 

finer details are less pronounced, they need not be rendered and may be left out of the 

model thereby putting fewer polygons into the graphics pipeline, allowing for higher 

frame rates. It is important to note that when polygons transform to less than one pixel, 

they effectively combine  [PRAT93]. As distances increase, this natural occurrence aids 



in reducing visual detail and supports the use of LOD models. For low-resolution human 

models, the number of links needed for skeletal representation and the number of 

polygons needed for segment shapes are reduced. Animation algorithms that define some 

procedural motions like walking may be simplified for low-resolution models. 

B. BEHAVIOR OF HUMAN MODELS (Animation) 

For realism, a human model should move or respond like a human and should exist, 

work, act and react within a three-dimension VE [BADL93a]. The main animation of the 

human model is to create posture, which is controlled by the articulated skeletal structure. 

Input parameters of the system are the DOF of this structure. By defining simple sets of 

rules for how segments behave, input parameters may be reduced for the user. This is 

also needed for realistic behavior of skeletons. Constraints and control mechanisms may 

warn users of unacceptable inputs. Some motions may be generated automatically to 

simplify user control. After defining articulated structure animation, secondary 

animations like muscle and clothing may be added for realism. Facial and hand 

animations are other special topics for realistic human figures. 

1.   Transformation Hierarchy 

The main concern for human posture modeling is the skeleton, its articulated 

structure. The articulated structure represents tree-structured human segments through a 

hierarchy and defines the position and orientation of each human segment. Link motions 

have constraints, depending on the model definition. 

A kinematics model specifies motion independent of the underlying forces, which 

defines geometrical and time related properties of motion, such as position, velocity and 

acceleration of each link. A kinematics model also sets the positional and angular 

10 



constraints of the human segments. For forward kinematics, all transformations are 

specified to control the motion of the end-effectors. For inverse kinematics, a goal is 

specified for the end-effector and the system computes the transformations required to 

achieve the goal. It is possible to think of inverse kinematics as a numerical engine that 

can be attached to any part of the skeleton whose purpose is to specify the position and 

orientation of all the nodes between the end node and base node [WATT92]. It is also 

possible to apply more than one type of model to the same skeletal structure. For 

example, while the torso and head use forward kinematics, arms and legs could use 

inverse kinematics, where hands and feet are end-effectors, and shoulders and hips are 

base nodes. For combined models, base and root nodes may be redefined at run time. 

Redefining the skeletal hierarchy at run time adds more control over human segments, 

while decreasing computation speed. One example of changing the root node at run time 

is the animation of legs from the hip down during the transfer phase of the walking cycle 

and from the foot up during the support phase, which prevents the collision between foot 

and the floor. 

A dynamic model specifies motion taking into account physical attributes, properties, 

and laws. It introduces physical properties, such as mass and moments of inertia. It is 

possible to simulate human motion realistically with detailed dynamic models. However, 

the cost of this realism is a high degree of computational complexity. When more 

detailed models are chosen, the response time of the simulated human model increases. A 

more realistic approach may be to consider the connection between limb segments as not 

rigid [BEDI97]. In this approach, joints behave as springs. A dynamic model may also be 

implemented as a forward or inverse dynamics system. For inverse dynamics, the motion 

11 



of each segment is given and the forces and torque are computed. From this, a direct 

dynamics model may be derived [KOOZ83] 

In computer graphics, joints are usually defined as rotary (revolute) joints, although 

there exist other types, such as prismatic (sliding) joints. Mathematical models of joints 

should supply the necessary transformations. The most popular representation of spatial 

transformations of point vectors is the 4x4 real matrix (also termed homogeneous 

transform), based on the idea of homogeneous coordinates. The appeal of homogeneous 

transforms is mostly due to their matrix manipulation by a computer. On the other hand, 

such matrices are highly redundant, using 16 numbers (of which four are trivial) to 

represent rotation and position. This redundancy can introduce numerical problems in 

calculations, wastes storage, and often increases the computational cost of algorithms. 

Despite these drawbacks, matrix-based representations remain the dominant choice for 

most robotic system applications [FUND90]. Two types of methods can define the 

rotation part of the matrix: Euler angles and angle/vector pair. An alternative 

representation for a vector-angle pair is the quaternion. Each method has pros and cons. 

The quaternion method is the only one that can rotate vectors without using matrix 

multiplication, which can eliminate the need of generating and applying homogeneous 

transform matrices. The following chapters of this thesis will focus on comparison of 

quaternion and Euler angle methods. 

2.  Segment and Joint Deformation 

Segments may have their own animation. Muscles can be treated as soft objects and 

animated by free form deformation (FFD) blocks, which adds additional computation. 

Joint deformation can be handled by using patches. Another way is the using polygon 

12 



subdivision algorithm for the joints. The last adds more realism and solves the continuity 

problem of patches. If the geometry of segments is a "metaball", the joint surface 

problem is solved in its definition. Segment and joint deformations are not applicable for 

human figures in today's real-time VE. Figure 4 demonstrates a joint deformation, which 

rotates waist vertices through the half angle of the orientation of outboard torso segment 

and scales the same vertices relative to the orientation. This solution is simple, and works 

well for small joint motions, but produces unrealistic results for large joint motions. To 

the author's knowledge, there is, as yet, no satisfactory real-time algorithm for realistic 

representation of joint deformation in human figure models. 

End of 
Torso 

Waist 
Points 

Head of 
Pelvis 

Figure 4: Handling Joint Deformation by Half-Angle Vertex Rotation 

3.  Special Segments 

Torso and end-effectors need special animation techniques. It is possible to treat all 

as single rigid bodies for real-time systems. Some real-time systems that use the Cyber- 

Glove as an interaction device need hand models and animation algorithms. Non-real 

13 



time applications like character animation tools have special models and animation 

techniques for these segments. 

To achieve a higher degree of realism, the torso needs to be treated as supported by a 

flexible spine rather than a rigid body. The head needs hair motion and facial animation. 

The face needs eye motion, lips and skin motion. The face usually uses a parametric 

muscle model that controls the deformation of a polygonal mesh representation. Hands 

are also complex objects. There are many links in a hand and each must react realistically 

with each other. Accurate hand simulation needs grasping algorithms depending on the 

target object and the grasp type. A foot model could supply toe and heel articulation. 

4. Clothes and Attached Objects 

If clothes are defined as attached objects, they may be animated independent of, but 

constrained by the segments. Dynamic behavior and collision detection algorithms must 

be defined for the attached clothing. Clothing also constrains movement by effecting joint 

angle limits. For real-time simulation, attached clothes like a hat or glasses and other 

attached objects like rifle or bag are always static objects. They don't have their own 

animation, and do not effect joint angle limits at run-time while they may be attached or 

detached at run-time. 

C. MANIPULATION OF HUMAN MODELS 

An interactive software tool must be designed for usability. Existing interaction 

paradigms (such as pop-up menus or command line completions) should be followed 

when they are the most efficacious for a particular task, but new techniques will be 

needed to manage and control three-dimensional articulated structures with standard 

graphical input tools [BADL93a]. 

14 



A high-level animation system allows the animator to specify the motion in abstract 

general terms, whereas a low-level system requires the animator to specify individual 

motion parameters manually. High-level commands describe behavior implicitly in terms 

of events and relationships, whereas lower level commands are far more explicit 

[WATT92]. The purpose of high level control is to reduce the number of control 

parameters for the system and leave those low-level parameters to the computer to 

generate. For example, inverse kinematics for hand motion is high-level motion control. 

Animation systems may use some forms of procedural animation, like walking, running, 

jumping, grasping, bending, facial expressions, talking and many others for high-level 

motion control systems. Here, motion is described by a mathematical model/algorithm. 

These animations can take place with minimum inputs for real-time systems. For 

example, in the Individual Soldier Mobility System, a soldier sits in a room called the 

Walk-in Synthetic Environment on a pedal-based mobility simulator. The soldier moves 

through the environment by pedaling. Pedaling speed is used by the "Jack" model to 

provide realistic joint angles for lower body [BADL93a]. The lower body is rendered as 

standing, walking and running. The I-PORT system component is shown in Figure 5. 

On the other hand, human body motion tracking systems provide low-level control 

for each joint, which defines more realistic motions for each user in real-time. Figure 6 

shows a human body motion tracking system. 

1. Interactive Motion Control System 

A simple interactive motion control system allows a user to set up a sequence by 

interactively specifying a path and kinetic characteristics, using two-dimensional 

interactive graphics devices. Other expensive interactive motion control systems use 
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Figure 5: IPORT Human Sensing Technology [SKOP96] 

Figure 6: Human Body Motion Tracking System from Polhemus. [WEBREF2] 
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motion tracking devices. Currently, there are five types of motion trackers: mechanical, 

acoustic, optical, electromagnetic and inertial trackers. All have pros and cons. Optical 

and electromagnetic trackers are mostly used for motion tracking of body segments. 

Currently, inertial trackers are being developed to track human body segments 

[DUMA99]. Optical trackers are also popular for tracking facial expressions. Different 

types of Cyber-Gloves are used for hand motion tracking. 

For human body motion tracking systems, control parameters must be checked for 

validity by using human model constraints. For example, the Jack model checks upper 

body angles in the Individual Soldier Mobility System. If the sensors track only the end- 

effector's motion, a human model must control reachable space and compute motion of 

in-between links by using inverse kinematics or inverse dynamics. 

2. Scripting System 

For character animation, a user can write a script to define the motion. This is the 

earliest type of motion control systems. For a scripting system, the user needs skill in the 

language. The advantage is the definition of high-level motions to create motion libraries. 

Most of the animations today are done on an interactive system rather than scripting 

systems, which supports real-time animation. 

3. Hybrid Systems 

There are some systems that use both control types. Today, most well known 

character animation tools use hybrid systems. Some procedural motions may be defined 

by using motion capture and key-frame animation. Motion libraries can be created for 

each  procedural   motion   or   combination   of  more   than   one   procedural   motion. 
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Accumulated expertise is an advantage in the use of scripted languages to edit a 

sequence, to build up libraries and to approach more and more complex problems. 

D. SUMMARY 

There are many issues for modeling human figures. New methods are developing for 

more realism and automatic control of the figures. But, the real-time requirement usually 

constrains the animation to consist of flat or Gouraud-shaded polygons with texture 

mapping [WATT92]. For real-time systems, joint motions still must be realistic, after 

making a high level of abstraction for the appearance. Articulated structure is the most 

important part of the human figure to define realistic postures and human segment 

motions. Computation using this structure is demanding for real-time systems. 

Redefining structure at run time adds more control over human segments, while 

decreasing computation speed. If the real-time system is a networked synthetic 

environment, the state vector of the articulated structure should be minimized for 

efficient network traffic. The following chapters will focus on efficient articulated 

structure representations and the comparison of quaternion and Euler angle methods that 

construct joint transformation matrices. An articulated rigid body with quaternions is 

introduced in Chapter IV. 
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III. KINEMATIC MODELS 

Kinematics models specify motion independent of the underlying forces, which 

defines geometrical and time related properties of motion, such as position, velocity and 

acceleration of each link. For forward kinematics, all joints are specified explicitly by the 

animator. The motion of the end-effector is determined indirectly as the accumulation of 

the transformations that lead to that end-effector, as the tree of the structure is descended. 

For inverse kinematics, sometimes called "goal directed" motion, the animators define 

the end-effector only. Inverse kinematics solves for the position and the orientation of all 

joints in the link hierarchy that leads to the end-effector [WATT92]. Usually, forward 

kinematics is used to render predefined postures, while inverse kinematics is used for 

processing motion tracker data and motions paths of end-effectors. These two types of 

kinematics are detailed in Chapter V. In this chapter, kinematics notation for the human 

body articulated structure and transformation matrices are discussed. 

A. MDH NOTATION 

Two common methods to represent an articulated figure mathematically are the 

Danevit-Hartenberg (DH) notation and the Craig notation that is also known as the 

modified DH method (MDH). These methods were originally developed for robotic 

manipulations. Both describe the kinematics of each link relative to its neighbors by 

attaching a coordinate frame to each link. Each joint has 1 DOF. The MDH method 

attached the coordinate origin for each link to its inboard joint motion axis while the DH 

method attaches the origin to the link's outboard motion axis. The base joint is numbered 

as joint 0 for both methods. Numbering is always increase from root link to outward 

[CRAI89]. 
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Links and the link's inboard joints have the same index number for the MDH 

notation. Figure 7 shows MDH method frame and the parameter assignments. The Z-axis 

is coincident with the joint motion axis. The X-axis that is the common normal of the link 

and is directed from the link's inboard joint towards it's outboard joint. The X-axis 

intersects both joint axes at right angles. The Y-axis completes a right hand orthogonal 

set and is needed only for specifying the 3D shape of a link. 

Four parameters are needed to describe the relation of two consequent frames. Link 

length is the distance along the X-axis between the joints of a given link. Link twist is the 

angle between inboard joint axis and outboard joint axis measured about the X-axis. Link 

offset is the distance measured at the inboard link motion axis from the preceding X-axis 

to the current link X-axis. Joint angle is the rotation measured at inboard joint motion 

axis from the previous link X-axis to the current link X-axis. 

• inboard link length 

aj.j = distance from z j.-j to z\ measured along Xj.j 

• inboard link twist 

a;.] = angle between ZJ.J and z\ measured about Xj.j 

• outboard link offset 

d; = distance from Jc;.j to x-x measured along z-i 

• outboard joint angle 

0 j = angle between   JCJ.J to x-f measured about z i 

i-ink; 
Link; 

Figure 7: MDH Method Frame and Parameter Assignment [SKOP96] 
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Outboard joint position and orientation relative to inboard joint can be computed by 

these four parameters. Four steps of this computation are rotation about X-axis as inboard 

link twist, displacement along X-axis as inboard link length, rotation about outboard joint 

axis as outboard joint angle and displacement along outboard joint axis as outboard link 

offset. All these rotations and displacements are represented by individual homogeneous 

transformation matrices. On the other hand, a single transformation matrix can define all 

four motions by multiplying these four transformation matrices in the specific order with 

the following result. 

T   =Rx(oci-i)Dx(ai-i)Rz(0i)Dz(di) (3.1) 

This produces the matrix: 

T   = 
cosGi -sinGi 0 ai-i 

sinGi cos(o= i-i) cosQi cos(°= i-i) -sin(°= i-i) -sin(°<: i-i) di 
sinGi sin(°<= i-i) cosGi sin(°= i-i) cos(o= i-i) cos(°=i-i)di 

0 0 0 1 

(3.2) 

The last row of the matrix given by Eq.(3.2) is redundant and contains no information 

about the relation. First three elements at the last column represent the local 

displacements. Other nine elements that constitute a 3x3-matrix represent the rotation. 

Later sections in this chapter focus on this matrix. This notation is used to describe linked 

structures where the joints have a single DOF. 

Ball joints can be represented as multiple single DOF joints located at the same point 

in space [WATT92]. Figure 8 represents a full human body articulated structure defined 

by MDH. Only the Z-axes of MDH frames are shown. Joints that have more than 1 DOF 

have more than one Z-axis originating at the same point, where in-between link offsets 

and link lengths are all zero. The root segment is the pelvis, and the first frame is the 
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twist axis of this segment. The standard MDH numbering system differs at branching 

points of the tree structure. 
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Figure 8: MDH Notation of Full Human Body Articulated Structure 

Table 1-5 provides kinematic parameters of the minimal model that also has a neck 

joint. The frame's X-axes are also drawn to determine the sign of the twist angles. Notice 

that, in this notation, knees and elbows have 1 DOF and all other joints have 3 DOF. Joint 

limits are also defined, but they will be discussed in the next chapter. 
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Z8 
kX8 

y X7^ 
<29 

Z7 

Z5 

Z2 

Z6 

Z4 

NiZ3 

ZLZO 

iX5 

X4' 

XI 

-f X6 

'X2 

Inboard 

link twist 

OC   j_! 

Inboard 

link length 

ai-i 

Outboard 

link offset 

di 

Outboard 

link angle 

0i 

0 
MIN 

0 
Pelvic MAX 

HZ l 0 0 0 0 - - 

Ry 2 90 0 0 0 - - 

R7 3 90 0 0 0 - - 

Waist 
twist 4 90 0 Waist_Y 0 -95 95 

lean 5 90 0 Waist_X 0 -160 40 

bow 6 90 0 Waist_Z 0 -30 30 

Neck 
twist 7 90 0 Neck Y 0 -50 50 

lean 8 90 0 Neck X 0 -45 30 

bow 9 90 0 Neck_Z 0 -30 30 

X3 

X0 

Table 1. MDH Kinematics Parameters of Pelvic, Waist and Neck 

Zll 
^—(• 

Z12 Z18 
■*—(•' 

Z10 
■\ / ,r 

25   V 
■^—(• ;z6 

Z41 ■ 

Z19 

Z17 

LX14 

X13 

X21 

Inboard 

link twist 

Inboard 

link length 

an 

Outboard 

link offset 

di 

Outboard 

link angle 

0i 
0i 

MIN 
0i 

1 FFT Rhoulrifir 
INDEX MAX 

twist 10 90 -Shoulder X Shoulder Y 0 0 180 

swing 11 90 0 0 0 -80 180 

roll 12 90 0 Shoulder Z 0 -180 30 

RIGHT Shouldei  
twist 19 90 Shoulder X Shoulder_Y 0 -180 0 

swing 20 90 0 0 0 -80 180 

roll 21 90 0 Shoulder Z 0 -30 180 

Table 2. MDH Kinematics Parameters of Shoulders 
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^ X16 

Inboard 

link twist 

OC  ;.! 

Inboard 

link length 

ai-i 

Outboard 

link offset 

di 

Outboard 

link angle 

0i 

0 
MIN 

0 
L_Elbow MAX 

roll 13 0 upArmLength 0 0 0 100 

R Elbow 
roll 20 0 upArmLength 0 0 -100 0 

L_Wrist 
twist 14 90 0 Wrist Y 0 -20 20 

swing 15 90 0 Wrist X 0 -20 20 

roll 16 90 0 Wrist_Z 0 -30 70 

FLWrist 
twist 21 90 0 Wrist_Y 0 -20 20 

swine 22 90 0 Wrist X 0 -20 20 

roll 23 90 0 Wrist_Z 0 -70 30 

Table 3. MDH Kinematics Parameters of Elbows and Wrists 

Z2 ,_ v Z3 
X2l 

V                Z32   " 
jvZ33 

XI 

X28|  / 

1 
Z24 

T 
Z31 X27 H      X3 

X35.Pj T~*° X3 

Inboard Inboard Outboard Outboard 

link twist link length link offset link angle 

OC   j_i ai-i di 0i 
0i 

MIN 
0i 

INDEX MAX 
LEFT Hip 

twist 24 90 -Hip_X Hip_Y 0 -30 30 

swing 25 90 0 0 0 -50 100 

roll 26 90 0 Hip_Z 0 -90 10 

. RIGHT Hip 
twist 31 90 Hip_X Hip_Y 0 -30 30 

swing 32 90 0 0 0 -50 100 

roll 33 90 0 Hip_Z 0 -10 90 

Table 4. MDH Kinematics Parameters of Hips 

24 



Z25 

Z27 

Z29 

sZ26 

Z24 

■i 
Z30 
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kX25 f 
X24g) 

ix26 

X27f 

X29 

^ X30 

Inboard 

link twist 

OC   i_l 

Inboard 

link length 

ai-i 

Outboard 

link offset 

di 

Outboard 

link angle 

0i 
e 

MIN 

0 
L_Knee MAX 

swing 27 90 0 HipLength 0 -100 0 

R Knee 
swing 34 90 0 HipLength 0 -100 0 

L_Ankle 
twist 28 90 0 Leg_Y 0 -20 20 
swing 29 90 0 Leg_X 0 -70 30 
roll 30 90 0 LegJZ 0 -20 20 

R_Ankle 
twist 35 90 0 Leg_Y 0 -20 20 
swing 36 90 0 Leg_X 0 -70 30 
roll 37 90 0 Leg_Z 0 -20 20 

Table 5. MDH Kinematics Parameters of Knees and Ankles 

B. JOINT TRANSFORMATION MATRIX 

All joints in the human articulated structure are revolute rigid joints. That is why the 

inboard link length, inboard link twist, and outboard link offset are constant values. They 

can be set at the construction phase of the human figure. The only variable is the 

outboard joint angle. Because of the fact that two displacement and one rotation matrices 

don't change at run-time, constructing a transformation matrix for MDH notation may be 

an advantage against making unnecessary four matrix multiplications at run time. 

Another advantage occurs when a twist angle is defined as a right angle or a zero 

angle since either the sine or cosine of the angle will be zero in this case. For the joints 

that have more than 1 DOF, the order of DOF can be chosen arbitrarily. This helps to 

define twist angles for DOF of the same joints and consequent joints. It is possible to 

choose the order of DOF, as shown in Figure 8, so that all inboard link twist angles are 
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ninety degrees except for elbows that have a zero twist angle. This approach simplifies 

the transformation matrix for the MDH notation, because the transformation matrix uses 

the cosine and sine functions of the twist angle which are 1 and 0 in this case. Eq.(3.2) is 

correspondingly simplified in the following equations. 

T = 
cosGi -sinGi        0 
0 0-1 
sin0i cos0i       0 
0 0           0 

Tknee   = 

cos0i -sin0i 
0 0 

sin0i cos0i 
0 0 

ai-i 
-di 

0 
1 

0 HipLength 
-1 0 
0 0 
0 1 

(3.3) 

(3.4) 

For elbows, since °= i-i = 0, and consequently sin(°= i-i) = 0 and cos(°<= i-i) = 1, it 

follows that 5 

COS0i -sin0i 0 ai-i 

T = sin0i COS0i 0 0 
0 0 1 di 

0 0 0 1 
(3.5) 

Telbow   = 

cos0i -sin0i 0   upArmLength 
sin0i cos0i 0         0 
0 0 10 
0 0 0          1 

(3.6) 

Using Eq.(3.4) and Eq.(3.6) are more efficient than making four matrix 

multiplications at run-time. Other segment joints that have more than one DOF may also 

use Eq.(3.3) or Eq.(3.5) for the same reason. Another simplification occurs when it is 

recognized that human segments are drawn after applying all DOF transformations of the 

inboard joints. Instead of multiplying DOF transformation matrices of the same segment 

26 



joint at run-time, constructing one transformation matrix for each segment joint in the 

initialization process eliminates unnecessary matrix multiplications. The transformation 

matrix given by Eq.(3.7) is an analytic solution for segment joints that have 2 DOF. This 

solution is defined by multiplication of two transformation matrices that are in the form 

of Eq.(3.3). The transformation matrix for 3 DOF is also solved and given by Eq.(3.8). 

Abbreviations in these equations are "1" for "01", "2" for "02", "3" for "03", " c" for 

cosine function, and "s" for sine function. 

The T matrix for two consecutive joints where both inboard link twists are right 

angles is; 

cl*c2 -cl*s2 si cl*al +sl*d2 + a0 
-s2 -c2 0 -dl 
c2*sl -sl*s2 -cl sl*al-cl*d2 

0 0 0 1 

(3.7) 

The T matrix for three consecutive joints where all three inboard link twists are right 

angles is; 

T = 

clc2c3-sls3     -clc2s3 + c3sl    cls2    clc2a2+cls2d3+clal+sld2+a0 

-c3s2 s2s3 c2 -s2a2 + c2d3 + dl 

c2c3sl - cls3     -c2sls3 - clc3     sls2       c2sla2+sls2d3+slal-cld2 

0 0 0 1 

(3.8) 

Element multiplication may be simplified by defining common products as 

cl3=cl*c3, sl3 =sl*s3, cs31 =c3*sl, and csl3 =cl*s3. 
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The expression given by Eq.(3.10) and Eq.(3.11) provide specific segment joint 

matrices. The transformation matrix of the pelvis in Eq.(3.9) is applied to the whole 

human figure. It is the world coordinate of the articulated structure as a root segment. 

Tpelvis  = R3x3 
0     0      0 

0 
0 
0 
1 

(3.9) 

For waist, neck, wrist, and ankle, aO = al = a2 = 0 and dl is jointName_Y, d2 is 

jointName_X, and d3 is jointName_Z. This, 

TjointName = 

cl* s2*jointNameJZ + s\*jointNameJL 
O-   _     c2* jointName JL + jointName _Y 

0     0 
sl*s2* jointName JL - cl* jointName _X 

0        1 

(3.10) 

For shoulder and hip, al = a2 = dl =0, aO is jointName_X , dO is jointName_Y, and 

d2 is jointName_Z. Consequently, 

TjointName = 

cl*s2* jointName JL - jointName JL 
R3x3      c2* jointName _Z + jointName _Y 

s 1 *s2* jointName JL 
0     0      0        1 

(3.11) 

Hardware characteristics also need to be examined to decide whether using these 

matrices or making run-time matrix multiplication is better. Today, matrix multiplication 

is provided in hardware, which increases the computation speed of graphics systems. 

Therefore constructing these matrices in software may be more expensive than making 

multiplication of three 4x4-transformation matrices. On the other hand, a minimal 

articulated structure model has 10 segment joints that have 3 DOF. This means that 30 

redundant matrix multiplications are made to draw the human figure. If 150 human 
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figures are simulated in a large scale networked VE, a computer would make 4500 

redundant matrix multiplications. If the system used more complex models that have 

more joints with 3 or 2 DOF, the number of redundant matrix multiplications would 

increase. If matrix multiplication is implemented in software, 64 multiplication and 48 

additions are needed for only two 4x4-matrix multiplications. Reduction for the last 

redundant row results in 36 multiplies and 27 adds. The number of these computations 

for 4500 redundant 4x4-matrix multiplications are 162000 multiplies and 121500 adds. 

When segment joint transformation matrices are used for the minimal model, only 15 

matrix multiplications are calculated at run-time. While this sounds reasonable, a new 

challenge is the minimizing the computation for construction of segment joint matrices. 

C. DISPLACEMENT ELEMENTS 

Last column of the homogeneous matrix contains the displacement elements of the 

transformation. These are translations of the current joint on x, y, and z-axes of the 

previous joint local coordinates. From Eq.(3.8), the displacement elements are computed 

as: 

Translation_X = (cl*c2*a2) + (cl*s2*d3) + (cl*al) + (sl*d2) +a0 

Translation _Y = (-s2*a2) + (c2*d3) + dl 

Translation _Z = (c2*sl*a2) + (sl*s2*d3) + (sl*al) - (cl*d2) 

These computations are needed because transitions are calculated for frame 3 relative 

to frame 0, where all offsets and lengths are local to previous frames, not to frame 0. 

Defining segment translation relative to previous segments local coordinates eliminates 

these calculations. If these transitions are set at the initialization phase, no computation 

takes place for displacement at run-time. Even though jointName_X, jointName_Y, 

jointName_Z in Eq.(3.10) and Eq.(3.11) are local to frame 0, the articulated structure 

29 



Joint_X 
Joint Y 
Joint_Z 
1 

definition treats those constants as they are defined relative to in-between frames. This 

leads to unnecessary computations. A segment joint transformation matrix can be defined 

as in Eq.(3.12) whether it has 1, 2 or 3 DOF. The idea behind this is that every joint 

translates and then rotates on local coordinates of previous joint and by doing this, it 

defines its own local coordinates for its outboard segment vertices and next outboard 

segment joints. Thus, in general 

Joint_y\. 
R3x3       Joint_Y (3.12) 

0     0      0 

D. SUMMARY 

An articulated structure is a mathematical model that defines posture for human 

figures. Computation of this model is important for real-time systems, especially when 

large scale networked VE are constructed that can control and display up to 150 human 

figures at the same time. Making this structure static avoids all run-time computations 

that are needed for dynamic reconstruction of the hierarchy. Another issue is the 

mathematical model of the joints. While MDH notation is the most common method, it 

results in redundant matrix multiplication for the human body articulated structure. Using 

the segment joint transformation matrix that is given in Eq.(3.12) reduces the number of 

matrix multiplications. This approach also incorporates branching joints and links. 

Displacement elements are also defined more efficiently in the last method. In the first 

method, numbering and choosing DOF order is a complicated task and may lead to 

errors, while the second method is easier to understand and uses 15 segment joint 

coordinates instead of 37 frame coordinates. Rotation parts of the segment joint 

transformation matrices can be defined by two methods: Euler angles and vector-angle 
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pair. Quaternions provide another representation of vector-angle pair. The next chapter of 

this thesis compares quaternion and Euler methods with regard to the efficiency of the 

system. 
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IV. COMPARISON OF QUATERNION AND EULER ANGLE 

MODELS 

Transformation of moving objects is usually represented by a homogeneous matrix, 

which is a 4x4-transformation matrix. The idea behind this is that matrix formulation 

facilitates easy and efficient manipulation by a computer. On the other hand, all 16 

elements of this matrix are not needed to represent a transformation. Last row is trivial, 

but it is necessary to resize the matrix in square form. This allows calculation of the 

inverse of a homogeneous matrix. If a given system doesn't use the inverse of this matrix, 

3 transition elements and one 3x3-rotation matrix can represent a transformation. The 

first three elements of the last column include translation information and the embedded 

3x3-matrix represents rotation. Both Euler angles and vector-angle pair methods that 

represent a rotation can be formed in a 3x3-matrix, which is useful for the same reason as 

using homogeneous matrix forms. Today, many 3D graphic engines, such as OpenGL, 

use homogeneous matrices for transformations. 

Coordinate systems should be defined to apply translations. The coordinate system of 

the whole scene is called "world coordinates" and any coordinate system that a 

transformation creates is called the "local" coordinates of that transformation. For all 3D 

coordinate systems, the user defines 3 axes. The direction and name of these axes is very 

important for translations. Local axes are the transformations of world axes, so they have 

the same directions and names relative to the local origin. These definitions are also very 

important for Euler angle methods. It is possible to name these axes in different ways. In 

this study, world coordinate axes have the same directions and symbols with OpenGL 

definition, where x-axis is horizontal and the positive direction is right, y-axis is 
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perpendicular and positive direction is up, and z-axis goes into screen and positive 

direction is out. These names and directions are disagree with standard aerospace usage 

for earth-fixed coordinate systems that takes north, east and down directions as basic 

reference. This must be remembered whenever dynamic models on earth relative 

navigation are involved in a simulation study. 

A. INTRODUCTION 

The most common method that is used to parameterize rotations is to use Euler 

angles. While it is easy to understand for users, it is inadequate for representing all 

rotations. Another approach is the vector-angle pair, which eliminates many problems of 

Euler angles. However, this method isn't efficient for consecutive rotations. Quaternions 

define the vector-angle pair in another way, which adds new features to the 

representation. Both methods have pros and cons, which are discussed throughout this 

chapter. 

Euler angles describe rotation as a sequence of rotations about three mutually 

orthogonal coordinate axes fixed in space. These axes may be world or local coordinates, 

where rotations act on points in the space. Rotations do not rotate the coordinate axes, 

which remain fixed. The rotations are applied in a fixed order and subsequent rotations 

have the effect of rotating in space the axes about which the preceding rotations have 

been applied [WATT92]. There are 6 possible ways to order 3 sequential rotations on 

different axes. The precise order in which these rotations are applied lead to different 

orientations. Instead of fixing axes, these three axes may be embedded in each other like 

in a Gimbal mechanism. Then, outboard axes rotate inboard axes. This is what happens 

when MDH notation is used for a joint that has 3 DOF. For human segment motions in 
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this study, swing and bend rotations are applied on openGL x-axis, twist rotations are 

applied on openGL y-axis, and bow rotations are applied on openGL z-axis. 

A vector-angle pair describes a rotation by a rotation angle about a specific axis. This 

axis may be defined in any direction, but it passes through the origin of current 

coordinate system. This notation has 4 elements, 1 angle element (0) and 3 position 

elements (x, y, z) for the vector head that defines the rotation axis. The other 

representation of this method, the quaternion, was discovered by Sir William Hamilton in 

1843. Even though quaternions have been around for more than 150 years, the use of the 

unit quaternion gained popularity in the graphics community only in the mid 1980's. A 

quaternion is like a complex number with one real and three imaginary parts. While a 

complex number represents a rotation in two-dimensions, a quaternion represents rotation 

in three-dimensions. A vector-angle pair is included in its formulation. This notation is 

hard to understand and use, but it solves many problems of Euler angle methods. 

B. VECTOR ROTATION 

In this section, 4 types of product are used: scalar multiplication (*), vector dot 

product (.), vector cross-product (x), and quaternion product (®). Figure 9 represents the 

basic 2D rotation of a vertex in XY-plane. This rotation is solved analytically by using 

polar coordinate representation. Eq.(4.4) includes both polar and planar forms of the 

representation. Eq.(4.5) represents Eq.(4.4) in matrix form. 

Euler angles method defines the rotation on three body fixed orthogonal axes by 

extending 2D rotations to 3D for each axis. Figure 10 shows Euler angles rotations. 

Eq.(4.6), Eq.(4.7) and Eq.(4.8) represent individual rotation matrices. Matrix 

multiplication of these matrices produces rotation matrices for multiple rotations. Notice 
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that different sequences result in different rotation matrices. Eq.(4.9) is an example for 

rotation in the order of belly, side and nose. 

y2 

(xl.yl) 

xl X 

Figure 9: Rotation in 2D 

V|/2 =V|/1 +\|/ (4.1) 

r = sqrt( xl*xl + yl*yl ) = sqrt( x2*x2 + y2*y2 ) (4.2) 

( xl, yl) = r* ( cos \j/1, sin \|/1) (4.3) 

( x2, y2 ) = r *( cos \\f 2, sin \|/ 2 ) 

= r* (cos (\|/ 1 + \|/), sin (\|/1 + \|/)) 

= r* ( cos \y 1 * cos \\f - sin \j/ 1 * sin \|/, cos \|/1 * sin \j/ + sin \|/1 * cos \|/) 

= ( xl* cos \j/ - yl* sin \|/ ,    xl * sin \|/ + yl * cos \\f) (4.4) 

x2 

y2 

C\J/   -s\(/ 

S\|/     C\|/ 

xl 

yi 

(4.5) 

Figure 11 demonstrates the other method, rotation by vector-angle pair. By using 

vector algebra, Eq.(4.14) is computed. Further solution is possible by replacing p and v 

with coordinate values. Vector pi is the projection of p on v. 

36 



Y (side / elevation)      f 0 
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Figure 10: Euler Angles 

1 
0 
0 

0 
ccp 
scp 

0 
-scp 
ccp 

(4.6) 

ce 
0 
s0 

0 
1 
0 

-se 
0 

ce 
(4.7) 

—" 

cy -sv|/   0 
S\|/ 

0 
c\j/   0 

o    1_ 

c\j/*ce 
sy*ce 

-se 

(4.8) 

scp *s0*c\|/ - ccp *s\j/ 
SCp*se*S\|T + CCp* CVJf 

scp *c6 

ccp*s6*c\|/ + scp*s\|/ 
ccp*s6*s\|/ - scp*c\|/ 

ccp*c6 
(4.9) 

p2 

*'p3 

Pi 

Figure 11: Vector-Angle Pair, (p is rotated on v by 6) 
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pi = lpl*cos( <pv )*( v/lvl) = (p.v)*v (4.10) 

p2 = p-pl =p-(p.v)*v (4.11) 

p3=pxv (4.12) 

p2_rotated = (cos 8)*p2 + (sin 9)*p3_rotated (4.13) 

p_rotated = pl_rotated + p2_rotated 

= (p.v)*v   + (cos 6)*(p - (p.v)*v) + (sin 0)*(p x v) 

= (cos 9)*p + (1-cos 0)*(p.v)*v + (sin 6)*(p x v) (4.14) 

The quaternion representation for vector-angle pair is the hardest one. People are used 

to Euler-angles that make sense to imagine orientation of the object. But with a 

quaternion, it is impossible to imagine orientation. At the same time, visual 

demonstration of how the quaternion makes a 3D rotation is also impossible. Actually, a 

quaternion makes the same rotation as in Figure 11, but with a different approach. To 

understand quaternions, the representation and algebra of this notation should be covered. 

Eq.(4.15) gives various representations of quaternions. Eq.(4.16), Eq.(4.17), Eq.(4.18), 

and Eq.(4.19) introduce the quaternion product for imaginary parts. Notice that it is 

different than vector cross product. It has a cyclic permutation i->j->k->i. Eq.(4.20) and 

Eq.(4.21) shows scalar product and quaternion addition respectively. The most important 

operation is the quaternion multiplication Eq.(4.22.), which allows a quaternion to rotate 

vectors in 3D space. Eq.(4.23.) is the quaternion product for the other representation of 

quaternion. 

Representation : 

q=(w, v) = (wxyz) = w+ x*i +y*j +z*k (4.15) 
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Imaginary part properties (i, j, k have the value sqrt(-l)): 

i®i = j®j = k®k = -l (4.16) 

i®j = k = -j®i (4.17) 

j®k = i = -k®j (4.18) 

k®i = j = -i®k (4.19) 

Operations : 

s * q       = ( s*w, s*v ) (4.20) 

ql + q2 = ((wl+w2) (xl+x2) (yl+y2) (zl+z2)) (4.21) 

ql ® q2 = ( wl*w2 - vl.v2, wl*v2 + w2*vl + vl x v2 ) (4.22) 

= (wl*w2-xl*x2 -yl*y2-zl*z2) 

+ (wl*x2 + xl*w2 + yl*z2 - zl*y2 ) 

+ (wl*y2- xl*z2 + yl*w2+zl*x2) 

+ (wl*z2 + xl*y2 - yl*x2 + zl*w2 ) (4.23) 

Conjugate : 

q   =(w,-v) (4.24) 

Norm        : 

N(q) = q®q* = w*w + Ivl * Ivl = w*w + v.v = Iql * Iql (4.25) 

Magnitude : 

M(q) = sqrt( N(q) ) (4.26) 

Normalized unit quaternion: 

q/M(q) (4.27) 
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Quaternion inverse: 

(normal)       qr^q/Ntq) (4.28) 

(Unit quat.) q   = (f (4.29) 

Eq.(4.29) is also one of the most important properties of the quaternion, which 

permits the use of Eq.(4.24) to obtain the inverse of a unit quaternion and gives an 

advantage to the system in computation speed. 

Quaternion multiplication of two quaternions results a new quaternion that represents 

rotation of first quaternion by the second one Eq.(4.30). Eq.(4.22) has a vector cross- 

product (vl x v2), which means quaternion product is not commutative Eq.(4.31). But it 

is associative Eq.(4.32). To rotate a vertex by a quaternion, 3 steps are taken. First, vertex 

is written in quaternion form by adding a 0 scalar part Eq.(4.33). Second, the quaternion 

is normalized and formed in a unit quaternion Eq.(4.34). Last step is the applying 

Eq.(4.35). This equation uses inverse of the unit quaternion, which is an efficient 

computation. Another useful rule is that quaternion multiplication of two unit quaternion 

always results a single unit quaternion. This is so important for efficient computation to 

apply rotation consequences. Rotations are expressed in body fixed coordinates. 

quaternion (ql) is rotated by quaternion (q2) : 

ql_rotated = ql ® q2 (4.30) 

ql®q2*q2®ql (4.31) 

ql®(q2®q3) = (ql®q2)®q3 (4.32) 

vertex (p) is rotated by quaternion (q): 

quat_p = (0, p) (4.33) 

unit_q = q / M(q) (4.34) 
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rotated_quat_p = unit_q ® quat_p ® unit_q" = ( 0, rotated_p ) (4.35) 

vertex (p) is rotated by vector (v) -angle (0): 

q = (cos(9 IT), sin(6 II) * v) (4.36) 

Eq.(4.36) gives the representation of a vector-angle pair by a quaternion. This helps 

to imagine quaternion rotation. Because, it is possible to extract vector-angle pair form 

quaternion definition or to input quaternion to the system as a vector-angle pair. If 

analytic solution is made for Eq.(4.35) by using Eq.(4.36) and Eq.(4.22), result is the 

same withEq.(4.14) for rotated_p, Eq.(4.37). 

rotated_quat_p = ( 0, (cos0) p + (l-cos6) (p.v) v + (sin6)(p x v)) 

= ( 0, rotated_p ) (4.37) 

In composing successive quaternions to obtain the resultant total rotation quaternion, 

it is important to remember that rotation about body-fixed axes multiply on the right 

while rotations about earth fixed axes multiply on the left, of course, the same is also true 

of matrix representation of rotations. 

C. CONVERSION TO HOMOGENEOUS MATRIX 

Next step is to define homogeneous matrices with these methods. Eq.(4.9) gives the 

rotation matrix of 3 Euler angles. Eq.(4.38) is constructed by adding displacement 

elements to this matrix. As mentioned before, a redundant last row is also added. 

Simplifications are made to gain computation speed ( ccpy =c(p*ciy, s(p\|/ =sq>*s\|/, 

cs\|/(p =c\y*s(p , and cscpxj/ =c<p*s\y). 

R\|/R9R(p = 
c\|/*c6 cs\|/(p *s6 - cscpy 
s\j/*c0 s(f>\|/ *s0 + ccp\)/ 
-s0 scp *c0 

0 0 

c(p\|/ *s0 + scp\|/ X 
cs(p\|/ *s0 - csv|/cp Y 

ccp*c0 Z 
0 1 

(4.38) 
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The second method, vector-angle pair, is given by Eq.(4.14). Further analytical 

solution of this equation produces the matrix form of this rotation. Eq.(4.40) represents 

the simplified matrix form for vector-angle pair rotation. Eq.(4.39) is used in OpenGL for 

transforming objects. 

R( v(x,y,z), 9 )= 
x*x*(l-c0)+c0 y*x*(l- c0)+ z*s0 x*z*(l- c0)+y*s0 X 
y*x*(l-c0)+z*s0 y*y*(l-c0)+c0 y*z*(l- ce)+ x*s0 Y 
z*x*(l-c0)+y*s0 y*z*(l-c0)+x*s0 z*z*(l-c0)+c0     Z 

0                                  0 0 1 
(4.39) 

Simplifications are made as ci =l-c0, xyci = y*x*ci, xzci = z*x*ci,      zyci = y*z*ci, 

xs = x*s0, ys = y*s0, and zs = z*s0. The result is: 

R( v(x,y,z), 0 ) = 
x*x*ci + c0 xyci + zs xzci + ys X 
xyci + zs 
xzci + ys 

0 

y*y*ci + c0 
zyci + xs 

0 

zy ci + xs 
z*z*ci + c0 

0 

Y 
Z 
1 

(4.40) 

Eq.(4.35) gives quaternion rotation for a vertex. Analytic solution of this equation 

can be done by using Eq.(4.23). This solution results the 3x3-matrix form of the rotation 

embedded in Eq.(4.42). 

-l 
R = [ q®i®q q®j®q q®k®q (4.41) 

or 
1. 2*y*y - 2*z*z 2*x*y - 2*w*z       2*x*z + 2*w*y 

R( w, v(x,y,z)) =\  2*x*y + 2*w*z 1- 2*x*x - 2*z*z    2*y*z + 2*w*x 
2*x*z . 2*w*y 2*y*z - 2*w*x     1- 2*x*x - 2*y*y 

0 0                            0 

X 
Y 
z 
1 

(4.42) 

Simplifications are made as xx = x*x, zz = z*z, yy = y*y, xy = x*y, zy = z*y, 

xz = x*z, wx = w*x, wx = w*x, and wx = w*x, resulting in: 

R( w, v(x,y,z)) = 
l-2*(yy+zz) 2*(xy-wz) 2*(xz-l-wy) X 
2*(xy + wz) l-2*(xx+zz) 2*(yz-wx) Y 
2*(xz-wy) 2*(yz-wx) 1-2*(xx+yy) Z 

0                       0                     0 1 

(4.43) 
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Even though all three notations may use other formulations instead of using 

homogeneous matrix form, computation efficiency for construction of segment joint 

transformation matrices are discussed in this section because of the reasons reviewed in 

Chapter III. Figure 12 shows a graph to compare three notations for rotating a segment 

joint that has a 3 DOF. This rotation also represents the orientation, because it is relative 

to the origin of the local coordinate system. Notice that quaternion notation doesn't use 

trigonometric functions, which is an advantage for computation speed. 

The quaternion normalization process also adds extra computation. But as 

mentioned before successive quaternion products of unit quaternions results in a unit 

quaternion, which means that normalization is not needed in each step, but only 

periodically, to correct for accumulated round off effects, 

INPUT - hard 

MEMORY -4 unit 

INPUT - easy 

MEMORY -4 unit 

Rotating a 
point 
—*- 
(Vector) 

* 1    : 16 

Trig. :6 
+,-      : 12 
without last 

*,/ : 12 row 

+,- :4 
»9, +9 

INPUT - easy 

MEMORY -# of DOF (1,2,3) unit 

Figure 12: Comparison of Methods for an Orientation 
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Another important comparison of notations is for rotations on existing orientations. 

Existing orientations and applied rotations are used to compute the new orientations. A 

pair of Euler-angles that each represents 3 DOF can be added to compute total rotation, 

but there are many combinations of these additions. Matrix multiplication of two 

homogeneous matrices may be a solution for this. Rotations of two vector-angle pair can 

be merged by using two homogeneous matrices, or they can be converted quaternion to 

create single unit quaternion. The last approach is more efficient [Figure 13]. 

Trig. :6 

*,/ : 12 

+,- :4 

Figure 13: Comparison of Methods for a Rotation from an Existing Orientation 
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D. INTERPOLATION AND SINGULARITY 

A software system may interpolate between two orientations to fill the gaps in 

motion. Interpolation is very important for key frame systems. Motion should be smooth 

in the desired direction and speed. For rotating objects, all three notations (Euler angles, 

vector-angle pair and quaternion) may be used to define the key frames. 

If Euler angles used for joints that have more than 1 DOF, motion between two key 

frames will be undefined unless some constraints on Euler angle rates are applied, such 

as, for example linear interpolation of all angles. Even in such as a case, however, a 

change in the order of rotation axis will produce a different motion. Euler angles are 

therefore undesirable for interpolation and should be converted other forms for 

interpolation purposes. This adds extra computation at run time. 

Figure 14 shows the singularity of Euler angles. When the elevation angle reachs 90 

or -90 degrees, 1 DOF is lost. Specifically, roll and azimuth have the same effect. In this 

case, only two angles are needed to specify the orientation of a rigid body. For example, 

elevation angle (pitch) and the azimuth (heading) of the belly vector of the body are one 

such set of angles. 

Figure 14: Gimbal Lock (Airplane is attached to innermost ring) [WEBREF3] 
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Two vectors can represent two orientations of a rigid body. These two vectors lie in a 

single plane in 3D. Rotation about the normal vector of this plane guarantees a smooth 

rotation independently of the choice of the coordinate systems or Euler angles. If vector- 

angle pairs define orientations, calculating the normal vector and rotation angle requires 

computation time. On the other hand, there is an efficient way to interpolate between two 

quaternions. Two vector-angle pairs can use this method after being converted to two unit 

quaternions. Spherical interpolation between two unit quaternions, ql and q2 is given by 

[WATT92]. The parameter u in Eq.(4.45) is increased from 0 to 1 during interpolation, 

ql . q2 = cos Q. (4.44) 

q(u) = ql*sin((l-u)*ß)/sinQ     +   q2* sin(Q*u) / sin Q. (4.45) 

In the above, a problem occurs for the direction of interpolation. Every 3D rotation 

has two representations in quaternion space. The effect of q and -q are the same. This 

means that interpolation can be computed using either quaternion, which causes two 

motions in opposite directions during interpolation. To solve this ambiguity, 

interpolations should occur either between quaternion pairs ql and q2 or ql and -q2 for 

the shortest path [WATT92]. Another potential problem arises as Q. is 0 or n since in this 

case sinQ is 0. However, this problem is not real, since in this case, interpolation is not 

needed. 

Another advantage of the quaternion method comes up when the system uses body 

rates. An example is rigid body dynamics. A state chart for such a computation is shown 

in Figure 15. This system computes linear and angular velocities in earth coordinates by 

using linear and angular accelerations in body coordinates. Eq.(4.46) represents the 

matrix to calculate angular rates in earth coordinates for Euler angle methods. This 
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equation can be understood by observing Figure 14. Analytic solution of this matrix 

results Eq.(4.47). The secant function introduces the singularity problem of this approach, 

when G is 90 degrees. 

State Vector 

ngular velocity^ 
in body coord. 

(pqr) 

Derivative of 
State Vector 

_^  Linear velocity 
in world coord. 

/Linear acceleration^ 
\^in body coord 

(ngular accelerations 
in body coord. 

Figure 15: Loop for Rigid Body Dynamics 

Ev (cp 6 \|/): Angular velocity in earth coordinate 

Bv ( p q r): Angular velocity in body coordinate 

Ev   = R\|/ R6 

—       -*~ —   — — ~~* 

<P 0 0 

0 + Ry e + 0 

0 0 _v 

= R\|/ R6 R(p Bv (4.46) 
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<P 

e 

1 tan9*sinq>      tan9*coscp 

0        coscp -sincp 

0        sec0*sin(p       sec6*cosq> 

P 

q (4.47) 

On the other hand, as shown by Eq.(4.48) below, the quaternion method shows no 

singularity to convert body rates to earth coordinates [COOK92]. 

q-earth = q ® ( 0 p q r) / 2 (4.48) 

E. CONSTRAINT DEFINITION 

Computer simulation of articulated bodies may involve constraints on motion. One 

important type of constraint is the joint angle constraint. For example, an animator can 

work easier after defining joint angle constraints, so impossible motions are disregarded 

or corrected by the simulation system. Another example is motion-tracking systems, 

where system software checks sensor inputs for validity. Defining joint constraints by 

quaternions is almost impossible, because a quaternion is a 4D vector and doesn't have a 

graphical representation. Vector-angle pairs may be used for constraint definition. But a 

more intuitive way is to use Euler angle methods. Table 1-5 in Chapter HI gives 

constraints for each joint DOF. They are reasonable and understandable. But these 

constraints, as given are not realistic for human motion. This is because joint motion 

limits are not independent. For example for the human shoulder joint, the maximum 

values for roll and elevation depend on each other and also upon shoulder azimuth. 

In addition to such considerations, constraints should also prevent segment 

collisions. If a system uses quaternions to represent joint orientations, conversion to Euler 

angles should be done to set constraints at run-time. This can be accomplished by 
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computing an equivalent rotation matrix for the quaternion, and then solving the inverse 

kinematics problem for the matrix to obtain Euler angles. 

F. HARDWARE, SOFTWARE AND NETWORK CONSIDERATIONS 

Existing hardware implementations and 3D graphic APIs support matrix forms and 

multiplication, as an important advantage for real-time systems. This is why the 

homogeneous matrix computation is useful and most common. On the other hand, the 

quaternion method may be used without converted to homogeneous matrix notation. This 

approach uses some advantages of unit quaternion methods. A quaternion can be 

normalized with a minimal amount of computational expense, whereas normalization of a 

rotational matrix requires substantially more effort. In a situation where continuous 

chains of transformational products are relatively rare and highly parallel hardware is 

available, homogeneous matrices may prove superior to quaternion/vector pairs. 

Conversely, if the nature of a computation necessitates frequent renormalization of 

rotational operators, then the quaternion/vector approach arises as the better alternative 

[FUND90]. Notice that Euler angles have to be converted to homogeneous matrix form to 

be normalized. 

Inserting human models into networked synthetic environments necessitates the 

exchange of posture information between network nodes. Posture information in a 

protocol data unit (PDU) includes all DOF of an articulated rigid body. Another approach 

is sending only the updated DOF. But the last method needs extra computation for 

packing and unpacking of PDUs, which makes the first method better. The number of 

bytes representing articulation of a minimal model is 34 when Euler angles method is 

used. This number becomes 56 when quaternions are used. The difference is 22 bytes and 

increases when complex articulated bodies are used. The quaternion method adds 1 byte 
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for 3 DOF, 2 bytes for 2 DOF and 3 bytes for 1 DOF to the number of bytes needed by 

Euler angle methods. When more than 150 humans are inserted to a simulation, the 

quaternion representation requires 3300 extra bytes for minimal articulated bodies. 

G. USER INTERACTION 

When low level-motion control systems are used, user interaction techniques for all 

three notations should be defined. Input boxes or a script console may be used for vector- 

angle and Euler methods. But quaternion numbers don't make sense to an animator. 

Using a mouse as an interaction device and choosing 2D graphical interaction is the 

most common way used today for human figure control. Objects may be embedded in 

their local coordinate circles to make visual perception much stronger. Figure 16 shows 

an intuitive way for vector angle pairs. 

Figure 16: A 2D Graphical Interaction Method for Vector-Angle Pair 
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In this system, mouse inputs are used to rotate the whole world when the mouse is 

moved, and the same motion defines a 2D angle when mouse button is first clicked on a 

segment. Angles are calculated by converting of mouse cursor position from screen 

coordinates to world coordinates. This is achieved by reversing the projection process. 

An angle is measured on a plane that is parallel to the screen and passes through a joint 

origin. The vector is perpendicular to the screen and the direction is out. This method 

may also be used for quaternion notation after a vector-angle pair is converted to a unit 

quaternion. Actually this interaction lets the user experience the advantages of unit 

quaternions. 

Another method for low-level inputs is to use motion-tracking systems. Miniature 

angular rate sensors may be used to measure angular rates of individual human segments 

in body coordinates with drift connection from accelerometers and magnetometers. When 

a system uses these inputs to calculate posture information in earth coordinates, Euler 

angles method fails for 90 degrees rotation on second axes. Using quaternions overcome 

this singularity [DUMA99]. 

H. SUMMARY 

All three notations have cons and pros. A system may use a combination of all for 

optimization purposes. From a computation perspective, quaternions seem to have some 

advantages. But these advantages are not so decisive and may be lost when hardware 

implementations for matrix notation are considered. Look-up tables may be added to a 

software system for trigonometric functions. The quaternion method eliminates the 

singularity problems of the Euler angle method. The Euler angle method is inadequate for 

interpolation, but it is better for construction of PDUs and to set constraints for joints. 
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V. FORWARD AND INVERSE KINEMATICS 

Kinematics models were developed and used by researchers in robotics long before 

computer graphics came along, and so there is a wide body of literature devoted to them 

[CRAI89]. All kinematics models specify motion independent of the underlying forces 

and include all geometrical and time related properties of motion, such as position, 

velocity and acceleration. Kinematics animation of articulated structures usually falls into 

one of two categories: forward and inverse kinematics. Both have been used in computer 

animation. 

A. DEFINITION 

In forward kinematics, all transformations are specified to control motion of an end 

effector. This is simple and has low computation requirements. The importance of 

interactive real-time design in animation makes forward kinematics systems attractive. In 

this approach, the animator has direct control over the figure's position. All issues that 

are introduced in Chapter HI and Chapter IV of this thesis are related to forward 

kinematics. This chapter introduces inverse kinematics and compares both methods. 

In inverse kinematics, a goal position and orientation is specified for the end effector 

and the system computes the transformations required to achieve this goal. This is also 

called "goal directed motion" since the animator only specifies the end effector's position 

and orientation. The system software then solves for set of joint angles that place the end 

effector in the desired posture. This method is generally very expensive with expect to 

computational requirements. However, the importance of automatic motion control 

makes inverse kinematics systems attractive for some applications, where movement of 

an end effector drives the animation. In such cases, forward kinematics solutions are 
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counterintuitive and tedious. Inverse kinematics can be used where precise motion 

control is not required, as with, for example, autonomous agents in a networked virtual 

training and simulation environment. 

Hybrid models may be constructed by using both methods. For example, arms and 

legs can be controlled by inverse kinematics, while the torso and neck are simulated by 

forward kinematics. Inverse kinematics algorithms can compute orientations of the 

shoulder, elbow and wrist to reach an object in space. Leg motions are also computed in 

the same way to control the interaction between toes and the ground. Another example is 

a human figure sitting on a bicycle. The end nodes of the hands are constrained to be on 

the handles and those of the feet to the pedals. As the pedals are made to revolve, or as 

the handle bar turns, then the feet and hands follow accordingly [WATT92]. 

B. COMPUTATION 

Both methods become harder to use as the complexity of the articulation increases. 

Complexity can increase due to an increase in the number of DOF and number of links. 

Chapter III introduces computational issues of forward kinematics. While forward 

kinematics should check joint constraints and collisions, inverse kinematics should 

additionally check reachable space. 

Inverse kinematics solutions are grouped into two broad classes: closed form 

solutions and numerical solutions. Numerical solution is a whole field of study itself and 

is beyond the research of this thesis, but some computational issues of this method are 

discussed below. A numerical solution is also called an iterative solution. This method 

uses the relation between end effector velocities and state variable rates. In generally, if X 

is end effector state vector (position and orientation) and 0 is system state vector 
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(orientations of in-between links), there is a function f of 6 to compute X, which is given 

as: X = f(0). The derivative of both sides of this equation gives a relation between 

velocities ( dX = J(6)d6 ). The matrix J is called the Jacobian, which maps velocities in 

state space to velocities in cartesian space. The general inverse kinematics problem is 

given as: G =f (X). But the function f is highly nonlinear, rapidly becoming more and 

more complex as the number of links increases, and so the inversion of this function soon 

becomes impossible to perform analytically. The problem can be made linear, however, 

by localizing about the current operating position and inverting the Jacobian to give: 

-1 
do =J    dX [WATT92]. The matrix J can be constructed by the information extracted 

from transformation matrices that already exist in the graphics pipeline. The first problem 

is that J is not square in many cases. In such cases pseudo inversion techniques can be 

used to compute J   . Iterating end effector state variables, described as dX, is the second 

problem, which needs extra computations to correct tracking errors. Singularity problems 

and joint constraints are other issues to be solved when an end effector is iterated. 

Because of these problems, numerical solutions are much slower than the corresponding 

closed form solution and not preferred in many cases. They are not always real-time and 

lead to only one solution even though there is more than one solution to reach the goal in 

many cases. 

Closed form solutions are based on analytic expression and can be hard coded, which 

is real-time and more preferable. This method is also grouped into two sub classes: 

algebraic and geometric solutions. The two methods differ perhaps in approach only 

[CRAI89]. The problem of closed form solutions is that when the number of joints 

increases, the inverse kinematics problem is generally not solvable. When a manipulator 
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has less than six degrees of freedom, it cannot attain general goal positions and 

orientations in 3D space. In many realistic situations, manipulators with four and five 

degrees of freedom are employed which operate out of a plane, but clearly cannot reach 

general goals. A sufficient condition that a manipulator with six revolute joints will have 

a closed form solution is that three neighboring joint axes intersect at a point [CRAI89]. 

Another problem is that the more nonzero link parameters there are, the more ways there 

will be to reach a certain goal. Only one solution should be chosen at run time, which 

necessitates extra algorithms and computations. 

Figure 17(a) shows a human arm with 6 DOF, where the shoulder has 2 DOF, the 

elbow has one DOF and the wrist has 3 DOF. The third segment translation, d2, is on the 

fourth axis. Thus, the translation d2 and rotation 94 has the same effect as rotation 64 is 

applied before d2 displacement. This allows the alternative of a 2 DOF elbow. Figure 

17(b) shows this change. Eq.(5.1-6) give transformation matrices for Figure 17(b). 

1 ^ 1 

f  dl >  dl 

>  d2 >■  d2 

(a) (b) 

Figure 17: Human Arm 
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The position and orientation of a hand is defined by matrix multiplication in the 

order of Rl, R2, Tl, R3, T2, R4, R5, and R6. This multiplication can be re-ordered as Rl, 

R2, Tl, R3, R4, T2, R5, and R6. Consequent homogeneous matrices are defined as HI, 

H2, H3 H4, H5, and H6 as follows: 

H1=R1 = 

H2= R2 

10 0      0 
0 cl -si      0 

0 si cl      0 
.0 0 0      1. 

c2 -s2 0    0 
s2 c2 0    0 
0 0 10 
0 0 0     1 

H3 = Tl R3 = 
c3 -s3 
s3 c3 
0 0 
0 0 

0 
0 
1 
0 

0 
dl 
0 
1 

H4= R4 = 
c4 
0 

-s4 
0 

0 s4 0 
1 0 0 
0 c4 0 
0 0 1 

H5 = T2 R5 = 
1 0 
0 c5 
0 s5 
0 0 

0 
-s5 
c5 
0 

0 
d2 
0 
1 

H6=   R6 = 
c6 
s6 
0 
0 

s6 0 0 
c6 0 0 
0 1 0 
0 0 1 J 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Notice that 1 DOF (twist) has been omitted at the shoulder, which may be important 

for some applications that necessitate accurate representation of human motions. Since, 

axis 4,5 and 6 are intersecting, there is a solution for this system that has 6 DOF. Eq.(5.9) 

and Eq.(5.13) can be computed by using Eq.(5.7) and Eq.(5.8). The approach in this 
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method is the inverting homogeneous matrices in specific order, bringing to the left side 

and solving for the equation where there is only one unknown. If no more equations can 

be found, invert next matrix and solve further. Eq.(5.17) is found after second step 

Eq.(5.14). Last step is given by Eq.(5.18-19), which allows the solution of angle 4 

through angle 6 Eq.(5.21-27). 

H = TR=>  H = RT=RT (5.7) 

HI _1 Hhand = H2 H3 H4 H5 H6 (5.8) 

Angle 1 = arctan (Dz/Dy) (5.9) 

a = -2*dl*(cl*Dy + sl*Dz) (5.10) 

b = 2*Dx*dl (5.11) 

c = d22 - dl2 - Dx2 - (cl*Dy + sl*Dz) 2 (5.12) 

Angle 2 =arctan(b/a) ± arctan(V(a2 +b2 -c2) / c) (5.13) 

H2_1  Hi" Hhand = H3 H4 H5 H6 (5.14) 

s3 = (c2*Dx + s2*cl*Dy + s2*sl*Dz) /-d2 (5.15) 

c3 = (-s2*Dx + c2*cl*Dy + c2*sl*Dz-dl ) 162 (5.16) 

Angle 3 = arctan( s3 / c3 ) (5.17) 
-i       -i -l -l 

H4      H3      H2       HI    Hhand = H5 H6 (5.18) 
-l       -l -l 

(R3R4)    Tl       (H1H2)     Hhand = H5 H6 (5.19) 

0  = c4*( Dx*c23 + s23*((cl*Dy) +(sl*Dz)) - dl*s3 ) - s4*(-sl*Dy + cl*Dz)    (5.20) 

Angle 4 = arctan( ( Dx*c23 + Dy*s23*(cl+sl) - dl*s3 ) / (-sl*Dy + cl*Dz) )    (5.21) 

c5 = s4*( Ax*c23 + s23 *((cl*Ay) +(sl*Az)) - dl*s3 ) + c4*(-sl*Ay + cl*Az) (5.22) 

s5 =s3*(c2*Ax + cl*s2*Ay + sl*s2*Az) 
- c3 *(-s2*Ax + cl*c2*Ay + sl*c2*Az -dl ) (5.23) 

Angle 5 = arctan( s6 / c6 ) (5.24) 
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c6 = c4*( Nx*c23 + s23 *((cl*Ny) +(sl*Nz)) - dl*s3 ) - s4*(-sl*Ny + cl*Nz) (5.25) 

s6 = -c4*( Ox*c23 + s23 *((cl*Oy) +(sl*Oz)) - dl*s3 ) + s4*(-sl*0y + cl*Oz) (5.26) 

Angle 6 = arctan( s6 / c6 ) (5.27) 

This solution can be applied to both arms. A similar solution can be found for the 

legs, where the twist motion of hips has been omitted in this model. The solution of all 

these equations are specified for the given axis order. If the drawing system uses a 

different axis order, extra computations are needed to switch between different axis 

systems. This is because the solutions above are based on Euler angles. There isn't a 

similar study for algebraic solution of quaternions. [FUND90] uses quaternion/vector pair 

for a formalism to solve the inverse kinematics problem for a six-jointed revolute 

manipulator with a spherical wrist. This is a quaternion-based solution to compute Euler 

angles. 

C. SENSOR PLACEMENT 

One of the important application areas that use human figure models is motion 

tracking systems. These systems may use both forward and inverse kinematics. Actually, 

choosing one or the other is a trade-off for realism. Figure 18 shows an inverse 

kinematics approach. Four sensors are used to track the human upper body. The 

advantage of this approach is that user encumbrance is reduced by using a minimal 

number of sensors. The disadvantage is that more computations are needed. Also, 

because of multiple solutions, the result may be inaccurate. The position of end-effectors, 

the hand's position in this case, must be tracked as well as orientations, which is another 

disadvantage. 
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A second approach is introduced in Figure 19. Using 15 sensors, it is possible track 

each limb segment by using forward kinematics. The system tracks only one segment's 

position and needs only the orientations of all other segments. [SKOP96] demonstrates 

the tracking of an arm in real-time by using forward kinematics. [SKOP96] also uses 

inverse kinematics solutions to determine joint angles associated with physical limb on 

which the tracker is mounted. This is because of his use of solutions based on Euler 

angles. Another approach is to use quaternions. [DUMA99] explains a quaternion filter 

that computes a unit quaternion from sensor data. When quaternions are used for a 

forward kinematics approach, there is no need for inverse kinematics computations. 

Figure 18: A Minimally Sensed Human        Figure 19: Proposed Hybrid Human 
[SKOP96] Tracking Sensor Config.[FREY96] 
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D. SUMMARY 

Both forward and inverse kinematics have application areas in computer graphics. It 

is also possible to model a human articulated rigid body system with inverse kinematics. 

But the main concern is that some DOF may need to be omitted for real-time animation. 

Inverse kinematics solutions will also lead to multiple postures and system software will 

choose one of them, which may be inaccurate in special cases. Iterative solutions can be 

used when human models are used in non real-time applications. Another problem with 

the iterative approach is that the end effector path must be well defined. In many cases, 

an animator needs to switch to forward kinematics to correct inverse kinematics 

solutions. 

[FREY96] shows that an entire human body can be tracked by using only orientation 

data for each body part. This result eliminates the need for human body motion capture 

systems to track the position of each body part as well as the need to create highly 

complex kinematics models of the human body based on joint angles. Using unit 

quaternion data simplifies the system further and permits the construction of an 

articulated body that doesn't use inverse kinematics computations [DUMA99]. 
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VI. IMPLEMENTATION AND RESULTS 

The simulation program of this thesis is developed by using OpenGL and GLUT 

libraries and allows a user to define human figure postures by means of mouse inputs. 

Further, in this thesis, a key frame animation system is also developed to interpolate 

between user-defined frames. Both forward kinematics algorithms in [WATT92] and 

inverse kinematics algorithms in [BEDI97] are used to demonstrate walking of the figure. 

The main purpose of the program in Appendix B is to build the human articulated 

structure with quaternions. Approaches to define user interaction and joint constraint 

definition for quaternions are represented in detail in following paragraphs of this 

chapter. 

There are currently 20 classes in the program (Figure 20). The main class is 

GlutBaseClass uses GLUT library and constructs a window to draw the human figure 

and to collect user inputs. Sub-main classes are Human, UserControl, ProceduralAnim 

and KeyFrameAnim classes. These classes are static and instantiated once. Three types of 

control of the figure are implemented in the last three sub main classes that have a pointer 

to a human object for direct manipulation. The KeyFrameAnim object stores and 

manages the orientation key values of segments in Posture objects as quaternions, and 

interpolates between currently stored frames for animation. The ProceduralAnim object 

controls the human figure for walking. The UserControl object tracks mouse motion and 

creates manipulation of segments, depending on user choice of control type. Control 

types are forward kinematics with Euler angles, forward kinematics with quaternions and 

simple algebraic inverse kinematics. The UserControl object feeds back user inputs by 

animation of a GimbalSystem object for Euler angles and by animation of Cursor3D 
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objects for quaternions and inverse kinematics. Menus that are represented by 

GlutBaseClass allow choices for control type, scene navigation type, and segment shape. 

The GlutBaseClass also animates a floor object trivially to demonstrate walking. 

Another control type uses sensor inputs. [DUMA99] demonstrates a quaternion 

filter, which produces a unit quaternion by using three types of sensors. This system can 

track a human segment in real-time. His Qaef object is embedded into a SensorSytem 

object, which tracks the upper-arm of the human figure. 

Inverse 
Kinematics 

Cursor3D 

Circle 

KeyFraml 
Posture 

H Matrix 

S4 Triangle 
FaceSet 

H Matrix3DOF 

A 
Quaternion H MatrixlDOF 

Figure 20: Object Diagram of the Human Program 

A. HIERARCHY 

The Human object has the interface for manipulation of human figure. Hierarchy 

details and algorithms are embedded into this object or in its component object classes. A 
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human object initiates 16 segment objects and 15 joint objects. The Joint objects manage 

joint vertices trivially and may be removed for computational speed. Segment objects 

have a TriangleFaceSet object, which reads polygon vertices from a file for that segment 

shape. Segment shapes are originally parts of a VRML object that is downloaded from 

the Internet. These shapes may be drawn in wire-frame or smooth shaded modes. A Box 

object is defined for the outer bound of each shape. Box objects are used for two 

purposes: drawing stick figures and detecting mouse clicks. 

The hierarchy between segment objects is hard coded in the Human class (Figure 21). 

Notice that this structure is static. If dynamic hierarchy management is required, a new 

class should handle Figure 21 as a tree structure. 

void Human::draw() 
{ 

//Root 
drawRoot(); 
glPushMatrix(); 

//Body 
drawBodyO; 

glPushMatrix(); 
//Neck and Head 
drawHead(); 

glPopMatrix(); 
gIPushMatrixO; 

//LeftArm 
drawLeftArmO; 

gIPopMatrixO; 
glPushMatrix(); 

//RightArm 
drawRightArm(); 

g!PopMatrix(); 
glPopMatrix(); 
gIPushMatrixO; 

//LeftLeg 
drawLeftLegO; 

glPopMatrix(); 
gIPushMatrixO; 

//RightArm 
drawRightLeg(); 

glPopMatrix(); 

return; 
} 

Figure 21: Segment Hierarchy 
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Each sub draw function in Figure 21 calls draw functions of individual segments in 

sequential order as in Figure 22. 

void Human::drawLeftArm(){ 

// Right Upper Arm 
segment[L_UPPER_ARM]->draw(points,normals); 

// Right Fore Arm 
segment[L_FORE_ARM]->draw(points,normals); 

//Right Hand 
segment[L_HAND]->draw(points,normals); 
return; 

} 
Figure 22: Drawing Left Arm 

Figure 23 shows how segment objects draw. 

void Segment::draw( GLfloat ** points, GLfloat ** normals ) 
{ 

//make translation and orientation to set posture 
localMatrix ->applyToCurrentMatrix(); 

//draw model 
switch( modelType){ 

case STICK      :   ... 
stick ->draw(); 
break; 

case SKIN 
shape ->drawTriangles( points, normals); 
break; 

caseWIRE_FRAME:... 
shape ->drawTriangles( points, normals); 
break; 

default : 
break; 

} 
return; 

} 
Figure 23: Draw Function of Segment Class 

The main focus of this research is the localMatrix object, which is an H_Matrix object. 

This is a component object of the Segment class. Each segment object's orientation and 

position are defined in localMatrix objects. The H_Matrix class is actually an abstract class 
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and can't be instantiated. Joint transformation matrices for 1 and 3 DOF (eq.4.3-6) are 

hard coded in different classes that are inherited from H_Matrix class. The reasons for 

this implementation are introduced in Chapters 3 and Chapter 4. The hand, upperArm, 

foot, upperLeg, head, neck and upperBody objects have H_Matrix3DOF objects, while 

the lowerArm and lowerLeg objects have HJMatrixlDOF objects. In general, these 

objects supply conversion functions for three types of rotation methods: Euler angles, 

quaternions, and vector-angle pair. Conversions are supplied from these representations 

to homogeneous matrices and vice versa. Direct conversion between quaternion and 

vector-angle pair representations is also supported. For quaternion algebra, the H_Matrix 

class uses a Quaternion object interface. 

B. USER INPUTS 

Double clicking on a segment switches to Euler angle inputs and draws a gimbal 

mechanism. Current Euler angles are read from an H_Matrix object for initialization of 

the corresponding gimbal mechanism. This mechanism has 1 or 3 Circle class objects. 

Dragging these circles changes Euler angles. These circles demonstrate gimbal lock and 

show joint angle limits that are important when quaternion inputs are converted. 

The second input type, quaternion inputs, are entered by a mouse, which is read as 

vector-angle pairs. The vector is always perpendicular to the screen. Rotating a scene 

actually rotates this vector. Thus this vector is calculated by inverting the scene 

orientation matrix (Figure 24). 
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GLdouble 

ex =cos( -viewRotX * DEG_TO_RAD ), 
sx =sin( -viewRotX * DEG_TO_RAD), 
cy =cos( -viewRotY * DEG_TO_RAD ), 
sy =sin( -viewRotY * DEG_TO_RAD); 

// construct rotation vector from study angle 
orientation[X] =(GLfloat) (cx*sy); 
orientation[Y] =(GLfloat) (-sx ); 
orientation[Z] =(GLfloat) (cx*cy); 

Figure 24: Calculating the Vector that is Perpendicular to the Screen 

The Z-axis is directed to out of screen in OpenGL coordinates. Thus, the last column 

of the inverse matrix gives the current Z-axis relative to the initial coordinate frame. 

Segment angles in 2D can be tracked in Window coordinates. A segment's joint center is 

the peak vertex of the angle, which can be easily found in the transformation matrix of 

that segment. A segment angle is measured between a mouse clicked point to a mouse 

released point. By using these three points, the cosine theorem is applied to calculate 

angles. Actually, joint centers are in world coordinates, while the other two points are in 

window coordinates. 3DCursor objects are used to project and unproject these points to 

draw 3D cursors and to calculate angles. The code of Figure 25 is run when the mouse 

button is released. 

void UserControI::quaternionMotion(const GLintWIN_X, const GLint WIN_Y) 
{ 

GLfloat 
oldX =(GLfloat)selectionMark ->getWorldX(), 
oldY =(GLfloat)selectionMark ->getWorldY(), 
newX =(GLfloat)cursor3D ->getWorldX(), 
newY =(GLfloat)cursor3D ->getWorldY(); 

//gets angle between selected mouse coord. & joint & current mouse coord 
orientation[3] =getAngleFm3Points(selectedSegmentJx,selectedSegmentjy, 

oldX, oldY, 
newX, newY); 

} 

//rotate segment with this rot ang. & vec. 
human ->modifyPosture( VECTOR_ANGLE, selectedSegment, orientation ); 

Figure 25: Response to Quaternion Input 
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The modifyPosture method of a human object calls other methods which ends with 

calling the rotate method of H_Matrix (Figure 26). This method is called by a 

VECTOR_ANGLE parameter, because the actual input is a vector-angle pair. But the 

next method, rotateByVecAng, converts this input to a quaternion to apply rotation. As 

Figure 13 demonstrates, applying vector-angle pair rotations to existing orientations is 

accomplished more efficiently by using quaternion algebra than by calling the glRotate3f 

method that leads to matrix construction and matrix multiplication. 

boolean H_Matrix::rotate( const ROTATION_METHODS method, 
const GLfloat* orientation) 

{ 
boolean rotationAccepted =FALSE; 

switch( method){ 
case VECTOFLANGLE: 

rotationAccepted =rotateByVecAng( orientation); 

} 
return rotationAccepted; 

} 

boolean H_Matrix::rotateByVecAng( const GLfloat * orientation ) 
{ 

boolean rotationAccepted =FALSE; 

Quaternion rotation( orientation); 

//apply rotation on existing quaternion orientation 
Quaternion newOrientation =rotation * quaternion; 

//checks if rotation in boundaries 
if( isRotationAcceptable( newOrientation )){ 

quaternion =newOrientation; 

quatToMatrix(); 

rotationAccepted =TRUE;// if it is, return accepted 
} 

return rotationAccepted; 
} 

Figure 26: Rotation of an Existing Orientation with a Vector-Angle Pair 
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C. CONSTRAINTS 

As seen in Figure 26, the rotateByVecAng function calls the isRotationAccepted 

function by the new quaternion object. There is no way to constraint a quaternion, so the 

new orientation is converted to Euler angles by using homogeneous matrix conversion 

and vice versa (Figure 27). This causes additional computation at run-time. 

boolean H_Matrix3DOF::isRotationAcceptable( QuaternionR & newOrientation ) 
{ 

boolean accepted =FALSE; //default, don't accept rotation 

H_Matrix3DOF tmp; 

tmp.quaternion = newOrientation; 
tmp.quatToMatrix(); 
tmp.matrixToEuler(); 

if( tmp.isRotationAcceptable( tmp.angle )){accepted =TRUE; } 

return accepted; 
} 

Figure 27: Constraints for Quaternion Representation 

D. MOTION TRACKING 

This program supports forward kinematics for 16 body segments to draw a human 

figure. Each segment multiply its local homogeneous matrix with the current model view 

matrix in the graphics pipeline to obtain its posture in the world coordinates. There is no 

need for inverse kinematics to apply the inputs of an inertial sensor tracking system. 

Instead, quaternion filter outputs are directly applied to segments. The code of Figure 28 

is to import the Qaef object that is described and implemented in [DUMA99]. 

But the applyToCurrentMatrix function of H_Matrix class should be changed as in 

Figure 29 for the quaternion filter outputs. Because the quaternion filter produces unit 

quaternions in earth coordinates that are independent from previous joint transformations. 

But the joint position is still effected by previous joint transformations. 
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voidSensorSystem::trackSegment() 
{ 

Quaternion vecAng = (q1 ->getResult()).toAxisAngIes(); 
orientation[X] =vecAng.getX(); 
orientation[Y] =vecAng.getY(); 
orientation[Z] =vecAng.getZ(); 
orientation[3] =vecAng.getW(); 

human -> setPosture( VECTOR_ANGLE, R_UPPER_ARM, orientation ); 

vecAng = (q2 ->getResult()).toAxisAngles(); 
orientation[X] =-vecAng.getX(); 
orientationfY] =vecAng.getY(); 
orientation[Z] =-vecAng.getZ(); 
orientation[3] =vecAng.getW(); 

human -> setPosture( VECTOR_ANGLE, R_FORE_ARM, orientation ); 

Figure 28: Sensor Tracking Method 

void H_Matrix:: applyToCurrentMatrix (GLfloatview[16]) 
{ 
GLfloat tempMatrix[16]; 

//position is effected by parent joints transformation and camera motions 
//At this point, all parent joints transformations & camera motions is already 
//applied to graphic pipeline 
glTranslatef( joint_x, joint_y, joint_z); 

//hold transformed joint position 
glGetFloatv( GL_MODELVIEW_MATRIX, tempM); 
GLfloat 

transformed_x = tempMatrix [12], 
transformed_y = tempMatrix [13], 
transformed_z = tempMatrix [14]; 

//orientation is not effected by parent joints transformations 
// (defined in earth coord., stored in joint_matrix[]) 
//but, orientation is also effected by camera motions 
tempMatrix [12] = tempMatrix [13] = tempMatrix [14] =0; 
for(GLinti=0;i<12;i++) 

tempMatrix[i] =joint_matrix[i]; 
glLoadMatrixf( view); 
glMultMatrixf( tempMatrix); 

//construct result transformation matrix 
glGetFloatv( GL_MODELVlEW_MATRIX, tempMatrix); 
tempMatrix [12] = transformed_x; 
tempMatrix [13] = transformed_y; 
tempMatrix [14] = transformed_z; 

} 

//apply result transformation matrix 
glLoadMatrixf( tempMatrix); 

Figure 29: Construction of the Segment Transformation Matrix 
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The code given in Figure 29 is different from the code that is given in Appendix B. 

Inputs may be checked by angle constraints, which causes extra conversion 

computations. Quaternions are applied to the graphics pipeline directly by using 

Eq.(4.42), which is efficient. The quaternion system doesn't use any trigonometric 

function and requires just 16 matrix multiplications. 

E. RESULTS 

For interpolating quaternions, Eq.(4.45) is also implemented. As stated in Chapter IV, 

there is no singularity with this interpolation. This algorithm can be used for dead 

reckoning of human segments in large scale networked virtual environments. Figure 30 

shows two key frames and the in-between frames of interpolation. 

(a) User Defined Key Frames 

(b) Computed In-between Frames 

Figure 30: Quaternion Interpolation 
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Algebraic inverse kinematics solutions that are given in Chapter V are also coded in 

the InverseKinematics class, which is a component object of the UserControl class. But 

details and accuracy are not the focus of this research. Figure 31 is an example for hand 

and foot motions. 

Figure 31: The Left Hand and the Left Foot Motions by Inverse Kinematics 

The main result of this study is the demonstration of a human articulated body model 

with quaternions, which allows efficient computation and eliminates the singularity 

problems of Euler angles. The joint constraints are also applied to the model when 

quaternion and Euler angle inputs are entered by a mouse. Figure 32 shows two mouse 

inputs for elbow. First one force the elbow to make an impossible motion. The second is 

a normal elbow rotation. The program rejects the first motion. 
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(a) Impossible Motion for Elbow (b) Accepted Motion for Elbow 

Figure 32: Demonstration of Joint Constraints 

Figure 33 shows six frames of walking as a procedural animation. 

Figure 33: Walking as a Procedural Animation 
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Figure 34 shows the right arm motion tracking with two inertial sensor inputs for the 

right shoulder and the right elbow. The quaternion attitude filter filters the inputs. 

(a) Initial Posture (b) Initial Posture from another Point of View 

(c) Elbow Motion (d) Elbow and Shoulder motion 

(e) Shoulder has 90 degrees elevation (No singularity) 

Figure 34: The Motion Tracking of Right Shoulder and Right Elbow 
with two Inertial Sensors and the Quaternion Attitude Filter 
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The TriangleFaceSet class reads data from the given file. Thus, replacing human 

segment shapes are easy, when new vertices are calculated. The object-oriented design of 

the model also facilitates new implementations for different purposes. 
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VII. SUMMARY AND CONCLUSION 

A. SUMMARY 

This study presents a human articulated rigid body with quaternions that can be used 

for real-time computer graphics applications in Virtual Environments (VE). There are 

many issues for modeling human figures. New methods are developing for more realism 

and automatic control of the figures. But, the real-time requirements usually constrain the 

animation to consist of flat or Gouraud-shaded polygons with texture mapping 

[WATT92]. For real-time systems, the joint motions still must be realistic after making a 

high level of abstraction for the appearance. The articulated structure is the most 

important part of the human figure to define the realistic postures. Computation and the 

behavior of the articulated structure and the input devices are the case for real-time 

human figure simulation systems. 

There are two different approaches to construct the human articulated structure. In 

robotics and computer graphics, many applications use MDH notation to build articulated 

structures [SKOP97]. A different method uses only segment orientations represented by 

Euler angles to make the postures of the human figure [FREY96]. Chapter 3 of this thesis 

discusses the efficiency issues of these two methods. With the second method, each 

segment joint of the human figure has a transformation matrix. This study brings a new 

approach to represent the transformations of joints by using the quaternions as the state 

vectors of the joints. 

When quaternions are used, it is possible to rotate vertices of segment shapes and the 

positions of child joints without using homogeneous matrices. But, today's most common 

graphic engines use homogeneous matrices, and the author chose to construct joint 

77 



transformation matrices for rendering purposes. Nevertheless, using quaternions is still 

powerful for many computations. The most important superiority of the quaternion 

representation is that it is independent of coordinate axes and shows no singularity at any 

value. Besides that, making consecutive rotations on existing orientation necessitates less 

computation than making matrix multiplications. The other method, Euler angles, is 

inadequate for interpolation and should be converted other forms for interpolation 

purposes. This adds extra computation at run time. 

The program that is developed in this study can be used for the experimental 

purposes, which demonstrates Euler angle and quaternion methods and lets users define 

posture with forward and inverse kinematics. Joint constraints are applied to the mouse 

inputs. The real-time display of human arm tracking with two inertial sensors, key-frame 

animation, and walking are the other features of the program. Other human figures can 

also be used by changing joint positions and segment vertex data in the vertex files. The 

user manual of the program is given in Appendix A. 

B. CONCLUSIONS AND FUTURE RESEARCH 

Chapter IV of this thesis compares quaternion and Eujer angle methods for many 

considerations. The quaternion method solves singularity problems of the Euler angle 

methods. It is also more powerful than the Euler angle method when frequent 

renormalizations of rotational operators are needed. On the other hand, Euler angle 

method is the only solution to add constraint to joint angles. When quaternions are used 

as the state vector of the articulated structure, PDU packets are longer than those 

constructed by Euler angles. Today, there are many graphic hardware implementations 

that support matrix algebra, which reduces the computational expense of the Euler angle 
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method. Using one or the other method depends on the application purposes. Both 

methods may be used within the same software for the best performance. 

An important future research is to combine this study with [DUMA99] that introduces 

quaternion attitude filter. This filter is designed to compensate many problems that are 

encountered with Euler angle methods and produces unit quaternions as orientation data. 

These outputs can be used to track human segments. The human model that is introduced 

in this thesis can define human postures with quaternion data. A body suit that has 15 

inertial motion tracker sensor that each uses a quaternion attitude filter can track a whole 

human body. 
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APPENDIX A: USER MANUAL 

The program developed for this thesis runs only on Windows95/98 and WindowsNT 

platforms. Glut library is used for window specific tasks and OpenGL is used for 3D 

modeling and rendering. The main interaction device of the program is a mouse. 

Keystrokes are also processed as hot keys for key frame and procedural animations. Pop- 

up menus are the only user interface to switch between different modes of the program. 

The main pop-up menu is reached when the right mouse button is pressed. The other pop- 

up menus are the sub menus of the main menu. 

A. NAVIGATION MODE 

When the left mouse button is pressed in the screen space and the mouse is dragged, 

the mouse motions cause the camera motions. There are 3 different navigation modes of 

the program. The Walk mode translates the camera position on 3 axes. The Pan mode 

translates the camera position only on OpenGL X and OpenGL Y axes (Horizontal and 

vertical axes of the screen). The Study mode rotates the camera on 3 axes. These three 

navigation type can be chosen from the first sub menu of the main menu. 

B. MODEL TYPE 

The second sub menu lets user to chose the model type of the human. It can be a Stick 

model or a Wire Frame model or a Smooth Shaded model. 

C. POSTURE CONTROL MODE 

There are 3 types of posture control mode: inertia! sensor tracking, mouse control, 

and procedural animation. Key frames can be set and can be interpolated when the 

posture control mode is the mouse control. These modes are selected from the third sub 

menu. 
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1. Inertial Sensor Tracking 

There must be two inertial sensors that are connected to the system to switch to this 

option. The program code that is given in Appendix B should also be modified as in 

Figure 29. For real-time concerns, the model type should be stick model or the code may 

be modified to draw only the arm as smooth shaded polygons and the rest of the body as 

stick figure. 

2. Mouse Control 

A selection occurs when the left mouse button is pressed while the cursor is on a 

segment or on a circle of the gimbal mechanism. 

a.   Forward Kinematics 

There are two options to change the orientation of the selected segment. If the left 

mouse button is released after a segment selection without changing the mouse cursor 

position, a gimbal system appears on the top left corner of the screen. Each circle on the 

gimbal system represents a DOF of the selected segment (Knees and elbows have only 1 

DOF, and the all other segments have 3 DOF). At this point, mouse drags do not cause 

the camera motions. If any circle is selected, the mouse drags cause the segment and the 

circle rotations. Rotations are restricted by joint constraints. The left mouse button should 

be pressed and released on the same segment to quit from this option. 

As a second option after a segment selection, the mouse is dragged in any 

direction to make a 2D angle and then released to apply a quaternion rotation. If this 

rotation is accepted by joint constraints, the segment change its posture as defined. The 

detailed explanation of this option is given in Chapter IV. 
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b.   Inverse Kinematics 

In this mode, user can select only feet and hands. User can define a goal position 

for the selected end-effector by dragging mouse. If the motion is acceptable, the program 

calculates in-between joint orientations and applies to reach to the goal position. 

3. Procedural Animation 

User can apply walking procedures to the human figure. There are 2 types of walking 

procedures, which are defined by inverse kinematics and forward kinematics. The up and 

down arrows are used to speed up and slow down the walking procedures. 

4. Key Frame Animation 

Key frames are defined by mouse control. User can add, insert, and remove key 

frames from a linked list either by keystrokes or by sub menu item selections. It is 

possible to switch between key frames. When all keys are set, run option makes the 

interpolation. 
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// FILE      : Box.h 
// DESCRIPTION: Used for bounding boxes and stick models 

#ifndef BOX_H_ 
#define BOX_H_ 

#include <GL/glut.h> 
#include "utility.h" 

enum BOX_VOLUME_TERMS { 
BOTTOM_PLATE, TOPJPLATE, TWO_PLATES, THREE_POINTS, FOUR_POINTS 

class Box{ 

public :// P U B LI C  

//CONSTRUCTORS 
Box( const GLfloat END_X, 

const GLfloat END_Y, 
const GLfloat END_Z); 

Box( const GLfloat END_Y, 
const GLfloat POS_X, 
const GLfloat NEG_X, 
const GLfloat POS_Z, 
const GLfloat NEG_Z); 

Box( GLfloat vol[TWO_PLATES][FOUR_POINTS][THREE_D]); 
Box( Box &); 

//DESTRUCTOR 
~Box(); 

//OPERATORS 
Box& operator=( const Box &); 

//FUNCTIONS 
void draw(); 
void show(); 
GLfloat getHeight(); 

private :// P RIV A T E  

//VARIABLES 
GLfloat 

volume[TWO_PLATES] [FOUR_POINTS] [THREE_D], 
height; 

#endif 
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// FILE       : Box.cpp 
// DESCRIPTION: implementation of bounding boxes and stick figures 

#include "Box.h" 

//_  
Box::Box( GLfloat vol[TWO_PLATES][FOUR_POINTS][THREE_D]) 

{ 
for( GLint plate=0; plate<TWO_PLATES; plate++ ){ 

for( GLint point=0; point<FOUR_POINTS; point-H-){ 

for( GLint axis=0; axis<THREE_D; axis++){ 

volume[plate] [point] [axis] =vol [plate] [point] [axis]; 
} 

} 

//  
Box::Box( const GLfloat END_X, 

const GLfloat END_Y, 
const GLfloat END_Z) 

{ 
static const Glfloat DELTA_X =0.08f, 

DELTA_Z =0.05f; 

GLint    platel =BOTTOM_PLATE, 
plate2 =TOP_PLATE; 

if( END_Y < 0 ) { 

platel =TOP_PLATE; 
plate2 =BOTTOM_PLATE; 

} 

for( GLint point=0; point<FOUR_POINTS; point++ ){ 

volume[platel] [point] [Y] =0; 
volume[plate2] [point] [Y] =END_Y; 

volume[platel][0][X] =-DELTA_X; 
volume[platel][0][Z] =-DELTA_Z; 
volume[platel][l][X] =-DELTA_X; 
volume[platel][l][Z] =DELTA_Z; 
volume[platel][2][X] =DELTA_X; 
volume[platel][2][Z] =DELTA_Z; 
volume[platel][3][X] =DELTA_X; 
volume[platel][3][Z] =-DELTA_Z; 

volume[plate2] [0] [X] =END_X-DELTA_X; 
volume[plate2] [0] [Z] =END_Z-DELTA_Z; 
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volume[plate2] [ 1 ] [X] =END_X-DELTA_X; 
volume[plate2] [ 1 ] [Z] =END_Z+DELTA_Z; 
volume[plate2] [2] [X] =END_X+DELTA_X; 
volume[plate2] [2] [Z] =END_Z+DELTA_Z; 
volume[plate2] [3] [X] =END_X+DELTA_X; 
volume[plate2] [3] [Z] =END_Z-DELTA_Z; 

height =( END_Y > 0) ? END_Y : -END_Y; 

//.  
Box::Box( const GLfloat END_Y, 

const GLfloat POS_X, 
const GLfloat NEG_X, 
const GLfloat POS_Z, 

const GLfloat NEG_Z) 

{ 
GLint platel =BOTTOM_PLATE, 

plate2 =TOP_PLATE; 

if( END_Y < 0 ) { 

platel =TOP_PLATE; 
plate2 =BOTTOM_PLATE; 

for( GLint point=0; point<FOUR_POINTS; point++ ){ 

volume[platel] [point] [Y] =0; 
volume[plate2] [point] [Y] =END_Y; 

volume[platel][0][X] =NEG_X; 
volume[platel][0][Z] =NEG_Z; 
volume[platel][l][X] =NEG_X; 
volume[platel][l][Z] =POS_Z; 
volume[platel][2][X] =POS_X; 
volume[platel][2][Z] =POS_Z; 
volume[platel][3][X] =POS_X; 
volume[platel][3][Z] =NEG_Z; 

volume[plate2][0][X] =NEG_X; 
volume[plate2][0][Z] =NEG_Z; 
volume[plate2][l][X] =NEG_X; 
volume[plate2][l][Z] =POS_Z; 
volume[plate2][2][X] =POS_X; 
volume[plate2][2][Z] =POS_Z; 
volume[plate2][3][X] =POS_X; 
volume[plate2][3][Z] =NEG_Z; 

height =( END_Y > 0) ? END_Y : -END_Y; 



//  
Box::Box( Box & box ) 
{ 

//INITIALIZE 
for( GLint plate=0; plate<TWO_PLATES; plate++ ){ 

for( GLint point=0; point<FOUR_POINTS; point-H-){ 

for( GLint axis=0; axis<THREE_D; axis++){ 

volume[plate] [point] [axis] =box. volumefplate] [point] [axis]; 
} 

height =box.height; 

//  
Box::~Box() 
{ 

II- 
Box& Box::operator=( const Box& box ) 
{ 

for( GLint plate=0; plate<TWO_PLATES; plate++){ 

for( GLint point=0; point<FOUR_POINTS; point-H-){ 

for( GLint axis=0; axis<THREE_D; axis-H-){ 

volumefplate] [point] [axis] =box. volumefplate] [point] [axis]; 
} 

} 
} 

return (*this); 

II  
void Box::draw() 
{ 

static const GLint 
FACES =6, 
INDICES [FACES] [FOUR_POINTS] [2] ={ 

{{ BOTTOM_PLATE, 0 },{ BOTTOM_PLATE, 3 },{ BOTTOM_PLATE, 2 },{ BOTTOM_PLATE, 1 }}, 
{ { TOP_PLATE, 0 }, { TOP_PLATE, 1 }, { TOP_PLATE, 2 }, { TOPJPLATE, 3 } }, 
{ { BOTTOM_PLATE, 0 }, { BOTTOM_PLATE, 1 }, { TOP_PLATE, 1 }, { TOP_PLATE, 0 } }, 
{ { BOTTOM_PLATE, 1 }, { BOTTOMJPLATE, 2 }, { TOP_PLATE, 2 }, { TOP_PLATE, 1 } }, 
{ { BOTTOM_PLATE, 2 }, { BOTTOM_PLATE, 3 }, { TOPJPLATE, 3 }, { TOP_PLATE, 2 } }, 
{ { BOTTOM JPLATE, 3 }, { BOTTOM_PLATE, 0 }, { TOPJPLATE, 0 }, { TOP_PLATE, 3 } } 
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GLfloat 
normals[FACES][3] ={ 

{ 0,-1,0 }, { 0,1,0 }, {-1,0,0 }, { 0,0,1 }, { 1,0,0 }, { 0,0,-1 } 

for( GLint face =0; face<FACES; face++ ){ 

glBegin(GL_POLYGON); 
glNormal3fv( normals [face]); 

for( GLint point=0; point<FOUR_POINTS; point++){ 

glVertex3fv(volume[INDICES[face][point][0]][INDICES[face][point][l]]); 

} 
glEndO; 

} 

II  
void Box ::show() 

{ 
glBegin(GL_QUAD_STRIP); 

for(GLint i=0; i<FOUR_POINTS; i++){ 

glVertex3fv(volume[TOP_PLATE][i]); 
glVertex3fv(volume[BOTTOM_PLATE][i]); 

} 
glVertex3fv(volume[TOP_PLATE][0]); 
glVertex3fv(volume[BOTTOM_PLATE][0]); 

glEnd(); 

return; 

//  
GLfloat Box::getHeight() 
{ 

return height; 
} 
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// FILE      : Circle.h 
// DESCRIPTION: Used for circles of Gimbal Mech. 

#ifndef CIRCLE_H_ 
#define CIRCLE_H_ 

#include <GL/glut.h> 
#include "utility.h" 

class Circle{ 

public ://- P U B LI C  

//CONSTRUCTORS 
Circle( GLint);     //default 
Circle( Circle & );  //copy 

//DESTRUCTOR 
-CircleO; 

//FUNCTIONS 
void draw(); 
void increment(); 
void decrement^); 

GLfloat getAngleO; 
void setAngle( GLfloat); 

private :// P RIV A T E  

//CONSTs 
static const GLfloat DELTA; 

//OPERATORS 
Circle& operator=( const Circle &); 

//VARIABLES 
GLfloat radius, 

angle; 

}; 

#endif 
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// FILE      : Circle.cpp 
// DESCRIPTION: 

#include "Circle.h" 

//*##********#*JNJTJALJ2E STATIC DATA MEMBERS *********************** 

const GLfloat Circle::DELTA =5; 

//**************END STATIC DATA MEMBER INITIALIZATION **************** 

//  
Circle: :Circle( GLint axis){ 

//INITIALIZE 
angle =0; 

switch( axis){ 

case 0:radius =6; 
break; 

case l:radius=8; 
break; 

case 2:radius =10; 
break; 

default:break; 
} 

Circle: :~Circle(){ 

} 

//_  
void Circle: :increment(){ 

angle +=DELTA; 
if(angle > 360) angle -=360; 

} 

//  
void Circle::decrement(){ 

angle -=DELTA; 
if(angle < 0) angle +=360; 

} 

//  
GLfloat Circle: :getAngle(){ 

return angle; 
} 
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//  
void Circle::setAngle( GLfloat a){ 

angle =a; 

//  
void Circle: :draw() 

if( angle != OUTJRANGE ){ 

glRotatef( angle, 0, 1, 0); 
glutSolidTorus( 0.5f, radius, 5 ,20); 
//cones 
glPushMatrixO; 

//upper cone 
glTranslatef( 0, radius, 0); 
glRotatef( -90, 1, 0, 0); 
glutSolidCone( 0.8, 2, 6, 1); 
//lower cone 
glTranslatef( 0, 0, -2 * radius); 
glRotatef( 180, 1,0,0); 
glutSolidCone( 0.8, 2, 6, 1); 

glPopMatrixO; 
} 
return; 
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// FILE       : Cursor3d.h 
// DESCRIPTION: Used for creating 3D cursor effects for tracking 

#ifndef CURSOR3D_H_ 
#define CURSOR3D_H_ 

#include <GL/glut.h> 
#include "utility.h" 

class Cursor3D{ 

public :// P U B LI C  

//CONSTRUCTORS 
Cursor3D(); //default 
Cursor3D( Cursor3D &);  //copy 

//DESTRUCTOR 
-Cursor3D(); 

//FUNCTIONS 
void setWindowCoord( const GLint WIN_X, 

const GLint WIN_Y, 
const GLint WIN_Z); 

void setWindowCoord( const GLint WIN_X, const GLint WIN_Y); 
void setWorldCoord( const GLdouble WORLD_X, 

const GLdouble WORLD_Y, 
const GLdouble WORLD_Z); 

GLdouble getWorldX(); 
GLdouble getWorldY(); 
GLdouble getWorldZ(); 

void draw(); 

private :// P RI V A T E  

//OPERATORS 
Cursor3D& operator=( const Cursor3D &); 

//FUNCTIONS 
void drawCoordSystemO; 

//OBJECTS 

//VARIABLES 
GLdouble 

windowCoord[THREE_D], 
worldCoord[THREE_D]; 

}; 

#endif 
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// FILE      : Cursor3D.cpp 
// DESCRIPTION: 

#include <math.h> 
#include "Cursor3D.h" 

//  
Cursor3D::Cursor3D() 
{ 

//INITIALIZE 
for( GLint axis =0; axis <THREE_D; axis++ ){ 

worldCoord [ axis ] =0; 
windowCoordf axis ] =0; 

} 

//  
Cursor3D::~Cursor3D() 
{ 

} 

//.  
void Cursor3D::draw(){ 

drawCoordSystem(); 
} 

//.  
void Cursor3D::drawCoordSystem() 
{ 

static const GLfloat LENGTH =0.5f; 

//worldCoord[X]worldCoord[Y]worldCoord[Z] lines 
glBegin(GL_LINES); 

glColor3f(0, 0.5f, 1); 
glVertex3d(worldCoord[X]-LENGTH,worldCoord[Y],worldCoord[Z]); 
glVertex3d(worldCoord[X]+LENGTH,worldCoord[Y],worldCoord[Z]); 
glColor3f(0, 1, 0); 
glVertex3d(worldCoord[X],worldCoord[Y]-LENGTH,worldCoord[Z]); 
glVertex3d(worldCoord[X],worldCoord[Y]+LENGTH,worldCoord[Z]); 
glColor3f(l, 0, 0); 
glVertex3d(worldCoord[X],worldCoord[Y],worldCoord[Z]-LENGTH); 
g!Vertex3d(worldCoord[X],worldCoord[Y],worldCoord[Z]+LENGTH); 

glEnd(); 

return; 
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//  
void Cursor3D::setWindowCoord( const GLint WIN_X, 

const GLint WIN_Y, 
const GLint WIN_Z) 

{ 
windowCoordfZ] =WIN_Z; 

setWindowCoord( WIN_X, WIN_Y); 

return; 

II- 
void Cursor3D::setWindowCoord( const GLint WIN_X, const GLint WIN_Y) 

{ 
GLint viewPort[4]; 
GLdouble modelViewMatrix[16], projectionMatrix[16]; 

// read current viewPort, model and project matrix values 
glGetIntegerv( GL_VIEWPORT, viewPort); 
glGetDoublev( GL_MODELVffiW_MATRIX, modelViewMatrix); 
glGetDoublev( GLJPROJECTION_MATRIX, projectionMatrix); 

windowCoordfX] =WIN_X; 
windowCoord[Y] =viewPort[3] -WIN_Y-1; 

// window to world func. 
gluUnProject( windowCoordfX], windowCoordfY], windowCoordfZ], 

modelViewMatrix, projectionMatrix, viewPort, 
& worldCoordfX], & worldCoordfY], & worldCoordfZ]); 

return; 
} 

//.  
void Cursor3D::setWorldCoord( const GLdouble WORLD_X, 

const GLdouble WORLD_Y, 
const GLdouble WORLD_Z) 

{ 
GLint viewPort [4]; 
GLdouble modelViewMatrix [16], projectionMatrix [16]; 

// read current viewPort, model and project matrix values 
glGetIntegerv( GLJVIEWPORT, viewPort); 
glGetDoublev( GL_MODELVIEW_MATRIX, modelViewMatrix); 
glGetDoublev( GL_PROJECTION_MATRIX, projectionMatrix); 

worldCoord[X] =WORLD_X; 
worldCoordfY] =WORLD_Y; 
worldCoordfZ] =WORLD_Z; 

// world to window func. 
gluProject( worldCoordfX], worldCoordfY], worldCoordfZ], 

modelViewMatrix, projectionMatrix, viewPort, 
& windowCoordfX], & windowCoordfY], & windowCoordfZ]); 

return; 
} 
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// .  
GLdouble Cursor3D::getWorldX() 
{ 

return worldCoord[X]; 
} 

//  
GLdouble Cursor3D::getWorldY() 
{ 

return worldCoordfY]; 
} 

//.  
GLdouble Cursor3D::getWorldZ() 
{ 

return worldCoord[Z]; 
} 
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;/**^#***************************************************************** 

// FILE      : Floor.h 
// DESCRIPTION: Simulates floor fow walking 
/;********************************************************************* 

#ifndef FLOOR_H_ 
#define FLOOR_H_ 

#include <GL/glut.h> 
#include <Math.h> 
#include "utility.h" 
#include "ProceduralAnim.h" 

class Floor { 

public :// P U B LIC  

//CONSTRUCTORS 
Floor(); //default 
Floor( Hoor &); //copy 

//DESTRUCTOR 
~Floor(); 

//FUNCTIONS 
void draw(); 
void slide(); 
void increaseFrameRate(); 
void decreaseFrameRate(); 

private :// P RIV A T E  

//CONSTs 
static const GLfloat 

LENGTH, HEIGHT, BAND_WIDTH; 

//OPERATORS 
Floor& operator=( const Floor &); 

//VARIABLES 
GLfloat 

frameAcc, 
frameRate, 
maxFrameRate, 
minFrameRate, 
bandZ; 

}; 

#endif 
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//#####*#*####*#*#*#*************************************************** 
// FILE      : Floor.cpp 
// DESCRIPTION: 

#include "Floor.h" 

/y*************jj>fl
T]TIAL]ZE STATIC DATA MEMBERS *********************** 

const GLfloat 
Floor: :LENGTH    =2, 
FIoor::HEIGHT    =-4.275f, 
Hoor::BAND_WIDTH =0.5f; 

//**************END STATIC DATA MEMBER INITIALIZATION **************** 

//  
Floor: :Floor(){ 

//INITIALIZE 
frameRate =0.2f; 
bandZ    =0; 

GLfloat 
syncRatio =( (2*LENGTH)-BAND_WIDTH) / PI; 

frameRate =frameAcc =syncRatio * ProceduralAnim.FRAME_ACC; 
maxFrameRate   =syncRatio * ProceduralAnim.MAX_FRAME_RATE; 
minFrameRate    =syncRatio * ProceduralAnim.MIN_FRAME_RATE; 

} 

//  
Floor::~Floor(){ 

} 

//.  
void Floor: :draw() 
{ 

static const GLfloat BAND_HEIGHT =0.015f; 

glDisable(GL_LIGHTING); 

//draw floor 
glColor3f(0.8f, 0.8f, 0.8f); 
glBegin(GL_POLYGON); 

glNormal3f( 0,1,0); 
glVertex3f( -LENGTH, HEIGHT, -LENGTH); 
glVertex3f( -LENGTH, HEIGHT, LENGTH); 
glVertex3f( LENGTH, HEIGHT, LENGTH); 
glVertex3f( LENGTH, HEIGHT, -LENGTH); 

glEnd(); 
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//draw band on the floor 
glColor3f( 1,0,0); 
glBegin(GLPOLYGON); 

glNormal3f( 0, 1,0); 
glVertex3f( -LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-BAND_WIDTH-bandZ); 
g!Vertex3f( -LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-bandZ); 
glVertex3f( LENGTH, HEIGHT+BANDJHEIGHT, LENGTH-bandZ); 
glVertex3f( LENGTH, HEIGHT+BAND_HEIGHT, LENGTH-BAND_WIDTH-bandZ ); 

glEnd(); 

glEnable(GL_LIGHTING); 
return; 

II  
void Floor ::slide() 

{ 
bandZ += frameRate; //update animation const 

if( bandZ > (2*LENGTH)-BAND_WIDTH) bandZ =0; 
} 

II  
void Floor: :increaseFrameRate() 
{ 

frameRate +=frameAcc; 

if( frameRate >maxFrameRate) frameRate =maxFrameRate; 

return; 

II  
void Floor::decreaseFrameRate() 
{ 

frameRate -=frameAcc; 

if( frameRate <minFrameRate) frameRate =minFrameRate; 

return; 
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//******************************************#************************** 

// FILE      : GimbalSystem.h 
// DESCRIPTION: Interaction tool for Euler inputs 
//********************************************************************* 

#ifndef GIMBALS YSTEM_H_ 
#define GIMBALSYSTEM_H_ 

#include <GL/glut.h> 
#include "Utility.h" 
#include "Circle.h" 

class GimbalSystem{ 

public :// P U B LIC  

//CONSTRUCTORS 
GimbalSystemO; //default 
GimbalSystem( GimbalSystem &);  //copy 

//DESTRUCTOR 
-GimbalSystemO; 

//FUNCTIONS 
void draw(); 
void drawMouseDetectorsO; 
void increment AXIS ); 
void decrement( AXIS); 

void setAngle( GLfloat * const); 

void getAngle( GLfloat * const); 

private :// P RIV A T E  

//OPERATORS 
GimbalSystem& operator=( const GimbalSystem &); 

//OBJECTS 
Circle *x_axis, 

*y_axis, 
*z_axis; 

}; 

#endif 
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// FILE       : GimbalSystem.cpp 
// DESCRIPTION: 

#include "GimbalSystem.h" 

//  
GimbalSystem: :GimbalSystem() { 

// INITIALIZE 
x_axis =new Circle(X); 
y_axis =new Circle(Y); 
z_axis =new Circle(Z); 

//  
GimbalSystem::~GimbaISystem(){ 

delete x_axis; 
delete y_axis; 
delete z_axis; 

//  
void GimbalSystem: :increment( AXIS axis ){ 

switch(axis){ 
case X :x_axis->increment(); 

break; 
case Y :y_axis->increment(); 

break; 
case Z :z_axis->increment(); 

break; 
} 

} 

//  
void GimbalSystem::decrement( AXIS axis ){ 

switch (axis) { 
case X :x_axis->decrement(); 

break; 
case Y :y_axis->decrement(); 

break; 
case Z :z_axis->decrement(); 

break; 
} 

} 

//.  
void GimbalSystem: :getAngle( GLfloat * const eulerAngle) 
{ 

eulerAngle[X] =x_axis ->getAngle(); 
eulerAnglefY] =y_axis ->getAngle(); 
eulerAngle[Z] =z_axis ->getAngle(); 
return; 

} 
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//  
void Gimba]System::setAngle( GLfloat * const eulerAngle) 
{ 

x_axis ->setAngle( eulerAngle[X]); 
y_axis ->setAngle( eulerAnglefY]); 
z_axis ->setAngle( eulerAngle[Z]); 

//.  
void GimbalSystem::draw() 

{ 
//NOSE (openGL....z-axis) 
glColor3f(0, 0, 1); 
glRotatef(90, 1,0,0); 
glRotatef(90, 0, 1, 0); 
z_axis->draw(); 

//AZIMUTH (openGL....y-axis) 
glColor3f(0, 1,0); 
glRotatef(-90, 0, 1, 0); 
glRotatef(-90, 1,0,0); 
y_axis->draw(); 

//ELEVATION (openGL....x-axis) 
glColor3f( 1,0,0); 
glRotatef(90, 1,0,0); 
glRotatef(-90, 0, 0, 1); 
x_axis->draw(); 

//  
void GimbalSystem: :drawMouseDetectors() 
{ 

gllnitNamesO; 
glPushName(O); 

//NOSE (openGL....z-axis) 
glLoadName(Z); 
glRotatef(90, 1, 0, 0); 
glRotatef(90, 0, 1, 0); 
z_axis->draw(); 

//AZIMUTH (openGL....y-axis) 
glLoadName(Y); 
glRotatef(-90, 0, 1, 0); 
glRotatef(-90, 1,0,0); 
y_axis->draw(); 

//ELEVATION (openGL....x-axis) 
glLoadName(X); 
glRotatef(90, 1, 0, 0); 
glRotatef(-90, 0, 0, 1); 
x_axis->draw(); 

return; 
} 
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// FILE      : GlutBaseClass.h 
// DESCRIPTION: Covers glut functions and is used for windowing tasks 

#ifndef GLUTBASECLASS_H_ 
#define GLUTBASECLASS_H_ 

#include <GL/glut.h> 
#include <iostream.h> 
#include "utility, h" 
finclude "Human.h" 
#include "Floor.h" 
#include "ProceduralAnim.h" 
#include "UserControl.h" 
#include "KeyFrameAnim.h" 
#include "SensorSystem.h" 

// ENUMS 
enum VIEW_TYPE { WALK, PAN, STUDY }; // view mode types 

enumPOSTURE_CONTROL_TYPE { USER_CONTROL, WALKING, KEY_FRAME, SENSOR }; 

// CLASS DEFINITION 
class GlutBaseClass { 

public ://- P U B LI C  

//CONSTRUCTORS 
GlutBaseClassO; //default 
GlutBaseClass( GlutBaseClass &);       //copy 
GlutBaseClass(GLint arge, char **argv); //others 

private ://- P RIV A T E  

//CONSTs 
static const short VIEWPOINT_Z; 
static const GLint WIN_POS_X, 

WINJPOS_Y; 

//OPERATORS 
GlutBaseClass& operator=( const GlutBaseClass & ); 

//FUNCTIONS 
//Event handling functions 

static void display(); // set view and calls draw functions 
static void keyboard(unsigned char key, GLint x, GLint y); //handle keyboard 

static void activeMouseMotion(GLint x, GLint y); //handle mouse motion 

static void visibility(GLint status); // set idle function for window visibility 
static void menuStatus(GLint status, GLint x, GLint y);    //set idle function for 

static void reshape(GLint w, GLint h); // change window settings for reshape 
static void animate(); // makes animation, called by idle func 
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// Menu Functions 
static void mainMenu(GLint value); // handle sub menus 
static void viewSwitchMenu(GLint value);   // handle view (STUDY, WALK, PAN), RESTORE 
static void modelSwitchMenu(GLint value);       // handle drawing (realistic, wireframe, stick) 
static void UserControlMenu(GLint value);        // handle motion control 
static void ProceduralAnimMenu(GLint value); 
static void KeyFrameAnimMenu(GLint value); 

// viewing functions 
static void setView(GLint x, GLint y); 

// Initialization Functions 
void setDisplayModeO; 
void positionAndSizeWindowsO; 
void createDrawingData(); 
void openGlInit(); 
void setUpMenusO; 
void registerCallBacksO; 

// change view coord.(camera coord.) 

//sets display mode 
// sets initial coord, and size for window 
// for Display List creation 
// initialize settings of world (light, drawing,...) 

//OBJECTS 
static Human 
static Floor 
static ProceduralAnim 
static UserControl 
static KeyFrameAnim 
static SensorSystem 

humanObj; // objects that is controled, manupulated and drawn 
floor; 
procedure; 
userControl; 
keyFrame; 
sensorSystem; 

#endif 

// camera coord. 
// camera orientation 

//VARIABLES 
static GLfloat 

viewPointX, viewPointY, viewPointZ, 
rotationX, rotationY; 

static GLint 
topMenu, menu View, menuModel, menuMotion,   // Menu identifiers 
menuUserControl, menuProceduralAnim, menuKeyFrameAnim, 
winSizeX, winSizeY, // Window dimensions 
oldMouseX, oldMouseY; // holds old mouse coord, before motion 

static VffiWJTYPE 
viewPointMode; // view mode 

}; 

static POSTURE_CONTROL_TYPE 
postureControlMode; 
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// FILE      : GlutBaseClass.cpp 
// DESCRIPTION: window specific functions 

#include "GlutBaseClass.h" 

^*************jjsjpj^Lj2E STATIC DATA MEMBERS *********************** 

Human GlutBaseClass::humanObj; 
Floor GlutBaseClass::floor; 
ProceduralAnim GlutBaseClass::procedure( &humanObj ); 
UserControl GlutBaseClass::userControl( &humanObj); 
KeyFrameAnim GlutBaseClass::keyFrame( &humanObj); 
SensorSystem GlutBaseClass::sensorSystem( &humanObj); 

const short GlutBaseClass::VIEWPOINT_Z =13;   // initial view coord, for Z 

const GLint GlutBaseClass::WIN_POS_X =50, 
GlutBaseClass::WIN_POS_Y =50; 

GLint      GlutBaseClass::winSizeX(600), 
GlutBaseClass::winSizeY(600), 
GlutBaseClass: :topMenu, 
GlutBaseClass: rmenu View, 
GlutBaseClass::menuModel, 
GlutBaseClass::menuMotion, 
GlutBaseClass::menuUserControl, 
GlutBaseClass::menuProceduralAnim, 
GlutBaseClass::menuKeyFrameAnim, 
GlutBaseClass::oldMouseX, 
GlutBaseClass::oldMouseY; 

GLfloatGlutBaseClass::viewPointZ(VIEWPOINT_Z), 
GlutBaseClass::viewPointY(0), 
GlutBaseClass:: viewPointX(O), 
GlutBaseClass::rotationX(0), 
GlutBaseClass::rotationY(0); 

VIEW_TYPEGlutBaseClass::viewPointMode(STUDY); 

POSTURE_CONTROL_TYPE GlutBaseClass: :postureControlMode(USER_CONTROL); 

//**************END STATIC DATA MEMBER INITIALIZATION **************** 

//.  
GlutBaseClass::GlutBaseClass(GLint arge, char **argv) 

{ 
glutlnit(&argc, argv);       // Initialize the GLUT library and negotiate 

// a session with the window system. 
setDisplayModeO; // Set up INITIAL display mode 

positionAndSizeWindows(); // Set up the INITIAL windows 

registerCallBacks(); // Register INITIAL event handling functions 
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setUpMenusO; // Set up INITIAL Menus 

openGlInit(); // Complete OpenGL rendering initialization 

glutMainLoopO; // Enter the GLUT event processing loop. 

} 

//.  
voidGlutBaseClass::setDisplayMode() 
{ 

// Set initial display mode for double buffering and RGBA color 
glutInitDisplayMode(GLUT_DOUBLE I GLUT.RGB); 

} 

//.  
void GlutBaseClass: :position AndSizeWindows() 
{ 

// Specify window placement 
// Default placement is left to the window system 
glutInitWindowPosition(WIN_POS_X,WIN_POS_Y); 

// Specity window placement 
// Default window size is 300 x 300 
glutInitWindowSize(winSizeX, winSizeY); 

// Create a window entitled "Planets" and make it the current window 
glutCreateWindow("Body Motions"); 

//.  
void GlutBaseClass: :openGlInit() 
{ 

//Polygon drawing 
glShadeModel (GL.SMOOTH); // Explicitly set shade model to default 
glCullFace( GLJBACK); // discard back faces 
glEnable( GLCULLFACE); 

//Depth test 
glClearDepth(l.Of); // Specify value to clear the depth buffer 
glDepthFunc( GL_LEQUAL); // Specify value used for depth compares 
glEnable( GL_DEPTH_TEST); // Enable Depth tests 

//Material 
const GLfloat AMBIENT[3] ={ 0.6f, 0.430792f, 0.379119f}, 

SPECULAR[3]={ 0, 0,0.5f }; 

glMaterialfv(GL_FRONT, GL_AMBIENT, AMBIENT); 
glMaterialfv(GL_FRONT, GL.SPECULAR, SPECULAR); 
glMaterialf(GL_FRONT, GL_SHININESS) 5); 

glEnable(GL_COLOR_MATERIAL); 
glColorMaterial(GL_FRONT, GL.DIFFUSE); 
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//Lights 
// LIGHT 0  

const GLfloat POSITION_0[4]={ 0,0,10,0}; 

glLightfv(GL_LIGHTO, GL_POSITION, POSITION_0); 
glLightfv(GL_LIGHT0, GL_SPECULAR, SPECULAR); 
glEnable(GLJLIGHTO); 

glEnable(GL_LIGHTING); 

createDrawingData(); 

//.  
void GlutBaseClass: :createDrawingData() 

{ 
// Set Up Display Lists 

} 

//.  
void GlutBaseClass: :registerCallBacks() 
{ 

glutDisplayFunc(display); 

glutKeyboardFunc(keyboard); 

glutSpecialFunc(specialKeys); 

glutMouseFunc(mouseButton); 

glutMotionFunc(activeMouseMotion); 

glutMenuStatusFunc(menuStatus); 

glutReshapeFunc(reshape); 

glutVisibilityFunc( visibility); 

glutldleFunc(animate); 

// callback for window redisplay 

// callback for ascii character input 

// callback for special keystrokes 

// callback for mouse button events 

// callback for mouse motion with the 
// buttons depressed. 

// callback for menu exposures 

// callback for window size changes 

// callback for visibility changes 

// idle callback 

//  
void GlutBaseClass::setUpMenus() 
{ 

// Create viewPoint submenu  
menu View = glutCreateMenu(viewSwitchMenu); 

// Specify menu items and their GLinteger indentifiers 
glutAddMenuEntryC'Pan", 1); 
glutAddMenuEntryC'Walk", 2); 
glutAddMenuEntryfStudy", 3); 
glutAddMenuEntryC'Restore view", 4); 
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// Create Model submenu  
menuModel = glutCreateMenu(modelSwitchMenu); 

glutAddMenuEntryC'Stick", 1); 
glutAddMenuEntryC'Skin", 2); 
glutAddMenuEntryC'Wire Frame", 3); 

// Create motion submenu  
menuUserControl = glutCreateMenu(UserControlMenu); 

glutAddMenuEnrryC'Forward Kinematics", 1); 
glutAddMenuEntryC'Inverse Kinematic", 2); 
glutAddMenuEntryC'Restore posture", 3); 

menuProceduralAnim = glutCreateMenu(ProceduralAnimMenu); 
glutAddMenuEntry("Walking( INV. KIN.)", 1); 
glutAddMenuEntry("Walking( FWD. KIN.)", 2); 

menuKeyFrameAnim = glutCreateMenu(KeyFrameAnimMenu); 
glutAddMenuEntry("(a)dd", 1); 
glutAddMenuEntry("(i)nsert", 2); 
glutAddMenuEntry("(d)elete", 3); 
glutAddMenuEntry("(f)irst", 4); 
glutAddMenuEntry("(l)ast", 5); 
glutAddMenuEntry("(n)ext", 6); 
glutAddMenuEntry("(p)revious", 7); 
glutAddMenuEntry("(r)un", 8); 
glutAddMenuEntry("(s)top", 9); 

menuMotion = glutCreateMenu(mainMenu); 
glutAddMenuEntryC'InertialSensor", 1); 
glutAddSubMenu("User Control", menuUserControl); 
glutAddSubMenu("ProceduralAnim", menuProceduralAnim); 
glutAddSubMenu("KeyFrameAnim", menuKeyFrameAnim); 

// Create main menu  
topMenu = glutCreateMenu(mainMenu); 

glutAddSubMenu("View Mode", menu View); // Attach view Menu 
glutAddSubMenu("Model Mode", menuModel); // Attach model Menu 
glutAddSubMenu("Posture Control", menuMotion); // Attach motion Menu 

glutAttachMenu(GLUT_RIGHT_BUTTON); // Attach menu to right mouse button 
} 

//_  
void GlutBaseClass::mainMenu(GLint value) 
{ 

switch (value) { 
case(l):postureControlMode = SENSOR; 

break; 
default: 

cout« "Unknown Main Menu Selection!" « endl; 
} 

} 
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//  
void GlutBaseClass::viewSwitchMenu(GLint value) 
{ 

switch (value) { 
case(l): 

viewPointMode =PAN; 
break; 

case(2): 
viewPointMode =WALK; 
break; 

case(3): 
viewPointMode =STUDY; 
break; 

case(4): 
viewPointX =0; 
viewPointY =0; 
viewPointZ =VDEWPOINT_Z; 
rotationX =0; 
rotationY =0; 
break; 

default:; 
//do nothing 

} 
// Signal GLUT to call display callback 
glutPostRedisplayO; 

//—- 
void GlutBaseClass::modelSwitchMenu(GLint value) 
{ 

switch (value) { 
case(l): 

humanObj.setModelType( STICK ); 
break; 

case(2): 
humanObj.setModelType( SKIN); 
break; 

case(3): 
humanObj.setModelType( WIRE_FRAME); 
break; 

default:; 
//do nothing 

} 
// Signal GLUT to call display callback 
glutPostRedisplayO; 

II- 
void GlutBaseClass::UserControlMenu(GLint value) 
{ 

if( postureControlMode ==WALKTNG){ 

humanObj.initializePosture(); 
} 
postureControlMode =USER_CONTROL; 
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switch (value) { 
case(l): 

userControl.setControlType( QUATERNION_CONTROL); 
break; 

case(2): 
userControl.setControlType( INVERSE_CONTROL); 
break; 

case(3): 
humanObj.initializePostureO; 
break; 

default:; 
//do nothing 

} 

// Signal GLUT to call display callback 
glutPostRedisplayO; 

II  
void GlutBaseClass::ProceduralAnimMenu(GLint value) 

{ 
humanObj .initializePosture(); 

userControl.setControlType( QUATERNION_CONTROL); 
postureControlMode =WALKING; 

switch (value) { 
case(l): 

procedure.setWalkingMethod(INVERSE); 
break; 

case(2): 
procedure.setWalkingMethod(FORWARD); 
break; 

default:; 
//do nothing 

} 
// Signal GLUT to call display callback 
glutPostRedisplayO; 

II.  
void GlutBaseClass::KeyFrameAnimMenu(GLint value) 
{ 

if( postureControlMode == USER_CONTROL) { 

keyFrame.keyPressed( 'a' + value); 

if(value=8){ 

userControl.setControlType( QUATERNION_CONTROL); 
postureControlMode =KEY_FRAME; 
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*************** lRVPNT HANDLERS *************************************** 

void GlutBaseClass::display() 

glClear( GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT); 
glLoadldentityO; // Reset the modelview matrix 

if( postureControlMode == USER_CONTROL) { 

userControl.mouseDragAt( oldMouseX, oldMouseY); 
} 

// Set the view point 
gluLookAt(viewPointX, viewPointY, viewPointZ, 

viewPointX, viewPointY, viewPointZ-VIEWPOINT_Z, 
0.0,1.0, 0.0); 

glRotatef( rotationX, 1,0,0); 
glRotatef( rotationY, 0, 1, 0 ); 

floor.draw(); //draw the floor 

humanObj.drawO; //draw human obj 

glutSwapBuffersO; // Hush all drawing commands and swapbuffers 

II- 
void GlutBaseClass::reshape(GLint w, GLint h) 
{ 

winSizeY = (h==0)?l:h; 
winSizeX = (w == 0) ? 1 : w; 

glViewport(0, 0, winSizeX, winSizeY);        // Set viewport to entire client area 

glMatrixMode (GL_PROJECTION); // Projection matrix stack 

glLoadldentityO; I I Reset the projection marix stack 

// Set up a perspective projection matrix 
gluPerspective(45.0f, (GLfloat)winSizeX/(GLfloat)winSizeY, l.Of, 50.0f); 

} 
glMatrixMode (GL_MODELVIEW); // Modelview matrix stack 

II  
void GlutBaseClass::keyboard(unsigned char key, GLint x, GLint y) 

{ 
if( postureControlMode == USER_CONTROL) { 

keyFrame.keyPressed( key); 
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if(key=='r'){ 
userControl.setControlType( QUATERNION_CONTROL); 
postureControlMode =KEY_FRAME; 

} 

glutPostRedisplayO; 

//_  
void GlutBaseClass::specialKeys(GLint key, GLint x, GLint y) 

{ 
switch(key) { 

case(GLUT_KEY_UP): 
if( postureControlMode == WALKING){ 

procedure.increaseFrameRateO; 
fioor.increaseFrameRate(); 

} 
break; 

case(GLUT_KEY_DOWN): 
if( postureControlMode == WALKING){ 

procedure.decreaseFrameRateO; 
floor.decreaseFrameRateO; 

} 
break; 

case(GLUT_KEY_RIGHT): 
break; 

case(GLUT_KEY_LEFT): 
break; 

default: 
break; 

} 
} 

II  
void GlutBaseClass::mouseButton(GLint btn, GLint state, GLint x, GLint y) 
{ 

switch (btn) { 
case (0)://Left button 

if( postureControlMode == USER_CONTROL) { 

(state == GLUT_DOWN) ? 
userControl.mouseHitAt( x, y, rotationX, rotationY ) 

userControl.mouseReleasedAt( x, y); 

break; 
case (1)://Center button 

break; 
case (2)://Right button 

break; 
default://Unknown button 

break; 
} 
oldMouseX =x; oldMouseY=y; 
glutPostRedisplayO; 
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//.  
void GlutBaseClass::activeMouseMotion(GLint x, GLint y) 
{ 

if ( userControl.isTrackingO == FALSE) { 
// if there is no selection on body parts, 
// this mouse motion is for view transformations 
setView(x,y); 

} 

// capture mouse coord 
oldMouseX =x; oldMouseY=y; 

glutPostRedisplayO; 

//.  
void GlutBaseClass::setView(GLint x, GLint y) 
{ 

static const GLfloat VDEW_STEP =0.5f; // step in world coord for WALK & PAN mode 

static const GLfloat ROTATION_STEP =20;// step of rotation on Y-axis for STUDY 

// oldMouseY chances affect viewPointY or viewPointZ or rotationX 
if(y-oldMouseY>0){ 

(viewPointMode = WALK) ? (viewPointZ+=VIEW_STEP): 
((viewPointMode = PAN) ? ( viewPointY-=VIEW_STEP): 

(rotationX+=ROTATIONSTEP)); 
} 
else if(y-oldMouseY < 0){ 

(viewPointMode = WALK) ? (viewPointZ-=VTEW_STEP): 
((viewPointMode = PAN) ? ( viewPointY+=VIEW_STEP): 

(rotationX-=ROTATION_STEP)); 
} 

// oldMouseX chances affect viewPointX or rotationY (depending on viewPointMode) 
if(x-oldMouseX > 0) { 

(viewPointMode = STUDY) ? (rotationY+=ROTATION_STEP): 
(viewPointX+=VIEW_STEP); 

} 
else if(x-oldMouseX < 0){ 

(viewPointMode = STUDY) ? ( rotationY-=ROTATION_STEP): 
(viewPointX-=VIEW_STEP); 

} 
} 

//  
void GlutBaseClass::visibility(GLint status) 
{ 

if (status = GLUTVISIBLE) { 
glutldleFunc(animate); // Turn on animation 

} 
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else { 
glutldleFunc(NULL); // Turn off animation 

} 

//.  
void GlutBaseClass::menuStatus(GLint status, GLint x, GLint y) 
{ 

if (status == GLUT_MENU_IN_USE) { 
glutldleFunc(NULL); // Turn off animation 

} 
else { 

glutldleFunc(animate); // Turn on animation 
} 

} 

//.  
void GlutBaseClass::animate() 
{ 

if( postureControlMode == WALKING){ 

procedure. walk(); 
floor.slideO; 
displayO; //draw again 

} 
else if( postureControlMode = KEY_FRAME ){ 

if( IkeyFrame.playO){ 

postureControlMode =USER_CONTROL; 
} 
displayO; //draw again 

} 
else if( postureControlMode = SENSOR){ 

sensorSystem.trackSegmentO; 
displayO; //draw again 
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// FILE      : H_Matrix.h 
// DESCRIPTION: general purpose homogeneous matrix 

#ifndef H_MATRIX_H_ 
#define      H MATRIX H 

#include <GL/glut.h> 
#include "QuaternionR.h" 

class H_Matrix{ 

public :// P U B LI C  
//CONSTRUCTORS 
H_Matrix(); //default 
H_Matrix( H_Matrix &);    //copy 

//DESTRUCTOR 
~H_Matrix(); 

//FUNCTIONS 
virtual void setBoundaries( const GLfloat* ) =0; 
void setTranslation( const GLfloat, const GLfloat, const GLfloat); 
boolean setOrientation( const ROTATION_METHODS ,const GLfloat* ); 
void getOrientation( const ROTATION_METHODS , GLfloat * const); 
boolean rotate( const ROTATION_METHODS, const GLfloat * ); 
void applyToCurrentMatrixO; 

protected ://- P R O T E C T E D  
//OPERATORS 
H_Matrix& operator=( const H_Matrix &); 

//FUNCTIONS 
void quatToMatrix(); 
void vecAngToMatrixO; 
void matrixToQuatO; 
void quatToVecAngO; 
void vecAngToQuat(); 
boolean rotateByVecAng( const GLfloat * orientation ); 

virtual void eulerToMatrix() =0; 
virtual void matrixToEuler() =0; 
virtual void setEuler( const GLfloat * ) =0; 
virtual void getEuler( GLfloat * const) =0; 
virtual boolean rotateByEuler( const GLfloat * ) = 0; 
virtual boolean isRotationAcceptable( QuaternionR &) =0; 

//OBJECTS 
QuaternionR quaternion; 

//VARIABLES 
GLfloat angle, vector_x, vector_y, vector_z, 

matrix[16], *boundaries; 
ROTATION_METHODS lastUpdateMethod; 

}; 
#endif 
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// FILE      : H_Matrix.cpp 
// DESCRIPTION: 

«include "H_Matrix.h" 

//  
H_Matrix:: H_Matrix() { 

//INITIALIZE 
quatToMatrixO; 
matrix[3] = 0; 
matrix[7] = 0; 
matrix[ll] = 0; 
matrix[15] = 1 ; 

} 
lastUpdateMethod =QUATERNION; 

//_  
H_Matrix: :-H_Matrix() { 

} 

//.  
void H_Matrix::applyToCurrentMatrix() 
{ 

glMultMatrixf( matrix); 
} 

//.  
void H_Matrix::setTranslation( const GLfloat XX, 

const GLfloat YY, 
const GLfloat ZZ) 

{ 
matrix[12] = XX; 
matrix[13] = YY; 
matrix[14] = ZZ; 

return; 
} 

//.  
boolean H_Matrix::setOrientation( const ROTATION_METHODS method, 

const GLfloat* orientation) 
{ 

lastUpdateMethod =method; 

boolean rotationAccepted =FALSE; 
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switch( method){ 

case VECTOR_ANGLE: { 

QuaternionR newOrientation( orientation); 

rotation Accepted =isRotationAcceptable( newOrientation ); 

if (rotation Accepted){ 

angle   =orientation[3]; 
vector_x =orientation[X]; 
vector_y =orientation[Y]; 
vector_z =orientation[Z]; 
vecAngToMatrixO; 

} 
}break; 

case QUATERNION: { 

QuaternionR newOrientation; 
newOrientation.setValues( orientation); 

rotationAccepted =isRotationAcceptable( newOrientation); 

if (rotation Accepted){ 

quaternion= newOrientation; 
quatToMatrixO; 

} 
} break; 

case EULER: 

rotationAccepted =rotateByEuler( orientation); 
break; 

case MATRIX: { 
matrixToQuatO; 
QuaternionR old =quateraion; 
matrix[0] =orientation[0]; matrix[4] =orientation[3]; matrix[8] =orientation[6]; 
matrixfl] =orientation[l]; matrix[5] =orientation[4]; matrix[9] =orientation[7]; 
matrix[2] =orientation[2]; matrix[6] =orientation[5]; matrixflO] =orientation[8]; 
matrixToQuatO; 
rotationAccepted =isRotationAcceptable( quaternion); 
if( Irotati on Accepted ){ 

quaternion =old; 
quatToMatrixO; 

} 
Jbreak; 

} 

if( rotationAccepted ) lastUpdateMethod =method; 

return rotationAccepted; 
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//  
void H_Matrix::getOrientation( const ROTATION_METHODS method, 

GLfloat* const orientation) 
{ 

switch( method){ 
case VECTORANGLE: 

if( lastUpdateMethod !=VECTOR_ANGLE ) matrixToQuat(); 

quatToVecAngO; 

orientation [3] =angle; 
orientation [X] =vector_x; 
orientation [Y] =vector_y; 
orientation [Z] =vector_z; 
break; 

case QUATERNION: 

if( lastUpdateMethod ==VECTOR_ANGLE ) vecAngToQuat(); 
else if( lastUpdateMethod !=QUATERNION) matrixToQuat(); 

quaternion.getValues( orientation); 
break; 

case EULER: 
if( lastUpdateMethod !=EULER) matrixToEuler(); 

getEuler( orientation); 
break; 

case MATRIX://never called 
break; 

} 
} 

//  
boolean H_Matrix::rotate( const ROTATTON_METHODS method, 

const GLfloat* orientation) 
{ 

boolean rotationAccepted =FALSE; 

switch( method){ 
case VECTOR_ANGLE: 

if( lastUpdateMethod !=VECTOR_ANGLE ) matrixToQuat(); 

rotationAccepted =rotateByVecAng( orientation); 

if( rotationAccepted) lastUpdateMethod =QUATERNION; 

break; 
case QUATERNION://never called 

break; 
case EULER: 

rotationAccepted =rotateByEuler( orientation); 

if( rotationAccepted ) lastUpdateMethod =EULER; 

break; 
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case MATRIX://never called 
break; 

return rotationAccepted; 
} 

II- 
boolean H_Matrix::rotateByVecAng( const GLfloat * orientation ) 

{ 
boolean rotationAccepted =FALSE; 

QuaternionR rotation( orientation); 

// apply rotation on existing quaternion orientation 
QuaternionR newOrientation =rotation * quaternion; 

//checks if rotation in boundaries 
if( isRotationAcceptable( newOrientation)){ 

quaternion =newOrientation; 

quatToMatrix(); 

rotationAccepted =TRUE;// if it is, return accepted 

} 

} 

return rotationAccepted; 

II- 
void H_Matrix::quatToVecAng() 
{ 

GLfloat vectorScalar, 
quat[THREE_D+l]; 

quaternion.getValues( quat); 

angle = acos(quat[3]) * 2; 
vectorScalar = sin( angle/2); 
if( vectorScalar !=0){ 

vector_x = quat[X] / vectorScalar; 
vector_y = quat[Y] / vectorScalar; 
vector_z = quat[Z] / vectorScalar; 

} 
else{ 

vector_x =vector_y =vector_z =0; 
} 
angle = angle / DEG_TO_RAD; 

120 



//  
void H_Matrix::vecAngToQuat() 

{ 
quaternion =QuaternionR( vector_x ,vector_y ,vector_z, angle); 

quaternion.normalize(); 

return; 
} 

//.  
void H_Matrix::matrixToQuat() 

{ 
GLfloat quat[THREE_D+l]; 

quat[3] =(GLfloat) sqrt( (matrix[0]+matrix[5]+matrix[10]+l)/4 ); 

GLfloat w4 =4*quat[3]; 

quat[X] =(matrix[6]-matrix[9]) / w4; 

quat[Y] =(matrix[8]-matrix[2]) / w4; 

quat[Z] =(matrix[l]-matrix[4]) / w4; 

quaternion.setValues( quat); 
} 

//.  
void H_Matrix::quatToMatrix(){ 

GLfloat quat[THREE_D]; 

quaternion.getValues( quat); 

GLfloat 
xx =quat[X]*quat[X], yy =quat[Y]*quat[Y], zz =quat[Z]*quat[Z], 
xy =quat[X]*quat[Y], xz =quat[X]*quat[Z], yz =quat[Y]*quat[Z], 
wx =quat[X]*quat[3], wy =quat[Y]*quat[3], wz =quat[Z]*quat[3]; 

matrixfO] = 1 - (2* (yy+zz)); 
matrix[l] = 2* (xy + wz); 
matrix[2] = 2* (xz - wy); 

matrix[4] = 2* (xy - wz); 
matrix[5] = 1 - (2* (xx+zz)); 
matrix[6] = 2* (yz + wx); 

matrix[8] = 2* (xz + wy); 
matrix[9] = 2* (yz - wx); 
matrixflO] = 1 - (2* (xx+yy)); 

return; 
} 
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void H_Matrix::vecAngToMatrix() 

{ 
GLfloat 

s   =(GLfloat) sin( angle*DEG_TO_RAD ), 
c   =(GLfloat) cos( angle*DEG_TO_RAD ), 
ci   =1 - c, 
xyci =vector_x*vector_y*ci, 
xzci =vector_x*vector_z*ci, 
yzci =vector_y*vector_z*ci, 
xs   =vector_x*s  , ys  =vector_y*s   , zs  =vector_z*s; 

matrix[0] = (vector_x*vector_x*ci) + c ; 
matrixfl] =xyci+zs; 
matrix[2] =xzci-ys; 

matrix[4] = xyci -zs ; 
matrix[5] = (vector_y*vector_y*ci) + c ; 
matrix[6] = yzci + xs; 

matrix[8] = xzci + ys ; 
matrix[9] = yzci - xs ; 
matrix[10] = (vector_z*vector_z*ci) + c ; 
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//»let:******************************************************************* 

// FILE      : H_MatrixlDOF.h 
// DESCRIPTION: special functions for 1 DOF 
/;*******###*********************************************************** 

#ifndef      H MATRIX1DOF H 
#define __H_MATRIX1D0F_H_ 

include <GL/glut.h> 
#include "H_Matrix.h" 

class H_MatrixlDOF: public H_Matrix{ 

public :// P U B LIC  

//CONSTRUCTORS 
HMatrix 1D0F( AXIS ); //default 
H_MatrixlDOF(H_MatrixlDOF&);    //copy 

//DESTRUCTOR 
~H_MatrixlDOF(); 

//FUNCTIONS 
void setBoundaries( const GLfloat* ); 
boolean rotateByEuler( const GLfloat * ); 
void setEuler( const GLfloat * ); 
void getEuler( GLfloat * const); 

private :// P RIV A T E  

//OPERATORS 
H_MatrixlDOF& operator=( const H_MatrixlDOF &); 

//FUNCTIONS 
void matrixToEulerO; 
void eulerToMatrixO; 
void eulerXToMatrix( GLfloat, GLfloat) 
void eulerYToMatrix( GLfloat, GLfloat) 
void eulerZToMatrix( GLfloat, GLfloat) 

boolean isRotationAcceptable( QuaternionR & ); 
boolean isRotationAcceptable( GLfloat); 
boolean isMatrixFit(); 

//VARIABLES 
GLfloat 

angle, minAngle, maxAngle; 

AXIS axis; 
}; 

#endif 
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// FILE      : H_MatrixlDOF.cpp 
// DESCRIPTION: 

#include "H MatrixlDOF.h" 

//.  
H_MatrixlDOF::H_MatrixlDOF( AXIS a){ 

//INITIALIZE 
axis =a; 
angle =0; 

} 

//.  
H_MatrixlDOF::~H_MatrixlDOF(){ 

//.  
void H_MatrixlDOF::setBoundaries( const GLfloat* boundaries ) 
{ 

minAngle =boundaries[ 2*axis ]; 
maxAngle =boundaries[ (2*axis)+l ]; 

} 

//  
void H_MatrixlDOF::setEuler( const GLfloat * eulerAngle) 
{ 

switch( axis){ 
case X: angle =eulerAngle[X]; 

break; 
case Yrangle =eulerAngle[Y]; 

break; 
case Z:angle =eulerAngle[Z]; 

break; 
} 

eulerToMatrixO; 

//.  
void H_MatrixlDOF::getEuler( GLfloat * const eulerAngle) 
{ 

eulerAnglefX] =OUT_RANGE; 
eulerAnglefY] =OUT_RANGE; 
eulerAngle[Z] =OUT_RANGE; 

eulerAnglefaxis] =angle; 
} 

II.  
boolean H_MatrixlDOF::rotateByEuler( const GLfloat *eulerAngle) 
{ 

boolean rotationAccepted =FALSE; 
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//checks if rotation in boundaries 
if( isRotationAcceptable( eulerAngle[axis])){ 

angle =eulerAngle[axis]; 

eulerToMatrixO; 

rotationAccepted =TRUE;// if it is, return accepted 
} 

return rotationAccepted; 
} 

//  
boolean H_MatrixlDOF::isRotationAcceptable( QuaternionR & newOrientation ) 
{ 

boolean accepted =FALSE; //default, don't accept rotation 

H_MatrixlDOF tmp( axis); 

tmp.minAngle =minAngle; 
tmp.maxAngle =maxAngle; 

tmp.quaternion = newOrientation; 

tmp.quatToMatrixO; 

tmp.matrixToEulerO; 

if( tmp.isRotationAcceptable( tmp.angle) && tmp.isMatrixFit()){ 

accepted =TRUE; 
} 

return accepted; 
} 

//.  
boolean H_MatrixlDOF::isRotationAcceptable( GLfloat a) 
{ 

if(a>180)a-=360; 

if( a <minAngle II a >maxAngle){ 

return FALSE; 
} 

return TRUE; 
} 

//  
boolean H_MatrixlDOF::isMatrixFit() 
{ 

boolean accepted =FALSE; //default, don't accept rotation 
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if( 

){ 

( axis ==X && matrixfO] =1 && matrix[l] =0 && 
matrix[2] ==0 && matrix[4] ==0 && matrix[8] ==0) 

II 
(axis ==Y && matrixfl] =0 && matrix[4] =0 && 
matrix[5] ==1 && matrix[6] ==0 && matrix[9] ==0) 

II 
( axis ==Z && matrix[2] ==0 && matrix[6] ==0 && 
matrix[8] ==0 && matrix[9] ==0 && matrixflO] ==1) 

accepted =TRUE; 
} 

return accepted; 

} 

//.  

void H_MatrixlDOF::matrixToEuler() 
{ 

switch( axis){ 
case Xrangle =(GLfloat) acos(matrix[5]) / DEG_TO_RAD; 

if( matrix [6] < 0) angle =360-angle; 
break; 

case Y:angle =(GLfloat) acos(matrix[0]) / DEG_TO_RAD; 
if( matrix[8] < 0 ) angle =360-angle; 
break; 

case Z:angle =(GLfloat) acos(matrix[0]) / DEG_TO_RAD; 
if( matrixfl] < 0 ) angle =360-angle; 
break; 

} 
} 

II  
void H_MatrixlDOF::eulerToMatrix() 
{ 

GLfloat 
ca =(GLfloat) cos( angle * DEG_TO_RAD ), 
sa =(GLfloat) sin( angle * DEG_TO_RAD ); 

switch( axis){ 
case X:eulerXToMatrix( ca, sa); 

break; 
case Y:eulerYToMatrix( ca, sa); 

break; 
case Z:eulerZToMatrix( ca, sa); 

break; 

II- 
void H_MatrixlDOF::eulerXToMatrix( const GLfloat cosAngle, 

const GLfloat sinAngle) 
{ 

matrixfO] = 1 
matrixfl] = 0; 
matrix[2] =0: 
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} 

matrix[4] =0; 
matrix [5] = cos Angle; 
matrix[6] = sinAngle; 

matrix[8] =0; 
matrix[9] =-sinAngle; 
matrix[10] = cosAngle; 

//  
void H_MatrixlDOF::eulerYToMatrix( const GLfloat cosAngle, 

const GLfloat sinAngle) 
{ 

matrix[0] = cosAngle; 
matrix[l] =0; 
matrix[2] =-sinAngle; 

matrix[4] =0; 
matrix[5] = 1; 
matrix[6] =0; 

matrix[8] = sinAngle; 
matrix[9] =0; 
matrix[10] = cosAngle; 

} 

//.  
void H_MatrixlDOF::eulerZToMatrix( const GLfloat cosAngle, 

const GLfloat sinAngle) 
{ 

matrix[0] = cosAngle; 
matrixfl] = sinAngle; 
matrix[2] =0; 

matrix[4] =-sinAngle; 
matrix[5] = cosAngle; 
matrix[6] =0; 

matrix[8] =0; 
matrix[9] =0; 
matrix[10] = l; 
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// FILE      : H_Matrix3DOF.h 
// DESCRIPTION: Special functions for 3 DOF 

#ifndef      H MATRIX3DOF H 
#define      H MATRTX3DOF H 

#include <GL/glut.h> 
#include "H_Matrix.h" 

class H_Matrix3DOF: public H_Matrix{ 

public :// P U B LIC  

//CONSTRUCTORS 
H_Matrix3DOF(); //default 
H_Matrix3DOF( H_Matrix3DOF &);    //copy 

//DESTRUCTOR 
~H_Matrix3DOF(); 

//FUNCTIONS 
void setBoundaries( const GLfloat* ); 
boolean rotateByEuler( const GLfloat * ); 
void setEuler( const GLfloat * ); 
void getEuler( GLfloat * const); 

private :// P RIV A T E  

//OPERATORS 
H_Matrix3DOF& operator=( const H_Matrix3DOF & ); 

//FUNCTIONS 
void matrixToEulerO; 
void eulerToMatrix(); 

boolean isRotationAcceptable( QuaternionR &); 
boolean isRotationAcceptable( const GLfloat * ); 

//VARIABLES 
GLfloat 

angle[THREE_D], 
minAngle[THREE_D], maxAngle[THREE_D]; 

}; 

#endif 
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// FILE      : H_Matrix3D0F.cpp 
// DESCRIPTION: 

#include "H_Matrix3DOF.h" 

//.  
H_Matrix3DOF: :H_Matrix3DOF() { 

//INITIALIZE 
angle[X] =angle[Y] =angle[Z] =0; 

//_  
H_Matrix3DOF: :~H_Matrix3DOF() { 

} 

//.  
void H_Matrix3DOF::setBoundaries( const GLfloat* boundaries ) 
{ 

for( GLint i=X; i<=Z; i++){ 

minAnglefi] =boundaries[ 2*i ]; 
maxAngle[i] =boundaries[ (2*i)+l ]; 

//  
boolean H_Matrix3DOF::rotateByEuler( const GLfloat *eulerAngle) 

{ 
boolean rotationAccepted =FALSE; 

//checks if rotation in boundaries 
if( isRotationAcceptable( eulerAngle)){ 

setEuler( euler Angle); 

rotationAccepted =TRUE;// if it is, return accepted 
} 

return rotationAccepted; 
} 

//  
void H_Matrix3DOF::setEuler( const GLfloat * eulerAngle) 
{ 

for( GLint i=X; i<=Z; i++){ 

angle[i] =eulerAngle[i]; 
} 

eulerToMatrixO; 
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//.  
void H_Matrix3DOF::getEuler( GLfloat * const eulerAngle) 
{ 

for( GLint i=X; i<=Z; i++ ){ 

eulerAnglefi] =angle[i]; 

boolean H_Matrix3DOF::isRotationAcceptable( QuaternionR & newOrientation ) 
{ 

boolean accepted =FALSE; //default, don't accept rotation 

H_Matrix3DOF tmp; 

for( GLint i=X; i<=Z; i++){ 

tmp.minAngle[i] =minAngle[i]; 
tmp.maxAngle[i] =maxAngle[i]; 

} 

tmp.quaternion = newOrientation; 

tmp.quatToMatrixO; 

tmp. matrixToEulerO; 

if( tmp.isRotationAcceptable( tmp.angle)){ 

accepted =TRUE; 

return accepted; 
} 

//.  
boolean H_Matrix3DOF::isRotationAcceptable( const GLfloat *eulerAngle) 
{ 

for( GLint i=X; i<=Z; i++){ 

GLfloat a =eulerAngle[i]; 
if(a>180)a-=360; 

if( a <minAngle[i] II a >maxAngle[i]){ 

return FALSE; 
} 

} 

return TRUE; 
} 
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//  
void H_Matrix3DOF::matrixToEuler() 
{ 

angle[Y] =(GLfloat) asin( -matrix[2]); 

GLfloat 
cy =(GLfloat) cos( angle[Y]), 

cz =matrix[0] /cy, 
sz =matrix[l] /cy, 
sx =matrix[6] /cy, 
ex =matrix[10]/cy; 

angle[Z] = acos(cz) / DEG_TO_RAD; 
if( sz < 0) angle[Z] =360-angle[Z]; 

anglefX] = acos(cx) / DEG_TO_RAD; 
if( sx < 0) anglefX] =360-angle[X]; 

angle[Y] /=DEG_TO_RAD; 
if( angle[Y] < 0) angle[Y] +=360; 

II  
void H_Matrix3DOF::eulerToMatrix() 
{ 

GLfloat 
ex =(GLfloat) cos( angle[X] * DEG_TO_RAD ), 
cy =(GLfloat) cos( angle[Y] * DEG_TO_RAD ), 
cz =(GLfloat) cos( anglefZ] * DEG_TO_RAD), 
sx =(GLfloat) sin( anglefX] * DEG_TO_RAD), 
sy =(GLfloat) sin( angle[Y] * DEG_TO_RAD ), 
sz =(GLfloat) sin( angle[Z] * DEG_TO_RAD), 

cxz =cx*cz, sxz =sx*sz, cszx =cz*sx, csxz =cx*sz; 

matrix[0] =cz*cy; 
matrix[l] = sz*cy; 
matrix[2] =-sy; 

matrix[4] = (cszx * sy) - csxz; 
matrix[5] = (sxz * sy) + cxz; 
matrix [6] = sx*cy; 

matrix[8] = (cxz * sy) + sxz; 
matrix[9] = (csxz * sy) - cszx; 
matrixflO] = cx*cy; 
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//**##**#*******#*****#***********#************************************ 

// FILE      : Human.h 
// DESCRIPTION: Composition of Segment objects 
;/#:K##;|:* »if:********************************************* **************** 

#ifndef      HUMAN H 
#define      HUMAN H 

#include <GL/glut.h> 
#include <iostream.h> 
#include "Segment.h" 
#include "JoinLh" 

//ENUMs 
enum SEGMENTS { ROOT, BODY, NECK, HEAD, //names of human body segments 

L_HIP, L_LEG ,L_FOOT, 
L_UPPER_ARM, L_FORE_ARM, L_HAND, 
R_HIP, R_LEG ,R_FOOT, 
R_UPPER_ARM, R_FORE_ARM, RJHAND, 

NONE}; 

enum JOINTS { WAIST, BODY_NECK, NECK_HEAD, //names of human body joints 
L_HEP_JOINT, L_KNEE ,L_ANKLE, 
L_SHOULDER, L_ELBOW, L_WRIST, 
R_HIP_JOINT, R_KNEE ,R_ANKLE, 
R_SHOULDER, R_ELBOW, R_WRIST }; 

//CLASS DEF. 
class Human { 

public :// P U B LIC  

//CONSTRUCTORS 
HumanO; 
Human( Human &); 

//DESTRUCTOR 
~Human(); 

//FUNCTIONS 
void draw(); 
void drawMouseDetectors(); 

void initializePosture(); 
void setModelType( MODEL_TYPE); 

boolean setPosture( const ROTATION_METHODS, const SEGMENTS, const GLfloat * ); 
void getPosture( const ROTATION_METHODS, const SEGMENTS, GLfloat * const); 
boolean modifyPosture( const ROTATION_METHODS, const SEGMENTS, const GLfloat * ); 

void   getJointCenters( const SEGMENTS ,GLfloat &, GLfloat &, GLfloat &); 
void   getEarthMatrix( SEGMENTS, GLfloatf 16]); 
GLfloat getSegmentLength( SEGMENTS); 
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private ://- P RIV A T E  

//OPERATORS 
Human& operator=( const Human & ); 

//FUNCTIONS 
void constructHumanModelO; 
void construcJointsO; 
void constructSegmentShapesO; 

void drawRoot(); // draw functions for segments 
void drawBodyO; 
void drawHead(); 
void drawLeftArm(); 
void drawRightArmO; 
void drawLeftLegO; 
void drawRightLegO; 
void transformJoints( SEGMENTS ); //calls humanJoint objects for transform of joint points 

//OBJECT POINTERS 
Segment *segment[NUMBER_OF_SEGMENTS]; 
Joint  *joint[NUMBER_OF_JOINTS]; 

//VARIABLES 
GLint 

numberOfPoints; // number of points that are used to draw human 
GLfloat 

**points, //points to draw human 
**normals; //normals of all points 

MODELJTYPE modelType; 

}; 

#endif 

133 



n******************************************** ************************* 

// FILE      : Human.cpp 
// DESCRIPTION: 

#include "Human.h" 

//.  
Human: :Human() 
{ 

//INITIALIZE 
normals =points =NULL; 
modelType =STICK; 

for(GLint segmentNo=0; segmentNoc NUMBER_OF_SEGMENTS; segmentNo++){ 

AXISdof=XYZ; 
if( segmentNo ==L_LEG II segmentNo ==R_LEG){ dof =X; } 
else if( segmentNo =L_FORE_ARM II segmentNo =R_FORE_ARM){ dof =Z; } 

segment[ segmentNo ] =new Segment( segmentNo, dof); 
} 

for(GLint jointNo=0; jointNo< NUMBER_OF_JOINTS; jointNo++){ 

joint[ jointNo ] =NULL; 

segment[HEAD] ->setStickShape( Box( 1, 0.25f, -0.25f, 0.25f, -0.25f).); 

Box hand( -0.7f, 0.08f, -0.08f, 0.2f, -0.2f); 
segment[L_HAND]->setStickShape( hand); 
segment[R_HAND]->setStickShape( hand); 

Box foot( -0.25f, 0.2f, -0.2f, 0.8f, -O.lf); 
segment[L_FOOT]->setStickShape( foot); 
segment[R_FOOT]->setStickShape( foot); 

//.  
Human: :~Human() 
{ 

for(int i=0; i<numberOfPoints; i++){ 

delete [] pointsfi]; 
delete [] normals [i]; 

} 

delete [] points; 
delete [] normals; 

for(GLint segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){ 

delete segment[ segmentNo ]; 
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for(GLint jointNo=0; jointNcK NUMBER_OF_JOINTS; jointNo++){ 

delete jointf jointNo ]; 
} 

} 

//  
void Human::initializePosture() 

{ 
GLfloat resetOrientation[4] ={0,0,0,1}; 

for(int segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){ 

segment[segmentNo] ->setOrientation( QUATERNION, resetOrientation ); 

} 

return; 

//.  
boolean Human::setPosture( const ROTATION_METHODS method, 

const SEGMENTS SEGMENT, 
const GLfloat * orientation ) 

{ 

return segment[ SEGMENT ] ->setOrientation( method, orientation ); 

} 

//.  
void Human::getPosture( const ROTATION_METHODS method, 

const SEGMENTS SEGMENT, 
GLfloat * const orientation ) 

{ 
segmentfSEGMENT] ->getOrientation( method, orientation ); 

} 

//.  
boolean Human::modifyPosture( const ROTATION_METHODS method, 

const SEGMENTS segmentNo, 
const GLfloat *orientation) 

{ 
return segment[ segmentNo ] ->rotate( method, orientation ); 

} 

//.  
void Human ::drawMouseDetectors() 
{ 

gllnitNamesO; 
glPushName(O); 

for(GLuint i=0; i<NUMBER_OF_SEGMENTS; i++){ 
glLoadName(i); 
segment[i] ->drawDetectionVolume(); 

} 
return; 

} 
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/###*###**##*##*##*##***## DRAWING FUNC ******************************/ 

//  
void Human::draw() 
{ 

//Root 
drawRootO; 
glPushMatrix(); 

//Body 
drawBodyO; 

glPushMatrix(); 
//Head 
drawHeadO; 

glPopMatrixO; 
glPushMatrix(); 

//LeftArm 
drawLeftArmO; 

glPopMatrixO; 
glPushMatrix(); 

//RightArm 
drawRightArmO; 

glPopMatrixO; 
glPopMatrixO; 
glPushMatrixO; 

//LeftLeg 
drawLeftLegO; 

glPopMatrixO; 
glPushMatrixO; 

//RightArm 
drawRightLegO; 

glPopMatrixO; 

return; 
} 

//.  
void Human::drawRoot() 
{ 

glColor3f(0, O.Olf, 0.8f); 

//Root 
transforrrJoints(ROOT); 
segment[ROOT] ->draw(points,normals); 
return; 

} 

//.  
void Human ::drawBody(){ 

//Body 
transformJoints(BODY); 
segment[BODY]->draw(points,normals); 

return; 
} 
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//.  
void Human::drawHead(){ 

glColor3f(0.6f, 0.430792f, 0.379119f); 

//Neck 
transformJoints(NECK); 
segment[NECK]->draw(points,normals); 

// Head 
transformJoints(HEAD); 
segment[HEAD]->draw(points,nonnals); 

return; 
} 

void Human::drawLeftArm(){ 

glColor3f(0, O.Olf, 0.8f); 

// Right Upper Arm 
transformJoints(L_UPPER_ARM); 
segment[L_UPPER_ARM]->draw(points,normals); 

// Right Fore Arm 
transformJoints(L_FORE_ARM); 
segment[L_FORE_ARM]->draw(points,normals); 

glColor3f(0.6f, 0.430792f, 0.379119f); 

// Right Hand 
transformJoints(L_HAND); 
segment[L_HAND]->draw(points,normals); 
return; 

} 

//_  
void Human::drawRightArm(){ 

glColor3f(0, O.Olf, 0.8f); 
// Right Upper Arm 
transformJoints(R_UPPER_ARM); 
segment[R_UPPER_ARM]->draw(points,normals); 

// Right Fore Arm 
transformJoints(R_FORE_ARM); 
segment[R_FORE_ARM]->draw(points,normals); 

glColor3f(0.6f, 0.430792f, 0.379119f); 
// Right Hand 
transformJoints(R_HAND); 
segment[R_HAND]->draw(points,normals); 
return; 
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//_  
void Human::drawLeftLeg(){ 

glColor3f(0, O.Olf, 0.8f); 

// Left Hip 
transformJoints(L_HIP); 
segment[L_HIP]->draw(points,normals); 

// Left Leg 
transformJoints(L_LEG); 
segment[L_LEG]->draw(points,normals); 

glColor3f(0.6f, 0.430792f, 0.379119f); 

// Left Foot 
transformJoints(L_FOOT); 
segment[L_FOOT]->draw(points,normals); 
return; 

II.  
void Human::drawRightLeg(){ 

glColor3f(0, O.Olf, 0.8f); 

// Left Hip 
transformJoints(R_HIP); 
segment[R_HIP]->draw(points,normals); 

//Left Leg 
transformJoints(R_LEG); 
segment[R_LEG]->draw(points,normals); 

glColor3f(0.6f, 0.430792f, 0.379119f); 

// Left Foot 
transformJoints(R_FOOT); 
segment[R_FOOT]->draw(points,normals); 

return; 
} 

^*******************gjsJD DRAWING FUNC *************************#*****/ 

void Human::transformJoints(SEGMENTS segmentName){ 

if( modelType ==SKIN II modelType ==WIRE_FRAME ){ 

switch( segmentName){ 

case ROOT: 
joint[WAIST]->transformToEnd(points); 
joint[R_HEP_JOINT]->transformToEnd(points); 
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case BODY: 

case NECK: 

case HEAD : 

case L UPPER ARM : 

case L_FORE_ARM: 

case LJHAND: 

case R UPPER ARM : 

case R_FORE_ARM : 

case R HAND: 

case LfflP: 

case L LEG: 

case L FOOT: 

case R HIP: 

case R_LEG: 

joint[L_HIP_JOINT]->transformToEnd(points); 
break; 

joint[WAIST]->transformToHead(points); 
joint[L_SHOULDER]->transformToEnd(points); 
joint[R_SHOULDER]->transformToEnd(points); 
joint[BODY_NECK]->transformToEnd(points); 
break; 

joint[BODY_NECK]->transformToHead(points); 
joint[NECK_HEAD]->transformToEnd(points); 
break; 

joint[NECK_HEAD]->transformToHead(points); 
break; 

joint[L_SHOULDER]->transformToHead(points); 
joint[L_ELBOW]->transformToEnd(points); 
break; 

joint[L_ELBOW]->transformToHead(points); 
joint[L_WRIST]->transformToEnd(points); 
break; 

joint[L_WRIST]->transformToHead(points); 
break; 

joint[R_SHOULDER]->transformToHead(points); 
joint[R_ELBOW]->transformToEnd(points); 
break; 

joint[R_ELBOW]->transformToHead(points); 
joint[R_WRIST]->transformToEnd(points); 
break; 

joint[R_WRIST]->transformToHead(points); 
break; 

joint[L_HIP_JOINT]->rransformToHead(points); 
joint[L_KNEE]->transformToEnd(points); 
break; 

joint[L_KNEE]->transformToHead(points); 
joint[L_ANKLE]->transformToEnd(points); 
break; 

joint[L_ANKLE]->transformToHead(points); 
break; 

joint[R_HIP_JOINT]->transformToHead(points); 
joint[R_KNEE]->transformToEnd(points); 
break; 

joint[R_KNEE]->transformToHead(points); 
joint[R_ANKLE]->transformToEnd(points); 
break; 
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case R FOOT: 

default:// do nothing 
break; 

joint[R_ANKLE]->transformToHead(points); 
break; 

}// end of switch() 

}//endofif 

return; 

void Human::constructHumanModel() 

{ 
cout« "Reading points..."« endl; 
points =readPoints("points.dat", numberOfPoints); 

cout« "Reading normal vectors..."« endl; 
normals =readPoints("normals.dat", numberOfPoints); 

if( points !=NULL && normals !=NULL){ 

// construct datas of joint objects 
constructTointsO; 

modelType =SKIN; 

// construct datas of segment objects 
constructSegmentShapesO; 

} 
else{ 

cout« "Program terminated abnormally." « endl; 
exit(O); 

cout« endl« "Human body is constructed."« endl; 
} 

//_  
void Human: :constructJoints() 
{ 

cout« "Waiting for JOINTs construction..."« endl; 

for(GLint jointNo=0; jointNo< NUMBER_OF_JOINTS; jointNo++){ 

joint[jointNo] =new Joint( jointNo, points ); 

if( joint[jointNo]->isConstructed() ==FALSE){ 

cout« "Joints can't be constructed.Program terminated."« endl; 
exit(O); 

} 
} 
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//  
voidHuman::constructSegmentShapes() 
{ 

cout« "Waiting for SEGMENTS construction..."« endl; 

for(GLint segmentNo=0; segmentNcx NUMBER_OF_SEGMENTS; segmentNo++){ 

Joint * jointPoint =NULL; 
if( segmentNo!= ROOT) jointPoint =joint[ segmentNo -1 ]; 
transformJoints( (SEGMENTS) segmentNo); 
if( segmentfsegmentNo] ->constructShape( points, jointPoint) =FALSE){ 

cout« "Segments can't be constructed.Program terminated."« endl; 
exit(O); 

} 

II- 
void Human::setModelType( MODEL_TYPE type) 
{ 

if( points ==NULL) constructHumanModel(); 

for( GLint segmentNo=0; segmentNcx NUMBER_OF_SEGMENTS; segmentNo++ ){ 

segmentfsegmentNo] ->setModelType( type); 
} 

modelType =type; 

return; 

} 

//  
void Human::getEarthMatrix( SEGMENTS segmentNo, GLfloat h_matrix[16]) 
{ 

segmentfsegmentNo] ->getEarthMatrix( h_matrix); 
} 

.//.  
GLfloat Human::getSegmentLength( SEGMENTS segmentNo) 
{ 

return segmentfsegmentNo] ->getLength(); 
} 

//.  
void Human::getJointCenters( const SEGMENTS SEGMENT, 

GLfloat & jointX, GLfloat &jointY, GLfloat &jointZ) 
{ 

segmentfSEGMENT] ->getJointCenters( jointX, jointY, jointZ); 
} 
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//He******************************************************************** 

// FILE      : InverseKinematics.h 
// DESCRIPTION: functions for inv. kinematics of end-effectors 

#ifhdef      INVERSEKINEMATICS H 
#define      INVERSEKINEMATICS H 

#include <GL/glut.h> 
#include "utility.h" 
#include "Human.h" 

class InverseKinematics{ 

public :// P U B LIC  

//CONSTRUCTORS 
InverseKinematics( Human *); //default 
InverseKinematics( InverseKinematics &); //copy 

//DESTRUCTOR 
-In verseKinematics(); 

//FUNCTIONS 
void initialize( SEGMENTS); 
void setEarthOrientation(const GLfloat rotX, const GLfloat rotY); 
void algebraicSolution(const GLfloat x, const GLfloat y, const GLfloat z); 

private ://- P RIV A T E  

//OPERATORS 
InverseKinematics& operator=( const InverseKinematics &); 

//FUNCTIONS 
void calculateAllAnglesForArm(); 
void calculateAllAnglesForLegO; 
void calculateEndEffectorH_Matrix(const GLfloat x,   const GLfloat y,    const GLfloat z); 
void calculateSegmentLengthsO; 
void eulerToMatrix_YXZ( GLdouble, GLdouble, GLdouble); 

//OBJECTS 
Human *human; 

//VARIABLES 
GLdouble 

base_l,base_2[2], 
secondJointAng[2]; 

GLfloat 
viewRotX, viewRotY, 
h[16], dl, d2; 

}; 
#endif 

SEGMENTS 
baseSegment, secondSegment, endSegment; 
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// FILE      : InverseKinematics.cpp 
// DESCRIPTION: 

#include <math.h> 
#include "InverseKinematics.h" 

//.  
InverseKinematics::InverseKinematics(Human * man) 
{ 

//INITIALIZE 
human =man; 

} 

//  
InverseKinematics::~InverseKinematics(){ 
} 

//.  
void InverseKinematics::setEarthOrientation( const GLfloat rotX, 

const GLfloat rotY) 
{ 

viewRotX =rotX; 
viewRotY =rotY; 

} 

//.  
void InverseKinematics::initialize( SEGMENTS end) 
{ 

if(end=L_HAND){ 

baseSegment        =L_UPPER_ARM; 
secondSegment =L_FORE_ARM; 
endSegment =L_HAND; 

} 
else if( end =R_HAND ){ 

baseSegment        =R_UPPER_ARM; 
secondSegment =R_FORE_ARM; 
endSegment =R_HAND; 

} 
else if( end =R_FOOT){ 

baseSegment        =R_HIP; 
secondSegment =R_LEG; 
endSegment =R_FOOT; 

} 
else if( end =L_FOOT){ 

baseSegment =L_HIP; 
secondSegment =L_LEG; 
endSegment =L_FOOT; 

} 
calculateSegmentLengths(); 
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//.  
void InverseKinematics::algebraicSolution(const GLfloat x, const GLfloat y, const GLfloat z) 

{ 
boolean accepted =FALSE; 
calculateEndEffectorH_Matrix(x,y,z); 

if( endSegment =L_HAND II endSegment ==R_HAND ){ 

calculateAllAnglesForArm(); 
GLint index=-l; 

do{ ++index; 
eulerToMatrix_YXZ( base_l, 0, base_2[index]); 
accepted =human ->setPosture( MATRIX, baseSegment, h); 

if( accepted){ 
h[Z] =(GLfloat) secondJointAng[index]/DEG_TO_RAD; 
accepted =human ->setPosture( EULER, secondSegment, h); 

} 
}while( laccepted && index <=0); 

} 
else{ 

calculateAll AnglesForLegO; 
GLint index=-l; 

do{ ++index; 
h[X] =(GLfloat) base_2[index]/DEG_TO_RAD; 

h[Y] =0; 
h[Z] =(GLfloat) base_l/DEG_TO_RAD; 
accepted =human ->setPosture( EULER, baseSegment, h); 

if( accepted){ 
h[X] =(GLfloat) secondJointAng[index]/DEG_TO_RAD; 
accepted =human ->setPosture( EULER, secondSegment, h); 

} 
}while( laccepted && index <=0); 

//_  
void InverseKinematics: :calculateSegmentLengths() 
{ 

dl =human ->getSegmentLength( baseSegment); 
d2 =human ->getSegmentLength( secondSegment); 

} 

II.  
void InverseKinematics: :calculateEndEffectorH_Matrix( const GLfloat x, const GLfloat y, const GLfloat z) 
{ 

GLfloat baseJc[THREE_D]; 
human ->getJointCenters( baseSegment, base_jc[X], base_jc[Y], base_jc[Z]); 

' h[0]=l;h[4]=0;h[8]=0;h[12]=base_jc[X]-x; 
h[l]=0;h[5]=l; h[9]=0;h[13]= baseJc[Y] -y; 
h[2]=0;h[6]=0;h[10]=l;h[14]= baseJc[Z] -z; 
h[3]=0;h[7]=0;h[ll]=0;h[15]= 1; 
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} 

glPushMatrixO; 
glLoadldentityO; 
glRotatef( -viewRotX, 1, 0, 0); 
glRotatef( -viewRotY, 0, 1, 0); 
glMultMatrixf(h); 
glGetFloatv( GL_MODELVIEW_MATRIX, h); 
glPopMatrix(); 

//.  
voidInverseKinematics::calculateAHAnglesForArm() 
{ 

GLdouble 
Cl,sl,c2[2],s2[2],c3[2],s3[2]; 

//Angle 1 
base_l=atan2(h[14],h[13]); 
cl =cos( base_l); 
si =sin( base_l); 

//Angle 2 
GLfloat 

d = (cl*h[13]) + (sl*h[14]), 
a = -2*dl*d, 
b = 2*h[12]*dl, 
c = (d2*d2) - (dl*dl) - (h[12]*h[12]) - (d*d), 
e =atan2(b,a), 
f =atan2( sqrt(fabs((a*a)+(b*b)-(c*c))), c); 

base_2[0] = e + f; 
base_2[l] = e-f; 

for( GLint i=0; i<2; i++){ 

c2[i] =cos( base_2[i]); 
s2[i] =sin( base_2[i]); 

} 

//Angle 3 
for( i=0; i<2; i++){ 

s3[i] = ((c2[i]*h[12]) + (s2[i]*cl*h[13]) + (s2[i]*sl*h[14])) / (-d2); 
c3[i] = ((-s2[i]*h[12]) + (c2[i]*cl*h[13]) + (c2[i]*sl*h[14]) - dl) / d2; 

secondJointAng[i] = atan2( s3[i], c3[i]); 

//_  
void InverseKinematics: :caIculateAHAnglesForLeg() 
{ 

GLdouble 
Cl,sl,c2[2],s2[2],c3[2],s3[2]; 

//Angle 1 
base_l =-l*atan2( h[12], h[13]); 
cl =cos( base_l); 
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si =sin( base_l ); 

//Angle 2 
GLfloat 

d = (sl*h[12])-(cl*h[13]), 
a = 2*dl*d, 
b = -2*h[14]*dl, 
c = (d2*d2) - (dl*dl) - (h[14]*h[14]) - (d*d), 
e =atan2(b,a), 
f =atan2( sqrt(fabs((a*a)+(b*b)-(c*c))), c); 

base_2[0] = e + f; 
base_2[l] = e-f; 

for(GLinti=0;i<2;i++){ 

c2[i] =cos( base_2[i]); 
s2[i] =sin( base_2[i]); 

//Angle 3 
for(i=0;i<2;i++){ 

s3[i] = ((c2[i]*h[14]) - (s2[i]*cl*h[13]) + (s2[i]*sl*h[12])) / d2; 
c3[i] = ((-s2[i]*h[14]) - (c2[i]*cl*h[13]) + (c2[i]*sl*h[12J) + dl ) / (-d2); 

secondJointAngfi] = atan2( s3[i], c3[i]); 

} 

//• 
void InverseKinematics::eulerToMatrix_YXZ( GLdouble angle_x, GLdouble angle_y, GLdouble angle_z) 

{ 
GLfloat 

ex =(GLfloat) cos( angle_x), 
cy =(GLfloat) cos( angle_y), 
cz =(GLfloat) cos( angle_z ), 
sx =(GLfloat) sin( angle_x ), 
sy =(GLfloat) sin( angle_y), 
sz =(GLfloat) sin( angle_z), 

cyz =cy*cz, syz =sy*sz, cszy =cz*sy, csyz =cy*sz; 

h[0] = cyz + (syz*sx); 
h[l] = cx*sz; 
h[2] =-cszy+(csyz*sx); 

h[3] = -csyz + (cszy*sx); 
h[4] =cx*cz; 
h[5] = syz + (cyz*sx); 

h[6] = sy*cx; 
h[7] =-sx; 
h[8] = cx*cy; 
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// FILE      : Joint.h 
// DESCRIPTION: Handling joint vertices 

#ifndef__JOINT_H_ 
#define      JOINT H 
#include <GL/glut.h> 
#include <iostream.h> 
#include "QuaternionR.h" 
#include "utility.h" 

const short NUMBER_OF_JOINTS =15;    // number of humanJoint objects that are created 

class Joint { 
public :// P U B LIC  

//CONSTRUCTORS 
Joint( const GLint, GLfloat ** ); 
Joint( Joint &); 

//DESTRUCTOR 
~Joint(); 

//FUNCTIONS 
void setRotation( const GLfloat ANGLE, const GLfloat VX,const GLfloat VY.const GLfloat VZ); 
void transformToEnd( GLfloat ** );// assign pointsAsEnd to associated points 
void transformToHead( GLfloat ** )jl assign pointsAsHead to associated points 
boolean isConstructed(); 

private ://- P RIV A T E  
//CONSTs 
static const char JOINT_FILE_NA]vffiS[NUMBER_OFJO]NTS][MAX_FILE_NAME]; 
static const GLfloat END_TRANSLATIONS[NUMBER_OFJOINTS][THREE_D]; 

//OPERATORS 
Joint& operator=( const Joint &); 

//FUNCTIONS 
void transformPointsToHeadO;// transform joint points to end, set pointsAsEnd 
void transformPointsToEndO;// transform joint points to head, set pointsAsHead 

//OBJECT POINTERS 
QuaternionR *rotation; 

//VARIABLES 
GLint 

numberOfJointPoints, //number of points that both segments have 
*indices; ////index numbers for these joint points 

GLfloat 
**jointPoints, **pointsAsEnd, **pointsAsHead,       // initial and manipulated 

//joint points 
endTranslation[THREE_D], //translation values 
scaleFactor; //scaling factor 

}; 
#endif 
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;/*#**#**************************************************************** 

// FILE      : Joint.cpp 
//DESCRIPTION: 
//********************************************************************* 

#include <math.h> 
#include <string.h> 
#include "Joint.h" 

//*************rNTT7AT j7p STATIC DATA MEMBERS *********************** 

// file names of datas for index of points 
const char Joint::JOI>nr_F^E_NAMES[NUMBER_OF_JOINTS][MAX_FILE_NAME] ={ 

"Waist","BodyNeck","NeckHead", 
"LJiipJoint", "L_Knee", "L_Ankle", 
"L_Shoulder", "L_Elbow", "L_Wrist", 
"R_hipJoint", "R_Knee", "R_Ankle", 
"R_Shoulder", "R_Elbow", "R_Wrist" 

}; 
//translation values of points 
const GLfloatIoint::EM)_TRANSLATIONS[NUMBER_OF_JOINTS][THREE_D] ={ 

{ 0, 0.836942f, 0.145047f }//body 
{ 0, 1.88292f, -0.145047f },//neck 
{ 0, 0.391884f, 0.303044f }//head 
{ 0.24161f, -0.349661f, -0.0217056f },//L_HIP 
{ 0.1682516f, -1.60171t -0.041123f}, 
{-0.038406f, -1.88919f, -0.255575f}, 
{ 0.851806f, 1.64695f, -0.145047f },//L_UPPER_ARM 
{ 0.358544f, -1.38687f, -0.2f}, 
{0.028006f,-1.10184f,0.2f}, 
{-0.24161f, -0.349661f, -0.0217056f }//R_HIP 
{-0.1682516f, -1.60171f, -0.041123f}, 
{ 0.038406f, -1.88919f, -0.255575f }, 
{-0.851806f, 1.64695f, -0.145047f },//R_UPPER_ARM 
{-0.358544f, -1.38687f, -0.2f}, 
{ -0.028006f, -1.10184f, 0.2f} 

}; 

//**************END STATIC DATA MEMBER INmALIZATION **************** 

//_  
Joint::Joint( GLint jointNo, GLfloat ** points) 
{ 

scaleFactor        =1; 
numberOfJointPoints =0; 
jointPoints =NULL; 
pointsAsHead =NULL; 

pointsAsEnd =NULL; 
rotation = new QuaternionR(); 

// reading indices 
char fname[MAX_FILE_NAME]; 
strcpy(fname, JOINT_FILE_NAMES[jointNo]); 
strcat(fname, ".dat"); 
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indices =readIndices(fhame,numberOfTointPoints); 

if(indices!=NULL){ 
// INITIALIZE joint points 
jointPoints =new GLfloat*[numberOfJointPoints]; 
pointsAsHead =new GLfloat*[numberOfJointPoints]; 
pointsAsEnd =new GLfloat*[numberOfJointPoints]; 

for( GLint i=0; i<numberOfJointPoints ;i++){ 

jointPointsfi] =new GLfloat[THREE_D]; 
pointsAsHeadfi] =new GLfloat[THREE_D]; 
pointsAsEndp] =newGLfloat[THREE_D]; 

for( GLint j=0; j<THREE_D; j++){ 

jointPointsfi] [j] =points [indices [i]][j]; 
} 

} 

// SET translations 
for( i=0; i<THREE_D; i++){ 

endTranslation[i]=END_TRANSLATIONS[jointNo][i]; 
} 
transformPointsToHeadO; 
transformPointsToEndO; 

} 

//.  
Joint: :~Joint() 
{ 

for( int i=0; i<numberOfTointPoints ;i++){ 

delete [] jointPoints[i]; 
delete [] pointsAsHead[i]; 
delete [] pointsAsEnd[i]; 

} 
delete [] jointPoints; 
delete [] pointsAsHead; 
delete [] pointsAsEnd; 
delete [] indices; 
delete rotation; 

} 

//.  
void Joint: :transformToEnd( GLfloat ** points ) 
{ 

for( GLint i=0; i<numberOfJointPoints ;i++){ 
for( GLint j=0; j<THREE_D; j++ ){ 

points[indices[i]][j]=pointsAsEnd[i]|j]; 
} 

} 
} 
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//  
void Joint: :transformToHead( GLfloat ** points ) 
{ 

for( GLint i=0; i<numberOfJointPoints ;i++){ 
for( GLint j=0; j<THREE_D; j++ ) { 

points[indices[i]] [j]= pointsAsHead[i] fj]; 
} 

} 
} 

//  
void Joint::setRotation( const GLfloat ANGLE, const GLfloat VX.const GLfloat VY.const GLfloat VZ) 

{ 
♦rotation =QuaternionR( ANGLE, VX, VY, VZ); 

//scale factor depends on orientation 
scaleFactor =fabs (cos( ANGLE * DEG_TO_RAD)); 

transformPointsToHeadO; 
transformPointsToEndO; 

return; 
} 

//.  
void Joint: :transformPointsToEnd() 
{ 

GLfloat tmp[THREE_D+l]; 

//for all indices 
for( GLint i=0; i<numberOfJointPoints ;i++){ 

//const, temp, point from initial joint points 
for( GLint j=0; j<THREE_D; j++ ){ 

tmp[j] =jointPoints[i][j]; 
} 
//rotate it forward 
QuaternionR tmpQ =rotation ->rotate(QuaternionR(tmp[X],tmp[Y],tmp[Z])); 

tmpQ.getValues( tmp); 
pointsAsEnd[i][X]= (tmp[X]*scaleFactor) + endTranslation[X]; 
points AsEnd[i][Y]= (tmp[Y]*scaleFactor) + endTranslation[Y]; 
pointsAsEnd[i][Z]= (tmp[Z]*scaleFactor) + endTranslationfZ]; 
} 

return; 

//.  
void Joint: :transformPointsToHead() 
{ 

GLfloat tmp[THREE_D+l]; 

//for all indices 
for( GLint i=0; i<numberOfJointPoints ;i++){ 
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} 
return; 

} 

//.  

//const, temp, point from initial joint points 
for( GLint j=0; j<THREE_D; j++ ) { 

tmp[j] =jointPoints[i][j]; 
} 
// get inverse of quaternion 
QuaternionR inverseRotation =- (*rotation); 

//rotate point backward 
QuaternionR tmpQ=inverseRotation.rotate(QuaternionR(tmp[X],tmp[Y],tmp[Z])); 

tmpQ.getValues( tmp); 
pointsAsHead[i][X]=(tmp[X]*scaleFactor); 
pointsAsHead[i][Y]=(tmp[Y]*scaleFactor); 
pointsAsHead[i] [Z]= (tmp[Z]*scaleFactor); 

boolean Joint: :isConstructed() 
{ 

boolean status =FALSE; 

if (indices !=NULL){ 

status =TRUE; 
} 

return status; 
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// FILE      : KeyframeAnim.h 
// DESCRIPTION: Functions to handle frame list 
//********************************************************************* 

#ifndef KEYFRAMEANIM_H_ 
#define KEYFRAMEANIM_H_ 
#include <GL/glut.h> 
#include "utility.h" 
include "Posturch" 

class KeyFrameAnim{ 

public :// P U B LIC  
//CONSTRUCTORS 
KeyFrameAnim( Human * ); //default 
KeyFrameAnim( KeyFrameAnim & );  //copy 

//DESTRUCTOR 
~KeyFrameAnim(); 

//FUNCTIONS 
void keyPressed( GLint key); 
boolean play(); 

private :// P RIV A T E  
//OPERATORS 
KeyFrameAnim& operator=( const KeyFrameAnim &); 

//FUNCTIONS 
void add(); 
void insert(); 
void remove(); 
void next(); 
void previousO; 
void startO; 
void stop(); 
void gotoFirst(); 
void gotoLast(); 

void setPosture( Posture * ); 
void getPosture( Posture * ); 

boolean switchToNextKey(); 
void reducelnterpolationO; 
void interpolateO; 

//OBJECTS 
Posture *first, *last, *current,*iterator, *nextIterator; 
Human *human; 

//VARIABLES 
GLint numberOfUnmatch; 
GLfloat time, orientation[THREE_D+l]; 
SEGMENTS unmatchf NUMBER_OF_SEGMENTS ]; 

}; 
#endif 
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//********************************************************************* 

// FILE      : KeyFrameAnimxpp 
// DESCRIPTION: 
//* ******************************************************************** 

#include "KeyFrameAnim.h" 

//- 
KeyFrameAnim::KeyFrameAnim( Human * man ){ 

//INITIALIZE 
human =man; 
iterator =nextIterator =first =last =current =NULL; 

time =0; 

//.  
KeyFrameAnim: :~KeyFrameAnim() { 
} 

//.  
void KeyFrameAnim::keyPressed( GLint key) 
{ 

switch( key){ 

case 'a' :add(); 

case 'n' :next(); 

case 'p' :previous(); 

case 'd' :remove(); 

case 'i' :insert(); 

case 'r' :start0; 

case's' :stop(); 

case 'f :gotoFirst(); 

case T :gotoLast();; 

}; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

break; 

//.  
void KeyFrameAnim::setPosture( Posture * p ) 
{ 

for(GLint segmentNo=0; segmentNcK NUMBER_OF_SEGMENTS; segmentNo++){ 

human ->setPosture( QUATERNION, (SEGMENTS)segmentNo, 
p ->getQuaternion((SEGMENTS)segmentNo)); 
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//.  
void KeyFrameAnim::getPosture( Posture * const p) 
{ 

for(GLint segmentNo=0; segmentNo< NUMBER_OF_SEGMENTS; segmentNo++){ 

human ->getPosture( QUATERNION, (SEGMENTS)segmentNo, 
p ->getQuaternion((SEGMENTS)segmentNo)); 

//  
void KeyFrameAnim::add() 
{ 

if(first =NULL){ 

else{ 

current =last =first =new Posture(); 
getPosture( first); 

Posture *tmp =new Posture(); 
getPosture( tmp); 
last ->addNextPosture( tmp); 
current =last =tmp; 

//  
void KeyFrameAnim::insert() 
{ 

if( first =NULL){ 

} 
else{ 

add(); 

Posture *tmp =new Posture(); 
getPosture( tmp); 
tmp ->addNextPosture( current ->getNextPosture()); 
current ->addNextPosture( tmp); 
if(last=cunrent){ 

last =tmp; 
} 

current =tmp; 

//.  
void KeyFrameAnim::remove() 
{ 

if( first =NULL){ //do nothing 
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else if( current =first){ 

if( last == first){ 

} 
else{ 

} 

last =first =NULL; 
human ->initializePosture(); 

first =first ->getNextPosture(); 
setPosture( first); 

} 
else{ 

delete current; 
current =first; 

Posture* tmp=first; 

while( tmp ->getNextPosture() != current){ 
tmp =tmp ->getNextPosture(); 

} 

tmp ->addNextPosture( current->getNextPosture()); 
if( last ==current){ 

last =tmp; 
} 
delete current; 
current =tmp; 
setPosture( current); 

//.  
void KeyFrameAnim::next() 
{ 

if( current !=last){ 

current =current ->getNextPosture(); 
setPosture( current); 

} 
} 

//  
void KeyFrameAnim::previous() 
{ 

if( current != first){ 
Posture* tmp=first; 

while( tmp ->getNextPosture() != current){ 
tmp =tmp ->getNextPosture(); 

} 
current =tmp; 
setPosture( current); 
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//.  
void KeyFrameAnim::start() 
{ 

time =0; 

numberOfUnmatch =0; 

iterator =first; 

nextlterator =first ->getNextPosture(); 

setPosture( first); 

reducelnterpolationO; 
} 

//.  
boolean KeyFrameAnim::pIay() 
{ 

boolean running =TRUE; 

if( time <1){ 

interpolate(); 
} 
else{ 

time =0; 
running =switchToNextKey(); 

} 

} 
return running; 

//.  
boolean KeyFrameAnim::switchToNextKey() 
{ 

boolean running =FALSE; 

if( nextlterator != last){ 

iterator =iterator ->getNextPosture(); 
nextlterator =iterator ->getNextPosture(); 

reducelnterpolationO; 

interpolateO; 

running =TRUE; 
} 

return running; 
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//.  
void KeyFrameAnim: :reduceInterpolation() 
{ 

for(GLint segmentNo=0; segmentNcK NUMBER_OF_SEGMENTS; segmentNo++){ 

GLfloat 
*ql =iterator ->getQuaternion((SEGMENTS)segmentNo), 
*q2 =nextIterator ->getQuaternion((SEGMENTS)segmentNo); 

if( ql[X]!=q2[X] II ql[Y]!=q2[Y] II ql[Z]!=q2[Z] II ql[3]!=q2[3]){ 

unmatchf numberOfUnmatch++ ] =(SEGMENTS)segmentNo; 
} 

} 

//.  
void KeyFrameAnim::interpolate() 
{ 

static const GLfloat DELTAJT =0.1f; 

for(GLint i=0; i<numberOfUnmatch; i++){ 

quatInterpolation( iterator ->getQuaternion(unmatch[i]), 
nextIterator->getQuatemion(unmatch[i]), 
time, 
orientation); 

human ->setPosture( QUATERNION, unmatch[i], orientation); 
} 
time +=DELTA_T; 

} 

II.  
void KeyFrameAnim::stop() 
{ 
} 

II  
void KeyFrameAnim: :gotoFirst() 
{ 

current =first; 
setPosture( current); 

} 

II- 
void KeyFrameAnim::gotoLast() 
{ 

current =last; 
setPosture( current); 
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// FILE      : Posture.h 
// DESCRIPTION: Nodes of Frame List 

#ifndef POSTURE_H_ 
#define POSTURE_H_ 

#include <GL/glut.h> 
#include "utility.h" 
#include "Human.h" 

class Posture{ 

public :// P U B LIC  

//CONSTRUCTORS 
Posture(); //default 
Posture( Posture &);  //copy 

//DESTRUCTOR 
~Posture(); 

//FUNCTIONS 
void setQuaternion( const SEGMENTS, const GLfloat * const); 
GLfloat* getQuaternion( const SEGMENTS ); 

void addNextPosture( Posture * const); 
Posture * getNextPostureO; 

private ://- P RIV A T E  

//OPERATORS 
Posture& operator=( const Posture &); 

//FUNCTIONS 

//OBJECTS 
Posture *next; 

//VARIABLES 
GLfloat segmentQuaternion[NUMBER_OF_SEGMENTS][THREE_D+l]; 

#endif 
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// FILE      : Posture.cpp 
// DESCRIPTION: 

#include "Posturch" 

//.  
Posture: :Posture(){ 

//INITIALIZE 
next =NULL; 

} 

II- 
Posture: :~Posture() { 
} 

//.  
void Posture: :setQuaternion( const SEGMENTS NO, const GLfloat * const QUAT) 
{ 

for( GLint i=0; i<(THREE_D+l); i++){ 

segmentQuaternionf NO ][i] =QUAT[i]; 
} 

} 

//.  
GLfloat* Posture::getQuaternion( const SEGMENTS NO) 
{ 

return segmentQuaternionf NO ]; 
} 

//.  
void Posture: :addNextPosture( Posture * const pos) 
{ 

next =pos; 
} 

//.  
Posture * Posture: :getNextPosture() 
{ 

return next; 
} 
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//**#*************#****************************#*********************** 
// FILE      : ProceduralAnim.h 
// DESCRIPTION: Forward & Inverse Kinematics Walking procedures 
//********************************************************************* 

#ifhdef      PROCEDURALANIM H 
#define      PROCEDURALANIM H 
#include <GL/glut.h> 
#include "Human.h" 
#include "utility.h" 
#include "QuaternionR.h" 
enum KINEMATIC_TYPE {INVERSE, FORWARD }; 

class ProceduralAnim{ 
public :// P U B LI C  

//CONSTRUCTORS 
ProceduralAnim( Human * ); //default 
ProceduralAnim( ProceduralAnim &); //copy 

//DESTRUCTOR 
-ProceduralAnimO; 

//CONSTs 
static const GLfloat MAX_FRAME_RATE, MIN_FRAME_RATE, FRAME_ACC; 

//FUNCTIONS 
void increaseFrameRate(); 
void decreaseFrameRate(); 
void setWalkingMethod( KINEMATIC_TYPE); 
void walk(); 

private :// P RIV A T E  
//CONSTs 
static const Glfloat SUPPORT_PHASE, 

TTME_2, TTME_2B, TTME_3, TIME_3B, TTME_4, TIME_5; 
//OPERATORS 
ProceduralAnim& operator=( const ProceduralAnim &); 

//FUNCTIONS 
void walk_ik(); //runs walking cycle 
void walk_fk(); 
void step_ik( const SEGMENTS , const SEGMENTS , const GLfloat TIME); 
void step_fk( const SEGMENTS , const SEGMENTS .const SEGMENTS , const GLfloat TIME); 
void synchronizeArm( const SEGMENTS hip, 

const GLfloat FflP_ANGLE, const GLfloat KNEE_ANGLE ); 
void walkingBodyMotion(); 
GLfloat hipMotion( const GLfloat); 
GLfloat kneeMotion( const GLfloat); 
GLfloat ankleMotion( const GLfloat); 

//OBJECT POINTERS 
Human * human; 

//VARIABLES 
GLfloat orientationf THREE_D+1 ], time, frameRate; 
KINEMATIC_TYPE walkingMethod; 

}; 
#endif 
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II********************************************************************* 

// FILE      : ProceduralAnim.cpp 
// DESCRIPTION: 
ii********************************************************************* 

#include "ProceduralAnim.h" 

//*************J^YTIALIZE STATIC DATA MEMBERS *********************** 

const GLfloat 
ProceduralAnim::MAX_FRAME_RATE =0.9f, 
ProceduraIAnim::MIN_FRAME_RATE =0.1f, 
ProceduralAnim::FRAME_ACC =0.1f, 
ProceduralAnim::SUPPORT_PHASE =(GLfloat)PI, 
ProceduralAnim: :TIME_2 =(GLfloat)PI / 4, 
ProceduralAnim::TIME_3 =(GLfloat)PI, 
ProceduralAnim: :TIME_2B =TIME_3 - (SUPPORTJPHASE/2), 
ProceduralAnim: :TTME_3B =TIME_3 + (SUPPORT_PHASE/2), 
ProceduralAnim: :TIME_4 =7*(GLfloat)PI / 4, 
ProceduralAnim: :TIME_5 =2*(GLfloat)PI; 

/7**************END STATIC DATA MEMBER DSflTIALIZATION **************** 

//.  
ProceduralAnim::ProceduralAnim( Human * man ){ 

//INITIALIZE 
human =man; 
time =0; 
walkingMethod =FORWARD; 
frameRate =FRAME_ACC; 

} 

//  
ProceduralAnim:: ~ProceduralAnim() { 
} 

//.  
void ProceduralAnim: :setWalkingMethod( KINEMATIC_TYPE method) 

{ 
walkingMethod =method; 

} 

//.  
void ProceduralAnim: :increaseFrameRate() 

{ 
frameRate +=FRAME_ACC; 

if( frameRate >MAX_FRAME_RATE ) frameRate =MAX_FRAME_RATE; 

return; 
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//.  
void ProceduralAnim: :decreaseFrameRate() 
{ 

frameRate -=FRAME_ACC; 

if( frameRate <MIN_FRAME_RATE) frameRate =MIN_FRAME_RATE; 

return; 
} 

//  
void ProceduralAnim:: walk() 
{ 

if( human != NULL){ 

( walkingMethod ==FORWARD ) ? walk_fk(): walk_ik(); 
} 

} 

//  
void ProceduralAnim: :walk_ik() 
{ 

(time > TIME_5 ) ? time =frameRate : time+=frameRate; 

step_ik( R_fflP, RJLEG, time); 

GLfloat ttime =time+TIME_3; 
if( ttime > TEVDE_5) ttime-=TIME_5; 
step_ik( L_HIP, L_LEG, ttime); 

walkingBodyMotionO; 

return; 

II- 
void ProceduralAnim: :step_ik( const SEGMENTS upLeg, 

const SEGMENTS lowLeg, 
const GLfloat TIME   ) 

{ 
static const GLfloat MAX_STEP_ANGLE =-20; 

GLfloat upLegLength  =human -> getSegmentLength(R_HIP), 
lowLegLength =human -> getSegmentLength(RJLEG), 
legLength    =upLegLength + lowLegLength; 

// calc. pathAngle 
GLfloat pathAngle =MAX_STEP_ANGLE * sin( TIME); 

// calc. pathRadius 
GLfloat pathRadius =legLength * cos( pathAngle * DEG_TO_RAD ); 

// Recovery Leg Motion (FORWARD step ) 
if( TIME < TIME_2 II TIME >TIME_4){ 

pathRadius *=0.95f; 
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// calc. (y,z) for end-effector 
GLfloat y = pathRadius * cos( pathAngle * DEG_TO_RAD ), 

z = pathRadius * sin( pathAngle * DEG_TO_RAD ), 
hipAngle, kneeAngle; 

// calc. angles 
twoLink2D( z, y, 

upLegLength, lowLegLength, 
hipAngle, kneeAngle ); 

// motion 
orientation [X] =1; 
orientation [Y] =0; 
orientation [Z] =0; 
orientation[3] =hipAngle; 
human -> setPosture( VECTOR_ANGLE, upLeg, orientation ); 
orientation[3] =kneeAngle; 
human -> setPosture( VECTOR_ANGLE, lowLeg, orientation ); 

synchronizeArm( upLeg, hipAngle, kneeAngle); 

//.  
void ProceduralAnim::walk_fk() 
{ 

(time > TTME_5 ) ? time =frameRate : time+=frameRate; 

step_fk( R_HTP, R_LEG, R_FOOT, time); 

GLfloat ttime =time+TTME_3; 
if( ttime > TTME_5 ) ttime-=TIME_5; 
step_fk( L_HIP, L_LEG, L_FOOT, ttime); 

walkingBodyMotion(); 

//.  
void ProceduralAnim::step_fk( const SEGMENTS upLeg, const SEGMENTS lowLeg, 

const SEGMENTS foot,   const GLfloat TIME) 
{ 

GLfloat hipAngle =hipMotion(TIME); 
orientation [X] =-1; 
orientation [Y] =0; 
orientation[Z] =0; 
orientation[3] =hipAngle; 
human -> setPosture( VECTOR_ANGLE, upLeg, orientation); 

GLfloat kneeAngle =kneeMotion(TTME); 
orientation [3] =kneeAngle; 
human -> setPosture( VECTOR_ANGLE, lowLeg, orientation ); 

GLfloat footAngle =ankleMotion(TIME); 
orientation[3] =footAngle; 
human -> setPosture( VECTOR_ANGLE, foot, orientation ); 
synchronizeArm( upLeg, -hipAngle, -kneeAngle); 
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//.  
GLfloat Procedural Anim::hipMotion( const GLfloat TIME) 
{ 

static const Glfloat HALFJPI    =(GLfloat) PI/2; 

GLfloat result; 

if(TIME<=TIME_2){ 

GLfloat t =linearInterpolate( HALF_PI, TIME_2, TIME); 
result = 45 * sin( t); 

} 
else if( TIME >TIME_2 && TIME <=TIME_3 ){ 

GLfloat t =linearInterpolate( HALF_PI, TIME_3 -TIME_2 , TIME -TIME_2); 
result = 45 * sin( t +HALF_PI); 

} 
else if( TIME >TIME_3 && TIME <=TIME_4 ){ 

GLfloat t =linearInterpolate( HALF_PI, TME_4 -TIME_3 , TIME -TIME_3 ); 
result = -35 * sin( t); 

} 
else{ 

GLfloat t =linearInterpolate( HALF_PI, TIME_5 - TIME_4, TIME - TIME_4); 
result = -35 * sin( t +HALF_PI); 

} 

return result; 
} 

//.  
GLfloat ProceduralAnim::kneeMotion( const GLfloat TIME) 
{ 

static const GLfloat 
MAX_ANGLE  =-35; 

GLfloat result; 

if( TIME <=TIME_2B){ 

GLfloat t=linearInterpolate( (GLfloat)PI, TTME_2B, TIME); 
result =MAX_ANGLE * sin( t); 

} 
else if( TIME >=1TME_3B ){ 

GLfloat t =linearInterpolate( (GLfloat)PI, TIME_5 - 1TME_3B, TIME - TIME_3B ); 
result =MAX_ANGLE * sin( t); 

} 
else{ 

result =0; 
} 

return result; 
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.//-  
GLfloat ProceduralAnim::ankleMotion( const GLfloat TIME ) 

{ 
GLfloat result; 

if(TIME<TIME_2B){ 

GLfloat t =linearInterpolate( (GLfloat)PI, TIME_2B, TIME); 
result =-20 * sin( t); 

} 
else if( TIME >= TIME_2B && TIME <= TEME_3 ){ 

result =0; 
} 
else if( TIME > TIME_3   && TIME < UME_3B ) { 

GLfloat t =linearInterpolate( (GLfloat)PI, TIME_3B - TIME_3 , TIME - TIME_3 ); 
result =10* sin(t); 

} 
else{ 

GLfloat t =linearInterpolate( (GLfloat)PI, TIME_5 - TIME_3B , TIME - TIME_3B ); 
result =-5 * sin( t); 

} 

return result; 

//.  
void ProceduralAnim::synchronizeArm( const SEGMENTS upLeg, 

const GLfloat HIP_ANGLE, const GLfloat KNEE_ANGLE ) 

{ 
static const GLfloat 

HIP_TO_SHOULDER =0.7f, 
KNEE_TO_ELBOW  =0.3f; 

// move arm (no computation, synchronize with leg, by using some constant vals.) 
SEGMENTS upArm =R_UPPER_ARM, 

lowArm =R_FORE_ARM; 

if(upLeg==R_HIP){ 

upArm =L_UPPER_ARM; 
lowArm =L_FORE_ARM; 

} 

//up arm synchronization 
orientation [X] =1; 
orientation[Y] =0; 
orientation[Z] =0; 
orientation[3] =HIP_ANGLE * HIP_TO_SHOULDER; 
human -> setPosture( VECTOR_ANGLE, upArm, orientation ); 
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if(KNEE_ANGLE<0){ 
//lower arm synchronization if angle is neg. 
orientation[3] =-KNEE_ANGLE * KNEE_TO_ELBOW; 
human -> setPosture( VECTOR_ANGLE, lowArm, orientation ); 

} 
else{ 

//lower arm synchronization if angle is pos. 
orientation [3] =0; 
human -> setPosture( VECTOR_ANGLE, lowArm, orientation ); 

} 
return; 

} 

//_  
void ProceduralAnim:: walkingBodyMotion() 

{ 
GLfloat pelvicRot =5 *sin( time); 
orientation [X] =0; 
orientation [Y] =1; 
orientation [Z] =0; 
orientation [3] =pelvicRot; 
human -> setPosture( VECTOR_ANGLE, ROOT, orientation ); 

GLfloat pelvicTilt =4 *sin( time); 
orientation [Y] =0; 
orientation [Z] =1; 
orientation[3] =pelvicTilt; 
human -> setPosture( VECTOR_ANGLE, BODY, orientation ); 

// whole body translation (h = -0.08 * sin(2 pi f t), here f=l/2*PI 
glTranslatef(0, (-0.08f * sin( fabs(time-PI))), 0); 

return; 
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// FILE      : Quatemion.h 
// DESCRIPTION: functions for quaternion algebra 

#ifndef _QUATERNIONR_H_ 
#define _QUATERNIONR_H_ 
#include <GL/glut.h> 
#include <iostream.h> 
#include <iomanip.h> 
#include "utility.h" 
#define PI 3.14159265358979323846 

class QuaternionR{ 

// overloaded operator« 
friend ostream &operator«(ostream &,const QuaternionR &); 

public :// P U B LIC  
//CONSTRUCTORS 
QuaternionR (); //default 
QuaternionR (const QuaternionR &);       //copy 
QuaternionR (const GLfloat VX,const GLfloat VY.const GLfloat VZ, const GLfloat ANGLE); 
QuaternionR (const GLfloat * ); 
QuaternionR (const GLfloat QX,const GLfloat QY,const GLfloat QZ); 

//DESTRUCTOR 
~QuaternionR(); 

//OPERATORS 
// quaternion product 
QuaternionR operator*(const QuaternionR &) const; 
// Quaternion addition 
QuaternionR &operator*=(const QuaternionR &); 
// quaternion inverse (conjugate) 
QuaternionR operator+(const QuaternionR &) const; 
// quaternion assignment 
QuaternionR &operator=(const QuaternionR &); 
// quaternion product and assignment 
QuaternionR operator-(); 

//FUNCTIONS 
void QuaternionR: :setValues(const GLfloat *); 
void QuaternionR: :getValues(GLfloat * const); 
// rotate a quaternion about a 3D vector (w=0) 
QuaternionR rotate(const QuaternionR &); 
// dot product 
QuaternionR dotProduct(const QuaternionR &); 
// quaternion to axis angles 
void normalizeO; 

private ://- P RIV A T E  
//VARIABLES 

GLfloat w,x,y,z; 
}; 

#endif 
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//********************************************************************* 

// FILE      : QuaternionR.cpp 
// DESCRIPTION: 
//***********************#********************************************* 

#include <math.h> 
#include "QuaternionR.h" 

QuaternionR: :QuaternionR() 
{ 

w=l; 
x= y= z= 0; 

} 

//_  
QuaternionR: :QuaternionR(const GLfloat *vecAng) 

{ 
*this =QuaternionR( vecAng[X], vecAng[Y],vecAng[Z],vecAng[3]); 

} 

//.  
QuaternionR: :QuaternionR(const GLfloat VX.const GLfloat VY,const GLfloat VZ, 

const GLfloat ANGLE) 
{ 

GLfloat sinAngle =( GLfloat) sin( ANGLE*DEG_TO_RAD/2); 

x =VX * sinAngle; 
y =VY * sinAngle; 
z =VZ * sinAngle; 

w =( GLfloat) cos( ANGLE*DEG_TO_RAD/2); 

normalizeQ; 

QuaternionR::QuaternionR(const GLfloat QX,const GLfloat QY,const GLfloat QZ) 
{ 

x=QX; 
y=QY; 
z =QZ; 
w=0; 

} 

I/. z.— 
QuaternionR:: ~QuaternionR() 
{ 
} 

//  
QuaternionR: :QuaternionR(const QuaternionR &QUAT) 
{ 

w = QUAT.w; 
x = QUAT.x; 
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y = QUAT.y; 
z = QUAT.z; 

} 

II.  
QuaternionR & QuaternionR::operator=(const QuaternionR &QUAT) 
{ 

w = QUAT.w; 
x = QUAT.x; 
y = QUAT.y; 
z = QUAT.z; 

return (*this); 
} 

//.  
QuaternionR QuaternionR: :operator*(const QuaternionR &QUAT) const 
{ 

QuaternionR dest; 

dest.w = QUAT.w * w - QUAT.x * x - QUAT.y * y - QUAT.z * z; 
dest.x = QUAT.w * x + QUAT.x * w - QUAT.y * z + QUAT.Z * y; 
dest.y = QUAT.w * y + QUAT.y * w - QUAT.z * x + QUAT.x * z; 
destz = QUAT.w * z + QUAT.z * w - QUAT.x * y + QUAT.y * x; 

return(dest); 
} 

//  
QuaternionR & QuaternionR: :operator*=(const QuaternionR &QUAT) 
{ 

*this = *this * QUAT; 

return (*this); 
} 

//.  
QuaternionR QuaternionR: :operator+(const QuaternionR &QUAT) const 
{ 

QuaternionR add; 

add.w = w + QUAT.w; 
add.x = x + QUAT.x; 
add.y = y + QUAT.y; 
add.z = z + QUAT.z; 

return (add); 
} 

//.  
QuaternionR QuaternionR: :operator-() 
{ 

QuaternionR temp; 

temp.w = w; 
temp.x = -x; 
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temp.y = -y; 
temp.z = -z; 

return (temp); 
} 

//.  
QuaternionR QuaternionR::rotate(const QuaternionR &QUAT) 
{ 

QuaternionR temp; 

temp = *this * ( QUAT * (-(*this))); 

return (temp); 
} 

//.  
QuaternionR QuaternionR: :dotProduct(const QuaternionR &QUAT) 

{ 
QuaternionR temp; 

temp.w = w + QUAT.w; 
temp.x = x + QUAT.x; 
temp.y = y + QUAT.y; 
temp.z = z + QUAT.z; 

return (temp); 
} 
//.  
void QuaternionR: :normalize() 
{ 

GLfloat magnitude; 

magnitude = sqrt( (x * x) + (y * y) + (z * z) + (w * w)); 

if( magnitude > 1){ 

x = x / magnitude; 
y = y / magnitude; 
z = z / magnitude; 
w = w / magnitude; 

} 
return; 

} 

//  
ostream &operator«(ostream &output, const QuaternionR &q) 
{ 

output«'[' 
« " w_"«q.w 
«" x_"«q.x 
« " y_"«q.y 
« " z_"«q.z 

return output; 
} 
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//.  
void QuaternionR::setValues(const GLfloat *val) 
{ 

x =val[X]; 
y=val[Y]; 
z=val[Z]; 
w =val[3]; 

} 

//.  
void QuaternionR::getValues( GLfloat * const val) 
{ 

val[X] =x; 
val[Y] =y; 
val[Z] =z; 
val [3] =w; 

} 
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// FILE      : Segment.h 
// DESCRIPTION: Individual segment functions 

#ifndef SEGMENT_H_ 
#define SEGMENT_H_ 

#include <GL/glut.h> 
#include <iostream.h> 
#include "utility.h" 
#include "TriangleFaceSet.h" 
#include "H_Matrix3DOF.h" 
#include "H_MatrixlDOF.h" 
#include "Jointh" 

//ENUMs 
enum MODEL_TYPE{ STICK, SKIN, WIRE_FRAME }; //model types 

//CONSTs 
const GLshort NUMBER_OF_SEGMENTS =16;  // number of humanSegment objects that are created 

//CLASS DEF 
class Segment{ 

public ://- P U B LIC  

//CONSTRUCTORS 
Segment( const GLint SEGMENT.NO, const AXIS DOF); 
Segment( Segment &); 

//DESTRUCTOR 
~Segment(); 

//FUNCTIONS 
boolean constructShape( GLfloat **, Joint * ); 

void   draw( GLfloat **, GLfloat ** ); 
void   drawDetectionVolumeO; 

void    setModelType( MODELJTYPE); 
void    setStickShape( Box&); 

boolean setOrientation( const ROTATION_METHODS .const GLfloat* ); 
void getOrientation( const ROTATION_METHODS , GLfloat * const); 
boolean rotate( const ROTATTON_METHODS, const GLfloat * ); 

void   getJointCenters(GLfloat &, GLfloat &, GLfloat &); 
void    getEarthMatrix( GLfloat[16]); 
GLfloat getLengthO; 
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private ://- P RIV A T E  

//CONSTs 
// file names of datas for index of points 

static const char 
SEGMENT_FELE_NAMES [NUMBER_OF_SEGMENTS] [MAX_FILE_NAME]; 

//translation values of points 
static const GLfloat TRANSLATIONS [NUMBER_OF_SEGMENTS][THREE_D]; 
// constraint of segment orientation 

static const GLfloat ROTATION_BOUNDARTES[NUMBER_OF_SEGMENTS][2*THREE_D]; 

//OPERATORS 
Segment& operator=( const Segment &); 

//FUNCTIONS 
void drawJointBallO; 

//OBJECT POINTERS 
TriangleFaceSet * shape; 
Box * stick; 
H_Matrix       * localMatrix; 
Joint * jointPoints; 

//VARIABLES 
MODEL_TYPE 

modelType;// state var. for drawing 
GLint 

segmentNo; // 
GLfloat 

modelViewMatrix[16]; //model view matrix of system when this segment is drawn 

#endif 
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// FILE      : Segment.cpp 
// DESCRIPTION: 

#include <math.h> 
#include <string.h> 
#include "Segment.h" 

//*************j]sj^pj^Lj2E STATIC DATA MEMBERS *********************** 

// file names of datas for index of points 
const char 

Segment::SEGMENT_FILE_NAMES[NUMBER_OF_SEGMENTS][MAX_FILE_NAME]={ 

"Root", "Body", "Neck", "Head", 
"L_Hip", "L_Leg" ,"L_Foot", 
"LJJpperArm", "L_ForeArm", "L_Hand", 
"R_Hip", "R_Leg" ,"R_Foot", 
"R_UpperArm", "R_ForeArm", "R_Hand" 

}; 

//position values of points 
const GLfloat Segment: :TRANSLATIONS[NUMBER_OF_SEGMENTS][THREE_D] ={ 

{ 0, 0, 0 },//root 
{ 0, 0.836942f, 0.145047f }//body 
{ 0, 1.88292f, -0.145047f },//neck 
{ 0, 0.391884f, 0.303044f }//head 
{ 0.24161f, -0.349661f, -0.0217056f },//L_HIP 
{ 0.1682516f, -1.60171f, -0.041123f}, 
{ -0.038406f, -1.88919f, -0.255575f }, 
{ 0.851806f, 1.64695f, -0.145047f },//L_UPPER_ARM 
{ 0.358544f, -1.38687f, -0.2f }, 
{ 0.028006f,-1.10184f, 0.2f }, 
{ -0.24161f, -0.349661f, -0.0217056f }//R_HIP 
{-0.1682516f, -1.60171f, -0.041123f }, 
{ 0.038406f, -1.88919f, -0.255575f }, 
{-0.851806f, 1.64695f, -0.145047f },//R_UPPER_ARM 
{ -0.358544f, -1.38687f, -0.2f}, 
{-0.028006f, -1.10184f, 0.2f } 

}; 

// constraint of segment orientation 
const GLfloat 
Segment: :ROTATIONJBOUNDARIES [NUMBER_OF_SEGMENTS] [2*THREE_D] = { 

//Y =elevation, z =azimuth, x =nose 
//{MinY,MaxY,MinZ,MaxZ,MinX,MaxX } 
{0,0,0,0,0,0}, //root 
{-40,160,-95,95,-30,30}, //body 
{-30,45,-50,50,-30,30}, //neck 
{-30,50,-45,45,-30,30}, //head 
{-100,50,-30,30,-10,90}, //LJfflP 
{0,120,0,0,0,0}, 
{-30,70,-20,20,-20,20}, 
{-180,80,-90,90,-30,180}, //L_UPPER_ARM 
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{0,0,0,0,-140,0}, 
{-30,30,-60,60,-80,80}, 
{-100,50,-30,30,-90,10}, //RHIP 
{0,120,0,0,0,0}, 
{-30,70,-20,20,-20,20}, 
{-180,80,-90,90,-180,30},//R_UPPER_ARM 
{0,0,0,0,0,140}, 
{-30,30,-60,60,-80,80} 

}; 

//**************END STATIC DATA MEMBER INITIALIZATION **************** 

//. .  
Segment::Segment( const GLint SEGMENT_NO, const AXIS DOF) 
{ 

segmentNo =SEGMENT_NO; 

modelType =STICK; 

shape        =NULL; 
jointPoints =NULL; 

//CREATE H_Matrix 
if(DOF<=Z){ 

localMatrix =new H_MatrixlDOF(DOF); 
} 
else if( DOF ==XYZ){ 

localMatrix =new H_Matrix3DOF(); 
} 
localMatrix ->setBoundaries( ROTATION_BOUNDARIES[ SEGMENT_NO ]); 

//SET positions 
localMatrix->setTranslation( TRANSLATIONS [segmentNo] [X], 

TRANSLATIONS[segmentNo][Y], 
TRANSLATIONS[segmentNo][Z]); 

//SET 
if( segmentNo+1 < NUMBER_OF_SEGMENTS ){ 

stick =new Box( TRANSLATIONS[segmentNo+l][X], 
TRANSLATIONS [segmentNo+1 ] [Y], 
TRANSLATIONS [segmentNo+1 ] [Z]); 

} 
else{ 

stick =new Box(0,0,0); 
} 

.//.  
Segment: :~Segment() 
{ 

delete shape; 
delete localMatrix; 
delete jointPoints; 
delete stick; 

} 
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//  
boolean Segment::constructShape( GLfloat ** points, Joint * joint ) 
{ 

// reading indices 
char mame[MAX_FILE_NAME]; 

strcpy(fhame, SEGMENT_FlLE_NAMES[segmentNo]); 
strcat(fhame, ".dat"); 

shape =new TriangleFaceSet(fhame,points); 

boolean status =shape ->isConstructed(); 

if( status =TRUE){ 

jointPoints =joint; 
} 

return status; 
} 

void Segment: :draw( GLfloat ** points, GLfloat ** normals ) 
{ 

// make translation and orientation to set posture 
localMatrix ->applyToCurrentMatrix(); 

//draw model 
switch( modelType){ 

case STICK     :glEnable(GL_LIGHTING); 
drawJointBallO; 
glColor3f(0.5f,0.5f,l); 
stick ->draw(); 
break; 

case SKIN      :glEnable(GL_LIGHTING); 
glPolygonMode(GL_FRONT, GL_FTLL); 
shape ->drawTriangles( points, normals ); 
break; 

case WIRE_FRAME :glDisable(GL_LIGHTING); 
drawJointBallO; 
glPolygonMode(GL_FRONT, GLJLINE); 
glColor3f(l,l,l); 
shape ->drawTriangles( points, normals); 
break; 

default : 
break; 

} 

//hold MODEL VIEW matrix 
glGetFloatv( GL_MODELVJJEW_MATRIX, modelViewMatrix); 

return; 
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//  
void Segment::drawJointBall() 
{ 

glColor3f(l,0,0); 
glPolygonMode(GL_FRONT, GLJROLL); 
glutSolidSphere(0.1f,10,10); 

} 

//.  
void Segment: :drawDetectionVolume() 
{ 

//set view matrix of this segment 
glLoadMatrixf( modelViewMatrix); 
(modelType == STICK) ? stick ->show(): shape ->showBounds(); 

} 

//.  
boolean Segment::setOrientation( const ROTATION_METHODS method, 

const GLfloat *orientation) 

{ 
boolean rotationAccepted = localMatrix ->setOrientation( method, orientation ); 

if( jointPoints != NULL) { 

GLfloat vecAng[THREE_D+l]; 
localMatrix ->getOrientation( VECTOR_ANGLE, vecAng); 
jointPoints -> setRotation( vecAng[3]/2, vecAng[X], vecAng[Y], vecAngfZ]); 

} 
return rotationAccepted; 

} 

//.  
void Segment::getQrientation( const ROTAHON_METHODS method, 

GLfloat * const orientation) 
{ 

localMatrix ->getOrientation( method, orientation ); 
} 

//.  
boolean Segment: :rotate( const ROTATION_METHODS method, 

const GLfloat *orientation) 
{ 

boolean rotationAccepted = 
localMatrix ->rotate( method, orientation); 

//checks if rotation in boundaries 
if( rotationAccepted){ 

if( jointPoints != NULL){ 

GLfloat vecAng[THREE_D+l]; 
localMatrix ->getOrientation( VECTOR_ANGLE, vecAng); 
jointPoints -> setRotation( vecAng[3]/2, vecAngfX], vecAngfY], vecAngfZ]); 

} 
} 

return rotationAccepted; 
} 
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//  
void Segment: :setModelType( MODELJTYPE type) 
{ 

modelType =type; 
} 

//.  
void Segment: :setStickShape( Box& box ) 

{ 
*stick =box; 
return; 

} 

//  
void Segment::getEarthMatrix( GLfloat h_matrix[16]) 

{ 
for( GLint i=0; i<16; i++){ 

h_matrix[i] =mode!ViewMatrix[i]; 

//_  
void Segment: :getJointCenters(GLfloat &jointX, GLfloat «fejointY, GLfloat &jointZ) 

{ 
static const GLint POS =12; 

jointX =modelViewMatrix[POS+X]; 
jointY =modelViewMatrix[POS+Y]; 
jointZ =modelViewMatrix[POS+Z]; 

return; 

//.  
GLfloat Segment::getLength() 
{ 

return stick ->getHeight(); 
} 
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// FILE: SensorSystem.h 
// DESCRIPTION: Combines [DUMA99] thesis program with human project 
// 
// NOTICE : Quaternion class in [DUMA99] is different than 
// QuaternionR       class of this study 
//********************************************************************* 

#ifndef SENSORS YSTEM_H_ 
#define      SENSORSYSTEMH. 

#include <GL/glut.h> 
#include "utility.h" 
#include "Human.h" 
#include "Qaef.h" 
#include "Quaternion.h" 

class SensorSystem{ 

public :// P U B LIC  

//CONSTRUCTORS 
SensorSystem( Human * man);      //default 
SensorSystem( SensorSystem &);  //copy 

//DESTRUCTOR 
~SensorSystem(); 

//FUNCTIONS 
void startO; 
void trackSegmentO; 

private ://- P RIV A T E  

//OPERATORS 
SensorSystem& operator=( const SensorSystem & ); 

//FUNCTIONS 

//OBJECTS 
Human * human; 
Quaternion qRotation; 
Qaef*ql,*q2; 

//VARIABLES 
GLfloat orientation[ THREE_D+1 ]; 

}; 

#endif 
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// FILE: SensorSystem.cpp 
// DESCRIPTION: 

#include "SensorSystem.h" 

//  
SensorSystem::SensorSystem(Human * man){ 

//INITIALIZE 
human =man; 

ql=newQaef (1,400,4); 
q2=newQaef (2,400,4); 

} 

//  
SensorSystem:: ~SensorSystem() { 
} 

//  
void SensorSystem: :start() 
{ 

ql ->start(); 
q2 ->start(); 

} 

//.  
void SensorSystem: :trackSegment() { 

Quaternion vecAng = (ql ->getResult()).toAxisAngles(); 

orientation [X] =vecAng.getX(); 
orientation[Y] =vecAng.getY(); 
orientation [Z] =vecAng.getZ(); 
orientation [3] =vecAng.getW(); 

human -> setPosture( VECTOR_ANGLE, R_UPPER_ARM, orientation); 

vecAng = (q2 ->getResult()).toAxisAngles(); 

orientation [X] =-vecAng.getX(); 
orientation[Y] =vecAng.getY(); 
orientationfZ] =-vecAng.getZ(); 
orientation [3] =vecAng.getW(); 

human -> setPosture( VECTOR_ANGLE, R_FORE_ARM, orientation ); 
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//********************************************************************* 

// FILE      : TriangleFaceSet.h 
// DESCRIPTION: Segment shapes are drawn and handled 
//********************************************************************* 

#ifndef      TRIANGLEFACESET H 
#define      TRIANGLEFACESET H 

#include <GL/glut.h> 
#include "Box.h" 
#include "utility.h" 

class TriangleFaceSet{ 

public :// P U B LIC  

//CONSTRUCTORS 
TriangleFaceSet( const char *FHE_NAME, GLfloat ** points); 
TriangleFaceSet( TriangleFaceSet &); 

//DESTRUCTOR 
-TriangleFaceSetO; 

//FUNCTIONS 
void drawTriangles( GLfloat ** points, GLfloat ** normals); 
void showBounds(); 

boolean isConstructed(); 

private ://- P RIV A T E  

//CONSTs 
static const GLfloat PORTION; 

//OPERATORS 
TriangleFaceSet& operator=( const TriangleFaceSet &); 

//FUNCTIONS 
void constructIndices( const char *FTLE_NAME); 
void constructBounds( GLfloat ** points); 

//OBJECT POINTERS 
Box *bounds; 

//VARIABLES 
GLint 

numberOflndices, //number of points that draw this shape 
*indices;       //index numbers for points 

}; 

#endif 
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// EDLE      : TriangleFaceSet.cpp 
// DESCRIPTION: 

#include "TriangleFaceSet.h" 

//*************TNTTTAT,T7F, STATIC DATA MEMBERS *********************** 

const GLfloat TriangleFaceSet::PORTION =10; 

7/**************END STATIC DATA MEMBER INITIALIZATION **************** 

//.  
TriangleFaceSet::TriangleFaceSet( const char *FELE_NAME, GLfloat ** points    ) 

{ 
//INITIALIZE 
indices =NULL; 
bounds =NULL; 

constructIndices( FILE_NAME); 

if( indices !=NULL){ 

constructBounds( points); 
} 

} 

TriangleFaceSet::-TriangleFaceSet() 
{ 

delete [] indices; 
delete bounds; 

} 

//  
void TriangleFaceSet: :constructIndices( const char *FILE_NAME) 
{ 

numberOflndices =0; 

indices =readlndices( FILE_NAME, numberOflndices ); 

if( indices != NULL){ 

« " TriangleFaceSet is constructed with " 
« (numberOflndices 13)11 each polygon has 3 points 
« " polygons from " 
« FILE_NAME 
« endl; 

return; 
} 
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//.  
void TriangleFaceSet::constructBounds( GLfloat ** points){ 

const GLfloat MAX =1000; 

GLfloat minY =MAX, maxY =-MAX, 
volume[TWO_PLATES] [FOUR_POINTS] [THREE_D]; 

// SET min-max Y values of all points of this segment 
for(GLint i =0; i<numberOflndices; i++){ 

minY =(minY < points [indices [i]][Y]) ? minY : points[indices[i]][Y]; 
maxY =(maxY > points[indices[i]][Y]) ? maxY : points[indices[i]][Y]; 

} 

// initialize VOLUME parameters 
for(GLint plate=0; plate<TWO_PLATES; plate++){ 

volume[plate][0][X] =MAX; 
volume[plate][0][Z] =MAX; 
volume[plate][2][X] =-MAX; 
volume[plate][2][Z] =-MAX; 

} 

for(GLintpoint=0; point<FOUR_POINTS; point++) { 

volume[BOTTOM_PLATE] [point] [Y] =minY; 
volume[TOP_PLATE] [point] [Y] =maxY; 

} 

// find VOLUME values 
for(i =0; i<numberOflndices; i++){ 

for(GLint plate=0; plate<TWO_PLATES; plate++) 
for(GLint xyz=0; xyz<THREE_D; xyz++){ 

if(xyz!=Y&& 
// check only for X & Z and if Y values in range length/PORTTON 

(   // capture minimum and maximum values of X and Z for minumum Y 
(plate=BOTTOM_PLATE && points[indices[i]][Y] 
< minY+((maxY-minY)/PORTION)) 

II // capture minimum and maximum values of X and Z for maximum Y 

) 
){ 

(plate=TOP_PLATE && points[indices[i]][Y] 
> maxY-((maxY-minY)/PORTION)) 

volume[plate][0][xyz] // put min values in xyzO 
=(volume[plate][0][xyz] < points[indices[i]][xyz]) ? 
volume[plate][0][xyz] : points[indices[i]][xyz]; 

volume[plate][2][xyz] // put max values in xyz2 
=(volume[plate][2][xyz] >points[indices[i]][xyz]) ? 
volume[plate][2][xyz] : points[indices[i]][xyz]; 
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// put values from pointO & point2 into pointl & point3 
volume[plate] [ 1 ] [X] =volume[plate] [0] [X]; 
volumefplate] [ 1 ] [Z] =volume[plate] [2] [Z]; 
volume[plate] [3] [X] =volume[plate] [2] [X]; 
volume[plate] [3] [Z] =volume[plate] [0] [Z]; 

}// end if 
}// end of for 

}//end of for 

bounds =new Box( volume); 

return; 
} 

void TriangleFaceSet::drawTriangles( GLfloat ** points, GLfloat ** normals){ 

for(GLint i=0; i<numberOflndices; i++){ 

if( (i % 3) ==0) glBegin(GL_TRIANGLES); 

glNormal3fv( normals[indices[i]]); 
glVertex3fv( points[indices[i]]); 

if( ((i+1) % 3) ==0) glEndO; 
} 

return; 

//.  
void TriangleFaceSet::showBounds() 
{ 

if( bounds != NULL){ 

bounds ->show(); 
} 

return; 

II- 
boolean TriangleFaceSet: :isConstructed() 
{ 

boolean status =FALSE; 

if (indices !=NULL){ 

status =TRUE; 
} 

return status; 
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// FILE      : UserControLh 
// DESCRIPTION: Interface between GlutBaseClass and motion control classes 

#ifndef USERCONTROL_H_ 
#define USERCONTROL_H_ 

#include <GL/glut.h> 
#include "utility.h" 
#include "Human.h" 
#include "Segment.h" 
#include "Cursor3D.h" 
#include "GimbalSystem.h" 
#include "InverseKinematics.h" 

//ENUMs 
enum CONTROL_TYPE{ INVERSE_CONTROL, EULER_CONTROL, QUATERNION_CONTROL }; 
enum OBJECT_TYPE{ SEGMENT_SHAPES, EULER_CIRCLES }; 

class UserControl{ 

public ://- P U B LIC  

//CONSTRUCTORS 
UserControl( Human *); //default 
UserControl( UserControl &);  //copy 

//DESTRUCTOR 
~UserControl(); 

//FUNCTIONS 
void setControlType( CONTROLJTYPE); 

void mouseDragAt( const GLint \VTN_X, const GLint WIN_Y); 
void mouseReleasedAt( const GLint WIN_X, const GLint WIN_Y ); 
void mouseHitAt( const GLint \VTN_X, const GLint WIN_Y, 

const GLfloat viewRotX, const GLfloat viewRotY); 

boolean isTrackingO; 

private :// -P RIV A T E  

//OPERATORS 
UserControl& operator=( const UserControl &); 

//FUNCTIONS 
GLuint isAnyObjectSelected( const GLint, const GLint, OBJECTJTYPE); 
void trackingEndAt (const GLint WIN_X, const GLint WIN_Y ); 
void trackingStartAt( const GLint WIN_X, const GLint WIN_Y, 

const GLfloat viewRotX, const GLfloat viewRotY); 
void markVectorAngle( const GLint WIN_X, const GLint WIN_Y); 
void initializeGimbalSystem(); 
void updateGimbalSystem(const GLint WIN_X, const GLint WIN_Y); 

void quaternionMotion(const GLint WIN_X, const GLint WIN_Y); 
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}; 

#endif 

boolean isEndEffector( GLuint); 

//OBJECT POINTERS 
Human   * human; 
Cursor3D * selectionMark, * cursor3D; 
GimbalSystem gimbal; 
InverseKinematics *inverseK; 

//VARIABLES 
GLint oldWinX, oldWinY; 

GLfloat 
selectedSegmentJx, 
selectedSegmentJy, 
selectedSegmentJz, 
orientation [THREE_D+1]; 

SEGMENTS selectedSegment; 

AXIS selectedAxis; 

CONTROL_TYPE controlType; 
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11********************************************************************* 

II FILE      : UserControl.cpp 
// DESCRIPTION: 
11********************************************************************* 

#include < math.h > 
#include "UserControl.h" 

UserControl::UserControl( Human * man ) 
{ 

//INITIALIZE 
controlType =QUATERNION_CONTROL; 
human =man; 
selectedSegment =NONE; 
selectedAxis   =UNDEFAXIS; 

selectionMark =new Cursor3D(); 
cursor3D     =new Cursor3D(); 

inverseK =new InverseKinematics (man ); 

//.  
UserControl: :~UserControl() 
{ 

delete    cursor3D; 
delete selectionMark; 

} 

//  
void UserControl::mouseHitAt(const GLint WIN_X, const GLint WIN_Y, 

const GLfloat viewRotX, const GLfloat viewRotY) 
{ 

switch( controlType){ 

case INVERSE_CONTROL  : 
//same with quat 

case QUATERNION_CONTROL: 
trackingStartAt( \VTN_X, WIN_Y, viewRotX, viewRotY); 
break; 

case EULER_CONTROL: { 

GLuint selection =isAnyObjectSelected( WIN_X, WIN_Y, EULER_CIRCLES ); 

if(selection ==NO_SELECTION){ 

selection =isAnyObjectSelected( WIN_X, WINY, SEGMENT_SHAPES ); 
if( selection !=NO_SELECTION && 

selectedSegment==((SEGMENTS) selection)){ 

//switch to QUATERNION_CONTROL control 
selectedSegment =NONE; 
controlType =QUATERNION_CONTROL; 
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else{ 

} 

} 
break; 

default: break; 

oldWinX =WIN_X; 
oldWinY =WIN_Y; 

selectedAxis =(AXIS) selection; 

} 

//.  
void UserControl::mouseReleasedAt(const GLint WIN_X, const GLint WIN_Y) 

{ 
if( selectedSegment != NONE){ 

switch( controlType){ 
case ESTVERSE_CONTROL   : 
//same with quat 
case QUATERNION_CONTROL: 

if( WIN_X==oldWinX && WIN_Y==oldWinY){ 

} 
else{ 

//switch to EULER_CONTROL control 
controlType =EULER_CONTROL; 
initializeGimbalSystem(); 

trackingEndAt( WIN_X, WIN_Y); 
} 
break; 

case EULER_CONTROL: 
selectedAxis =UNDEFAXIS; 
break; 

default: break; 

} 

}//end switch 
}//endif 

//  
void UserControl::mouseDragAt(const GLint WIN_X, const GLint WIN_Y) 
{ 

switch( controlType){ 

case INVERSE_CONTROL  : 
//same with quat 
case QUATERMONCONTROL: 

markVectorAngle( WIN_X, WIN_Y); 
break; 

case EULER_CONTROL: 
updateGimbalSystem( WIN_X, WIN_Y); 
//hold mouse position 
oldWinX =WIN_X; 

188 



oldWinY =WIN_Y; 
break; 

default: break; 

//.  
voidUserControl::initializeGimbalSystem() 

{ 
human->getPosture( EULER, selectedSegment, orientation); 
gimbal.setAngle( orientation ); 

} 

//.  
void UserControl::updateGimbalSystem(const GLint WIN_X, const GLint WIN_Y) 

{ 
if( selectedAxis !=UNDEFAXIS ) { 

if(WIN_Y-oldWinY > 0II WIN_X-oldWinX > 0){ 

gimbal.increment( selectedAxis); 
} 
else if(WIN_Y-oldWinY < 0II WIN_X-oldWinX < 0){ 

gimbal.decrement( selectedAxis); 
} 
gimbal.getAngle( orientation); 
if(! human ->modifyPosture( EULER, selectedSegment, orientation)){ 

initializeGimbalSystemO; 

} 
} 
//draw GimbalSystem 
glTranslatef( -3, 3, -10); 
glScalef(0.1f,0.1f,0.1f); 
gimbal.drawO; 
glLoadldentityO; 

//.  
void UserControl::trackingStartAt(const GLint WIN_X const GLint WIN_Y, 

const GLfloat viewRotX, const GLfloat viewRotY) 

{ 
// check whether mouse is on human obj 

GLuint selection =isAnyObjectSelected( WIN_X, WIN_Y, SEGMENT_SHAPES ); 

if(selection ==NO_SELECTION){ 

selectedSegment =NONE; 
} 
else if( controlType ==QUATERNION_CONTROL II isEndEffector(selection)) { 

inverseK ->setEarthOrientation(viewRotX, viewRotY); 
selectedSegment =(SEGMENTS) selection; 
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if( selectedSegment != NONE){ 

// gets joint centers of selected segment 
human ->getJointCenters(selectedSegment, 

selectedSegmentJx, 
selectedSegmentJy, 
selectedSegmentJz); 

cursor3D ->setWorldCoord( 0, 0, selectedSegmentJz); 
if( controlType ==QUATERNION_CONTROL){ 

selectionMark ->setWorldCoord( 0, 0, selectedSegmentJz ); 
selectionMark ->setWindowCoord( \VIN_X, WIN_Y); 

GLdouble 
ex =cos( -viewRotX * DEG_TO_RAD ), 
sx =sin( -viewRotX * DEG_TO_RAD), 
cy =cos( -viewRotY * DEG_TO_RAD ), 
sy =sin( -viewRotY * DEG_TO_RAD ); 

// const, rot. vector from study angle 
orientation[X] =(GLfloat) (cx*sy); 
orientation [Y] =(GLfloat) (-sx ); 
orientation[Z] =(GLfloat) (cx*cy); 

} 

//_  
boolean UserControl::isEndEffector( GLuint selection ) 
{ 

SEGMENTS segment =(SEGMENTS) selection; 
boolean result =false; 

if( segment ==L_HAND II segment =R_HAND II 
segment =L_FOOT II segment =R_FOOT) 

{ 
inverseK ->initialize( segment); 
result =true; 

return result; 
} 

I/.  
void UserControl::trackingEndAt(const GLint WTN_X, const GLint WIN_Y) 
{ 

if( selectedSegment != NONE){ 
//convert window coord of mouse to world coord 
glLoadldentityO; // Reset the modelview matrix 
cursor3D ->setWindowCoord( WIN_X, WIN_Y); 

if( controlType ==QUATERNION_CONTROL){ 

quaternionMotion(WIN_X, WIN_Y); 
} 
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else{ 
inverseK ->algebraicSolution( (GLfloat)cursor3D ->getWorldX(), 

(GLfloat)cursor3D ->getWorldYO, 
selectedSegmentJz); 

} 
// turn selected option off 
selectedSegment =NONE; 

//.  
void UserControl::quaternionMotion(const GLint WIN_X, const GLint WIN_Y) 

{ 
GLfloat 

oldX =(GLfloat)selectionMark ->getWorldX(), 
oldY =(GLfloat)selectionMark ->getWorldY(), 
newX =(GLfloat)cursor3D ->getWorldX(), 
newY =(GLfloat)cursor3D ->getWorldY(); 

// get angle between selected mouse coord. & joint & current mouse coord 
orientation[3]=getAngleFm3Points(selectedSegmentJx,selectedSegmentJy, 

oldX, oldY, 
newX, newY); 

// rotate segment with this rot. ang. & vec. 
human ->modifyPosture( VECTOR.ANGLE, selectedSegment, orientation ); 

//.  
void UserControl::markVectorAngle( const GLint WIN_X, const GLint WIN_Y ) 
{ 

if ( selectedSegment != NONE){ // check if a selection occured. 
// If it did, draw markers 

cursor3D ->setWindowCoord( WIN_X, WIN_Y); 

glDisable(GLJLIGHTING); 
glLineWidth(3); 
//draw cursors 
cursor3D ->draw(); 

if( controlType ==QUATERNION_CONTROL){ 
selectionMark ->draw(); 

//draw triangle (marking rotation angle) 
glColor3f(l,l,l); 
glBegin( GLJJNELOOP); 

glVertex3d( selectionMark ->getWorldX(), 
selectionMark ->gefWorldY(), 
selectionMark ->getWorldZ()); 

glVertex3f( selectedSegmentJx, 
selectedSegment_jy, 
selectedSegmentJz); 

glVertex3d( cursor3D ->getWorldX(), 
cursor3D ->getWorldY(), 
cursor3D ->getWorldZ()); 

glEnd(); 
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else{ 
//draw triangle (marking rotation angle) 
glColor3f(l,U); 
glBegin( GL_LINES); 

glVertex3f( selectedSegmentJx, 
selectedSegmentJy, 
selectedSegmentJz); 

glVertex3d( cursor3D ->getWorldX(), 
cursor3D ->getWorldY(), 
cursor3D ->getWorldZ()); 

glEnd(); 

} 

glLineWidth(l); 

glEnable(GL_LIGHTING); 

//_  
void UserControl::setControlType( CONTROL_TYPE type) 
{ 

controlType =type; 
} 

II.  
boolean UserControl::isTracking() 
{ 

return ((selectedSegment = NONE) ? FALSE : TRUE); 

} 

II.  
GLuint UserControl::isAnyObjectSelected(const GLint mouseX, const GLint mouseY, 

OBJECT_TYPE objectType) 

{ 
GLuint selectedObject =NO_SELECTION; 

GLfloat maxZ =0; 
GLuint selectBuffer[64] ={ 0 }; 
GLint hits =0, viewPort[4]; 

glSelectBuffer(64, selectBuffer); //init. select buf. 

glGetIntegerv(GL_VIEWPORT, viewPort); 

glLoadldentityO; // Reset the modelview matrix 
glMatrixMode(GL_PROJECTION); //change matrix mode to project 
glPushMatrixO; 

glRenderMode(GL_SELECT); //change render mode to SELECT 
glLoadldentityO; //clear matrix 

//track a view volume for detection 
gluPickMatrix( mouseX, viewPort[3]-mouseY, 2, 2, viewPort); 
gluPerspective(45,(GLfloat)viewPort[2]/(GLfloat)viewPort[3],l,50); 
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glMatrixMode(GL_MODELVIEW); 

//draw shapes as detectors 
if (objectType == SEGMENT_SHAPES ){ 

human ->drawMouseDetectors(); 
} 
else{ 

glLoadldentityO; 
glTranslatef( -3, 3, -10); 
glScalef(0.1f,0.1f,0.1f); 
gimbal.drawMouseDetectorsO; 

} 

glLoadldentityO; // Reset the modelview matrix 
glMatrixMode(GL_PROJECTION); 

hits =glRenderMode(GL_RENDER); //if any drawn shape hit to viewing volume 
//get number of hit objects 

if( hits > 0) { //if there are objects which is hit 

GLint hitObj =0; 
for(GLint i=0; kbits; i++){ // choose the one which has max-Z 

if(selectBuffer[(i*4)+2]<selectBuffer[(hitObj*4)+2]) hitObj =i; 

// set selection 
selectedObject =selectBuffer[(hitObj*4)+3]; 

} 

glMatrixMode(GL_PROJECnON); //set project 
glPopMatrixO; 
glMatrixMode(GL_MODELVIEW);// change matrix mode to model 

return selectedObject; 
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// FILE      : Utility.h 
// DESCRIPTION: general purpose functions 

#ifhdef UTILITY.H 
#define UTILITY_H 

#include <GL/glut.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 

#ifhdefNULL 
#define NULL 0 
#endif 

//ENUMS 
enum AXIS{ X, Y, Z, XY, XZ, YZ, XYZ, UNDEFAXIS }; // axis names 

enumROTATION_METHODS{ QUATERNION, EULER, VECTOR_ANGLE, MATRIX }; 

// CONSTANTS 

// max file name must be equal or greater than actual file names, 
const GLbyte MAX_FILE_NAME = 16; 

// symbol for 3 
const GLbyte THREE_D =3; 

// symbol for 2 
const GLbyte TWO_D =2; 

// degree to radian 
const GLfloat DEG_TO_RAD =0.01745f; 

const GLuint NO_SELECTION =-1; 

const GLfloat OUTRANGE =361.0f; 

// FUNCTIONS 

// reads integers from the given file to returned int array 
GLint* readlndices( const char *const, GLint &); 

// reads floats from the given file to a returned float array 
GLfloat** readPoints( const char *const INFILE_NAME, GLint &numberOfPoints ); 

// returns angle which is between line (xl,yl)-(cx,cy) and 
// line (x2,y2)-(cx,cy) 
GLfloat getAngleFm3Points(const GLfloat, const GLfloat, 

const GLfloat, const GLfloat, 
const GLfloat, const GLfloat); 
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void twoLink2D(const GLfloat, const GLfloat, 
const GLfloat, const GLfloat, 

GLfloat &,    GLfloat & ); 

GLfloat HnearInterpolate( const GLfloat VALUE, 
const GLfloat TIME, const GLfloat CURRENTJITME); 

void quatInterpolation( const GLfloat * const, const GLfloat * const, 
const GLfloat, GLfloat * const); 

#endif 
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// FILE      : utility.cpp 
//DESCRIPTION: 

#include "utility.h" 

//************* AUX. UTELIY FUNC. that are used in this file *** 

// utility function that open an input file.Returns TRUE , if successful 
boolean openInputFile( ifstream &, const char *const); 

// returns the length between (xl.yl) and (x2,y2) 
GLfloat length(const GLfloat, const GLfloat, 

const GLfloat, const GLfloat); 

// returns the angle by cos theorem for given 3 points 
GLfloat cosTheory( const GLfloat, const GLfloat, const GLfloat); 

/>#### #*##**### Tj'i'ii TV FUNCTIONS ************************************* 

//.  
boolean openInputFile( ifstream &inputFile, const char *const FILE_NAME){ 

boolean return Value = TRUE ; // return value of this function 

inputFile.open( FILE_NAME, ios::in); 

if( !(inputFile)){ 

cout« "Input File open falsed." 
« "Can't open " « FTLE_NAME « endl; 

return Value = FALSE; 
} 
return return Value; 

} 

//.  
GLint* readlndices( const char *const INFILE_NAME, GLint & numberOflndices ){ 

ifstream inFile; // input file 
GLint *indices =NULL; // return array 

if (openInputFile( inFile, INFILE_NAME) ==TRUE ){ 
// file is opened succesfully 
GLint value; 
numberOflndices =-1; 

// count ints in the file 
while( !(inFile.eof())){ 

inFile » value; 
++numberOfIndices; 

};■ 
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// turn pointer to the beggining of the file 
inFile.clear(); 
inFile.seekg(O); 

//initialize memory for return array 
indices =new GLintfnumberOflndices]; 

// read file into return array 
for( GLint i=0; i<numberOfIndices; i++){ 

inFile »indicesfi]; 
} 

// close file 
inFile.closeO; 

} 

return indices; 
} 

//.  
GLfloat** readPoints( const char *const INFELE_NAME, GLint &numberOfPoints){ 

ifstream inFile; // input file 
GLfloat **points =NULL; 

if (openInputFile( inFile, INFILE_NAME) ==TRUE){ 
// file is opened succesfully 

GLfloat value; 
numberOfPoints =-1; 

// count floats in the file 
while( !(inFile.eof())){ 

inFile » value; 
++numberOfPoints; 

}; 

// turn pointer to the begining of the file 
inFile.clearO; 
inFile.seekg(O); 

//initialize memory for return array 
points =new GLfloat* [numberOfPoints]; 

// read file into return array 
for( GLint i=0; i<numberOfPoints; i++){ 

points[i] =newGLfloat[THREE_D]; 
for( GLint j=0; j<THREE_D; j++){ 

inFile » points[i][j]; 
} 

} 
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// close file 
inFile.close(); 

} 

return points; 
} 

//.  
GLfloat getAngleFm3Points(const GLfloat centerX, const GLfloat centerY, 

const GLfloat xl, const GLfloat yl, 
const GLfloat x2, const GLfloat y2) 

{ 

GLfloat angle, angle 1, angle2; 

anglel =cosTheory(length(centerX,centerY+l,xl, yl), 
length(centerX,centerY,xl, yl), 

l); 
angle2 =cosTheory(length(centerX,centerY+l,x2, y2), 

length(centerX,centerY,x2, y2), 
i); 

if( xl>=centerX && x2>=centerX){ 

angle =anglel-angle2; 
} 
else if( xl<=centerX && x2<=centerX){ 

angle =angle2-anglel; 
} 
else if( xl>centerX && x2<centerX){ 

angle =anglel+angle2; 

if(angle>180) angle-=360; 
} 
else if( xl<centerX && x2>centerX){ 

angle =-1 *(anglel +angle2); 

if(angle<-180) angle+=360; 
} 

return angle; 
} 

//.  
GLfloat length( const GLfloat xl, const GLfloat yl, 

const GLfloat x2, const GLfloat y2) 
{ 
GLfloat dx=xl-x2, 

dy=yl-y2; 

return (GLfloat) sqrt((dx*dx)+(dy*dy)); 

} 
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//.  
GLfloat cosTheory( const GLfloat a, const GLfloat b, const GLfloat c) 
{ 

GLfloat angle=acos( 
((a*a)-(b*b)-(c*c)) 

/ 
(-2 * b * c) 
); 

return (angle / DEG_TO_RAD); 

} 

//  
void twoLink2D(const GLfloat X_POS,   const GLfloat Y_POS, 

const GLfloat LENGTH_1, const GLfloat LENGTH_2, 
GLfloat & tetal,       GLfloat & teta2 ) 

{ 

//calc. of link angles to give posture to system 
teta2 =acos( 

( 
(X_POS*X_POS) 

+ (Y_POS*Y_POS) 
- (LENGTH_1*LENGTH_1) 
- (LENGTH_2*LENGTH_2) 

) 
/ 
(2 * LENGTH_1 * LENGTH_2) 

); 

tetal =atan( X_POS/Y_POS) 
- atan( 

(LENGTH_2 * sin(teta2)) 
/ 
(LENGTHJ + (LENGTH_2*cos(teta2))) 

); 

//convert angles to rad 
tetal/=DEG_TO_RAD; 
teta2/=DEG_TO_RAD; 

return; 

//.  
GLfloat linearInterpolate( const GLfloat VALUE, 

const GLfloat TIME, const GLfloat CURRENT_TIME) 
{ 

return (CURRENTJTIME * VALUE / TIME ); 
} 
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//  
void quatInterpolation( const GLfloat * const ql, 

const GLfloat * const q2, 
const GLfloat t, GLfloat * const newQ ) 

{ 
static const GLfloat HALF_PI =1.570796f; 

if( ql[X]=q2[X] && ql[Y]==q2[Y] && ql[Z]==q2[Z] && ql[3]=q2[3]){ 

for( GLint i=0; i<4; i++){ newQ[i] =ql[i]; } 
} 
else{ 

GLfloat cosOm, omega, sinOm, sclp, sclq; 

cosOm =(ql[X]*q2[X]) + (ql[Y]*q2[Y]) + (ql[Z]*q2[Z]) + (ql[3]*q2[3]); 

if( cosOm != -1){ //angle between ql and q2 < 180 

if( cosOm != 1){//180 > angle > 0 

omega =( GLfloat) acos( cosOm ); 
sinOm =( GLfloat) sin( omega); 
sclp =( GLfloat) sin( (l-t)*omega) /sinOm; 
sclq =( GLfloat) sin (t*omega) /sinOm; 

} 
else{ //angle =0 

sclp =l-t; 
sclq =t; 

} 

for( GLint i=0; i<4; i++ ){ newQ[i] =(ql[i]*sclp) + (q2[i]*sclq); } 
} 
else{ //ql is opposite to q2.Angle =180; 

newQ[X]=-ql[Y]; 
newQ[Y]=ql[X]; 
newQ[Z] =-ql[3]; 
newQ[3]=ql[Z]; 

sclp =( GLfloat) sin( (1 -t)*HALF_PI); 
sclq =( GLfloat) sin( t*HALF_PI); 

for( GLint i=0; i<4; i++){ newQ[i] =(ql[i]*sclp) + (newQ[i]*sclq);      } 
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