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PREFACE 

Information has always been important, and even critical, in the conduct of war. That is, 
information in warfare has always been an important component for achieving victory. 
However, information-based warfare, or Information Warfare (IW), is a relatively new aspect of 
warfare and is largely a result of the major advances that have been made in various 
infrastructure technologies (solid-state devices, etc.) that have led to associated advances in 
sensing and computing technologies, as well as in advanced weaponry. 

Within such Information Warfare environments, modern decision makers have at their service an 
ever-increasingly sophisticated set of automated decision-aiding/support tools. Nonetheless, they 
remain dependent upon both the availability and accuracy of the information provided, and the 
limitations of their own abilities to interpret that information. This report provides a preliminary 
examination of critical elements and processes involved in adversarial decision-making. The 
analysis focuses upon our postulated generic data fusion processor that estimates situation and 
threat states based on multisensor/multisource-based data assessments as the underlying decision 
aid. In that frame of reference, this report provides a characterization of: (1) the information 
dependencies in data fusion processing, (2) the information dependencies in selected human- 
processing models, (3) the vulnerabilities of that information to Offensive IW attack, and (4) the 
processes of decision making. It also examines prototypical cultural and technological 
differences among the current political powers and investigates the general nature of adversarial 
engagements in the context of a dynamic, two-sided, game-theoretic process. 

The project was completed for the Air Force Research Laboratory's Information Analysis and 
Exploitation Branch (AFRL/HECA), under contract F41624-94-0-6000 for prime contractor, 
Logicon Technical Services, Inc. (LTSI). Work was accomplished under Work Unit Number 
71841046, "Crew Systems for Information Warfare." Mr. Donald Monk was the Contract 
Monitor. 

The authors offer special thanks to Mr. Gilbert Kuperman, of AFRL/HECA, the Work Unit 
Manager, for his initial interest, and for his ongoing support and direction which made this effort 
possible. The authors also wish to acknowledge Mr. Robert L. Stewart of LTSI, for his 
management of the project, and Ms. Elisabeth Fitzhugh, also of LTSI, for technical editing 
services. 
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1.  INTRODUCTION 

For many of the world's societies, the onset of the Information Age is causing military 
theoreticians and strategists to reexamine basic premises, tactics, and doctrine associated with all 
phases of military operations, ranging from surveillance and reconnaissance to combat 
operations. 

The nature of warfare is changing due to the explosion in the technical means of 
collecting, storing, analyzing, and transmitting information. The emergence of the Information 
Age presents new challenges to US strategy and organizational concepts. Technology not only 
brings our world closer together as information, money, and ideas move around the globe at 
record speed, but it also makes an open and free society even more vulnerable to disruptions 
within the information environment. The task reported on herein comprises a preliminary 
examination of the issues, considerations, and top-level models of one fundamental process that 
is inherent in the new paradigm of Information-based Warfare: the dependencies on, and 
vulnerabilities of, information in aided, adversarial decision making. The premise is that in 
Information Warfare (IW) environments modern decision makers, analysts, commanders, etc., 
each will have some suite/ensemble of automated decision-aiding/support tools, but will remain 
highly dependent on their own human-based abilities for final interpretation of decision aid- 
generated recommendations and hypotheses about "world states" or situations of interest. The 
decision-aiding tool postulated here is a generic data fusion (DF) processor that estimates 
situations and threat states of interest based on multisensor/multisource-based estimates. So we 
seek to characterize various aspects of this overall process, among other factors addressed herein: 

• information dependencies in DF processing 
• information dependencies in appropriate, representative human-processing models 
• vulnerabilities of such information to representative offensive IW attacks 
• decision making 

Additionally, in this work, the intention is to integrate "representative" cultural and technological 
differences between the two adversarial sides of the generic model. We also look at the general 
nature of such adversarial engagements in the context of a dynamic, two-sided, game-theoretic 
process. 

1.1 Top-level Perspectives on Information Warfare 

The following is drawn from: (1) USAF Doctrine Document 5: Information Warfare 
(AFDD 5; draft document, 2nd revision, Oct. 1996), provided to us by Mr. Gilbert Kuperman of 
AFRL/HECA and Mr. Robert Stewart of Logicon Technical Services, Inc., and (2) Dr. James 
Llinas' materials for a seminar he has been giving on IW for about 3 years. The evolving nature 
of the battlespace and emerging capabilities provide an unprecedented opportunity to achieve 
national strategic objectives short of war. New opportunities to observe and react to developing 
threats worldwide allow traditional military forces to evolve into lighter, more flexible, more 



responsive forces. Information Age technologies expand targeting opportunities for the decision 
maker, as well as the means of transmitting and storing information. The deterrent effect of an 
"information umbrella," where friendly forces use information to cause an adversary to comply 
with our will, has new and profound implications for the military. 

Notwithstanding technological developments, the ultimate critical battlespace resides 
in, and has historically been, the mind of the adversary decision maker (AFDD 5, 1996, p. 9; 
emphasis is ours). IW enhances the military's ability to deter conflict by raising the cost to 
potential adversaries and thereby influencing their decisions. IW targets decisions by affecting 
directly or indirectly the flow of information into and out of the mind of the decision maker. By 
targeting the key decision makers, IW offers options to achieve our objectives more directly. 
Consequently, IW is not about technology, but about integrating information-related means to 
achieve common objectives. 

In understanding the value added by IW, we must recognize the potential offered by 
emerging technologies and organizations concepts to take action in peacetime to defuse crises, or 
to multiply the effects of traditional military force application should deterrence fail. These new 
capabilities require a revised approach to the battlespace and the threat. While the process of 
Intelligence Preparation of the Battlespace (IPB) is not fundamentally different for IW, the nature 
of the battlespace is. Developing and understanding the information connectivity, the systems, 
and the human decision makers is a complex process. This battlespace is not defined by 
geography, nor is it always tangible in empirical ways. It crosses traditional political, economic, 
social, military, and infrastructure boundaries, complicating military operations. 

1.2 Basic Principles of Information Warfare 

rW is defined as actions taken within the information environment to deny, exploit, 
corrupt, destroy or assure information viability. The official DoD definition is, "actions taken to 
achieve information superiority in support of national military strategy by affecting adversary 
information and information systems while leveraging and protecting our own information and 
information systems." (Defense Science Board, 1994) The goal is to achieve an information 
advantage or "Dominant Battlespace Awareness" (DBA; another popular term evolving in the 
rW community), generally meaning, the ability to achieve perfect knowledge of the enemy's 
disposition, location, and orientation in a limited region without exposing friendly forces to high 
risk. IW can make a decisive difference at the strategic level by neutralizing an adversary's will 
and capacity to fight. If we consider the basic definition of warfare as being the set of all lethal 
and non-lethal activities taken to subdue the will of an adversary, then the extension of the role of 
IW as activity directed against any part of the knowledge and belief systems of an adversary—to 
support subduing him—is clear and logical. Szafranski and Stein have written about this notion 
in the Airpower Journal: "The target system of information warfare can include every element in 
the epistemology of an adversary...[meaning]...the entire 'organization, methods, and validity of 
knowledge.'" (Szafranski, 1995, p. 60); "...information warfare actions must be directed against 
both the adversary's knowledge systems and belief systems." (Szafranski, 1995, p. 60); "The 
target of information warfare is, then, the human mind...." (Stein, 1995, p. 32), and information 



warfare involves the "manipulation of] the multi-media, multisource Active universe" (Stein, 
1995, p. 34). These are the perspectives we have taken in this report. 

IW can facilitate military efforts at the operational and tactical levels by enabling 
freedom of action, security, initiative, and flexibility. Information also can be considered as a 
"realm" within which the military operates, not unlike "air" and "space." By analogy (and much 
has been proffered regarding IW concepts by analogy to conventional warfare), one could then 
conceptualize Air Force missions such as counter information, with subordinate mission types 
such as offensive counterinformation and defensive counterinformation. The Air Force has, in 
various USAF doctrine documents, defined notions of indirect and direct IW. Indirect IW 
comprises those actions, currently defined as command and control warfare (C2W), that are 
involved in the general activity of perception management of an adversary's surveillance and 
reconnaissance systems (i.e., the management of "external" information). C2W is "The 
integrated use of operations security (OPSEC), military deception, psychological operations 
(PSYOP), electronic warfare (EW), and physical destruction, mutually supported by intelligence, 
to deny information to, influence, degrade, or destroy adversary C2 capabilities, while protecting 
friendly C2 capabilities against such actions" (JCS MOP 30, 1993). Direct IW comprises those 
actions that some may call "Netwar"—such as viral software attacks, etc., directed at the 
"internal" information of an adversary. These notions are shown in Figure 1.2-1 below. 

DECEPTION 

ELECTRONIC 
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PHYSICAL 
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Figure 1.2-1 Indirect and Direct IW Operational Concepts 



AFDD 5 focuses in particular on counterinformation and information assurance as 
components of a comprehensive operational view of IW. In this document, counterinformation is 
very close to the idea of indirect IW just mentioned—see and compare Figure 1.2-2 with Figure 
1.2-1—and information assurance comprises both the enhancement and the protection of friendly 
information. In this view, the specific notion of the analog of direct IW, or offensive Netwar- 
type activity is shown within the category called information attack (see below). However, the 
details and notions of offensive IW, given its rather sensitive nature, have to date been the least- 
discussed component of a total picture of IW (at least in the open literature). In what follows, we 
focus on the materials from AFDD 5 and its emphasis on counterinformation but it should be 
understood that there is a rapidly-growing body of material addressing the subject of IW and its 
many dimensions, and that there are evolving and occasionally conflicting viewpoints on the 
various aspects of IW. 

INFORMATION 
WARFARE 

Intelligence ) 

K Recce &   \ 
urvcitbnccy 

KNavi    N 
Posilioninc J 

—(public Affairi) 

H JAG  ) 

INFOSEC ) 

 ( COMSEC ) 

 (cOMPUSEc) 

OP >EC    ) 

Figure 1.2-2 Prominent Information Warfare Activities 

1.2.1  Counterinformation 

Counterinformation activities establish information control and enable all other 
activities (recall our comments that what is called "counterinformation" in AFDD 5 is very close 
to what is called C2W in JCS MOP 30). Combined with counterair and counterspace, 
counterinformation creates an environment where friendly forces can conduct operations with 
some degree of freedom of action, while simultaneously denying the adversary the ability to 
conduct those operations against friendly forces. Counterinformation seeks to establish a desired 



degree of information superiority by destroying or neutralizing enemy information functions. 
The focus of the effort is on countering the enemy's ability to attain information dominance 
through information disruption, distortion, and denial. Disrupting vital information lines can 
confuse an enemy's ability to understand what is happening until it is too late to take appropriate 
or effective action. Distorting the adversary's understanding by inserting erroneous information 
into their system can create a false picture, forcing an opponent to act in accordance with friendly 
objectives. Denying information can create large gaps in an opponent's picture of a situation. 
All of these measures can confuse, delay, or inhibit enemy offensive actions and reduce reaction 
time for critical defensive measures. 

1.2.1.1 Counterinformation Operations: Several Air Force operations strive to deny, 
exploit, corrupt, or destroy an adversary's information and its functions. Some of the activities 
that can operate on human and technical information systems include psychological operations 
(PSYOP), military deception, electronic warfare (EW), information attack, and 
counterintelligence (CI); these are briefly described below. (Note that these activities later form 
the framework within which we assess the effects of Offensive IW attacks on friendly 
informational components.) 

Psychological Operations 

PSYOP are designed to convey selected information and indicators to foreign audiences 
to influence their emotions, motives, objective reasoning, and ultimately their behavior. The 
purpose of PSYOP is to induce or reinforce foreign attitudes and actions favorable to friendly 
objectives. Modern PSYOP are enhanced by our ability to communicate massive amounts of 
information to target audiences with the intent of influencing their perceptions and decision 
making processes. Examples of this information include promises, threats of force or retaliation, 
conditions of surrender, safe passage for deserters, or support to resistance groups. During 
Operation JUST CAUSE, ground units employed loudspeakers to drive a fugitive from justice 
out of his hiding location and cause the surrender of thousands of Panamanian Defense Force 
personnel. In similar situations, USAF assets can be employed to broadcast radio and 
loudspeaker messages which may influence a wider audience. 

Military Deception 

Military Deception seeks to mislead foreign decision makers, causing them to act in 
accordance with the originator's objectives. Deception strategies may support national policies, 
military service programs, or tactical operations. Measures are designed to distract from, or 
provide cover for, military operations. Military deception, in the form of a feint or fixed force, 
can confuse and dissipate enemy efforts to interfere with friendly forces. These measures require 
accurate intelligence on the adversary's cultural, political, and doctrinal perceptions. Planners 
then are able to exploit and manipulate those biases. For example, during World War IPs 
Operation FORTITUDE NORTH, the Allies dropped two bombs in the Pas de Calais for each 
bomb dropped in Normandy, successfully misleading German defenders as to where the actual 
beach landings would occur. 



Electronic Warfare 

Electronic warfare is any military action involving the use of electromagnetic and/or 
directed energy to manipulate the electromagnetic spectrum or to attack an adversary. Electronic 
warfare can create an electronic sanctuary in which friendly aircraft may operate. This sanctuary 
can help enable strike and counterair aircraft to proceed to and from their targets and to fully 
exploit their weapons without undue interference from electronically directed enemy air 
defenses. During DESERT STORM, effective force packaging, which included self-protection, 
standoff, and escort jamming, received much of the credit for the Air Force's astonishingly low 
loss rate. 

Information Attack 

Information attack encompasses activities taken to manipulate or destroy an adversary's 
information without visibly changing the physical entity within which it resides. Penetration of 
an enemy's information system has great value in combat because it offers the ability to 
incapacitate an adversary while reducing exposure to friendly forces. By using nontraditional 
tools, conventional sorties can be saved for other targets. Manipulation of data bases or 
parameters of reporting systems can cause incorrect information to distort leaders' decision 
making, or destroy the enemy's confidence in its information systems. An effective information 
attack could force an adversary to use less technical means because of friendly intrusion into the 
system. An example of information attack might be to interject into a radar data stream 
disinformation that causes the antiaircraft missiles to miss intended targets. 

Counterintelligence 

Counterintelligence consists of those information gathering activities (and resulting 
information gathered) that protect against foreign-sponsored espionage or terrorism. 
Counterintelligence threat estimates and vulnerability assessments identify friendly information 
weaknesses and vulnerabilities that may be exploited by an adversary. The importance of a 
strong CI capability is highlighted by the Cold War example of the Walker case. From the late 
1960's to the 1980's, the US suspected the Soviets had foreknowledge of American naval 
exercises. However, it wasn't until the Walker espionage ring was exposed that the US 
discovered that the Soviets had been given naval cipher materials. 



2.  PROJECT OBJECTIVES 

The objectives of this project were to: 

1. develop a top-level model of a two-sided, aided adversarial decision making 
environment, and to decompose this model to a more specific level if possible 

2. focus on representation aspects of the adversarial component of the model 

3. conduct an assessment of informational vulnerabilities 

4. examine the sensitivities of decision making quality to potential loss or degradation 
of information within the decision making process 

As the task effort unfolded, it was realized that the first order of business was to collect 
information on each of a number of factors that bore on the development of the model. Aided 
adversarial decision making turns out to have a number of different dimensions, and there are a 
number of factors that influence the definition of a useful decision making model cast in an IW 
environment. Some of these raise issues that, to date, have not been very well researched at all— 
e.g., human trust in automated/computer-based support (i.e., decision aids) when the 
informational components in that aid are suspect to varying degrees. There has been work in the 
area of human trust in automation, but not specifically within this IW-type environment. Thus, 
the construction of a model which represents all the factors involved in aided adversarial decision 
making within an IW framework will likely require separate efforts to define decision making 
component processes heretofore unexamined. As we probed further, it was also realized that an 
overarching issue is that of informational value in the context of decision making. Notions of 
vulnerability of information and sensitivity of decision making to information corruption 
immediately require specification of notions of informational value in decision making. While 
this topic has been addressed (and we synopsize several prior works in this area herein), it is an 
area that, surprisingly, has not received as much attention as one might think. Here too, there are 
requirements and opportunities for new research in developing a comprehensive model of 
informational value and informational dependencies—in a quantitative sense—for decision 
making in an IW setting. Thus, we have not accomplished all these objectives, but believe we 
have made good progress toward them in the sense of establishing an understanding of several of 
the factors which will bear on the definition of a credible model of the type sought here. We do 
have a top-level model, we have addressed vulnerabilities and sensitivities, but have neither 
expanded on the model nor focused on adversarial representation as yet, due to the effort to better 
understand the roles of various contributing factors. 



3.  A TOP-LEVEL CONCEPTUAL DECISION MAKING MODEL 

3.1 An Aided Decision Making Model 

This study proposes a model of how experienced personnel make tactical decisions in 
complex command and control (C2) environments. The tactical decision making environment 
often involves time pressure, high risk, and uncertainty. Command and control is exercised 
based on the results of a set of tactical decisions. Theoreticians generally point out, command 
and control is not a collection of sensors, processor, displays, and data links. Rather, command 
and control is an extension of basic human decision processes by means of procedures, 
organization, and equipment. That is, sensors, automatic data processors, and communications 
equipment and systems are extensions of the decision maker's ability to gather, process, and 
disseminate information. 

3.1.1  Possible Models and Model Components 

Realizing the key to a better designed C2 system is a better understanding of the human 
decision making process, Wohl (1981) proposes a tactical decision process model called the 
SHOR paradigm, addressing the four generic decision making stages: Stimulus (data), 
Hypothesis (perception alternatives), Option (response alternatives), and Response (action). 
Basically, the SHOR paradigm is an extension of the stimulus-response paradigm of classical 
behaviorist psychology that provides explicitly for dealing with the uncertainty of input 
information and the consequences of actions. The SHOR paradigm does provide a good 
foundation for modeling human decision making and, in fact, those four stages can be further 
integrated and modified with more inside views. In the first half of the SHOR paradigm, the 
stimulus-hypothesis stages can be viewed as situation awareness (SA). That is, the decision 
maker is gathering information from the environment and trying to understand the state of the 
world as a basis for subsequent decision making. As a matter of fact, while considering decision 
making in complex and dynamic environments, the decision maker's SA is a crucial construct. 
Endsley (1995), in a special issue of Human Factors devoted to the topic, proposes a theoretical 
SA model based on a fairly complete literature review of the issues relating to SA. 

The characteristics of tactical decision making map closely to those included in an area 
of research that has been labeled naturalistic decision making (Orasanu & Connolly, 1993). 
Research on naturalistic decision making seeks to develop descriptive models of how people, 
usually experts, make decisions about the dynamic, unstructured problems encountered in real- 
world settings. The recognition-primed decision (RPD) model (Klein, 1993) depicts how 
experienced people make decisions in natural settings. The RPD model emphasizes situational 
dynamics as one of the key drivers in selecting a course of action. The RPD model describes 
how decision makers can rely on experience to recognize situations and to identify viable courses 
of action, without comparing the relative benefits or liabilities of multiple courses of action. A 
more complex version of the RPD model, concerning "feature matching" and "story building," 



was proposed in a study by Kaempf, Klein, Thordsen, and Wolf (1996). This model also 
enlightens the modeling toward tactical-aided decision making. Furthermore, Cohen, Freeman 
and Wolf (1996) describe and discuss a framework for decision making, called the 
recognition/metacognition (R/M) model, that explains how decision makers handle uncertainty 
and novelty while exploiting their experience in real-world domains. This literature provides 
great guidance for personnel training also. 

The Mixed-Initiative Model (MIM) proposed by Riley (1989) emphasizes the 
information flow between a machine, an operator, and the environment and serves as the basis 
for a dynamic simulation of human-machine interaction. This model offers a detailed 
representation of the interaction and information flow among the decision maker, the decision 
aid, and the world. There are four elements identified in this model: 1) decision aid system 
input, 2) decision aid system output, 3) human input, and 4) human output. The world node 
provides information to both the decision aid and the human decision maker and receives 
changes by the command and control by the human decision maker. This model provides good 
guidance for constructing a detailed information processing model for aided decision making. 

Characteristic of each of the models discussed is the explicit recognition of the human 
tendency to structure the decision making situation to reduce cognitive complexity and, hence, 
reduce the information processing load. 

To combine the model elements described above into a single model suitable for IW C2 
activities, we propose a two-level, aided decision model. The model presented consists of 1) the 
Two-Sided Adversarial General Model, and 2) the Aided Human Decision Making Model. The 
Two-Sided Adversarial General Model is the upper level model and describes the relationship 
between two adversarial forces, both of whom have decision aids. The Aided Human Decision 
Making Model, based on the concept of the SA model by Endsley (1995), and also integrating 
the concepts from the modified RPD model by Kaempf et al. (1996) and MIM by Riley (1989), 
focuses on the detailed information processing in the human-decision aid cooperative system of 
either side of the adversarial forces in the general model. 

3.1.2 Assumptions and Constraints 

The proposed aided decision making model is based on the following assumptions and 
constraints: 

• The decision making tasks discussed in this study are primarily focused on tactical, 
rather than operational, decision making. 

• The decision environment is assumed to be adversarial, complex, time-pressured, 
risky, dynamic, and to contain elements of uncertainty. 

• The decision making is facilitated by a data-fusion-based decision aid. The 
decision maker's information is primarily provided by the display interfaces of the 
decision aid. 

• The decision maker is assumed to be experienced and well-trained, both in 
performing the designated C2 tasks and in using the decision-aiding system. 



•    A single decision maker is assumed. That is, neither group nor distributed aided 
decision making are considered in this study. 

3.1.3 Two-Sided Adversarial General Model 

This general model, as shown in Figure 3.1.3-1, depicts the information flow between 
the two opposing forces—adversarial and friendly. For each side, three major nodes are 
addressed: the human commander (the decision maker), the DF system (the decision aid), and 
the world/battlefield (the information resource). As shown in the diagram, in order for the 
decision maker to perform command and control for the battlefield, the sensors pick up (from the 
battlefield or the world) data involving states of the environment, adversarial forces, and friendly 
forces, and feed it into the decision-aiding system. The processed information is displayed to the 
human commander, who then can use it to make a decision. Besides current battlefield 
information, supporting information may also be accessed through those available databases 
connected to the decision-aiding system. The decision maker gathers information primarily by 
interacting with the display and control interface provided by the decision-aiding system. 
However, the decision maker also may collect information through other, unofficial sources. 
Once the information is gathered, the decision maker forms a situation model and, based on the 
model, plans the C2 actions. 

Although the decision making paradigms in this model are generally the same for both 
sides, the information flow and the decision making results can be very different. The 
differences in characteristics inside entities are the determinants for different decision making 
results. It also implies that the information dependencies and vulnerabilities in aided adversarial 
decision making are determined by the entity characteristics in this model. Technology is a 
major factor—especially the ability to design and use sophisticated data sensors, data processing 
systems, interactive interfaces, and communications systems for C2. Cultural differences are 
another potential factor. Different cultures can produce differences in command and control 
patterns and in personal decision making processes, and therefore, require differently designed 
decision aids for maximum effectiveness. The influences on decision making by these factors 
will be discussed later in more detail. 

3.1.4 Aided Human Decision Making Model 

As shown in Figure 3.1.4-1, this model depicts a rather detailed view of the human 
decision making process. The basic relationships among human decision maker, decision aid, 
and battlefield have already been defined in the general model in the previous section. The 
human decision making process can be categorized into two major phases: situation awareness 
and action planning. That is, once the information is gathered from the decision aid and/or from 
the world, the decision maker forms a situation model and, based on the model, plans the C2 
actions. This part of the model will be discussed following in more detail. 
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3.1.4.1 Situation Awareness: A theoretical model of situation awareness by Endsley 
(1995) provides a framework for the core of human and, hence, system decision making. That 
model includes three levels: perception of elements in the environment, comprehension of the 
current situation, and projection of future status. Based on the world model and the predictions 
of the future formed in the commander's mind, decisions are then made. In our Aided Human 
Decision Making Model, 
Endsley's SA model is introduced and integrated as the main framework for the human decision 

making subsystem. 

In the decision maker subsystem, the human commander gathers and perceives 
information about the environment through the display interfaces of the decision aid, and also 
obtains information through other sources. These can be classified as the first level of SA - 
perception of the elements in the environment. This is the stage which emphasizes 
data/information sampling in human decision making. The efficiency and effectiveness of 
information sampling are both very critical to SA at this level. That is, the sources of 
information (both in number and physical type), and the complexity of information are the factors 
"external" to efficiency and effectiveness. Determination of attention allocation is the typical 
way to assess performance during this stage. 

There are two sources of information perceived by the human commander: one is from 
the displays of the decision aid (explicit communication) and the other is from the real world 
through other channels (implicit communication). Decision aids are designed to be the main 
channel for providing information. However, besides this "official" information, the human 
commander also receives information through "unofficial" sources, e.g., watching or listening to 
the news or even talking to colleagues. The information perceived through those unofficial 
sources can sometimes be crucial and have great influence in aided decision making, for both 

good and ill. 

By integrating the information from the decision aid and from other sources, the 
commander forms a holistic picture of the environment or world, i.e., a world model. Inferring 
the system state based on the information perceived through the display interface, understanding 
the system, integrating the information from other sources, and then forming a mental model of 
the current world can all be categorized as the second SA level—comprehension of the current 
situation. That is, a mental model is created representing what is going on in the world of 
interest based on the information perceived from Level 1. In fact, this stage is the core of SA, 
since, (1) the third SA level, prediction, is solely based on the knowledge of the world model 
developed in this level, and (2) the first SA level, information sampling, is driven by the world 
model for better attention allocation. 
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In most of the decisions concerning S A and diagnosis the decision makers use "feature 
matching" and "story generation" strategies to build S A. As summarized by Kaempf et al. 
(1996), story building can be thought of as a mental simulation in which one constructs a story 
that explains how a state of events might have been caused. Often the decision maker observes 
seemingly disparate pieces of information that do not match any set of cues held in memory. 
There may not be enough information to trigger recognition of the situation, or the pieces of 
available information may appear to contradict one another. The decision maker must build a 
story that links the various pieces of observed information into a coherent explanation of the 
situation. On the other hand, if possible, the decision maker may go back to the first level of SA, 
i.e., seeking more information to enhance and to modify the world model being built. More 
importantly, the information search is always based on building the model, even if it is still vague 
in the early stages. Story generation enables the decision maker to form certain expectancies and, 
based on these expectancies, to seek more information to confirm or modify the mental model. 
The continuous activities of filling in the information (or values) for the mental model, known as 
model-driven information sampling, is crucial to the quality of the resulting world model. 

While forming a mental model of the world, the third level of S A is gradually elicited. 
Based on the forming world model, the commander predicts the behavior of the world. This 
provides the knowledge necessary to decide on the most favorable course of action to meet the 
specified goals. The projection of the future status of the world is always based on world model 
knowledge, and the conflicts and doubts generated during the prediction stage are the information 
used to refine or even revise the world model. Mental simulation appears once the diagnosis is 
made; the simulation also enables the decision maker to form expectancies of what should occur 
if the diagnosis is correct. These expectancies let the decision maker verify the accuracy of the 
diagnosis by prescribing what should be observed as the incident continues to evolve (Kaempf et 
al., 1996). In some cases decision makers use a mental simulation to project a given course of 
action into the future to determine whether it would work and, if not, whether it could be 
modified. 

In fact, the border between Level 2 and Level 3 is rather vague. That is, the information 
exchange between world model development and future projection is highly interactive. Based 
on the world model formed mentally, the human commander utilizes that knowledge and predicts 
the possible future courses of the world to facilitate decisions for action. 

3.1.4.2 Action Planning: Once the situation model is developed, the decision maker 
plans the actions for C2 based on the model. Upon the situation awareness, specific goals, the 
"ideal" future states of the world, are mentally formed for guiding the whole action planning. 
Plans of actions are then elicited for evaluating and modified. Related mental scripts, the 
predetermined action paradigms, can provide schema for action planning. Meanwhile, guided by 
the goals or plans formed, the human commander continuously modifies or refines previously 
formed predictions of world behavior and also the world model itself. This is so-called "top- 
down processing." In fact, a certain amount of backtracking of perception activities would also 
be expected. 
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In fact, some of the tactical decision makers' primary tasks are to determine which set 
of threats exist; the procedures will then tell them what actions to take. That is, the decision 
maker focuses on whether to engage in specific action, rather than when and how to engage, 
especially when the threats are ambiguous and proximal (Endsley & Smith, 1996). However, for 
other tactical decision making tasks, especially those of C2 oriented decision making, action 
planning is far more complicated than answering a "whether" or "go-no-go" question. This is 
why our model emphasizes the distinction between the action planning phase and the situation 
awareness phase. 

3.1.4.3 Decision-Aiding: Considering the phases of human decision making defined 
in our model, decision-aiding functions can be further categorized into two classifications: 
battlefield perception-aiding and force C2-aiding, as shown in Figure 3.1.4-1. Battlefield 
perception-aiding basically assists the formation of a situation model. By processing and 
integrating the information from battlefield sensors, the decision aid can provide the human 
commander extensions for sensing and perception capabilities—that is, the decision aid can, at 
least, enhance the first level of SA. Some decision-aiding systems can reason further and match 
the information into certain pre-defined "situation models," and suggest or maintain a "good" 
mental situation model for the decision maker. Battlefield projection simulation, provided by an 
advanced decision aid system, can facilitate the mental situational projections of the decision 
maker. Action planning also can be aided by providing or facilitating the elicitation of action 
goals, action plans, and even action scripts based on the situation perceived. The main purpose 
of either the battlefield perception or the force C2-aiding functions is to reduce the mental 
workload, particularly in working memory load and in memory retrieval. 

As implied by this model, the human commander does not usually just accept the 
information from the decision aids without inferring or judging. The human commander tends to 
process the information from the decision aids by inferring how the aiding system works. For 
example, when a human commander is warned by the computer that a hostile fighter is now 
flying from zone A toward zone B, he or she does not simply accept this piece of information. 
Instead, the human commander utilizes his or her knowledge of how the system works, i.e., the 
system model, to refine or re-evaluate the information, assuming there is time. The knowledge of 
the system's functions, so-called "system" or "display" knowledge, comes into play while the 
system model is forming. By integrating the information from the decision aids and other 
sources, a world model is formed. That is, the human commander puts all the available 
information together, not necessarily with equal weight, and "understands" the world state, 
influenced by the system knowledge he or she possesses. Every commander potentially 
"understands" in his or her own mind in his or her own way. 

3.2 Factors Influencing the Vulnerabilities of Aided Decision Making 

According to Endsley (1995), several major factors influence the decision making 
process have to be interpreted through the SA mechanism. First, SA is a function of the system 
design in terms of the degree to which the system provides the needed information and in terms 
of the form in which it provides it. All system designs are not equal in their ability to convey 
needed information or in the degree to which they are compatible with basic human information- 
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processing abilities. Other features of the task environment, including workload, stress, and 
complexity, may also affect SA. Additionally, SA is a function of an individual's information- 
processing mechanisms, and as such, is influenced by innate abilities, experience, and training. 
The individual may possess certain preconceptions and goals that can act to filter and interpret 
the information about the environment and affect the formation of S A. The role of each of these 
factors in relation to SA, as well as the related implications of the vulnerabilities in aided 
decision making will be addressed. 

3.2.1  System Factors 

3.2.1.1 Situation vs. Action Information: The role of a well-designed decision aid is 
basically to improve the decision quality by providing processed and integrated information in an 
appropriate manner. The decision-aiding system is designed to help reduce cognitive workload, 
lessening demands on working memory and enhancing retrieval from long-term memory— 
therefore, reducing the time required for decision making and lowering the potential for error. 

As noted in the model, battlefield perception and command and control planning are the 
two major types of information that can be provided by a data-fusion-based decision aid. In fact, 
the information dependency as well as the decision-aiding dependency may be different for 
battlefield perception-aiding and for C2 planning-aiding. For battlefield perception-aiding, the 
information dependency can be directly related to the decision maker's trust in the information 
provided by the aid. It is reasonable to postulate that the decision maker tends to depend on the 
aided information regarding higher S A levels if the trust is higher. On the other hand, for an 
experienced decision maker, the role of the action planning aid is rather a reminder or advisor. 
The aiding dependency may be relatively low if the actions for C2 are typical and well-defined, 
but when the content of C2 becomes more complicated, the information from the action planning 
aid becomes more important to the decision maker. 

3.2.1.2 System and Interface Design: Both how well the sensors capture the data 
from the real world and how well the collected data is transferred and processed into useful 
information can influence the SA of the decision maker. Sensors with different functions and 
different locations act as the first information filter of the situation on the battlefield. Therefore, 
the sensitivity and the deployment of these sensors determine the first level of information loss. 
That is, the system may not acquire all of the needed information. The second level of 
information loss occurs in the DF processes. Well-designed DF systems can integrate data and 
provide more comprehensive information to the decision maker. However, data processing is 
always associated with information reduction. Not all of the information acquired by the system 
may be available to the operator. That is, the DF system itself is the second layer of information 
filter preceding the decision maker. 

The third level of information loss is through the display interface which provides 
information to the decision maker. That is, there may be incomplete or inaccurate transmission 
to the human operator of the information displayed by the system and that directly acquirable 
from the environment. As Endsley (1995) points out, the way in which information is presented 
via the operator interface will greatly influence SA by determining how much information can be 
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acquired, how accurately it can be acquired, and to what degree it is compatible with the decision 
maker's SA needs. Since the major goal of decision aids is to provide "useful" information to 
assist operators to make "good" decisions, the DF system and its human interface must be 
carefully tailored to the needs of the user. 

In fact, the decision maker's system knowledge or system model can greatly influence 
the information loss, too. As noted in the proposed model, the decision maker processes the 
information from the decision aid based on his or her mental system model. The system model 
can influence the information processing both positively and negatively. One positive influence 
might be that, by knowing the capabilities or data-processing characteristics of the decision- 
aiding system, the decision maker's system model can guide him or her to look beyond the 
displayed information and to compensate to the information loss or biases by the system. On the 
other hand, system knowledge can also act as another information filter; and important cues or 
information may be ignored or less-weighted for decision making processing. 

3.2.1.3 Technology: Generally, advanced technology may directly relate to the 
capabilities of sensors and decision aid systems, giving better quality and quantity of information. 
Technology can help to develop sophisticated and advanced decision-aiding systems—hopefully 
to help, rather than to frustrate, the commander. On the other hand, as Taylor & Selcon (1994) 
pointed out, increasing difficulties with operator SA seem to be associated with the employment 
of advanced automation and display/control technology in increasingly complex systems and in 
highly dynamic environments. That is, possible problems associated with information overload 
to the decision maker may occur, degrading SA and, hence, the final decision quality. Therefore, 
technology can influence the decision quality in both positive and negative ways. Human-system 
interface design is the key to cope with technology-induced information vulnerabilities. 

3.2.2 Task Factors 

3.2.2.1 Task Complexity: Task complexity negatively affects both the decision 
maker's workload and SA through factors such as an increase in the number of system 
components, the degree of interaction between these components, and the dynamics or rate of 
change of the components. In addition, the complexity of the decision maker's tasks may 
increase through the number of goals, tasks, and decisions to be made regarding the system. 
According to Endsley (1995), a person's SA is restricted by limited attention and working 
memory capacity. Fortunately, long-term memory stores, most likely in the form of schemata 
and mental models, can largely circumvent these limits by providing for the integration and 
comprehension of information and the projection of future events. This complexity may be some 
what moderated by the degree to which the operator has a well-developed internal representation 
of the system to aid in directing attention, integrating data, and developing the higher levels of 
SA, as these mechanisms may be effective for coping with complexity. These very mental 
models, though, can be exploited by an adversary under suitable conditions. 

3.2.2.2 Stress: Endsley (1995) provides a good review of recent literature on how 
stress factors affect SA and decision making. It seems that stress may affect SA through the 
decrements in working memory capacity and retrieval. For SA Level 1, cognitive tunnel vision 
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results—that is, the attention allocation in the perception of environment elements is rather 
narrow and focused, so that certain critical information may be neglected, which may lead to 
failure. SA Levels 2 and 3, both of which are highly dependent on the performance of working 
memory, may be greatly affected by stress in a negative way. Therefore, a biased and immature 
mental model may be generated due to the effect of poor working memory capacity in S A Level 
2. This mental model may erroneously guide the attention for information sampling (SA Level 
1), focusing on wrong pieces of information and hence biasing or weakening the mental model. 

It can be expected that information overload (that is, too much information displayed or 
fed to the decision maker in a short period of time) would negatively affect the performance of 
decision making under stress. Thus, both insufficient and excessive information can degrade 
decision quality. 

The keys to ensure a smaller drop in decision quality are to avoid information overload 
of the decision maker and to assure that a "good" mental model will be prompted. To diminish 
the likelihood of information overload, a decision aid with information integration or DF 
capability is essential to provide the amount of information the user needs. Display interface 
design is also critical. With any interface design, training, especially in simulation or scenario 
studies, helps to build certain metamodels a priori, so that a "correct" mental model may be 
prompted with less demand on working memory. 

3.2.2.3 Uncertainty: Uncertainty has a major effect on the quality of decision making 
since generally humans are not truly "Bayesian" and are affected by various limitations and 
biases that prevent them from integrating information in an optimal fashion. Therefore, decision 
making biases or heuristics may induce more errors as the uncertainty increases. That is, the 
uncertainty associated with data could be critical to the quality of decision making, thus 
increasing its vulnerability. Moreover, information order effects (the order in which the 
information is presented to the decision maker) significantly affect probability estimates, 
identification judgments, and engagement decisions (see review by Adelman, Bresnick, Black, 
Marvin & Sak, 1996.) 

While applying a quantitative decision model, it should be noted that if the human 
needs to process the information to select an action/decision, the quantitative model can only 
provide a normative or upper-bound of the performance under rather ideal assumptions. On the 
other hand, if the decision is made by automated components and suggested to the human 
commander for final evaluation, the way in which the information associated with the decision is 
presented will be critical to the final decision value or quality. 

3.2.3 Individual Factors 

3.2.3.1 Individual Differences in Information Processing: The ability to detect 
relevant information within a field of irrelevant information varies widely between individuals. It 
appears to be related to the decision makers' ability to cognitively restructure their perceptions so 
that the relevant is separated from its background. This cognitive restructuring has been found to 
be relatively robust across different senses, and is known as field independency. Field independent 
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individuals are more able to perform visual search tasks, find relevant cues while driving, and 
correctly locate the gravitational axis when their bodies are tilted. Although the aim of DF and 
interface design is to enhance the ratio of relevant-to-irrelevant information, many threats will be 
difficult to perceive, particularly in the early stages of threat development. A test for field 
dependence/independence could, thus, be valuable in enhancing overall system performance. 

3.2.3.2 Trust and Confidence: The commander may have more or less confidence 
regarding the accuracy of information received, based on its perceived reliability or its source. 
That is, when using a decision aid as the major information source, the trustworthiness of the 
decision aid determines the degree of uncertainty associated with the information it provides, 
both while inferring the system model and later, in mapping to the mental model. Therefore, the 
confidence level associated with an information source may influence the decisions that are made 
using information from that source. As the literature emphasizes (Muir & Moray, 1989; Moray 
& Lee, 1990), operators' trust directly affects the use of the automatic system. This implies that 
the decision maker might refuse to use the integrated information provided by an advanced or 
automatic decision aid if he or she does not have a good and positive internal model of the 
decision aid. On the other hand, automation-induced complacency may induce decision failures 
based on over-trust (Singh, Molloy, & Parasuraman, 1993). Furthermore, Lee and Moray (1994) 
found both trust and self-confidence are factors to consider when determining the level of 
automation and the specific function allocation in semi-automatic systems. Therefore, the 
decision maker's subjective feelings of trust in the decision aid as well as his/her self-confidence 
can both affect the use of the integrated information provided by decision aid. 

3.2.3.3 Experiences and Training: For making decisions in tactical environments, 
Amalberti & Deblon (1992) found that the expert pilots tended to have better "metaknowledge" 
for optimizing planning, and were able to restrict consideration to more likely eventualities. 
Even though the flight plan was never executed as planned, these pilots had solved a large set of 
potential problems in advance, which simplified the decision process when deviations were 
necessary under operational time pressure. A large portion of in-flight decision making, then, 
becomes focused on collecting enough information to confirm with confidence that the pilot's 
internal picture of the situation is accurate (Amalberti & Deblon 1992). In this scenario, the 
preflight mission plan forms a set of expectancies that direct the search for information and 
interpretation of that information (Endsley 1995). Based on this understanding of the situation, 
pilots will attempt to project likely future occurrences, allowing them to prepare responses in 
advance or to take actions to avoid such events. This strategy acts to minimize the load 
associated with in-flight responses to the unexpected, which may often be accompanied by stress 
and short decision times. Avoiding the need to make on-the-spot decisions in stressful situations 
through anticipation and advanced response development can be seen as an effective strategy for 
coping with the demands of this environment. 

3.3 A Final Remark 

It must be emphasized that who is friendly and who is adversarial is in the eye of the 
beholder. Thus, many, if not all, of the remarks made from the perspective of one or the other of 
the two sides might be considered to be applicable to either. While it may be expected that the 
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two sides in a two-sided case do not perfectly mirror each other in either decision making 
behavior or in influences, the various parameters and discriminants which generally influence 
decision making may be interpreted to be applicable to either participant 
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INFORMATION DEPENDENCIES IN AUTOMATED DATA FUSION 
PROCESSING 

4.1 Introduction and Overview 

As noted in Sections 1 and 2, this project deals with aided adversarial decision making. 
The legacy of research in computer-based decision aids is extensive, and for several years there 
were conferences which focused on and discussed the work being done by a rather large 
community in the development of not only prototype aids themselves but also on the underlying 
principles of decision aid development. In the present case, we hypothesize that the general 
nature of a computer-based decision aid for each adversary in our general model takes the form 
of, and is based on, the notion that a data or information fusion process provides the basis for the 
aid. Data fusion (DF) processing is itself a rather broad and multidisciplinary topic but can be 
modeled, to about the same level of fidelity as our general model in Section 3, by a "process 
model" originally developed by the Joint Directors of Laboratories Data Fusion Group 
(JDL/DFG), a defense laboratory DF technology oversight committee. This general model is 
shown in Figure 4.1-1 below, and can be seen to comprise 4 "Levels" of processing: 

•    Level 1: those processes involved with normalizing a set of multisource-based 
inputs (a data preparation step prior to combining/fusing), association-correlation- 
assignment processing (to relate observations to hypothetical objects and related 
estimation processes), and fusion-based estimation processes which estimate both 
the kinematics and identity of the targets hypothesized. Thus, Level 1 processing 
produces what might be called a "labeled set"—of individual targets (points in 
space), each having kinematic and identity labels. 

• Level 2: those processes involved with situational estimation, traditionally 
involving aggregation of single (Level 1) object estimates into order of battle (OB) 
structures, and behaviorally-based estimates (events and activities). Thus, Level 2 
processing, largely but not exclusively symbolically-based, produces, by fusing 
Level 1 estimates, a priori knowledge, and other observations, a contextual 
interpretation of an abstraction typically labeled a "situation." 

• Level 3: those processes, also predominantly symbolic in nature, that produce what 
is in essence a special situation estimate traditionally called a "threat" estimate. A 
threat state or situation is distinguished from benign situations by three factors: the 
idea that a lethal capability exists on the hostile side, that there is an opportunity to 
employ that lethality, and that there is an intent to use that lethality. Hence, Level 3 
processes focus on estimating these factors in particular. 

• Level 4: those processes which enable a sense of "intelligent control" or adaptation 
to the overall process. Typically these processes are considered to involve either or 
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both control over input source/sensor operations (sometimes called "sensor 
management" or "collection management"), and intelligent adaptation of the 
internal (Levels 1-3) processes of the DF processing itself, e.g., parametrically or 
even by controlled switching and optimization in the use of multiple algorithms or 
processes for a given DF function. 
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Figure 4.1-1 JDL/DFG Data Fusion Process Model 

4.2 Information Dependencies in Data Fusion-based Decision Aids 

As a contribution to beginning to get a sense of information dependencies in the overall 
aided adversarial decision making model, in this section we attempt to characterize the 
information that each of these four Levels of DF processing depend on. It is difficult (and 
actually beyond the scope of the current task) to do this to a high degree of fidelity but this 
section will characterize the nature of the information that these processes rely on. DF 
processing, as might be guessed, depends on the specific details of a particular application and on 
the domain of application, but a general view can, indeed, be put together. In what follows, we 
characterize these dependencies according to each DF Level. 
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4.2.1 Level 1 DF Processing 

4.2.1.1 Alignment Processing Operations: The Alignment function is that in which 
dynamic data from multiple sources is "normalized" in a variety of ways necessary to condition it 
or prepare it for later fusion-related processes. Informational dependencies in these processes are 
shown following: 

Table 4.2.1.1-1 Alignment Function Informational Dependencies 

Alignment of: Purpose(s) Process(es) Information Dependencies 

Multisource locations 
(i.e., location of input 
sources) 

Co-register source 
locations 

Coordinate transformations Source site locations 

Bias removal Bias estimation Source specific bias factors 

Choice of reference source 

Intersource timing 
differences 

Normalize time as 
required in subsequent 
estimation processes 

Interpolation, extrapolation 
of source-specific 
measurement to "reference 
time" 

Time-propagate pseudo- 
measurements to reference 
time, as per source models 
in estimation routines 

Intersource timing differences 
and choice of reference time; 
(coarse) models of target- 
measurement processes to 
support interpolation/ 
extrapolation 

Intersource timing differences 
and choice of reference time; 
(fine) models of target- 
measurement processes to 
support estimation-based 
projections 

Image-image, image- 
terrain registration 

Co-register objects-to- 
objects, objects-to- 
terrain 

Correlation techniques Sample data on reference 
targets or reference points 

Coordinate systems Normalize all estimates 
to a common coordinate 
reference system 

Coordinate transforms Specific data and knowledge 
of individual coordinate 
systems employed 

Unit systems Normalize all estimates 
to common units 

Unit transforms Specific data and unit systems 
employed 

4.2.1.2 Association and Correlation Processing: At any given "node" in a DF 
processing "tree," i.e., a generic DF processing architecture, there are three important and 
generalized steps that lead to a solution of the combinatoric optimization problem usually 
referred to as "association" or "correlation." This fusion subprocess is the framework about 
which some type of optimal "assignment" of the many observables coming from the multiple 
sources is determined, whereby the observables can be thought of as being assigned to a set of 
estimation processes which are generating improved—i.e., fusion-based (i.e., based on exploiting 
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these multiple measurements)—estimates of parameters and states of interest in the problem 
domain. The three subprocesses are: hypothesis generation, hypothesis evaluation, and 
hypothesis selection ("Hg, He, Hs"). This idea is depicted below in Figure 4.2.1.2-1: 

Data Fusion Tree Node 

Prior Data 
Fusion 

Nodes & 
Sources 

Data Correlation 

1 
1 

1 

Data Hypothesis 
Generation -> 

Hypothesis 
Evaluation -> 

Hypothesis 
Selection 

(Common 
Referencing)   . 

-1 t i 1 

State 
Estimation 

& 
Prediction 

Figure 4.2.1.2-1 Typical Data Correlation Processing Steps Within a DF Node 

Each of these subprocesses and their information dependencies are depicted in Table 4.2.1.2-1. 

Table 4.2.1.2-1 Data Correlation Processing Steps and Information Dependencies 

ASSOCIATION/ 
CORRELATION 
SUB PROCESS 

PURPOSE TYPICAL, 
REPRESENTATIVE 

METHODS 

INFORMATION 
DEPENDENCIES 

Hypothesis Generation 

(Hg) 

To identify all feasible 
hypotheses that could 
explain data 

Pattern recognition, gating, 
templating, knowledge- 
based 

Extensive dependencies on 
target characteristics and 
behavior, target density, 
etc.-see Table 4.2.1.2-2 

Hypothesis Evaluation 

(He) 

To score the "likelihood" of 
any nominated hypothesis 
from the Hg process 

Ad hoc, probabilistic, 
possibilistic, 
logical/symbolic, NN, 
random set theory 

Strongly dependent on 
degree of knowledge of a 
priori statistics and 
"uncertainty in the 
uncertainty''-/'.^., second 
order statistics 

Hypothesis Selection 

(Hs) 

To set up and solve the 
assignment problem for 
ultimately deciding on the 
specific assignment of 
measurements 

Mathematical programming 
methods of various 
description 

Inputs here are scored 
hypothesis alternatives 
resulting from Hg and He 
processes; dependence on 
problem domain 
information is lessened by 
these pre-filtering 
operations 

It can be seen that by and large the information dependencies of these processes are 
primarily in the Hg subprocess which requires reliable problem domain information so that the 
nominated set of hypotheses is inclusive of the true hypotheses; this is the fundamental 
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requirement for good Hg process performance. The details of these dependencies are shown in 
Table 4.2.1.2-2 on the following page. 

As results get handed off from subprocess-to-subprocess, there is decreasing direct 
dependence on "world state" type information but there are implicit effects on the performance of 
the He and Hs processes in that these processes are designed in conjunction with Hg, and the 
expected outputs from Hg. That is, the overall process design is a coupled one. Consequently, 
any uncertainty in the expected type of domain problem and its characteristics and information, 
i.e., in an a priori sense, will lead to either uncertainties or unnecessary complexity in the 
association-correlation process, since all possible hypotheses will need to be nominated if there 
is a lack of, or uncertainty in, possible behaviors in adversarial operations. 

Modern-day approaches to DF processing are beginning to incorporate dynamically 
adaptive processing, i.e., incorporating Level 4 processing (many legacy DF systems were and 
are open-loop, without adaptive aspects). These processes then require real-time world state 
information as inputs to whatever "control laws" for adaptation are embodied in the overall 
process. 
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4.2.1.3 Object Position and Identity Estimation: Level 1 processes culminate with 
estimates of object position (and kinematics for moving objects) and identity based on the 
assigned measurements for the multisource inputs. Techniques for estimation of the kinematic 
characteristics of targets have traditionally been dominated by the "Kaiman Filter" (KF) 
approaches, involving various flavors of discrete time, recursive state estimation methods. The 
approaches to the estimation of target identification (sometimes called classification) have 
historically been dominated by feature-based methods from pattern recognition science but of 
late have trended toward the use of model-based approaches. 

The information dependencies in these processes can be characterized as shown in 
Table 4.2.1.3-1. 

Table 4.2.1.3-1 Level 1 Processes and Information Dependencies 

Sub-process Purpose Representative Methods Informational Dependencies 

Target Position and 
Kinematic Estimation 

Same Kaiman Filtering, neural network 
methods, fuzzy logic+Kalman 
Filtering 

Assigned observations, source 
observational model assumptions, 
assumed target dynamic behavior 
(model), source/observation sampling 
rate, removal of biases 

Target Identity 
Estimation 

Same Methods of pattern recognition, 
especially feature-based methods, and 
model-based approaches 

Assigned observations, statistical 
assumptions, various models in 
model-based approaches 

One of the major vulnerabilities of the position and kinematic estimation algorithms is 
their inability to remove systematic biases. Such biases, thus, form one important focal point in 
KF design and in DF process design. Efforts are made to both understand and limit these biases 
to the extent possible, primarily so that they induce effects that are less than would be expected 
from maneuvering targets—that is, such that bias effects do not inadvertently cause the tracking 
system to believe that the target has maneuvered, in which case so-called "maneuver gates" are 
employed that, if incorrectly instantiated, can lead to corruption and loss of track. This 
degradation may occur if the target density is relatively high (closely-spaced targets), in which 
case large amounts of confounding observations may enter the association gate for the given 
track, raising the possibility of incorrect association. Hence, if an IW attack were made on the 
internal processing operations of the DF decision aid, in particular inducing false biases into the 
system, possibly severe degradations in performance could result; this is one part of the DF 
process that definitely should be protected. Additionally, most KF's, as for any algorithm, 
involve various "models" and assumptions in their formulation. Errors in those models regarding 
their representativeness of true/actual target behaviors will also, naturally, lead to performance 
degradation. Sensitivities of such behaviors have not been systematically studied in the DF 
community but clearly some loss in performance would occur in such cases. So another area to 
protect in the internal processing is that which contains the model structure and assumptions in 
the KF structures (e.g., sensor noise characteristics, process noise characteristics, etc.). The basic 
idea here is to protect the integrity of the designed-in models of the KF processing. 
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In a somewhat similar sense, the target identification (ED)-estimating techniques used in 
DF processes are dependent on assumptions and modeling techniques and details. This is 
especially true for the so-called "model-based" approaches employed for the automatic target 
recognizer (ATR). Additionally, since many existing/legacy DF systems rely on 
kinematic/position-based approaches to data association, any corruption achieved by a hostile in 
degrading the association/correlation processing would also propagate errors—i.e., misuse of 
erroneous features and other observable ID-related characteristics—into the fusion-based ID 
estimating processes. Biases again are a point of vulnerability in ID processing. Further, there 
are known (but not necessarily fully quantified) influences of misregistration for different 
approaches to DF processing for ID in the cases involving 2D imagery-type data: the usual DF 
approaches involve pixel-fusion, feature-fusion, and decision-fusion; in the order just cited, these 
methods are decreasingly dependent on accurate co-registration of the data sets being fused. 
However, if an adversary knows that pixel-based ID fusion techniques are being employed, these 
can be defeated by insertion of false biases that would corrupt the data association and the 
consequent performance of pixel-based methods. 

4.2.1.4 Dependencies of Level 1 DF Processes on Data Base Information: The 
models, assumptions, and other necessary a priori (and dynamic) information upon which Level 
1 DF processes depend are often stored in computer-based data bases of some type and structure. 
Table 4.2.1.4-1, drawn from (Waltz & Llinas, 1990), shows some of the categories of data bases 
required by Level 1 DF processing. Structured analyses of these data would reveal yet other 
detailed dependencies and vulnerabilities that hostile IW operations could attack. 
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Table 4.2.1.4-1 Categories of Data Bases Required by Level 1 Data Fusion 

Data Base Typical Contents of Data Base Uses of Data 
Target Attribute Target-feature relationships; Sensor preprocessing for target 

Data Base classification data (parametric or 
nonparametric), rules, networks, 
frames, or templates 

classification by attributes 

Target a priori A priori quantities of targets by class, Prior data used in Bayesian classifiers 
Data predicted target locations and Prior target locations used for sensor 

trajectories, orders of battle management 
Target (Track) Typical data for each target: Data association, tracking, and 

Data Base Target (track) index attribute combination processes 
Current state estimate maintain this data base for 
Statistics of state estimates (e.g., x,x,y,y) sequential processing 

covariance matrix of errors) Multiple hypothesis association and 
Track state (initiate, confirm, loss) identification algorithms may also 
Time of initiation, last update maintain candidate hypotheses in 
Level 1 ID (friend-foe-neutral) this data base, or in a separate 
Level 2 ID (target type) (relational) data base 
Level 3 ID (target class) This data base forms the input to levels 
Confidence data, each ID (e.g., 2 and 3 fusion processing 

measure of uncertainty in ID) Related fire control, weapon guidance, 
Sources of identity (sensors, and sensor-management data may 

contributions and reports) also be included 
Target priority for sensor management 

Track History Chronological sequence of sensor Used for batch association and attribute 
reports and association, processing in which stored time 
classification decisions (same data periods are processed at one time 
as above) 

Sensor Model Range, line-of-sight (LOS), Used by sensor manager to predict the 
Data detection-ID performance data performance of sensors against 

against various target types, in targets for assignment 
varying environments 

4.2.2 Level 2 and 3 DF Processing 

Determination of the current situation (an abstract and inherently imprecise term 
needing detailed specification for automated systems, e.g., DF processes) or threat state is a key 
function of military command, control, communications, computers, intelligence, surveillance 
and reconnaissance (C4ISR) systems and processes. It is generally agreed by decision theorists 
that dynamic decision making is in fact characterized by its dependence on situational estimation. 
We have implied such dependencies in the models described in Section 3. To amplify this point, 
we also show here, in Figure 4.2.2-1, another model of a dynamic decision making process 
(taken from Reidelhuber, 1984), which shows some of the interdependencies of C2 functions and 
decision-processing, along with the role of situation assessment; note too the "Markovian" or 
state-transition dynamic nature of the decision making and situational assessment processes 
reflected in this model. 
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Figure 4.2.2-1 Dynamic Decision Making and the Role of Situational Assessment (After 
Reidelhuber, 1984) 

The automated estimation of these situational or threat states through DF processing 
generally involves symbolic or knowledge-based techniques through which knowledge is 
encoded in software and applied to the dynamic data flowing into a DF-based decision aid. Level 
2 and 3 DF processes attempt to generate a contextual interpretation about the Level 1 data, 
augmented by whatever a priori knowledge can be applied. The DF processes are the result of 
pattern-matching type operations in the software which compare the current realtime dynamic 
data to the a priori knowledge bases, generating whatever inferences that process yields. Hence, 
the DF processes are embedded in the knowledge itself, and are not "prescriptive" in the sense of 
the mathematical equations, etc., typically employed for Level 1 DF operations. In some sense, 
this knowledge is also a "model"—an "expectation model" for target behaviors and 
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interrelationships based on whatever foreknowledge is available. In this same sense the Level 2 
and 3 processes depend on and are vulnerable to the specific characteristics of this knowledge. 

Knowledge-based systems (KBS) are vulnerable to such IW operations as deception 
because of various weaknesses in the knowledge base (e.g., see Table 4.2.2-1 below), although 
the perpetrator must not be so clever as to prevent the KBS from producing its inferences, i.e., 
the hoped-for false inferences. That is, the KBS should be deceived, not jammed. Table 4.2.2-2 
shows some of the operational aspects of KBS deception that would equally apply to the 
deception-based IW attack on a DF-based decision aid. 

Table 4.2.2-1 Deceiving Knowledge-Based Systems 

Weaknesses in the Knowledge Base 

Reliance on the Past (Insensitive to Innovative Behavior) 

Belief in What has Been Seen (Failure to Cross-Validate) 

Basis in Doctrine 

Treating the Unexpected as Anomalies (Not as Clues) 

Over-Generalization of Inferences (As Causal [Observed Maintenance Routines = Required Maintenance]) 

Weaknesses in KB Development (e.g., Failure to Check Consistency) 

Lack of Self-Understanding re Boundaries of Knowledge 

Table 4.2.2-2 Deceiving Knowledge-Based Systems: Operational Aspects 

• A KBS is Deceived if: 

• The System Creates its Products (computationally feasible response) 

• The Product Contains Errors Which: 

• Derive from Intentional Deceptive Actions      •     Give the Deceiver an Advantage 

• Deception Attacks Data/Sources through Collection Processes Directly 

• Deception Attacks Other Components Indirectly 

• Weaknesses in the Data/Sources Derive From 

• Weakness in Collection/Exploitation • Weaknesses in Data Plausibility Models 

KBS systems, as their name implies, depend on knowledge bases. To assemble an 
inference about the complex data/information structure we call a "situation" typically requires an 
extensive body of knowledge, depending on how sophisticated the DF decision aid is designed to 
be. Generally, situation and threat estimation is about determining relationships, e.g., as those 
shown in Table 4.2.2-3 (from Waltz & Llinas, 1990), which require fairly broad knowledge to 
achieve. 
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Table 4.2.2-3 Categories of Data/Knowledge Bases Required by Level 2 and 3 Data Fusion 

Data Base Typical Contents of Data Base Uses of Data 
Behavioral Data Target and event behaviors and Used for target and aggregated target 

Base characteristics; temporal- set identification, situation 
spatial templates, tactics. assessment. Also used for sensor 
combat doctrine, et cetera management to predict sensor 

view opportunities 
Terrain Features Topology, hydrology, road-rail Used for identification of individual 

networks, cultural features, targets by behavior and for 
obstacles, locations of cover aggregation of targets 
and concealment, et cetera Sensor management uses for LOS 

prediction 
Airway Doctrine Corridors, restricted zones, routes Used to identify targets by planned 

and schedules (flight plans) behavior 
Own-Forces Disposition of forces, strength and 

Status condition, reserves, logistics, 
C2, planned course of action 

Both situation assessment and threat 
refinement functions use this data 
to determine course of action 
hypotheses and the effects on Intelligence on Disposition of forces, strength and 

Enemy Forces condition, reserves, logistics, sensor management, and DF 
C2, probable intent, targets of performance 
interest and course of action 

Threat Sensor and weapons performance Assess threat capability against own 
Capabilities capabilities: forces, predict threat behavior; 

Performance envelopes sensor manager predicts enemy 
Detection, warning, track, ID detection of own emissions to 

capabilities reduce exploitation 
Countermeasure vulnerability 

Situation Data Location of all entities, 
Base relationships and predicted 

courses of action; 
identification of potential Maintains the current hypotheses of 
threats and opportunities for threat situation assessment; 
all forces dynamic data base is sequentially 

updated as assessments are Threat Data Assessment of threatening 
Base entities, events, and activities; updated by completion of Level 2 

estimate of own-force assessment 
vulnerability (sensors and 
weapons) based on enemy 
opportunities, means, motives 
from Level 2 

Since much of the content of such knowledge bases is established from peacetime 
intelligence, hostiles can corrupt the construction of them by deceptive operations during military 
exercises, etc. Additionally, these knowledge bases are also vulnerable to possible Direct IW 
attack since they are part of the internal DF processing operations. 

4.2.3 Level 4 DF Processing 

Level 4 processing, in essence, involves the execution of "control laws" that enable 
dynamic adaptation of the DF processing, typically in two senses: (1) by dynamic alteration of 
the data/sensing/input processing, and (2) by dynamic adaptation of the internal DF processes 
themselves. Whether or not type (1) control can be done or not in part depends on whether the 
DF process has authority over the data collection and sensing type operations; this is not always 
the case but can often be enabled in tightly-coupled, "organic" type systems or platforms. This 
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type of control, typically called sensor management or collection management in the DF 
community, can be effective in thwarting deception, in that deceivers typically depend on 
observing the targets' sensing systems as a means of verifying that the deception has created the 
intended effect (an important part of deception operations, influencing the deceivers sense of risk 
of action). Hence, intelligent Level 4 DF techniques that exploit any a priori knowledge 
regarding expected hostile deception operations can provide a means for counter-deception. 
Type (2) control depends on knowing the sensitivities of whatever "quality metrics" are being 
used in the control process to adaptations in other parameters or processes in the fusion 
operations. Typically such sensitivities must be determined heuristically or empirically since not 
many inter-relationships in DF processes can be determined from first principles or closed-form 
expressions. Once again, such expressions would be "models" in the DF system, and again, 
possibly vulnerable to Direct IW attack. 
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5.  MODELS OF THE ROLE OF INFORMATION DEPENDENCIES IN DECISION 
MAKING 

Central to the analysis of the effects of IW on decision making is the assessment of 
Informational Value in decision making. IW attacks will lead to the deletion, corruption, and 
alteration of quanta of data and/or information in any automated decision making support system 
or in the mind of the user/analyst/operator. Following the assertions of the Defense Information 
Systems Agency (DIS A) which argues that perfect protection of information in networks is 
impossible or at least unaffordable into the mid-term future, information will indeed be 
compromised and systems should be designed under this assumption. So the immediate question 
is, if this happens, "So what?" There are various answers to this question that can be derived 
from various viewpoints—e.g., we discuss human trust in automated systems in Section 7 where 
the reader will see that such trust is compromised and not easily re-established if automated 
decision making support systems yield false or misleading output—but here we focus on the 
notions of the value of information in decision making in general, particularly with a quantitative 
approach. 

The approaches taken here draw heavily from the works of Morris, Yovits, and Ackoff, 
among others (see References), each of whom has examined the question of informational value 
in decision making in somewhat different but related ways. The models and concepts drawn 
from these references will be seen to also have similarities to those from the theories associated 
with Reinforcement Learning, which also constructs a probabilistic (expectation-centered) model 
of the roles of information in learning processes. 

5.1  One Probabilistic Framework 

It will be seen that the models constructed herein (we emphasize that they are drawn 
from the cited works) can be argued not to attack the value of information in decision making 
directly but indirectly, in the sense of the reduction in uncertainty of choice in the decision 
maker's options for a "course of action" that related information produces, i.e., in deciding on a 
preferred—and correct—option among those possible or feasible. So it will be seen that the 
structure of a decision model relates action or decision options (courses of action) to the 
consequent outcomes in a probabilistic framework. In these models, it is also important to 
understand that the use of a conditional probability-type approach implies that both the human or 
computer-based decision maker and the true relationship between decision-choices and outcomes 
can all be modeled probabilistically. Thus, when probabilities are described below, it must be 
distinguished as to whether they are those assigned by a human, a computer program, or by 
"nature" in the sense of characterizing actual worldly behaviors. 

5.1.1  On the Semiotic Nature of Informational Types 

Much of what follows in this section is excerpted from Yovits and Abilock (1974). 
Morris (1964) points out that it is now generally recognized that "information theory" is not a 
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rival to, or a substitute for, a general theory of signs (i.e., semiotics). The frequently-cited 
Shannon and Weaver (1949) information theoretic viewpoint concerns the transmission of a 
message as a symbol string independent of its content. Y. Bar-Hillel (1955) and D. M. Mac Kay 
(1952) take alternative views. MacKay regards information as that which changes our 
representations, i.e., our signs. Gaining information is, thus, changing our expectations, i.e., our 
dispositions to respond, caused by a sign. He distinguished between selective and semantic 
information. Selective information gives the information necessary to select the message itself 
and is not concerned with the content of the message; it is in some sense a signaling theory. 
Semantic information on the other hand is concerned with the content of the message. Shannon's 
theory, thus, deals with selective information problems. Among other authors, Carnap and Bar- 
Hillel (1952) and Winograd (1972) are perhaps best known for their work in the area of semantic 
information. 

The aforementioned views of information are two of the three approaches or levels 
identified in studies of information theory by Weaver. The third level is known as the behavioral 
or effectiveness level and deals with the effect that information has on the person using it. 
Ackoff (1958) has dealt with information problems at this behavioral level. The work of this 
project is considered to lie in this area, since we are concerned with the effect of information on 
decision making behavior by a human, in a computer-assisted mode. 

5.1.2 Developing a Decision Model Which Reflects Informational Value 

Morris (1964) has identified three general requirements of action involved in the 
decision making process. A decision maker must: (1) obtain information about the situation in 
which he is to act, (2) he must select among courses of action, and (3) he must execute this 
alternative by some specific course of behavior. To effect a meaningful analysis of information, 
one must examine in detail that which makes decision making such a challenging activity: 
uncertainty. We concern ourselves with uncertainty because we will argue that a key role for 
information is its influence on uncertainty within a decision making process. After careful 
examination of decision models described in the literature, Morris concluded that these existing 
models do not provide a comprehensive representation of the uncertainty that exists in decision 
making. Most of the models are concerned solely with decision makers who have an advanced 
state of knowledge about the decision situation in question. The information science aspects of 
decision theory must, however, cover comprehensively not only those decision makers who are 
expert, but also those decision makers who are average or rather poor. It is extremely important 
in developing a formal role for information science that all levels of effectiveness of decision 
makers be considered. For this purpose, a very general decision model is proposed. 

A decision model consists of a number of decision elements, including a set of courses 
of action, a set of possible outcomes, a goal or set of goals, a function relating outcomes to goal 
attainment, and a set of states of nature. 

The decision maker usually views a complex decision situation in terms of his roles and 
responsibilities within it, for selecting courses of action (COA), which then lead to possible 
outcomes. He may be uncertain about what outcomes will occur when a particular course of 
action is executed. This uncertainty associated with the execution of the alternatives is what 
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Yovits, Foulk, and Rose (1981) call executional uncertainty. A second type of uncertainty 
identified is goal uncertainty. The decision maker may have only a vague notion of the goals to 
which he aspires, and he may also be uncertain as to the degree to which each of the outcomes 
will satisfy the various goals. The third type of uncertainty which the decision maker confronts is 
that concerned with the states of nature. He may not be able to identify all the possible states, but 
even if he could, he may still be uncertain as to the relationship between the set of states and the 
other decision elements. This is termed environmental uncertainty. A complete model of a 
complex decision situation must deal explicitly with all of these types of uncertainty. The 
conceptual decision model suggested by Yovits and Abilock explicitly recognizes all of the 
decision elements as well as the associated sources of uncertainty. The following Table 5.1.2-1 
summarizes these ideas and uncertainty types: 

Table 5.1.2-1 Developing a Decision Model Which Reflects Informational Value 

TYPE OF UNCERTAINTY ASPECT REPRESENTED 

Executional Outcome Probability, given a selected COA 

Goal Goal Uncertainty (specifically), and/or relationship between Outcomes and Goal 
Satisfaction 

Environmental State-of-Nature Uncertainty (specifically), and/or relationship between States of 
Nature and other Decision Elements 

5.1.3 Mathematical Aspects of the Model 

Again, the following represents an excerption from Yovits' works in both Yovits and 
Abilock (1974) and Yovits, Foulk, and Rose (1981) in particular, with some paraphrasing. A 
decision maker makes a sequence of related choices from among a discrete set of alternatives 

A= {aj--am} 

The number of elements m in this set may not be constant over time since there may be 
uncertainty with regard to these elements. The execution of a particular course of action results 
in the occurrence of one of a set of possible outcomes 

0={0;--On} 

The number n may also vary over time. Executional uncertainty, i.e., uncertainty as to 

the relationship between a particular course of action a* and an outcome o; will be denoted by the 

subjective probability estimate w/;, the likelihood that the execution of course of action a1 will 

result in outcome o;. The set of relevant States of Nature ("situations") will be denoted by 

S = {S;--Sr} 
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where r may also vary over time according to the decision maker's current understanding of the 
decision situation. The probabilities of occurrence of these (environmental uncertainty) states 
will be denoted by the subjective estimates 

P(Sj )••• P(Sjk) •- P(Sr) 

The values assigned to the decision outcomes that reflect the relative value of each 
outcome with respect to goal attainment will be denoted by v(Oy)1. 

The decision elements A, O, v(0,) are dependent upon the state of the external 

environment. For example, courses of action which seem reasonable under one set of conditions 
may be wrong under other circumstances. These dependencies can be incorporated in the model 
by defining the sets A and O to reflect the decision maker's current understanding of the courses 

of action and the outcomes for each of the states of nature. Also, a set of w/y^ and v^(Oy) can be 

identified for each state of nature. Figure 5.1.3-1 depicts this suggested mathematical 
representation for a particular state of nature Sk. More details can be found in (Yovits & 
Abilock, 1974) and (Yovits et al., 1981). 

Relative Values 

/
/
/
'

 

Outcomes v*(°;) Vjfc(o2) vjfc(o/) v*(on) 

Courses of Action °y °2 °7 °II 

w*77 wk]2 
**// ™kln 

a2 w*2/ ™k22 w*2/ w*2« 

a; wku wk]2 W*y wkin 

am wkml ™km2 
w*W w mn 

Figure 5.1.3-1 The Decision Matrix for the fcth State of Nature 

1 Note that there can be several versions of such values as mentioned previously, i.e., those (imperfectly) assigned by 
the human user, the human programmer of the decision aid, or by Nature, the true value associated with the real 
outcomes. 
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We have modified this model to show, diagrammatically, the additional possible States 
of Nature and the notion that this process evolves in time as well. This is considered important 
because it is the States of Nature that are considered to be estimated by the Data Fusion (DF) 
process-based decision aid for the decision maker (DM) as "situational estimates" in the "Level 
2" element of the DF model. We hope to augment Yovits' decision model with this component 
later. This modified diagram is shown below: 
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Figure 5.1.3-2 Modified Decision Matrix Showing Possible States of Nature as a Function 
of Time 
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Yovits' mathematical decision model consists of this (single-state) decision matrix 
together with some decision criteria which, when applied to the decision matrix, results in the 
selection of probabilities of courses of action. The actual decision rule that is used is dependent 
on the decision maker's own attitude toward uncertainty. For example, if the decision maker is 
conservative, he may select that course of action which maximizes his minimum possible gain. 
There are many different criteria which can be used, but in this analysis Yovits assumes that the 
decision maker assigns probabilities to the alternatives which are proportional to their relative 
expected value. The decision rule that recommended is as follows, and a number of interesting 
results follow from this rule. The expected value, EV, is defined by 

EV{al)  =  X    ^(Sk)   £ w§ vk (Oj) [1] 
k=l j=l 

That is, the expected value of each alternative is the sum of all the possible values 
weighted by their probabilities of occurrence. 

This generalized decision model provides a framework for a formal and comprehensive 
representation of uncertainty in decision making. As such, it importantly provides a suitable 
framework for examining the role of information in decision making that is also formal and 
comprehensive. 

The effect of information is to change the decision maker's representation of the various 
types of uncertainty. His decision model at time t + 1 will be a revised version of his model at 
time t. The way in which a particular decision maker utilizes information to revise his 
representation of the various types of uncertainty is highly individualistic. The generalized 
decision model permits the application of a large number of possible learning 2 rules. 

5.1.4 Developing a Quantitative Measure of Informational Value and Quantity 

Although the separate effects of the various types of uncertainty are clearly important, 
they are only of significance in their combined effect on the decision maker's understanding of 
the situation. The amount or value of the information contained in a data set can be meaningfully 
expressed only in terms of the total effect of the data on the decision maker's model of the 
decision situation. 

Regardless of what decision rule a decision maker is utilizing, it is possible to obtain a 
distribution that reflects the decision maker's overall inclination toward the various courses of 
action. Yovits assumes, as already suggested, that the decision maker chooses a course of action 

with a probability proportional to its relative expected value. Thus, P(a*) is defined by 

2 The effects of Learning are considered quite important to the development of this model but will not be addressed 
in depth herein due to limits on the overall effort; recall our remarks on the similarities of the DM models reported 
on here and those used in modeling Reinforcement Learning processes - we expect to study these RL models in the 
next phase. 
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EV (a1) 
P («')  =    m 

X EV (a1) 
i=l 

[2] 

where EV(a') is given by Equation (1). 

The "Yovits" decision matrix representation shown in Figure 5.1.3-1 defines the 
decision situation in the context presented. It explicitly relates courses of action to: (1) 
observable outcomes; (2) values of these various outcomes to the decision maker; and (3) the 
states of nature. This matrix, thus, may be defined to be the decision state of the decision maker. 
This decision state is a complete description of all of the elements which enter into any decision 
making situation. The uncertainty in this decision state can be measured and calculated, and this 
will be indicated later. The impact of information on reducing the uncertainty in this state 
function may then serve as a measure of information. Since the information can also be related 
directly to the values of the various outcomes, it is therefore also possible to calculate directly the 
value as well as the amount of the information (in the context of impact to outcomes). 

Equation (1) provides the relationship which yields the Expected Value (EV) of any 

course of action a'. The uncertainty which exists for any decision state will be a function of the 
mean square variance of the expected values of the various courses of action. For example, if all 
the EV's are the same, the decision maker will be totally uncertain as to which alternative to 
choose and the variance will be zero. If the decision maker is completely certain as to his course 
of action, then all of the EV's will be zero but one which will be finite. For such a situation, the 
variance can be shown to be a maximum. 

The mean square variance, G% is defined as 

a2 = 
m 
YXEV{al) - /i] 2 

.i=l 
m [3] 

and the mean, \i, is defined as 

V  = 

m 
S   EV{al) 

i = l 
m [4] 

where m is the number of possible courses of action. 

Yovits now defines the value of the decision state as the summation of the expected 
values of all the possible courses of action weighted by the probability of each course of action. 
In symbolic terms, 
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m 
V (DS)  = X p(ai) W) [5] 

i = l 

The information contained in a decision state is related to the mean square variance of 
the expected values of the courses of action. To be precise, the information is related not to o2 

but rather to G 
2I li2, since information should be measured by relating it to the variance 

measured in units of the mean; this measure is somewhat analogous to the coefficient of 
variation. This must be the case since a given variance of EV's will clearly be much less 
significant when the mean of the EV's is large than when the mean is small. The quantity 
c 2l[i2, from Equations (3) and (5), is: 

It is perhaps more meaningful to view this relationship in terms of the P(a*)'s. With the 
use of Equations (2), (4), and (5), one obtains 

/ 
a2  p2 = m X [P (a1)] 2 - 1 [7] 
/ i = l 

This quantity possesses the desired properties for an information measure. The more 
uncertain the decision maker is, the less the amount of information in his decision state. Thus, 
Yovits defines this fundamental quantity to be the amount of information in a particular decision 
state. 

That is, 
m 

/  =  m   X  [ W] 2 -  1 [8] 
i = l 

Note that this quantity has a minimum of zero when all the P(a')'s are equal to 1/m. 
This is complete uncertainty. The quantity has a maximum of (m - 1) in the case of complete 
certainty where one of the P(a')'s is one and the others are zero. 

When there are only two possible courses of action, the quantity I will assume values 
from zero to one. It will be equal to one under conditions of certainty, i.e., when the probability 
of choosing one course of action is one and the other probability is zero. Accordingly, Yovits 
defines the unit of information in terms of a deterministic two-choice situation. This unit is 
called a "binary choice unit," or b.c.u. 
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When there are m possible courses of action, then the maximum amount of information 
from Equation (8) is seen to be (m - 1) b.c.u.'s. This is in agreement with a well-known principle 
that a minimum of (m-1) choices from pairs of alternatives is required when there are m 
alternatives to consider. This is pointed out in (Ackoff, 1958). More explicitly, if (m-1) choices 
are required and the maximum amount of information in each choice is one, then the maximum 
amount of information is (m-1). Analogously, the minimum amount of information is zero. 

In summary, Equations (6) and (8) provide a method of obtaining the value of 
information in addition to the amount. 

We can now define a quantity called the "index of determinism." 

m 1 

D =   2 [P(a1)] 2 - - [9] 
m 

i = 1 

Note that this is just I/m. This quantity assumes the value zero when all the P(a*)'s are 
equal (the case of total uncertainty) and the value (1-1/m) when the situation is completely 
deterministic. For large m, it will approach unity. Thus, the index of determinism is a quantity 
varying from zero to one which measures the determinism of the decision state. 

5.1.5 Properties of the Information Measure 

The suggested information measure possesses a number of desirable properties. It is 
defined in terms of a fundamental unit of measure which we termed the binary choice unit, or 
b.c.u. The consideration of additional but highly unlikely courses of action has a very small 
effect on the amount of information in the decision state. 

Another desirable property of the information measure is "sequential additivity." The 
amount of information in a decision state can be measured all at once or the process can be 
broken up into several steps with the consideration of a few alternatives at a time. Regardless of 
which method is used, the amount of information in the entire decision state is the same. 

A measure of the amount of information in a data set or message can be arrived at by 
computing the difference in the amount of information in the decision state before and after 
receipt of the data. That is, the amount of information is arrived at by considering the impact this 
new data has on the decision maker's decision state. In symbolic terms, 1(D), the amount of 
information in data set D, is 

1(D) = lt+1 - lt [10] 

where lt+j and It are the amounts of information in the decision state after and before receipt of 

the data set. 
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It should be noted that the amount of information in a data set may be either positive or 
negative. In general, positive information sharpens or refines the decision maker's understanding 
of the situation in that it either reduces the number of structural components in the model or 
reduces the dispersion in one or more of the various probability distributions in the model. 
Negative information, on the other hand, either increases the number of structural components 
(e.g., the addition to the model of a previously unknown alternative or outcome) or increases the 
dispersion in the various distributions. Negative information, despite a possible connotation of 
the term, does represent information that is of significance to the decision maker. 

5.1.6 Discussion and Summary 

A formal measure for the amount and the value of information contained in a data set or 
message has been suggested. It quantifies information in terms of its effect on the state of the 
decision maker, where a decision state is defined so that it represents a complete description of 
the decision maker's overall level of understanding about a particular decision situation at a 
particular point in time. This measure is universally applicable for pragmatic information. This 
is equivalent to Weaver's level three which is concerned with the effects of the message upon the 
recipient. 

In order to evaluate this measure of information, it is convenient to use a generalized 
information system model. The use of this model then permits the evaluation of the measure of 
information in terms of the reduction of uncertainty. This evaluation could be made in terms of 
any kind of a decision rule. Yovits has suggested a reasonable decision rule that can be used, and 
developed relationships based on this rule. Virtually any other decision rule could be used for 
evaluating the effects of the various uncertainties referred to. It would also be possible to 
evaluate the decision state of the decision maker in a purely descriptive sense. 

In summary, the proposed information measure by Yovits et al. is a function of the 
effect that a set of data has on a decision maker's decision state. This decision state is defined in 
such a way that it reflects the decision maker's understanding of a particular decision situation at 
a particular point in time. Hence, I is a situation dependent and time dependent measure. Clearly 
it must be time and situation dependent since the same data will have different significance to 
different decision makers at any point in time or to the same decision maker at different times. 

5.1.7 Further Remarks on the Yovits Model I: Temporal Dynamics and Relational 
Information 

Here, using Whittemore and Yovits (1973), we expand on some of the details of the 
model structure discussed above. 

5.1.7.1 Temporal Dynamics: We have, following Yovits, said that a decision maker is 

required to make a sequence of related choices from among a discrete set of alternatives A = {a^, 

a2,...,am}. Since the DM may be uncertain about the nature and number of elements in this set, m 
is not, in the long run, a fixed and/or known constant. The execution of a particular course of 
action results in the occurrence of one of a set of possible outcomes O = {o^, 02,—on}. To allow 
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for unexpected outcomes, n too must be interpreted as variable over time. The DM may be 

uncertain as to the relationship between a particular course of action a1 and an outcome Oj. The 

likelihood that the execution of course of action a* will result in outcome OJ can be denoted by the 

subjective probabilistic estimate Wy. 

After a DM has determined his overall goal structure, he must then assign numbers (in 
terms of value units) to the various decision outcomes that reflect the relative value of these 
outcomes with respect to goal attainment. These relative values can be denoted by {V(OJ)}. 

The set of relevant states of nature can be denoted by S = {s1, s2,...,sr}. As with m and 
n, r must also be interpreted as a number whose value may vary according to the DM's current 
understanding of the decision situation. The probabilities of occurrence for the various states of 

nature can be denoted by the subjective estimates PCs1), P(s2),...,P(sr)- 

The general interpretation of m, n, and r as variables suggests obvious problems with 
respect to the probabilities wij and P(sk). Recall, however, that these values depend on the DM's 
current understanding of the situation. In general, this understanding changes over time; 
nevertheless, at any one point in time at which the DM is required to use his decision model to 
make a decision, m, n, and r assume whatever values reflect his current understanding of the 
situation. Hence, at any particular point in time, 

n r 
X   wV  =  1 for i  =  1, 2, ..., m and    X   p(sk)  =  1 • 
j=l k=l 

The decision elements A, O, {WJ;}, and {V(OJ)} are dependent upon the state of the 

external environment. Courses of action which seem quite reasonable under one set of 
conditions may be totally nonviable under other circumstances; similarly, a decision outcome 
which is very possible in one state may be quite impossible in another state. Also it is clear that 
(a) the probability with which a particular course of action results in a particular outcome and (b) 
the value of a particular decision outcome, are both dependent upon the state of nature. These 
dependencies can be indicated as follows: the sets A and O can be defined so as to reflect the 
DM's current understanding of all possible courses of action and all possible decision outcomes 

respectively (i.e., for all states of nature); also, a set of {wy^} and {vk(op} can be assumed to 

exist for each state of nature. For state of nature sK the suggested mathematical representation is 
depicted in Figure 5.1.3-1. 

5.1.7.2 Relational Information: The generalized decision model discussed provides a 
framework for a formal and comprehensive representation of uncertainty in decision making. As 
such, it also then provides a suitable framework for examining the role of information in decision 
making in a way that is also formal and comprehensive. A plausible approach to analyzing 
information is to look separately at its impact on the various types of uncertainty. 
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The information contained in a set of data (either unexpected new data from the 
external environment or feedback data from past decisions) has either structural value or 
relational value or most likely both. If the data indicate to the DM that his understanding of the 
structural components of the decision situation is incomplete and/or incorrect, then these data 
contain structural information. For example, the occurrence of a previously unknown decision 
outcome or the discovery of a new, viable course of action are informative in that they enhance 
the DM's understanding of the structural components of the situation. Similarly, if the data cause 
the DM to reassess his overall goal structure (e.g., perhaps he is being too conservative) or to 
recognize another relevant state of nature, then the data are structurally informative. 

On the other hand, data that help the DM refine his model of the relationships that exist 
between known structural components contain relational information. For example, a refining of 
the DM's understanding of the states of nature probabilities or the probabilities that the execution 
of a course of action will result in the various outcomes occurs as a result of using relational 
information. Similarly, data that allow the DM to assess more accurately the relative values of 
outcomes according to a given goal structure are relationally informative. 

In general then, the effect of the information is to change the DM's representation of the 
various types of uncertainty; his decision model at time t + 1 will be a revised version of his 
model at time t. Structural information either changes the overall goal structure or the nature and 
number of components in the sets A, O, or S. Given that the DM has resolved a certain amount 
of structural uncertainty, the effects of relational information are to change the probabilities 
associated with the execution of a course of action 

[wij k ]t+l = twij k h + Awij k : [3] 

the probabilities associated with the state of nature 

[P(s*)] t+1 = PCs*)]* + AP(sfc) ; [4] 

and/or the relative values of outcomes 

[v* (oß] t+I = [v* (oß]t + A vk (0j). [5] 

The way in which a particular DM actually utilizes information to revise his 
representation of the various types of uncertainty is highly individualistic. The generalized 
decision model is amenable to the application of a number of possible learning rules. Whether a 
DM will actually use any of these formal learning rules is somewhat doubtful. Hence, explicit 
enumeration of possible learning rules and a detailed discussion of their application would not 
add anything to the discussion at this point. It is important to note, however, that the generalized 
decision model provides a framework in which the DM can apply whatever learning rules he 
desires. 
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5.1.8 Further Remarks on the Yovits Model II: DM Effectiveness, Effectiveness of 
Information, and External Information 

Recall we have said that there are DM-assigned and Nature-assigned (i.e., true or 
actual) probabilities and values involved in the construct of Yovits' model. In what follows we 
use Yovits' notation and define those parameters that are true or actual with an asterisk. 

5.1.8.1 DM Effectiveness: Using this notation and again following Yovits et al. 
(1981), we define decision maker effectiveness (DME) as the ratio of average performance to 
maximum performance: 

DM£ = IP(^)£Vi7(£yk*)max. [1] 
1=1 

We note that DME is dimensionless and ranges from zero to one if every EV/* is 
nonnegative. For the average DM, generally only positive values will result. 

As the DM learns to place high probability on the alternative which has maximum 
actual expected value, then the DME approaches one. If the DM has no knowledge of the 
structure of the situation, then there is no way in which he can narrow his list of alternatives to a 
viable group. Thus, DME is seen to approach zero for the case where the DM has no knowledge 
of structure. 

The term DME defines, at a given point in time, the actual average effectiveness of a 
DM in a given decision situation. The DM does not know the actual expected values EV/*. He 
may approximate his effectiveness by substituting his current estimates of his subjective 
probabilities and of expected values EV/*(t) for EV/* in Eq. [1]. After many trials a DM 
becomes a good DM (his DME approaches one) and his estimate of his effectiveness approaches 
DME. 

At the same time, in a general sense, every DM has some imprecise understanding of 
his effectiveness in a given situation. A DM may believe he is very knowledgeable, skilled, and 
experienced so that he believes that his DME is high and near unity. Or he may recognize that he 
knows little about the situation and his DME is close to zero. Or he may recognize that he is 
somewhere in between. Yovits believes that a rational DM can closely estimate his 
effectiveness. 

5.1.8.2 Value and Effectiveness of Information: We have defined earlier the 
quantity of information, 1(D), which is based on DM uncertainties. This quantity is DM 
dependent and says little about DM performance or about the value of information. Information 
value must be related directly to its effect on performance. 

We define the value of information, VI, in a given set of data, D, at time t to be the 
change in DM average performance due to the receipt of these data. That is, 
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VI(D,t) = average performance (t) - average performance (to). [2] 

This has the same dimensionality as v^\ in the outcome value matrix (Figure 5.1.3-1— 
note—main model matrix figure) and permits us to relate information to specific measures of 
performance such as dollars, time, personnel, etc. 

For convenience we find it more appropriate to deal with a normalized measure of 
value which goes from zero to one. This we will call the effectiveness of information, EL This 
quantity differs from VI in that it is simply VI divided by EI*^^, and we note that 

EI(D,t) = DME(t) - DME(t0), [3] 

That is, the effectiveness of the information in a given set of data, D, at some time t is 
simply the change in DME due to the receipt of the data. 

The quantities El and VI can be positive, negative, or zero depending on how the 
performance of the DM may change due to receipt of the data. However, on the average for the 
DM who learns from his decisions, they are always positive since DME will increase with time 
and number of trials. This measure is, of course, also DM dependent, but on the average for a 
given situation for a given number of trials it is unique, dependent only on the confidence and 
learning factors of the DM. 

We have now specified two fundamental quantitative measures which define 
information quantity and value. These are different quantities. The DM, knowing (or being able 
to estimate) his current probabilities for various alternatives and the way in which they change 
with new data received, can estimate the quantity of information in any data set presented to him. 
In fact, if the related mathematical expressions are expanded in this approach the only thing the 
DM needs to know is the change in the squares of the appropriate probabilities. 

To know the actual value or effectiveness of the information, the DM must know the 
change in his performance. He cannot know this accurately since he does not know the actual 
expected values. However, he can approximate these from his estimates of EV;*. 

5.1.8.3..ExternaI Information: We have thus far discussed the situation whereby all 
information which the DM uses is obtained as a result of his decisions, selection of COAs, and 
associated outcomes. Feedback from these outcomes provides the information needed for the 
DM to update his assessment of the situation. Of course, in addition, external information may 
be received which permits the DM to update his assessment. Messages and data may be 
received. Reports, documents, or books may be available which provide the necessary 
information to update his state of knowledge and to change his own matrix values and his 
subjective expected value estimates, as well as to establish the structure of the problem. 

External information will, of course, assist in changing any or all of the various 
uncertainties (goal, state of nature, executional) involved in the total situation. The Yovits 
approach is concerned primarily with executional uncertainty, largely because he believes that 
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the extension to goal and state-of-nature uncertainty is relatively straightforward. Furthermore, 
he believes that consideration of the executional uncertainty and associated feedback information 
is fundamentally new and leads to important results and restrictions on decision making and the 
required information. (Yovits asserts that executional uncertainty is frequently overlooked.) 

External information, when it bears an executional uncertainty, can, of course, change 
the DME and can also change the DM's current subjective probabilities for selecting various 
courses of action and, thus, his fundamental information measures. However, the external 
information has been obtained from the experiences of other DMs who have gone through 
similar decision making processes. Thus, it is in reality some other DM's internal information 
converted into external information and subsequently communicated to and used by other DMs 
who are considering similar situations. 

In other words, in a complex system the only way to learn about the characteristics of 
the system is to make a decision, choose a COA, and compare the resulting observables with the 
predicted observables as we have discussed earlier. The fact that others may have gone through 
similar processes or that a DM can relate his current situation to previous similar situations 
should not obscure this fundamental point. One person's internal information may be another 
person's external information. 

5.2 Other Perspectives on Informational Value in the Context of Decision Making 

5.2.1  Informational Value Derived from a Behavioral Approach 

The work of Ackoff (1958), from which the following is drawn, makes an effort to 
define such notions as a decision maker's "purposeful state" among others, which notions derive 
from a behavioral point of view. This work also focuses on understanding the decision maker's 
objectives, his valuation of each objective, his possible courses of action, the efficiency of each 
course of action in achieving each objective, and the probability of choice for each course of 
action. This work therefore sets the foundation for Yovits' later works (discussed in Section 5.1) 
which expand somewhat on the ideas developed by Ackoff. However, Ackoff s work expands 
on and better defines certain notions in decision making models as well as notions of value, and 
we, thus, include this work for completeness. 

5.2.1.1 A Purposeful State: A definition of this state sets a framework for decision 
making. Ackoff argues that communication is an activity in which only purposeful entities can 
engage. Purposefulness exists only if choice is available to the entity involved and if that entity 
is capable of choice. 

Following Ackoff, a purposeful state (S) may be defined by reference to the following 
concepts and measures: 

I:     the individual or entity to which purposefulness is to be attributed. 
Q:   a course of action; 1 < i < m. 
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Of.  a possible outcome or consequence of a course of action; 1 < j < n. 
P/:   the probability that I will select Q in a specified environment, N; that is, 

?i = P(Q/I,N). 
Eif. the probability that 0/ will occur if Q is selected by I in N; that is, the efficiency of Q 

for Oj in N. 

Ey = P(0;7Q,I,N) 

Vj:  the value (importance) of Oj to I. 

Clarification of some of these concepts is necessary but we will leave the details to the 
next phase of this work. 

5.2.1.2 Courses of Action: A course of action is not to be construed as 
mechanistically specified behavior. Variations in the action with respect to certain physical 
characteristics may not change the course of action. For example, "driving a car" may be 
designated as a course of action. There are many different ways of driving a car but it is 
frequently useful to group these into one class of behavior (in a sense, as a "fuzzy" class). 
Despite the variations within the class, it can be distinguished from other classes; for example, 
from "using a street car." A course of action may be specified with varying degrees of rigidity 
depending on the purposes of the research. For one purpose it may be desirable, for example, to 
distinguish between lefthand and righthand driving. For another purpose it may be desirable to 
group the use of all self-powered vehicles into one course of action. 

It should be noted that the problem of specifying a course of action is essentially similar 
to that of specifying a physical object. For one purpose an automobile may be considered as a 
unit; for another it is a composite of many other units (e.g., wheels, transmission, etc.), and for 
still another purpose it may be considered to be a part of a unit (e.g., a fleet of cars). These 
distinctions are not unlike those that are used in Object-Oriented (00) methods for the design of 
software. It may be possible therefore to apply the OO paradigm to the specification of a 
decision making process model and its informational components. 

A course of action is said to be available in an environment if there is a probability of 
its being selected by someone, that is, if 

3lk:?(Ci/Ik,N)>0. [1] 

An available course of action may have no probability of being selected by a specific 
individual under a particular set of conditions. Then it is not a. potential course of action for him. 
This is equivalent to saying that a course of action, Q, is potential to an individual in an 
environment if, for one or more sets of values of E\j and Vj in N, Pi is greater than zero. 
Nevertheless, for some specific set of values of E\j and Vj, Pi may be equal to zero. 
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The relativity of courses of action and outcomes should be noted. They are conceptual 
constructs which may be converted into each other depending on the interests of the researcher. 
For example, "sawing a tree" may be considered as a course of action which yields the "falling of 
a tree" as an outcome. But "felling a tree" may be considered as a course of action which can 
yield the outcome "clearing a path." Such relativity of concepts is common in all areas 
investigated by science and hence does not present any unique methodological problem in this 
context. 

5.2.1.3 Efficiency: Many different measures of efficiency are in current use. It is fairly 
common to use some measure of the cost, time, and/or effort required to bring about a specified 
outcome (e.g., to complete a specified task such as "traveling one mile") as a measure of 
efficiency. It is also quite common to measure efficiency in terms of the portion of an outcome 
which is realized by the expenditure of a specified amount of money, time, and/or effort. For 
example, one can measure the efficiency of a machine tool either in terms of the number of units 
produced per dollar or in terms of the cost per unit. Thus, efficiency is commonly measured either 
as: (1) units of input required to obtain a specified output, (2) or as units of output obtained by a 
specified input. Neither type of measure is sufficiently general to be applied in all situations. 

The input required for a fixed output and the output yielded by a fixed input may not be 
constant. For example, the number of units made per hour by a machine varies from hour to hour 
and the miles per gallon obtained by an automobile also varies. Hence, for a fixed input various 
possible outputs exist to each of which a probability can be assigned. If, in the definition of a 
course of action, an input is specified, then the efficiency of that course of action for a specified 
outcome can be defined as "the probability that the outcome will occur if the course of action is 
taken." This measure can always be applied in a purposeful state. 

This measure of efficiency of a course of action depends on the environment and the 
individual involved. For example, use of skis may be efficient for self-transportation down a 
snow-covered hill but not so down an uncovered hill. Different individuals may ski with 
different efficiencies and the efficiency of the same individual may change over time (e.g., by 
learning). Consequently, the relevant time period, individuals, and environment should be 
specified in designating efficiency. 

5.2.1.4 Value: As in the case of efficiency there is no one measure of value or worth 
of an outcome that is generally accepted. Fortunately, however, such a measure is not necessary 
for our purposes here. Nevertheless, it is convenient to use some kind of standard measure 
wherever possible. A dimensionless measure of relative value may provide such a convenient 
standard. If the values (vj) assigned to the various outcomes are all positive, a measure of 
relative value (Vj) for each outcome may be obtained by the following conversion: 

V/=^-- [2] 'j 2>; 
Then, since 
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£•^- = 1.0 [3] 

it follows that 

1^ = 1.0. [4] 

The minimum relative value (Vj = 0) occurs only when the absolute value (vj) is equal 
to zero. The maximum relative value (Vj = 1.0) occurs when all but one outcome has zero value. 

In some cases negative measures of value are used (e.g., cost versus profit). The 
following transformation may be used in such cases: 

V;=rr^. [5] 'J 
VJ 

In the discussion that follows we shall use the concept of relative value and assume that 
all Vj's are positive and, therefore, that X Vj = 1.0. All the results, however, are easily modified 
to cover the use of either absolute values or the case in which negative values are employed. 

It is assumed here that no vj can have an infinite absolute value. This assumption is 
based on an analysis of the meaning of "absolute value" which appears in (Ackoff, 1958). 
Following the argument presented there a value can approach an infinite magnitude only as an 
unattainable limit. 

A purposeful state (S) may now be defined relative to the concepts which have been 
discussed. An individual (I) may be said to be in a purposeful state in an environment (N) if the 
following conditions hold: 

1. There are at least two exclusively defined courses of action available in N; that is, in 
N for Q, where 1 < i < m, m > 2. 

2. Of the available courses of action in N, at least two are potential choices of I. 

3. Of the set of outcomes (defined so as to be exclusive and exhaustive) there is one 
(say, Oa) for which two of the potential courses action (say, Ci and C2) have some 

efficiency; that is, E\a > 0 and E2a > 0. Furthermore, Eia * E2a- 

4. The outcome relative to which condition 3 holds has some value to I; that is, Va > 
0. 
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This definition may be summarized less technically as follows: an individual may be 
said to be in a purposeful state if he wants something and has unequally efficient, alternative 
ways of trying to get it. 

If we consider an individual over a period of time it will be convenient to refer to the 
purposeful states at the beginning and end of that period as initial and terminal states, 
respectively. 

The conceptual labors which have been involved in defining a purposeful state are 
necessary in order to make explicit the meaning of "one mind affecting another," and for 
enumerating the various possible types of effect. Later discussion in Ackoff shows that these 
effects may be defined in terms of changes to purposeful states. 

5.2.1.5 A Behavioral Information Measure: The measure of information to be 
developed here will be related to freedom of choice; that is, it will be a function of the 
probabilities of choice associated with the alternative courses of action. It will be a different 
function, however, because of the difference between a message and a course of action. The 
measure here will also be a function of the number of alternative potential courses of action, m. 

When we talk of the amount of information that a person has in a specified situation 
(state), we do so in two different but related ways. First, we refer to the number of available 
courses of action of which he is aware; that is, to the number of potential courses of action. For 
example, a person who is aware of four exits from a particular building has more information 
than the person who is aware of only two when there are four. The act of informing, then, can 
consist of converting available choices into potential choices. For example, a statement such as 
"There are exits at either end of this hall" may convey information in this sense. The person who 
has this information (i.e., who has these potential choices) may or may not exercise it depending 
on his appraisal of the relative efficiencies of the alternative exits. In one sense, then, 
information is the amount of potential choice of courses of action which an individual has. 

The second sense in which we talk of information involves the basis of choice from 
among the alternative potential courses of action. For example, an individual who knows which 
exit is nearer than the others has a basis for choice and hence has information about the exits. 
Information in this sense pertains to the efficiencies of the alternatives relative to desired 
outcomes (e.g., a rapid exodus). Suppose, for example, that there are two exits and one is nearer 
than the other. If this is known and the objective (valued outcome) is to leave the building 
quickly, the choice is determined in the sense that the individual always selects the nearest exit. 
If he always selects the most distant exit then he is obviously misinformed (i.e., he has 
information, but it is incorrect). If he selects each exit with equal frequency then he apparently 
has no basis for choice, that is, no information. In this sense, then, information is the amount of 
choice which has been made. Now let us make this concept more precise. 

Consider the case of an individual (I) who is confronted by two potential courses of 
action, Ci and C2. If the probabilities of selecting the courses of action are equal, Pj = P2 = 1/2, 
the situation may be said to be indeterminate for I. He has no basis for choice and hence can be 
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said to have no information about the alternatives. This is clearly the case when one of the 
alternatives is more efficient than the other. But if the two courses of action are equally efficient, 
the individual may have information to this effect and select each with equal frequency. Strictly 
speaking, however, he has no real choice in this situation since the alternatives are equally 
efficient. In a situation like this—a non-purposeful state—information has no operational 
meaning. Consequently, this discussion has relevance to situations in which all of the alternative 
courses of action are not equally efficient. 

If Pi = 1.0 and P2 = 0, then the situation is determinate for I; all the choice that can be 
made has been made. The maximum possible information is contained in the state. It may not 
be correct but this is another matter which will be considered below. 

We may define a unit of information as the amount contained in a two-choice situation 
that is determinate. 

Let us consider the general case involving m alternative potential courses of action. In 
order to select one from this set, a minimum of (m - 1) choices from pairs of alternatives is 
required. Table 5.2.1.5-1 illustrates this fact. 

Table 5.2.1.5-1 Minimal Choices for Various Numbers of Alternatives 

We can conceive of the amount of information contained in a purposeful state, then, as 
a point on a scale bounded at the lower end by indeterminism {i.e., no choice has been made) and 
at the upper end by determinism {i.e., complete choice has been made). Location on this scale 
will depend on the values of P/. 

In an indeterminate state each P; 
state from indeterminism is 

1/m. Therefore, one measure of the distance of a 
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m 

1 P/- [6] 
m 

For an indeterminate state this sum is equal to zero. In a determinate state one P; is equal to 1.0 
and the remaining (m - 1) Pi's equal to zero. Therefore, in a determinate state, 

m 

I 
i=l 

1 (   0 1 
P; — = 1— + (m-l) 0 — 1    m V      nv m 

1 111 
= 1-—= (m-l)—=1 —+1- — 

m m m m 
[7] 

= 2- 
_2_ 

m 

The ratio of (a) the deviation of a specified state from an indeterminate state to (b) the 
deviation of a corresponding determinate state from that indeterminate state, then, provides a 
measure of the fraction of the maximum information such a state can contain, to that which it 
does contain. Symbolically, this ratio is: 

m 

I 
i=l 

P/- 
1 

m 
[8] 

2 — 
m 

The product of this fraction and the maximum amount of information such a state can 
contain—that is, (m - 1)—provides a measure of the amount of information (here symbolized by 
A) in that state: 

A = (m-1) 

m 

S 
i=l 

P/- 
1 

m 
(m-1) 

' m  T-i 

'i=l 

1 

m m m 

m-1 1 i=l 
P/ — m 

[9] 

m 

Now the amount of information communicated may be said to be the difference 
between the amount of information contained in the state of the receiver immediately preceding 
the communication (i.e., the initial state) and the state immediately following the communication 
(i.e., the terminal state). Let A(S\) be the amount of information in the initial state and A(^2) the 
amount of information in the terminal state, then the amount of information communicated, 
Ac is given by the following equation: 

Ac = A(52) - A(5y), [10] 

which may also be written in an expanded form: 
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[11] 
2 1 = 1 

P/  m 

where m is the number of potential courses of action in the initial state, m' is the number of such 
choices in the terminal state, and P/ and P'; are the probabilities of choice in the initial and 

terminal states, respectively. 

Ac can take on values from - (m - 1) to (m' + 1). Negative values represent a loss of 
information (e.g., as in going from a determinate to an indeterminate state). 

It should be noted that this measure contains no implication concerning the correctness 
or incorrectness of the information received. Further, it should noted that this measure is relative 
to a specific receiver in a specific state. The same message may convey different amounts of 
information to different individuals in the same state or to the same individual in different states. 
Consequently, to specify the amount of information contained in a message it is necessary to 
specify the set of individuals and states relative to which the measure is to be made. If more than 
one individual or state is involved it is also necessary to specify what statistic (e.g., an average) is 
to be used. Generality of information may be defined in terms of the range of individuals and/or 
states over which it operates. 

It should also be noted that messages are not the only source of information. One may 
obtain information by observation. For example, one may count the number of exits from a 
house. The measure of information suggested here is applicable to information obtained by 
either observation or communication. 

5.2.2 Informational Value as Derived from Multi-Attribute Models 

Multi-attribute utility (MAU) models, pioneered by Raiffa and his colleagues (Raiffa, 1969; 
Keeney & Raiffa, 1975) and by Von Winterfeldt (1975) provide another alternative framework 
for aiding the information management process. These utility models tie the information 
decisions directly to the ensuing action decisions. The value of obtaining information is 
determined by calculating its impact on the expected utility of the subsequent action decision. 
The information is assumed to change the probability distributions of the consequence sets and, 
in turn, to revise the expected values of the alternative actions. Nevertheless, the form of the 
model is again a linear additive rule. The utility of an action is considered to be an aggregate of 
many possible outcomes, each expressed along a set of attributes: 

EU (flk) = 2>(zh) I>i(%,%) 
states      attributes 

h i 
[1] 

Where EU (a£) is the expected utility of action k, P(z/j) is the probability of state z& 

occurring, and U; (afc, zn) is the utility function over the ith attribute associated with state h and 
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action k. The formulation is the result of several key simplifying assumptions. The decision 
maker is assumed to be risk neutral, so that he is indifferent between the expectation across a set 
of uncertain outcomes and the uncertain outcomes themselves. This allows the probabilities to 
be entered as simple coefficients. Also, the attributes are assumed to satisfy additive 
independence, allowing the linear additive form of aggregation. Tests for compliance with these 
assumptions can be found in Von Winterfeldt (1975) or Keeney and Raiffa (1975). 

The impact of a message or item of data is to change the probability distribution of the 
states z/j. Once the message is received, a maximum utility action a*(y) can be identified. The 
expected utility of selecting an information source S then becomes (Emery, 1969): 

EU(S)   =    X        X     P(zh)P(y\zh)u(a*(y),zh) 

messages states [2] 

y z 

Here u(a*(y), z/j) is the utility of taking action a*(y) given that state z/j occurs. The 
utility function is again multi-attributed, but for simplicity u(a*(y), z/j) is portrayed as having 
already been aggregated across the various dimensions. 

This type of analysis, championed by such researchers as Emery (1969), Marschak 
(1971) and Wendt (1969), is suited for highly structured tasks. Not only must the possible states, 
messages, actions, and outcomes be specifiable, but the prior state probabilities and the 
conditional probabilities characterizing the information system must be derivable. The sequence 
of decision stages can be depicted using a decision tree, as shown in Figure 5.2.2-1. The tree is 
folded back by associating with each possible message the maximum expected utility of the 
subsequent actions. This folding back represents graphically the process of EU maximization. 
The favored information source S is then identified by comparing the expectations taken over all 
possible messages. 

5.2.2.1 Other Methodologies: A number of other techniques have also been proposed 
to model information seeking behavior. Among these are semiotic or information-theoretic 
models as in the Yovits work we have been referencing, (e.g., Whittemore & Yovits, 1973), 
optimal control formulations, (Sheridan, 1976; Rouse & Gopher, 1977), queing models, (Rouse, 
1975; Enstrom & Rouse, 1977) and information integration techniques (Anderson & Shanteau, 
1970). Those who champion the MAU approach argue that, for the most part, these other 
techniques demand rigid problem structuring and continuous variables. More often, the 
communication decision is incompletely defined and involves choices among discrete rather than 
continuous alternatives. Thus, the discrete operators used in cue regression and multi-attribute 
utility models—matrices, difference operators, and detailed parameter enumerators—may be 
more appropriate. The interested reader is directed to (Steeb, Chen & Freedy, 1977) for a more 
detailed examination of these approaches. 

5.2.2.2 Information Management Functions: The major information management 
functions faced by the operator are diagrammed schematically in Figure 5.2.2.2-1. The 
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information available consists of data regarding the aircraft, the targets, the environment, and 
operator and system capabilities. The information is then used by the operator to perform 
supervisory control actions. 

INFORMATION MESSAGE 
SOURCE 

ACTION      STATE UTILITY 

UtAg.Z,) 

U(AS,Z2) 

U(AS,ZJ 

Figure 5.2.2-1 Decision Tree for Information Seeking 

TACTICAL 
DATA 
BASE 

TARGET CHARACTERISTICS 
PERFORMANCE HISTORY 

Figure 5.2.2.2-1 Major Information Management Functions 
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The information and control choice sequence is that diagrammed with the decision tree 
of Figure 5.2.2-1. This diagram is repeated with labels representative of tactical airborne 
operators in Figure 5.2.2.2-2, below. The multi-attribute utility formulation provides a useful 
basis for structuring both the information and control decisions. The specific steps of the 
modeling process are outlined in Figure 5.2.2.2-3. The figure shows the two sides of the 
modeling problem, probability estimation and utility assessment. The upper portion of the figure 
details the processes of probability estimation. These include delineation of the possible states of 
the environment, evaluating the current level of uncertainty concerning states, selecting 
information to reduce the uncertainty, and revising the probability estimates in light of the new 
data. The lower portion of the figure is concerned with outcome evaluation or utility estimation. 
Here the levels and importance weights for each dimension of consequence are determined. 

INFORMATION 
SOURCE 

MESSAGE ACTION STATE 

VIDEO AVOIDANCE 

THREAT 

^DYNAMICS \ CLEARX 

FRIENDLY 
AIRCRAFT 

Figure 5.2.2.2-2 Decision Tree for Information Seeking in Tactical Airborne Operations 
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DECISION , 

Figure 5.2.2.2-3 Decision Process Chart 

5.2.2.2.1 Information Acquisition Stage: The key element in the probability 
estimation sequence is the information acquisition stage (enclosed by dotted lines). Figure 
5.2.2.2.1-1 elaborates this stage, showing the steps that go into the choice of information and the 
subsequent incorporation of the datum into the situation estimate. The upper portion of the 
figure deals with the information source selection. The characteristics of the various available 
sources are determined by observation and analysis. This estimation of the characteristics of the 
information sources is accomplished by successive comparisons of messages received and 
subsequently observed states. The choice of information source is then made according to the 
potential impact of the information on the prior probability estimate. Once a source is selected 
and a datum observed, the information is incorporated into a revised situation estimate through 
Bayes' rule: 

P(zh\yk) =  '  

where 

(P(yp) 

P(vj) = S P(vjlzh) • P(zh) 

[3] 

P(z/jly/) is the probability of state zh being present given that message yy was received. 
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Information Acquisition 

SUBSEQUENTLY 
OBSERVED 
STATE 

SOURCE 
CHARACTER- 

ISTIC 
ESTIMATOR 

Figure 5.2.2.2.1-1 Processes Involved in Probability Estimation: An Elaboration of the 
"Information Acquisition" Block of Figure 5.2.2.2-3 

5.2.2.2.2 Utility Assessment/Outcome Evaluation: The other major modeling 
process is utility assessment or outcome evaluation (also enclosed by dotted lines in Figure 
5.2.2.2-3). The possible combinations of actions and states are enumerated off-line prior to a 
mission. The problem is then to assign consequence levels and importance weights along a 
predefined set of dimensions. Figure 5.2.2.2.2-1 elaborates this process. The first step is the 
selection of an independent, exhaustive, and predictive attribute set. The attributes are the 
various constituent aspects of the consequences. Each combination of information, action and 
outcome is associated with a set of attribute levels. This is done by observation and adjustment, 
just as in the determination of information source characteristics. Scaling procedures are applied 
to the raw consequence dimensions to arrive at normalized values. Each attribute is scaled so 
that its plausible range scans zero to one. These processes result in a specification of the 
parameters of the basic multi-attribute 

M N 

E [u(x)]s =   X P(zk) S #i"k(*ijk) 
k=l i=l [4] 

where 

E [u(x)]$ is the expected utility of information choice s, 
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P(z£) is the probability of state k with this information choice, 

Kj is the importance weight for attribute i, and 

xijk is the level of attribute i associated with action j and state k. 

Outcome Evaluation 

ACTION/ 
STATE 
COMBINATIONS 

STORED 
RELATIONSHIPS 

Figure 5.2.2.2.2-1 Processes Involved in Outcome Evaluation: An Elaboration of the 
"Outcome Evaluation" Block of Figure 5.2.2.2-3 

The following sections will develop some of the specifics of the modeling cycle. 

5.2.2.3 Attribute Development: The attributes of an information seeking decision are 
dimensions of consequence that are common to all types of the decision tree (shown earlier in 
Figure 5.2.2-1). These dimensions may include communications costs, equipment losses, goal 
attainments, future effects, and other factors. In the end, the constituent effects will be weighted 
and aggregated together to arrive at an overall evaluation of an outcome. 

The actual choice of the attribute set is extremely important. Some researchers state 
that the choice of factors to include is probably of greater impact than the determination of the 
model form. Desirable characteristics are accessibility for measurement, independence, 
monotonicity with preference, completeness of the set, and meaningfulness for feedback. 
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Monotonicity, in this context, implies that an increase in the attribute level always results in an 
increase in preference. If the attribute levels are monotonic, a simplification is possible. Fischer 
(1972) and Gardiner (1974) note that a straight line approximation to the utility function results 
in minor losses of model accuracy. The estimated utility (ignoring uncertainty for now) is then a 
weighted linear combination of attribute levels: 

U(az,zh) =X *i*ihk 
1 [5] 

where U(az, zfi) is the utility of state h occurring with action z, k; is the importance weight for 
attribute i, and xihk is the level of attribute i associated with state h and action k. 

Information costs may comprise attributes of special note. Often, the benefits of an 
information acquisition are simply weighted against the costs of acquiring the information. If a 
net gain is anticipated, acquisition of the information is considered justified. Often, though, the 
costs themselves are multidimensional, comprising energy costs, time delays, equipment 
expenditures, and risks of detection. The scaling, weighting, and aggregating of these costs may 
be most easily performed in combination with all of the non-cost attributes—tactical gains, 
political impact, etc. Then, trade-offs among each of the factors may be performed in a single, 
consistent operation. 

A candidate set of attributes might contain factors from five areas: 

(1) Communications Costs. The expenditures associated with use of the information 
sources. These may include requirements of energy, equipment, and operator 
attention. 

(2) Equipment Attrition. Consequences concerning the integrity of the vehicle. 
Included are fuel expenditures, system damage, and vehicle loss. 

(3) Objective Attainment. The degree of accomplishment of the mission objectives. 
Target goals may be the area reconnoitered, adversaries dispatched, and political 
impact obtained. 

(4) Dynamic Effects. The future consequences resulting from the current actions. 
These consequences may include effects on subsequent action choices, availability 
of future information, 

(5) Subjective Needs. The operator may have propensities for obtaining (or refusing) 
information beyond that called for by the above factors. These preferences reflect 
the needs of task continuity, maintenance of load, or other idiosyncratic factors. 

A useful consequence set might contain a single dimension or attribute from each of 
these categories. In fact, five attributes appears to be an upper limit to the number of factors a 
decision maker can effectively consider (Von Winterfeldt, 1975). If several factors contribute to 
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one consequence dimension, these factors should be combined using a single common scale- 
dollars, ship-equivalents, fuel quantity, etc. 

Each of the attributes—communications costs, vehicle losses, etc.,—must be scaled 
with interval properties along a set range. The least desirable consequence that may occur is 
assigned a level of zero on the scale. The most desirable consequence is assigned a level of one. 
The weighting factors k; should also be normalized so that the overall worst combination of 
factors results in a value of zero and the overall best combination a value of one. 

A special situation occurs with probabilistic attributes. Assuming risk neutrality, 
probabilistic consequences may be computed according to their expected level. For example, the 
vehicle loss attribute may have three possible levels, each with a different probability of 
occurrence. The expected value is computed by the following additive expression: 

3 
£(*ij)  =   ZpUk)*ijk 

*=1 [6] 

where the parameters are defined as in Equation 2-4. Once the attributes are defined 
and their levels are determined, the aggregation rule must be identified. The attributes—costs, 
losses, delays, future impacts, etc.,—may combine in an additive, multiplicative, or more 
complex fashion (see Keeney & Raiffa, 1975, for a description of some of the more popular 
formulations). For the work here, the simple additive form, exemplified by Equation 2-5 appears 
to be adequate and representative. The additive form is robust, intuitively easy to understand, 
and simple. Also, the linear form of the additive will be seen to be amenable to estimation by 
pattern recognition techniques. 

5.2.2.4 Consequence Level Determination: The actual level of each of the i 
attributes for a given outcome can be determined by mappings between predictive features and 
the attributes. Predictive features must be identified which are accessible to an onboard program 
and capable of determining the consequence levels. Mappings between the predictive features 
and the attributes are either pre-established or determined by observation and adjustment. 

The data available to the decision program are: 

(1) Directly-sensed information concerning the environmental state (weather, terrain, 
ECM, target track). 

(2) The vehicle state (velocity, fuel, autopilot capability). 
(3) The information system characteristics (capacity, noise, cost). 
(4) Tactical data (technical characteristics of own and enemy aircraft, sensors and 

weapons; information about the operations area). 
(5) Action alternatives (control responses, weapon deployment). 
(6) Operator capabilities (attention, load). 
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A manageable subject of these features must be determined. The consequence mapping 
can then be refined by comparison of the predicted and actually observed consequences. The 
mapping can be developed either by prior definition, by regression, or by the pattern recognition 
techniques described in the coming section. 

5.2.2.5 Attribute Weight Estimation: The policy defining factors in the model, the 
importance weights k;, are parameters suitable for either elective or subjective estimation. If the 
consequences can be defined along objective scales (dollars, ship-equivalents, etc.), then the 
weights could be derived by analysis and input prior to system operation. Unfortunately, Felson 
(1975) states that only in a few highly structured situations can such an optimal model be 
derived. More often, the operator's goal structure, expressed as importance weights, must be 
elicited or inferred and then incorporated in the model. There are a number of advantages to such 
subjective estimation, particularly with respect to allocation of function. By incorporating 
individualized operator weights in the model, the complex evaluation and goal direction 
functions remain the responsibility of the operator, while the normative aggregation functions are 
assumed by the computer. Also, operator acceptance of aiding by the model may be increased 
since his preferences are incorporated in the machine decisions. 

The operator's subjective weights may be defined off-line by elicitation or on-line 
through inference. The off-line methods include direct elicitation of preference, decomposition 
of complex gambles into hypothetical lotteries, and use of multi-variate methods to analyze 
binary preference expressions. These techniques are accurate and reliable in many 
circumstances, but they have a number of disadvantages when applied to operational systems. 
Typically, these methods require two separate stages—assessment and application. Assessment 
requires an interruption of the task and elicitation of responses to hypothetical choices. Problems 
arise with such procedures since the operator's judgments may not transfer to the actual situation; 
the decision maker may not be able to accurately verbalize his preference structure; and the 
judgments made in multi-dimensional choices are typically responses to non-generalizable 
extreme values (Keeney & Sicherman, 1975). 

Estimation techniques relying on inference from in-task behavior may be more useful. 
The inference techniques can be based on non-parametric forms of pattern recognition. Here a 
model of decision behavior is assumed and the parameters of the model are then fitted by 
observation and adjustment. Briefly, the technique considers the decision maker to respond to 
the characteristics of the various alternatives as patterns, classifying them according to 
preference. A linear discriminant function is used to predict the decision maker's choices, and 
when amiss, is adjusted using error correcting procedures. In this way, no preference ratings or 
complex hypothetical judgments are required of the operator. 

The adaptive nature of the estimation program is shown in Figure 5.2.2.5-1. Expected 
consequence vectors associated with each information source are input to the model. These 
consequence vectors are dotted with the weight vector, resulting in evaluations along a single 
utility scale. The maximum utility choice is determined and compared with the operator's actual 
choice. If a discrepancy occurs, the weight vector is adjusted according to the following rule: 
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t/ =   k   +    X (Xc-Xn) [7] 

where 
k 
X 
xc 

alternative. 

k' is the updated weight vector 
is the previous weight vector 
is the adjustment constant 
is the attribute vector of the chosen alternative 
is the mean attribute vector of all alternatives ranked by the model above the chosen 
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Figure 5.2.2.5-1 Adaptive Estimation Process 

Ideally, the error correction moves the weight vector in a direction minimizing 
subsequent errors. The amount of movement depends on "K, the adjustment increment. Nilsson, 
1965, describes several different forms of A, that can be used depending on the combination of 
speed and smoothing desired. 

The type of criteria used for model training is also a major consideration. The training 
may be based on objective outcomes such as stock market consequences, or subjective criteria 
such as actual operator decisions, or on some combination of subjective and objective criteria. 
The approach based on both objective and subjective criteria is the most involved. In many 
situations, an occasional indicator of objective performance is observable. The aircraft may be 
lost, the target attained, or some number of subgoals accomplished. In this way, the correctness 
of a sequence of actions may become objectively known. The utility model would be trained 
subjectively prior to this by observation of the operator's choices. If the sequence of choices led 
to an objectively favorable outcome, the trained parameter set would be retained. If the outcome 
was unfavorable, the parameter set would be returned to the levels present prior to the sequence 
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of decisions. In this way, objective criteria would guide overall training, but the explicit 
decision-by-decision policy for information management would be subjectively derived. 

Of course, the adaptive techniques of estimation described above are warranted only if 
repetitive decisions are available for training and if the differential weighting of attributes is 
important. In cases where only a few non-repetitive decisions will be made, off-line estimates of 
the weights k; are favored. Here, techniques such as direct estimates, hypothetical lotteries, or 
multiple regression are used for estimation prior to the mission. It is assumed with these 
techniques that the system requirements will not change after the estimates. 

Questions concerning the importance of differential weighting are more basic. Unit 
weighting schemes (in which all weights k/ are set equal to 1.0) have been found to be quite 
effective in certain circumstances. Errors in the model form, positive correlations between 
variables, and small sample sizes all reduce the predictive capabilities of differential weights 
compared to unit weight (Einhorn & Hogarth, 1975). Essentially, the more precise and 
parsimonious the model, the more important differential weights are. 

Unit weighting schemes are expected to see only minor application in aiding advanced 
aircraft operations. Careful selection of attributes minimizes intercorrelations between variables, 
and the correlations that do occur should tend to be negative. For example, in most cases costly 
information is generally more informative than inexpensive information, and equipment attrition 
tends to be negatively correlated with goal attainment. These circumstances favor inferred 
weight models. Unit weighting schemes should primarily be useful as starting points for 
estimation, or as strategies for situations in which a great deal of noise is present. 

5.2.2.6 Probability Estimation: The major probability parameters requiring 
estimation are the prior probabilities P(z) and the conditional probabilities P(ylz). The priors are 
the probabilities of state z in a particular situation. The conditional probabilities deal with the 
likelihood of receipt of message y if state z is present. Both of these forms of probabilities can 
be estimated from frequency counts. 

A second area of uncertainty concerns the consequence levels associated with a given 
message and state. These are the performance probabilities and are derived from stored data: 
detection range, target hardness, personnel performance, system reliability, guidance system 
accuracy, etc. The probability of outcome given the message received can be computed for each 
set of actions. Comparison of the messages received, actions taken and the consequences 
subsequently observed provide the necessary data. 

5.2.3 Informational Value in the Sense of "Purchase Cost" 

Another way to gauge the value of information is in the sense of an assignable cost for 
the "purchase" of a piece of information. This is informational value in the context of 
information-seeking. This perspective is consistent with the current notion of "information pull" 
for future C2 systems. (The "C4I for the Warrior" vision from the JCS in 1990 describes the idea 
of "warrior pull" and "infosphere push" in describing one future vision of the role of advanced 
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information processing on C2, and on the flow of information within a notional "infosphere" or 
communications backbone which permits selective information extraction—"pull"—from it. 
Presuming there is an assignable cost to this action, then the cost of a "pull" of a quantum of 
information would be in proportion to its value.) We draw here extensively on the work of 
Wendt to quantify one model of informational value in this sense of "purchase price" (Wendt, 
1969). 

In information purchase tasks, the subject decides between bets in the sense that he 
chooses between a risky bet without the information or with little information, and a less risky 
one with more information. This allows him to revise the probabilities of the outcomes although 
he has to pay for it. Research on choices among bets has shown that subjects may have 
probability preferences (Edwards, 1953), and that their utility function may deviate somewhat 
from linearity, though negligibly little in the region of small monetary gains (e.g., Lindman, 
1965; Tversky, 1967). The main finding in research on human probability estimation and 
revision is that people are conservative estimators in the sense that they do not extract from the 
data as much certainty as the data justify. (In an IW environment where, unless advised to the 
contrary, one would more broadly hold information as suspect, this behavior may actually have 
some beneficial value in leading to conservative decision making.) 

Does human conservatism in probability revision affect information seeking behavior? 
Or are people near-optimal in this as in many other decision tasks? Unlike the research of Wendt, 
earlier studies in information purchase have been experiments with optional stopping (e.g., 
Becker & McClintock, 1967; Green, Halbert, & Sayer-Minas, 1964; Irwin & Smith, 1957; Swets 
& Green, 1961) where the subject may buy, for a prespecified price, an item of information that 
will, on the average, reduce his uncertainty about a decision that he must eventually make. After 
observing the first item of information, he may buy another, and after that another, and so on 
until he decides to stop. This is a rather complex, hard-to-understand situation. Moreover, the 
datum obtained in such optional-stopping experiments, the subject's stopping point, is 
uninformative about the interesting question: how valuable did the subject consider each datum 
at the time he bought it? Experiments with optional stopping have found people seeking both too 
much and too little information, but seldom the optimal amount as prescribed by the normative 
model of expectation maximization. In spite of that, they do rather well with respect to their 
final payoff. This is due to the fact that the expected value functions in these experiments are 
rather flat around their maxima but this may not be true in military decision problems of interest, 
or in general. 

5.2.3.1 The Theory of Fair Cost of Information for Two Hypotheses and Binomial 
Data: How much should a subject be willing to pay for a datum? The fair cost C(Z) of 
information from a data source Z in a decision situation is the increase in expected value due to 
knowledge of a datum zfc from that data source Z; i.e., the expected value of the decision D made 
with information from Z, EV(D IZ), minus the expected value of the decision without the 
information from Z, EV(D IZ): 

C(Z) = EV(D IZ) -EV(D \Z) [1] 

67 



(e.g., see Edward & Slovic, 1965; Peterson & Beach, 1967; Raiffa & Schlaifer, 1961). In 
Wendt's approach, the decision to be made is between two actions—a binary choice case—aj, 

i=l,2, and the true "world state" or situation can also be in one of two possible states SJ, j =1,2. 

In this case the Value of any decision has a payoff, V(aj, Sj). Wendt then calculates the expected 

values over the possible states of nature with and without a piece of information z^ from data 

source Z. Thus, there is a conditional probability P(sj I z^), a posterior probability of state SJ 

given the information z^—so z^ aids in determining the situation upon which action decisions 

depend—this is its value. 

It is shown in Wendt that the choice of action will be influenced by the occurrence of a 
datum Zj or z2 only if those particular values of information influence the choice of action; this 

condition establishes pairs of inequality relations (not shown here) whose inequality signs must 
be changed by the awareness of a datum Zj or z2. This is the case if the likelihood ratio L = P(zj 

I SJVPCZJ I s2) = P(z21 s2)/P(z21 Sj) is large enough so that 

P(Z2\Sl)    P(Ji)Ä(fl2,*l) 

P(z2\s2)  P(s2)R(ahs2) [2] 

and hence 

P(z2 I si) P(si) R(a2, si) < P(z2 I s2) P(s2) R(ah s2), [3] 

so that the choice of action aj is recommended if z2 occurs. In Eq [2], R is the "regret," formed 
by subtracting from each payoff the maximum column entry, and changing signs (see Wendt, 
1969, p. 432.). This change, however, is only possible if 

1/L = P(z2 I Sl)/P(z2 I s2) < P(si) R(a2, si)/P(s2) R(aj,s2) = Q , [4] 

and hence L > Q. Q is the value of a constant dependent on prior probabilities and regrets (the 
inverse of a payoff) given by : Q = {P(sO R(a2, Si)} / {P(s2) R(ai,s2)} 

Following Wendt, in general, I log L I (to any base) would be an appropriate measure of 
the "diagnosticity" of a datum z, that is, of the ability of z to discriminate between s\ and s2: it 
is 0 for L = 1, and increases as L deviates from 1; i.e., as data become more diagnostic in one or 
the other direction, and aid in influencing an action ai or a2. Since in this binary-type decision 
framework I log LI is monotonic with P(zi I s\), Wendt uses P(zi I si) as an (ordinal) measure of 
the diagnosticity of the data source. A data source is completely undiagnostic if P(zj I sj) = .5, 
and completely diagnostic if ?(z\ I s\) = 1. Whenever L > Q, a linear increase in P(zj I s\) causes 
a linear increase in EV(D I Z) [or a linear decrease in the expected regret, ER(D I Z)], and thus, a 
linear increase in C(Z). The slope of these lines is 

b = P(si) R(a2, si) + P(s2) R(a!, s2), [5] 
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as can be seen from the expanded version of Eq. 1 as described in Wendt: once the minimizing 
over a/ is accomplished, C(Z) is linear in R(a/, sy) and P(zjfcl sß. Finally, then, for the case under 
consideration, Eq. [6] shows how to calculate fair cost of information, dependent on its 
diagnosticity: 

C{Z) = \ 

0 for P(zi\s{) < 0/(1 + 0 
min[POi) R(a2, s\), P(s2) R{ah s2)] 
al - [1 - P(zi\si)][P(si) R(a2, S]) + Ps2) R(ah s2)) 

otherwise, r„ 
[6] 

with Q as specified previously, and P(zi I si) > .5. 

5.2.4 Informational Value via the Information Indexing Approach 

The value of an item of information can be assessed in terms of the amount of entropy, 
or uncertainty, it reduces. In any particular task the amount of uncertainty reduced may be 
evaluated with respect to the stimulus, the response, or both in combination. Depending upon 
which reference is selected, numerous measures of information value are available provided the 
decision making situation is well defined, i.e., clearly-specified, mutually exclusive and 
collectively exhaustive stimulus and response descriptions are available. When this requirement 
is satisfied, matters of computational convenience normally dictate selection of a measure. Thus, 
information (bit) or signal detection (signal/noise ratios) measures are used when the reduction of 
stimulus uncertainty is the prime consideration, and simple and conditional probability measures 
associated with statistical-decision theory are used when reductions in response equivocation are 
sought. When the behavior of human decision makers becomes important, additional measures 
can be derived from descriptive choice behavior theories of Edwards (1954), Siegel (1961) and 
others, as well as the numerous extensions of Estes' (1959) statistical learning theory. 

5.2.4.1 Measuring Information Value in Complex Tasks with Fuzzy Alternatives 
and Information: For a large class of practical decision making tasks, however, the situation is 
noticeably different. Specifically, comparable metrical assistance is lacking when assessing 
information value in situations where responses must be chosen from a large set of alternatives 
which are no more than loosely specified, if at all, and/or where each response must be made on 
the basis of the appearance of a single stimulus, or a mixture of, stimuli, in a poorly defined 
stimulus set. Examples of such situations include military commanders acting on the basis of 
intelligence supplied to them and business executives deciding how to alter their product line to 
meet a changing market and competition. 

In attempting to measure information value in such practical decision situations, at least 
three alternative approaches are available: 

•    The first involves comparison of information items against standardized lists of 
"information requirements" derived from detailed task analyses. A certain amount 
of quantification can be introduced in the form of summed binary attribute 
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comparisons where judgments are made for each type of information item 
concerning its appearance or non-appearance on the lists. Occasionally, items on 
the lists have been scaled with respect to a number of criterion variables such as 
time of need, level of detail needed, etc. When such scaling has taken place, 
attribute comparisons can be extended to some type of weighted checklist score, 
although problems are met in attempting to take account of multiple criteria and, 
consequently, multiple weighting terms. 

• The second approach is one of brute force. By the use of large scale computer 
simulations the worth of various types of items is assessed in terms of their 
observed effect on performance. Usually, however, the problem of multiple criteria 
remains because the performance indices are highly specific to particular situations 
and do not generalize well to other types of operations. One distinct advantage of 
this brute force technique is that any evaluation of information worth is tied closely 
to highly relevant criteria of performance adequacy. 

• A third approach would employ a single general criterion measure. In such an 
approach, overall utility of-information judgments from a large sample of 
experienced commanders, could be defined from surveys, and normalized to derive 
a quantitative worth of information equation within which all information could be 
eventually expressed in terms of the same utility measure. 

5.2.4.2 The Information Indexing Approach: Encouraged by the above findings, 
McKendry, Hurst, and Achilles (1964) proposed an information evaluation technique which 
assumes that an information utility scale can be constructed from the responses of experienced 
decision makers. Specifically, these judgments are quantified by the use of psychometric scaling 
techniques (Edwards, 1957; Torgenson, 1958) to evolve information value estimates which can 
be inserted into a simple equation to yield a single value score for any given information mixture. 
Their technique, termed an "information indexing" approach, rests on two assumptions: 

• First, despite the apparent diversity of information items, all vary along a single 
underlying dimension of utility, or worth, with utility being defined as the amount 
of assistance given in selecting an appropriate course of action. 

• Second, subject (Ss) perceptions of utility can be reliably scaled, and when items 
are so arrayed a sizable, positive correlation exists between perceived worth and 
performance adequacy. Also, when rational value can be measured, a similar 
correlation exists between perceived value and rational value. 

As a convenience in preparing materials to be judged by Ss as well as a means of 
reducing substantially the number of judgments to be made, information is first subdivided into 
roughly equal units called "items." Usually, the definition of an item is situation specific; for 
example, in the case of surveillance systems, McKendry et al. (1964) defined an item as "an 
observation made over a specific uninterrupted interval of time about a particular physical thing 
or an observable attribute or characteristic of that thing, the observation being made by a single 
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[1] 

sensing device, including man ." This research team found when intelligence messages from an 
actual large scale fleet exercise were decomposed into items by three judges who worked 
independently, better than 80% agreement between judges resulted in what was or was not called 
an item by itself. Also, better than 90% agreement between judges resulted when the final list of 
items was sorted into nine content categories. In the first use, agreement was defined as a 
specific portion of a message being called an item by itself or part of an item; in the second 
instance, agreement meant the same item was assigned to the same content category by all three 
judges. 

To save time, Ss judge an average value for all information items in the itn category. 
Thus, by simply counting the number of items and multiplying by the average judged value per 
item, a total value score can be computed or any single grouping of items, whether the grouping 
be found in a single message (Equation 1) or in a group of messages (Equation 2). 

n 

ß  = X kj aj 
7=1 

P        = worth of information mix contained in a message 

= number of content areas in message 

= number of items in jth content area 

= average perceived value of items of information in jtn content area 

ß=N N    n 

B =  X   ß = X  X kij aj 
ß=l i=\ j=\ 

where        aj        is as previously defined 

kij      = number of items from jtn area contained in itn message 

N       = number of messages 

Implications 

The information indexing approach as originally proposed has a number of important 
corollaries. First, additivity of information worth is retained, thereby making it possible to 
achieve the same B score by widely divergent information mixtures. Second, it is assumed that 
the worth of items in a class is independent of the presence or absence of items in other classes. 

where 

kj 

Oj 

[2] 
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6.   ERRORS IN HUMAN DECISION MAKING 

In the previous section we have defined the decision making task in functional terms, 
i.e., what are the states of nature, the possible actions, and the values of the resulting outcomes. 
Based on these definitions, we have introduced measures of the value of information to the 
decision system. Now we must go beyond a functional description and explore the alternatives 
for allocating the various functions between human and automated decision components, 
informed by the models of the human functioning in adversarial systems developed in Section 3. 
Specifically, we need to explore the possible decision making errors, and how they are influenced 
by humans and automated systems as decision makers. 

6.1 What is Error? 

Reason (1990) concentrates on human error rather than error in general, but we can 
amend his human error definition (p. 9) as follows: 

Error is when a planned sequence of activities fails to achieve its intended outcome, 
when failure cannot be attributed to a chance agency. 

Note that this defines three elements: 

1. A goal or intention, i.e., the system is purposive 
2. A set of actions is chosen 
3. An outcome of value is implied 

These elements can all be seen in the model of Section 5, where decision was defined 
as the choice of a series of actions, based on a value structure (intentions) for outcomes. Errors 
are, thus, occasions where the "correct" action was not chosen. Again speaking specifically of 
human error, Woods, Johnssen, Cook and Sarter (1994) state that "error" is a judgment made in 
hindsight. It is, thus, assumed possible to evaluate the quality of a decision (i.e., determine if it 
was an error) by reference to some external, but lagged, validation criterion where "truth" about 
the whole situation was eventually discovered. As evidenced by legal inquiries into major 
system failures (Challenger, Vincennes, Bhopal, Herald of Free Enterprise), this external 
validation is possible in principle, but difficult and costly in practice. This idea is embodied in 
the concept of a criterion against which decision making performance can be judged. Hollnagel 
(1997) gives three parts to an error definition: 

1. A performance standard or criterion 
2. An event or action 
3. A degree of volition 

He discusses why each of these may be difficult concepts in a theoretical development, 
but does emerge with a second distinction useful to our thesis: error genotypes and phenotypes. 
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The genotype is a (generic) cause of the error, while the phenotype is the (specific) manifestation 
of that cause in a particular system. Those who must deal with human error are either trying to 
infer genotypes form phenotypes (incident investigation) or infer phenotypes from genotypes 
(incident prediction). In data-fusion supported adversarial systems the immediate need is for 
incident prediction, so that one must start with the genotypes of erroneous action. 

6.2 Models of the Human Decision Maker 

In Section 5 we developed a normative model of decision making: it is not specifically 
a model of the human decision maker. In the 1950's to 1970's psychologists and human factors 
engineers tended to model humans as if they were normative decision makers, both in how they 
combine evidence from several sources (Bayes Theorem) and in how they choose among 
alternatives having different probabilities and utilities (utility maximization). It was found that 
although people processed information in ways which correlated with these normative models, 
the models themselves lacked predictive value. Humans were seen as trying to optimize, but 
failing: i.e., humans were modeled as degraded optimizers. These models still predict 
reasonably well in the small-scale decisions involved in simple repetitive tasks, such as 
movement control and inspection, but tend to completely miss the point where decisions become 
larger in scope, and where the decisions are made by humans with high levels of expertise. For 
example "rational" models of consumer behavior are no longer used by economists. Maximizing 
net long-term gain is not a good predictive description of real-world decision behaviors. 

The unwarranted assumptions of normative theory when applied to human decisions are 
paraphrased from Reason (1990, p. 37-38): 

1. People have consistent utility functions 
2. People have exhaustive knowledge of possible alternatives 
3. People can create consistent joint probability distributions relating alternatives to 

actions 
4. People choose alternatives so as to maximize subjective expected utility. 

In fact, much data shows that expert decision makers typically start from an entirely 
different viewpoint: can I recognize a known scenario for which I have ready-scripted 
prototypical solutions? Such a short-cut means a tremendous saving in cognitive workload. It is 
as if a climber searching for a path up a mountain recognized a known "reasonable" route rather 
than systematically listing and evaluating all possible routes. We can attempt to retain the 
normative framework by adding a condition of minimizing cognitive workload to our decision 
maker's objective function, but it is simpler to start from the more realistic view that experts 
have stored a set of satisfactory (but not optimal) short-cuts, and attempt to recognize a set of 
conditions which will lead rapidly to one of these. This leaves the human as a heuristic decision 
maker rather than a normative optimizer. But there is no reason that an instantiation of a 
decision system cannot combine humans and automation so as to take advantage of these unique 
human characteristics within an framework that is normative at-the systems level. 
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Because people tend to behave heuristically (Tversky & Kahneman, 1983) and to 
specifically use situational recognition (Klein, 1993), we can list the ways in which their 
decisions deviate from what a systems view would consider optimal. Note that we are modeling 
human performance, not merely errors. These decision tendencies can well become errors in 
cases where our cognitive shortcuts based on bounded or reluctant rationality lead us into actions 
which were (at least in hindsight) seen to be errors. First, however, we need to consider the 
nature of human error. 

6.3 Models of Human Error 

As noted in Section 6.1, errors imply both intention and action. Indeed an early 
classification by Norman (1981) divided error genotypes into: 

Mistakes:     following a wrong intention 

Slips: correct intention but wrong action 

Combining this with Rasmussen's (1983) three levels of human functioning (skill 
based, rule based, knowledge based), and adding specific memory retrieval failures (lapses), 
brought Reason (1990) to three basic error types in Table 6.3-1: 

Table 6.3-1 Error Genotypes, Adapted from Reason (1990) 

Level Error Genotypes 

Skill-based Slips, Lapses 

Rule-based Rule-based mistakes 

Knowledge- based Knowledge-based mistakes 

These form the basis of expansions by Reason, Hollnagel and others into more detailed 
lists or taxonomies of error types. We will provide appropriate summaries of them and note how 
they relate to our adversarial model and situation awareness. 

Based on models of the human decision maker, the following are non-normative 
tendencies resulting from bounded rationality, found typically in skilled decision makers. They 
are organized by the stage of decision behavior where they are most likely to evidence 
themselves. We start with the decision maker actively attending to (or searching) alternative 
information sources, retrieving possible hypotheses/choices from memory, filtering or weighting 
the evidence, making the choice of actions, and interpreting the results of the decision. We do 
not necessarily imply that these stages are strictly sequential. Indeed, initial choice of actions can 
(and does) affect the search for confirming evidence. 
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1. Observing or Searching of Sources of Information 

1A.    Salience Bias: Because we only attend to a limited number of sources, we tend to 
choose them based on their salience. Particularly under time pressure, the largest/brightest/ 
best positioned source can command undue attention. 

IB.    Persistence Bias: We tend to give more attention to sources which have proven 
useful in the immediate past. 

1C.    Absence Bias: There is a tendency to ignore sources where the absence of an 
indication is diagnostic. This may be part of a broader tendency .to difficulty in dealing with 
reasoning from negative events. 

2. Accessing Solutions in Memory 

2A.    Availability Heuristic: The ease with which previous instances or solutions can be 
brought to mind biases the solutions available. Thus, hypotheses/solutions which have been 
recently reinforced tend to be accessed most frequently and strongly. 

3. Filtering on Weighting of Information 

3A.    Representativeness Heuristic: People tend to overweight evidence based upon the 
similarity of the presented set of information to the information set expected from a well- 
known hypothesis. 

3B.    Elimination by Aspects Bias: We quickly reduce the number of hypotheses and 
information sources we consider by focusing on a reduced set of information sources. 
Others are eliminated because they have no ready fit to solutions available from memory. 

3C. "AS IF" Heuristic: There is a tendency to treat all sources of information "as if 
they had the same diagnosticity, or ability to reduce the hypothesis set being considered. 
Clearly, in practice some sources are more diagnostic than others. 

3D.    Probability Perception Biases: Humans are not good at estimating probabilities, 
either in an absolute or relative sense. (They are even less comfortable with the concept of 
conditional probabilities.) For example, the probability of an event is over-influenced by 
recent events, and the salience of event reports. Another source of probability estimate bias 
arises from the need to rationalize our own behaviors {e.g., smoking or fast driving). 

4. Making a Choice of Action 

4A.    Working Memory Limitations: There is only a relatively small capacity available 
for active consideration and manipulation of input. Working memory needs active rehearsal 
(at least for some aspects) and is perceived as cognitively costly to use, especially for 
prolonged concentration on complex reasoning. 
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4B.    Confirmation Bias: Once a hypothesis or action has been tentatively chosen, our 
search for confirmation leads to only certain selected sources. We will tend to attend only to 
those sources which tend to confirm that hypothesis. Wickens (1992, p. 278-79) describes 
this as mental inertia or cognitive tunnel vision. 

4C.    Satisficing: While not a bias, the selection of a feasible solution early in the decision 
process can lead to early termination of the search for solutions. 

4P.    Reversed Reasoning: Humans do not do well in causal reasoning. We have 
difficulty distinguishing between forward and backward chains of reasoning. 

4E.    Groupthink: This is presented as one example of clearly pathological decision 
making, such as learned helplessness, myths of invincibility, etc. In groupthink, the 
dynamics of the surrounding group of people can cause repression of adverse evidence, or 
lead to unwarranted confidence in the decision. 

4F.     Attribution Error: We are more inclined to attribute an event or state to causal 
factors than to chance, and, thus, see coincidences as conspiracies. Even within this 
tendency, we over-attribute to individual characteristics and under-attribute to situational 
characteristics. 

5.    Interpreting Decision Results: Feedback 

5A.    Misleading Feedback Attribution: When given feedback about outcomes of 
decisions, we again tend to under-attribute to chance. Thus, we may have been "right" 
purely by chance, but this feedback will reinforce the whole process that led to the decision. 

5B.    Selective Feedback Perception: We tend to pay more attention to feedback that we 
can interpret as being supportive of our decision. 

5C.    Interpreting Delayed Feedback: In calibrating the success of our decision process, 
we have more difficulty using feedback that is delayed. As some delay is inevitable, 
feedback may reinforce our memory of the decision process rather than the decision process 
itself. 

While this may appear to be a long catalog of biases, it can be extended and linked to 
even longer lists of error-possibilities (e.g., Hollnagel, 1997). For our purposes, though, this 
listing can provide sufficient guidance to assist in the design of adversarial systems. 

6.4 Application of Error Types to SA Model 

So far we have presented models of human decision making as recognition guided, 
using bounded rationality, and occurring at multiple levels of skills, rules and knowledge. From 
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these we have enumerated (some) error genotypes, and now need to apply these to our model of 
the human in an adversarial situation. 

Using the Situational Awareness model from Section 3 (Figure 3.1.4-1) we can see that 
three levels are proposed: 

SA Level 1:     Perception of Elements in the Environment 

S A Level 2:     Comprehension of the Current Situation 

SA Level 3:     Projection of Future Status 

To this we can add a fourth level of choice of action and interpretation of feedback. For 
each of these levels we can logically state its inputs and outputs, and hence list its main failure 
modes. These failure modes will be the error phenotypes, i.e., how the genotypes manifest 
themselves in S A. We can then relate our list of biases (or genotypes) to the failure modes to 
determine where friendly decision makers need aid from automated devices, and conversely how 
to confound an adversary with an (assumed) inferior level of technological competence. 

Table 6.4-1 gives the outcomes and logically-possible error modes at the three SA 
levels. Although this is not an exhaustive listing, it can be seen that a number of error types are 
pervasive, particularly 4A: Working Memory Limitations. Lack of correct sampling is shown 
to be related (naturally) to observing biases, while model structure is prone to filtering or 
weighting biases and feedback (again naturally) to feedback biases. 

Within this general picture, exploitable patterns emerge. If elements are not sampled 
correctly, then interface design can exploit salience characteristics to increase utilization of 
neglected information sources. From an adversarial point of view, we can look for ways to make 
misleading elements or cues more salient, as well as to exploit persistence bias. This latter can 
be accomplished by the typical military tactic of providing the enemy with enough successes to 
ensure persistence of attention to the (now wrong) cues. Such a tactic also exploits 2A: 
Availability Heuristic and 4F: Attribution Error. These help to ensure that the enemy's 
sampling is false, that his model is wrong, and that it remains wrong by poor use of feedback. 

Premature conclusions have been related to many errors, both processing limitations 
and the liability to take salient but wrong shortcuts, known as "strong but wrong." However, this 
is the very bias which allows the experienced commander to make rapid, and usually accurate, 
choices. Here, automated systems can aid the human commander by pointing out inconsistencies 
between the diagnosis (and chosen action) and the best estimates of the current information from 
all elements in the perceived world. This help can prevent false premature conclusions while not 
interfering with those premature conclusions that do not contradict known information. 

The ubiquity of 4A: Working Memory Limitations is addressable by hardware and 
interface design that exploits the human's pattern recognition abilities. This integrated rather 
than separate display using Wicken's proximity/compatibility principle (Wickens, 1992) will 
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reduce the load on working memory and allow more accurate information processing. Such 
systems are currently being exploited in fighter cockpits specifically to enhance situational 
awareness. 

Table 6.4-1 Processing Steps, Outcomes and Possible Errors at Each SA Level 

SA Level 1: Perception of the elements in the physical environment 

Outcome: Each element in the environment is correctly sampled, its information is correctly perceived, and stored 

Processing Steps Logical Error Modes 

1.1    Element Sampling Element not sampled 

Element not sampled for long enough to estimate parameters 

Sampling frequency too low to estimate dynamics of element 

1.2    Information Perception Data below threshold of human or sensors 

Data perceived wrongly 

1.3    Information Storage Data perceived but not stored 

Data perceived but forgotten before storage 

SA Level 2: Comprehension of the current situation 

Outcome: An accurate model of the world is constructed, 
and populated with accurate data from environmental elements 

Processing Steps Logical Error Modes 

2.1    Form Model Structure Inadequate model structure - too simple 

Wrong model structure 

2.2    Populate model with data Data not remembered for transfer 

Data transferred incorrectly 

SA Level 3: Prediction from model of future status 

Outcome: Correct prediction of future states by running model forward in time 

Processing Steps Logical Error Modes 

3.1    Prediction using model Unable to predict - cannot run model 

Incorrect prediction 1. Does not understand model 

Incorrect prediction 2. Premature conclusions 

SA Level 4: Choice of action and feedback from world 

Outcome: Correct command/control actions chosen, feedback obtained and correctly interpreted 

Processing Steps Logical Error Modes 

4.1    Choice of action No action chosen 

Incorrect action chosen 

4.2    Use of feedback No feedback obtained 

Feedback delayed 

Feedback misinterpreted 
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From this table, we can add the possible biases at each level and processing step to give 
the results shown in Table 6.4-2 

Table 6.4-2 Processing Steps, Possible Errors and Relation to Error Genotypes 

Processing Steps Logical Error Modes Related Error Genotypes 

1.1 Element Sampling Element not sampled 1A, IB, 1C.4B 

Element not sampled for long enough to estimate 
parameters 

3D 

Sampling frequency too low to estimate dynamics of 
element 

3D 

1.2 Information Perception Data below threshold of human or sensors 

Data perceived wrongly 1A,3D 

1.3 Information Storage Data perceived but not stored 4A 

Data perceived but forgotten before storage 4A 

2.1 Form Model Structure Inadequate model structure - too simple 2A, 4A, 4C 

Wrong model structure 2A, 3A, 3B, 3C, 3D, 
4A,4C 

2.2 Populate model with 
data 

Data not remembered for transfer 4A 

Data transferred incorrectly 4A 

3.1 Prediction using model Unable to predict - cannot run model 4A 

Incorrect prediction 1. Does not understand model 4A 

Incorrect prediction 2. Premature conclusions 3B, 4A, 4B, 4C, 4D, 4E, 
4F 

4.1 Choice of action No action chosen 4A,4C 

Incorrect action chosen 4A, AC, 4D, 4E, 4F 

4.2 Use of feedback No feedback obtained 4B,5B 

Feedback delayed 5C 

Feedback misinterpreted 5A 
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7.   HUMAN TRUST IN AUTOMATED SYSTEMS 

Human trust in automated systems and in particular in computer-based decision aids is 
a relatively new topic and one that has not received the benefit of extensive research. There are 
many issues to examine in the human-computer relationship that bear on the degree of trust and 
also the dynamics of trust that may exist at any point in a sequence of transactions. Much of the 
work to date has not examined in particular the notion of trust in the framework or context of IW 
and a general situation where the degree of integrity of any of the information processed by the 
computer may be suspect. Any sense of mistrust or distrust in these past works comes from the 
fact that the computer-based processing is embodied in the software created by another human, 
and in that sense the computer is a "virtual person." Hence, one frequently-cited paper (Muir, 
1987) starts with an examination of notions of trust in interpersonal relationships. This is not to 
say that the insights provided by past research are not applicable or interesting but that they have 
not considered the special case of hostile penetration of the internal processing on the computer 
side of the interface. 

What is important in any case, i.e., in the establishment of trust in whatever framework 
or driven by any of a number of factors, is the resultant impacts on patterns of use of the decision 
aid (which was presumably designed to be beneficial), and, moreover, the combined 
performance and effectiveness of the human working in concert with the computer/decision aid. 
As Muir also points out, trust is not a static state in a relationship; it has dynamics and, in many 
cases, the relationship frequently ebbs and flows from trust to distrust and back again. 
Additionally, and importantly, it should be understood that people can also trust a decision aid 
more than is warranted, leading to an unwarranted state of complacency. 

7.1 Basic Notions of Trust 

The psychological literature points out a number of aspects of the notion of trust in 
interpersonal relationships: 

• it frequently relates to expectations and future events 
• it always has a referent, a particular person, thing, or say a specific decision aid or a 

component of a decision aid 
• trust may relate to any or several of the features of the referent, such as 

- reliability 
- accuracy 
- other 

While these are helpful, Muir considers them imprecise and cites a definition by Barber 
(Barber, 1983) as more pointed and as explicitly recognizing the multidimensional nature of a 
trusting relationship. Barber defines trust in the context of a set of expectations: 

1.   an expectation of the persistence of "natural and moral orders" in the relationship 
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2. an expectation of technically competent role performance from the "partner" 
3. an expectation that partners in the interaction will carry out their fiduciary 

obligations and responsibilities 

There are, we submit, varying degrees of possible perturbations and violations of these 
definitional components in the case where Information Operations by a hostile may be occurring; 
e.g.: 

Item 1. above implies in essence an assumption of rational behavior, which, in fact, 
may not be valid in an IW environment; the (corrupted information in a) decision 
aid may result in irrational behavior or recommendations by the decision aid in 
certain, perhaps unpredictable, circumstances 

Item 2. above implies technical competence, and decision aid technical performance 
may be compromised by corrupted information 

Item 3. above implies responsible behavior and a notion of good faith in the motives of 
the (decision aid) partner; this is probably correct, by and large, (so long as the IW 
attack is not "massive") but occasional and irregular responses violating this 
characterization could occur in a compromised decision aid. 

Muir focuses on Barber's "technical competence" component as being at the heart of 
the trust issue between humans and computers. Barber goes on to expand this component into 3 
types of technical competence: 

1. expert knowledge 
2. technical facility 
3. everyday routine performance 

and asserts that the levels of performance and expectation from a decision aid might be 
categorized by this structure. This, or some equivalent taxonomy of expertise, actually applies 
on both sides of the HCI: we can have situations where expert humans are interacting with 
decision aids performing routine work, and vice versa. In those cases where the knowledge in 
the decision aid is beyond that of the human, the human is forced to rely on the assumption of 
"fiduciary responsibility" since he has no foundation for assessing competence. These situations 
are helped by the decision aid incorporating a so-called "explanation facility" but this, too, could 
be presented at levels of sophistication beyond the user's ability. These factors imply a rule that 
says that the more "prosthetic" the aid is, the more it needs to communicate its intent, direction, 
understanding of goals, etc. 

Continuing to follow Muir, the notion of trust can perhaps be quantitatively 
expressed—e.g., as a basis for human-in-the-loop experiments—in the sense of its influencing 
"Factors" as: 

T = Bo + B1X1 + B2X2 + B3X3 + B4X1X2 + B5X1X3 + B6X2X3 + B7X1X2X3 
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where the B's are parameters, and XI = Persistence, X2 = technical competence, and X3 = 
fiduciary responsibility factors. 

7.2 Dynamics of Trust 

In reference to the dynamics of trust in a relationship, Rempel et al. (Rempel, Holmes, 
& Zanna, 1985) argue that in the early phases of familiarization between the two "actors" trust 
depends on consistency of recurrent behaviors under relatively similar conditions—i.e., implying 
some sense of "repeatability." This will not be perfect however and so the person must develop 
some sense of acceptable variance in recurrent behavior. The problem in this situation is that 
humans tend to over-value the behavior in small samples—this itself leads to under-estimation of 
what the true (or reasonable values of) variance should be. This can lead to a pathological 
loop—where initial trust leads to an aggravated tendency to value (very) small sample behavior, 
etc. There is the possibility that (conditioned on the assumption of beneficial intent) as a result, 
knowledge about a decision aid's behavior and competence will be inversely related to trust: the 
less we know about the aid, the more we trust it! Other possible trust dynamics can be implied: 
the more constrained the possible output of the aid, the more predictable it should be, so that trust 
can be gauged to be inversely related to "degrees of freedom" of the aid. This applies, too, to the 
nature of the domain dynamics; the less complex and stochastic they are (inherently), the more 
predictable that aid should be, and so, trust should be directly related to the "stability" of the 
domain environment. IW effects on these assertions can lead to a number of modifications: e.g., 
IW effects can alter the nature of the true vs. observed variance in decision aid behavior, and can, 
therefore, reduce operator levels of trust in what should otherwise be good decision aid 
performance. This can also lead to increased operator intervention and workload, etc., and IW 
effects can be thought of as an "intermittent" failure or a "transient" in the behavior of a decision 
aid. So, IW factors can lead to a variety of degrading effects in the perceived behavior of a 
decision aid—and it is perceived behavior that counts. But this also implies that operators 
should be given good training on the aid (in an uncorrupted environment) so that they can also 
develop insights into, and be alert to possible IW-based corrupting effects—i.e., so they can 
detect probable IW effects. Of course, system designers should ideally design some type of 
intrusion detection methods for IW-based penetration as well. 

Later in a relationship, trust dynamics depend on the aid's behavior history, particularly 
under conditions of risk or stress. If the aid's cumulative history is considered "good," high trust 
will evolve. This means too that the aid must be given chance to fail or to encounter the high- 
risk/high-stress problems; if the human always overrides the aid in those cases, no data will be 
available from which to gauge trust. However, decision aids that have a high false alarm rate 
will eventually tend to be disregarded; of course, when an alarm is real, such failure to heed them 
can be catastrophic. The balance seems to be between a system that requires frequent nurturing 
and attention and one in which the operator can remain quite passive. Humans are known to be 
poor at monitoring tasks and some design advice says to involve the human as a "performer" 
rather than "observer," presuming a balanced workload also results. In those cases, the 
interactive nature of the human-computer pair should also result in a more insightful basis for 
trust. Another factor here is the underlying, inherent nature of the complexity of the domain 
problem. There is a tendency by humans to ascribe failure to lack of ability rather than to 
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extreme complexity in the domain, so the competence limits of the aid and the complexity of the 
domain both need to be well understood by the user so that correct levels of trust can evolve. 

The behavior of an aid in the face of chronic errors seems to be able to be overcome by 
human intervention; however, such repetitive failure brings down the general level of trust in the 
aid. Lee and Moray's study (Lee & Moray, 1992) shows that this loss of trust occurs somewhat 
slowly, and that there is a "hysteresis loop" (our term) in trust dynamics—they use the term 
"inertia." They look at both a linear regression-based trust model and a time-series based model 
to help account for the dynamics. They argue that a proper model would include a causal 
component and a dynamic component. Lee and Moray develop an autoregressive moving 
average vector form of a dynamic trust model that fit the data of their experiments very well. As 
regards transient errors by an aid, these cause a drop in both man and machine performance and a 
loss of trust that, again, takes time to be re-established. 

7.3 Distrust and Mistrust 

The notion or state of Distrust exists when the aid is considered to be operating beyond 
its judged boundaries of technical competence. The notion or state of Mistrust exists when the 
human accords an incorrect level of trust to the aid, i.e., when a competent aid is distrusted or 
when an incompetent one is trusted. These are conditions of error in the fashion of "Type I and 
Type II" errors in hypothesis testing. Where the Trust/Distrust threshold is set depends in part on 
notions of consequent risk and cost, and of operator level of skill. "Blind Trust" is not typical in 
decision-aided environments because users are aware that there must be some level of 
uncertainty in decision aid performance since the system is designed with a human in the loop to 
begin with (else why is the human there?). These factors lead to both design-level and 
operational-level questions of functional allocation. The designers will have one view of the 
man-machine functional boundary but patterns of use may reveal that users see that boundary in 
another way. 

7.4 Dealing with Complex Application Environments 

When a decision aid is employed in a complex domain, the issue of trust can be 
somewhat masked by the complexity in that the human, unless they have exceptional insight to 
the problem and what should be "good" aid recommendations, may never know the level of 
correctness the aid is working at and the integrity of its recommendations. Experiments have 
been run in such environments where seeded errors were inserted into the decision aid, and 
human operators accepted the results and exhibited high confidence in the tool. 

7.5 Riley's Model 

Riley (1989) suggested that the operator's decision to rely on automation may not 
depend only on the operator's trust in the system but rather on a more complex relationship 
among trust, self-confidence, and a number of other factors. One major thrust of this model is 
that if the operator were very self-confident, that he would tend to do the work manually, but that 
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this relationship is mediated by other factors such as workload and level of risk involved. This 
model is shown below in Figure 7.5-1: 

Arrows represent influences between factors. The "reliance" factor represents the 
probability that an operator will use automation and is influenced by self-confidence and trust. 
Trust, in turn, is influenced by actual reliability of the aid and a duration factor meant to account 
for increasing stability of the operator's opinion of the aid with use. Some have remarked that 
this model is more appropriate to group-wise employment of decision aids/automation and that 
individual users would employ much simpler strategies influenced by a smaller number of 
factors. 

^_ operator accuracy 

workload / / / 
\ /Skill ^ 

perceived workload ¥     J /     task comp 

system accuracy 

.   /      \ 
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/   machine accuracy 
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trust in automation 
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Figure 7.5-1 An Initial Theory of Operator Reliance on Automation 
(Arrows Indicate the Hypothesized Directions of Influence.) 
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However, experiments run by Riley suggest an even more complex model for behaviors across a 
group as shown in Figure 7.5-2: 

—. operator accuracy. 
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/ 
'reliance^ 

in automation 

state learning 

Figure 7.5-2 The Revised Theory of Automation Use 
(Dotted arrows show hypothesized relationships that have not been confirmed by experimental evidence, 

whereas solid lines represent those relationships supported by evidence from these studies.) 

The dashed lines show relationships that were not corroborated by his data, and the 
solid lines show relationships that were corroborated by his data. Fatigue and learning about 
system states now replace the duration factor of Figure 7.5-1. It is known, for example, that in 
monitoring tasks automation can induce complacency in operator interaction. Learning is also 
shown to influence trust directly. 
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8.   CULTURAL EFFECTS ON ADVERSARIAL DECISION-MAKING 

No specific works in the area of cultural effects on decision making or especially 
adversarial decision making were located in our literature search efforts. However, we found 
what we believe to be reasonably related works in the management literature having to do with 
issues in multinational corporations and their various functions and operations. These inputs 
range from definitions of what culture is to the notions of different societal values and beliefs, 
recognition factors for decision makers and some other related topics. Even these works 
however do not address directly the impact of these factors explicitly on decision making. As a 
first-cut input addressing this topic for our purposes, we have simply collated and assembled 
some inputs from the cited references. This subject will be explored further in the next phase of 
work. 

8.1 Basic Notions of Culture 

8.1.1  What Culture Is (Hoecklin, 1995) 

(1) A Shared System of Meanings. Culture dictates what groups of people pay attention 
to. It guides how the world is perceived, how the self is experienced and how life 
itself is organized. Individuals of a group share patterns that enable them to see the 
same things in the same way and this holds them together. Each person carries 
within him or herself learned ways of finding meaning in his or her experiences. In 
order for effective, stable and meaningful interaction to occur, people must have a 
shared system of meaning. There must be some common ways of understanding 
events and behavior, and ways of anticipating how other people in one's social 
group are likely to behave. For example, waving a hand or planting a kiss has no 
clear meaning without the context being understood. Furthermore, the intended 
meaning of a gesture need not coincide with the perceived meaning except where 
cultural identities match. It is only when the meanings do coincide that effective 
communication can happen. 

(2) It is Relative. There is no cultural absolute. People in different cultures perceive 
the world differently and have different ways of doing things, and there is no set 
standard for considering one group intrinsically superior or inferior to any other. 
Each national culture is relative to other cultures' perceptions of the world and 
doing things. 

(3) It is Learned. Culture is derived from one's social environment, not from one's 
genetic make-up. 

(4) It is About Groups. Culture is a collective phenomenon that is about shared values 
and meanings. 
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The noted business author and scholar Geert Hofstede describes culture as the 
"collective programming of the mind" and explains that it lies between human nature on one side 
and individual personality on the other (see Hoecklin, 1995). Figure 8.1.1-1 shows his model of 
three levels of uniqueness in human mental programming. 

Specific to 
individuals 

Specific to 
groups 

Universal 

Inherited and 
learned 

Learned 

Biological 

Figure 8.1.1-1 Hofstede's Three Levels of Human Mental Programming. 

In Hoecklin (1995), a collection of definitions of Culture by a number of experts is 
assembled; these are shown below in Figure 8.1.1-2: 

Figure 8.1.1-2 Concepts of Culture by a Set of Experts (Hoecklin, 1995) 

TylorE. (1871). That complex whole which includes knowledge, beliefs, art, morals, laws, customs and any other 
capabilities and habits acquired by man as a member of society. 

Herskovits M.J. (1948). The man-made part of the human environment. 

Kroeber A. L. and Kluckhohn C. (1952). Transmitted patterns of values, ideas and other symbolic systems that 
shape behavior. 

Becker and Geer (1970). Set of common understandings expressed in language. 

ran Maanen J. and Scirein E. H. (1979). Values, beliefs and expectations that members come to share. 

Schwartz M. C and Jordan D. K. (1980). Pattern of beliefs and expectations shared by members that produce norms 
shaping behavior. 

Hofstede G.H. (1980). The collective programming of the mind which distinguishes the members of one human 
group from another. 

Louis M.R. (1983). Three aspects: (1) some content (meaning and interpretation) (2) peculiar to (3) a group. 

Hau E. T and Hall M.R. (1987). Primarily a system for creating, sending storing and processing information. 

Harris PR. andMoran /?.7(1987). A distinctly human capacity for adapting to circumstances and transmitting this 
coping skill and knowledge to subsequent generations. 
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8.1.2 What Culture Is Not 

(1) Right or wrong. 

(2) Inherited. 

(3) About individual behavior. There are wide variations in individual values and 
behavior within each national culture. 

8.1.3 Different Layers of Culture 

Each person carries around several layers of cultural "programming." It starts when a 
child learns basic values: what is right and wrong, good and bad, logical and illogical, beautiful 
and ugly. Culture is about one's fundamental assumptions of what it is to be a person and how 
one should behave. 

8.1.4 Images of Cultures 

Self-image, or how we see ourselves, is a way of expressing our cultural identity. 
Cultural self-image tells us who we think we are and how we can distinguish "us" from "them." 
By asking someone from a culture what it means to be an American, Japanese, or Arab, a list of 
cultural characteristics emerges that gives us a good description of what that particular culture 
values and how it sees itself in relation to other cultures. 

Of course, how we see ourselves is not the same thing as how others see us. What we 
see as natural, normal, and even ideal, other cultures see as different. To the extent that "your 
cultural values overlap with mine, your image of my culture will be positive. To the extent that 
our values differ or conflict, your image of my culture will be negative." 

8.2 Notions of Values Across Cultures 

8.2.1  American, Japanese, and Arab Distinctions 

One attempt to explain the differences in cultural value contrasts more clearly is 
developed in Table 8.2-1 (Elashmawi & Harris, 1993), which compares specific contrasting 
values of American, Japanese, and Arab cultures. Reading across the table from left to right 
provides perspective on the values of each culture. 

In examining Table 8.1, we note that one of the top American values listed is 
freedom—freedom to choose one's own destiny—whether it leads to success or failure. Japanese 
culture, on the other hand, finds a higher value in belonging. In this culture, one must belong to 
and support a group(s) to survive. Belonging to a group is more important to Japanese culture 
than individualism. Arab culture is less concerned with individualism or belonging to a group, 
concentrating instead on maintaining family security and relying on God for destiny. Individual 
identity is usually based on the background and position of the person's family. 
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The value American culture places on independence and individual freedom of choice 
naturally leads to the idea that everyone is equal regardless of age, social status, or authority. 
Japanese and Arab cultures, however, place more value on age and seniority. The Japanese 
individual will always give way to the feelings of the group, while Arabs respect authority and 
admire seniority and status. 

In most business situations, Americans would come with a competitive attitude. The 
Japanese, conversely, value group cooperation in the pursuit of success. An Arab will make 
compromises in order to achieve a shared goal between two parties. One might think of the 
opposites of these value-based behaviors as regards the adversarial case. 

Table 8.2-1 Cultural Contrasts in Value 

Americans Japanese Arabs 
1.  Freedom 1.  Belonging 1.   Family security 
2.   Independence 2.   Group harmony 2.   Family harmony 
3.   Self-reliance 3.   Collectiveness 3.   Parental guidance 
4.   Equality 4.   Age/Seniority 4.   Age 
5.   Individualism 5.   Group consensus 5.   Authority 
6.   Competition 6.   Cooperation 6.   Compromise 
7.  Efficiency 7.   Quality 7.   Devotion 
8.   Time 8.   Patience 8.   Very patient 
9.   Directness 9.   Indirectness 9.   Indirectness 
10. Openness  . 10. Go-between 10. Hospitality 
11. Aggressiveness 11. Interpersonal 11. Friendship 
12. Informality 12. Hierarchy 12. Formal/ 

Admiration 
13. Future-orientation 13. Continuation 13. Past and present 
14. Risk-taking 14. Conservative 14. Religious belief 
15. Creativity 15. Information 15. Tradition 
16. Self- 16. Group 16. Social 

accomplishment achievement recognition 
17. Winning 17. Success 17. Reputation 
18. Money 18. Relationship 18. Friendship 
19. Material 19. Harmony 19. Belonging 

possessions with nature 
20. Privacy 20. Networking 20. Family network 

8.2.2 Influences on Behavior of Value and Belief Differences 

We should point out that the problem of cultural clash stems from both the differences 
and priority of each value in the set. In order to assess value diversity, the management texts say 
one should try first to identify one's own set of cultural values, then those of the country and 
person with whom one is dealing. One should also recognize that these values and priorities are 
merely different, not right or wrong. People tend to see anything that is different from their 
culture as wrong. Each culture has certain agreed-upon values, and the individual is rewarded for 
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adherence or punished for failure to adhere to them. Members learn to do so in order to survive, 
coexist, and succeed in that culture. 

In American culture, the phrase "time is money" is commonly accepted as a framework 
for the desire to finish a task in the shortest amount of time with the greatest profit. If a process 
is considered inefficient, it "wastes" time and money, and possibly will be abandoned. The 
Japanese, however, value high quality over immediate gain, and they patiently wait for the best 
possible result. Arab culture also values quality more than immediacy, but the trust in the 
business relationship is the most important value. 

Americans emphasize individual achievement and are result-oriented; therefore, they 
value directness and openness when dealing with others, enabling individuals to finish tasks 
more quickly. Because of the values of directness and equality, Americans tend to be informal 
when speaking and writing, often addressing each other by first names. The Japanese prefer to 
follow an indirect, harmonious style when dealing with others. Go-betweens help to move the 
process along, and interpersonal harmony is considered more important than confrontation. The 
Arab culture, like the Japanese, avoids direct confrontation. However, Arabs prefer to negotiate 
directly in the spirit of hospitality and friendship until a compromise is reached. 

Americans tend to be oriented toward the present and immediate which explains why 
Americans value taking risks. To an American, accomplishing a task as quickly as possible 
brings the future closer. The Japanese, however, view time as a continuum, and are long-term 
oriented. As a result of their value of a long-term, quality-based relationship, the Japanese tend 
to be conservative and patient. The Arab culture believes that the present is a continuation of the 
past and that whatever happens in the future is due to fate and the will of God. 

A principal value of American culture is individual achievement. When someone 
accomplishes something by him or herself, he or she expects and receives recognition for being a 
creative person, or the one who developed the best idea. The Japanese, because of their value of 
group achievement, seek information in order to help the entire group succeed. In Arab culture, 
the individual is not as important as preserving tradition. An Arab measures success by social 
recognition, status, honor, and reputation. 

A successful culturally competent person must be aware of his or her own priorities, as 
well as those of his or her country or society, and reorganize them properly to achieve group 
success. That person must also make an attempt, in initial dealings with the other culture, to 
adhere to and respect the other system. Once the person is accepted by the group, then that 
person can slowly introduce his or her own set of values to the group. If both sides recognize the 
new values as necessary for coexistence, then the values will be accepted, and cultural synergy 
will occur naturally. 

Figure 8.2.2-1 proposes that all of our behaviors in business or social life are influenced 
by both our belief systems (such as life, death, religion, and nature) and our reward values. 
These beliefs are taken by human beings as accepted norms, and it takes a major crisis to change 
them. 
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Figure 8.2.2-1 The Belief, Values, and Communications Model 

8.2.3 Behavioral Factors in Decision Making 

8.2.3.1 Rewards: 
Our set of values change according to the group or societal system of rewards and 

punishment. In the American system, for example, the values of independence, competition, and 
risk-taking are rewarded, enhanced, and encouraged by the group. If an executive working in the 
United States tries to introduce group harmony, seniority, and status as prime values for his 
business success, he will probably be discouraged and be forced to comply with the more valued 
system of American independence, openness, directness, and risk-taking. 

By contrast, many of the Japanese reward systems are based on group harmony, group 
consensus, and group achievement. If a Japanese executive were to attempt to introduce self- 

91 



reliance, individual competition, and risk-taking into the Japanese work environment he would 
more than likely be disparaged within his culture. 

The material rewards that are culturally appropriate reflect the values of the 
macroculture. Americans measure individual success more in material possessions than in social 
status or family/class membership. Monetary rewards motivate Americans. Increased salary, 
commission, or participation in a profit-sharing plan are methods used to recognize individual 
efforts. Many American entrepreneurial technology companies motivate new employees by 
offering them company stock rather than high salaries. Rewards, like recognition, can take many 
forms—from a company car, to a promotion, to a desirable transfer. 

The Japanese are motivated by rewards shared among the group, such as bonuses, 
social services, and fringe benefits available to group members. Acknowledging the achievement 
of an individual member of the group is inappropriate. Recently, many Japanese companies have 
begun rewarding their employees with memberships to health or golf clubs for their efforts. 

Arabs are motivated by gifts for the individual and family that reflect admiration or 
appreciation for the individual's achievement. A one- or two-day salary bonus is a good 
motivator for Arab workers who, for example, exceed their normal efforts. Giving such bonuses 
to individuals is used as a motivational tool for others. In small business environments, an Arab 
business owner might send a good worker a gift in the form of a household appliance that he or 
she can enjoy with his or her family. 

8.2.3.2 Motivation: All people are motivated by the power of feeling in control of 
their own work space. Americans feel good about being independent and in control of their own 
destinies—a direct reflection of values, which include control over decision making, time, and 
reward. Because Americans value privacy, self-reliance, and individualism, they are motivated 
to control their own decisions, even if this control involves considerable risk-taking. 

On the other hand, Japanese motivation comes through group harmony and consensus. 
The individual feels in control when he or she is in harmony with the group; it is the greatest 
source of individual motivation. Maintaining harmony between different sections and 
departments is a particularly important task of upper level management A top manager in Japan 
will not approve a decision unless all departments have agreed on its implementation. Of course, 
each department will have already gone through a similar internal consensus process, in which all 
of its members participated. 

The Arab manager strives for control and motivation of others through a parenting 
relationship. Everyone tries to be in the position of the manager (parent) in order to gain respect 
and responsibility. Title and status play a major role in rewarding individual achievement. 
Contrast the Arab model with the Japanese model, in which age, seniority, and experience are all 
respected when making major decisions. 

We can see that in a multicultural work environment, not everyone is motivated by the 
same factors. Motivational processes, tools, and values reflect our culture, directly or indirectly. 
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The motivation process—how it's controlled, who it appeals to, how to recognize it, and how to 
reward or punish employee behavior—is directly related to cultural values. 

Table 8.2.3.2-1 shows some of the motivational tools and cultural factors for our three 
distinct cultures, American, Japanese, and Arab. 

Table 8.2.3.2-1 Cultural Contrasts in Motivation 

American Japanese Arab 
Management Leadership; Persuasion; Coaching; 
Style Friendliness Functional group Personal 

activities attention; 
Parenthood 

Control Independence; Group harmony Of others/ 
Decision-making; parenthood 
Space; Time; 
Money 

Emotional Opportunity Group Religion; 
Appeal participation; Nationalistic; 

Company success Admiration 
Recognition Individual Group identity; Individual status; 

contribution Belonging to Class/society; 
group Promotion 

Material Salary; Annual bonus; Gifts self/family; 
Awards Commission; Social services; Family affair; 

Profit- Fringe benefits Salary increase 
sharing 

Threats Loss of job Out of group Demotion; 
Reputation 

Cultural Competition; Group harmony; Reputation; 
Values Risk-taking; Achievement; Family security; 

Material Belonging Religion; 
possession; Social status 
Freedom 

Management styles are also important and can be effective motivators in each culture. 
Americans react positively to a leadership style characterized by professionalism and 
friendliness. However, American managers separate personal and business matters. An 
employee who has a personal friendship with the manager may be surprised when the manager 
tells that same employee that he or she is not performing up to expectations on the job. Most 
American managers move up the corporate ladder by being self-motivated, willing to take risks, 
competitive, and success-oriented. Naturally, these managers use these similar qualities to lead 
and motivate others in career development. 

Japanese managers also motivate employees through continuous counsel and 
persuasion. They maintain group harmony through involvement in the professional and personal 
lives of their staff. Employees expect their managers to develop their career paths, as well as to 
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guide them in major activities. Older or retired executives often assume a mentoring role with 
younger managers and become strong, motivational influences. 

The Arab manager will be most effective in a parenting-type role that includes coaching 
and personal attention. The manager's status and authority level, and his ability to punish or 
reward the employee allow him to assume this role. At the same time, managers separate the 
working relationship from personal matters so as not to lose their authority and control over their 
employees. 

As discussed, it is very clear that motivational tools and processes reflect each unique 
culture. In the American culture, competition, risk-taking, material possessions, self-reliance, 
and freedom are all motivational values. In contrast, group harmony, belonging, and 
achievement are important and valued tools in motivation of Japanese employees. Arab workers 
value reputation, authority, and social status; and respond to these values in their motivation 
process. Each organizational culture responds to appropriate and relevant motivational patterns 
within the larger culture's established values. What motivates you within your culture is not 
necessarily what motivates someone from another culture. Recognizing this simple fact is 
essential when working to motivate employees of diverse cultural backgrounds. 

8.2.3.3 Emotional Appeal: Americans respond to available opportunity. Because the 
culture values risk-taking and is very time-conscious, Americans look at the configuration of 
resources at any given time as presenting unique opportunities. Americans often use the analogy 
of a "window of opportunity"—an opening to be used or lost. An American marketing manager 
will be motivated to open an overseas office if he or she believes a competitor is planning to 
enter that market. The motivation to take the risk in a new market comes from the desire to seize 
the opportunity. Likewise, American business is filled with sports analogies and terminology, 
such as, "win the game at all costs," or "you have to be a team player." 

The Japanese are motivated by reputation and company success, which are allied with 
their cultural values of belonging and group achievement. A Japanese manager will feel he has 
to accept an overseas assignment in order to assure the company's success. Regardless of the 
disruption that such an assignment may cause to his personal life, the Japanese manager will not 
risk embarrassment by refusing the boss's request on behalf of the company's interest. The 
company's success and harmony within the group may take priority over the manager's 
immediate family requirements. 

Arab motivation comes from an appeal to the sense of self within the authority 
structure. A manager will accept an overseas assignment if it results in personal gain in position, 
status, and money. Appeals to religious values may also be strong motivators in times of crisis or 
celebration. Words of admiration and flattery for individual achievement are also motivational. 

8.2.3.4 Recognition: Americans want to be directly recognized for their individual 
contributions and achievements. When a group project is successful, the group manager will 
expect recognition and reward for the achievement This recognition may come in the form of a 
bonus, a salary increase, or a promotion to a position of higher responsibility. In turn, the 
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manager will individually recognize the contributions of the team members during their 
performance appraisals. 

Japanese recognition comes through identification with the group in ever-widening 
circles: family, working group/team, department, division, company, and nation. Recognition 
for group achievement belongs to the group rather than to individuals. 

Recognition in Arab cultures generally results from the individual's status in the 
hierarchy. When a department reaches its goal, the recognition will go to the department 
manager who will then recognize the next level under him. The ripple effect will continue until 
it reaches the lowest level employees. 

8.2.3.5 Threats: The opposite of a reward is a punishment. The effectiveness of a 
punishment in the form of a threat as a motivational tool depends upon the cultural values of the 
individual. Since Americans' identities are often directly linked to their jobs, the threat of being 
fired is significant. However, since American society is highly mobile, Americans may react to 
the threat of being fired by quitting. Americans may not be as concerned as Japanese or Arabs 
who may lose their jobs in this situation. 

To the Japanese, the greatest threat is formal or informal exclusion from the group. If 
an individual is not contributing to the group's functional output due to personal ideology that 
differs from the group's, the manager's task is to counsel that individual before he or she feels 
pressure from the group. Many Japanese complain that they cannot take full advantage of their 
vacation days. The Japanese feel that if they are away from the office for more than a few days, 
the other workers will treat them as if they had abandoned the group. Although a Japanese 
company rarely fires an employee, group pressure may force an individual to resign or ask for a 
transfer. 

To the Arab, a demotion is a threat to one's reputation and status. If such action is 
necessary, it has to go through a lengthy review procedure to ensure that the action is justified to 
give the employee ample time to correct his performance. Loss of a job is a deep embarrassment 
to the employee, his colleagues, and family, and will be difficult to remedy. 

8.3 Intercultural Negotiations 

Intercultural negotiation consists of three major processes: 

• Establishing rapport 
• Exchanging information 
•    Persuading 

Our cultural values influence all aspects of our behavior in business matters. 
Throughout this section, we will focus on the process of intercultural (not necessarily 
international) negotiations. We will identify the general process that people and companies go 
through in establishing a relationship or negotiating an exchange of products/services. 
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While negotiating with others, keep in mind your own cultural values and those of other 
cultures that have been discussed herein. In recognizing how such cultural values influence 
everyone's behavior, you will be more sensitive to their needs, and will negotiate with 
understanding. 

Table 8.3-1 presents important components in the negotiation processes. In this table, 
we present the cultural contrasts among Americans, Japanese, and Arabs. Important elements 
presented include group compositions, the number of people involved, space orientations, and 
other elements as shown in the table. 

Table 8.3-1 Contrasts in Intercultural Negotiations 

Americans Japanese Arabs 

Group Marketing Function Committee of 
Composition oriented oriented specialists 

Number Involved 2-3 4-7 4-6 

Space Orientation Confrontational; Display harmonious Status 
Competitive relationship 

Establishing Short period; Longer period; Long period; 
Rapport Direct to task Until harmony is 

established 
Until trusted 

Exchange of Documented; Extensive; Less emphasis 
Information Step-by-step; Concentrate on on technology, 

Multimedia receiving side more on 
relationship 

Persuasion Tools Time pressure; Maintain Go-between; 
Loss of opportunity; relationship Hospitality 
Saving/making references; 
money Intergroup 

connections 
Use of Language Open/direct; Indirect; Flattery; 

Sense of urgency Appreciative; Emotional; 
Cooperative Religious 

First Offer Fair+/-5to 10% +/- 10 to 20% +/- 20 to 50% 

Second Offer Add to package; 
Sweeten the deal 

-5% -10% 

Final Offer Total package Makes no further 
concessions 

-25% 

Decision Making Top management Collective Team makes 
Process team recommendation 

Decision Maker Top management Middle line with Senior 
team team consensus manager 

Risk-taking Calculated; Low group Religion- 
Personal; Responsibility based 
Responsibility 
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9.   THE GAME THEORETIC PERSPECTIVE 

This section will discuss the role of Game Theory and related topics to the analysis of 
information warfare problems. We use the term information warfare to characterize one extreme 
of a range of problems. These problems involve the use of information transfer to maximize 
objectives among cooperative and non-cooperative senders and receivers. These can vary from 
the exchange of collaborative intelligence to information warfare. 

9.1 About Game Theory 

Game theory involves the study of mathematical models of systems composed of 
interacting, independent decision makers (Basar & Olsder 1982, Meyerson 1991, Owen 1982). 
Such models can help analyze the behavior and performance of these systems under conditions of 
conflict or cooperation or both. 

Since the advent of linear programming and game theory in the 1940's and early 1950's 
(see Dantzig, 1963 and von Neumann & Morgenstern, 1947), a substantial effort has been 
directed toward analyzing the behavior of interacting decision makers. In these models, each 
decision maker attempts to optimize his or her objectives in view of decisions made by others. 
The earliest work in game theory of von Neumann & Morgenstern (1947) and Nash (1951) 
addresses many important aspects of these problems. Dantzig and Wolfe (1960) and Baumöl and 
Fabian (1964) developed the Decomposition Principle for linear programming. With this early 
technique, mathematical programming models were developed to describe the behavior of 
independent individuals interacting within network structures. Within these networks, the 
decision makers directed the flow of resources, costs, and information. 

The term "game theory" is somewhat unfortunate in that it often appears limited to the 
study of parlor games. Game theory and the field of optimal control theory are closely related. 
Both approaches model economic and political conflicts, worst case designs, and war games 
(Basar & Olsder 1982). All of these models share a common theme. Each individual decision 
maker (commonly called a player) attempts to establish a strategy to maximize his or her own 
benefits. In addition, each player also considers the decision making strategies of other players. 

The field of game theory is often divided into cooperative and non-cooperative games. 
In non-cooperative game theory models, the players are mutually independent, never sharing 
resources, and never relinquishing autonomy. Cooperative game theory models allow players to 
form coalitions combining resources, decision making, and proceeds. 

Game theoretic models are also classified as dynamic or static. With dynamic games 
the sequence of decisions are important, while in static games, they are not. Dynamic game 
models often appear more appropriate for those problems that involve time-dependent decisions. 
However, in some cases, static models can provide valuable insight. This is true, for instance, in 
cases where information exchange and events take place at very high speeds. 
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Game theory and optimal control theory have a great deal in common with other 
constrained optimization problems. The relationships between these two fields are categorized in 
Table 9.1-1 (from Basar & Olsder 1982): 

Table 9.1-1 Constrained Optimization Problems 

One Player n-Player 

Static Mathematical 
programming 

(Static) Game theory 

Dynamic Optimal control theory Dynamic game theory 

Game theory can also be characterized as multi-person decision theory. It also shares 
many concepts with the field of statistical decision theory (see, for example, Ferguson 1967). 
There is one key difference. In game theory models, the opponent maximizes his or her own 
objective. In statistical decision theory, the other player is not an active opponent, but rather an 
impartial participant who establishes a state of nature for the decision maker. 

In addition, there is a key distinction between multi-person game theoretic models and 
multi-criterion's optimization models. As mentioned earlier, game theory deals with individuals 
who may act independently, and with conflicting objectives. Multi-criteria decision models are 
used to solve problems involving the conflicting objectives of one planer, or a harmonious bevy 
of planners. 

9.2 Game Theory Issues in Information Warfare 

Information plays an important role in game theory models. The players act 
autonomously. Therefore, the amount and type of information exchanged is often pivotal to the 
progress of the game. 

Most of the information models currently provided by game theory are too simple to 
apply directly to IW. However, the existing game theoretic approach can provide an excellent 
framework for basic analysis immediately and further research in the future. 

In many applications of IW, the objectives of the transmitter of the information, rather 
than the information itself, become of paramount importance. The information then becomes a 
vehicle for maximizing the benefits of the sender. In some cases, the receiver only uses the 
information to ascertain the objectives of the sender. The problem of the receiver, then, becomes 
one of determining the objectives of the sender in the shortest period of time. 

The diagram in Figure 9.2-1 will serve as the basis for our discussion of two-sided 
information exchange. For our discussion here, the two players will be called sender and 
receiver, i/owever, their roles may reverse throughout the progress of the game, as a function of 
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time. The information transfer is often bi-directional with the information sent from the sender 
to the receiver resulting in a response from the receiver to the sender. 

Sender 
information 

response 

i 
Receiver 

3rd Party 

Figure 9.2-1 A Two-Sided Information Model 

In section 9.3, we will also briefly consider the addition of a third party intercepting the 
information flow between the sender and receiver. This additional party might be a passive 
listener or actively interested in the progress of the game. For example an active participant 
might intercept and deliberately change the information being transferred, while a more passive 
participant might simply perturb the information with random noise. 

9.2.1 A Two-PIaver Model 

First, we will consider the simpler two-sided information exchange model illustrated in 
Figure 9.2.1-1. Each player selects a strategy from a set of available strategies. A strategy is a 
rule (that is, function) that specifies a player's actions for any given set of conditions. For 
example, a strategy might specify that the receiver performs a particular task when receiving a 
known packet of information. In addition, the receiver may send information back to the sender 
as a response. 

First, we will consider the simpler two-sided information exchange model illustrated in 
Figure 9.2.1-1. Each player selects a strategy from a set of available strategies. A strategy is a 
rule (that is, function) that specifies a player's actions for any given set of conditions. For 
example, a strategy might specify that the receiver performs a particular task when receiving a 
known packet of information. In addition, the receiver may send information back to the sender 
as a response. 

For the sender... 
• information sent to receiver 
• action of the receiver 
• information response from the receiver 

For the receiver... 
• information sent by sender 
• action of the receiver 
• information response to the receiver 
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Moreover, the information passed between sender and receiver may also change the 
feasible set of decisions that each player may make. Therefore, each player's actions may affect 
both the objective function and decision space of the other player. (Bialas and Karwan. 1984) 

Sender 
information 

response 
Receiver 

Figure 9.2.1-1 A Simple Two-Sided Model 

Several models are already available for analyzing this type of optimization problem. 
The mathematical foundation of this work rests on the theory of Stackelberg games as a tool for 
modeling sequential, preemptive optimization problems. The early work was restricted to linear 
objective functions for each of the players and a requirement that all feasible decisions had to 
reside within a convex polytope (see Bialas & Karwan. 1984). More recently, many of these 
results have been extended to problems with generalized objective functions and feasible regions. 

One of the key results from Stackelberg game theory is the fact that the optimization 
problem for the sender can be nonconvex. This is true even if both players' objective functions 
are linear and the strategy set is a convex polyhedron. Moreover, the joint optimization problem 
of the sender and the receiver may yield inadmissible solutions, even if each of the players chose 
individually optimal strategies (Bialas & Chew, 1982). In other words, the following scenario is 
possible: The sender chooses his or her best transmission strategy. The receiver then provides 
the best response to that information. Yet there are feasible strategies that would result in 
improvements for both players. 

The solution can possibly be inadmissible not because of a failure of the model. 
Instead, it is a representation of what could actually happen in practice. The reason for this 
behavior is two-fold. First, the decisions must be made sequentially across time and space. This 
is due to the nature of the information-response process. This prohibits guaranteed coordination 
of strategies and players' objectives. Second, there is no mechanism (at least in this model) for 
the transfer of benefits between the players (Willick. 1995). For example, Hunter (1992) has 
used these principles in the coordination of operating strategies for river systems with several 
reservoirs. 

9.2.2 A Two-PIaver Model with Information Degradation 

Even the simplest model, as discussed in Section 9.2.2, produces a problem that is 
challenging to solve. In that model, both players know each other's objectives and decision- 
space with certainty. When uncertainty, deception and information degradation are introduced, 
the optimization problem for both sender and receiver becomes even more difficult. 

The most natural extension of the simple two-player model, is the model illustrated in 
Figure 9.2-1. In that model, a third individual (perhaps actively participating as a third player) 
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intercepts and/or manipulates the information between the sender and the receiver. The 
strategies of the third participant can include 

• intercepting and using the information without detection 
• changing or augmenting the information and/or response 
• adding random noise to the information and/or response 
• completely substituting itself as a counterfeit sender 
• being an agent of the sender, transmitting deliberately false information on behalf of 

the sender. 

There has been some work on developing solution techniques for games where the 
objectives are uncertain. As previously mentioned, in many IW problems determining the 
objectives of the opponent are often more important than the actual processing of the 
information. In such cases, it is the role of each player to select an optimal information or 
response strategy to indirectly determine the objectives of the other player. Some related work in 
this area has been done on optimal determination of response surfaces. 
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10. CONCLUSIONS AND RECOMMENDATIONS 

The study of single-person behavior is itself a challenging task, given the nature of 
humanity and especially of cognition and the broad range of factors that shape human response to 
information input. Extending the study framework to the two-sided adversarial case, with each 
adversary employing different decision aids, and involving the unknowns related to the hostile 
and covert aspects of adversarial relationships makes the modeling of such interaction quite 
challenging indeed. 

Nevertheless, this report is considered to offer some insights into this problem, and 
some perspectives that lay a foundation for future work toward deeper understanding of such 
adversarial relationships in the context of future, information-based warfare. The distinctive 
aspect of the current project is that it has assembled, excerpted, summarized, and critiqued a 
body of material on a set of topics that collectively represent many of the key issues that must be 
investigated to develop a comprehensive understanding of adversarial decision making. On the 
automation side, information dependencies and vulnerabilities in the DF process that today forms 
the kernel of decision-aiding tools were examined; this particular viewpoint has not been 
previously examined. On the human side, human error patterns, human trust in automation, and 
cultural effects in decision making have been examined. On the "analytical" side, an in-depth 
assessment and review of informational value in the framework of decision making was carried 
out, and a game-theoretic viewpoint was also examined. 

Much of the focus of current-day IW has been on defensive aspects, and it is those 
aspects that give each adversary some degree of control of his information environment.   But 
this area will no doubt follow the point-counterpoint legacy of EW and at any moment in time 
the "Direct IW" situation will be somewhat out of balance for one of the participants. To the 
extent one adversary can model the other's decision-aiding/data fusion processes, those processes 
will be subject to some Direct IW attack. Given that most experts consider that perfect security 
is impossible, the issue of Trust in Automation will also arise and the evidence to date is not 
encouraging; humans do not exhibit much tolerance for failure of automated processes. The 
degree of severity or criticality of this imbalance to each participant depends then on specifically 
what information has been corrupted—this leads to the issue of informational value in decision 
making, and is why this study and report spent considerable time and effort on this subject. The 
challenge here in the sense of modeling such decision making environments is whether the 
models created are generic or not, i.e., whether the nature of information dependencies in 
adversarial decision making can be extended across problem domains and problem parameters. 
In a way, this is a "reuse" question: whether the modeled dependencies of decision making on 
information types can be abstracted, generalized, and reused for various problems. 

On the other hand, the "Indirect IW" aspects are (more or less) completely non- 
controllable by each adversary. It is true that each can influence the other's range of behavioral 
mobility through smart, constraining tactical operations, but, by and large, each operates 
autonomously in a behavioral sense. This means that the conduct and achievement of perception 
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management and its effect on the other's information environment is generally less controllable 
than for Direct IW. But this aspect too depends on each participant's insight into the other's 
possible behavior patterns, and, also, on the degree of imbalance that may exist in each's 
surveillance capabilities. So here, too, the question is: what don't I know or what is likely to be 
the result of deception, and is it important to me? Again, this means that the dependencies and 
notions of value of specific elements of information are the critical aspect. The question is not 
whether the integrity of any piece of information is suspect (because some will be corrupted); it 
is whether the integrity of specific, important elements of information have been corrupted. 

There is one other important factor in all this: it is the balance of automated vs. human- 
based functionality allocated in the course of system design. The view taken here is that current- 
day trends toward ever-increasing reliance on automated processes will continue and that the role 
of automated decision-aiding and DF processes will increase in the future. The assertion is that 
the overall dependency of humans on automation, and the role of automated processing in future 
IW/decision making environments will be significant, if not major. This implies that the focus of 
analysis as regards informational value should be in the context of how the automated processes 
support decision making, i.e., what the critical informational elements are in the automated 
processing. This is not the focus to the exclusion of assessing human-based decision making 
dependencies on information, but is a question of degree. The specific tie-in on the human side 
is the notion of trust. That is, if these assertions are reasonable, they portray future situations 
where humans will depend on ever more automated processes; this begs two questions: 

1. Where are the critical dependencies and vulnerabilities in the automated processes? 
2. In spite of (1), what will be the patterns of trust of humans in automation when the 

humans depend greatly on that automation? 

The conclusion of this line of reasoning leads to the recommendation that two critical 
areas of research be continued: (1) the study and modeling of information dependencies, 
vulnerabilities, and notions of value in automated decision making processes, and (2) the better 
understanding and modeling of patterns of human trust in automation. A case study framework 
would be motivational for this work, and if more than one case study could be defined, then the 
examination of the potential reuse of knowledge about critical information dependencies and 
values could be conducted. 
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GLOSSARY 

ATR Automatic Target Recognition; Aided Target Recognition 

B.C.U. Binary Choice Unit 

CI Counterintelligence 

COA Course(s) of Action 

COMSEC Communications Security 

COMPUSEC Computer Security 

C2 Command & Control 

C2W Command & Control Warfare 

C4I Command, Control, Communications, Computers & Intelligence 

C4ISR Command, Control, Communications, Computers, Intelligence, 

Surveillance & Reconnaissance 

DBA Dominant Battlespace Awareness 

DD Doctrine Document 

DF Data Fusion 

DISA Defense Information Systems Agency 

DM Decision Maker 

DME Decision Maker Effectiveness 

DoD Department of Defense 

ECM Electronic Counter Measures 

El Effectiveness of Information 

EV Expected Value 

EW Electronic Warfare 

HCI Human Computer Interaction 

He Hypothesis Evaluation 

Hg Hypothesis Generation 

HO Human Operator 

Hs Hypothesis Selection 

ID Identification 
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INFOSEC 

IPB 

IW 

JAG 

JCS 

JDL/DFG 

KB 

KBS 

KF 

LOS 

MAU 

MB 

MIM 

MOP 

NAV 

OB 

00 

OPSEC 

PF 

PSYOP 

RECCE 

RL 

R/M 

RPD 

SA 

SHOR 

Ss 

USAF 

VI 

Information Security 

Intelligence Preparation of the Battlespace 

Information Warfare 

Judge Advocate General 

Joint Chiefs of Staff 

Joint Directors of Laboratories/Data Fusion Group 

Knowledge-B ased 

Knowledge-Based System(s) 

Kaiman Filter 

Line of Sight 

Multi-Attribute Utility 

Model-Based 

Mixed-Initiative Model 

Memorandum of Policy 

Navigation 

Order of Battle 

Object-Oriented 

Operations Security 

Probability of False Alarm 

Psychological Operations 

Reconnaissance 

Reinforcement Learning 

Recognition/Meta-Cognition 

Recognition-Primed Decision 

Situation Awareness 

Stimulus-Hypothesis-Option-Response 

Subject(s) 

United States Air Force 

Value of Information 
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DEFINITIONS 

Binary choice unit (BCU): unit of information in terms of a deterministic two-choice situation. 

Diagnosticity: the ability of a datum/piece of information to enable the ability to discriminate 
between alternative states of nature (situations). 

Genotypes: 

Index of determinism: a metric, ranging over (0,1-1/m) for m possible course of action, that 
measures the amount of determinism in a decision state; this metric ranges from (0) when all 
COA's are equally likely to (1-1/m) when a single COA can be deterministically selected 

Netwar: covert, aggressive, hostile activities typically employing computer-based techniques 
used to both penetrate, with malicious intent, computer and computer network systems. 

Phenotypes: 

Purposeful state: a state of a decision maker wherein an intent to make decisions by selecting 
courses of action exists (with a purpose, i.e., with expectation that the selected course of action 
makes progress toward a specified goal); this state also requires that alternative courses of action 
are not equally efficient in moving toward goal achievement. 

Relational information: that information which aids in refining models of relationships among 
structural components (of the decision model as reflected in the decision matrices herein). 

Semiotics: the theory of signs and symbols. 
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