
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
PROTOTYPING OF AN ACTIVE AND LIGHTWEIGHT ROUTER

by

Namik Kaplan

March 1999

Thesis Advisor:
Second Reader

Geoffrey Xie
Chris Eagle

Approved for public release; distribution is unlimited.

19990401 122

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999
4. TITLE AND SUBTITLE: PROTOTYPING OF AN ACTIVE AND LIGHTWEIGHT ROUTER

3. REPORT TYPE AND DATES COVERED
Master's Thesis

6. AUTHOR(S) Namik Kaplan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A new network management system named Server and Agent based Active Management (SAAM) has been proposed [Ref: 1]. SAAM can locate and

fix network problems much more quickly than today's systems. Stand-alone routers are used in current network architectures. In contrast, SAAM employs

dedicated servers that collect packet performance information from the routers and use the collected information to predict, detect and respond to network

problems. In other words, SAAM relieves individual routers from most routing and network management tasks. SAAM allows the development of a lightweight

router. The primary goal of this thesis is to prototype a lightweight router that is suitable for the SAAM architecture. The Active Networking approach was

explored. Active Networking refers to the addition of user-controllable computing capabilities to the network. The result of this thesis is a lightweight router

renning on a Linux machine. The router is connected to the Active Network Backbone (ABONE) by using a software package called Active NETworks Daemon

(ANETD). ABONE is an experimental wide area network, where more in-depth research of SAAM router and server can be conducted. All major active network

programming languages and their underlying support were evaluated. Verification of the lightweight router concept was conducted using server-probing

experiments. The results demonstrate that it is straightforward for a SAAM server to collect performance information from lightweight routers that support active

networking.

14. SUBJECT TERMS Networks, Active Networking, Internet, SAAM, ABONE, ANETD, ANTS, PLAN

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF TfflS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

142

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

DHC QUALITY INSPECTED 2

11

Approved for public release; distribution is unlimited

PROTOTYPING OF AN ACTIVE AND LIGHTWEIGHT ROUTER

Namik Kaplan
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by: ZU^-
Geoffrey Xie, Thesis Advisor

)an Boger, Chairma
Department of ComputerScience

111

IV

ABSTRACT

A new network management system named Server and Agent based

Active Management (SAAM) has been proposed [Ref: 1] . SAAM can locate

and fix network problems much more quickly than today's systems. Stand-

alone routers are used in current network architectures. In contrast,

SAAM employs dedicated servers that collect packet performance

information from the routers and use the collected information to

predict, detect and respond to network problems. In other words, SAAM

relieves individual routers from most routing and network management

tasks. SAAM allows the development of a lightweight router.

The primary goal of this thesis is to prototype a lightweight

router that is suitable for the SAAM architecture. The Active

Networking approach was explored. Active Networking refers to the

addition of user-controllable computing capabilities to the network.

The result of this thesis is a lightweight router running on a

Linux machine. The router is connected to the Active Network Backbone

(ABONE) by using a software package called Active NETworks Daemon

(ANETD). ABONE is an experimental wide area network, where more in-

depth research of SAAM router and server can be conducted.

All major active network programming languages and their

underlying support were evaluated. Verification of the lightweight

router concept was conducted using server-probing experiments. The

results demonstrate that it is straightforward for a SAAM server to

collect performance information from lightweight routers that support

active networking.

VI

TABLE OF CONTENTS

I. INRODUCTION. 1

A. SAAM (SERVER AND AGENT BASED ACTIVE NETWORK MANAGEMENT) 1

B. THE LIGHTWEIGHT ROUTER 2

C . BUILDING A LIGHTWEIGHT ROUTER 5

D. THESIS ORGANIZATION. 5

II. BACKGROUND 7

A. SAAM ARCHITECTURE 7

B. ACTIVE NETWORKING 9

III. DESIGN 13

A. SELECTION OF HARDWARE AND OPERATING SYSTEM 13

B. ACTIVE NETWORKING PLATFORM 15

C. ACTIVE EXECUTION ENVIRONMENTS AND LANGUAGES 17

1. ANTS 17

2. PLAN 20

a. Installation 20

b. Starting up PLAN aware router 24

3 . Smart Packets 29

a. Programming Languages used in Smart Packets 30

b. Installation of Smart Packets 31

IV. IMPLEMENTATION. 33

A. CONNECTING TO ACTIVE NETWORK BACKBONE (ABONE) 33

1. Register as a user 33

2. Invoke ANETD 35

3 . Registering the node 37

B. EXAMPLES 40

1. ANTS Examp 1 e 41

2. PLAN Example 43

Vll

V. VERIFICATION 45

A. PROGRAM TRACEROUTE_TIMESTAMP 4 6

B. PROGRAM TRACEROUTE_LIST 51

C . PROGRAM TRACEROUTEJROUNDTRIP 54

VI. CONCLUSIONS 59

A. LESSONS LEARNED 59

B. EVALUATION OF ACTIVE NETWORKING AND EXECUTION ENVIRONMENTS...60

C. SUGGESTIONS FOR FUTURE WORK. 60

LIST OF REFERENCES 63

APPENDIX A. ANETD CONTROL COMMANDS 65

APPENDIX B. ANTS PING PROGRAM 69

APPENDIX C. BUILDING PLAN. 75

APPENDIX D. LOG AND ARMAIN FILES 81

APPENDIX E. SMART PACKETS 93

APPENDIX F. REGISTERED NODES 97

APPENDIX G. LOG FOR ANTS EXAMPLE 103

APPENDIX H. OUTPUTS OF THE PLAN ACTIVE ROUTER 117

INITIAL DISTRIBUTION LIST 127

vm

LIST OF FIGURES

Figure 1.1 Server - Router Relation 3

Figure 1.2 Server Probing of the Server 4

Figure 2.1 An Example 7

Figure 2.2 Hierarchical Organization of SAAM servers 8

Figure 2 .3 Server Probing 10

Figure 2 .4 Active Node 11

Figure 2 . 5 Active Node Processing 12

Figure 2 .6 The Format of the ANEP Header 12

Figure 3.1 Basic Hard Disk Organization 14

Figure 3.2 Deployment of EE from a centralized source 15

Figure 3.3 Demultiplexing of packets by ANETD 16

Figure 3.4 Ping Configuration File T 19

Figure 3.5 Ping Start File 20

Figure 3 . 6 Ping.Routes File 20

Figure 3 .7 Plan Distribution 22

Figure 3 .8 Anep Contents 23

Figure 3 .9 Plan Contents 23

Figure 3 .10 Hello World Program. 25

Figure 3 .11 Ping Program 27

Figure 3.12 Plan Network Environment 28

Figure 3 .13 Smart Packet Format 30

Figure 3.14 Example Sprocket Program .-. 31

Figure 3.15 Example Spanner Program 32

Figure 4 .1 Abone Status 38

Figure 4.2 Latency Status of Abone 39

Figure 4.3 Packet Loss Status of Abone 39

Figure 4.4 Installing execution environments from the code

Server 40

Figure 4. 5 Data. conf ig File „41

Figure 4. 6 Data. routes File 42

Figure 4 .7 Data. start 43

Figure 4 .8 Data. stop 43

Figure 4.9 Hostfile 44

Figure 5.1 Active Network Example 46

Figure 5 .2 TRACEROUTEJTIMESTAMP. PLAN. 47

Figure 5.3 The output of TRACEROUTE_TIMESTAMP 48

Figure 5.4 The evaluation of Traceroute_timestamp.plan 51

IX

Figure 5 . 5 TRACEROUTE_LIST. PLAN 52

Figure 5.6 First output of TRACEROUTE_LIST 53

Figure 5.7 Second output of TRACEROUTE_TIMESTAMP 54

Figure 5.8 Output of TRACEROUTE_ROUNDTRIP 55

Figure 5.9 Output of TRACEROUTE_ROUNDTRIP 57

LIST OF TABLES

Table 3.1 Arguments of the PLANStart 26

Table 4.1 Registering Table 34

Table 4.2 Code Servers in the Abone .-. 35

Table 4.3 Hosts .allow File 36

Table 4.4 Node Registry Table 37

XI

Xll

ACKNOWLEDGEMENT/DEDICATIONS

I would like to express my deepest gratitude to Professor

Geoffrey XIE whose support, guidance, knowledge and enthusiasm have

been a constant inspiration to me. His patience and positive attitude

were invaluable to this research. I am also deeply indebted to my

second reader LCDR Chris EAGLE for his support.

xui

I. INTRODUCTION

A. SAAM(SERVER AND AGENT BASED ACTIVE NETWORK MANAGEMENT)

In current networks, when a user notices a network problem with

his/her application, he or she will notify a network administrator. The

network administrator then uses some network management system to

identify the problem by querying various network nodes (e.g., routers)

for usage information such as whether a particular link is up. After

the network administrator has located the problem, he or she will

attempt to solve the problem by reconfiguring software or hardware.

This process can require anywhere from a few minutes to several days,

far too long for the response time requirements of the Next Generation

Internet (NGI), which must support real-time applications and provide

stringent Quality of Service (QoS) to individual users.

To address the above problem, a new management system, named

Server and Agent based Active Management (SAAM), has been proposed.

[Ref: 1] . SAAM can locate and fix network problems much more quickly

than today's systems. Current network architectures requires each

stand-alone router to participate in almost all routing and management

tasks. This approach is becoming too inefficient to meet the stringent

Quality of Services (QoS) requirements of the NGI. SAAM addresses this

problem by relieving individual routers from most routing and network

management tasks. In particular, SAAM employs dedicated servers that

collect packet performance information from routers and use the

collected information to predict, detect and respond to network

problems.

To illustrate the approach used in SAAM, consider road traffic

monitoring and control during commute hours in a large city such as New

York. In this case radio stations are the main management entities.

They send , out helicopters to monitor traffic on roads in their

respective coverage region. The information from the helicopters is

aggregated at the stations and advice messages are broadcast in real-

time to commuters. The use of helicopters has several advantages.

First, a helicopter maintains a global view of a region, making it

possible to monitor traffic over long routes ("paths"); such monitoring

is required to produce real-time advice such as "It will take about 30

minutes to go to place A from place B following road X." Second, a

helicopter can spot traffic trends, predicting or detecting congestion

before the problem grows; such early warning is key for effective

traffic control. In contrast, each individual motorist can only monitor

traffic within a short radius.

Current network management systems behave like road traffic

monitoring. They depend mostly on reports from individual motorists.

SAAM follows the helicopter model. Specifically, SAAM maintains a

global view for each network region in terms of packet performance as

well as resource usage and availability. As such, quick responses and

proactive control are possible as seen in the Helicopter example.

It is obviously inefficient to require each router in the region

to maintain this global view. Unfortunately this is exactly what some

current routing algorithms (e.g., OSPF) are doing. SAAM addresses this

problem by employing a dedicated server ("helicopter") that will manage

the global view for the region. With the global view, the server

becomes a much more appropriate place than the router to perform

decision-making tasks such as routing and resource reservation. In

other words, SAAM allows the development of a lightweight router that

delegates most decision-making to a SAAM server. In this thesis I will

investigate how to prototype such a lightweight router using Active

Networking.

B. THE LIGHTWEIGHT ROUTER

SAAM deploys dedicated servers, at least one for each Autonomous

Region, that perform decision-making tasks for the routers (Such

servers are formally called SAAM servers). As a result, we can design a

router that is lightweight in terms of functionality requirements for a

SAAM environment.

Although lightweight, such a router should be carefully designed

to ensure good network performance. There are minimum tasks that the

SAAM routers will be performing.

Specifically, there are four tasks that the lightweight router

must perform even with the assumption that the SAAM server makes

decisions on routing, resource reservation, network management and

security.

1) The router will perform the task of packet forwarding. Actual

data packets will not go through the server. They will be handled

by the routers as before.

2) The SAAM server will make the routing decisions for routers.

However, the router must be able to accept server commands to

update its routing table. In general the router should be able to

act based on the server commands. The situation is illustrated in

Figure 1.1. The server sends instructions to the router; the

routers carry out the instructions. The server can send a program

to a specific router and that router can run this program. The

router should also have the execution platform for that

instruction. Any execution platform can be loaded to any router

by the server with the active networking approach. This program,

which is sent by the server, is called a resident agent. This

program has the ability such as to change the state of the router

to update its routing table.

Decision Making

► Implementing the
Decision

Router 1

Router 2

Figure 1.1 Server - Router Relation.

3) The router must be able to measure the packet performance

(delay, loss, etc.) of its links. It must be able to pass such

performance information to the server. This monitoring should

also be customizable by the servers. Because this monitoring is

essential for the server to maintain the global view of the

region and make correct decisions. In Figure 1.1 the

bidirectional arrows between the server and the routers reflect

this requirement that the routers send their performance

measurements to the server.

4) The router must support server probing. Figure 1.2

illustrates the concept of probing by the server. The aircraft

represents a probe, which is a mobile agent carrying code (e.g.,

JAVA applet) that will collect information from a specific path

of routers and bring the information back to the server. Such

probing gives the server a fast way to verify the authenticity of

the global view that it maintains, independent of router

measurements.

Serv

Router 1 Router 3

Router 2

Figure 1.2 Server Probing of the Server.

C. BUILDING A LIGHTWEIGHT ROUTER

Active networking is a solution to the problem of automatically

collecting pertinent network management information for a SAAM server.

Applications can inject customized programs into network nodes

with Active Networking. Now the network nodes do not only forward what

they receive, but they can also perform computations with them.

Information injected in the network can be modified, stored or

redirected while it is being forwarded. So we can say that Active

Networking refers to the addition of user-controllable computing

capabilities to the network.

Active Network can achieve its goal through the concept of self-

directing units. This unit, as we will see in the next chapters, is a

piece of code, which can be written in different languages or

platforms. There are two advantages to this approach.

1) The server will be able to dispatch resident agents to perform

necessary functions at the lightweight router. This meets

requirements 1 through 3 stated in the previous section by

sending necessary agents.

2) The server will be able to verify the information, which

routers collect with server probing. The SAAM server can probe

the routers at any time with the Active Networking approach.

This meets requirement 4 stated in the previous section.

D. THESIS ORGANIZATION

In this thesis I will investigate how to prototype a lightweight

router for SAAM using the Active Networking approach. This thesis is

organized into the following chapters:

Chapter I: Introduction. This chapter provides an introduction to

Server and Agent based Active Network Management (SAAM) and the Active

Networking approach that is used to build a lightweight router for

SAAM.

Chapter II: Background. This chapter provides a detailed

explanation of the SAAM architecture and the Active Networking

approach.

Chapter III: Design. This chapter explains the issues involved in

designing an active router, such as choosing the correct hardware, 0/S,

and the execution environments. This chapter also explains how to

connect a router to the Active Network Backbone (ABONE) testbed.

Chapter IV: Implementation. This chapter explains the steps that

are taken to build an active router.

Chapter V: Verification. This chapter describes a preliminary-

evaluation of the active router. In particular, a server probing

experiment is conducted using such routers.

Chapter VI: Conclusions. This chapter presents an overall

assessment and lessons learned. It also contains suggestions for future

work.

XX. BACKGROUND

SAAM architecture, the hierarchical design of SAAM and the

advantages of this architecture are explained in the first part of this

chapter. Active Networking is explained in the second part.

A. SAAM ARHITECTURE

We envision SAAM to be the common platform where different

network functions such as routing, resource reservation, network

management, accounting, and security can be integrated. By-

concentrating network management and control among a smaller number of

servers, SAAM can potentially be used for faster deployment of new

services than is currently possible [Ref: 2].

SAAM deploys dedicated servers that perform decision-making

tasks for the routers. This enables designing a lightweight router in

terms of functionality requirements for a SAAM environment. A SAAM

server has two major functions. First, a SAAM server maintains a global

view (Path Information Base) of a network region. The helicopter

example in the previous chapter explains this situation. SAAM servers

can monitor traffic over long routes. Second, SAAM servers make

decisions on behalf of the routers in the region. This is the first

step for building our lightweight router. The server can send these

decisions to routers, then the routers carry out the instructions.

SAAM architecture should be able to automatically and efficiently

reconfigure the network before problems occur. We need this for the

NGI. So it should be proactive which means the servers can detect and

react to changing network conditions in a very short time, perhaps

within fractions of a second. The term proactive can be explained with

the example in Figure 2.1. Suppose we have a path from A to F, packets

/• K
+ _

\ X /
A B \ /mm X E

D

Figure 2.1. An Example.

follow the path A, B, C, E and F. But consider that a problem arises in

the link between C and E. The architecture can provide a list of

suitable candidates for a replacement sub-path to E. The packets can be

directed to E via D.

SAAM organizes its servers in a hierarchy the same way as the

Domain Name Service (DNS). Each server is responsible for only a small

number of network nodes, which can either be routers or servers at

lower levels. At the first level, SAAM partitions the network into

autonomous regions, and sets up one server for each region. An example

two-level sever hierarchy is illustrated in Figure 2.2. Bl, B2 and B3

are first level servers, interacting with routers (C1-C8) directly. Al

is the second level server, it treats Bl, B2 and B3 as routers and

manages communications between them.

C2 C7

Figure 2.2. Hierarchical Organization of SAAM servers.

In addition to being scalable, another big advantage of the

server hierarchy approach is that it makes it possible to gradually

deploy SAAM into today's networks. Top level servers in the

architecture exchange information for its region. Al in Figure 2.2

speaks for its region with other top-level servers.

SAAM servers can provide new logical layers between the

management station of the network and the routers. For example; Bl in

Figure 2.2 will collect and maintain up-to-date path information for

its region. Bl can get information from Cl, C2 and C3. All servers at a

given level will communicate with a parent server that can maintain

performance information for paths crossing multiple regions. In Figure

2.2 Al is the parent server that can maintain performance information

for paths crossing Bl, B2 and B3. So we can say that the SAAM servers

can perform most management and control tasks in an automated and

timely fashion.

B. ACTIVE NETWORKING

Active Networking means the addition of user-controllable

computing capabilities to the network. The network is no longer viewed

as a passive mover of bits, but rather as a more general computation

engine. Active Networks allow individual users, or groups of users, to

inject customized programs into the network. The information injected

into the network can be modified, stored or redirected as it is being

transported.

Active Networks are capable of producing a new networking

platform, flexible and extensible at runtime to accommodate the rapid

evolution and deployment of networking technologies.

Active networking is a solution to the problem of automatically

collecting pertinent network management information for our network,

which can also support NGI. This approach also satisfies the needs of

the SAAM server. Because the SAAM server can query the routers in its

region, this helps to verify the QoS information coming from each

router. The SAAM server can also send commands, which the routers

understand and accept. So the server can tell the router to update its

routing table in the way it wants.

SAAM servers can obtain the information for a path by sending a

probe ("active packet") through that path. The probe records its

transfer delay and other performance statistics. An example is

illustrated in Figure 2.3. S2 is a SAAM server. It sends a probe

through the Rl, R2, R3, R4, and R5 and records the transfer delays for

the path between the routers Rl and R5.

One important advantage of this approach is that the routers can

be programmable by the server. This means that processing is moved to

the server. The processing is important for a lightweight router.

The Active Network consists of active nodes connected to each

other. Every node has an operating system and one or more execution

environments. The operating system at the node is responsible for

allocating and scheduling the node's resources (like bandwidth, CPU

cycles and storage). Each execution environment at the node implements

a virtual machine that understands a particular type of active packets.

Java's virtual machine is an example of an execution environment.

S2 S3

Figure 2.3. Server Probing.

The relation between an execution environment and the operating

system is illustrated in Figure 2.4. The functionality of the node is

divided between the Execution Environment and the Node Operating

10

system. Every Execution Environment exports an API or virtual machine

that users can program by sending packets to it.

The node Operating System hides the details of resource

management and isolates the behavior of Execution Environments from

each other. Meanwhile the Execution Environment hides the details of

interaction with the end user (through active packets) from the node

Operating System.

ACTIVE NODE

EXECUTION
ENVIRONMENT
(ONE OR MORE)

OPERATING
SYSTEM

Figure 2.4. Active Node.

The flow of packets through an active node is shown in Figure 2.5

[Ref: 3]. The active node classifies the packets it receives according

to their ANEP headers. Then these packets are placed in channels

according to this classification.

In Figure 2.5 EE1 receives ANEP packets of a particular type.

Each packet is encapsulated in a UDP datagram, which in turn is

encapsulated in an IP packet. EE2 also receives UDP datagrams

containing ANEP packets of a different type. EE3 receives TCP packets

encapsulated in IP. As we see in the figure every packet matches an

Execution Environment (EE). Each incoming packet should match at most

one EE. Incoming packets that match no description are dropped. In the

figure the IP packet is dropped because it does not match any EE. So no

EE receives it.

11

IP UDP ANEP

IP UDP ANEP

IP UDP

IP

IP

IP TCP

ANEP

Input Channel
Processing

ANEP UDP IP

► TCP IP

Output Channel
Processing

Figure 2.5. Active Node Processing.

Active Network Encapsulation Protocol (ANEP) allows users to send

their packets to a particular Execution Environment. It specifies a

mechanism for encapsulating Active Network frames for transmission over

different media.

The programs sent to the active node are carried as the payload

of an active network frame. The format of the ANEP header is shown in

Figure 2.6. Execution environments are assigned a type identifier

number in the packet header. So each packet can go to a different

execution environment according to the type identifier field of the

ANEP header. Detailed explanation of the ANEP fields can be found in

[Ref: 4].

Version Flags Type ID

ANEP Header Length ANEP Packet Length

Options

Payload

Figure 2.6. The Format of the ANEP Header.

12

III. DESIGN

Several important design decisions must be made when prototyping

a lightweight active router. They include the choice of hardware and

the operating system and the selection of an Active Networking platform

and the associated execution environments. The issues surrounding these

decisions are discussed in this chapter. Our design decisions are also

presented, which include installation and operation details for each

component that we have selected.

A. SELECTION OF HARDWARE AND OPERATING SYSTEM

It is very important to select the appropriate hardware and

operating system for the lightweight router because these decisions

affect every aspect of the router. The choice of hardware depends

largely on budget considerations. Today a very powerful PC e.g., a

400Mhz Pentium II processor runs around $2500. Such a PC works well

for prototyping a lightweight router as we have done. More expensive

hardware will be required to support higher data transmission speeds in

real networks.

The CPU, RAM and hard disk are the most critical components of

the PC. For our prototype we used a DELL XPSR400 PC. The CPU is a

400Mhz Pentium II. There are 256 MB of RAM (lOOMhz SDRAM) . The Hard

drive is an 8.4 GB EIDE Ultra ATA. The requirement of hard disk space

depends on the set-up of the PC. If one operating system were to be

installed, then 3GB harddrive would be enough. It should be noted that

if you plan to install multiple operating systems you should check the

hardware requirements for each of them. This is because each operating

system may have special hardware requirements. You have to find the

optimum configuration for your PC that will work with all target

operating systems. We selected a relatively large (8 GB) hard drive

because we wanted to try out more than one operating system.

The operating system at the router is also very important because

as discussed in the previous chapters, the operating system determines

which execution environments can be used. Specifically, the operating

system is a middle layer between the execution environments and the

hardware resources.

13

The DOS, NT and Linux operating systems are installed to our

prototype router. We used a program called System Commander Deluxe to

switch between them at boot time. System Commander is a software tool

made by VCOMMUNICATIONS, Inc. It simplifies the task of maintaining

multiple operating systems on a PC. Figure 3.1 shows the basic hard

disk organization, independent of any operating system. The Master Boot

Record is the first sector on the hard disk, controlling which

operating system will be loaded at boot time. When System Commander is

installed, it replaces the master boot record with its own master boot

record to control the boot up process. System Commander ensures that

different operating systems at the PC do not interfere with each other.

HARDDRIVE 0

Master Boot Record and
Disk Partition Table

Primary Partition 0

■ Primary Partition 1

Primary Partition 2

Primary Partition 3

Mater Boot Record

Partition 0 pointer and info
Partition 1 pointer and info
Partition 2 pointer and info
Partition 3 pointer and info

Figure 3.1. Basic Hard Disk Organization.

Choosing the proper operating system for the active node depends

on the Active Networking Platform on which you will implement all

execution environments. In our case the Active Networking Platform is

Active Networks Daemon (ANETD vl.O) which will be explained in the next

section in detail. One important thing that we should know about ANETD

is that you can run it with Linux on X86, FreeBSD on X86 and Solaris on

Sparc. So the main reason for our selecting Linux as our main test

operating system is that we wanted to run ANETD.

14

B. ACTIVE NETWORKING PLATFORM

ANETD is the software that connects our prototype router to the

Active Network Backbone (ABONE). The reason for choosing ANETD as the

networking platform is that first it is needed to connect to ABONE

second it allows the deployment of different execution environments to

the routers. ANETD is an experimental daemon specifically designed to

support the deployment, operation and control of active networks. ANETD

performs two major functions [Ref: 5].

1) It allows the deployment, configuration and control of

networking software (including experimental execution

environments for active networking) into the network. ANETD

allows routers to share the same software, and allows the

deployment and control of distributed network services through a

centralized source. Hostl in Figure 3.2 installs an EE from a

central server to host2 and host3.

Hostl Host2
Host3

Figure 3.2. Deployment of EE from a centralized source.

2) It demultiplexes active packets (encapsulated using ANEP) to

multiple execution environments located on the same network node

15

and sharing the same input port. ANETD listens to a unique user-

assigned UDP port and accepts ANEP encapsulated packets. ANETD

also checks the ANEP header of each packet to determine which EE

it is for. An application at the router can receive traffic

demultiplexed by ANETD coming from a port. It can be seen in

Figure 3.3 that the incoming packets are demultiplexed by ANETD

and they are sent to the appropriate execution environments.

Figure 3.3 Demultiplexing of packets by ANETD.

ANETD is implemented in "C*. It uses the standard UNIX API. So it

should be portable to any Unix platform.

ANETD can be invoked as a user application and it does not need

any runtime privileges [Ref: 5]. Typing the following command line can

start it

ad.<ostype>[-p <ANEPport>] [-u <localportpoolstart>] [-s]

• <ostype>

can have one of these values

Solaris = SunOS 5.5.x running on Sparc

linux = Linux running on Intel x86

bsd44 = FreeBsd running on Intel x86

• <ANEPport> is the port on which ANETD listens and is also

demultiplexed (Default is 3322).

• <localportpoolstart> is the starting port number for dynamically

allocating local ports (Default is 8000) .

16

• -s switch authorizes ANETD to send a small heart-beat HDP packet

every 30 seconds to the main ANETD server. The current main

ANETD server is sequoia.csl.sri.com.

For example, to start ANETD on a Linux system using ANEP port

3323 and allocating local ports starting at port 8010, one would enter

the following command line:

ad.linux -p 3323 -u 8010

As another example, when the command below is executed, ANETD

starts to listen on port 3322 and it uses 8000 for dynamically

allocating local ports. It also sends a small UDP packet every 3 0

seconds to the main ANETD server.

ad.linux -p -u -s

Control commands [REF: 5] used in ANETD are explained in Appendix

A. There are 6 commands, load, query, kill, get, put and conf. These

commands allow a client to deploy, configure and manage network

application software.

C. ACTIVE EXECUTION ENVIRONMENTS AND LANGUAGES

There are a few experimental execution environments available for

download. Each of them has some claimed advantages over the others. The

important thing is to choose the one that fits your needs the best. The

execution environments ANTS, PLAN and Smart Packets are installed and

tested on our prototype router. Programs written for these execution

environments can be found easily. They are explained in the following

sections.

1. ANTS

ANTS is a Java-based toolkit for constructing an active network

and its applications. Software Devices and Systems Group Laboratory for

Computer Science Massachusetts Institute of Technology developed it.

17

The latest version is 1.2. A. It can be downloaded at

http://www.sds.lcs.mit.edu/activeware/ants/.

ANTS requires Java and Tel to build and run. If you have Linux

RedHat 5.1, you do not have to worry about installing Tel, it is in the

packages. ANTS is written entirely in JDK 1.0.2 compliant Java and can

be run as a user level process with no special privileges. Before

building from the ANTS distribution you must set your Java class path

environment variable to include the home directory of the downloaded

ANTS distribution. For example if that directory is /home/ants, then

you must set,

setenv CLASSPATH $HOME/ants:$CLASSPATH

Then you type "make" at the top-level directory and ANTS will be

fully built. The full distribution contains the following directories.

- ants, the implementation of the active node runtime.

- apps, network applications and their samples.

- docs, papers and javadoc generated APIs.

- runs, network configurations and result files.

- utils, general purpose utilities.

Classes of particular interest are: Node, Channel, UDPChannel,

ConfigurationManager, Capsule, Protocol, Application.

The apps directory contains sample applications. This directory

may also be used as a platform to develop new applications. There are a

couple of useful techniques for debugging the applications you

construct. One of them, the log method of the Node class causes a

message to be echoed on standard error. Another one is the recompiling

with the static field Entity.logging set to true, which causes status

messages to be printed.

The docs directory contains two papers and the javadoc generated

API reference pages. One paper describes the ANTS architecture. The

other paper describes the general design and usage considerations for

the ANTS programming model.

The runs directory contains the configuration files that describe

network arrangements, route files that describe route tables, start

scripts that launch a network experiment, log files that record the

output of the node messages.

18

The utils directory contains several classes that do not depend

on the ANTS architecture. MD5 class, which is related to security, is

also found in this directory.

Next we describe an example ping program written to work with

ANTS. The complete listing of the program is available in Appendix B.

The program consists of three Java files: the PingCapsule class, the

PingProtocol class and the PingAplication class. The ping program can

be run with the script file ping, start, which can be found in the

distribution. The script file to run this ping program can be found in

the runs directory.

A configuration file is needed to start the ping program. The

configuration file is shown in Figure 3.4 and the start file is shown

in Figure 3.5. The hosts in this example are three ports in the same

machine.

simple ping configuration -
- three nodes (source, router, destination)
#' - duplex connected by udp
- all running on the same machine
- source pinging destination

node 18.31.12.1 -routes ping.routes -log 255
channel 18.31.12.1 melon.cs.nps.navy.mil:8001 -log 255
application 18.31.12.1 apps.PingApplication -target 18.31.12.3
manager 18.31.12.1 -gui true -log 255

node 18.31.12.2 -routes ping.routes -log 255
channel 18.31.12.2 melon.cs.nps.navy.mil:8002 -log 255
manager 18.31.12.2 -gui true -log 255

node 18.31.12.3 -routes ping.routes -log 255
channel 18.31.12.3 melon.cs.nps.navy.mil:8003 -log 255
manager 18.31.12.3 -gui true -log 255

connect 18.31.12.1 18.31.12.2
connect 18.31.12.2 18.31.12.3

Figure 3.4 Ping Configuration File.

The ping.route file is shown in Figure 3.6. This file in fact is

created from the configuration file in Figure 3.4. The contents of

these files will be explained in the next chapter. The ping program can

19

also be run in an existing network. There are also script files for

this purpose in the distribution of ANTS. These files are called join

files.

Java ants.ConfigurationManager ping config 18 31 12 3 >&
18.31.12.3.log &
Java ants.ConfigurationManager ping config 18 31 12 2 >&
18.31.12.2.log &
java ants.ConfigurationManager ping config 18 31 12 1
kill %?18.31.12.3
kill %?18.31.12.2

Figure 3.5 Ping Start File.

shortest routes, automatically generated

source destination next addr

18.31.12.1 18.31.12.2 18.31.12.2 melon cs .nps .navy mil 8002
18.31.12.1 18.31.12.3 18.31.12.2 melon cs .nps .navy mil 8002
18.31.12.2 18.31.12.1 18.31.12.1 melon cs .nps .navy mil 8001
18.31.12.2 18.31.12.3 18.31.12.3 melon cs .nps navy- mil 8003
18.31.12.3 18.31.12.1 18.31.12.2 melon cs .nps navy mil 8002
18.31.12.3 18.31.12.2 18.31.12.2 melon cs .nps navy mil 8002

Figure 3.6 Ping.Routes File.

PLAN

a. Installation

Plan (Programming Language for Active Networks) is a new

language for programs that are carried in the packets of a programmable

network. Plan is a strict functional language providing a limited set

of primitives and datatypes.

20

You can install plan software in two ways. You can obtain

the class files and execute them directly or you can obtain the entire

source and build it yourself. Both distributions contain all of the

documents and the sample programs.

Three packages are needed for source installation.

-JDK l.l.X: Java Development Kit

You can get this at

http://www.blackdown.org/java-linux/Mirrors.cgi/.

-Pizza: A Substantial Companion to Java, version 0.39

You can get this at

http://www.eis.unisa.edu.au/~pizza/.

-JavaCC: The Java Compiler Compiler, version 0.6.1

You can get this at

http://www.suntest.com/JavaCC/index.html

These three packages should be installed first. Next plan

source can be unpacked. All these operations should be executed in the

directory that you would like the source to be unpacked.

If you are not interested in acquiring the source code, you

can get the classfiles and install them. For classfile installation you

need the pizza distribution, but you do not need to install JavaCC.

Both source installation and classfile installation are explained in

Appendix C in detail.

Plan is implemented in Java, API 1.1, and is composed of a

number of packages with names in the form of PLAN.*. Basic knowledge of

compiling and running Java files is needed for running plan programs.

The examples below are executed from the plan directory created in

accordance with Appendix C. If you like to execute the code from some

other directory, simply prepend the class names given to the Java

command with plan. For example you would type in the command lines

Java PLAN. ARMain-?

instead of

Java ARMain -?

This is useful if you install plan in some other machine.

You have to set your classpath in order to run plan. If plan is

installed

21

home/nkaplan/planc/PLAN

you would update your classpath to

home/nkaplan/planc

The full distribution contains anep, log and plan

directories shown in Figure 3.7.

HHHIMVWm
Be ;E<Si Mo* Ö»lp

■ -IJ-IJCI

L3 U Ü |
|Anepj tog Plan PUN-iev.-

(jobiooji) "~~l«sr" ; " : ' " ' ; : ' : " - - ^
!^SIart[^E^bi»9-O.J»MicrDto«OI64g%™3<toip..|i!tWcampiilar I-3G\ laqfcia lldC.-Mh.rirt. ■ fejffll» WI7AM "

Figure 3.7 Plan Distribution.

The anep directory has the ANEP distribution. Recall that

ANEP (Active Network Encapsulation Protocol) specifies a mechanism for

encapsulating Active Network frames for transmission over different

media types. The contents of the anep directory are shown in Figure

3.8.

The log directory has the log file. This file records the

output when the plan programs are run so this is very useful for

tracing the programs. The log file is shown in Appendix D.

The plan directory contents are shown in Figure 3.9. There

are the Anon, basis, docs, fixedroute, install, interp-tests,

22

?C-\thesis\planZZ1\ANEP
£dit jgg» nelg:;

ä]ANEPacketjeva
IsjANEPdjava
ygANodejova
jaJANONAddress.java
j^ANONLeafPacket.java
|j) ANONLeefPacket&:ception.java
|Ji) BadANEPversionException.java
j3)DispetchPair.jeva
fjjj DispatchPairListjeva
ySJHandler.java
W Makefile
3jj Marshalling.java
g]MD5.java
&) PairNotFoundExceptionjava
j£)SchemeAddr.java
^ SchemeAddrlFvljeva
i|l SchemeAddrlPvlPoftjeva
^TUV.java
gJTLVUstjava
|aij TLVNotFoundExceptionjava

;2!objed(s} -.'««KB ' " '

Figure 3.8 Anep Contents.

* £cSt View Help

iDAnon
B basis

docs
^Jfixedroute
^install
E3 irrterpjests
^interpreter
llnet
ilport
23 resident
£3rout_tests
£lSlrp
23 util
i]ARMain.pino
3Build.bat

License
*j Makefile
j5]Ping.pizza
JlPlAJslStartpiziaj
»jREADME.instafl
l<«|start_router

;21 object® [34.6KB

gfeterfl ^B(pfoJ^MiciD„[g%ffB..| jMyÖ "|aC\ [dlCfths IdCyhe lyMcro. |ljgFroqr.[iaCAth..;

Figure 3.9 Plan Contents.

23

interpreter, net, port, resident, rout-tests, slrp and util directories

and the other important files. One file that should be noted is

theARMain.pizza file. This file contains the ARMain class that serves

as the entry point for the router. This file is shown in Appendix D.

You can use the plan distribution in a number of ways.

There are three ways you can

set up an Active Router

send a plan program to an Active Router

run a non-network plan interpreter

b. Starting up PLAN aware Router

A local machine is set up as an active router first. Active

router in this content means that the router is ready for PLAN

programs. ANETD is not necessarily used to install PLAN execution

environment from some other place. The ARMain class is the entry point

for the active router. When %java ARMain -? is typed, the usage of

ARMain can be seen.

Java ARMain [i] [-v|-d|-q] [-1 logfile] [-ip port]

[[-m master] [-h hub] | [-rf routtab file]]

[-nnl,n2, , nk]

An example is described below, which shows to start an

Active Router in one machine.

%java ARMain -v -ip 7081

24-Nov-98 4:16:18 PM: ARMain: verbose mode on.

24-Nov-98 4:16:18 PM: ActiveRouter.start: Active router

up!

24-Nov-98 4:16:18 PM: ActiveRouter: OUT to Ipv4UDP

:(m,7081) :fstCookie

24-Nov-98 4:16:18 PM: ActiveRouter: OUT: succeeded

24-Nov-98 4:16:18 PM: SLRPmaster:received a request to

add: Ipv4UDP : (m, 7081)

24-Nov-98 4:16:19 PM: ActiveRouter: OUT to Ipv4UDP

(m, 7081)

24

24-Nov-98 4:16:18 PM: ActiveRouter: OUT : succeeded

24-NOV-98 4:16:18 PM: ActiveRouter: IN from Ipv4UDP :

(m, 7081):fstCookie

24-NOV-98 4:16:18 PM: ActiveRouter: IN from Ipv4UDP :

(m, 7081):newRT

24-Nov-98 4:16:18 PM: SLRP: received new route table.

Now we can start another active router by opening another

terminal window and typing:

%java ARMain -ip 7082 -m melon.cs.nps.navy.mil:7082 -v

24-Nov-98 4:17:11 PM: ARMain: verbose mode on.

24-Nov-98 4:17:12 PM: ActiveRouter.start: Active

router up!

24-Nov-98 4:17:12 PM: ActiveRouter: OUT to Ipv4UDP

:(m,7081) : addme

24-Nov-98 4:17:12 PM: ActiveRouter: OUT: succeeded

24-Nov-98 4:17:12 PM: ActiveRouter: IN from Ipv4UDP :

(m, 7081):fstCookie

24-Nov-98 4:17:12 PM: ActiveRouter: IN from Ipv4UDP :

(m, 7081) .-newRT

24-Nov-98 4:17:12 PM: SLRP: received new route table.

A plan program is a list of definitions, which could be

function definitions, exception declarations or variable bindings.

There is just one function in the Hello World program in Figure 3.10.

fun doit (): unit =

(print (thisHost ()); print("says : Hello World!\n"))

Figure 3.10 Hello World Program.

25

We should learn how to use PLANStart tool before we run the

Hello World program. The PLANStart tool provides us to inject the plan

programs into the network directly from the command line. Typing Java

PLANStart gives us the usage of the PLANStart tool.

%java PLANStart

Java PLANStart [-v] [-p port]<code><RBxrouter Ipv4 2address>

-v : produces a verbose output.

-p : allows you to specify the outgoing TCP port.

-code : is the name of the file that contains the plan

program.

-RB : specifies the initial amount of resource to hand the

packet going into the network.

router Ipv4 2adress : specifies the host that is to be the

entry point into the network.

Table 3.1 Arguments of the PLANStart.

We can now run the Hello World program. Suppose we have

written the program in a file called HelloWorld.plan. We can start the

program by typing,

Java PLANStart HelloWorld.plan 10 melon.cs.nps.navy.mil

Now the program waits for us to give the next input. The

next input is the initial invocation. Plan is a list of definitions so

when the program arrives at an active host, we must specify which

function to start executing and with what arguments. In the HelloWorld

program there is only one function and it takes no argument, so we

type:

doit ()

26

Then the response comes :

IPv4 : melon.cs.nps.navy.mil/131.120.1.244 : HelloWorld!

We can now run more useful programs. The second example is

a simple ping program, which uses the active network. The ping program

tries to reach a remote host. When it reaches the host, it tries again

to reach the original host. And finally it prints "Success" when it

returns to the original host. The ping program is shown in Figure 3.11.

fun ping (source : host,destination : host,outgoing : bool) : unit =

if outgoing and (thisHost () = destination) then

OnRemote (ping (destination, source, false),

source, getRB (), defaultRoute)

else

If not outgoing and (thisHost () = destination) then

print ("Success")

else OnRemote (ping (source, destination, outgoing),

destination, getRB (), defaultRoute)

Figure 3.11 Ping Program. •

We can use the same active network that we set up for the

HelloWorld program. Suppose we want to ping melon.cs.nps.navy.mil:7082

from melon.cs.nps .navy.mil:7081. The ping program can be saved as the

Ping.plan. To run this program, we would type:

%java PLANStart ping.plan 60 melon.cs.nps.navy.mil:7081

The initial invocation would be

27

ping(getHostByName("melon.cs.nps.navy.mil:7081"),

getHostByName("melon.cs.nps.navy.mil:7082),

true)

The initial invocation here is different from the one used

for the HelloWorld program. The invocation starts with ping stating

that it is the function call. The first two arguments in the invocation

are the function calls, which are evaluated locally before being sent.

Let us look at the details of the plan program how it

works. Plan programs are injected by a host into the active network.

The situation is illustrated in Figure 3.12.

imj ilicit
pert

T

[PLAN \
I interpreter I

Host

/PLAN \
(interpreter)

Router

/PLAN \
I interpreter 1

Router

Figure 3.12 Plan Network Environment.

28

The host application opens a connection to the local plan

interpreter. The application sends the plan packet via this connection.

The plan packet contains the plan code to be executed. In our first

example it is the HelloWorld program, which will be placed in the

packet. The connection created also serves to pass the output from the

plan program back to the host. When a plan packet is injected into the

active network, it is recognized by its port number by the other

routers. By this way the output can be sent to the same port of that

plan program.

3. Smart Packets

Smart packets is a DARPA-funded Active Networks project. They are

written in a tightly encoded, safe language specifically designed to

support Active Networks. Smart Packets improve the management of large

complex networks by [Ref: 6]

moving management decision points closer to the node being

managed

targeting specific aspects of the node for information rather

than scatter-shot collection

abstracting the management concepts to language constructs,

allowing nimble network control.

The programs can be injected into the network with smart packets.

The programs are capable of performing computations and manipulations

on behalf of the user. These programs increase user and application

control over the network.

Smart packet format is shown in Figure 3.13. Basically smart

packet header has four fields: version number, type, context and

sequence number. A common smart packet header is encapsulated within

ANEP, which will be explained in the next chapter. ANEP Daemon is the

injection and reception point for smart packets. It also contains the

virtual machine for executing the programs received. The daemon injects

the smart packet into the network. The smart packet can be sent to

either an end host or to each router in a hop-by-hop manner.

29

a. Programming Languages used in Smart Packets

There are two programming languages used in smart packets.

They are Sprocket and Spanner. Sprocket is a high level language like

C. It is based on C's grammar and keywords. C++ style comments can also

be used in the sprocket code. Primitive types like int, short and char,

which are used in C, are replaced with types that show the type size

and sign. There are also built-in array, string and list types. An

IP

HEADER

IP HEADER
ROUTER ALERT

VER FLAGS

HEADER

TYPE ID

PACKET

ANEP
HEADER

SOURCE

DESTINATION

INTEGRITY CHECKSUM

VER
SMART

PACKET

TYPE CONTEXT SEQUENCE NUMBER

SMART I ARTPAC AYLOAD

((SODE)JAV

HOLDS AVALUE IDENTIFYING THE
ORIGINATOR OF THE SMART PACKET

LANGUAGE UPDATES
PACKET FORMAT CHANGE

PROGRAM.DATA
ERROR, MESSAGE PACKET

Figure 3.13 Smart Packet Format.

30

example Sprocket program is shown in Figure 3.14. This program gets the

number of interface devices, the addresses associated with those

devices and the Maximum Transmission Units for those devices. This

information then placed into a packet and sent back to the originating

host.

Main () {
Array of address addr;
Packet pkt;
unsigned8 num_interfaces = num_ifaces ();
pkt.data_append (num _interfaces);
unsigned8 index;
for (index = 1; index <= num_interfaces; i++) {
addr.set_size_of_dimensions(num_adresses(index));
get_addresses(addr);
pkt. data_append (index) ,-
pkt.data_append(addr);
pkt.data_append(get_iface_mtu(index)),-

}
pkt.send();

}

Figure 3.14 Example Sprocket Program.

Spanner is similar to assembly language. Spanner is

designed especially to yield very small-encoded programs. There are

differences in Spanner from assembly language. One difference is that

there are declared variables in Spanner. Another difference is that

Spanner has no access to memory for this reason the storage is done

either on the stack or in variables. There are also branch operations

in Spanner. A simple Spanner example is shown in Figure 3.15. This is

equivalent to the Sprocket program shown in Figure 3.14.

b. Installation of Smart Packets

The last version of smart packets, which is 1.0.1, can be

obtained at http://www.net-tech.bbn.com/smtpkts/smtpkts-index.html. The

31

file spkt-1.0.1.tart.gz should be installed. To install it, first

unpack it; by typing

gunzip spkt-1.0.1 .tart.gz

tar spkt-1.0.1.tart

The complete distribution includes Freebsd-2.2.6, anepd,

bardemo, data, doc, injector, libsrc, scripts, spanner, sprocket, tools

and vm directories. The installation instructions of smart packets are

in Appendix E.

decl- -addr-arr-np %addresses;
decl- -pkt %pkt;
niface;
papp @ &;
decl- -u8 %index #1;

$ loop :lt & &;
brt $done;
papp %pkt &;
naddr &;
sdim %addresses 8;
gaddr & &;
papp %pkt @;
mtu &;
papp %pkt @;
ainc- -np & ;
bru $loop;

$done :send
cont;

%pkt ;

Figure 3.15 Example Spanner Program.

32

IV. IMPLEMENTATION

The detail of our implementation of a lightweight active router

is presented in this chapter. There are four major steps to build the

router and connect it to the ABONE: (1) choose the hardware, (2) select

and install the operating system, (3) install ANETD, and (4) connect to

the ABONE. The first 3 steps have been explained in the previous

chapter. Step 4 is explained in this chapter. There are basically three

phases in step 4. They are user registration, download and installation

of ANETD, and node registration. These phases are explained in section

A. Then in Section B two examples will be given to illustrate how to

download an EE to the router and how to build a small active networking

testbed within the ABONE.

A. CONNECTING TO ACTIVE NETWORK BACKBONE (ABONE)

1. Register as a user

The ABONE is an experimental network consisting of active routers

built by different institutions. New ideas related to Active Networking

can be tested on this network. So being a part of the ABONE is very

helpful when researching Active Networking techniques. The ABONE is

open to everyone who is interested in Active Networking. The main Web

site about ABONE is located at http://www.csl.sri.com/ancors/abone/.

A user must register to be part of the ABONE. Specifically, he or

she must supply information described in Table 4.1. The information

entered is made available to the other nodes connected to the ABONE.

Registered users can be seen in Appendix F. One of the important items

that you enter is a public key. You can get the key generation program

at the same site http://www.csl.sri.com/ancors/abone/. There are three

key generation programs written for FreeBSD on X86, Linux on X86 and

Solaris on Sparc. You can get the appropriate one for your machine.

After getting your public key you can register as a user to the abone.

There are some rules that abone users should obey.

- Hosts should have a decent connection to the Internet.

- Hosts should not periodically shut down or loose

33

Connectivity.

- Hosts should be reachable through non-standard UDP

ports.

The last bullet above is important. Because there may be a

firewall in your organization and you must open some ports publicly to

User Registry Information

Name:
(Name of the administrator)

Password:
(Needed to be able to modify the user information later)

Reenter password:

IP Address (aa.bb.cc.dd):
(Only this machine would be authorized to administer the
ABONE nodes)

Public Key:
(Public Key of the administrator)

Organization:

Address of Organization:

Phone Number:

Email:

Purpose of registering with ABone:

Table 4.1 Registering Table.

34

the ABONE. For example, I requested the security officer to open some

ports as UDP to the public for our computer melon.cs.nps.navy.mil. It

is advised for you to get all the port numbers before trying to open

them in your organization.

2. Invoke ANETD

The ANETD can be invoked after user registration is completed.

The following command line should be used:

adlinux -p 3323 -u 8010 -s

Once started, ANETD interacts with the main server, which is

sequoia.csl.sri.com. It installs two important files in the directory

where ANETD was started. The first file is shown in Table 4.2. This

file includes pointers to the code servers in the ABONE. The code

servers are sequoia.csl.sri.com and bro.isi.edu. The second file is

shown in Table 4.3. This file basically includes the IP addresses of

all the nodes in the ABONE and their public keys.

IPAddress: sequoia.csl.sri.com
Port: 7000
Organization: SRI International
Organization_Address: 333 Ravenswood Ave. Menlo Park, CA
95024
Name: Livio Ricciulli
Phone_Number: 650-8592969
Email: livio@csl.sri.com

IPAddress: bro.isi.edu
Port: 80 N

Organization: USC/ISI
Organization_Address: 4676 Admiralty Way, Marina del Rey,
CA 90292
Name: Jeff Kann
Phone_Number: 310-822-1511
Email: kann@isi.ed

Table 4.2 Code Servers in the Abone.

35

dOO.csl.sri.com
udoNOw7BOK65hhwpwgpOzp/Pj//aYUTfEo2N4s8bW2kjs3rVtbfohkOUJA6cvcbLXZO
fGJybj gnalj 6G2NPtvQEAAQ==
capri.sri.brainstorm.net
umVy3uvlLpaSx7W83haqRoNVrEH/cNatGaa7B4YgQYR14K9qPzrBpdoVk7rKVTDyX+0
pUc2B6aNepLsyD/FjWQEAAQ==
zaria.csl.sri.com
r8K+gZ4ZRo5usA6751RD5Kh7HNwGAul0HvuxGE5v5epOFcW0EgkLcTsBq7fjDWkW6EU
57oNG6F6e451rUln2oQEAAQ==
130.107.16.135
xc5Z6TVuR26Y7HtiAQ3Y7hXjzZwss6g+z2KignNBrlDa2YWo3KFVFsgUwfksUlPH27I
DLeU7ioqV5wmMhfwJ8QEAAQ==
138.100.10.152
xcNrTqbIK3oPl/k9ovUeWhfoNatzT5t7g01hDguI+VC9Ef0GUHDwUtym3LqYCZudPlg
NrRtxTGMwSoHyJzJ8wwEAAQ==
128.9.160.165
sPEYULWL+Ovft6+JEPbi7tfSnX3PfCl68PqAKwiWrGWfqKl8UsZHRDlN4G194fUa5/
tXHHW2HM7Pv93zEoRwEAAQ==
128.9.160.194
zQYprXgdnYjqkehgKqAh6RgEOOM15PJjp/EDCq/kBzl3F+B51LhXmpfoox4SKukyBNP
6sv4PdPiLqIEy4xPkLQEAAQ==
207.3.230.162
pOP54oiR+Wvi/iKQzcAfxy2kazJWYFdAOkUx96WDmS3trnaPMlrn8GkYBDwSR8DX8Yh
JdNMTD zVzbG/gGUXurQEAAQ==
155.99.212.119
ysmUPZAyvTZOC8EygGpv5jQqVWth644B3bG+zhQXnDYuXk2dT2kOnZauqyNVJjeupOF
aGeYl5IeUnNi/ClzpSQEAAQ==
129.55.10.190
+KHXfCL/OdjIcbNoOVh3mUY8vDlXXp03kronjWwKUZu/vJhlN+v03Unpn/mYc008sMU
E417dlMGakWdZrSlLeQEAAQ==
199.171.39.3
5hTIUzwLCD3WtRKlflkUZssrTvfcW99oKPFmv9+CkDhcAZUjPAk+UIxiHgOCe9/2moY
Q5foAhSGkXeFnll2zCQEAAQ==
166.104.36.173
4jhjie
166.104.45.177
m/aOb8BxyxbiknsOAjEMKHXlOdhWr4c39FDDrzXDyiOL7wqpZiXDKZNEUCfViMwBmO
0OQCLDcrRv4gldXRnEwEAAQ==
166.104.45.194
rZLD5aZb+8iyy7iGtRQVrugl3diOn42lPOqMwuTeQ09t05MsulQzkl7c58MKWHRyKFz
eJ0yCCd6k0uVSXeboQwEAAQ==
128.174.240.14
mQCNAy8b62UAAAEEAMbYY9kAyOHAFb9cblO7QiACmFdvcy3WjNZNc/mRrk9Qcp0v
158.130.12.150
lU0URh6BazDPNk2A6wMJ783lPE7rlGAyx0ARW3PKKo4rJy5Z3ppMg4rC/Um6YN9qw9f
m7JPLQo9LGMEywM+QawEAAQ==
131.120.1.244
t2pdU7tWzikq3cklFxyYpe6xDLqd4mdTiDp7cpIjGGnGHlsc+w3miVKE88rfpa39DIm
eIELTDHWFfIxVgOBOrQEAAQ==

Table 4.3 Hosts.allow File.

36

The machine is now connected to the ABONE with the invocation of

ANETD. When ANETD is invoked with the command ad.linux -p 3323 -u 8010

-s, -s option makes ANETD to send a small UDP packet every 30 seconds

to the main ANETD server. This is good because the server can now make

some measurements about the nodes with UDP packets.

3. Registering the node

The next step is to register the node to be a part of the ABONE.

The node registration table is shown in Table 4.4. A list of all nodes

registered for the ABONE is maintained at [Ref: 7] . You can also

register your node as a code server of the abone. The code server

registry entry can be found at [Ref: 8].

Node Registry Information

IP Address (aa.bb.cc.dd):
(This machine would run the ancors daemon and participate
in ABONE activities)

Listening port number:
Please use port 3322 as default. If you want to run
multiple virtual networks on the same host, repeat this
registration process changing port number each time.

Organization:

Address of Organization:

Name (point of contact)

Phone Number (for the point of contact):

Email (of the point of contact):

Table 4.4 Node Registry Table.

37

Our node melon.cs.nps.navy.mil is part of the abone at the

moment. Active Networking experiments can be tested in this network

now. The examples about active networking will be shown in the next

chapter. The text output of the current abone status is shown in Figure

4.1. Melon.cs.nps.navy.mil is listed as the eighth node in the figure.

S/Ele Edit yiew fio Communicator Help

I-;:'i'. . #. . :a :. A ä- A ■■ -s* * * m PSM
pi ; Back Fcr./irrt . Reload Home Search Netscape Print Security ->i~ lü
| ^"Bookmarks A Location:]hnp://sequoia.csl.sri.com:7000/test/abone.status T| ©'What's Related
► .„„V:

Abone connectivity status for Sat Jan 9 09:29:16 PST 1999

1=128.173.92.77
2=bro.isi.edu

i 3=clitus.cs.uiuc.edu
4=dsg.11.mit.edu
5=active.netsec.tis.com
6=view.cs.Columbia.edu
7=dO1.csl.s ri.com
8=melon.cs.nps.navy.mil
9=switchware.bellcore.com

Legend: Delay(ms)/Throughput(KBit/s)/Loss(%)

1 2 3
128.173.92.77 1.16/29145.20/0.00 0.00/0.00/100 00 32.90/1218.49/0.00
bro.isi.edu 81.93/648.15/0.00 2.25/26330.30/0.00 63.51/808.14/0.00
clitus.cs.uiuc.edu 28.17/1311.63/0.00 0.00/0. 00/100 00 2.31/20393.98/0.00
dsg.ll.mit.edu 27.92/1032.94/0.00 0.00/0.00/100 00 39.85/830.99/5.00
active.netsec.tis.com 36.81/4 69.21/0.00 0.00/0.00/100 00 65.50/383.43/0.00
view.cs.columbia.edu 0.00/0.00/100.00 0.00/0.00/10D 00 0.00/0.00/100.00
d01.csl.sri.com 77.76/366.90/0.00 0.00/0.00/100 00 70.44/384.96/0.00
melon.cs.nps.navy.mil 108.15/0.00/0.00 0.00/0.00/100 00 118.04/0.00/0.00
switchware.bellcore.com 18.50/0.00/0.00 0.0D/0 00/100.00 73 61/0.00/0.00 58.66/0.00/O.i

al-J- :--■■-•--»T-n---: -"- :■-.---.--I -,-•..-.'.-,..-./■ '.• •■'' ••'■"■' "."•'-'■ '-JÜ
pjf <-u> | ■.■'■.■.-. ■■"..: lOocumant Done .ii_<äj&ja_iü'

Figure 4.1 Abone Status.

Information about the nodes can also be viewed graphically. The

transfer latency information is shown in Figure 4.2. The packet loss

rate information is shown in Figure 4.3. You can see the current

situation of the nodes at anytime at this web site

[http://sequoia.csl.sri.com:7000/java/abonestat.html].

38

*Jr Abone Status - Netscape
gle Edit yimt So ComrmtnicaJor fciolp

-• ■ .-r, -
AJ>onecorm«ctisJ5rstaH»forSatJan 9 09:29:16 PST1999 ÜJSggll PackglLoss [IS

d01.csl.srl.com M

.i*#melon.cs.nps.navy.mll

swltchware.bellcore.com !

128.173.92.77

0 0 Lacncy
fflB I386wr) Lattosy

>-255<m£) Late».
, Size is indication of bandwidth

«J . ; J 2l
3>^ ' ::Ji*p|3let;:fjbOI)BJHWinO ^ 3lJ?*_ä-_itfi-j35.. _£J

Figure 4.2 Latency Status of Abone.
tuJ,i.i.i.i.m.iiiL«Baa»

Bto Edit tfew fjo Communicator Help

-W^ffg

■sjgM

Abone conMiaivftsrstatusforSallan 9 09:29.16PST1999 Latency | [Factel Lossjff

| OWPacketLoss . * ,
g :2 8°/>?.«clce;Lo»

>-?1 SHI 1>>rlrn T «««

"a

switchware.bellcore.com j|

^
ÜTHD- '" " IReodingnle. Don? 'gf„;^.„,a,„,!ä^,,a N» 1

Figure 4.3 Packet Loss Status of Abone.

39

B. EXAMPLES

These examples show how to install an execution environment from

the main server to different hosts. This main server is the main ANETD

code server, which is sequoia.csl.sri.com. There are two examples in

this section. First one shows how to install ANTS execution environment

and the second one shows the PLAN execution environment. These

execution environments are installed to hosts by using ANETD, so ANETD

commands and files will be used in the example.

The situation is shown in Figure 4.4. Melon.cs.nps.navy.mil is

part of the ABONE; we showed how to become part of the ABONE in the

previous sections. Our node now can install an execution environment

and send a program, which is written for that execution environment.

 „—.—_„

ANETD
sequoia.csl.sri.com

ANETD

melon.cs.nps.navy.mil

ANETD

dOl.csl.sri.com

Figure 4.4 Installing execution environments from the code

server.

40

1. ANTS Example

This example shows installing a small ANTS active network. There

should be ANETD running in the hosts to run this example. So if the

hosts that you are going to make experiments do not have ANETD, you

should install ANETD. The hosts used in this example are part of the

ABONE, so all of them have ANETD running. We do not have to worry-

installing ANETD.

Our node melon.cs.nps.navy.mil is going to install ANTS and run

an ANTS program in the active network in this example. The situation

can be illustrated in Figure 4.4. We are going to use the files in

ANETD distribution. First we have to change the data.config file in

ANETD distribution, which is configured for three ports in one machine.

This file is shown in Figure 4.5. The hosts are shown underlined in the

file.

- three nodes (source, router, destination)
- duplex connected by udp
- all running on the same machine
- source pinging destination

node 18.31.12.1 -routes data.routes -updateRoutes true
channel 18.31.12.1 melon.cs.nps.navy.mil:3322 -log 0
application 18.31.12.1 apps.DataServerApplication -target
18.31.12.3

node 18.31.12.2 -routes data.routes -updateRoutes true
channel 18.31.12.2 sequoia.csl.sri.com:3322 -log 0

node 18.31.12.3 -routes data.routes -updateRoutes true
application 18.31.12.3 apps.DataClientApplication
channel 18.31.12.3 dOl.csl.sri.com:3322

connect 18.31.12.1 18.31.12.2
connect 18.31.12.2 18.31.12.3

Figure 4.5 Data.config File.

41

We can set the environment variable display to the Xll display

being used. This is for output purposes. If this variable is set, then

the output can be seen on screen while it is being executed. To do this

type;

export DISPLAY="melon.cs.nps.navy.mil:0.0"

We can now type the command "make" in the top directory that you

are running this example. This creates a couple of scripts and a static

routing table. The routing table is fed to the active network. The

routing table is shown in Figure 4.6.

shortest routes, automatically generated

source destination next addr

18.31.12.1 18.31.12.2 18.31.12 2 sequoia csl sri.com:3322
18.31.12.1 18.31.12.3 18.31.12 2 sequoia csl sri.com:3322
18.31.12.2 18.31.12.1 18.31.12 1 melon.cs.nps.navy.mil:3322
18.31.12.2 18.31.12.3 18.31.12 3 dOl.csl sri com:3322
18.31.12.3 18.31.12.1 18.31.12 2 sequoia csl sri.com:3322
18.31.12.3 18.31.12.2 18.31.12 2 sequoia csl sri.com:3322

Figure 4.6 Data.routes File.

We are now ready to start our small ANTS network. Data.start file

can be used to test the active network. This file is a script file

generated with the make command. You can find the makeroutes file,

which is invoked with make command in [Ref:9]. Data.start file is shown

in Figure 4.7.

When we start our active network, the routing table and the

configuration file are sent to hosts where they are stored. Then the

necessary Java code from the code server is downloaded to the hosts and

the active network starts to run.

The file data.stop stops the existing active network and gives

back all the resources. It is shown in Figure 4.8. The active network

42

should be stopped after we are done. Because other nodes sharing the

ABONE also need the resources. It is strongly advised to stop the

network at the end.

Java ants.ConfigurationManager ping config 18 .31 12 3 >&
18.31.12.3.log &
java ants.ConfigurationManager ping config 18 31 12 2 >&
18.31.12.2.log &
Java ants.ConfigurationManager ping config 18 31 12 1
kill %?18.31.12.3
kill %?18.31.12.2

Figure 4.7 Data.start.

kill. „node melon.cs .nps .navy mil 3322
kill „node sequoia. csl. sri.com 3322
kill. „node dOl.csl. sri. com 3322

Figure 4.8 Data.stop.

A log file is also recorded, while the active network is running.

The log file is shown in Appendix G. The first lines show the query

statements, which start the active network. And the last lines show the

kill statements, which stop the active network.

2. PLAN Example

This example shows how to install a small PLAN active network.

This example is very similar to the ANTS example. The same hosts will

be used that are used in the ANTS example. The concept is the same.

Melon.cs.nps.navy.mil will install PLAN execution environment to the

hosts.

ANETD is used also for this example. So the file hostfile, which

is found in ANETD distribution, is configured for our example active

43

network. Hostfile is shown in Figure 4.9. Melon.cs.nps.navy.mil is the

hostO as it is seen.

130.107.4.25 host2 seguoia.csl.sri.com
130.107.19.101 hostl d01.csl.sri.com
131.120.1.244 hostO melon.cs.nps.navy.mil

Figure 4.9 Hostfile.

The variable DISPLAY can be set to see the output of the active

network. It is set the same way as the ANTS is set. Type the command

below to set the DISPLAY environment in a bash shell.

export DISPLAY="melon.cs.nps.navy.mil:0.0"

The hostfile and the environment variable are ready. Now type

setup in the directory where your hostfile file is stored. The setup

file can be found in [Ref 10]. Setup creates the Bstart_network" script

based on the information in the hostfile.

When start_example script is run, the configuration files are

sent to all the active nodes. The PLAN execution environment is then

downloaded to the nodes and executes to start the PLANet daemons.

Now the start_example script can be run. This script sends a PLAN

traceroute program, which is written in PLAN. Start_example file can

also be found in [Ref 11] . The active network can be stopped with the

stop_network script.

44

V. VERIFICATION

We have verified the functionality of the prototype active router

with respect to SAAM requirements. In particular, we have examined its

support for server probing. The detail is presented in this chapter.

Any program can be sent to an active router if the execution

environment for that program has been installed and activated on that

router. As shown in the previous chapter, an execution environment can

be deployed to the prototype router using ANETD. Two execution

environments, which were deployed in the examples, were PLAN and ANTS.

Now any program written in PLAN or ANTS can be sent to those routers.

Three programs will be presented in this chapter. The programs

are written for the PLAN execution environment. All three programs are

server-probing examples. The objective of the programs is to traverse

the selected routers and record the arrival time to each router. Such

functionality is required by SAAM. A SAAM server will need to send

probes similar to these programs that travel along a specific path and

record the arrival times and other statistics at each router.

The programs were evaluated on a PLAN active network consisting

of three routers. For simplicity, we simulated the network on the same

machine, melon.cs.nps.navy.mil. The PLAN execution environment was

activated on three ports, 3324, 3325 and 3326, each of which emulates a

PLAN aware router.

The test configuration is shown in Figure 5.1. The deployment of

the PLAN execution environment to the nodes is shown with the

continuous lines. The dotted lines show the PLAN programs sent by the

server to the nodes. Each of the programs traverses the nodes and

collects information for the server.

First, the command below was typed to start the PLAN active

router on the default active port 3324.

java PLAN. ARMain -v

The other active routers are started with the commands below. The

main active router is also declared, which is using the port 3324. The

detailed messages generated for establishing the PLAN active network

are shown in Appendix H.

45

Java PLAN. ARMain -v -ip 3325 -m melon.cs.nps.navy.mil:3324

Java PLAN.ARMain -v -ip 3326 -m melon.cs.nps.navy.mil:3324

Port:3324 Port:3326

Port:3325

Figure 5.1 Active Network Example

A. PROGRAM TRACEROUTE_TIMESTAMP

The program traceroute_timestamp is shown in Figure 5.2. PLAN is

a functional language as it is seen in the program and all the PLAN

programs are stored with the plan extension like the Java extension in

j ava programs.

There are two functions in the program. The functions are ack and

collect. Collect is the main function. This function is called to

invoke the program. The program can be injected into the network with

the command below;

Java PLAN.PLANStart -v traceroute_timestamp.plan 60

melon.cs.nps.navy.mil:3324

46

(* Acknowledgement for each hop *)

fun ack(count:int,where:host, record_time:int*int) : unit =

(* prints the name and the ip address of the nodes , then
the entering time to that node *)

(
print("lines");print(where);print(":"); print(count);
print(" trip time is ");print(record_time);print("\n")

)

(* this is the main function of the program *)

fun collect(source:host,destination:host,count:int):unit =
(
let val record_time: int * int = getTime() in

(* First send response back to source that we got this
far *)

OnRemote(ack(count,thisHost(),record_time), source,
count, defaultRoute)

end;

(* Then continue on our way *)

if (thisHost () <> destination)
then

let val next:host = defaultRoute(destination) in

OnNeighbor(collect(source, destination, count+1)
,next, getRB ())

end

(* We've reached the destination, so we're done *)

else ()
)

Figure 5.2 TRACEROUTE_TIMESTAMP.PLAN.

This command injects the traceroute_timestamp.plan program into

the existing PLAN active network from the designated port. When the

program comes to the first node it is executed. The command line below

is typed to invoke this program after injecting it into the network.

47

collect (getHostByName("meIon.cs.nps.navy.mil:3324"),

getHostByName("melon.cs.nps.navy.mil:3326"), 1)

KLI^S^E^i^C^'iiL''.-'.^"' "" 'rF~ "" ■'" "v':!C"P00M
Using port 3324
Getting Initial Resource ...
Getting Address of Active Router ...
Checking for parse errors in source code ...
Binding Top Environ ...
Parsing the initial invocation ...

[root&nelon rout.tests]« java PLAN.PLfiNStart -v traceroute_time stamp.plan GO mel
on. cs. nps. navy. m i 1:3324
Using port 3324
Getting Initial Resource ...
Getting Address of Active Router ...
Checking for parse errors in source code ...
Binding Top Environ ...
Parsing the initial invocation ...
collect <getHostByNanieCmelon.es.nps.navy.mi 1:33 24"), getHostByr ame("melon.cs.nps
.navy.mil:332S"), 1)
IPv4UDP : (melon.cs.nps.navy.mi 1/131.120.1.244, 3324) : 1
trip time is (917415370, 445)
IPv4UDP : (melon.cs.nps.navy.mil/131.120.1.244, 3325) : 2
trip time is (917415870, 733)
IPv4UDP : (melon.cs.nps.navy.mi 1/131.120.1.244, 3326) : 3
trip time is (917415870, 980 >

ID

Figure 5.3 The output of TRACEROUTE_TIMESTAMP.

The invocation line and the output of the program are shown in

Figure 5.3. The collect function takes three arguments. First argument

is the source address. The source address is entered with the

getHostByName service available in PLAN. This service takes a string

according to the grammar below and converts it to a host. Host is a

type in PLAN.

name

host

port-num

domain-name

= host | host : port-num

= ip-addr [domain-name

= int-literal

= string-literal

Where ip-addr has the form n.n.n.n where each n is an integer

from 0 to 255. If the port-num argument is not provided, then it is

assumed to be the same port as the invoking node. The service

getHostByName attempts to resolve this name into a value of the PLAN

host type.

48

The second argument is another host name. It is invoked again

with the getHostByName service. The third argument is an integer. The

number 1 is entered and is assigned to integer variable count. This

integer can be chosen arbitrarily, it is chosen just to give numbers to

the nodes that the program visits.

After the program is invoked with the initial arguments. The next

line below is started to execute.

let val record_time: int * int = getTime() in

This line shows how to assign a variable. The getTime() service

exists in PLAN core services. It returns a pair (2-tuple) consisting of

the number of seconds and milliseconds since January 1, 1970, 00:00:00

GMT. The word val shows that the record_time is a variable and its type

is int * int. It means that record_time consists of two integers , the

first integer shows the seconds of the time and the second integer

shows the milliseconds of the time. The words let, in and end define

the scope of the variable.

Next we explain two network primitive operations in PLAN. They

are OnRemote and OnNeighbor. In some sense , the network primitives are

the most interesting aspect of PLAN, as they enable mobile computation

via generating and sending new active packets. These network primitives

make the PLAN execution environment superior to other execution

environments.

OnRemote is the basic netwrok primitive. Its syntax is:

OnRemote (E, H, Rb, Routing)

The meaning of this primitive is: evaluate E on host H.

Furthermore, use the Routing function to determine how to get to H. E

must be a function call. H is an expression of type host. Rb is an

integer indicating how much of the parent's global resource bound

should be transferred to the child packet. Routing should be a function

or service. Routing (h) should return some host h', which is a neighbor

of the current node. H' is supposed to be the next hop on a route to h

in the routing scheme represented by Routing.

49

On success, the call to OnRemote will create a PLAN packet, which

is sent to next hop. In the event of an error, one of the two

exceptions can be raised. They are NotEnoughRB and HostNotLocal.

The second network primitive OnNeighbor is similar to OnRemote

with the restriction that the child packet generated with this command

must be executed on a neighbor of the current node. Its syntax is:

OnNeighbor (E, H, Rb)

The meaning of this primitive is: evaluate E on H. E must be a

function call. H is an expression of type host and it must be a

neighbor of the current node. Rb is an integer indicating how much of

the parent's resource bound should be transferred to the child packet.

In the event of an error the same exceptions will be raised.

The invocation line can be seen in Figure 5.3. After invoking the

program with this line, record_time variable gets assigned the current

time in the first node. Then the OnRemote line is executed. This line

sends the Ack function to the source to be evaluated.

OnRemote(ack (count, thisHost(), record_time), source, count, defaultRoute)

Ack function takes three arguments and prints the result. The

first Ack message sent can be seen in Figure 5.4. Then it is compared

whether thisHost is equal to destination. The current host is 3324 and

destination is 3326 so it is not equal. Then statement is executed

next. The inequality operator < > is evaluated to true.

Next variable inside the then statement is assigned the next hop.

OnNeighbor call is executed after that. OnNeighbor creates a new packet

sends it to the next hop, it also calls the collect function with three

arguments to be evaluated in the next hop. The collect function becomes

a recursive call, when it is called. The flow of the program can be

seen in Figure 5.4. The Acks show the OnRemote calls. The direct lines

from 3324 to 3325 and from 3325 to 3226 show the OnNeighbor calls. The

OnNeighbor is executed till the if statement becomes false. When

thisHost is equal to destination the line below is executed.

OnNeighbor(collect(source, destination, count+1), next, getRBQ)

50

ack

Injection

3326

Figure 5.4 The evaluation of Traceroute_timestamp.plan.

B. PROGRAM TRACEROUTE_LIST

This program is shown in Figure 5.5. There are two functions in

this program. The collectroute is the main function. It takes five

arguments. The first argument is the source address. The second

argument is the destination address. The third argument is the path of

nodes, which is entered as a list. The fourth argument is the empty

list, this list will gather the seconds of the time when the program

visits the node. The fifth argument is another empty list. This list

will gather the milliseconds of the time when the program visits that

node.

The invocation line for the program can be seen in Figure 5.6 and

Figure 5.7. It is:

collectroute(getHostByName("melon.cs.nps.navy.mil:3324"),

getHostByName("melon.cs.nps.navy.mil:3326"),

[getHostByName("melon.cs.nps.navy.mil:3324");

getHostByName("melon.cs.nps.navy.mil:3325");

getHostByName("melon.cs.nps.navy.mil:3326")],

D, [])

51

(*Code to send the list back and print it upon completion*)
fun ack(secsrint list, milisecs:int list) : unit =
(
let val thirdsec:int = (hd sees)

val secondsec:int = (hd (tl(secs)))
val firstsec:int = (hd (tl(tl(sees))))
val thirdmili:int = (hd milisecs)
val secondmili:int = (hd (tl(milisecs)))
val firstmili:int = (hd (tl(tl(milisecs)))) in
(
print("Timestamp at node 1 is ");
print(firstsec);print(" seconds ") ;
print(firstmili); print(" miliseconds ");
print("\n"); print("Timestamp at node 2 is ");
print(secondsec);print(" seconds ");
print(secondmili); print(" miliseconds ");
print("\n"); print("Timestamp at node 3 is ");
print(thirdsec);print(" seconds ");print(thirdmili);
print(" miliseconds ");print("\n")

)
end

)

(* Workhorse *)
fun collectroute (source:host,destination:host, ipaddress:
host list, sees: int list, milisecs: int list) : unit =

let val this:host = (hd ipaddress)
val time:int = (snd getTime())
val sec:int = (fst getTime()) in

(

if (this <> destination)
then

(
let val next:host =(hd (tl ipaddress)) in

(

OnNeighbor (collectroute (source,destination, (tl
ipaddress), sec::secs, time::milisecs), next,
getRB ())

)
end
)

else

end

OnRemote(ack(sec::sees, time::milisecs), source,
getRBO, defaultRoute)))

Figure 5.5 TRACEROUTE_LIST.PLAN.

52

The port number 3324 is the source, 3326 is the destination node.

The program will go through 3324, 3325 and 3326. This is the same path

like the previous program.

This program visits the nodes according to the input list. It

records the visiting time into the lists. When the program is started,

the variables this, time and sec are assigned in the first node. Then

the if statement checks whether it reaches the destination. If it does

not reach the destination, the OnNeighbor call is executed on the next

node. This means a new plan packet is sent to the next node calling the

collectroute function recursively.

s.rips.navy.mil:3iio z,^
(" me 1 on. cs. nps. navy. rn i 1:.
[]>

"imestamp at node 1 is S
fimestamp at node 2 is Si
Timestamp at node 3 is 91

III» Mmma®&-in$x]
melon.csl

Einding Top i
Parsing the initial invocation ...

[rootfoielon rout.testsl» java PLAN.PLANStart -v traceroute_list.plan GO melon.cs I
.nps.navy.mil:33f'
Using port 3324 (

Getting Initial Resource ... 1
Getting Address of Active Router ...
Checking for parse errors in source code ... I
Binding Top Enwiron ... {
Parsing the initial invocation ... •
collectroute<getHostEyName("melon.cs.nps.navy.mi 1:3324">, getHostEyNarne("melon.c
s.nps.navy.mi 1:3326"), [getHostEyName<"melon.cs.nps.navy.mi 1:3324">;getHostEyNam|
e<"melon.cs.nps.navy.mi 1:3325">;getHostEyName("melon.cs.nps.navy.mi 1:3326">],[], "
Ü)
Timestamo at node 1 is 917464270 seconds 927 miliseconds

! is 917464271 seconds 356 miliseconds |
jTimestamp at node 3 is 917464271 seconds 820 miliseconds

Figure 5.6 First output of TRACEROUTE_LIST.

When the program reaches the destination the if statement becomes

false and the OnRemote call is executed. This line creates a new packet

and sends it to the source to be evaluated. OnRemote invokes the ack

function in the source with two lists. The ack function takes these two

lists and prints them.

53

[rootSmelon /root]« cd /
[root&nelon /]# cd home/nkaplan/planc/FLHN/rout_tests
[root&nelon rout_tests]'' "' "" ""
.cs.nps.navy.mi1:3324
[root&nelon rout_tests]# Java PL „.
.nps.navy.mi 1:3324
Using port 3324
Getting Initial Resource ...
Getting Address of Active Router ...
Checking for parse errors in source code ...
Binding Top Environ ...
Parsing the initial invocation ...
collectroute'IgetHostEyfir--'"--'— ----- - ■'-—

s.nps.navy.mi 1:3326"),[(,-- ;
("melon.cs. nps. navy, rni 1:3325");'
]> . . .

Timestarop at node 1 is 917415385 seconds 63
Timestarnp at node 2 is 317415336 seconds 20y i'imscconas
Timestamp at node 3 is 317415386 seconds 669 miliseconds

Figure 5.7 Second output of TRACEROUTE_TIMESTAMP.

C. PROGRAM TRACEROUTE_ROUNDTRIP

This program is similar to traditional ping programs. There are

three functions in this program. They are startcollect, collect and

ack. The startcollect is the main function so it is invoked first. The

startcollect function takes three arguments. They are the source

address, destination address and an integer. This integer can be

entered arbitrarily. It is just for node numbering.

The main function can be invoked with below line. The invocation

line can also be seen in Figure 5.8.

startcollect (getHostByName ("melon.cs.nps.navy.mil:3324"),

getHostByName ("melon.cs.nps.navy.mil:3326"), 1)

When the program is started , the variable start_time is assigned

the current time in the first node. Then the if statement is checked if

the program reached the destination. The program is still at the first

node so the OnNeighbor is called. OnNeighbor sends e new packet to the

next node with the collect function. The collect function has three

arguments. The source address, destination address, count+1 and the

start_time variable. When the collect function is executed at the

second node, the OnRemote sends a new packet to the source by invoking

the ack function with the start_time variable.

54

The ack function takes three arguments. The third argument is the

start_time variable, which indicates the time when the program visits

the first node. Inside the ack function the getTime () service is

called again and the current time is assigned to the variable now.

The fst and snd are two operators, which fst returns the first

element of a tuple and snd returns the second element of a tuple. Sec

is assigned the seconds of the the time and the diff is assigned to the

milliseconds of the time.

Let val now:int * int = getTime()
val diff: int = (snd now) - (snd startjime)
val sec : int = (fst now) - (fst start_time) in

g[Ug2
on.cs.rips.navy.mi 1:3324
Using port 3324
Getting Initial Resource ...
letting Address of Active Router ...

eking for parse errors in source code ...
Binding Top Environ ...
Parsing the initial invocation ...

 t Java PLAN.PLANStart -v traceroute.roundtrip.plan GO mel
on.cs.nps.navy.mi1:3324
Using port 3324

" source ...
ww».,.3 ,—~, w«„ •_..' Active Router ...
Checking for parse errors in source code ...

nviron ...
sing the initial invocation ...
"tcollect<getHostEyName("melon.cs.nps.navy.mi 1:3324">, getHostEyName<"melon.ci

. ,is.navy.mi 1:3326"), 1) [
Start.time is (317466867, 165 >

2 IPu4UDP : (melon.cs.nps.navy.tnil/131.120.1.244, 3325) j
r'- -J *" ip time is :1 seconds 725 milliseconds
„ .. „UDP : (melon.es.nps.navy.mi 1/131.120.1.244, 3326)

Round trip time is :2 seconds 221 milliseconds

Figure 5.8 Output of TRACEROUTE_ROUNDTRIP.

The sec and diff show the passed time while the program travels

from the first node to the second node and also the time passed from

the second node to the third node.

When the if statement in the collect function is equal to false,

the program reaches the destination. The output of the program is shown

in Figure 5.8. The line starting with number 2 shows the visited node

after the first node and gives the time difference between the second

node and the first node. The line starting with number 3 shows the

55

third node and the time difference. The program traceroute_roundtrip is

shown in Figure 5.9.

These programs collect the time when they enter the router and

bring them back. The SAAM server can interpret the delays between the

routers from the results coming with these programs. Other programs can

easily be written to probe the routers in different ways. As a result

the active router can support server probing.

(* Acknowledgement for each hop *)
fun ack(count:int,where:host, start_time:int * int)
unit =

let val now:int * int = getTimeO
val diff:int = (snd now) - (snd start_time)
val sec : int = (fst now) - (fst start_time) in

(* prints the name and the ip address of the nodes ,
then the entering time to that node *)

(
print(count);print(" "); printwhere); print("\n");
print("Round trip time is :"); print(sec);
print(" seconds "),-print(diff);
print(" milliseconds "); print(" \n ")

)
end

fun collect (source:host, destination:host, count:int,
start_time:int * int) : unit =
((* start of function *)

(* First send response back to source that we got this
far *)

(
OnRemote(ack(count,thisHostO,start_time), source,

count, defaultRoute);

■(* Then continue on our way *)
if (thisHost () <> destination)
then

let val next:host = defaultRoute(destination) in

end

OnNeighbor (collect(source, destination,
count+l,start_time), next, getRB ())

56

(* We've reached the destination, so we're done *]
else ()

(* end of function *)

(* this is the main function of the program *)
fun startcollect (source:host, destination.-host,
count:int) : unit =

let val start_time: int * int = getTimeO
in

(
print(" Start_time is "); print(start_time);
print("\n");
if (thisHost () <> destination)
then

let val next:host = defaultRoute(destination)
in

OnNeighbor (collect(source, destination,
count+1,start_time), next, getRB ())

end
else ()

) end

Figure 5.9 Output of TRACEROUTE_ROUNDTRIP.

57

58

VI. CONCLUSIONS

SAAM deploys dedicated servers that perform decision-making tasks

for the routers. This enables the deployment of lightweight routers in

a SAAM environment. A lightweight router was designed and implemented

in this thesis.

The lightweight router was built using the Active Networking

approach. A SAAM server can inject the customized programs (such as

server probes) into the network made of this type of routers. ANETD was

chosen as the Active Networking platform for the router. There are two

reasons for this choice. First, the router must support ANETD for it to

be a node in the ABONE. The ABONE facilities automated deployment of an

execution environment to a set of selected nodes. An active networking

testbed can be formed rapidly this way. Second, ANETD provides the

router the capability of binding multiple execution environments (EEs)

to a single port. ANETD will de-multiplex an active packet arriving at

the port to the appropriate EE. This capability is useful when there is

a need to compare probe programs written for different EEs.

A DELL XPSR400 PC was used as the base platform on which the

lightweight router was emulated. Linux was chosen as the node operating

system for the lightweight router. All major execution environments for

active networking, i.e., PLAN, ANTS and SMART PACKETS were evaluated in

this thesis. Particularly PLAN was chosen for implementing the server

probing programs.

In summary, the work in this thesis has laid the groundwork for

more in-depth SAAM server and router research by establishing an

experimental router that is a part of a wide area testbed (ABONE) . A

set of server probing experiments was conducted using the router and

testbed. The results show that it is straightforward for a SAAM server

to collect performance information from lightweight routers that

support active networking. The successful completion of the

experiments also demonstrates the usefulness of the testbed.

A. LESSONS LEARNED

The major lesson learned is that careful planning is required

when installing multiple operating systems to a PC. The reason is that

the hardware requirements for different operating systems could be

59

dramatically different. In particular, experimental operating systems

like Linux and NetBSD often do not have the drivers for more recent

hardware devices. For example, Linux and NetBSD do not support the

3Com905 network card, that originally came with the DELL XPSR400 PC.

Therefore, the optimum hardware configuration should be determined and

acquired before attempting to install multiple operating systems.

When NetBSD is required, it should be installed on a separate

hard drive. This is because when NetBSD is installed to the first hard

drive, NetBSD wipes out everything including System Commander files

from the drive.

B. EVALUATION OF ACTIVE NETWORKING APPROACH

Active Networking is a new approach for computer networks. The

main idea is to make the network programmable. As an important part of

this thesis, different aspects of the active networking approach were

studied. The main conclusion drawn from the experience is that Active

Networking is a promising approach for developing SAAM and similar

systems that require a central entity to exercise fine control over the

routers. ANETD has all the necessary functionality to support

programmable networks.

All the execution environments used in active networking approach

are experimental at the moment. All were written in object-oriented

languages such as JAVA. Our experience with PLAN showed that this

execution environment is robust and easy to use. Compared with ANTS,

PLAN programs have a smaller byte code size. It is straightforward to

write a PLAN program with built-in services such as OnRemote or

OnNeighbor. One problem with these execution environments is that there

is not enough documentation for them available at the moment.

C. SUGGESTIONS FOR FUTURE WORK

A lot of work remains to be done for SAAM server probing. This

thesis has laid the groundwork for such effort by establishing an

experimental router that is a part of a wide area testbed (ABONE).

Our server probing programs simply collect the arrival time to

each router. Assuming that all clocks are synchronized, A SAAM server

60

may use data gathered by these programs to deduce the total packet

delay at a link.

Two extensions for the probing programs should be considered.

First, it will be worthwhile to develop probing programs that work

without the (potentially expensive) assumption of clock

synchronization. Second, the SAAM server will need to keep track of

more types of router performance information than just packet delays.

In many cases, the server is required to know the packet loss rate and

the delay jitter at a link. Therefore, it will be essential to develop

a set of effective probing programs for each type of information.

Performance is another issue that requires future research. The

processing overhead incurred by a probing program at a router must be

minimized for two reasons. First, such overhead takes away precious CPU

cycles that otherwise can be used for packet forwarding. Second, the

extra delay because of probe processing could affect the accuracy of

the timing data collected. It would be interesting to measure and

compare the processing overheads of different EEs.

61

62

LIST OF REFERENCES

1 SAAM proposal, SAAM: Network Management for Integrated Services.

2 Geoffrey Xie, Debra Hensgen, Taylor Kidd, John Yarger, SAAM: An
Integrated Network Architecture for Integrated Services.

3 Architectural Framework for Active Networks Version 0.9 Active
Networks Working Group August 31, 1998.

4 ANEP: Active Network Encapsulation Protocol,
http://www.eis.upenn.edu/~switchware/ANEP/

5 ANETD: Active NETworks Daemon (vl.O) Livio Ricciulli August 10, 1998.

6 Smart Packets for Active Networks Beverly Schwartz, Wenyi Zhou,
Alden W.Jackson, W.Timothy Strayer, Dennis Rockwell, Craig
Partridge BBN Technologies.

7 Registered nodes in the ABONE,
http://www.csl.sri.com/ancors/abone/nodedb/nodes.html

8 Code server registry entry,
http://www.csl.sri.com/ancors/abone/web-registry.html

9 Makeroutes file,
http://sequoia.csl.sri.com:7000/anetd/ants_ex/makeroutes

10 Setup file,
http://sequoia.csl.sri.com:7000/anetd/plan_ex/setup

11 Start_example file,
http://sequoia.csl.sri.com:7000/anetd/plan_ex/

63

64

APPENDIX A. ANETD CONTROL COMMANDS

LOAD

The load command instructs anetd to download a number of files
specified with URLs and start a network service. The load command has
the format:

LOAD [T=< anepid >] [J=< jurl > | X =< url > | A =< url >] [F=<
url > ...] [E=< var : val > ...] [D=< dir >] [0=< file >] [R=<
file >]

- T=< anepid > is the ANEP ID of the service being deployed. If
this argument is not present, the deployed service will be assigned
type 0 and no packets will be demultiplexed to it by anetd.

- J=< jurl > specifies a Java application.
< jurl > is of the form http:servername.edu:port/classpath/~class

where

servername.edu:port specifies the server where the data is
located following the normal URL conventions.
classpath is a path pointing to the base classpath of the Java
application.
class is the class to invoke.

Both classpath and class can be a series of directories separated
by "/". For example,J=http://sequoia.csl.sri.com:7000/java/
antsl.2/~ants/ConfigurationManager specifies the URL of the ANTS
application ants.ConfigurationManager located on SRI's http code
server in the directory java/ants-1.2/.

- X=< url > means that < url > specifies a native binary
executable.

- A=< url > means that < url > specifies an ANCORS thread

- F=< url > means that < url > specifies a data file that
should be simply transferred and written on the local
installation directory.

- S=< string > tells anetd to invoke the deployed service with
< string > as a command line argument. < string > cannot
contain any white spaces.

- E=< variable >:< value > tells anetd to set the environment
variable < variable > to the value < value >.

- D=< dir > tells anetd to use the directory < dir > as the
Root directory for the service installation. Anetd by
default uses the directory /homedirectory/< clientip >/ for
installing all downloaded code; by specifying the D=< dir >
option, anetd installs all downloaded code in
/homedirectory/< clientip >/<dir >.

- 0=< file > redirects the standard output of the network

65

service to the file < file > (to be created in the
installation directory).

R=< file > redirects the standard error of the network service
to the file < file >(to be created in the installation
directory).

C=< description > specifies a description < description > for
the deployed services. This description is then returned to
the client when query commands are invoked. The description
string cannot contain white spaces.

Because the X and A types specify native executables, anetd
automatically appends the extensions Solaris, linux, and bsd44 to the
URLs, depending on what platform anetd is running on. For example,
suppose that anetd is running on a Linux machine; the URL http://
sequoia.csl.sri.com:7000/executables/ps would actually fetch the file
http://sequoia.csl.sri.com:7000/ executables/ps.

QUERY

The query command returns, to the client originating the command,
a list of network services that were forked by anetd. The query command
format is simply query. The list of forked services has the format:
< index > < clientip > < description >

< index > is an index generated by anetd (0,1,2 etc.).
< clientip > is the IP address of the client that installed
the service.
< description > is a textual description of the service.

KILL

The kill command allows a client to terminate a network service
by sending a sigint signal. The kill command has the format:

KILL < index >

< index > is the index of the thread to be terminated by anetd
(0,1,2 etc.).

The < index > value should be retrieved by using the query
command. Anetd will automatically garbage-collect all resources
allocated to the terminated service and will only allow the client that
originally deployed the service to perform the operation.

GET

The get command allows a client to retrieve a file through anetd.
The get command has the format:

GET [D=< dir >] < file >

D=< dir > tells anetd to look in the directory < dir >. Anetd by
default uses the directory /homedirectory/< clientip >/ to look
for the file < file >; by specifying the D=< dir > option, anetd
will look in /homedirectory/< clientip >/< dir >.

66

< file > specifies the name of the file to retrieve.

Anetd only allows the client that originally created the file
< file > to retrieve it. The content of the file is returned to the
client in the acknowledge message.

PUT

The put command allows a client to upload a file through anetd.
The PUT command has the format

PUT [D=< dir >] < file > < content... >

- D=< dir > tells anetd to look in the directory < dir >. Anetd
by default uses the directory

- < file > specifies the name of file to be created.

- < content... > is the data to be stored.

Anetd allows clients to upload files. For example the command PUT
config ... will create a file "config" in the installation directory of
the client and write the data that follows into it. From the client
side this is specified by invoking sc PUT < port > < host > config
< filename > where < host > is the name of the machine on which anetd

is running, < port > is the port on which anetd is listening, config is
the remote file name and < filename > is the local filename.

CONF

The conf command aplies to ANCORS (Adaptable Network COntrol and
Reporting System) threads and is similar to a remote procedure call.
The CONF command has the format:

CONE < symbol > [args ...]

- < symbol > specifies the name of the function to invoke. The
symbol < symbol > is resolved by anetd to a local memory address,
and the function is invoked.

args are a sequence of command line arguments to be passed to
the function <symbol >.

67

68

APPENDIX B. ANTS PING PROGRAM

PING APLLICATION

package apps;

import j ava.awt.*;

import ants.*;
import utils.*;

/ **
* test GUI application with ping buttons
*

* ©author David Wetherall
*/

public class PingApplication
extends Application
implements Runnable

{
final public static String[] defaults = {};

int target, rTotCount = 0, delay;
long beginTime;
Button pinger;
•Label latency, received, thruput;

TextField iterations, interval;

synchronized public void receive(Capsule cap) {
super.receive(cap);

switch ((rTotCount % 100)) {
case 0:
beginTime = thisNode().time();
break;
case 99:
double diff =

(((double)thisNodeO.time() - (double) beginTime) / 1000.0)
double thru = 100.0 / diff;
thruput.setText(String.valueOf(thru)),-

if (cap instanceof PingCapsule) {
PingCapsule pcap = (PingCapsule)cap;
Xdr buf = new Xdr(pcap.getDataO , 0) ;
long lat = thisNode().time() - buf.LONG(),•
latency.setText(Long.toString(lat) + " ms");

}
received.setText(Integer.toString(rTotCount + 1));
break;

}

rTotCount++;
}

69

public boolean handleEvent(Event evt) {
if (evt.id == Event.ACTION_EVENT && evt.target == pinger) {
new Thread(this).start();
return true;

} else
return super.handleEvent(evt);

}

public void run()
{

int iter = Integer.parselnt(iterations.getText()),
interv = Integer.parselnt(interval.getText());

for (int i=0; i < iter; i++) {
ByteArray buf = new ByteArray(Xdr.LONG);
Xdr xdr = new Xdr(buf, 0);
xdr.PUT(thisNode().time()) ;
PingCapsule c = new PingCapsule(port, port, target, buf);
send(c);
thisNode().sleep(interv);

}
}

public void setArgs(KeyArgs k)
throws Exception

{
k.merge(defaults) ;

for (int i = 0; i < k.length(); i++) {
if (k.key(i).equals("-target")) {
target = NodeAddress.fromString(k.arg(i)) ;
k.strike(i);
}

}

super.setArgs(k) ;
}

public void start()
throws Exception

{
thisNode().register(new PingProtocol());

resize(400, 200);

// 2 rows by 2 columns with 2 pixel point spaces in between them
setLayout(new BorderLayout());

pinger = new Button("ping " + NodeAddress.toString(target));

Panel outputDisplay = new Panel();
outputDisplay.setLayout(new GridLayout(6, 1, 1, 1));
outputDisplay.add(new Label("Capsules Received", Label.CENTER));
received = new Label("0", Label.CENTER);
outputDisplay.add(received);
latency = new Label("0", Label.CENTER);

70

outputDisplay.add(new Label("Capsule Latency (ms)", Label.CENTER)
outputDisplay.add(latency);
thruput = new Label("0", Label.CENTER);
outputDisplay.add(new Label("Throughput (cap/s)", Label.CENTER));
outputDisplay.add(thruput);

Panel iterDisplay = new Panel() ;
iterDisplay.setLayout(new BorderLayout()) ;
iterDisplay.add("Center",

new Label("Num Iterations", Label.CENTER));
iterations = new TextField("0");
iterations.setEditable(true);
iterDisplay.add("South", iterations);

Panel intervalDisplay = new Panel();
intervalDisplay.setLayout(new BorderLayout());
intervalDisplay.add("Center",

new Label("Ping interval (in ms)", Labe1.CENTER));
interval = new TextFieldf"0");
interval.setEditable(true) ;
intervalDisplay.add("South", interval);

Panel topPanel = new Panel(), botPanel = new Panel();
topPanel.setLayout(new GridLayout(1, 2, 1, 1));
botPanel.setLayout(new GridLayout(1, 2, 1, 1));

topPanel.add(pinger);
topPanel.add(outputDisplay);
botPanel.add(iterDisplay);
botPanel.add(intervalDisplay);

add("South", botPanel);
add("Center", topPanel);
pack();
show();

}

public PingApplication()
throws Exception

{
super();

}
}

PING CAPSULE

package apps;

import ants *,

* ping capsule processing
*
* ©author David Wetherall

71

*/

public class PingCapsule
extends DataCapsule

{
final private static byte[] MID = findMID("apps.PingCapsule");
protected bytet] mid() { return MID; }

final private static byte[] PID = findPIDf"apps.PingCapsule");
protected byte[] pid() { return PID; }

public boolean ping = false;

public int length() {
return super.length() + Xdr.BOOLEAN;

}

public Xdr encode() {
Xdr xdr = super.encode();
xdr.PUT(ping);

return xdr;
}

public Xdr decode() {
Xdr xdr = super.decode();
ping = xdr.BOOLEAN();

return xdr;
}

public boolean evaluate(Node n) {
if (n.getAddressO == getDst(J) {
ping = true;

} else if (ping!=true) {
return n.routeForNode(this, getDstO);

}

if (n.getAddressO == getSrc ()) {
return n.deliverToApp(this, dpt) ;

} else if (ping) {
return n.routeForNode(this, getSrcO);

}
return false;

}

public PingCapsule() { }

public PingCapsule(short sa, short da, int na, ByteArray d) {
super(sa, da, na, d);

}

72

PING PROTOCOL

/ **

* Ping protocol definition
*

* ©author David Wetherall
*/

public class PingProtocol extends Protocol {

public PingProtocol() throws Exception {
startProtocolDefn();

startGroupDefn() ;
addCapsule("apps.PingCapsule");
endGroupDefn();

endProtocolDefn() ;
}

}

73

74

APPENDIX C. BUILDING PLAN

There are two ways that you can install the PLAN software. You

can simply obtain the class files and execute them directly, or you can

obtain all of the source and build it yourself. Note that BOTH

distributions contain all of the documents and the sample programs

(i.e., all contained within the docs, interp_tests, and rout_tests

directories).

PLAN relies on ANEP, the Active Network Encapsulation Protocol.

The source code for ANEP is provided with the PLAN distribution.

Source installation:

PLAN was built using a number of publicly available packages.

They are:

(a) JDK 1.1.x — Java Development Kit

Sun's site:

http://j ava.sun.com/products/JDK/index.html

We used the third-party Linux port, available via:

http://www.blackdown.org/java-linux/Mirrors.cgi

(b) Pizza, a Substantial Companion to Java, version 0.39

http://www.eis.unisa.edu.au/~pizza/

(c) JavaCC, the Java Compiler Compiler, version 0.6.1

http://www.suntest.com/JavaCC/index.html

(*Note: JavaCC is only needed if you change the grammar file,

Parser.jjt, in any way. Otherwise, the .Java files

provided in the distribution will serve)

You must first install all of these packages. Please follow the

installation instructions given at each of the sites.

75

Next, unpack all of the PLAN source. For a UNIX platform, you

should have obtained PLAN-java-2.1-src.tar.Z. This can be unpacked

simply by doing

uncompress PLAN-java-2.1-src.tar.Z

tar -xvf PLAN-java-2.1-src.tar

Note that these operations should be performed in the directory

that you would like the source to be unpacked. This shall hereafter

be referred to as the "top level directory." This will create 3

directories: "PLAN" which contains the PLAN source (this directory

shall hereafter be referred to as the "PLAN directory"), "ANEP" which

contains the ANEP source, and "Log" which contains code for a logging

facility used by both ANEP and PLAN.

For Windows, you should have obtained PLAN-java-2.1-src.zip.

This may be unpacked with PKzip, or WinZip, or a compatible utility.

Building:

The first thing that you must do is make the ANEP and Log

packages which PLAN relies on. To build the ANEP package, go to the

ANEP directory and read the README file which contains building

instructions. For the Log package, simply go to the Log directory and

type "javac Log.Java" (which assumes the Java compiler javac is in

your PATH). Now you may build PLAN:

* Using make (UNIX, some Windows systems)

The easiest way to build the software is to use the provided

Makefile. Simple type "make" from within the PLAN directory.

This Makefile assumes a couple of things:

1) jjtree, javacc are in your PATH (executables from JavaCC)

and the JavaCC libraries are in your CLASSPATH.

76

2) a file "pc" exists in your PATH. This should be a script

that executes the pizza compiler (the pizza installation

instructions indicate that on UNIX, pc should be an alias

for "Java -ms8m pizza.compiler.Main"; instead, we choose

to create a shell script "pc" that contains

"Java -ms8m pizza.compiler.Main $*"; for Windows, pc.bat

is provided with Pizza). This presupposes that

the pizza and Java libraries are accessible from your

CLASSPATH,

and that the Java interpreter, Java, is also in your PATH.

3) the PLAN, ANEP, and Log packages are in your CLASSPATH.

This amounts to adding the top level directory of the PLAN

distribution to your CLASSPATH (not the PLAN directory,

but

the directory that it resides in).

Note that when making for Windows, you should make sure that

the cleanup.bat file is being invoked, rather than the

cleanup shell script (see the Makefile for more details).

* Building without make (Windows)

If you don't have access to make and are running DOS/Windows, do

the following from the PLAN directory:

1) type "jjtree Parser.jjt". This will build the Parser.jj

file

2) type "cleanup". This will execute the cleanup.bat script

which removes some automatically generated files.

2) type "javacc Parser.jj". This will create the necessary

.Java files.

3) type "build". This will actually compile all of the .Java

and .pizza files.

If you modify any of the .pizza or .Java files, but do not

change the Parser.jjt file, you can safely rebuild the system

using only Build.bat.

77

These instructions assume that the Java and JavaCC

executables are in your PATH; particularly Java, jjtree, and javacc.

In addition, your CLASSPATH must be set up properly

to include the JavaCC and Pizza libraries, as indicated

in the installation documentation for those packages. Finally,

the PLAN, ANEP, and Log packages must also be in your CLASSPATH.

This amounts to adding the top level directory of the PLAN

distribution to your CLASSPATH (not the PLAN directory, but the

directory that it resides in).

Classfile Installation:

If you are not interested in acquiring the source code, you can

instead just obtain the class files and use those directly. However,

you will still need to install the Pizza distribution (see above),

since the PLAN code relies on some of the provided Pizza class files.

You will not need to install JavaCC.

For UNIX, you should have obtained PLAN-java-2.1.tar.Z. To

unpack this file:

uncompress PLAN-java-2.1.tar.Z

tar -xvf PLAN-java-2.1.tar

Note that these operations should be performed in the directory

that you would like the source to be unpacked. This shall hereafter

be referred to as the "top level directory." This will create

3 directories: "PLAN" which contains the PLAN classes (this directory

shall hereafter be referred to as the "PLAN directory"),

"ANEP" which contains the ANEP classes, and "Log" which contains

code for a logging facility used by both ANEP and PLAN.

For Windows, you should have obtained PLAN-java-2.1.zip. This

may be unpacked with PKzip, or WinZip, or a compatible utility.

You are now ready to execute the PLAN software. Please see the

tutorial document for specific instructions.

78

(*Note: your CLASSPATH must be set up properly

to include the Pizza library class files, as indicated

in the installation documentation for that package. It

must also include the PLAN, ANEP, and Log packages. This

amounts to adding the top level directory of the PLAN

distribution to your CLASSPATH (not the PLAN directory, but

the directory that it resides in)).

Contact Information:

PLAN Home Page:

http://www.eis.upenn.edu/~switchware/PLAN

ANEP Home Page:

http://www.eis.upenn.edu/~switchware/ANEP

Supported Architectures:

This version of the PLAN interpreter has been tested on

* i586 platforms running

- Redhat Linux 4.1 and 4.2 (with JDK 1.1.1)

- Windows95 (with JDK 1.1.3)

* Sun SPARC'S running

- SunOS 5.5.1 (with JDK 1.1.3)

79

80

APPENDIX D. LOG AND ARMAIN FILES

LOG FILE

package Log;

import j ava.text.*;

import j ava.i o.*;

import java.util.Date;

public class Log {

public final static int QUIET_LEVEL = 0;

public final static int ERROR_LEVEL = 1;

public final static int VERBOSE_LEVEL =2;

public final static int DEBUG_LEVEL = 3;

// set default output to stdout

private static String logfn = null;

private static OutputStream logfs =

new FileOutputStream(FileDescriptor.out);

private static int level = ERROR_LEVEL;

private static DateFormat df =

DateFormat.getDateTimelnstance();

private static boolean sol = true;

private static String preamble() {

Date d = new Date();

return df.format(d);

}

// methods to alter the logging location

public synchronized static void setLogFile(String logFileName)

{

logfs = null;

logfn = logFileName;

}

// alter the logging level

public synchronized static void setLevel(int 1) {

81

level = 1;

// output methods

//

// if output is directed to a file, the file is reopened

// each time; this allows the file to be removed/truncated

//at any time without disturbing the logging function

public synchronized static void print(int priority, String s) {

// System.out.println("level = "+level+", priority =

"+priority);

if (priority <= level) {

try {

if (logfn != null) {

logfs = new FileOutputStream(logfn,true);

if (sol)

logfs.write((preamble()+": ").getBytes());

logfs.write(s.getBytes());

logfs.close();

sol = false;

logfs = null;

}

else {

if (sol)

logfs.write((preamble()+": ").getBytes());

logfs.write(s.getBytes());

sol = false;

}

} catch (IOException e) {

}

}

}

public synchronized static void println(int priority, String s)

{

if (priority <= level) {

try {

82

if (logfn != null) {

logfs = new FileOutputStream(logfn,true);

if (sol)

logfs.write((preamble()+": ").getBytes());

logfs.write((s+"\n").getBytes());

logfs.flush();

logfs.close();

sol = true;

logfs = null;

}

else {

if (sol)

logfs.write((preamble()+": ").getBytes());

logfs.write((s+"\n").getBytes());

logfs.flush();

sol = true;

}

} catch (IOException e) {

}

}

}

public static void print(String s) {

print(VERBOSE_LEVEL,s);

}

public static void println(String s) {

printIn(VERBOSE_LEVEL,s);

}

}

83

ARMAIN FILE

package PLAN;

import PLAN.basis.*;

import PLAN.interpreter.*;

import PLAN.net.*;

import PLAN.SLRP.*;

import PLAN.util.*;

import PLAN.resident.*;

import PLAN.port.*;

import PLAN.install.*;

import PLAN.fixedroute.*;

import PLAN.ANON.*;

import j ava.net.*;

import java.io.IOException;

import pizza.lang.*;

import ANEP.*;

import Log.*;

class ARMain {

static ActiveHost masterHost;

static ActiveHost hubHost;

static String routTabFile;

static List<ActiveHost> neighbors = List.Nil;

static int inport = 3324;

static boolean interactive = false;

static boolean IamTheMaster = true;

// static String serviceDir = "./Services";

// static String servicelndexFile = "Index";

static void usage() {

System.out.println("Usage : Java ARMain [-i] [-v|-d|-q] [-1

logfile] [-ip port]\n" + "[[-m master] [-h hub] | [-rf

routtab file]]\n" + " [-n nl,n2 nk] \n");

}

84

static void parse_args (String [] argv) {

int i ;

for (i=0; i<argv.length; i++) {

if (argv[i].equals ("-?")) {

usage();

System.exit(1);

}

else if (argv[i].equals ("-v")) {

Log.setLevel(Log.VERBOSE_LEVEL);

Log.println("ARMain: verbose mode on.");

}

else if (argv[i].equals ("-d")) {

Log.setLevel(Log.DEBUG_LEVEL);

Log.println("ARMain: debug mode on.");

}

else if (argv[i].equals ("-g")) {

Log.setLevel(Log.QUIET_LEVEL);

}

else if (argv[i].equals ("-i")) {

Log.println("ARMain: interactive mode on.");

interactive = true;

}

else if (argv[i].equals ("-m")) {

if (i == argv.length - 1) {

usage();

System.exit(1);

} else {

masterHost =

ActiveHost.parseActiveHost(argv[i+l],inport);

if (masterHost == null) {

Log.println(Log.ERROR_LEVEL,"ARMain.parse_args: "+

"failed to parse master request |"+

argv[i+l] + " | ") ;

usage();

System.exit(1);

}

85

Log.printIn("ARMain: master set to " + masterHost);

i++;

}

}

else if (argv[i].equals ("-rf")) {

if (i == argv.length - 1) {

usage();

System.exit(1);

} else {

routTabFile = argv[i+l];

Log.println("ARMain: routTabfile set to " + argv[i+1]);

i++;

}

}

else if (argvfi].equals ("-1")) {

if (i == argv.length - 1) {

usage();

System.exit(1) ;

} else {

Log.setLogFile(argv[i+1]);

Log.setLevel(Log.VERBOSE_LEVEL);

Log.println("ARMain: logfile set to " + argv[i+1]);

i++;

}

}

else if (argv[i].equals{n-ip")) {

if (i == argv.length - 1) {

usage();

System.exit(1);

} else {

Log. printlnC ARMain: using incoming port " + argv [i+1]) ;

inport = Integer.parselnt(argv[i + l]) ;

i++;

}

}

else if (argvfi].equals("-n")) {

if (i == argv.length - 1) {

usage();

86

System.exit(1);

} else {

ActiveHost h;

int curindex = 0;

int nextindex = argv[i+l].indexOf(",",curindex);

while(nextindex != -1) {

h = AtiveHost.parseActiveHost (argv[i+l].substring

(curindex, nextindex), inport);

if (h == null) {

Log.printIn(Log.ERROR_LEVEL,"ARMain.parse_args: "H

"failed to parse neighbor request |"+

argv[i+l].substring(curindex,nextindex) +

" I") ;
usage();

System.exit(1) ;

}

neighbors = List.Cons(h,neighbors);

Log.println("ARMain: found neighbor " + h);

curindex = nextindex + 1;

nextindex = argv[i+l].indexOf(",",curindex);

}

h = ActiveHost.parseActiveHost (argv[i+l].substring

(curindex),inport);

if (h == null) {

Log.printIn(Log.ERROR_LEVEL,"ARMain.parse_args: " +

"failed to parse neighbor request |"+

argv[i+l].substring(curindex) + "|");

usage();

System.exit(1) ;

}

neighbors = List.Cons(h,neighbors);

Log.println("ARMain: found neighbor " + h);

i++;

}

}

else if (argv[i].equals("-h")) {

if (i == argv.length - 1) {

usage();

87

System.exit(1) ;

} else {

hubHost = ActiveHost.parseActiveHost(argv[i+l],inport);

if (hubHost == null) {

Log.printIn(Log.ERROR_LEVEL,

"ARMain: failed to correctly obtain hub");

usage();

System.exit(1) ;

}

else

Log.println("ARMain: using hub "+hubHost);

i++;

}

}

else {

usage();

System.exit(1) ;

}

}

}

/* Main function -

First parse the necessary options, then initialize the router

and set up the initial environment. Finally, wait infinitely

for packets to arrive; if they've reached their evalDest,

interpret them, otherwise send them along their way

with the specified routing function.

*/

public static void main (String [] argv) throws Exception {

parse_args (argv);

// Start the router

try {

ActiveRouter.start (interactive, inport);

} catch (IOException e) {

Log.println (Log.ERROR_LEVEL,

"ARMain: Error while starting up router : " +

e.getMessage ());

System.exit (1);

}

// Initialize default services

PLANParser.resetSvcsSymtab();

PLANParser.hasNet = true;

installServices();

// Set up routing

if (routTabFile == null) {

// using SLRP

if (masterHost == null)

masterHost = ActiveRouter.whoAmI();

if (!masterHost.equals(ActiveRouter.whoAmI()))

IamTheMaster = false;

SLRPSvdmpl.install(PLANParser.getSvcsSymtab());

SLRP.init(masterHost,neighbors,3);

try {

if (IamTheMaster) {

SLRPmaster.init() ;

SLRPMasterSvcImpl.install(PLANParser.getSvcsSymtab());

// Set up ANON; this is only permitted with SLRP masters

if (hubHost != null) {

ANONSvcImpl.install(PLANParser.getSvcsSymtab ());

ANON.init(hubHost);

}

} else {

Value neighValList =

Value.VList

89

(neighbors.foldl

(fun(List<Value> 1, ActiveHost h) -> List<Value>

{

return List.Cons(Value.Host(h),1);

}, List.Nil));

ActivePacket p = new

ActivePacket("fun addme(ver:int,me:host,ns:host

list):unit = " + " AddRequest(ver,me,ns)",

"addme", Value.VList

(List.Cons(Value.Int(SLRP.version),

List.Cons(Value.Host(ActiveRouter.whoAmI()),

List.Cons(neighValList,

List.Nil)))),

masterHost,5, new Pair(masterHost,0),

"SLRP");

try {

// XXX create TLV list and set the destination

ActiveRouter.send_active_packet(p,TLVList.Nil,masterHost);

} catch (Exception uhe) {

// if we get an error here, we should just abort

Log.print(Log.ERROR_LEVEL,

"ARMain: Error trying to negotiate with master: "+uhe);

System.exit(1);

}

}

} catch (UnknownHostException uhe) {

Log.print(Log.ERROR_LEVEL,

"ARMain: unable to look up local host: "+uhe);

System.exit(1);

}

}

// using static routing

else {

try {

90

FixedRouteSvcImpl.init(routTabFile,neighbors);

} catch (BadRouteTableFileException e) {

Log.printIn(Log.ERROR_LEVEL,"ARMain: "+e);

System.exit(1);

}

FixedRouteSvcImpl.install(PLANParser.getSvcsSymtabO);

}

// Main event loop

//

// Waits for packets to arrive and deals with them (either

// via interpretation or forwarding)

Pair<ActivePacket,TLVList> in;

ActivePacket actPack;

TLVList TLVs;

ActiveHost h;

while (true) {

in = ActiveRouter.recv_active_pkt ();

actPack = in.fst;

TLVs = in.snd;

h = actPack.getEvalDest ();

try {

if (h.equals (ActiveRouter.whoAmI()))

Go.execPacket (actPack,TLVs);

else {

Binding B = PLANParser.getSvcsSymtabO .get

(actPack.getRoutingFn()) ;

if (B == null)

throw new ExecException("Error: no such routing

function "+ actPack.getRoutingFn());

else {

ActiveHost Hop =

ASTOnRemote.getNextHop(B,h,actPack) ;

ActiveRouter.send_active_packet (actPack, TLVs, Hop);

91

}

}

} catch (PLANException e) {

Log.printin ("ARMain: Packet raised uncaught exception :

+ e.getMessage ());

} catch (ExecException e) {

Log.printin ("ARMain: Execution exception : " +

e.getMessage ());

}

}

}

/* This routine causes all of the "standard" services to be

installed in the symbol table. If you don't want

certain services installed, simply comment out the

appropriate code portion */

private static void installServices() {

/* Standard router services */

RouterSvcImpl.install(PLANParser.getSvcsSymtab()) ;

/* Resident data */

TimerServer ts = new TimerServer();

ts.start();

ResidentSvcImpl.initResidentServices(PLANParser.

getSvcsSymtab(), ts) ;

/* Ports */

PortSvcImpl.install(PLANParser.getSvcsSymtab());

/* Dynamically loadable services */

InstallSvcImpl.install(PLANParser.getSvcsSymtab());

}

}

92

APPENDIX E. SMART PACKETS

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose is hereby granted without

fee, provided that the above copyright notice and this permission

appear in all copies and in supporting documentation, and that the

name of BBN Corporation not be used in advertising or publicity

pertaining to distribution of the software without specific,

written prior permission. BBN makes no representations about the

suitability of this software for any purposes. It is provided "AS

IS" without express or implied warranties.

This software and its documentation was written by BBN

Corporation under sponsorship by the Defense Advanced Research Projects

Agency.

1. SMART PACKETS

Smart Packets is a DARPA-funded Active Networks project focusing

on applying active networks technology to network management and

monitoring without placing undue burden on the nodes in the network.

Some parts of the network are growing faster than Moore's Law predicts,

straining the infrastructure, yet to accommodate this growth, the

infrastructure must be monitored and managed. Current management

techniques, such as polling MIBs, are notappropriate for these

overtaxed components.

Messages in active networks are programs that are executed at

nodes on the path to one or more target hosts. Smart Packets programs

are written in a tightly-encoded, safe language specifically designed

to support network management and avoid dangerous constructs and

accesses. Smart Packets improves the management of large complex

networks by (1) moving management decision points closer to the node

being managed, (2) targeting specific aspects of the node for

information rather than scatter-shot collection, and (3) abstracting

the management concepts to language constructs, allowing nimble network

control.

93

2. INSTALLATION

To install on a new system, first unpack the distribution:

$ gunzip spkt-1.0.1.tar. gz

$ tar xvf spkt-1.0.1.tar

$ cd spkt-1.0.1

Then read the installation instructions:

$ more INSTALL

Configure the software for your machine:

$./configure —prefix=/usr/spkt # specify install location;

Make the software, then install it:

$ make

$ make install

There is one compilation warning, which occurs in the sprocket

directory during the compile of sprcomp. Everything else compiles

cleanly. If you receive a virtual memory exhausted error, increase the

"datesize" process resource limit to at least 128K.

3. EXECUTABLES

sprcomp

spanner.pi

anepd

injector

spannervm

bardemo

Sprocket compiler

Spanner encoder

ANEP Daemon

Injectors Smart Packets object code into the

network

Runs a Spanner program through the Virtual

Machine without first sending it on the network

A demo user program

94

4. USE

Sprocket programs must be compiled into Spanner using sprcomp.

Spanner programs must be assembled into wire encoding using spanner.pl.

The resultant .o file from spanner.pl can be run in standalone mode

with spannervm, or can be injected into the network with the

injector.

When a program is injected into the network, for each host that

receives it, the host must have an ANEP daemon running.If a program is

sent along a multi-hop route, and it is being sent in hop-by-hop mode

(see injector man page), then the intermediary routers must be running

an ANEPD daemon, and must have a kernel installed which has the Smart

Packets router alert and ANEP modifications (see doc/kernel-mods.txt).

5. DOCUMENTATION

README This file

INSTALL Generic autoconf installation instructions

doc/RELEASE_NOTES-1.0.0 Release notes

doc/anep.rfc RFC for Active Networks Encapsulation

Protocol

doc/encoding.txt Technical details about how Spanner is encoded

in bits and bytes (a companion document is

encoding.gen which is generated when the

distribution is made; this shows every opcode

bit for every Spanner operation.)

doc/kernel-mods.txt Instructions on how to apply ANEP and

router alert kernel modifications

doc/lang_survey.txt Survey of potential Smart Packets

languages

doc/primitive.txt Description of all Sprocket

primitives, by functional grouping

doc/sec_arch.txt Security architecture overview

doc/smart.ps Conference paper on Smart Packets

doc/spanner.txt Spanner assembly language overview

doc/spkthdr.txt Smart Packets header layout

95

doc/sprocket.txt Sprocket high-level language overview

man pages for all executables listed above

96

APPENDIX F. REGISTERED NODES

Name: Livio Ricciulli

IP Address: dOO.csl.sri.com

Public_Key:udoN0w7B0K65hhwpwgpOzp/Pj//aYUTfEo2N4s8bW2kjs3rVtbfohk

0UJA6cvcbLXZOfGJybjgnalj6G2NPtvQEAAQ==

Organization: SRI International

Organization_Address: 333 Ravenswood Ave, Menlo park, CA 94025

Phone_Number: 650-859-2969

Email: livio@csl.sri.com

Misc_Info: Network Engineering experiments

Name: Livio Ricciulli

IP Address: capri.sri.brainstorm.net

PublicJKey:umVy3uvlLpaSx7W83haqRoNVrEH/cNatGaa7B4YgQYRl4K9qPzrBpd

oVk7rKVTDyX +OpUc2B6aNepLsyD/FjWQEAAQ==

Organization: SRI International

Organization_Address: 333 Ravenswood Ave

Phone_Number: 650-859-2969

Email: livio@csl.sri.com

Misc_Info: Anetd's experiments from home

Name: Pankaj Kakkar

IP Address: zaria.csl.sri.com

Public_Key:r8K+gZ4ZRo5usA6751RD5Kh7HNwGAul0HvuxGE5v5epOFcW0EgkLcT

sBg7fjDWkW6EU57oNG6F6e451rUln2oQEAAQ==

Organization: University of Pennsylvania

Organization_Address: 200 South 33rd St, Philadelphia PA 19104

Phone_Number: (215) 898 8116

Email: pankaj ©gradient.eis.upenn.edu

Misc_Info: PLAN daemon admin

Name: Madhu Sudan

IP Address: 130.107.16.135

97

Public_Key:xc5Z6TVuR26Y7HtiAQ3Y7hXjzZwss6g+z2KignNBrlDa2YWo3KFVFs

gUwfksUlPH27IDLeU7ioqV5wmNhfwJ8QEAAQ==

Organization: SRI International

Organization_Address: 333 Ravenswood Avenue, Menlo Park, CA

94043, USA

Phone_Number: (650) 859 4247

Email: madhu@csl.sri.com

Misc_Info: Experimentation and administration

Name: Maria Calderon Pastor

IP Address: 138.100.10.152

Public_Key:xcNrTqbIK3oPl/k9ovUeWhfoNatzT5t7g01hDguI+VC9EfOGUHDwUt

ym3LqYCZudPlgNrRtxTGMwSoHyJzJ8wwEAAQ==

Organization: Facultad de Informatica - UPM

Organization_Address: Campus de Montegancedo - Boadilla del Monte

- 28660 Madrid - Spain

Phone_Number: +34 1 3367396

Email: mcalderon@fi.upm.es

Misc_Info: Active Network Deployment

Name: Jeff Kann

IP Address: 128.9.160.165

Public_Key:sPEYlJLWL+Ovft6+JEPbi7tfSnX3PfCI68PqAKwiWrGWfqKl8UsZHR

DlN4G194fUa5/tXHllW2HM7Pv93zEoRwEAAQ==

Organization: USC/ISI

Organization_Address: 4676 Admiralty Way, Marina del Rey, CA

90292

Phone_Number: 310-822-1511

Email: kann@isi.edu

Misc_Info: ARP project experiment

Name: dartisi

IP Address: 128.9.160.194

Public_Key:zQYprXgdnYjqkehgKqAh6RgEOOM15PJjp/EDCq/kBzl3F+B5lLhXmp

foox4SKukyBNP6sv4PdPiLqIEy4xPkLQEAAQ==

98

Organization: ÜSC/ISI

Organization_Address: 4676 Admiralty Way, Marina del Rey, CA

90292

Phone_Number: 310-822-1511

Email: kann@isi.edu

Misc_Info: Providing one login for all the people in ISI West

that could use the Abone for the ARP project.

Name: Dana Chee

IP Address: 207.3.230.162

Public_Key:pOP54oiR+Wvi/iKQzcAfxy2kazJWYFdAOkUx96WDmS3trnaPMlrn8G

kYBDwSR8DX8YhJdNMTDzVzbG/gGUXurQEAAQ==

Organization: Bellcore

Organization_Address: 445 South Street; Morristown, NJ 07960

Phone_Number: 973-829-4488

Email: dana@bellcore.com

Misc_Info: I'm currently working on the Active

Name: Kristin Wright

IP Address: 155.99.212.119

Publi c_Key:ysmUPZAyvTZOC 8 EygGpv5 j QqVWth6 44B3bG+ zhQXnDYuXk2 dT2 kOnZ

auqyNVJ j eupOFaGeYl 51 eUiiNi / C1 zpSQEAAQ==

Organization: University of Utah

Organization_Address: 50 S Central Campus Drive, Rm 3190

Phone_Number: 801-581-4802

Email: kwright@cs.utah.edu

Misc_Info: Active network research

Name: Dan Van Hook

IP Address: 129.55.10.190

Public_Key:+KHXfCL/OdjIcbNoOVh3mUY8vDlXXp03kronjWwKUZu/vJhlN+v03U

npn/mYc008sMUE417dlMGakWdZrSlLeQEAAQ==

Organization: MIT Lincoln Laboratory - Distributed Systems Group

Organization_Address: 244 Wood Street Lexington MA 02420

Phone_Number: 781-981-4153

99

Email: dvanhook@ll.mit.edu

Misc_Info: Active network research

Name: Edward Lewis

IP Address: 199.171.39.3

Public_Key:5hTIUzwLCD3WtRKlflkUZssrTvfcW99oKPFmv9+CkDhcAZUjPAk+UI

xiHgOCe9/2moYQ5foAhSGkXeFnll2zCQEAAQ==

Organization: TIS Labs at NAI

Organization_Address: 3060 Washington Rd, Glenwood, MD, 21738

Phone_Number: +1 301-854-5794

Email: lewis@tis.com

Misc_Info: DARPA research project

Name: Patrick Jie

IP Address: 166.104.36.173

Public_Key: 4jhjie

Organization: Network Computing Lab.

Organization_Address: Hanyang University, Korea

Phone_Number: 02-290-0355

Email: jhjie@hyuee.hanyang.ac.kr

Misc_Info: For testing the Active Networking Technology and

developing the new revolutionary Application.

Name: Patrick Jie

IP Address: 166.104.45.177

Public_Key:m/aOb8BxyxbiknsOAjEMKHXlOdhWr4c39FDDrzXDyiOL7wgpZiXDKZ

NEUC f ViMwBmO 0 OQCLDc rRv4 g 1 dXRnEwEAAQ==

Organization: Network Computing Lab.

Organization_Address: Hanyang University, Korea

Phone_Number: 082-02-290-0355

Email: jhjie@hyuee.hanyang.ac.kr

Misc_Info: Testing the active networking technology and

developing the revolutionary application.

100

Name: Patrick Jie

IP Address: 166.104.45.194

PublicJKey:rZLD5aZb+8iyy7iGtRQVrugl3diOn421POqMwuTeQ09t05MsulQzkl

7c58MKWHRyKFzeJOyCCd6kOuVSXeboQwEAAQ==

Organization: Network Computing Lab.

Organization_Address: Hanyang University, Korea

Phone_Number: 082-02-290-0355

Email: jhjie@hyuee.hanyang.ac.kr

Misc_Info: For testing the dynamic network operation and the

revolutionary application

Name: David Raila

IP Address: 128.174.240.14

Public_Key:QCNAy8b62UAAAEFAMbYY9kAyOHAFb9cbl07QiACmFdvcy3WjNZNc/m

Rrk9Qcp0v

Organization: Univ 111. CS Dept.

Organization_Address: 1304 West Springfield, Urbana II, 61801

Phone_Number: 217 333 0108

Email: raila@cs.uiuc.edu

Misc Info: research

Name: Pankaj Kakkar

IP Address: 158.130.12.150

Public_Key:lU0URh6BazDPNk2A6wMJ783IPE7rlGAyx0ARW3PKKo4rJy5Z3ppMg4

rC/Um6YN9gw9 fm7JPLQo9LGMEywM+QawEAAQ==

Organization: Univ of Penn

Organization_Address: 200 St. 33rd St

Phone_Number: 215 898 8116

Email: pankaj ©gradient.eis.upenn.edu

Misc Info: UPenn ABONE node admin

Name: Geoffrey XIE

IP Address: 131.120.1.244

Public_Key:t2pdU7tWzikg3cklFxyYpe6xDLqd4mdTiDp7cpIjGGnGHlsc+w3miV

KE88rfpa39DImeIELTDHWFfIxVg0BOrQEAAQ==

101

Organization: Naval Post Graduate School

Organization_Address: NPS Monterey CA 93943

Phone_Number: (831)656-2693

Email: xie@cs.nps.navy.mil

Misc_Info: Our research is about Active Networking

Name: Cheryl DeMatteis

IP Address: 206.117.53.41

Public_Key:+k8dGlDPWGetFepCfafJZouZdTTTwlXz81fLEcLHx8yhXXWw8zlS81

yWuPfP+MIILwE30EOB0tlVa/Hz FjBU2wEAAQ==

Organization: The Aerospace Corporation

Organization_Address: 2350 E. El Segundo Blvd., El Segundo CA.

90245

Phone_Number: (310)336-1189

Email: cdematt@aero.org

Misc_Info: To participate in Active Networks research

102

APPENDIX G. LOG FOR ANTS EXAMPLE

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 sequoia.csl.sri.com

sc.Linux QUERY 3322 dOO.csl.sri.com

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .2

S=18.31.12.2 S=18.31.12.2 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

103

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 seguoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 seguoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://seguoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://seguoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux PUT 3322 seguoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 seguoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 seguoia.csl.sri.com

J=http://seguoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 seguoia.csl.sri.com

J=http://seguoia.csl.sri.com:7000/java/-GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

104

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 sequoia.csl.sri.com

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7 0 0 0/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

105

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000 E=DISPLAY::0.0

C=Standard_output_viewer

sc.Linux QUERY 3322 sequoia.csl.sri.com

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .1

106

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

107

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/Java/-GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

l .2 .a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/Java/-GetStatl S=18.31.12 .3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

108

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/-ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux QUERY 3322 d01.csl.sri.com

sc.Linux QUERY 3322 sequoia.csl.sri.com

109

sc.Linux QUERY 3322 melon.cs.nps.navy.mil

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http.-//sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

110

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=l,8.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

111

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

112

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C =ANTS_ac t ive_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12 .3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux KILL 3322 d01.csl.sri.com 0

113

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux PUT 3322 d01.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 d01.csl.sri.com data.config data.config

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.1 T=18

0=18.31.12.1 C=ANTS_active_node

sc.Linux LOAD 3322 d01.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18 .31.12.1

S=18.31.12.1 S=18.31.12.1 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 sequoia.csl.sri.com data.routes data.routes

sc.Linux PUT 3322 sequoia.csl.sri.com data.config data.config

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.2 T=18

0=18.31.12.2 C=ANTS_active_node

sc.Linux LOAD 3322 sequoia.csl.sri.com

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.2

S=18.31.12.2 S=18.31.12.2 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.routes data.routes

sc.Linux PUT 3322 melon.cs.nps.navy.mil data.config data.config

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/ants-

1.2.a/~ants/ConfigurationManager S=data.config S=18.31.12.3 T=18

0=18.31.12.3 C=ANTS_active_node

sc.Linux LOAD 3322 melon.cs.nps.navy.mil

J=http://sequoia.csl.sri.com:7000/java/~GetStatl S=18.31.12.3

S=18.31.12.3 S=18.31.12.3 S=5000

E=DISPLAY:melon.cs.nps.navy.mil:0.0 C=Standard_output_viewer

114

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 d01.csl.sri.com 0

sc.Linux KILL 3322 seguoia.csl.sri.com 0

sc.Linux KILL 3322 sequoia.csl.sri.com 0

sc.Linux KILL 3322 seguoia.csl.sri.com 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

sc.Linux KILL 3322 melon.cs.nps.navy.mil 0

115

116

APPENDIX H. OUTPUTS OF THE PLAN ACTIVE ROUTER

A. FORT 3324, MAIN ROUTER

25-Jan-99 7:29:37 PM: ARMain: logfile set to m24

25-Jan-99 7:29:37 PM: ActiveRouter.start: Active router up!

25-Jan-99 7:29:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324) : fstCookie

25-Jan-99 7:29:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:37 PM: SLRPmaster: received a request to add:

IPv4UDP : (melon.es.nps.navy.mil/131.120.1.244, 3324)

25-Jan-99 7:29:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324) : newRT

25-Jan-99 7:29:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324): fstCookie

25-Jan-99 7:29:37 PM: ActiveRouter: IN from IPv4UDP : (

melon.es.nps.navy.mil/131.120.1.244, 3324): newRT

25-Jan-99 7:29:37 PM: SLRP: received new route table.

25-Jan-99 7:29:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324): addme

25-Jan-99 7:29:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3326) : fstCookie

25-Jan-99 7:29:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:47 PM: SLRPmaster: received a request to add:

IPv4UDP : (melon.es.nps.navy.mil/131.120.1.244, 3326)

25-Jan-99 7:29:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3326) : newRT

25-Jan-99 7:29:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324) : newRT

25-Jan-99 7:29:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3324): newRT

25-Jan-99 7:29:47 PM: SLRP: received new route table.

25-Jan-99 7:29:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.es.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:29:47 PM: ActiveRouter: OUT: succeeded

117

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): addme

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : fstCookie

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:57 PM: SLRPmaster: received a request to add:

IPv4UDP : (melon.cs.nps.navy.mil/131.120.1.244, 3325)

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : newRT

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : newRT

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : newRT

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): newRT

25-Jan-99 7:29:57 PM: SLRP: received new route table.

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT: succeeded

118

25-Jan-99 7:30:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:31:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:28 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:31:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:38 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324): livereport

25-Jan-99 7:31:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:47 PM: ActiveRouter: OUT: succeeded

119

B. PORT 3325

25-Jan-99 7:29:57 PM: ARMain: logfile set to m25

25-Jan-99 7:29:57 PM: ARMain: using incoming port 3325

25-Jan-99 7:29:57 PM: ARMain: master set to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324)

25-Jan-99 7:29:57 PM: ActiveRouter.start: Active router up!

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : addme

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): fstCookie

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): newRT

25-Jan-99 7:29:57 PM: SLRP: received new route table.

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT: succeeded

120

25-Jan-99 7:30:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon."cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:30:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

121

25-Jan-99 7:30:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:31:18 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:28 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326) : livereport

25-Jan-99 7:31:28 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:28 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : livereport

25-Jan-99 7:31:28 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

25-Jan-99 7:31:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325): livereport

122

C. PORT 3326

25-Jan-99 7:29:47 PM: ARMain: logfile set to m26

25-Jan-99 7:29:47 PM: ARMain: master set to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324)

25-Jan-99 7:29:47 PM: ActiveRouter.start: Active router up!

25-Jan-99 7:29:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3324) : addme

25-Jan-99 7:29:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:29:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): fstCookie

25-Jan-99 7:29:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): newRT

25-Jan-99 7:29:47 PM: SLRP: received new route table.

25-Jan-99 7:29:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:29:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): newRT

25-Jan-99 7:29:57 PM: SLRP: received new route table.

25-Jan-99 7:29:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:29:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:27 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

123

25-Jan-99 7:30:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:37 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:47 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:30:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:30:57 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:07 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:17 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:28 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:38 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:47 PM: ActiveRouter: OUT: succeeded

124

25-Jan-99 7:31:48 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:31:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:31:57 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:31:58 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:07 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:07 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:32:08 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:17 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:17 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:32:18 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:27 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:27 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:32:28 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:37 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:37 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:32:38 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:47 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:47 PM: ActiveRouter: OUT: succeeded

25-Jan-99 7:32:48 PM: ActiveRouter: IN from IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3326): livereport

25-Jan-99 7:32:57 PM: ActiveRouter: OUT to IPv4UDP :

(melon.cs.nps.navy.mil/131.120.1.244, 3325) : livereport

25-Jan-99 7:32:57 PM: ActiveRouter: OUT: succeeded

125

126

INITIAL DISTRIBUTION LIST

DEFENSE TECHNICAL INFORMATION CENTER...

8725 John J. Kingmari Road, Ste 0944

Ft. Belvoir, VA 22060-6218

DUDLEY KNOX LIBRARY-

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

DENIZ KOWETLERI KOMOTANLIGI 2

Personel Daire Baskanligi

Bakanliklar

Ankara, TURKEY

4. DENIZ HARP OKULU KOMOTANLIGI 1

Kutuphane

Tuzla, Istanbul- 81704, TURKEY

5 - CHAIRMAN, CODE CS 1

Naval Postgraduate School

Monterey, CA 93943-5101

6. PROFESSOR GEOFFREY XIE, CODE CS/XG 1

Naval Postgraduate School

Monterey, CA 93943-5100

7. LCDR CHRIS EAGLE, CODE CS/EC

Naval Postgraduate School

Monterey, CA 93943-5100

8. LTJG NAMIK KAPLAN. ..

Yakacik Mahallesi Sedefciler Sokak

Senlikkoy Sitesi B-Blok NO:66

Kecioren

Ankara, TURKEY

127

